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structural fatigue of wind turbire blades.

The purpose of this study is to investigate the dyrnamic behavior of
a wind turbine blade under seismic.and turbulent wind excitations.
Using the Markov process theory and Ito's stochastic differential
equation, equations for statistical moments of blade response
variables are derived, These equations ther can be used to
determine certain moment stability conditions for any pgiven set of
parameters, and momernt resporses if the system is stable. Results
show that for a constant rpm wind twrbine germerator the urncoupled
flapping, coupled flap—lagginyg, and coupled flap-lag-torsion of a
wind turbine blade are very stable urder narmal operating conditions
avd that torsion has little influence on the dyrnamic behavior of
flapping and leadlagging motions. If the system is stable, then the
effect of turbualence on moment responses is greater tharm that of an
earthquake; therefore, turbulernce is likely the main cause for
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NOMENCLATURE

Description

airfotl 1ift curve slope
constant matrix in the moment equation
number of blade
blade-tip loss factor
linear matrix in the moment equation
blade airfoil chord
airfoil profile drag coefficient
thrust coefficient of wind turbine
power coefficient of wind turbine
damping coefficient
deterministic term in Cij
stochastic term in Cij- where x i1sf,n Of v
modulation function
ensemble average

(31/16L) (c/R)?
inhomogeneous forcing function
flapping aerodynamic force
leadlagging aerodynamic force
acceleration of gravity, g = g/R QZ
earthquake accelerations in the X, Y and Z directions
coeffictents of stochastic terms in equation of motion
generalized aerodynamic force for torsion
sectional mass moment of inertia of blade for torsion
feathering mass moment of inertia of blade
mass moment of inertia of blade for flapping or leadlagging
stiffness coefficient
deterministic term of Kij
stochastic term of Kij- where x iS E,n,.w gx,gy or g,
parameter defining vertical gradient of wind velocity

Vil



k : RK
my : drift coefficients in stochastic equation

M, : generalized mass for torsion

M; : first moment, E[X;]

M; : second moment, E[X;X;]

M; 5k : third moment, E[X;{X;Xy]

%,Fg : generalized flapping force, ﬁs =nﬂ/1n2 )

i ,T{c : generalized lead-lagging force, ﬂc ’MC/I )

N : nonlinear matrix in the moment equation

q aerodynamic torgue

r : distance at biade from the hinge

R g blade length

Ryx : auto-correlation function of turbulence component

Ty : turbulence component correlation time, ¥ = 1,2,3

u : lateral turbulence velocity

] : lateral wind velocity

Up.Up : relative airflow velocity perpendicular to the rotor disc,
[lp = Up/R Q

UT.UT : relative airflow velocity tangent to the rotor disc,
UT' Us/R 9

v : axial turbulence velocity

Vs induced velocity

v : axial wind velocity

w : vertical turbulence velocity

Hi : Wiener process

X : r/R

X : Column matrix of the response variables in the equation of
motion

Y : state vector of the moment equation

Z; : white noise process

a : blade-tip torsional angle

g : blade flapping angle

z blade leadlagging angle

°e’3e"'e equilibrium position of a ,8

I 4

X



ba 5B S, ¢ perturbed terms of o 8
] pitch angle
6 equivalent pitch angle
8 : pitch-flap coupling parameter
] : pitch-lag coupling parameter
Y 3 blade lock number, R‘pacll
o} air density
&( )'61j : Dirac delta function, Kroneker deita
v : v/R 0
u/R @
: w/R Q
: V/R @
: minimum axial flow rate of designed constant power output

x

: induced flow rate

il

advanced ratio
first moment

ks b
.

second central moment

azimuth angle

rotor angular velocity
: rotor solidity, bcAaR
inverse of correlation time of turbulence component
an arbitrary scalar function

a O e T B OB O > O>»oMm o3

b

spectral density )

diffusion coefficient of stochastic equation

matrix transposition

a nondimensional time variable

: nondimensional flapping natural frequency
nondimensional lead-lagging natural frequency

[ T
L] Sy o

"

*e

™

E E € & .~ 0 9 e n
<1

nondimensional torsional natural frequency

> ]

Clarifications will be provided in the text whenever the same symbol is used
for a different purpose.



CHAPTER 1 INTRODUCTION

1.1 Problem Statement

Wind turbines which convert wind power into mechanical power have been in
existence for centuries. In the earlier state, they were used only to pump
water and grihd grains, It was not until the nineteenth century when wind-
powered electricity generation plants began to be built around the world.
These earlier electrical projects were discontinued when they became
economically less competitive than the fossil-fuel plants [1]. After the
energy crisis’of 1973, the limited fossil-fuel supply drove the cost of the
fuel sky-high, thus generating considerable amount of effort in search of
alternative energy sources, Wind power was given a renewed interest as 2
possible economical energy source,

In general, the cost per kilowatt-hour of electricity generated by a wind
turbine decreases as the size of the unit increases. For a large wind
turbine, the major cost is that of the rotor blade, It is essential that the
blades must be designed for 2 long service 1ife in order to be economically
viable, The dynamic loads acting on a large scale blade include periodically
varying deterministic aerodynamic and gravitational forces, as well as random
turbulence and seismic loads. |

In many respects the analysis of a horizontal-axis wind turbine blade is
similar to that of a helicopter blade. For the analysis of wind turbine
dynamics, some of the mathematical assumptions and approaches used in the
analysis of the airloads and vibrations of helicopter blades are still
valid., However, there is a fundamental difference in their functions: a

helicopter blade imparts energy into air flow to generate the lifting force



whereas a wind turbine blade extracts energy from afr flow to genefate
electricity. Besides, there are several major differences between them.
First, the gravity is a steady effect on a helicopter during its forward
flight, and it can be ignored when compared with the aerodynamic forces
generated by the high speed rotation of the blade. In contrast, the
gravitational'force is periodic on a wind turbine blade rotating about 2
horizontal axis, and it is of the same order of magnitude as the aerodynamic
forces. Second, a helicopter is normally controlled to 6perate at large
values of pitch angte in order to avoid a negative angle of attack due to
inflow. In"a Wind turbine, however, the angle of attack due to inflow is
always positive, and the blade pitch angle is controlled to be nearly zero or
even negative to meet the power schedule of the generator. Third, helicopter
rotor usually can be trimmed to operate in highly nonuniform flows whereas a
wind turbine rotor may not tolerate such nonuniformities. Fourth, the
vertical wind velocity gradient will not affect the helicopter dynamic
behavior since the rotor rotates almost horizontally. In contrast, the wind
turbine rotor operates in a vertical plane, and the velocity gradient causes
asymmetry in the airloads of the rotor which may have a significant effect on
the stabiiity and response of the rotor system. Fifth, the white noise
approximation of turbulence in the analysis of hélicopter blade motion [2-5]
may not be justifiable for wind turbine blades since the rotating speed is
much lower in wind turbine operations. Finally, helicopters will not be
exposed to earthquake excitations during their operations. Therefore, a wind
turbine is expected to have different dynamic characteristics and operate in

different parameter ranges then those of a conventional helicopter.




1.2 A Review of Previous Work

A large number of papers have been published on helicopter rotor
dynamics, some of which are useful for the present research and they will be
given a brief discussion,

Among the analyses of helicopter rotor dynamics, the simplest case began
with a deterministic, single-degree of freedom model, Shulter and Jones [6]
analyzed the uncoupled blade flapping motion, in which the reversed flow
effect was ignored, using Floquet's theory for periodic systems. later,
Sissingh [7] considered the reversed fiou effect which becomes important at
high advanged ratio. This analysis was extended by Sissingh and Kuczynski [8]
who derived the equations for coupled flap-torsional motion. In their
derivation, the blade was assumed to be centrally hinged with an elastic
restraint at the center of the hub. In the case of flap-lagging motion,
Ormiston and Hodges [9] proposed a simple mathematic model consisting of a
rigid blade and root spring system. The elastic constants of the spring
system can be adjusted to account for elastic coupling and effects of nonzero
feathering angle, This analysis was extended to the nonlinear case by Peters
[10l.

Next, we will review previous works on wind turbine dynamics. Ormiston
[11] has investigated uncoupled flapping blade motion in the presence of axial
wind, cross wind, and induced flow, as well as the effects of linear vertical
gradients in the axial wind and cross wind, rotor shaft yaw precession and the
gravity forces. 1In the same paper he also discussed the uncoupled lead-
lagging response to gravitational and aerodynamic loads., His results showed

that for typical parameter values of a wind turbine, both the lead-lag and



flap frequencies were high compared to those of typical helicopter rotors.
His results also showed that gravity forces dominated the lead-lag response.

Smith, Thresher, Wilson and MacDuff [12] investigated the coupling of
rotor flapping and tower translation in an attempt to identify the relevant
parameters. In their model, the rotor hub was constrained to rotate about a
horizontal axis of fixed direction, and the bearing support structure was
allowed to move only in the axial direction. The two blades were hinged at
some distance from the center of the hub. A torsional spring at each hinge
tended to restore the blade axes to the radial direction. In their
investigalion, two special cases were considered, both neglecting aerodynamic
forces, In the first case, the rotating speed was assumed to be constant and
the resulting equations indicated the existence of a parametric exictation due
to the gravitational field., In the second case, the rotor speed was assumed
to be high enough that gravity could be neglected, and the resulting equations
yielded natural modes of vibration. However, they have provided few numerical
results based on their equations.

Friedmann [13] has derived a set of general, nonlinear, partial
differential equations for coupled flap-lag-torsional motion of a single wind
turbine blade and discussed methods for their solutions together with some
possible simplifications of the equations. In his derivation, the Devenport's
model for the variation of the mean wind velocity in the earth's boundary
layer was used, He also recognized the importance of turbulence loading and
suggested using an equivalent sinusoidal load to evaluate its effect.

However, he has published few numerici] results that were based on his
equations. Moreover, the deterministic sinusoidal model for turbulence is not

satisfactory since atmospheric turbulence is a random phenomenon.
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Kaza and Hammond [14] investigated the flap-lag stability of wind turbine
rotors in the presence of velocity gradients and of helicopter rotors in a
forward flight using an approximate numerical solution. Their results showed
a decrease in blade damping with advance ratio in the case of a helicopter
rotor and 1ittle effect of the wind gradient on wind turbine stability. They
have provided only one figure for windmills.

Spera [15] has investigated the blade vibrations of wind turbine
rotors. The blade vibrations were limited to the fundamental flapping modes,
assumed to be elastic cantilever bending for hingeless rotor blades and rigid-
body rqtﬁaion for teetering blades. The effects of the wind shear and tower
wake were taken into consideration. He used a computer program in which
aerodynamic coefficients were obtained from a stored table of values, to
calculate the airloads on wind turbines and integrated the equations of motion
in time. Such an analysis is valuable as a design tool, but is not preferable
for basic research, The time domain numerical approach has some
disadvantages: 1) the interpretation of time histories is usually difficult,
and 2) the complicated nature of a large computer program and the high
computing costs prohibit any extensive parameter changes in the mathematical
model,

Wei and Peters [16] have studied the flap-lag instability of both heli-
copter and windmil) blades as a function of design parameters and operating
conditions for various trimmed and untrimmed conditions., The mathematical
techniques used in their study are the perturbation method, multiple time
" scales and the Floguet theory. Their results indicated that the trimmed and
untrimmed autorotation flight conditions were considerably less stable than

the power flight condition, and that gravity forces have little effect on



stability in the case of axial flow at very high thrust coefficient. Their
results also showed that the effects of the axial flow, velocity gradient on
blade damping were small. However, their emphasis was focused on helicopter
rotors rather than windmil} rotors because the operating conditions and

control settings used were those of a helicopter,

1.3 Scopeslof Present Research

The present research is directed at the dynamics of a wind turbine rotor
system under random seismic and turbulence excitations; Three types of blade
motion are investigated: 1) uncoupled flapping motion, 2) coupled flap-lagging
motion, aﬁd.3) coupled flap-lag-torsional motion. Account is taken of the
aerodynamic, gravitational and vertical wind gradient effects.

In Chapter 2, a brief review of stochastic processes and stochastic
differential equations is presented., Special attention is paid to the
generalization of the spectral representation of a stationary random process
to that of a non-stationary process, The stochastic differential equation in
the sense of Ito is then introduced, followed by fhe Ito differential rule,
which is a useful tool to obtain equations for statistical moments of system
‘response variables. Finally, the stochastic averaging procedure for 1
converting physical equations to Ito's equations and its implication in terms
of convergence of sequence of physical processes to a Markov process are
briefly discussed,

The equations of uncoupled flapping, coupled flap~lagging and coupled
flap-lag-torsional motions are derived in Chapter 3. The effects of axial
wind, vertical wind gradients, cross wind and elastic coupling are included.

Ground motions and turbulence velocities are treated as random external



excitations. The equilibrium soltutions of coupled flap-lagging and coupled
flap-lag-torsional motions are obtained in this chapter using harmonic
balancing method., The control settings of a typical wind turbine are also
discussed, |

Chapter 4 deals with the mathematical models of the random excitations,
Earthquake accelerations are modeled as nonstationary random processes.
Turbulence velocities are modeled as stationary processes.

In Chapter 5, the equations of motion obtained in Chapter 3 are converted
to the ItD-type stochastic differential ejquations, from which the moment
equation§ ﬁer system response variables are derived. An outline is given of
the approaches to obtain the moment stability conditions and response
moments,

In Chapter 6, the moment eguations derived in Chapter 5 are solved
numerically. The effects of turbulence level and earthquake level are
investigated and presented graphically. The effects of some other parameters
such as turbulence correlation times and elastic coupling are also indicated.

Chapter 7 summarizes the principal conclusions and indicates some topics

for further research,



CHAPTER 2

FUNDAMENTALS OF STOCHASTIC DIFFERENTIAL EQUATIONS

2.1 Elements of Stochastic Process
Differential equations governing a physical system subjected to

excitations can be written as

xj = f3(X, 1) + g5, R,t) g, (t) (2-1)

i=12"%..,n, k=12, ..., m

where x; are components of a state vector'ﬁ, gk(t) are excitations, and a
repeated index implies summation over all values of the index, We shall
assume that ;k(t) are stochastic or random processes, To characterize gk(t).

we review the following important concept of stochastic processes.

A. Random process with orthogonal increments {17]
let Z(w)} be a compiex-valued random process defined on a < w < b.

Z{w) is said to have uncorrelated increments if
EL{ Z6op)-20o ) 1 2 ()2 (030} 1 = ELZ(oy)-2(o VIELZ G g)-2 ()] (2-2)

for any a ¢ wy < wy € g < wy < b, where the asterisk denotes the complex
conjugate., If the right hand side of Eq. (2-2) is zero, then Z(w) is said to

be a random process with orthogonal increment.



We define a deterministic function ¥, such that

ELlZl) - w2, Hfu> o
YW - (2-3)

£l2oy) - 28 if W <wg

where W, is an arbitrarily chosen reference point in the y-domain., Eq. (2-3)

implies that!(uo) = 0. It can be shown that ifw2.> wy

ECIZw3) "2 2(0)) 1] = Yiw,) - ¥lo)) | (2-8)
Let Wy Tw,wy Tw ¢ dw in Eq. (2-4). We obtain

EC[dZ(w)]%] = d ¥ (v) (2-5)

Note that if ¥ (w) is differentiable (i.e. d¥{w) is of the order of d ), dZ(v)
is of the order of (d w)l/z. If ¥{u) is not differentiable, dZ{w) is also not
differentiable. Therefore, in either case an orthogonal increment process is

not differentiable, It also can be shown that an alternative definition for

an orthogonal increment process is

o, ifwte'
E(dZ(w)dZ*(w')] = (2-6)
dy (), ifow =o'
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B, Stationary random process

A random process x(t) 1s said to be stationary (in a strict sense) if its
statistical characteristics are invariant under time shifts, i.e., if they
remain the same when t is replaced by t + ¢ where ¢ is arbitrary [18].

For a stationary process the mean value must be a constant, say u, and

the correlation function must be a function of time difference ¢, i.e,,

Elx(t)] =4
and ELx(t)x(t+)] = Ryy(x) (2-7)
. v
However, these may be true when x{t) is not strictly stationary, in which
case, x(t) is said to be weakly stationary.
If p = 0, then a weakly stationary random process can be expressed as a

Fourier-Stieltjes integral representation,

x(t) = [ e%tarw) (2-8)
where Z(w) is an orthogonal increment process. Eg. (2-8) is known as the

spectral representation of a stationary process. To compute the correlation

function of x{t), we take the ensemble average of x(t) and x(t+r):

ELx() x (tax)] =1 f el@= It iergnm* )

-

= .Ce-imd!(m) = Rxx('t) (2-9)
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Eq. (2-9) shows that the correlation function of a weakly stationary process

also has a Fourier-Stieltjes representation. If w(y) is differentiable, then
Rels) = fe ¥ W)dw = [ e % Wido (2-10)

where "'" denotes differentiation with respect toy,ando W) =v'W) is

called the spectral density of x{t}. If we Tet ¥{~) = 0 then

Y)=f &, (u) du (2-11)

-

. .‘

In this case, ¥{w) s called the spectral distribution function of x(t)

[17]. The mean-square value of x(t) is obtained from

ELx2(8)] = Ry (0) = ¥e) = [ 0 () du (2-12)

Eq. (2-12) shows that Qxxﬁu) describes the distribution of the mean-square

value in the v (frequency) domain.

C. Won-stationary Random Process

For stationary processes, the spectral representation is well-known and
has been used extensively in physical and engineering applications. On the
other hand, there has not been a general agreement on a similar representation
for non-stationary processes. Several different attempts have been made [19-
22]; one of them is the evolutionary spectrum proﬁosed by Priestly [22,23]

which has found important applications in earthquake engineering.
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This particular class of nonstationary process considered by Priestly has

a Stieltjes integral representation,

x(t) « [ a(tw) e®tdaz@) (2-13)
where a(t,w) is a deterministic function of t and w, and 2(w) is again an
orthogonal fncrement process. If a(w,t) = 1, the representation reduces to
the stationary form, Eq. (2-8).

The correlation function of x(t) is

- "
¢, (t1.tp) = Elx(ty)x(ty)]
e = w,t, -lw,t
= 1L altwp)atitywgle e T E L0710y
S [ altyw) at(tywle i t)ay ) (2-14)

-0

where ¥ () is the spectral distribution function of some stationary process.

When t; = t,, £q. (2-13) becomes

e (tt) = Jaltw)? dyi) (2-15)

-

Ifv{w) is differentiable, then

-

E(x2(t)] = fo |G(t.u))|2 2lw) duw (2-16)

w)|?

As in the stationary process, |a{t & (o) can be interpreted as an energy
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density 1f E[xz(t)] is a measure of the total enerqgy of the process at time t.

If alw,t) does not depend on w f.e., a(w,t) = e(t), Eq. (2-13) becomes

x(t) = | e(t)e“taz() (2-17)

-

In this special case, x(t) is called a uniforﬁ1y modulated random process.

D. Markov Process [17]
A continuous stochastic process x(t) is called a Markov process if the

following property is satisfied
Prob [x{t,) < xplx(to 1) = X1 %{tyio) = X0, ovey x(ty) = x;]
= Prob [x(t,) < x,] x(tp_1) = xo1 15

t

n?thoy > thep > e 2ty ' (2-18)

that is, the past and future of a Markov process are statistically independent
when the present is known., A sufficient condition for being Markovian is that
x(t) has independent fncrements,

The conditional probability, Prob [x(t) < x| x{(tj) = x,1, is called the
transition probability distribution function; its derivative with respect to x
is called the transition probability density, to be denoted by q(x,t]xo,to).
The transition probability density of a Markov process satisfies a partial

differential equation
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3
? ? 18 1 »
—q+ - (Aq) - 5= (Bg) +=5 2= (Cq) - ... =0 (2-19)
) 3x 20‘2 3 613
Yim 1
where A=aAte0 At Elx{t+at) -x{t)] x(t) = x]
1im 1 2
B=atd & E[{ x(t+at) - x(t)} °] x(t) = x]
Tim ) 3
C=at0 -5 E[{x(teat)- x(t)} 7 | x(t) = x]

are ca11gd_§he derivate moments. When x(t) is also Gaussian, the derivate
moments of an order higher than two vanish. In this case, Eq. (2-19) reduces
to the parabolic type

2
d 2 13 . )
5t 4 * 5y (M) - 7,72 (Bg) =0 (2-20)

Eq. (2-20) is called the Fokker-Planck equation or Kolmogorov forward
equation,
For a multi-dimensional Markov process, the Fokker-Planck equation can be

written in a similar way

2
o) d 1.3 - )
5t 9 +ax1(a'iQ) -iaxiaxj (bijQ) 0 (2-21)

where x; are the components of a state vector'i, and a; and bij are given by
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lim
a; = a0 ;5 Elxg(t+) - xj(t)[x(t) = X]

lim
b..=Atﬂ)%-E[{ﬁ(u1)- x, (8} x; (t+) -xjﬁﬂlxﬁﬁ = X] (2-22)

13 t J
A Markov process whose transition probability density satisfies the Fokker-
Planck eqUation is also known as a diffusion process. The derivate moments |
A={a and B = [bij] are called the drift vector and the diffusion matrix of |
the diffusion process, respectively,
The significance of the transition probability &ensity of a Markov
process is that for a given initial state, the transition probability density

completély‘specifies the pracess x(t).

E. Brownian motion process (Wiener process) [24,25]

A stochastic process W(t) is called a Wiener process if it satisfies:

(i) W(t) is a Gaussian process

(ii) W(0) =0
(i11) Ee[w(t)l =0

(iv) EDW(t;M(t,)] = o min (t;,t,); 1.e.

oty if t) <ty

ECW(t,)W(tp)] = (2-23)

02t2, if tl > t2

A unit Wiener process is one for which o = 1. It can be shown that W(t) has
independent increments, and thus satisfies the sufficient condition for being

Markovian. In fact, the Wiener process is the simplest Markov process.
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Furthermore, since being independent implies being uncorrelated,
2 . _

c dt, if tlstz't

E[dH(tl)dﬁ(tz)] = (2-24)
0, if t1# t,

Therefore, the Wiener process is nowhere differentiable, This property, Eq.

(2-24) has provided the motivation for introducing Ito's differential equation
and Ito's integral as we will see tater,

. ty
F. White noise process

A weakly stationary random process with zero mean and a constant spectral

density is called a white noise; denoted by Z(t). That is,

QZZ(“J) =K
or
RZZ(-r) = xK&(t), s = t, - 4 (2-25)

Eq. (2-25) indicates that Z(t) is alsoc a delta-correlated process. A constant
spectral density implies that the energy content of the process 1s uniformly
distributed over the entire frequency range. The total energy, which is equal
to the infinite integral of the spectral density, is infinite. Therefore, the
white noise process is a theoretical idealization, and physically non-
existent, MNevertheless, such processes are sometimes useful as approximations
for physical processes and they may be used to obtain meaningful results,

The spectral density of a physically realizable process must be
negligible beyond some cut off frequency.oc. Replacing a physical process by

a white noise process means that this cut-off frequency is taken to be
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infinity. This is permissible if the actual we is considerably higher than
all frequencies which are important in a given physical problem.
It also can be shown that the derivative of a Wiener process is a white

noise, and a Markov process.

G. Exponentially correlated process

Now we discuss the statistical properties of a stochastic process g (t)
with an exponential correlation function. Such a process satisfies the first
order differential equation.

'y

= ar + 2(1) (2-26)

where Z(t) is a white noise with zero mean and R,,{z) = &@225 (). If the
initial condition is z:(to) = E,» then Eq. {2-26) has the solution
«z(t-to) t «(t-s)

£(t) =g @ +] e Z(s)ds (2-27)

Yo

Using Eq. (2-27), we find the following expressions for the mean value and the

correlation function of g (t):

- (t-to)
Elz(t)] = £t

wltyt))  w(tyst,-2t)

x>
ELE (1)), £ (t,)]) = —22 [ - e O3+l MR (o)

a

As t - t, increases, the correlation function tends to its stationary form
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Ree () = oot (2-23)
where

D
2 22 _
o T Aade =ty -ty

The process £{t) becomes an approximation of white noise as q + %, *a,

but 02 = constant,

When the excitations in , Eq. (2-1) are exponentially correlated, the
response state vector X is not a vector Markov process. However, the expanded
(n+m)-dimensional state vector (xi,;k) where i = 1,2, .ea 0, K = 1,2, oo, ,M

is Markovian,
- .1

2.2 Ito Stochastic Differential Equation

The governing equation for every diffusive Markov process can be written

in the following form;:
dx = m(x,t)dt + o(x,t) dW(t) (2-30)

where W(t) is a unit Wiener process. Eq. (2-30) is equivalent to

t t
x(t) = x(0) + [ m(x{u), u) du + [ o(x{u),u) dW(u) (2-31)
o 0

The second integral in £q. (2-31) cannot be interpreted as a usual Stieltjes
integral, since the sample functions of W(t) are of unbounded variation. Itd
proposed that it be interpreted as a forward integrd] [27,28].

N-1

t
{ olx(u),u) dW(u) = Voiume T o (x{u,),u, Y [W(uy,,) - Wlu,)] (2-32)
o max A+0 i=1
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where A = Uj,q - U; and 1,1.m. represents the so-called lTimit in the mean. It
is of interest to note that every pair of °(x(”i)’”i) and [W(ujyq) - Wuy)] are
independent, since the increment in W occurs after the time uy. Eq. (2-30) is

called Ito's stochastic differential equaiton if the integral is interpreted as
Eq. (2-32).

In the case of a Markov vector, Eq. {2-30) is generalized to

dxj = my(X,t)dt + o5, (X, t) dW(t); : (2-33)

<o,
"

1'2‘ L .n, k = 1'2’ Tew ,m ‘

It can be shown that the solution vector X(t) generated by Eq. (2-33) is
Markovian and has no derivatives [29]. Furthermore, the Fokker-Planck equation

for the transition probability density q of Markov vector X is given by

3(m.q) 2
%%-= - be + %‘ 2 (cj]c]kQ) (2-34)
J axjaxk

Comparing Eq. (2-34) and Eq. (2-21), the first and second derivate moments are

seen to be
ay (X,t) = mjﬂ.t) (2-35)

b‘]k (Xot) 'Gj](xst) G‘[k(i’t) (2'36)
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2.3 Ito's Differential Rule

As indicated earlier, the transition probability density completely
specifies & Markov vector X(t) provided that the initial state is known;
however, to obtain a closed form solution for the transition probability
density is quite difficult if not impossible. The alternative is to obtain the
statistical moments of the system response,

For the computation of the statistical moment, we introduce the Ito's
differential rule, The advantage of using this rule lies in the fact that
similar Ito equations can be derived quite simply and without ambiguity for
arbitrary scalar functions of a Markov vector satisfying rather general
conditions, The Ito's differential rule may be stated as follows: let x; by
the ith component of a Markov vector ﬁ, governed by Ito equation (2-33), and

let ¢ (X,t) be a scalar function, then [27,28]

2
= (2% 3¢ L, 1 3 ¢ 24 i
dé (at +miaxi +2°ik°kjaxiaxj ) dt +°1'J'ax1- dwj (2-37)
provided that the derivatives on the right hand side exist. The It0

differential rule differs from the classical chain rule in the additional

2

term % % 4Kk j 6%——:—;— which results from the retention of terms of the order
LI

(dw)Z.

Equations for the first and second moments are obtained by letting the
scalar function ¢ be x; and x,.xg, respectively, and taking the ensemble average

of the results; it leads to

%{ Elx;1 = En,] (2-38)
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E[xr151 = E[mrxs +mox, + °rl°15] | {2-39)
2.4 Approximation of Physical Process by Markov Process

As mentioned earlier, Markov process is an idealized mathematical process,
and no physfical process can be exactly Markovian. However, it is sometimes
reasonable to use such an approximation to obtain meaningful results,
The approximation is usually justified on the basis of how close the increments
in non-overlapping time intervals are nearly being independent [17].

For convenience of discussion, we introduce the concepts of the relaxation
time for -a Wynamic system and the correlation time of a stochastic process.
The relaxation time T, is defined as the time required for the amplitude of a
free motion to decrease by a factor e"l or increase by a factor e, where e is

the base of natural logarithm, The correlation time of a weakly stationary

stochastic process may be defined as

e =1 < RE) |/ IRG)|de (2-40)
¢ 0 0

where R{x) is the correlation function of the stochastic process, When a
dynamic system is subjected to a random excitation, the system response will
exhibit a Markov-like behavior if it is observed at time {intervals greater than
the correlation time of the excitation. However, the observation time for the
response must not be too far apart to lose the essential characteristics., A
rough guideline is that the observation intervals should not be farther apart
than the relaxation time of the dynamic system. If 1. << 1., then the response

is expected to show a near Markovian behavior when it is sampled at time

intervals of the order of T
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When the relaxation time of a dynamic system is not much greater than the
correlation time of excitations, the Markov process theory stil) can be used.
This is done by approximating the excitations as outputs of linear filters
driven by Gaussian white noises, and extending the dimensions of the Markov
vector. The system response variables constitute only some, not all the
component§ of the resulting Markov vector. The exponentially correlated
process mentioned earlier is obtained by passing a white noise through a first

order filter,

2.5 Sioé\astic Averaging Method

We shall assume that the Markov process approximation is justified for the
physical system, Eq. (2-1). The question now arises as how Eq. (2-1) can be
converted to an equivalent Ito equation, £q. (2-33), The mechanism is provided
in what is now known as the stochastic averaging procedure, proposed by
Stratonovich [18] in 1961 on physical grounds and later justified rigorously by
khasmiskii [30]. According to this procedure, the drift and diffusion

coefficients in the Ito equation corresponding to Eq. (2-1) are

0
my= £y Oot) ¢ T 5—%]— 95 X109, (X, te) Elg, (e (t4) 1ok (2-41)
0
4107k © ZLerﬁ,t)gks(x.tﬁ) Ele (t) £ (t4)]d (2-42)

The physical implications of this procedure are clear, The first term of

Eq. (2-41), f., represents the tendency for future drift of the response

js
variables X5 if random excitations were not present, With the random

excitations, the tendency is modified due to the correlation between the past
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excitations at t+r and the present excitations at t, where ¢ is negative. The
integral in Eq. (2-41) sums up all the past correlation effects and Tumps the
total effects at present. Similarly, the integral in Eq. {2-42) sums up the
future diffusion tendency due to random excitations up to the present time,
The substitution of equivalent drift and diffusion into the lto equation for
Markov vector is necessary, since the excitations dw, in Eq. (2-33) are
independent of the present state X; by virtue of Ito's interpretation, Eq. (2-
32), they affect only future diffusion, and are dissociated with the drift
(17].

Eq.’ (2-42) gives the elements of ocT, instead of matrix ¢ itself,
However, only the product matrix ocT is required for the calculation of
Els (X,t)] as shown in Eq. (2-37).

In the special case in which Ly of eq. (Z-1) are physical white noise

processes, i.e,,
El (tl(tw)] = 22 5(c) (2-43)

where&nﬁ are constants, Eqs. (2-41) and (2-42) reduce to

mpo= f5 (R,t) +m0 [ a—e-’;]— g;-(%t)] gy (1) (2-44)
91k " Mrsgjro(.t) gksﬁ't) (2-45)

The second term on the right-hand side of Eg. (2-44) is called the Wong-Zakai

correction [32,33].
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CHAPTER 3

GOVERNING EQUATIONS OF MOTION OF A ROTOR BLADE

3.1 Physical Model

In this section, differential equations governing the coupled flap-lagging
motfon of a single blade will be derived first which will serve as a basis for
later reduction to the uncoupled flapping motion and extension to coupled flap-
lag-torsional motion. In general, the assumptions commonly made in the
analyses of helicopter blades [9,10], are equally appropriate for wind

turbines, These are briefly described as follows:

A, Structural model
(1) For flap and lead-lag motions , the blade is rigid,
centrally hinged, with linear elastic restraint at the hinge,
(2) The mass and the elastic centers coincide with the aerodynamic
center; and they lie along a straight line,
(3) The blade has uniformly distributed mass along the span,
B. Aerodynamic model
(1) Flow is incompressible and sectionally two-dimensional,
(2) Linear, quasi-steady strip theory 1s applicable to calculate
the aerodynamic forces,
(3) The reversed flow due to the sidewind is negligible.

(4) Flow separation and stall do not occur.

The assumption of uniform mass distribution is not particularly accurate,

but it is made to simplify the formuTation. However, the results should be
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valid qualitatively, When a sidewind is present, part of the wind turbine
rotor disc will experience a reversed flow as is the case for a helicopter
rotor 1in forward flight; that is, the fluid flow will approach the trailing
edge of blade airfoil, For low sidewind velocities, the reversed flow region
is very small and can be neglected.

It is.we11 known that the strip theory is not strictly valid near the
blade tip. When the blade chord at the tip is finite, the lifting force based
on the strip theory is nonzero throughout the entire length of the blade., In
fact the 1ift must decrease to zero at the blade tip where the air flow must be
three—d{héngiona1. To compensate for the inaccuracy due to the two-dimensional
flow assumption, the physical rotor radius R is usually replaced by an
equivalent radius RB for airload calculations where B is called the tip-loss

factor,

3.2 Formulation of Equations of Motion
In the derivation of the equations of motion, reference will be made of

the coordinate systems illustrated in Figure 3-1. The fixed coordinate system

{X,Y,2) is defined with a vertical Y direction downward and a Z direction

upwind, The rotating coordinate system (X',Y',Z') rotates about Z axis at a
constant angular velocity @. The blade coordinate system (x,y,z) is attached
to the blade and it has a y axis along the span, pointing outward. The wind
velocities are decomposed into the steady components, U and V, in the X and -Z
directions, and the random turbulence components, u, v and w in the X, -Z and Y
directions,

Consider a rigid blade mounted on a spring system at its root and rotating

about Z-axis at a constant angular velocityg. The kinetic energy and
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potential energy for the coupled flap-lagging motion are given by

T=318 2e310 +&)%os?s (3-1)
R 2,1 . * 2 * .
V=g Ky BBp) * 7Kt * Kﬁc(s Bk
1 2
- 5 mR cos B cos ¢ *+¢) (3-2)
mR3
where " " denotes one derivative with respect to time t, I = = 9= the

* *
gravity forte, ch = the pre-co:e angle, KEB = flapping spring constant, KCC =
lead-lagging spring constant, '%C = flap-lagging elastic coupling constant,
let p and ¢ be two generalized coordinates., The corresponding generalized

forces can be computed as follows,
R
M =[ F rdr 3-3
b = Fer (3-3)
R
chf F. rcosp dr (3-4)
0o &

where Fﬁ and FC are forces due to aerodynamic and seismic effects.

The equations of motion may be derived by applying the lagrange equation,

and case in the following nondimensional forms:

" |2 : v Y
" + (lig')" cos g sinpg + K (B, ) + K

¢

+

T

g sing cos {g +¢) = Fg (3-5)
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2 v " 1 1
8 +chc +'$C(B -ﬂpc) - 2cosp sing (l1+%')

" cos

+%§cosa sing (6 +¢) =R (3-6)

where "'" denotes one derivative with respect to the nondimensional time,

¢ =0t, and

g-= /R q°

oot 2

Kag = Kgp/19
A S L

Kee e

K. = K* 1102

Kae = Kac )

Moo= M/l

. B/ Q

K = W/10°

Various terms appearing in the equations of motion will now be discussed,

A. Elastic Coupling Model

To estimate the elastic constants -EBB . KCC , and KﬁC Ormiston and Hodge [9)
have proposed a simple model consfsting of two sets of orthogonal springs with
a collective pitch angle ¢ between them as shown in Figure 3-2, In our
analysis of a wind turbine, the same model will be used to represent the
elastic property of the blade-hub assembly,

The blade is assumed to be rectilinear, untwisted, constant chord and
without hinge offset, A structural coupling parameter R is introduced, and

defined as
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Vkep = 1K,

M VCAC VW0 R (V[ SR Vo (3-7)

The spring constants in eq. (3-7) are those shown in Fig. 3-2; namely KBh(KCh)
is associated with the hub flap {1ag) spring that remains aligned with the
rotor shaft, and Kab(ch) with the blade flap (lag) spring that remains
aligned with the blade, The configuration of Figure 3-2 reduces to a simple
equivalent single spring system at zero pitch angle which defines the rotor
blade nonrotating frequencies, wg and we « For this reduced case the spring
constants are given by, respectiﬁe]y,

* K, K
M L L (3-8)
b

Ks
";cb ke h (3-9)

e
n

2 2
d =
an wg KB/IQ
2 _ 2
Wy '%/IQ

In terms of these parameters, the equivalent spring constants used in £q. (3-5)

and Eg. (3-6) are

- 1.2 2 _ 2, .2 )
KﬁB =3 [wﬂ + R(mC wﬁ) sino ] | (3-10)
s lp2 o2 2y .2 )
KCC =3 [wc R(wc wB) sin“e ] (3-11)
= _R_r2 24 .. -
Kac =5 [mc mBJ sin 2 @ (3-12)
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where A =1+R(1-R) sinze (wcz - w

The case R = 0 corresponds to one where the blade spring system is w
entirely contained in the hub and the rotor blade does not rotate with pitch |
angle change, On the contrary, for R = 1, the hub spring system is contained
in the blade spring and the rotor blade rotates in accordance with pitch angle
change., Variations in elastic coupling are accommodated by intermediate value

of R.

B. Seismic Forces

Considering the effect of hub acceleration due to ground mction, let g,,
gy and g, be the acceleration components in the X, Y and Z directions,
transmitted to the hub due to ground motion. Then, the initial forces

corresponding to flapping and leadlagging motions are

FB9= -m[gxsin(¢+c) sing + gycos(q,-bc) sin 3+gZ] (3-13)
Fog™ Moycosledc) - g sinfye)] (3-14)

The nondimensional generalized forces attributed to ground motion can be

obtained by substituting Eq. (3-13) and Eq. (3-14) into Eq. (3-3) and Eq. (3-8)

and nondimensionalized,

%: - %[ﬁxsin(u:)sina + EyCOS(MC) sing +7g,] (3-15)

F% = —23- [g,coslg+c) cosp - EySin(df*C) cos 8] (3-16)
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where 'g-x =g /R al
- - 2
gy gy/R 0

3,* 9,/Ra’

It is of interest to note that the coefficients of Ex and g, are functions of
g andg, not functions of g' andg ', It implies that the ground acceleration
components Ex and Ey appear in the stiffness terms of the equations of motion,
but do not affect the system damping. In contrast, tl;le coefficient of Ez does

not involve g, B', ¢ or¢'; therefore, §z appears only in the inhomogeneous

terms of tHe equations of motion.

C. Aerodynamic Forces

The aerodynamic forces are obtained from a linear, quasi-steady strip

theory. The 1ift and drag components per unit length are

¢ :9_;_9. (u$ + Up?') sin (p9)

(3-17)
c
- pac 2 d -
d =03 uZ 4 ug) A (3-18)
-1 U
where ¢ = tan T"%’ is known as the inflow angle, and Up and Uy .are the

relative velocities perpendicular and tangent to the rotor disc,

respectively. The symbols p, a, ¢ and Cq 3re defined in the NOTATION list.

THe aerodynamic forces FB and Fc as shown in Figure 3-3 are
aero aero
F = 5 ue - uu (1 +3’-)] (3-19)
E’aero 2 Tp 8
Fo- e 2 yyg - R 9 (3-20)
Caero 2 pTp T a



Figure 3-3

Blade Element Geometry.
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The velocity components Up and Uy may be computed as follows:
Uy = -(Vo + v - vj)cosp + (U +u)sing sin (g4g) + rg (3-21)
Up = -(Uy + u) cos o) +rlg +§) cosp + wsin (i) (3-22)

where V, and U, are the steady axfal and crosswind components in the -Z and X
direction, v and u are the turbulence components in‘the directions of V, and

Uy, w is the vertical turbulence, and v; is the induced inflow velocity.

o)
It 1§ assumed that V, and U, vary linearly with the vertical distance ¥

from the ground. This is an approximation for the actual distribution of

velocity in the atmospheric boundary layer, an approximation proposed by

Ormiston [11]., Then
Vo = V[1-rK cos g cos (¢+)] (3-23)
Uy = U[1-rK cos g cos (g4)] (3-24)
where k is a linear velocity gradient of the atmospheric boundary layer,

assumed to be the same in x and z directions. Substituting Eqs. (3-23) and (3-

24) into Eqs. (3-21) and (3-22), and nondimensionalizing,

0, = [1 - xk cos g cos{p4 )] [ cosp +p sing sin(g4)]

=v COS B +X.COSB +1q sing sin{p+) + x8' (3-25)
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Up = ~[1-xk cos B cos{¢sc )] pcosle%) -n cos (4%)

+ x(l4g') cosp + sinfp) (3-26)
where Ub = Up/R Q
Up = U;/Re
x = r/R
A = V/Raqp
p = U/RQ
" A= vi/R Q
v = V/RQ
n = u/RQ
£ = w/RQ

Adopting the same terminology as that used in the helicopter analyses, p will
be referred to as the advanced ratio, LW the induced flow ratio, and
v, n and ¢ non-dimensional turbulent velocity components,

As in the case of helicopter rotor in forward flight, reversed flows can
occur where Uy becpmes negative near the blade root. Ffor low crosswind
velocities, the effect may be neglected.

The following nondimensional generalized forces are obtained by
substituting the aerodynamic forces into Eqs. {(3-3) and (3-4), integrating

along the blade from 0 to RB, and nondimensionalizing:
B2 - Cd

K =% /0% - U0 (1 + )7 xdx (3-27)
0

= B o _ _ d
M ’%”U -UUp - Uy 7J cos p x dx (3-28)
0
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acR4
where y = » 15 known as the Lock number,

3.3 Fflap Motion

The equation for uncoupled flapping motion follows from lettingrz = 0, in

£q. (3-5):

B® + cosp sinp +?Bﬂ(a-spc) +%—g' sing cos ¢
- F, ' (3-29)

where F% consists of both the seismic and aercdynamic loads, which have been
obtained in Eqs, (3-15) and (3-19), After some algebraic work and neglecting

higher order terms of such small quantities as B, B ', psEsms v, 5;. 5;

and E?, the equation of motion may be cast in the following linear form:

(3+30)

n
-

"+ Cp' +Kp

where

C= CIIO + Clks + Cllnn
K= Kot Kpt K * "ugxgx + Kllgygy
F = FIO + Flsa + th + Flvv + Flgzgl

The coefficients C, K and F are deterministic periodic functions of ¢, and are
listed in Table I.

It should be noted that excitations in the axial direction, ground
acceleration §Z and turbulence component v, appear only in the inhomogeneous

terms; they do not cause instability of the system. Excitations in the other
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o 3 4 4
“3 {0 5D Guc - Fruc? - )

C110

_ o 3
RS ARCRT oL

o
L)

¢ 3
‘11 = -3 {0 egD )

B4

- 3 — Ca g3
Ki10 = (Kﬁﬁ+ 1) +5 9 -75{(1 + =) (- x—us + 7 kpCs)

c 2 3

kg = - 510 +3D (- 5us? + Fkucsdy

xun = -12-{(1 +-:-°-') (-g—z-pcs -%-ikpczs +%Z:pcs --g-ipcs
£

"11gx=%3

xngy=§c

4 3 4 o 2
_ B
Flo= Refpe +F10G - Tut e - kuc) + (1459 (- 3auc
3 2 4 3 3

48 2 . B B 2 3 2B 2 . B
+-§—kkpc QTkai-rlkuC -Tkglic +-§—1

4 3
- %—xkc - %—li)}



. by

38

Table 1 continued

3 3 c 2 4
Fe =5 10(-%Cs + Bkuc®s + B 5) + (145 Gas - s

c 2 3 3
' dy B B” 2 , B
2{(l+a)( 2 PC+3 kP'C +3)}

-
1]

3
F =-'§

lgz

where C = cosS ¢, S = sing¢g
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directions appear in the coefficients of g and/or g'; They affect the systea

stability,

3.4 Coupled Flap-lag Motion

The equations of motion for coupled flap-lagging motion are obtained by
substitufing the generalized forces due to aerodynamic and seismic loads into
Egs. (3-5) and (3-6). They remain to be coupled nonlinear differential
equations after judiciously neglecting some small terms. The equations can be
linearized by converting them to a corresponding set of equations for small
perturBBt?an about a periodic equilibrium solution of the original nonlinear

system, T o, By and 98[16]. Specifically, let

C=g, AL
B =Bt 5B (3-31)
6 = Be + EBC)B + BCGC

where eB and ec are pitch-flap and pitch-lag coupling parameters which

approximate the changes {n the blade pitch angle due to changes in flap and

leadlag angles, For small angles of g and ¢,

sing = Be+ 6B
cosp =1 -B&B

sing =g * & (3-32)

cosg =1 - Ce6C
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The linearized equations of motion are obtained by substituting Eq. {3-31) into
the nonlinear equations, collecting linear terms in §g and 8¢ and their
derivatives, and subtracting out the equilibrium solution which will be
discussed later, to yield:

8" 68" 6B

+ [€] + [k] = (F (3-33)

6z " 52" 5B
where [C] and [K] are two by two square matrices and F is a two by one column
matrix. The elements of [K], [C] and F are

e ]

Cij = c'ijo + c-i"r’; + cijn“ + Cijvv

Kij = Kijo * Kijg 9x* Kijgygy *Kigg9z * Kigl *Kign * Ky
Fs = Figx g,* F?gygy + Figzgz + th + Fiﬂﬂ + F'iv"

where i, j = 1,2 and the coefficients Cij’ Kij and F; are listed fn Table II.
It can be seen from Table II that, unlike the case of uncoupled flapping
motion, the axial turbulence component also appears in the homogeneous terms as
the other turbulence components. However, the roles played by various
earthquake components remain the same as those in the case of uncoupled

flapping motion,

3.5 Coupled Flap-lag-torsion Motion

To investigate the three-way coupling of flap-lag-torsional motion, an
assumption is made that the torsional mode is linear [2,8], in addition to
those assumptions listed previously in Section 2-1; namely, the torsional angle
is proportional to x, 0 < x < 1. The equation of motion for torsion may be

written as follows:
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Table Il continued
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Table Il continued

2 3 3 3 3
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where C = ¢cos ¢, S = sin ¢ and the coefficients of Cij- Kij and Fy are zero if

they are not listed.
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M (@* +ula) = 6a° (3-34)

where 9, is the torsional natural frequency, and o 1s the tip torsional angle.

For a linear mode, the generalized mass and generalized forces are given by

< [ < ahe) = L1 (3-35)
" £ X g 3 -
B
G =[gxd (Rx) = R [ qgxdx {3-36)
0

.
where 1¢ is the sectional polar mass moment of inertia about the elastic axis,

Ia is the feathering mass moment of inertia of the blade, and q is the
aerodynamic torque applied at the aerodynamic center of the blade.
Using a quasi-steady aerodynamic theory, the aerodynamic torque may be

computed from
Q= -BroRUlxa' +(1+g') sing]

3 _
2 -2 %R U(xa' +8) (3-37)

_The equations for coupled flap-lag-torsional motion are obtained by
combining Egs. (3-5), {3-6) and (3-34), and replacinge by 8 + % in the
derivatfon of the generalized forces due to aerodynamic loads in Eqs. {3-5)
and (3-6). As before, the equations form a set of nonlinear coupled equations

which may be linearized about the equilibrium position, Ber Co and T In

addition to Eq. (3-31), we let g =g, +4a 1in the nonlinear equations
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mentioned above, Subtracting out the equilibrium terms which will be

2

discussed later, neglecting the small quantities o> ag. Cos

B e and pz in the aerodynamic loads, and collecting the linear terms

of 58, 87 and 8¢ yield:

58 " g ' 5B
{&;“] + [C] {6:'} + [K] {6{‘ = {F-} (3-38)
da " a ' ba )

where [C] and [K] are three by three square matrices and F are three by one

column matrix. The elements of matrices [C], [K] and F are

* C‘J = C'IJO + C]-EE + C.'Jn'r] + C.'va

K:: 3 K + 9y ¥ K

ij K

. .F + Koo + K. . .. g+ k.. g
ijo 7355 Ku{” ijY K1ng 1nggy+ inggz

Fi = Fig9x ¥ Fig 9y * Fig 7% Pyl + Fyn + Fyv
Y z
where i, j = 1,2,3 and the coefficients of Cij' Kij and F; are given in Tabdle

11 and Table I11.

3.6 Perio&ic Equilibrium Solutions and Control Parameters

To 1inearize a set of nonlinear equations about the equilibrium solution
that equilibrium solution must first be obtained. Here, we shall discuss the
equilibrium solution for the flap-lag-torsional coupling which can be reduced
to that of flap-lagging coupling by letting torsional angle be equal to zero,

Neglecting the higher order products of u, K, Bgs Cqs Bgr @grag 2nd6

e’
the equilibrium equation may be written as the following forms:
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Table III continued
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BZ
K3, = vFL- 758,

K330 = u,

2
where F = e ., C=cos¢g and S = sing¢g . The coefficients of Ci_j' K ;

161(1122 .
and F; are zero if it was not listed above or in Table I,
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4 3 3
i (o) 94t ket 35 60 Ryt b oo 000« Faton;
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TSBe) TT Bt TARSTe A K Cry - By Al Ty - el Sty

3 2 84 BS 84
-Teé“c +-2—' C (Ai-k) --4—ka *rae -7 Cae] (3-39)

] v 3 — 3_ B B
Cet RcPet (Ko =790 e = Ryepcm 7 95+ G Lgmihe bt mmiCe,

3 4 3 2 2 3
B B B~ 2, B 2 2B
+-§-xee -Z—)\kC ee-—-:;xiee*r -2'—?\ *T)\i - sz)\i"Tka(ki'&)
.« *y
3 3 4
2B 2 ' 28 : . B '
- SRSy t BUShA R, S5 A t Ak By

g B> 83
-7 ByRa, - rkCa, *playhya)] (3-40)
3 4 3 3
u 2 B t (]
“e+“’a“eEYF[+C“e'%“e+%LCﬁe'%'Be3 (3-41)

Eqs. (3-39), (3-40) and (3-41) are coupled linear differential equations
with periodic coefficients, Approximate solutions can be readily obtained for
the equilibrium solutions in terms of the input parameters a, "i’ ee, vy » Fo K
and ch’ The solutions can be written as Fourier series and will be approximated
by truncating the series after the first harmonic terms.

Be B, *B . COS¢ +8,_sing
Lo =kgth COs¢ + cssinq, (3-42)

= +a C + 3
a, a, ac 0S ¢ aSCO ¢
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when Eq. (3-42) is substituted into Eqs. (3-39), (3-40) and (3-41), & systen
of linear algebraic equations s obtained by equating the coefficients of
cos ay, cos ¢ and sin ¢ of each differential equation to zero. Then, the

approximated equilibrium solutions can be written as follows.
DX =H (3-43)

where'iT = [50 Bg B lolgleayag ac], D is nine b} nine square matrix, and H
is nine by one column matrix, The nonzero coefficients of matrices D and H are
given in'Table IV.

Before the equilibrium solutions of coupled flap-lag and flap-lag-torsion
motions can be determined, it is necessary to specify the relationship between
the wind velocity ratioa, induced flow ratio L and blade pitch angle G
This can be accomplished relatively simply by using momentum theory in
conjunction with the aerodynamic force per unit length, Eq. (3-19), in which we
assumed the flapping angle is small,

In this theory, the induced inflow are assumed to be uniformly distributed
over the rotor disc. By neglecting the sidewind u, and velocity gradient k which
are small compared to others, the dimensionless thrust coefficient and power

coefficient are given by

A A

Cp=4—0--) (3-44)
Ay A 2

Ca=45;— (-5 (3-45)



. T
FOPIRC P SR o e R

BT SO

A AN A L g

K YT

Tabie IV

fl

1}



- "

Table IV continued

o
o
o

{
]
-

£,
¥
L
[}
W

3
- ¥ Y gty - 3BT,
hy Kﬂsapge[Bee 5~ ) ]
3
2 88
T Ia8% b)) - Bk -5 0]
g3 82 .
hg = KgeBpem 6 0By A) + g (yn)

-
(%)
H

2

g

>
wn
I

N MW

B 8? 83
hg = L us (i) - Tg—eak + T3-ak (- n)

55



56

The maximum power and maximum thrust which can be determined from Egs.

(3-44

—

and (3-45) occur when Aj =h/3 and 2 /2, respectively. The condition

js not permissibie since at the downstream velocity is A - &i. and the

>

).1=
condition Ay o 2/2 implies flow reversed in the wake.
A relation between i, LW and ee can be obtained by equating the

integrated rotor thrust from E£q. (3-19) to the thrust from the elementary

momentum theory. The result is

7
2 2 3
Ay =1§(x +3’—g—) tJ1/4 0 +a°g)-%°—(182+3% 8,) (3-46)

where g = f%; is known as rotor solidity, b is number of blades per rotor.

The negative sign on the radical is normally used, since otherwise it will
produce unrealistic Ao for instance, as ee = 0, Ay =A which will cause the
flow reversal in the wake as mentioned above. This equation reflects the fact
that the induced flow ratio is a dependent variable that can be determined by
the independent variable A and the control parameter 8- The pitch angle 8o
can be independently controlled to obtain desired rotor thrust or power.
Therefore, Eq. {3-46) can be solved as well as Eq. (3-43) for any given

combination of » and ee.

When the blade pitch angle is zero, the solution to Eq. (3-46) is

2

Ay T 59% . The zero power and thrust windmilling condition occurs when L

0 and ee = -3 /28. Those two points where ee and xi = 0 can be used to define

a simple approximation for Eq. (2-46)
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2
. %8 28
li 8 (1+ K-\ ee)

'

3 i

or 6 = (—a - 1} {3-47)
e 2B agBZ-

5
where the accuracy of the approximation in the practical range will be
discussed later,

Eg. (3-46) for the induced inflow is appticable for any arbitrary
combination of » and I However, for a typical constant rpm wind turbine,
the blade pitch angle is controlled to produce the maximum power output as
well as bq prevent overloading the power generator. A typical operating
schedule is the following, At low wind velocities, the pitch angle is
controlled to produce the maximum power available, At the rated design
condition, the rotor power output equals to the installed generator capacity
of the wind power plant and the pitch angle is to be controlled to prevent the
further power increase at the higher wind velocities. At the maximum
operating condition, the turbine will be shut down to minimize the risk of
damaging the rotor,

To operate under this schedule, the induced inflow ratio will be given by

[11]

ki =A/3,n < ?.R

& /27
Ay F - s A 2 (3-48)
Toaad -an)? "

where AR is the rated design wind velocity of the wind turbine plant.
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Figure 3-4 shows that the pitch angle variation with axial wind velocity
ratio » based on Eqs. (3-46) and (3-48), and Eqs. (3-47) and (3-48) for B =

.97.-%1 = 053 anda, = .1. The result fndicates that Eq. (3-47) is a good

R
approximation of Eq. (3-46) in the practical range of the wind turbine
operating condition., When ), LY and 6, are known, the equilibrium solutions

of the flap-lagging and flap-lag-torsional motions are ready to be calculated,
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Ees. (3-47) anp (3-43)

—- —-~— FEes, (3-46) anp (3-43)
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CHAPTER 4
STOCHASTIC MODELS OF RANDOM EXCITATIONS

4,1 Earthquake Model

Since'seismic waves are inittated by irregular slippage along faults
followed by numerous random reflections, refractions and attenuations within
the complex ground formations through which they pass, stochastic modeling of
strong ground motion seems appropriate [34], If unlimited ground-motion data
were avéibele, representative stochastic models could be established directly
by statistical analyses. Unfortunately, strong-motion data are limited.
Therefore, one is forced to hypothesize forms of models, and to use the
available data in checking the appropriateness of these forms.

Accelerograms usually show a phase of nearly constant intensity during
the period of most severe oscillation, which suggests that earthquake motions
may be modeled as white noise processes of limited duration. The simple
stationary white noise process has been used to model earthquake accelerations
[35].

However, the entire real accelerogram often shows a short phase of
intensity buildup to some maximum level. The intensity then remains fairly
constant for some time, after which it decays in an exponential fashion. This
appearance suggests that the nonstationary models could be more representa-
tive of actual strong ground motions. Several nonstationary models for earth-
quake accelerations have been proposed [36-38], although their use gives rise
to some analytical difficulties, for instance, the statistical linearization

technique is no longer simple.
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In this study, we assume that ground acceleration can be modeled by the

simple expression:

glt) = efx) Z(z) (4-1)

in which 2(z) is a stationary random process and e(:) is an intensity function
having an appropriate form based on statistical analyses of real accelero-

grams, One form which has been suggested [39] is that given in Figure 4-1, or

( T

0
¢ ™ sy TS T <, +x
1% 0 o} 1
e(s) = < 1 » Totty ST <, ta, {4-2)
e'C(T'TZ"TQ) . 12 +to <t

where To ts the initial time of earthquake and the constants TR and ¢
should be assigned only after considering such factors as earthgquake
magnitude, epicentral distance, etc.

The advantage of using Eq. (4-1) over other earthquake models stems from
the fact that the nonstationary character is restricted only to the intensity
function e(r) and that through the use of the stationary random process 2(<),
the desirable properties of spectral description and orthogonal decomposition
can be preserved.

For the stationary random process Z(t), many forms of power spectral
density have been proposed to reflect the influence of the local environments
[40]. Among them, the white noise model having a uniform spectral
distribution of frequency contents is frequently used for §ts simplicity and

reasonably adequate approximation to real spectra,
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In our study, the non-dimensional ground acceleration will be decomposed

into

g,@) = ()2, 6)
9,(¢) = e,(¢)2,0) (4-3)

§z(¢‘) = 93(4' )23(4-')

where Z; are assumed to be uncorrelated Gaussian white noise processes, i.e,

L]

E[Z;0) Zow)] = By pte), 4= 1,2,3 (4-4)

in which §{ ) is the Dirac delta function, ®,;; are spectral constants defined

by

D, =°f ELZ,(s) Zi(s+c)]e""‘*’d: (4-5)

4,2 Turbulence Model

When a blade rotates in the atmosphere, the relative velocity of the
blade to air is comprised of two parts: the velocity of the blade ftself and
the velocity of the air. The velocity of the air can further be divided into
the mean air velocity and the turbulence fluctuating about the mean air.
velocity. 1In order to predicts wind turbine response characteristic in the
presence of atmospheric turbulence, it is important to identify and
characterize the turbulence field which is being convected past the rotor disc

when the blades are rotating.
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We shall assume that the steady aerodynamics is applicable, Then the
aerodynamic forces are determined by the instantaneous air velocity
distribution along each of the wind turbine blades. It is thus necessary to
characterize the wind turbulence field by a three-dimensional velocity vector
which varies randomly not only with time but also with the position in
space. The description of this turbulent velocity field requires a complete
set of joint probability distributions for different velocity components at
different time and different position in space. Clearly, such a description
is not possible without considerable simplification.

It is.generally agreed that the atmospheric turbulence is approximate
Gaussian distributed [41-43]. Being a Gaussian process, the turbulent
velocity at each point is completely characterized by the mean and correlation
function, Since turbulence is defined as random fluctuation about the mean
wind velocity, the mean of the turbulence itself is zero. To model the
correlation function, the following assumptions are made, First, the
turbulent velocity is assumed to be locally homogenous. Second, the random
field is assumed to be isotropic for all separations for which it is
homogeneous. Under these assumptions, Holly [44] compared different
turbulence models and suggested that the turbulence field may be modeled as
stationary random processes with exponential correlation functions for the
analysis of horizontal-axis wind turbines. Such processes can be conveniently

represented by a Tirst order stochastic differential equation of the form
x' = ax + I{d) (4-6)

where Z{4) is a physical white noise, and ¢ is the reciprocal of correlation
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time of process x(4). As shown earlier, the correlation function of x(g) is
given by R, (z) = cze'“lt|, in which ¢ 1s the difference of ¢, and 02 is the
mean square valye of process x(¢ ). The normalized correlation function is

shown in Fig. 4-2,

In this study, the three components of turbulent velocity can be written

as follows.
AR RN ' (8-7)
n' = wy t L) (4-8)
Yoty 2 (4-9)

In which @y @y and ay are the reciprocals of correlation times of processes
£(). n(e) and v(¢), respectively, I, Zg, and Zg are assumed to be

uncorrelated Gaussian white noise processes with zero means, i.e,,
E[Z;(e) Z;lp+ )] = &2 8 (2) (4-10)

where i = 4, 5, 6 and®.. and 5( ) are defined as before.
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CHAPTER §
GOVERNING STOCHASTIC DIFFERENTIAL EQUATIONS AND MOMENT RESPONSES

5.1 An Outline of the General Approach

In the linearized equations of motions derived in Chapter 3, random
excitations appear both in the coefficients (parametric excitations) and in
the inhomogeneous terms {nonparametric excitations). The random excitations
include the atmospheric turbulence velocities which are assumed to be
statiopagy processes and the earthquake acceleration components which are
assumed to be nonstationary processes. All of the random excitations in the
1inearized equations of motions are multiplied by periodic modulation functions
such as Kln: 511;- etc., which are originated from the rotor rotation., Of
course, the modulated random processes are not statistically stationary, even
though turbulence velocities are assumed to be stationary random processes.

To gain more insight into the properties of the equations of motions, we
investigate the corresponding homogeneous equations by dropping the inhomo-
geneous terms. If the random excitations are also neglected, then these homo-
geneous equations belong to the class of Hill's equations [45] - a class of
linear differential equations with periodic coefficients. In such a case, the
system can become unstable under certain combinations of parameters, The
addition of random parametric excitations to the system changes the stability
conditions. The existence of parametric random excitations can destabilize
some systems but stabilize other systems [46,47],

As indicated earlier, each turbulence component is modeled as an
exponentially correlated random process, and each earthquake component is

modeled as the product of a deterministic modulation function and a white noise
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process. If only the turbulence excitations are present, then the coefficients
and the inhomogeneous terms in the equations of motion are either periodic
functions or products of periodic functions and random processes. The state
vector of the system is not Markovian. However, if we extend the state vector
to include the turbulence components, i.e, a&ding Eqs. (4-7) through (4-9) to
the equations of motion of the dynamic system, then the new state vector
becomes Markovian, and a host of well-developed mathematical tools of Markov
process theory can be used. The extended system is nonlinear since the
parametric turbulence excitations are also treated as unknowns, If the
earthquake ecitations are also included in the analysis and if each component
of the groﬁnd acceleration is modeled as the product of an intensity function
and a Gaussian white noise process, the Markov process theory can still be
used.

For the convenience of applying the Markov process theory, each second
order differential equation will be replaced by an equivalent set of two first
order differential equations. Then employing the transformation formulas,
Eqs. (2-41) and (2-42), the drift and diffusion terms of corresponding Itd's
stochastic differential equations can be found. Furthermore, the eguations
for the moments of the state variables can be obtained by using Itd's
differential rule Eq, (2-37) and taking the ensemble average of the resulting
differential equations. The moment equations become a sequence of coupled
linear periodic differential equations if only turbulence components are
present. The periodicity is lost when earthquake excitations are incliuded
because the modulating functions of the earthquake models are not periodic,

In either case, the moment equations form an infinite hierarchy, in the sense

that the higher order moments will appear in
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the equations for lower order moments. Thus, only approximate soiutions for
the lower order moments are obtainable by using a suitable closure scheme,

Perhaps the best known scheme is the Gaussian closure in which the higher
moments are assumed to be related to the first and second moments in the same
way 2as GauSsian random variables. In p;rticular. the third moments which
appear in fhe equations of first and second moments can be expressed as

follows [31]:

E{Xinxk] = E[Xin] E[ij + E[ijk:l E[Xij + E[xixk]E[xJ-]
" - 2E0x;] E[x;] E[x,] (5-1)

By substituting the above relationship into the first and second moment
equations, these equations become a closed set of coupled nonlinear
differential equations,

To examine the stability conditions for the first and second moments we
follow a linearization procedure used by Bolotin [50] and Owen [51]. The
nonlinear differential equations are re-formulated in terms of the first
moments and the second central moments u, = E(x;] and By " E[(xi1*1) (xj-
pj)]. The products of the type of u, and by are neglected, however, the
terms involving the mean square values of the turbulénce velocity components
are retained. For the stability study the modulating functions of the
earthquake models are replaced by the constant unity, f.e., the earthquake
componénts are assumed to be physical white noise processes. This is
conservative and leads to meaningful results.l The equations now become
a set of Tinear periodic differential equations, ahd the Floquet theory can be

used to find the stability condition of the dynamic system.
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To calculate the response moments, the original system of nonlinear
differential equations obtained from Gaussian closure is used. If all the
random excitations are stationary random processes multiplied by deterministic
periodic functions, then the statistics of the response will tend to periodic
steady-state functions if the reSponse'is stable in some sense. In contrast,
if the raﬁdom excitations are not all stationary, which is the case when
earthquakes are also present, then the response statistics are transient-
1ike. In our calculations to be presented in Chapter 6, both the steady state
response moments of the dynamic system due to turbulence excitation and the

transient Fﬁponse moments due to earthquake excitation will be included.

5.2 Stochastic Differential Equations and Moment Equations for Response
Variables
In this section, the moment equations of uncoupled flapping, coupled
flap-lagging and coupled flap-lag-torsional motions are derived. For
simplicity, subscripts g, 9ys 975 E» 7 and y in the matrices [FJ], [C] and (K]
are changed to 1,2, ..., 6, respectively, The first order differential
equations corresponding to Eq. (3-30), (3-33) or (3-38), and Eqs. (4-7)

through {4-9) are recapitulated as follows:
x'(21-1) = X(21)
(21) = Fio =1 (KikoX(2k-1)*Ciko¥ (2x)
6 n
"L T Mgt e n gt an ! geen-)
n
FFig -1 Mig* (et 62 @)

3
+]
]

i‘l; "oy n
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i T gioan®s * L(ie2nea) )
i=(2n+1), (2n+2), (2n+3) (5-2)

where x; are the components of state vector X and will be defined later, n is
the number of the generalized coordinates of the dynamic system, e; are the
earthquake intensity functions, and Zj@,) are uncorrelated Gaussian white
noise processes. It must be noted that some of the coefficients are added for
the commensurability among the different equations of motions such as Kyig»
Cy16s Ki13» Fpp 2nd Fyp of flapping motion and F;, of coupled flap-lagging and
flap-lag-tarsional motions. The state vector x will now be approximated by a
diffusive Markov vector. The governing Itb stochastic differential equations

for the Markov vector can be obtained by using the Stratonovich stochastic

averaging method. Ffollowing Eqs. (2-44) and (2-45) drift coefficients are

M2i-1) = *(24)

n
m(2i) = Fio - §=1(Kikox(2k-1)+ CikoX(2x))
6 n
* §=4{Fij' b Kikg* a0 Cikg*(an) ) X(jezn-3)

i =21, 2, seep N

i T W (i-2m) %50

i =(2n+1), (2n+2), (2n+3) (5-3)

The nonzero elements of the diffusion matrix are
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1 3 %p n n
o N ziy 2™ T 2 8l ik T fecka-nh e T Ky asen)

i'j=1’ LI Y n

T
(oo )1j © 2’@('i+2n-3)(j+2m-3)61“]‘

i,j=(2n+1), (2n+2),(2n+3) (5-4)

where 5ij is the Kronecker delta, It is of interest to note that the Wong-
Zakai correlation term does not appear in the drift coefficient, Eg. (5-3), as
it often does for the random parametric excited systems.

To derive the first and second moment eguations, we let the scalar
function ¢ be equal to x; and XiX; in Eq. (2-37), and substitute Egqs. (5-3)
and (5-4) into £q. (2-37). After taking the ensemble average of the results,

the first and second moment equations can be obtained. The first moment

equations are

M (2i-1) = M(2i)

n 6
"(21) 7 Fio 7 Kikdaen o) TEIFiMGean-s)
n
1 KikgMeken (ven-3)* CikgMizk (ge2ne3) !

i=(2n+l), (72n+2), (2n+3) (5-5)
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The second moment equations are

M'(21-1)(24-1) = M2i)(2i-1) * M(25) (2i-1)

n
M (29)(25-1)"M(25) (21)*FioM(23-1) ‘}; (KypoM(2x-1) (23-1)* Ciko™(2k) (25-1)’

=1
6 n
+ §=4{Fi1"(1+zn-3)(zj-1)' §=1*skr"(zx-1)(1+zn-3)(zj-1) * GiaMan) (142n-3) (25-1)
n
M (21)(23) = FioM2s) * FioMzi) ~ 1 (KikoMak-1)(2)* CikoM(2) (2)

6

+ KikoMtek-1)(21) * CikoM(ak) (21)) * 2]=4{Fn"‘(1+zn-3)(23)

n
* FpMoeen-3)(2i) ~ 1 KiiMak-1) (1ean-3) (29)

+ CiMzk) (1+2n-3) (23) * KikiM(ak-1) (1+#2n-3) (21)

3 n
2
*CieMan) (ezn-3) 200 T B e d FisFie - Fad_ KyskMizs-1)

n n n

- Mt L L KKk

21-1) (2s-1)

iJd=1, .cap N

" (21-1)3 = M2i)s T e (g-amM2i-1)g

n 6
M (2i)5 = FioMi =1 Kiko(ae-1)5* Ciko®20)y) *L L FiMGazn-3);

s FiaMac-1) (1e2n-3)5° Gk (e2n-3)3 @ (goamM2eys
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Mg = - laggaan)® @(gaam ™y * 2 (12m3) (§-2me3)0 1] 6

i, J = (2n+1), (2n+2), (2n+3) (5-6)

where "i = E[Xil. Hi,} = E[XiXJ]. and Hijk = E[X';XJXKJ. It can be seen that the
first moment equations contain the first and second moments, and the second
moment equations contain the first, second and third moments, To obtain the
complete set of the first and second moment equations, we substitute Eq. (5-1)

into Eg. (5-6).' The second moment equations can be rewritten as the following.

M (2i-1)(25-1) = M21)(25-1) * M(25)(2i-1)

n
M (24) (23-1)"M(24) (25)*FioM(25-1) %%gl(KikoM(Zk-l)(2j-1)+cikcn(2k)(Zj-l))

6 n
1Pt 0eena) 230§ Mo ™M) (ezne3)™2s-1)
* Mopa1)(25-1)M(142n-3) * M(142n-3) (25-1)M(2k-1) = P2k -1)M(1+2n-3) M(2j-1)]

*+ CialMiaky (1+2n-3)M(25-1) * M(2k) (25-1)M(1+2n-3) * M(1+2n-3) (25-1)1M(2k)

- M) M1azn-3)M(25-1)7)

n
M (21)(29) * FioM2i) * Faotan) -] KieoMae-1) (2i)* CoroMan) (23)

| 6
* KjkoM(2k-1) (21) * CikoM(ak) (21) * %=4{F11H(]+2n-3)(2j)
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n
FitM(1+2n-3)(21) - izl‘Kixlf"(zx-l)(1+zn-3)"(zj)* Mak-1) (25" (1+2n-3)

+

+

M1ezn-3) (25 (2k-1) = -1 +2n-3)M(2303 * CialM2c) (1e2n-3)M(25)

+

M(2k) (25 M(142n-3) * M(1+2n-3) (25 )M (2k) = (20 (1+2n-3)M(25) ]

+

Kik1[M(2k-1) (1+2n-3)M(21) * M2k-1) (20 M(142n-3) * M(1+2n-3) (21)M(2k-1)

= 2o M+2n-3)M2i) T * CialMak) (1e2n-3)M(2i) * M(2x) (21) *(1+2n-3)

. “

3
+ Mrezn-3) (21) M2k) - Pa)M(1+2n-3)%(21) 1] +2k=12uef¢kk

n n
FicFie = Fie 1 KiskM2s-1)" Fad MMz

n

n
*SXK.K.M_ -};
ey’ oy 11K 35K (21-1)(25-1)

i, J =1, «ees

W (2i-1)5 = M2i)i T 2 (j-2an)M2i-1);

n 6
M (2i)s ® Fiots - T (i) s* Gz s * APt ean-3);
n
- 1_1(Kik1[M(Zk-l)(1+2n-3)Mj+ Miok-1)5M1+2n-3)" M1+2n-3) M 2k-1)

- 2M2k-1) MOszn-3)M51 * Gl M) (1e2n-3)0%5 * M2k M+2n-3)
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+ M1a2n-3)5 Mak) = P20 e2n-3) - e 5omMi) 5

i3 1, cuey N,

i = (2n+1), (2n+2), (2n+3) '

M5 T @ aanyt @ (goan)) Mig t B (1iane3) (jo2ne3 i

i,j = {2n+1), (2n+2), (2n+3) ‘ (5-7)

- "
It must be noted that the second moment is symmetric, i.e., "ij = "ji°
The system of Eqs. (5-5) and (5-7) forms a complete set of moment

equations. They can be cast in the following matrix forms.
Yo=K+ BY + R V) (5-8)

T _
where ¥’ = [M; ... Moy Mions1)  M2ne2)  M2n3) M1 M12 oo Mi(2ns3)
Moy Mg ... H2(2n+3) .en "(2n+3)(2n+3)]° vectors ¥, & and N are of the same

order as (2nm+3) + (2n+3) + (2n+2) + ... + 1; and the square matrix B is of an
order {2n+3) + (2n+3) + {2n+2) + ... + 1. Vector N contains the non-linear
terms which are the products of first and second moments.

For moment stability analyses, we replace the moments by the corresponding
central moment in Eq. (5-8) and linearized in the sense of Bolotin. The

linearized moment equations become
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B (2i-1)° *(2i)

n 6 n
8 (20" 7 1 ik (2e-)* Cine 207 4, ] (Kikg (k1) (g92n-3)

* Ciat (26) (j42n-3) )3

i=l, ..., N

b (2i)(25-1)7 P (210)(23-1) T ¥ (25)(2i-1)

« Py

6
B (21) (25-1)7 P (29) (23) * Fietcai-1) YA, Fiw (ean-3)(25-1)

n
- Ll("ikd‘(Zk-l)(ZJ-n * Cikd® (2) (24-1))

n
v 21y (25) T Fig 2 Fae2i)™ 4, (Rike® (ak-1) (20)" Cikd (260 (24)

n
ko ¥ (2k-1)(21) * Caket (k) (21)) T &, (Fit (1ean-3) (2d)

3 n
*Fip(ezn-3)(2i)) * Ll&enzé”kk{ 'Fikz;glxjsk“ (25-1)

n n n
- ijgzlkilk“(ZI-l) *1 L KinKjse (21-1) (2s-1))
i,J=1, ..., n
B (2i-1)5 T B (21)37 S (20 (21-1)]

n
b (2iyg™ Fioty T L Kikdt (2e10d * Cike (20057 T 8 (gan (21)
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6 n
i R.‘ {.1°J(l+2n-3)61(1+2n-3)“1&1"(2k-1) Y Copp (20))

i- 1’ tody n

J = (2n+1), (2n+2), (2n+3) . (5-9)

where o, are the mean square of turbulence components, Bi= My, and Byj®

M:: = Hi"j are the central moments, The detailed 1ist of the linearized

iJ
moment equations of uncoupled flapping, coupled flap-lagging and coupled flap-
lag-torsion is given in Appendix E. Letting the intensity functions equal to
unity andh applying the method of Floquet transition matrix, one can determine
the stability conditions for any given combinations of parameters based on the
operating condition described in Chapter 3.

As mentioned previously, for moment response analyses the steady state
response is emphasized if only turbulence is present, and the transient moment
responses are required if both turbulence and earthquake are present. In the
first case, we let the intensity functions, e;, e, and e3, be zero in Eqs. (5-
5) and (5-7), and integrate the system of differential equations starting from
an arbitrary set of initial conditions until the moments converge to periodic
functions with period 2. In the second case, we impose the earthquake
excitations upon the system which has reached its stationary state in the
presence of some moderate turbulence; that is, we obtain the transient
solutions of Eqs. (5-5) and (5-7) with the initial conditions which are the
steady state solutions due to some turbulence excitation alone. In our

calculations, however, earthquakes are assumed to commence at ¢ = 0, %3

n and gE; respectively.
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In the case of uncoupled flapping motion, n=l and'ﬁT = [‘1 Xp X3 X4 xSJ =
[BB8'E nv]. The total number of equations for the first and second monents
fs twenty., The detailed moment equations are given in Appendix A, Since Eq.
(3-30) 1s linearized about the zero flapping angle, the stability of the
system of Eq. (5-9) is interpreted as for the zero flapping angle. The
solutions of the first and sixth components of vector ¥ represent the mean and
mean square flapping angles.

In the case of coupled flap-lagging motion, n =2 and’XT = [xl Xy X3 Xg
xg xg x7) = [58 &' 6L 8L' £ n v, giving rise to thirty-five first and second
moment eqdations, as detaiied in Appendix B. Since Eq. (3-33) describes a
perturbed motion from an equi]ibrium flap-lagging motion, the stability should
be interpreted as that of the equilibrium solution, Bar&o and 0 o The first
and eighth components of vector Y are the mean and mean square of the
 perturbed flapping angle, and the third and twenty-first components are those
of the perturbed lead-lagging angle,

Finally, for coupled flap-lag torsion motion, n = 3 and"(T=
[xy x5 x3 X4 X5 Xg X7 %Xg Xg) = [58 88" 62 6" 6ax 6a' & n v]. Then Eq. (5-8)
contains fifty-four equations for the first and second moments. The detailed
moment equations are given in Appendix C. Again, the stability is interpreted
as that of the equilibrium solutions, BesLor g and LI The first and tenth
components of vector Y are the mean and mean square of the perturbed flapping
angle, The third and twenty-seventh components are those for the perturbed
Teadlagging angle and the fifth and fortieth components for the perturbed

torsional angle,
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CHAPTER 6
NUMERICAL EXAMPLES

Some numerical results will be presented in this ghapter to illustrate the
applications of the procedure developed herein, The equilibrium solutions when
required are calculated first using Eq. (3-43). Next, Eq. (5-9) is used to
determine the moment stability conditions. The statis%ica] moments are then
calculated when the motion is stable, The moﬁent responses include two parts:
1) steady dPate solutions without the presence of earthquakes, 2) transient
state soltutions with both turbulence and earthquake. To calculate part 2, the
intensity functions are assumed to be the same for three earthquake components
and are given in Fig, 4-1.

Fig, 6-1 and Fig. 6-2 show the equilibrium solutions of coupled flap-
lagging and flap-lag-torsional motions in a typical operating condition. These
results are based on the following parametric values: ¥ = 30 ft/sec (9.15
m/sec), U = 6 ft/sec (1.83 m/sec,) R = .2, R = 50 ft (15.25 m),Q = 6

2
rad/sec, y = 8, &éB = 05, Cyq * .01, ch =0, 8

=0, 0 =0’AR=_1’k=

¢
.02, wB = 1.414 and W, = 1,871. For coupled fIap—iag-torsiona] motion, the
values o = 33 and F = ,72 are used. The periodic equilibrium solutions shown
in Fig. 6-1 correspond to Bo = .0118, Be = -.0007, Be = -.0012, 8o = 0012,
Ce = -.0108 and C. = .00001. The maximum angles of flapping and teadlagging
in the equilibrium solutions are 0,757° and 0.693° which are also the maximum
responses for the deterministic case. Fig. 6-2 shows the equilibrium

solutions with an additional degree of freedom in torsion. The flapping and

leadlagging motions are almost identical to those in Fig. 6-1, and the



81

torsional equilibrium angle is near zero everywhere. This is because of the
fact that the last three rows on the right hand side of Eq. {3-43) are zero,
and the torsional mode is much stiffer than flapping and leadlagging.

A large number of cases were considered in the analyses of uncoupled
flapping, coupled flap-lagging and coupled flap-lag-torsion. All the three
modes were found to be very stable, even when the turbulence level is extremely
high, Table V gives the largest norm among the eigenvalues of the Floquet
transition matrix for different cases, Since computation of eigenvalues of the
Floquet transition matrix of a dynamic system involving many equations with
periodic tvefficients would be very expensive, the stability condition under
unusual parameter combinations was not considered. Our main effort in the
present study, therefore, was expended to obtain the moment responses for
coupled flap-lagging and flap-lag-torsional motions. The parametric values
used in the calculation of moment response are the same as those used for
determining the equilibrium solutions. Any exceptions will be indicated
individually.

The steady state solutions of moment response to turbulence alone are
presented first. Fig. 6-3 shows the computed first moments for the uncoupled
flapping motion., The results indicate that the turbulence root-mean-square
(rms) level has little effect on the mean flapping angle which is
indistinguishable from the non-turbulence deterministic solution. However, the
rms shown in Fig. 6-4 increases about 18% from the deterministic one for a high
turbulence rms level and about 4.7% for a low level. The flapping angle
for the deterministic case is the one associated with zero turbulence rms
level. The reason for labeling the strength of turbulence in terms of the rms

value instead of spectral level is that the spectral level of an exponentially
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Table ¥

The Largest Norm Among Eigenvalues of the Floquet Transition Matrix

Case Motion v rms value of largest norm among
: ft/sec (m/sec) u, v and w eigenvalues
ft/sec (m/sec)

1 flap 30. {9.14) 3.0 (.914) .059857

2 flap 30. (9.14) 20,0 (6.10) .060081

3 flap 50, (15.24) 3.0 (.914) .059914

4 fiap’ 50. (15.24) 20,0 {6.10) .060005

5 flap-lag 30. (9.14) 3.0 (.914) .948321

6 flap-lag 30. (9.14)} 20, (6.10) .932839

7 flap-lag 50. (15.24) 3.0 (.914) .944450

8 flap-lag 50. (15.24) 20. (6.10) .932710

9 flap-lag- 30. (9.14) 3.0 (.914) .943482
torsion

10 flap-lag- 30. (9.14) 20. (6.10) .932245
torsion

11 flap-lag- 50. (15.24) 3.0 (.914) .944213
torsion

12 flap-lag- 50. (15.24) 20. (6.10) .932616

torsion

*

- - - - - - _ 25 - -7
T, =T, = T3= .6667, e; = ep = e3 = 1,@11 =033 =1%oy ° .92698x10~7,

T 0; other parameters values are the same as those used for determining

the equilibrium solution
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correlated process is a function of freguency. The effects of turbulence

rms level on the moment responses of the coupled flap-lagging motion are
depicted in Figs. 6-5 through 6-8. The mean flapping and leadlagging perturbed
angles are shown in Figs. 6-5 and 6-7, whereas the rm§ perturbed angles are
shown in Figs. 6-6 and 6-8. The mean perturbed angles are very small in all
cases. Tﬁe rms perturbed angles are about 58% and 23% of their respective
equilibrium angles for flapping and leadlagging motions at a turbulence rms
Tevel of 5 ft/sec (1.52 m/sec), and about 29% and 12% at a low level of 2.5
ft/sec (0.76 m/sec). The results indicate that adding the leadlagging degree
of freéﬁ&?‘tends to lower the rigidity of the flapping mode.

The effects of the turbulence correlation time T; and of the elastic
paremeter R on the responses of coupled flap-lagging motion are also compared,
Figs. 6-9 through 6-14 show the variation of moment response with the turbulence
correlation time at the same rms turbulence velocity of 5 ft/sec (1.52 m/sec) rms
in all three directions. _The mean and rms angles of the flapping and Teadlagging
responses computed for different correlation times are very close to each
other. This indicates that within the practical range investigated the
excitation correlation time does not have a profound effect on the moment
responses. Figs. 6-13 through 6-16 show the moment responses of coupled flap-
lagging motion with different values of elastic coupling parameter R at the same
turbulence rms level. The mean and rms responses computed for varying value of R
are not much different., It must be noted that when we change the value of R, the
equilibrium solutions are also changed; however, the changes in the maximum
equilibrium angles are small compared to the maximum angles themselves.

Therefore, a slight change in the R value still leads to the same general
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results. Figs. 6-17 through 6-22 iliustrate the mean and rms angles of the
flapping, leadlagging and torsional moment responses computed for different
turbulence rms levels. The mean and rms torsional responses are almost equal
to zero; the results for flapping and leadlagging respbnses are very close to
those obtained previously without the torsional degree of freedom. The same
conclusion has been reached for equilibrium solutions.

Next, the transient moment responses due to both turbulence and earthquake
excitations will be presented. It is assumed that the steady state motion due
to turbulence excitation is present when the earthquake excitation occurs
at ¢ = 0.°7Figs. 6-23 and 6-24 show the transient responses of mean and rms
angles of uncoupled flapping motion computed for the same turbulence level but
different earthquake levels, The curves indicate that the response statistics
remain periodic; that is, an earthquake in the range of level considered does
not affect the moment response of uncoupled flapping motion. The mean and rms
angles for the coupled flap and leadlag responses are shown in Figs. 6-25
through 6-28., Figs. 6-25 and 6-27 indicate that both the mean flap and leadlag
angles are very small, and that there is no influence of earthquake excitation
on the mean angles. As shown in Fig. 6-26, the rms flapping angle of the
transient solution differs only slightly from the steady state periodic due to
turbulence excitation alone. In constrast, the rms angle of the leadlagging
response is affected by the earthquake excitation. It is about 8% of the
corresponding equilibrium solution for a2 nondimensional earthquake level of
9.2698 x 10-8 and about 1% for a low earthquake level of 9,2698 x 1079, The
effect of different starting times of earthquake excitation on the transient
solutions of coupled flap-lagging motion is also investigated., Figs., 6-29

through 6-32 illustrate the mean and rms angles of flapping and lead-lagging



85

responses. They show that the effect of different starting times is not very
significant. The results for the transient response of coupled flap-lag-

torsional motion are expected to be similar to those obtained without the

torsional degree of freedom since the torsional mode has been found to be very

stiff previously.
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CHAPTER 7

CONCLUSIONS

7.1 Summary of Present Research

1)

2)

4)

The main results obtained in this study are summarized as follows:

For uncoupled flapping motion, the in-plane turbulence velocity
components affect the system stability since the& appear in the
coefficients of the equation of motion, whereas the axial turbulence
cohpéﬁent does not change the stability condition and it appears only in
the inhomogeneous terms. For coupled flap-tagging or flap-lag-torsional
motion, all three turbulence componenfs affect the system stability as
well as the responses.

The in-plane earthquake acceleration components appear in the
coefficients of stiffness matrix and the inhomogeneous terms in the
equations of motion, The axial earthquake acceleration component appears
only in the inhomogeneous terms,

The equations for the statistical moments of response variables form an
infinite hierarchy for which some closure scheme must be used to obtain
approximate solutions. The nonlinearity is originated from modeling the
turbulence excitation to be filtered white noise processes.

Without the presence of earthquake, the moment equations form a set of
differential equations with periodic coefficients and its solutions tend
to periodic functions with period Z&. With earthquake, the statistical

periodicity no longer exists,
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The uncoupled flapping, coupled flap-lagging and coupled flap-lag-torsion
are found to be very stable under normal operating conditions,

The mean and rms responses of torsional motion are very small; therefore
the torsional degree of freedom has little influence on the moment
responses of the flapping and leadlagging motions. On the other hand,
adding the lead-lagging mode softens the flapping mode significantly.

The effect of turbulence is higher on the flapping response than on the
leadlagging response. However, earthquake has some effect on leadlagging
but almost no effect on flapping.

The-méan response is nearly the same as the deterministic response
without random excitations. This is the case for uncoupled flapping,
coupled flap-lagging and coupled flap-lag-torsion. The rms responses are
strongly dependent on the levels of random excitations. Within the
practical range of turbulence level, the rms responses of flapping and
leadlagging motions are significant compared to the deterministic |
responses. However, the rms responses due to an earthquake are small,

Therefore, turbulence is likely a main cause for structural fatigue,

Proposed Areas for Future Research

The following is a 1ist of potential topics for future study:

The present single blade analysis can be extended to a multi-blade
analysis by using the multiblade coordinate transformation [48].

The effect of dynamic inflow may be considered; however, the derivation
may be very complicated since inflow becomes position dependent.

The dynamic effect of the yawing angular velocity of the rotor axis may
be investigated. As the wind direction changes, the wind turbine must be

reoriented until the rotor axis is aligned with the wind direction, This

rotation will result in large flapwise moments on the blades.
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Appendix A
Moment Equations of Flap Motion

In this appendix, the detailed first and second moment equations are
given. In these equations, M; and M;j denote E[X;] and E[X;X;], respectively,
and each overdot denotes one differentiation with respect to the non-

dimensional time ¢ . The first moment equations are

kl‘ =“2
M, = Fio - KijgMi-CrioMz + FraMs + FisMg + FigMs - KppaMi3

- Ci1qM23 - K115M14-C115Mos

My = My
My = M
“5 = Mg (A-1)

The second moment equations are

M= M

Mip = Map + FigMp - KppgMin - CrioMiz * FiaMis + FisMig + FigMis
- Kppal2MygM) + MyMg - 2"‘%"33 = CrialMyM3 + MygMp + MiMps
- MMMa] - Kyygl2MyaMy + MMy - 2"?”43 - Cr1s[My Mg + MMag + Mgy
- M MoM,]

M3 = M2z ey

Mig = Moy - My

M5 = Mas - agMg
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2 2
&Fy3 e30q3 + 2P My - 2KyMyp - 2y M2 ¢+ 2F)qM23

2 2 2 2
+ 2F15M24 + 2F16M25 + &:[Klllel Qll + K“zez Q>22] Hll

2Cy1402Mp3Mp + MpoM3 - 2"3"3] - 2K 14[M M3 + M3,

+

2
MiMp3 - 2H41MgM3] - 20y 5 [2MagMy + MaMy - 2MpMy)

2Ky 50M Mg + MigMp + Mgy - 2MyMpM,)

= FygM3 - Ky10M13 - CrioMz3 + FiaMag + FisMag * FigMas

2
a My - Cp1alMaMaz + M3Mp3 - 2M3T - Kpya[MiM33
2 .
2H13M3 - 2”1”3] - Clls[M23H4 + M24M3 + H34M2
- 2H2M3M4] - K115[H13H4 + H14H3 + MygMy - 2”1'43"4]

-+

“I1oMs - Ki10M14 - CrioM2a + FiaMaa + FrsMag * FreMas
- a Mos - Cr1alMasMy + MagMz + MMy - MoM3M,]
Kpia [MygMa + MygMy + M3gM) - 24)M3My] - Cy502MagM

2 2
+ MaMag - MM T - KypsMiMag + 2 gMy - 240 M, ]

FioMs - Ky1oMis - Ci1oMas + FiaMss + FisMas + FrgMss

- agMys - CpgfMagMs + MpgMy + MMy - ZMpM3Ms ]

- KypaMygMg + MMy + MygMy - 2 M3MsT - CypslMpMs

+ MacMg + MasMy - 2MoMaMs] - KyjglMygMs + MygMy + Maghy - 2MiMgMg]
= &by, - )My

= -lajtay) My

= -layrag) My

= by - oMy,

= -lap taz) Mg

= I2gg - ZgMg (A-2)
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Appendix B
Moment Equations of Coupled Flag-lag Motions

In this appendix, the detailed first and second moment equations of

coupled flap-lag motion are given. The first moment equations are

LA
M, = ‘K110”1 = Cr1oM2 - KizgM3 - CrooMa * FiaMs - FisMs
* F16"7 - Kj1a%15 - CriaMas - KiaaMss - CioqMas
- X118%16 - Ci1sM26 - Ki2sM36 - Cr26Mas - Kp16™M17
Cl8y7 - Kyp6M37 - CroMa7
M, =,
My = -Ko10M1 - Ca10M2 - Ko2oM3 - CozgMa + FagMs + FacMg
* FagM7 - Ka1aMi5 - Ca1aMz5 - KazaM3s - Co2aMas - KaisMis
- C215M26 - KaasM3s - CoasMas - KaieMi7 - Ca16M27

= KopeM37 - Co2gMay
Mg

x*
n

5~ %1
s = aMg

The second moment equations are

x*
"

= Mo

M., = M2 - KoM - CrigMiz - KizoMi3 -Ci2gMia t FiaMis + FisMis
2
FleMi7 - Kp14l2MMy5 + MygMs - 2M1Mg] - CyqalMyoMg+ MygM,

-+



M13

T x» xx x

14

16

17

MagMy = MMMl - Kypa[MygMg + MygM3 + MagM) - 24 M3Mg)

CipalMigMs + MycMy + MacMy - 2MMaMc] - Ky gD My + M1 Mg

2”?”6] - Cp15MMigMs + MigMa + MagMy - 24 MMe) - Ko [My3Mg

MygM3 + MagM] - ZMaMeT] - Crog [MigMg + MygMy + MagM) - 2 MgMe]
K624 My + MyyMy - ZMIH;T = CppalMyoiy + Mygy + MygMy = 2 M)M)]
Ko6lMyaMy + MigM3 + M3y - ZUMaM7] Loy o My My + MygMg + MgoM)

= M3 + Mpy
= Moy - KojgMyy - CopgMiz - KopoMis - CazoMia * FasMis * FasMis

Fagh T~ Ko1ql2M My + MyqMs = 2MIMg] = CoalMyMs + Mpghy

MygMp = 2M1MpMs] - KpoalMigMg + MMy + MagMy - 2MiM3Mg]

CooqlMiaMs + MysMg + MagMy - M MgM5] - KppsT2MigMy + MygMe

M2 Mg1 - CppslMioMg + MigMa + Maghy - 2MMoMgT - KopslMy3Mg

MpgMs + Mgy = M M3Mg] - CopslMygMg + MigMy + Maghy - M MgMg]
Kapsl2M My + MMy - ?”f My = CoyglMigMy + MppMp + MppMy = 24 MMy ]
KopglM3My + MygMz + MagMy = 24 M3M7] - CopplMyghy + MygMg + MapMy

M MyM; ]

= Mp5 - a M5
= Nyg - a Mg
= MNy7 - “3“17

Ryt Fio &Ppp * F§3 SLINE el o) (F ) Ky
F1iKi21M3] - A 95?22 [F12K112M1 + FiaKizoM3d - 4“93‘533
[F1akiiaMr *+ FiaKpaaMad + 25“*?“‘-"11 [Kfllnll * K?21 "33

21K 21M3] * 2ep Bgp [KD)p Mg * KiaMag * 2K, K1oaMs)

2
ar:[F11 e

2 ? 2
el ®450K] 3 My * Kiz23 Ma3 * 2K113K123Mi3d - 2KypoM2
20y 1oM22 - 2K120M23 - 2Cip0Mpa + 2F1aMps + 2F1gMpg + 2Fy6M27
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2K)14fM Mg + MysMp + MasMy - ZMiMaMs) | op  al2MpcMy + MooMs

2"; Ms] - 2K p4[MaaMs + M3sMy + Mgy - 2MpM3Mg] - 2C)54[MpgMg
MasMg + MgsMy - 2MpMgMs] - 2KyyglMi Mg + MigMy + MagM) - 24 MoMg]
20)) ST2MagMy + MagMg - M2 Mg] = 2Kyp5lMaMg + MagM3 + M3ghy
MM3Mg] - 20195[MagMg + Maghy + MagMy - DiMgMg] - 2Kq16[M) oMy
MppMg + MaMy - 2M)MoMy] - 20y 6L2Mp My + MagMy - 2HOH;]

2K p6[Ma3My + MagMp + MppM3 - 2MpM3Mp] - 2Cy55[MagMy + Ma7My
MaMz - 2MpMaM;] ‘

= Mog - K110M13 -CrioMe3 - KizoM33 - CiaoM3q + FigM3s + FisMsg

FreM3z - KipalMigMs + MigM3 + M3gMy - 2MiM3Mg] - CppqalMpaMs

MagM3 + M3gMp - ZMpM3Mg] - Kjpg[2M3gMy + MM - 2”5“5]
Cro4[M3aMs + M3cMy + MgcM3 - 2M3MaMc] - Ky glMygMg + MycMs

MagMy - M MaMg] - CyysiMaaMg + MagMz + M3gMy - 2MpMaMg)
K125[2M3gh3 + M33Mg - 2”3"6] - C1o5[M3gMg + M3gMy + MagM3

MMaMs] - Ky1glMysMy + MygM3 + MggMy = 24MaMT - CypgMp3My
MagM3 + MagMp - 2MMaM7l - Kypg[2MasM3 + M33M; - 2M2H; ]

Cro6TMagMy + M3gMy + MagM3 - 2M3MM; ]

Zn [F11Fp) ef@n + F12F22 eg ®op * F13fo3 e§¢33] - are§¢11
[F1aKz1iM + FaiKinM + FriKe2iM3 + FarKiziMsd - Zneg"zz
[F1aKa12M1 + FaoKiioM) + FiaKaooM3 + FaoKippMal - z*“95@33
[F13K213M) + Fa3KiiaMy + Fi3KapaMs + FasKypaMal + Eth'ﬁll
[K111K211M11 *+ K121%221%33 + K111Ke2113 * KizaKeiiMisl + 3195‘522
[K112%212M11 + K122Ko2oM33 * K112K222M13 * KizoKoioMiad * ate5'533
[Ky13K213M11 * K123K223M33 + K113K223Mi3 * Ki23K213M13) - KiioMia
Cr1gM24 - Ki20M34 - CrooMaa + FiaMas + FisMas * FieMay - Kai0Mie
Ci20M22 - Ko20M23 - Co20M24 + FaaMas + FasMes * FagMer
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KypalMigMs + MygMy + Mgty - 2MMgMs] - Cp1alMpaMs + Macy

MacMp = MpMgMs] - KypalMagMs + MagMg + MacMy - 23MgMs)

CroqloMasty + Maas - 244M5] - Kpps[Miats + Migha + Magy

MiMgMs] - C11slMaas + Mo *+ Magh - Z4MgMgT - KizslMaghs + Magh3
Magha - 213MaMs) - Cipsl2Magy + MagMs - 4] - Kypgliy My + My

MaMy = 24MgM;] - CyplMagMy + MagMy + MagMy - 24pMaMrd - Kpp6lM3gMy
MyMy + MyMy = Mg T - CiogT2MgrMg + Maghy - 2HgMr] - Kayg MM
M1gy + Moghy = 2HMMS] = CppaLbpchy + Maghs - 25

Kpz4[MagMs + MagMy + MagMy - ZMpMaMg] - CapglMaghs + MacMy

MgsMay = DioMaMs] - KppslMyMg + Mighp + Magh) - ZMiipMe]

Ca15[2Maghy + MagMs = 2MBMGT - Kopsliaag + Maghy + M3ghy

MMaMg] - CopsMagMs + MagMy + MagMz - 242MaMs] - K1 [MyoMy

MMy + Mgy - MY = CoygloMpry + Moy - 2MGH;]

Kppg[MaaMy + MajMy + M3gMp - ZMpMgMy] - CopglMagMy + Ma7My

MaMa - MMMy ]

= -a ;M5 - K110M15 - Cr10M25 - K120M35 - Ci20Mas * FiaMss *+ FisMse

FieM57 - K11a[2M1sMs + MsgMy - MME] - Cpyal2Mpehs + MpMss

2”2”23 - KypaloMyshs + Mgy - M3MED - Cyp0T2MgsMs + MgeMy

MMET - Ky 5[MygMg + Mighs + Msghy - 2M)MsMg] - Cqy5lMpsMs + MagMs
MogMy - MoMsMg) - Kyps[MasMg + MagMs + MgeM3 - Z43McMg] - Cy5lMacMe
MagMs + MogMy = ZMgMsMg] - KppglMisMy + MygMs + MgpMy - 2M)MgM; ]
Cry6MMasMy + MagMs + MggMy = 2MpMgMyd - KypglMacMy + M3gMg + MogMy
MMMz - CppplMasMy + MagMg + MgyMy - 2MgMch; ]

= 2 Mg - K11gMi6 - Cr1oMze - K120M36 - CrzoMas * FiaMse * FisMes *+ FisMe7

K114[M1cMg + MygMs + MMy - ZMiMsMg] - Cy1alMasMe + My + Mg,

MMsMe1 - Kiq[M3sMg + MagMs + MggM3 - MaMcMgl - Cyp4TMasMg
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2
MagMs + MsgMy - MgMsMg] - Ky sl2M Mg + MegMy - PMMg) - Cpas
2 2
[2MagMs + MegMa - PMgM) - K1os[M3eMs + MegMy - PHaMg) - Cypp
[2M4eMs + MogMy - ZMeME) - Ky1gliygMy + MypMg + Mgz - 2Hihgity)
Cyy6M ‘
116012647 + MypMg + MggMp - Mgy ] = KypglHaehy + MM
Mg7M3 - 2M3Mghy] - CrpplMagMy + MapMg + MMy - PMgMgy)

= = qMy7 - KppoM7- CrioMer - KiagM37 - CizoMaz *+ FiaMsy + FisMer + FigMyy

Ky1alMysy + MypMg + MMy = BHiMgHy] - CqaMashy + MspMp + Mpgtg
MMgMy] - KypalM3sMy + MazMg + MggM3 - MMMy - CpqTMgsMy + My oM
MgMy = MgMcMy] - KypglMyghy + MppMg + MggMy - MMMyl - CppslMpeM;
MagMg + MggMp = 2HoMgM] - KpoolMagMy + MyjMg + MgMg - ZMMcM, ]
Cro5[MagMy + MapMg + MgMy - PAgMghy] = Kyl My + MpyM)

2"1"33 = CrpglMagMy + MygMp - 2”2”33 - Kypgl2MgpMy + MMy, - 2”3"53
Crosl2M My + MyMy - 24gH))

2M34

Kop4[MygMs + MpcMy + MagM) - M MaMc] - CppalMagMs + MagMy + M3ghy
MMM ] - KppalPHzchy + Maghs ~MIMT = CopglMzgMs + MagMy + Maghy
2MMgMs] - Kpp5[MiaMg + MygM3 + M3gh; - 2"‘1"3"‘63 - Ca15(Ma3Me + MaMag
MygMp - PHoMaMg] - KopsZMzgMy + M3aMg - ZMIM6] - CopslMagMs + M3gMy
MagM3 = PM3MgMg] - KppglMigMy + MygMy + MygM) - 29 MM, ]
Cor6lMaaMy + MazMa + MagMy - MMMy ] - Kool MMz + M33M;

M;J - CopglMaaMy + MagMg + MagMg - 2M3MgM;]

= Mgs - ay M35
= Mg - apM3g
= Mgy - oMy,
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2 2

2 2 2 2 2
= &(Fyie) @)y + Fpye0,, + Foy e38431 - & ey 0,[F, Ky M)

2
Fa1Xz21M3l - "‘e%’zz [FaoKa12M1 * F2oKoooM3) - Meg @3,
2 2 2
[Fa3Kz1aM1 + FaaKaaaM3l + & ey &,1K5 My, + Kooy M33
2 2 ?
2Kp11K221M13] + 2 € B55[K5 0 My + KynoMys + 2Ky 5Ko0, My5)

2 2 My + ¢2 Mgy + 2Kp13KoogMyad - 2K -2
e ®43lK5y 5 M1 Y k5,5 M3 T fansteasts 210M14 - 2210w,

2KypM34 = LppcMag + 2FpgMas + ZFpcMag + 2FpeMay = 2Kp14[MygMs
MMy + MacMy - ZMpMaMs] - 20514 MpgMs + Machy + MasMp - 2MpMgMs]
2Kpoa(M3gMg + M3cMy + MaoM3 - DMgMgMc] - 2055402MagMy + MagMs - 2”3 M5 ]
2Kp15[MyaMg + MygMy + MagMy - 2MMgMg] - 2C;15[MoaMg + MagMyg + MggMp
2MaMg] - 2Kop5lMagMg + M3gha + Maghy - PMaMaMe] - Zpa5[2MagMy
? .

MgqMg - 2MgMgl - 2Kp1 LMy My + MygMy + MayMy - 2M)MgM7] - 2056
[(MogMy + MagMg + MggMy - MMMy ] - 2KyogTMagMy + M3gMy + MggM3
DA M) - 2pgloMa My + Mgy - Mgy
w;Ma5 - Ko1oMis - Co1oMzs - KzzoM3s = CozoMas + FagMss + FasMse

? 2
FagMs7 = Ko1al2MysMg + Mooy - MMc] - Cppal2MpcMs + MggMy - 24pM. ]

2 2

Kppg[2MagMg + MgcMy = 2M3Mc] - Copg[PMgMg + MgcMy - 2MgMc ] - Kpp5
[MisMg + MigMs + MggMy - 2M)MgMg] = CoyglMagMg + MagMs + MggMy - 2MpMsMc]
Kpzs[M3sMg + M3gMs + Mgy - M3MsMed - CaaslMacMe + MygMy + Mooy
ZMgMEMeT = KopglMigMy + MygMg + MggMy - 2MiMcMyT - CopglMpgMy + MygMg
MgMp = MMMz = KopglMacMy + MagMg + MggMg - 2M3MeMo] - Cooe
[MacMy + MasM5 + MgyMy - 2MgMcM;]

= w Mag - Ka1oMi6 - Ca10Mes = KoaoM3s - CoacMas * FaaMse + FasMes + FaeMsr

KoyalMisMg + MygMs + MgMy - 2MiMgMe] - CopalMasMg + MpgMs + Mg My
MoMsMc] - Kppg[MasMg + MagMs + MggMa - ZM3McMgl - Cppg [MgsMg
Maghs + MsgMa = PgMsMe] - Kaqsl2MigMs + Mgty - M M2T - Cp)5

2 2
[2MpgMg + MesMp - 2MpMc ] = Kpps[2MagMg + MggMs - 2MaMgl - Copsl2MagMg
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Moga = 24ME1 - Kp gl gMy + MygMg + MgoM) - 24iMgM;] - CoplMaghy
MaMg + MMz - UMMl - KopglMaghy + M3gMg + MgyM3 - MMMy ]
CazsMaghy *+ MagMg + Mg7Mq - 2MaMeM;]

<gMay - Ka10M17 - Ca10M27 - KeaoM37 - CazoMa7 + FaaMsz + FasMer + FagMyz
Ka14[MygMy + MygMg + MooMy - DMgMoMy] - Cppa[MpgMy + MagMs

Ms7M2 = 2MaMcM7] - Kopga[M3gMy + M3zMg + MgyM3 - 2M3MoMp] - Copy

Mgy + MgpMs + Mg )My - MMM, - Ko gTMyghy + MygMg + MgyMy - M MgM;]
Co15lMagMy + MagMg + MgyMa- 2MMgM;T - Kops[MagMy + MagMg + MgpMg
MMMy - CozslMaghy + MagMg + MMy - MgMMyd - Kzpgl2My oMy + MMy
PHMT] - Co1sloMpgMy + MMy = ZMMYT - Kopg[2MypMy + MysMy

PAM5] - Coplomgpiy + MgMyy - 24y 1)

& By - 2N

-laytay) Mg

- oy vag) Mgy

& Ogg - 2,Mgg

= -laptag) Mgy
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Appendix C
Moment Equations of Coupled Flap-lag-torsion Motion

In this appendix, the detailed first and second moment equations are
given, The'first moment equations are
LA .
My = KyigMp - CrioMe - KizoMs- CrzoMs - KiapMs - Ci3gMs
* FigMy ! FisMg + FieMg - KypaMyy - CraaMzy - KioaM3y
- CroaMa7 - X13aMs7 - Cr3aMs7 - Ki1sMig - CrysMas - KizsMsg
= Cr25Ma8 - X135Ms58 - C135Mes - K116M19 = Cr16M29 - Ki26M39
= Ci26Ma9 - X136Ms9 = C136Mg9
W, =M
My = -Ka1gM - CoioMe - KoaoM3 - Cz20Ma - Kz3oMs - Ca3oMs
* FogMy ¢ FagMg + FagMy - Ka1aM7 - Ca14M27 - Ko24M37
- Co24Ma7 - X234M57 - Co3aMs7 - Ka1sMis - CaisMeg - KaasMis
- CopsMag = Kp3sMsg = CaasMeg - K216M19 = C216%29 = KpzeMag
- Co26Mag - Kz36Ms9 - C23sMg9
:HB
Mg = -K3pM1 - C310M2 - K3zoM3 - C320Ms - K330Ms - CazoMs
+ FygMy + F3gMg + FagMg - K31aM17 - C314M27 - Kp3gM37
- C324M47 - K33aM57 - C334Mg7 - K31sMig - C315Mpg - K3psM3g
- C325Mag - K33gMsg = C335Msg - K316M19 - Ca16M20 - K326M39

- C326Ma9 - K336M59 - C336Mg9
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LI PL
Mg = —u Mg
Mg = w3 (C-1)

The second moment equations are

Mg -

LIPS

+

13 °

Mg

+

M2

M22 - X110M11- Cr1oMie - KizoMis - CizoMia - KizoMis - CizoMis
FigM7 + FisMig + FigMig = Kppal2MpMy + MMy - 2”?”73
CrpalMighy + MygMp + MygMy = ZMIMpMyT - Kypa[MigMy + MygM3
MygMy - PMiM3Mg] - CipalMygMy + MygMg + MggMy - 24 Mg ]
Ki34[MisMy + MgMg + MgyMp - 2M)MgMy] - Cy3alMicMy + MigMg
Mg7My - 2MjMgMy] - Kppsl2Myghy + MygMg - 2”?"8] - C115

[MoMg + MygMy + MogMy - 2MjMpMg] - Kypg[MygMg + MygM3 + Magh)
MiM3Mg] - Cyps[MigMg + MigMa + MagMy - MiMgMgl - Ky35

[MicMg + MigMs + MggMy - 2M MgMg] - Cya5[MygMg + MigMg + MggMy
MyMehg] - Ky al2M gMy + MyqMg = 2 MiMgY - CypgliyoMg + My,
MagMy - 2MjMoMg] - Kypg[Mi3Mg + MygM3 + M3ghy - 2MM3Mg]
CioTM1aMg + MigMg + MggMy - 4 MaMg] - Ky36MisMg + MygMs
MggM) - 2MjMgMgl - Cp3g[MigMg + MygMg + MggMy - 24 MgMg]

Ma3 + Wi

Mos - Ka1oM11 - Ca1gMiz - KezoMi3 - CzaoMis - KesoMis - CzzoMie
Fag7 + FasMig + FogMig = Kpral2Mipy + MgMy - 241My)
CoralMigMy + MygMa + MapMy - 2MMpMp] - KopalMyghy + MygM;
M3zMp - M M3M7] - CopalMighy + MiMa + MagMy - 24 MgMy]
Kp3a[MysMy + MygMg + MggMy - 2MjMgMy] - CoaglMigMy + Mi7Mg
MoMp - MMMyl - Kopsl2M gMy + MyMg - 2”%"8] - Co15[MoMg



W

15
16

17

H18

19
22

MigMp + MpgM) - M MpMg] - KppslMygMg + MigMy + M3gMy - 24)M3Mg]
Cops[MigMg + MygMy + MggMy - 2M;MgMg] - Kp35(MygMg + MigMs

MogM] - 2MiMcMg] - CoaslMigMg + MigMg + MggMy - 2M1MeMgl
Kpr6[2M1gMy + MyiMg - 2MIMg] = CopglMy Mg + Myghy + Maghy - 2HMpHg]
Kao6[M13Mg *+ MigM3 + MagM) = Z4MaMg] - CopglMigMg + MigMs
MggMp - 2MMgMg) - Kp3alMysMg + MigMg + MggMy - 2M)MgMg]
Co36lM1gMg * MigMg + MggMy - 24 MgMy]

= M25 + Hlﬁ
= Mye - K31gM11 - C310Mi2 - X320M13 - C3zoMia - KasoMis - C330M1s + F3aMyy

FasMig * FasMig - Kanal2i7M + MMy - 2M7] - Ca4 [MyoMy
MpgMp + Mgy = 2M1MoM7] = K3pa[HygMy + MygMy + MagMy - 2MjM3H, ]
CapalMigMy + MMy + Mgy - DHMgMpT - K33aTMysMy + MyMs

MgoM) - 2M)MsMy] - C334[MigMy + MygMg + Mgy - 2MpMghy]
K3p5[2M1gM; + MyiMg - 3"? Mgl - C315[MioMg + Mgy + Mag)
MMMgT - Kaps[MygMg + Myghs + MagM) - 2M)MaMg] - C3pglM)aMg
MigMs + MagMy - 24 MgMgl ~ K33g[MicMg + MygMs + MsgM)

MMcMg] - C335[MigMg + Mighs *+ MegM1 - MiMeMgl - X316

[2M1gM) + MM - 2"%”9] - C316TM1gMg + MygMp + MpgMy - 2MjMMg)
K3p6{M13Mg + MigMa + MagM) - 2MjM3Mg] - C3pplMygMg + MigMy + MagM)
M MgMg] - K33[McMg + MigMs + MogMy- 2MiMoMgT - CazglMy Mg
MygMg + MgaM1 - PMiMgMy)

My - aMyy
Mpg - a Mg
Mog - « 3"‘19

2 2 ?
= me] o [F)) - koM - koM - ZFakiaMs + KoM

2 2
kS, M3z *+ Ki3Mss *+ 2Kp11K121Ms + 2Kp11Ki3tMs + 2Kp20K131Mss]
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+2xe2cb [F2 =2F 1 5Ky 19M 2F 1 oK1 oM 2F 1Ky 3 M +K2 x2
222 12 12™112™"1 ~ 1271223 - 1213775 112”11 + 122”33

2
+K 3 M55 + 2Kq1pK 09M13 + 2K1pK 3oMys ¢ 2K poK 3pM3s]

+ Zueg

°33[F§3 - 2P 3Kyt - 3K gy - 2Fp3Kpaas ¢ *flg"ll

+KE M3z + k{3 M55 + 2K113%123M3 + 2Kqy3K13aMys + 2Ky23K133Mss)

+ Y -KyyoMp2 - CrigMaa = X120M23 - CraoM2a - KizoMas - Ci30M26 * FiaMey
FisMag + FieMag = KppalMigMy + MypMp + MpgM) - 24 MpM7d - Cppg
[2My7Mp + MagMy - 25 My = KppgDMpgMy + MpgMy + MypMp - 2MH3M;]

+

- CroalMagMy + MapMg + MagMy - 24pMaM;T - Ky3a[MacMy + MagMg + Mg M;
- MMMy - Cy3alMagMy + MagMg + MgoMy - 2MoMcMy] - Kpp5[MyoMg
+ Mg Maghy - DM MpMg] - Cyygl2Maghy + MaoMg - 2”3”8] - K125
[Ma3Mg + MpgM3 + M3gMy - 2MM3Mg] - CypglMagMg + Maghy + MagMp
- M MgMg] - KygslMagMg + Mags + MggMy - 2MpMcMgl - Cp35[Mp6Mg
+ MpgMg + McgMp- 2MoMgMg] - KyjgMigMg + Mgy + MagMy - 2MjMoMg]
- CpygloMagMy + MagMg - 2M3MgT = KypglMpaMg + Maghy + Myghy - 2MpMaMg)
- CrogfMagMg + MagMy + MagMp - 2MpMaMgd - KygglMasMg + MaqMs + MggMp
- PaMeMg] - CyaglMagMy + MagMs + MggMp - 2MoMgHgT)
= Maq - K11oM13 - C110M23 - K120M33 - C120M34 - Ki3oM3s - Ci3oMas + FiaM37
+ FisMag + FrgMag - Kp1a[MpaMy + MygMg + MgpMp - 24 M3MyT - CqalMa3
+ MygM3 + MagMp - 2MpM3M;] - Kypa[2M3zM3y + M3gM;y - 2”5"7] - Cy24[M3sM;
+ MygMg + MagM3 - 2M3MgMy] - Ky3q[M3chy + MagMg + MgpMy - 2M3Mghy ]
- C134[M3gMy + MajMg + MgyM3 - 243MgMyl - KppolMygg + Mygh3 + M3gh)
- MMaMg) - CqyslMazMg + Magha + Maghp - 2MpMaMgl - Kyops[ZM3ghs
+ Ma3Mg - 2”%”8] - Cy5[M3qMg + Maghy + MagM3 - MgMaMgl - Kyag
[M3gMg + MagMs + MogMy - PMaMcMgl - C35[M3eMg + MagMs + MggMs
- MMgMg] - K pplM Mg + MygM3 + MagMy - ZMiMaMg] - CppglMpsMg + MagM3
+ MygMy - PMoMgMgl - Kypgl2M3gMy + Magg - 2”%”9] - Cy26[M34Mg
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M3gMa + MagM3 - PM3MaMgl - Ki3lMacMg + M3gMg + MggM3 - ZM3MgMg]
C136{M36Mg + MagMs + MggM3 - 2M3MgMg]

2
= &ep @,[F)1Fp) - (FypKpyn * FaiKinndMy - (FypKppp + FaiKipiMs

(F11%231 * F21X131) M5 + KiniKoniMin + K121K221M33 + K131%231M55
(K111%221 * ¥211K1210M13 *+ (Kp11K23) + Kpapkeii s + (KpziKaa)
K131K221M35] + Ze5 0, [F)oFpp = (FipKora + Fagkina™ - (FygKazp
FooK122My = (F1oKa3p + FaoKy3aMs + KppoKoioM) + KizoKeaass
K132K232M55 + (K112K222 * Ka12K122)M13 + (K112Kp32 + Ki3oKa12Mys
(KyzoKasz + K132o22)M3s) + Ze§ 8350F 9F 03 - (Fi3kp1z + Fagkypalty
(F)3Kg33 + FaaKiaadNy - (FiaKasz + FpaKizadMs + KipgKaisMyn + KizaKzaaMss
K133K233M55 + (K113K223 * Ka13K1230M13 + (Kp13K233 + Ki33Kp130M15
(K123K233 * K133K223)M35] - Ky1oMia = CrigMes - Ki2oM3s - CraoMag
Ki30Ma5-C130Mas*F1aMa7+F 15Mag*F16Ma9-K210M12-C210M22-K220M23
Co20M24-X230M25-C230M26*F 24M27+F 25M20+F 26M29-K1 14[M1 gM7 M) Mg

MaMy - 2MiMgMy] - CiyalMagMy + MagMy + MagMy - 2MpMaMpT - Kyo4(M3gM;
MMy + MypMy - 2igMgMy] - CppqloMgsMy + MagMy - 203M70 - Ky 34[MasM;
MazMs + MgyMy - 2MgMgMy] - Cy3alMagMy + MapMg + MgyMy - 2MsMcM; ]
Ki15{MyqMg + MigMy + MagMy - 2 MMgd - CppglMagMg + Maghy + Mg,
2MMaMg] - Kypg[MagMg + M3gMy + MMy - 2MaMaMg] - Cpo5[2MagMy + MagMg
2"2"8] - Ky35[MacMg + MagMs + Mgghy - 24gMsMgl - Cy35[MagMg + MagMs
Megha - PgMMgl - KypglMigMg + MpgMy + MggMy - 2MMgMgT - Cyy6IMagMg
MagMy + MagMp - 2MzMgMg] - Kypg[M3gMg + M3gMy + MggM3 - 2M3MgMg)
Crogl2Maghy + MaaMg - 2M3Mg] - Ky3glMagMg + MagMg + MggMy - 2MgMgMg)]
Ci36[MagMg + MagMg *+ MggMg - MaMghg] - KppalMioMy + MygMy + MpoMy
MM M7] - Copal2iagMy + MgMy = 2HIMZT = Kgpa[Myghty + MygM3 + MysM,

MMMy = Cppg[Maghy + MogMy + MaaMy - 2MaMaM;] - Koga[MagMy + MogMg
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MgMy = ZHMcM] = CozalMagMy + MagMg + MggMp - MMMy - Kp s[MioMg
MigMa + MagMy - 2MMMg] - CopslMaghy + MaoMg - 2M3Mg] - Kpps[Mp3Mg
MagM3 + Mgy - 2MMaMgl CopslMagMg + MpgMy + MagMp - 2MpMgMg]
Kpas[MasMg + Maghs + MggMy - 2MpMcMg] - CoaslMagMg + Mage + Meghy
MMMl - Ka16(MioMg + MgMp + Mgy - 2 MMg) - Ca1602MagM2 + MaoMg
3”3”9] - Kopg[MagMg + MagM3+ MagMy - 2MaM3Mgl - CapglMagMg + MagMy + MagMp
MMaMgT - KazgMashy + MagMs + MogMp - 2MpMsMgl - CoelMaghy + MagMs
MggMy = 2MMcMg)

My - K1poMi5 - CrioMzs - KizoMas - Cizo0Mas - KisgMss - CisoMse + FiaMsy
FrsMag + FieMsg - K11alMisMy + MM + MspMy - 2MpMeMy] - CppalMpsity
Ma7Mg + MgoMp - 2MaMgMy] - Kyog[Masy + M3gMg + MgyM3 - 2M3MgM; ]
Cyp4[MasMy + MagMg + MggMg - MgMcM;] - Kygal2MgyMg + MssMy - 2uEm; ]
C134[MsgMy + MgyMg + MgyMs - 2MgMgMy] - Ky 5[MigMg + MygMs + Mggh)
MMcMg] - Cpy5lMacMy + MagMs + MggMy - DMpMcMg]- K) pgTMacMg

MagMs + MsgMs - ZM3MsMgl - CypslMasMg + MggMs + MggMy - 2MgMoMgl
KiaslPMoghs + Mogh = 2MaMg] = CpaglMMg + Moghe + Mggs - PMgMeMg]
K116IM15Mg + MigMs + MggMy - ZMiMcMg] - CypglMagMg + MagMs + Mgy
2MMsMg] - Kipg[M3sMg + MagMg + MggM3 - 2M3MgMg) - Cyp0[MacMg + MagMs
MogMy - PgMcMg] - Kyggl2MggMs + MgoMg - 2”2"93 - C136[Ms5gMg

M5gMg + MggMs - 2MgMgMg]

el @) [F11F31-(F11K311#F 31K 1M1 (F11K320%F 31K 21 M3- (F1 K33
Fa1K130)M5+K111K311M1 1#K121%32133*K131K331M55* (K11 1%321*K1 21%311)
M3+ (K111%331 * K131K31n)Mys + (KppiKasp + Ki3pKappIMas] + 3‘95%2
[F12F 32~ (F12K3124F 32K112 M1 - (F12K322+F 30K1 22 )M3- (F12K332+F 32K 32)Ms
K112%312M11 * Ki22K32oM33 *+ KiaoKasdMss + (KypoK3pe + KygpK312)Mys

2
(K112%332 * K132K312M15 + (KyppKazp + Ky3pK3p2)M35) + &ey o 45
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(F13F33-(F1aK313#F 33K 13)M) - (F13K3234F 33K1 23013 (F 1 3K333+F 33K 33)M5
K113%313%11 * K123K323M33 * K133KaaaMss *+ (K113K323 *+ Kp23K313)Mi3
(K113%333 * K133%3130M15 + (K123K333 + K133K3230M35] - Ki1oMi6

Ci110M26 - X120M36 - C120Mas - Ki3oMse - C130Mes * F1aMsy * FisMes * FisMso
K310M12 - C310M22 - K3zoMz3 - C320M24 - K330M25 - C330Mze * FaaMzy + FasMee
FagMag = K114[MigM7 + MygMg + MgaMy - 2MiMgMy] - CrpalMagMy + MapMs + Moo
MMM T KypalMaghy + MagMg + MgyM3 - 2M3MgMyd - CpoglMaghy + MygMg

Mg7Mg - 2MaMghy] - Ky3alMggMy + MsyMg + MgyMg - 2MgMgMy] - Cp34T2Mg Mg
Mes™7 - 2“2”7] - K115TM1gMg + MigMs + MggMy - 2MiMgMgl - CpyslMagMg + MagMs
MegM? - MoMeMgl - KypslMagMg + M3gMg + Mgghy - M3MgMgl - Cya5lMagMy
MagMg + MogMa - 2MgMgMgl - K 35[MgeMg + MggMg + MggMs - 2MgMgMgl - Cy3sl
MogMe + MseMg - 2"2”83 - K116[M1gMg + MigMg - MggMy = 24 1MgMg] - Oy
[MogMg + MagMg + MggMp - PMpMgMgl - KypglMagMg + M3gMg + MggMy - 2MaMgMg]
C126[MagMy + MagMg + MggMy - 2MgMgMgl - Ky35lM5gMg + MggMg + MgoMs

McMeMy] - CpagloMsas + Meghy = 2cMg] - KapalMioMy + My,

MMy = 2M MMy - C3qal2MpyMy + MMy - 2”%”73 - K3pa[MpaMy + MppM3

2MpMaMr] - CgpglMagMy + MagMy + MggMp - 2MpMaMy] - K334TMocM;
MMy = ZMoMcMy] - C33alMagMy + MagMg + MgaMy - 2M MMy ]

M37M2

+

MaMs
K3p5(MioMg + MyghMp + Magh) - 2MjMMg] - C3y5[2MagMy + MpoMg - 2MoMg)
K3pp[Ma3Mg + MagM3 + M3gMp - 2MpMaMgl - C3p5lMagMg + MagMy + Maghy
MMaMa ] - K33g[MygMg + Moghg + Mgy - MpMgMal - C335[MagMg + MpgMg
MegMp - 2MpMgMg] - K3pglMoMg + MigMp + MagMy - 2MMaMg] - C3y6[2MpgMy
MaMg - 2”3”9] - K3pg[MagMg + MagM3 + MagMy - 2MpM3Mgd - C3p6[MpaMg
MagMs + MagMp =~ 2MMgMg] - K33glMacMg + MagMg + Mooy - 2MpMgMg]

C336MagMg + MagMg + MggMy - 2MpMgMg)

= wa M7 - K11gMi7 - CrioMe7 - XieoMa7 - Ci20Ma7 - K13oMs7 - CizoMe7 * F14My7
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Fistyg + FigMyg = Kipal2MpgMy + My - ?“3”13 - CrialaMaMy + My
274?"2] = Kypg[2M37M7 + MygMy - 2”;'43] = Cypal2MggMy + MygMy - 2M§H4]
Ki3a[2Mg My + MpyMg - 2”5"5] - Cy3aloMggiy + My - 2MoME] = Ky
[My7Mg + MigMy + MygMy = 2MMgMgd = CppglMpgMg + Maghty + Myghy - 2MoMpMg)
Kyp5M3zMg + MagMy + MygMy - M3MyMgl - Cyp5lMasMg + Maghy + MygMy
MgMsMg] - Ky35[MgoMg + MogMy + Mygs - 2MsMiMg] - Cp3s[MgrMg + Mggh;
MigMg - MgMiMgl = KyjglMisMg + MygMz + MygMy - 2MpMpMgl - CpyelMarMg
MagMy+M7gMa- 2MaM Mg T-K ) o5 [M37Mg tMaghy +y gM3-2M3M7Mg 1-C1 6T Ha Mg

MagMy + MzgMg - 2MgMMgl - Ky3glMoyMg + Mgy + MagMg - MMMl - Cy36
[Mg7Mg + MggMy + MygMs - 2MgMpMg]

-2 M2s - K110Mi8 - C110M23 - K120M38 - Cr20Mas - K130Msg - CizoMss * Fia¥rs
FisMgs + FicMgg - Ki1alMipMg + Mighy + MygMy - 2MMpMgl - CypalMasMg
MagMy + MygMp = 2MgMpMg] - KipalMgsMg + Maghy + Mpgs - 2M3MyMg]
CroalMaMg + MagMy + Myghy - 2MgMpMgl - KygalMgyMg + Msghy + Myghs
McMoMg] - Cp3alMgrMg - Mgghy + Myghg - PMgMMgl - Kyy5T2iyghg + Mgghy
2N ] - CyyslPMaghy + Mgy = 2MGMp) = Kyps[2Maghg + Mgghs - 243
C1os(PMaeM + Mgay - 2MMe] - Ky3s[2Msghg + Mgghy - 2MgMc] - Cpag[2Meghy
MggMg - 2MMg] - KpplMyghy + MygMg + Maghy - ZMiMgMg] - CpyTMpgMg
MpgMg + MagMp - MpMgMg] - Kjp6[MagMg + M3gMg + MggMz - PMaMghgl - Cyp¢
[MagMg + MagMg + MgoMy - 2MgMgMgl - Ky3g[MsgMg + MggMg + MggMg - ZMsMgMg]
Cy36[MsaMy * MegMg * MaoMg - MgMgMg]

= < Mpg - K11oM19 - C110M29 - K120M39 - Cr20Mag - K130Ms9 - Ci3aMeo * F14™9

FisMgg *+ FieMog - Ki1alMizMg + MygMy + MpgMy - 2MiMjMg] - Cy1afMa7Mg
MagMy + Maghy = 245M7Mg] - KyoalMagMg + Maghty + MpgMy - 2M3MzMg]
CroalMa7Mg + MagMy + MygMg - 2MgMaMgd - Ky3alMgyMg + MsgMy + MygMg
McMiMg] - CpaalMgyMg + MegMy + MygMg - MgMyMgl - Xyps[MigMg + MigMg
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MagM) - ZMMgMgd - CpyglMagMg + MagMg + MggMy - PMaMgMgl - KypslM3ghy
MygMg *+ MagM3 - ZM3MgMg) - CrpslMaghy + Maghg + MggMy - ZMgMghg)
K135Msghy + Mgty + Mgghs - ZMsMgMal - CraslMeghy + MegMa + Mage
PHgghy) - K1 5L2M Mg + Mgghy = 2451 - Cyyglomagy + Moghy - 2MGM,)
Ky26L2M3gMg + MogMs = ZMIM3T - CppaT2MygMy + MogMy = 2Mah, )
K13602MsgM + Moghs - 2MZHg] = Cya6[2MsoMy + Moghs - 24 ]

Mg

Mag - K210M13 - Ca10Me3 - XKoaoM33 - CeagM3a - KasgMss - CaagMae * FaaMsr
FasMag + FasMag = KoialMigMy + MipM3 + M3y - 2¥iM3Myd - Copg
Dhgghip+ HagMy + Mypy - 24pMaMy] = Kppq[2HyMg + My - 2K3H;)
CopalM3gMy + M3y + MggMz - 2M3MaMyd - Kpgq[Mashy + M3zs

MpM3 - BigMsMy] - CozqlMaghy + MagMg + MgpM - ZMgMgly]

Kps[MyaMg + Mighs + Maghy - 2MiM3Mg - CapslMasMg + Maghs

Maghy - PiMiMg] - Kpps[2Maghy + MagMg = 245Mg] - Cops[MyaMg

MigMy + Maghy - 2M3MgMg] - Kpas[M3Mg + Maghs + Mgghy - 2M3MMg)
Co35[MagMs + MagMg *+ MgaMy - PMaMgMgl - KaplMiMy + Mg

M3gMp - ZMMaMgl - CpyslMagMg + MagM3 + MagMp - 2MpMaMg]

Koo6[ZM3gMy + MagMg - 2H3Mg] - CopelMagMg + Myghy + MagM3

MMgMy] - KoglMaghy + MagMs + Mo - 243MsMg) - Co3elMagMs

M3gMs + MggM3 - 2M3MgMg)

Mas + M36

My - K31oM13 - C310M23 - K320M33 - C320M34 - K330M35 - C330M36
FagM37 *+ FasMag *+ FagMag - KapalMigMy + MigMy + MapMy - 24M3hy]
CapalMpaMy + MagMy + MagMp = 2MpMaMy] - K3pa[2MasM3 + Mgy - 2miM]
C3palM3qMy#M37Mg #Mg M3~ 2MaMaMy 1=K 334 [MasMy 43 Me 45 ;M- 2M3MeM ]
Ca34TM3gM7 M3 Mg Mg 73 243MgMy D-Ka 1 s[M) Mg M) My ey - 2y M)
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C315[MaaMg + MagMy + MagMp - DMpMaMgl - K3psl2Maghy + M3ghg - 2“%”83
C325[M3gMg+M3gMy +Magy- 2M3MaMg 1-Ka35 [MagMg +MagMs Mg gy~ 2M3Ms Mg ]
C335[M36Mg*M3gMp *MpgM3-2M3MgMg 1-K31 6[M) 3Mg+M] gMa+3gM) - M M3Mg ]
Csls["za”g*"zg"s*"ag”z-2"2”3"93-K326[?”39"3+"33”9°2”§”9]
C3p6[M34Mg*M3gMy +MggM3-2MaMgMgT-Ka 36 (Mg +M 3gMs +M5 M3~ 2M3M Mg ]

C336{M36Mg + M3gMg + MggM3 - 2M3MgMg]

Ma7 - aqM37
= Mgg - aM3g
Mag - a3M3g

2

2 2 2
= Zey &11[F, - FarkanMi-2F21Ke21M3-2F21Ka31Ms * KopMin + KpoiMas

K531'“‘55 + 2Kp11K221M3 + 2K211K231415 + 2Kp21Kp31M3sT + 3‘93%2
[ng ’2F22K212”1'2F22K222"3'2F22K232M5+K§12"11*“%22”33**332 M55
2Kp19Kp30M13 + 2Ko1oKpaoM1s + 2Kpp0Ka3pM35] + 3"‘-‘% & 440 Fg:;

2F yaKp -2 p3KanMa-2F p3KpagMs + Koz Mop + Kopy M3y + Kasy M
2K13Ko23M13 *+ 2Kp13Ka33M15 + 2Kp23Kp33M35] + 2{ -Kp1oM14 - Co1oMes
Ka20M34 - C220Maa - KzaoMas = Ca3oMag + FaaMaz *+ FasMag * FagMag
K14 LMy gMy+My 7Ma Mg 7My - 24 MgMy T-Coy 4 TMp M7 445 7 Mg #Mg M5 - ZMoM My ]
Kppa[M3aMy + MagMg + MggM3y - 2M3MgMy] - Copal2MygMy + MagMy - 2MZH; )
Kp34[MasMy+Mg7MgtHig 7Mg - 2MaMM; T-Co 34 [Ma g +Mg Mg +Mg 7M - 2MgMgMy ]
Kp15(M] 4Mg+M1 gMg *MagM) - 2M1 MgMg 1-Co 1 sTMpgMg Mgy My gp-2MaMaMg )
Kpps[M3gMg + M3gMg + MagMa - 2M3MgMgl - Copsl2MagMy + MagMg - 2M Mg
Kp35[MgsMg MagMs M5 gMy - 2MgMsMg1-Co35 [Ma Mg *MagMg +MggMa - 2MaMeMg )
Kp160M1 4Mg™) gMa*Magy -2M1MaMg1-Co16 Mo gMgMagMy Mg M- MaMsMy ]
Ko6[MagMy + M3oMa + MagMy = 2M3MaMg] - CopslZMaghy + MagMy - 2uZMo]

Ko35(MasMg*MagMs M5 gMg-2MgMsMg1-C o 36 [MagMg+MagMg +Mg oMy - 2MgMeMg I

= Mae-Ko10M15-Cor10M25-K220M35-Co20Ma5-K230M55-C230Ms6+F 24Ms7
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FosMsg*F pgMsg-Ka 4[MysMy+My Mo +Mg gM - 2M MMy 1-C oy 4 TMasMy +Hip M

Mg 7¥p-2MpMe My 1-Kop g [MagMy+M3 Mg +Mg ) M3-2MgMgMy 1-Copg [MgsMy Mg 2Mg
“57"4'2”4”5”7]-K234[2“57"5+”53“7-2”§”7]-C234["56”7+”57M5+”67”5
2MgMgM71-Kp1 5TM) sMg My gy +MsgM) - 2H) MM 1-C oy s [MacMg HpgMs +Ms oM
MpMsMg]-Kp o5 M3gMgth3M +Mo gy~ MMM 1-Co o5 TMg Mg+ gMs M5 gMy
PMyMgMg] - Kpas[2Msghs + MocMg - ZMEMg] - CoaclMgghy + Moghg + Mghs
2MgMgMg1-Kp) 6 TM1 5Mg+M) gMs +Mg M - 2M MoMg1-Coy s TMasMg +MagMs M5 g,
MMcMg1-Koog M3MgtMygMy tg gM3- MaMsMg 1-CooaMa Mg Mg gMs +is oMy
2M4MeMg 1K p36 L Mg gMs +Me cMg-ZMEMG T-Cogg My Mg Mg Mg HggMs - 2M5MgMg ]
2“fff.‘i'11[F21F31-(Fz1'<311“F31'<211)"‘1'(F21‘<321"F31'<221)"‘3‘(*’21“331
F31K231)M5+K211K311M1 1¥K221K321M433%K231K331M55+ (K21 1K321 K 221K 311)
M13+(K211K331"K311K231 M1 5% (Ka21%331#K231K 321 M35 )* 3‘e§'°zz[FzzF3z
(FpoK312 + K3gKa1oWMy = (FpoK3pp + F3pKpppIM3 - (FaoK3zp + FapKaap)Ms
Kp1oK312M11 + KpooK3zoM33 + Kp3aK3azMss + (KzpoKsgp + KoppK3ip)Mis
(Kp12K332 *+ K312K232M15 + (Ko22K332 + K232K322)M35] + 2 @ 33(Fp3F 33
(Fo3K313 + F33Ka130M) - (Fp3Kap3 + F33Kpp3)M3 - (FasK3zz + F33KaazMs
Ka13K313Mi1 + K223K323M33 + Kp33K333Ms5 + (Kp33K323 + K223K3130M13
(K213K333 + K313K233)M15 + (Ka23K333 + Kp3gKapadMasd - KaioMis - CzioMes
Ko2gM36 - Co20Mas - KzaoMse - Ca3oMes * FaaMer * FasMes + FagMeo - Kaia
[MygMy + MysMg + MggMp - 2M Mg T-Coy g [MogMy sy Mg #Mg7Mp-ZHoMGM, ]
Kopa[M3gMy M3 7Me Mg rM3-MaMgMy ] CaglMagMy + MagMe + Mg7My - MgMgMy)
Kp3alMggMy + MgyMg + MgoMs - 2McMgMyd - Co3a[ZMgyMg + MggMy - 2HZM7 ]
Ko15[M) Mg +M; gMg *MsgMy - 2M) MgMa 1-Coy s [MpgMg +Maghs Mg M- 2MpMeMg ]

K225 M36Mg+3Mg Mg M3 - M3MeMg 1-C 25 M4 sMg*Ma g *MoaMa- 2aMgHg )
Ko3s[MscMy + MogMg + Meghs - MMgMg] - Cogs[2MggMs + MggMg - 2MEMg )
Ko1lMigMg + MigMs - 2MiMgMg] - Co16[MagMg + MagMg + MagMp - 2MaMgMg)
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K226[M36Mg*M3gMg Mg oM3- 2M3MeMg 1-C 2a6(MagMg *MagMs MegMa-21aMeMy ]

K36 [ M5 Mg M Mg +MsgMs - 24cMgM 1-C6 2Ms Mg M gMg-2MgMg1-Ka oMy 4
C310M24-K320M34-C320Ma4 % 330Ma5-C330Ma6F 3aMa7+F 35Map*F 36Msg
K3ya[MygMy#Hy My #tg gy - M Mgy 1-C a1 g TMa My #Mp My Mg g - oMM ]
KagalMaahy + MagMy + MagMy = PAsHaMy] = CypglZMagy + Mgy - 2]
K334 [MgsMy+MayMs+MsyMa- 2MgMMy 1-Caga Tia gy +4y o Mg +Mg Mg - 2MgMeM; ]
K3150M1 gMg+M) gMa+MagM) -2 MaMg 1-C31 5TMpgMg Mo gMa Mg gMp- 2 oMaMg ]
K3p5[M3aMg + M3gMg + MagM3 - 2MaMgMg] - Capsl2Mgghy + MagMg - LI
K335(Ma5Mg+Maghs +MsgMy- 2MaMsMg]-Cap5 [MagMa+Maghs HiggMa- 2MaMeMg ]
K3160#1 4Mg+M) gMa+Ma oMy -ZM MaMg]-C a1 g[Ma gMg Mooy Mg gMa - MpMaMg ]
K326[M3aMg + M3gMa + MagM3 - 2M3MaMg] - C3p6[2MgqMy + MagMg - 2M7Hg)
K336[Ma5Mg+MagMs +M5gMa-2MaMsMg]-Ca3g TMagMg+MygMg +MggMa- 2MaMgMy ]

= ~aqMa7-Kp10M17-C210M27-Ke2oM37-Ca20Ma7-K230M57-C230Me 7+F 2aM77+F 25M78

Faghrg - Kapgl2MysMy + MygMyp - 2"1”33 - Coygl2MpMy + MygMp - 2”3”23
KopqL2M3gMy + MygMa = 2MIMgJ- Cppal2Maiy + MygMy -2MIM] - Kp3q[2MssM
"77”5'2”3“53'C234[2”67"7*”77"6-2”$“5]-K215["17”8+"18“7*"78”1'2”1"7”8}
Co15[Ma7Mg+Mghy +M7gMp-2MoM Mg 1-K g [Ma pMg +M3gMy +M7gM3-2M M Mg ]
Cop5[Ma7MgtMagy+MygMa-2MgM7Mg 1Ko g Mg JMg +M5 gy +M 7 gMs - Mo M7 Mg ]
Co35[Mg7Mg Mgy +M7gMg-ZMgM Mg 1Koy g LMy PMg+M) oMy +M7 My - 2M My Mg ]
Co16[Ma7MgMogM7+M7gMp-2MpM Mg T-Kp g [ My Mg +M3gMy +My gM3- M 3M7Mg ]
Cpp6lMa7Mg*MagMy +M7gMa-2MgM7Mg1-Ko36 [Mg s Mg +Ms oMy +Mp oM - 2MMyMg ]

C236TMg Mg *Mg My M7 gMg-2HgMaMg ]

-2 Myg-K210M18-C210%28-X220M38-C220M48-K230M58-C230Me8*F 24M784F 25M88*F 26M89
Kp140M Mg tM My +MygM - 2M M Mg T-C oy 4 [Mp 7Mg+Mp gM7+M7 gMp - 2MpM Mg ]
Kp24[M37Mg+M3ghy +M7gM3-2M3MoMg]-Cop g [Mg 7 Mg +MagMy +M7gMg - 2MaM Mg ]

Kp3alMs 7Mg*MsgMy +My gMs - ZMcM7Mg 1-C o34 Mg Mg #Me gy +My Mg - MMMy ]
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Ka1502M) gMg *Maghy - 2MaM; T - Cz15{2"28”3*"88”2-2"§H2J'K225f?”3a"8 + MggM3
2”5”3]'C225[2“48“3*“88“4'2"3"4]'K235[2“58”8+"38”5'2“§ M51-Ca35
[2”68”3+”88”6'2“§“63*Kzl6[”18”9*”19”8*"89”1-2"1“8”93'C216[”28“9
MygMg Mg gMp - MpMgMg 1-K 26 [M3gMg +M3gMg +MggM3-2M3MgMg 1-C o6 TMa Mg
MagMg + MggMy - 2MgMgMg] - Kp3glMggMg + MggMg + MggMg - ZMsMgMgl - Cp36
[MggMy + MgoMg + MggMg - MgMgMy]
« 3M49-K21019-C210M29-K220M39-C220Ma9-K320M59-Ca30M69*F24M7 9*F25Me9* F 26Mag
Kp14lM] Mg+ gMy+MygMy - 2M M7Mg 1-Coy 4 LMo Mg +Mp My +My oM, - MMM ]
Kppa[M37MgtMagMy+MygMa-2M3MaMg]-Copa[MgyMg+MggMy+HygMy- 2MaMoMg ]
Kp34[M5MgtMsgMy+hygMs - MsMiMg) - CozalMgrMg + MegMy + MrgMe - MMMy ]
Kp150M1gMg*M gMg+Mggh; - 2M)MgMg] - Cpi5[MpgMg + MagMg + MggMp - 2MpMgMg]

t

Kpa5[M3gMg*M3gMatMggMy - MaMgMal - CopslMaghy + MagMg + MggMy - 2MsMgMg]
Ko35[M5MgtMsgMg tMggMs - ZMMgMg] - Cp3slMggMg + MggMg + MagMg - ZMgMgMg)]
K21652"‘19”9“”99”1'2"92;”1J-C215[2”29"‘9*‘"99"‘2-2”5”23*K226[2”39”9+“99"‘3'-’-'*5”3]
C26( ZHygMgMgoMa-2HEM 1K 36 2Ms gy HogMs - 2MMs 1-Cy 36 Mg ghg MgoM - ZMgMe ]
Mg
Mg6-K310M15-C310425-K32035-C320Ma5-K330M55-C330M56*F 34Ms 7+F 35M58+F 36M59
K3pa[MsM7M Mg Mo 7My - MMM, - C3yalMpchy + MygMs + MsgMy - ZMpMgMy ]
K3p4[M3cMy+M3zMs +Mg M3 - 2M3MMy] - C3palMasy + MagMs + MgyMy - ZMgMcMy ]
K33al2M M5 + Mgy - DMaMy] - CagalMsghy + MsMg + MgMs - PMghgh ]
K35(M sMg*M gMs Mgy - 2MMsMg] - C3)5[MacMg + Maghs + MogMp - MpMgMg)
K3p5[M35MgM3gMs tMgM3 - 2M3MsMgl - C3pslMasMg + Maghs + MsgMy - 2MgMsMg)
k3350 Msghs s shg- MM ] - C3gslMsgMg + Moghs + Meghs - MsheMg]
K3160M15Mg+M) QM5 +Ms M1 - 2M; MMqg 1-C 31 6[Ma Mg Mo oM +Mg oMy - 2MpMsMg ]
K3p6[M35Mg*M3gMstM3gMs - PMaMcMg] - CapglMasMg + MagMs + MsgMy - 2MgMsMg]
K33602MsgMe + MosMg - ZMMg] - CaglMoghy + MsgMg + Mgghs - ZMsMghg]

Me7 - a Ms7
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Meg - a Mg
Mg - @ 3Msg
26l & [F2, = 2F21KayiMy-2F 31Kap M- 2F 3 Kaq Mtk My 14K Mo asKo o M

1 @103 - 2F31K31 M) -2F31K31M3-2F 31 K331 M5 #K 1 1M1 1K 31 M3 K331 M55
2K311K321M13 + 2K311K331M15 ¢ 2K31KazMps] ¢ 3‘9§°22[F§2 - 2F3K31M
235k 322M3 - FapkaaMs + KajMpp + KoppMas + Kgaz"ss + 2K3)12K322M1 3
2K312K332M15 * 2K322K332M35] + a‘%"33”.?'.3 - 2F33K313M1 - 2F33K323M3
2 33K33Ms + K5 M) + KsogM33 * K533"55 + 2K313K3p3M13 + 2K313K333M5
2K323K333M35] + 2{-K310M16 - C310M26 - K320M36 "3320”45 - K330M56
C33gMes*F3aMe7+F 3sMes + FasMea - KapalMigMs + MipMe + MMy - MMMyl
C314[MagMy Mo Mg #Mg My - 2MpMgMy] - KpalMagMy + M3zMg + MgyM3 - 2M3MgMy ]
CapalMaghy*Mg Mg g7 Ma-2MgMeMy ] - K3zalMagMy + MspMg + MgpMs - MgMgh;)
CyaalPMg7Ms + Moghy - ZMEM;] - KapsDMyghg + Mighg + MegMy - M MgMg]
C315[MpgMatMogMetMpgMa-MoMeMg] - K3ps[MagMg + MagMs + MggMs- 2M3MgMg]
C305[MagMatHaaMetMegMa-2MaMeMa] = K33s[MogMg + MogMg + MggMs - 2MsMgMg]
C33502MgaMs * MsgM - 2MgMg] - KaolMighg® MigMg + MogMy - 2MiMgMg)
Ca16TMa6Ma*MagMstMpgMa-2MoMgMg ] = K3pglMaghy + M3gMg + MggMy - ZMaMgMg]
C305 MagMatMagMe+MgaMa-2MaMgMg] - K336lMgeMg + MsgMg + MggMs - 2MsMgMg)
Cy36l2MeMs * MeeMo ~24eMoT)
< Mg7-K310M17-C310M27-K320M37-C 3204 7-K330M57-C330M6 747 3aM7 7+ 35M78
F35"79"‘314[2"‘17"7*"’7?"1-2"3"‘13'0314[3"27”7“”77".2'2”;"‘23""324[2"'37"‘7
"77“3'2“5”3]'5324[?"47"7*“77"4'2“;”4] - Kyaq[2s My + Mg = 2 MIMe]
C334L2Mg7M7 + My7Mg - 2MMg] - K3 5MysMg + Mighy + Mgy - 2M1MyMg]
Cap5lMa7Mg*MogMy*M7gMa-2MoMMg] = K3ps[M3zMg + MygMy + MpgMy - 243M;Mg]
C3p5[My7Ma+iaghy My gha-2MgMzMg] = K3aslMgoMg + Moy + MygMs - 2MgM Mg]
C3350Mg Mg Mgty ™M7aMg-2MgMaMa] - Kagg[MizMa + MigMy + MygMy - 2MpMyMg]
CaylMa7Mg*MagMy +M7gMa- MM Mg D-K3o6TMagMg + Maghy + MygMy - 2M3M7Mg)
C306 Mg Mg MagMy+M7 Mg -2MgMyMg1-K3ag Mg Mo+ Msgy + MygMs - ZMsMaMy ]
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Cy3g[Mg7Mg + MMy + MygMg - 2MgMsMg]
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@ Msg-K310M18-C310M28-K320M38-C320M48-K330M58-C330M68 + F3aM78 + F3sMgs

F3gMgg-Ka1alMpMa ity gMytMygM -2M MyMg ] = C31alMagMg + Maghy + Myghp

M M7Mg-K3p4[MagMg+M3ghy+MzgMs - 2M3MyMg] - C3palMagMg + Maghy + MygMy
MgMaMg1-K334 Mg 7Mg Mgy tM7gM5-DsMyMg] - C334[Mg Mg + MMy + M7gMg
2“6”7”83'K315[2H18M8+M88M1‘2"§"1]'c31S[2"28"8*”88"2'2M§"2]’K325[2"38”8

2 2 2

2
C33502MgaMgtMagMs - 2MgMg] - K316[MigMg + MigMg + MggMy - 2MiMgMg]

Cy160MogMgtMogMgtMggMa-2MaMaMg] - K3oglMaghg + M3gMg + MggMz - Z43MgMg]

Cyo6[MaaMatMagMa*MgaMy - MgMgMg] - K336[MggMg + MggMg + MggMs - 2MsMgMg ]
C336[MgaMg *+ MggMg + MggMs - MgMgMg]

« Mg9-K31019-C310M29-K320M39-C320M49-K330M59-C330M6 9+ 3aM79*F 35M89+F 36M99

K3140M17Mg*My gMy+M7gMy - 2M M7Mg1-C 31 4[Mp7Mg+MpgMy+M gMo- 2MoM Mg ]

K3p4[M37Mg gy +MzgM3 -
K334 (M5 7Mg*M5gMy*MygMs -
K3150M1gMg+M1gMgtMgoM) -
K325M3gMg+M3gMa*MgoM3 -
K335[M5gMgtM5gMg+MggMs -

2M3MMg] - C3p4[Ma7Mg + MMy
MgMaMg] - C334[Mg7Mg + MgoMy
2MIMgMg] - C315[MagMg + MagMg
M3MgMg] - C3z5[MagMg *+ MagMg

2MgMgMg] - C335[MggMg + MgoMg

+

+

+

+

+

M79M4
M79M6
MggM2
MggMy

MgoMg

2MaMoMg)
MgMoMg)
2MoMgMg ]
2MaMgMg]

2”6 5M8M9]

2 2

K315[2”19"9+”99"1*2”§”13-0316[3"29“9+M99"2-2"9"23-K326[2”39”9+”99“3°2”9”33
2 2 ?

C32602MagMg*MggMy-2MgMy 1-K335 [ M5 oMy +MgoMs - 2MgMs 1-C 36T ZMg Mg Mg gMs -2MgMs ]

= 2 Mz7 + 2 By,
= ey *ayiMg

= ‘(crl *a3)M79

= claMgg + A gy
= -la, + a3)Mgg

= -2 Mgg + Zn B¢
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Appendix D
Comparison of Equilibrium Solutions
In this appendix, the equilibrium solutions given in Chapter 3 are
compared with those obtained by other more precise methods. Restituting the

nonlinear terms into the equations for the ﬂap-lag-torsibnaT motion, Egqs. (3-

39), (3-40) and (3-41), we obtain

" .y Y Y 3=
Be * Bgg - KegBpct (K33+ 1gg * Rerle * '2' 9B -7 9%,

82 g3 g3 g g
Fhrubya) S v hpuse, - Tl v hgme, - TgmakSe
p? B3 B> g
tIgakle, v hg- Oy-akg -Iygag +IuCa,
M o 8 818
=iz, +17 uc(xi-x) -1g (A]--l) - 13 AkC - 3 uCee (D-1)
to - B (1 vr e+ Rzt K, B )+5 8 -%9 (g
BZ 3 4
+ kSO ey - L—uShiya e, = Tg- Ay, - Lg—ak Cs
3 4 BS
L—-uc()\ ) a "'L—(X ‘R)a +}U—AkCa
Y 82 B3 4 2
5 [5— cix -J\)ee -3—(A1.-A)e - Ak B -2-()\ - )
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3 4 2 3
" 2 FB ] FB ] - FB FB -
a.e"'woae' ucce+ ag ]—z—ucﬂe‘La—'Be 0 (D-3)

Those nonlinear terms are ae;é - %5 Saez;e in Eq. (D-1) and -ae(l + Cé)Bé in
Eq. (D-2). |

The system of Eqs. {D-1), (D-2) and (D-3), can be replaced by six first
order différentia] equations by letting xI = [xl X2 X3 X4 Xg x5] =

BoBatetpapugl: They are

2
- '-'
B, 1B 2 8 vt
- - - - - -
- 2x.x, +% 8 (R +1)x, - € X, - 35C x. + 2 Gox.x
174~ 'Bg" pc B8 1~ g3 2 1 2 173
182 18 18° gt oyt
- b uBgm) Sxgo- TSk e O - g x, + bgeakSxg
4 3 5 4

y B B> 8’ 2 2
Xg =5 Gmulhya) e - 3= Bhya)e, - 7-2kB +5-( ;)

3
¢ 28 5kch, )] + 2x (Lexg)x, - R
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<395+ 3 3 ts—BkS( - )x +I—BE S ( ) x
7 9 T 7 9y = AKX Y e Ry Xy

g g* g3 8%
Pom Gy) xp + g ak0G + TemuChy ) xg =Yg By
5
B
-1 ‘50‘5
xé = Xg
x! = 2x +I_.Fﬁ . - F84 X +XLBZ X, - FBBX (0-4)
6"°a53“6L4_6 2“1"3—1
- 0.'

Eq. (D-4) can be solved numerically for a given parameter combination, using a
suitable computer routine; e.g. DGEAR routine of IMSL computer software.
Another alternative to finding the equilibrium solutions is similar to
that used in Chapter 3, except that the nonlinear terms are retained in Egs.
(D-1) and (D-2). By substituting Eq. (3-42) into Eqs, (D-1), (D-2) and (D-3),
and equating the coefficients of cos oy, cos y and siny, we obtain a system
of nine algebraic equations which can be expressed as the summation of Eq. (3-

43) and some additional terms due to the nonlinearity; namely,
pX + N = H (D-5)

where X, D and H are the same as Eq. (3-43). N is a nine by one column matrix

of nonlinear terms. The nonzero components of N are
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3 - 3 —
N = BLc*Bls - 7985 -~ T 9852,

) 3 - 9 — 3—
ng = -BLc-79B8f, " FIBEs ~FIBclye

) 3 - 3 —
N3 = Bro-gIBLc-FIBets

Mg = BBckc - BeBsts

) 1 2 1,2
Ng = BBc-BBEctFBcis~7Bses
- '1
1.2 1 2
Ng = ~ZBetc-BsBs ~ Byfs *7Bs54g (D-6)

Eq. (D-5) has the same form as that studied by Klotter [49]. He utilized the
orthogonality of functions cos oy, ¢0Sy and siny and suggested that for the
first approximation the nine algebraic equations can be decomposited into three
sets of three algebraic equations multiplying each of the orthogonal functions
and integrating over the period & . ‘
The system of Eq. (D-5) also can be solved numerically without being

simplified to three separate sets.

| For the comparison of the equilibrium solutions, the plot of periodic
solutions obtained by the two methods mentioned above and the one used in
Chapter 3, are presented, Because of a2 large number of parameters involved,
the comparison is limited to those parameter values given in Chapter 6. Fig.
D-1 shows that the equilibrium solutions obtained from Eq. (3-43) and Eq. (D-5)
respectively are almost identical, and are only slightly different from those

obtained from the original Egs. (D-1), (D-2) and (D-3). These results
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indicate that the nonlinear terms have little effect on the equilibrium
solutions and that the higher harmonic components in the exact solutions are
negligible. Therefore, the linearized harmonic balancing method is an

adequate approach in the present case.
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Methods. 149
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Appendix E

Linearized Moment Equations for Stability Analyses in the Sense of Bolotin

In this appendix, the detailed moment equations linearized according to
the Bolotin-Owen procedure are given. In these equations, My and Bij denote
E[X;] and E[(Xiqji)(xj~pj)] respectively; the overdot denotes one
differentiation with respect to the non-dimensional time y. The moment

equations for the stability analysis of flapping motion are

'y
1.11 S¥a
b2 - fuetne e ey Gy ke ehiegy
b1 T By

12 ¥t Fiem e Cue gt Faegst Fieggt Fie s
W13 T¥23 T %3

Via T Vo4 TP 14

Vis " V25 %15

Voo = 2Figuy = 2Kyjpugp = Lyigu,, + 2F 1453

2 2 2 2
F1g 94 + Wi + ALK e) 04 + Kppoer 0050 uyy

-+

M3 = - Kligys - Ci1orp - @ a3 - o33 (Knep thigp)

Mog = - K100 14 - C1100 24 m9ga(Kpygry * Oy p) mepyy

bas = K ys - (1100 s T 9 ¥ ps (E-1)
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The moment equations for the stability analysis of coupled flap-lag are
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Finally, the moment equations for the stability analysis of the coupled flap-

lag-torsiommotion are
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Appendix F
Stability Analyses of Nonlinear Moment Equations

In this.Appendix, the stability of the system governed by Eq. (5-8) is
re-examined using the variational equations of Poincare in the neighborhoods é
of its singular points. The singular points can be determined by letting the
right hand side of Eq. {5-8) equal to zero. If'?i is a singular point of the

system, then it satisfies
.l.'

K+ B+ Rip ¥ =0 (F-1)

The variational equation of the system can be obtained by substituting

¥ =% eX into Eq. (5-8), and expanding the nonlinear matrix N in a Taylor

series,
X = [§ + A l, ] % +0 ¢ 2 (F-2)
Y oYy
where ¢’ )
—11— —Nl— Ld » L ] . L ] -—N—l-
W n
1
Y
& ] .
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and an overdot denotes one derivative with respect to the nondimensional time

v. The first order variational equation of the system is given by

% - (8 NLE ) X (F-3)
sy Mysy!

Since Wi is S known singular point Eq. (F-3) is a linear periodic equation if

the intensity functions of the earthquake are assumed to be egual to unity.

Then, the Floquet theory can be used to determine the s;ability condition of

the dynamic system at'Yi for any given combination of parameters (associated

with a g}vgh operating condition as described in Chapter 3).

It must be noted that since Eq. (F-1) is a set of nonlinear algebraic
equations mulitiple singular points are possible, each of which must be
investigated separately. However, in the present study only one singular
point is found to be meaningful physically, and it can be obtained numerically
by iteration. A first trial may be obtained by neglecting the nonlinear terms
in Eq. (F-1) because without the turbulence the system is linear and with
turbulence the solution is expected to deviate only slightly from the linear
one, An alternative first trial may be the trivial zero solution. In fact,
the solutions obtained from these two approaches converged in our numerical
calculations,

OQur calculations were carried out, however, only for the coupled flap-lag
motion because of the following reaéons: 1) the uncoupled flapping motion is
very stable, 2) the torsional degree of freedom has little influence on the
dynamic behavior of flap and leadlag motions and 3) the cost is very high for
computing the eigenvalue of the Floquet transition matrix of a dynamic system

involving a large number of equations with periodic coefficients, The values
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of parameters used in the calculations were the same as those of cases 5, 6, 7
and 8 in Table V., The largest norms of the state vector defined by Eq. (5-9)
at the singular point over one period are 0000769 for case 5, 0027677 for
case 6, .0000779 for case 7 aﬁd 0028446 for case 8. These results indicate
that under the excitation of a high level turbulence the singular point is
shifted férther away from the zero position; and for a moderate turbulence
level the singular point is quite close to the zero position. The largest
norms of the eigenvalues of the Floquet transition matrices are .943535 for
case 5, .932597 for case 6, .944804 for case 7 and .932468 for case 8, These
PQSU]tS'd{?fEP from those obtained from the Bolotin method less than 1%,
Therefore, the Bolotin method is sufficiently accurate if the turbulence level

is moderate.
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