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The purpose of this study is to i~vestigate the dynamic behavior of
a wind turbine blade under seismic-and turbulent wi~d excitatio~s.

Using the Markov process theory aYld Ito' sstochastic differential
equation, equations for statistical moments of blade response
variables are derived. These equations then can be used to
determine certain mome~t stability conditions for any given set of
parameters, and moment responses if the system is stable. Results
show that for a constant rpm wind turbine generator the uncoupled
flapping, coupled flap-lagging, and coupled flap-lag-torsion of a
wind tut'bine blade are very stable under normal operating conditions
and that torsion has little influence on the dynamic behavior of
flapping and leadlagging motions. If the system is stable, then the
effect of turbulence on moment responses is greater than that of an
earthquake; therefore, tllrbulence is likely the main cause for
structural fatigue of wi~d turbine blades. .
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CHAPTER 1 INTRODUCTION

1.1 Problem Statement

Wind turbines which convert wind power into mechanical power have been in

existence for centuries. In the earlier state, they were used only to pump

water and grind grains. It was not until the nineteenth century when wind­

powered electricity generation plants began to be built around the world.

These earlier electrical projects were discontinued when they became

economically less competitive than the fossil-fuel plants [1]. After the

energy crisi;~of 1973, the limited fossil-fuel supply drove the cost of the

fuel sky-high, thus generating considerable amount of effort in search of

alternative energy sources. Wind power was given a renewed interest as a

possible economical energy source.

In general, the cost per kilowatt-hour of electricity generated by a wind

turbine decreases as the size of the unit increases. For a large wind

turbine, the .ajor cost is that of the rotor blade. It is essential that the

blades MUst be designed for a long service life in order to be economically

viable. The dynamic loads acting on a large scale blade include periodically

varying deterministic aerodynamic and gravitational forces, as well as random

turbulence and seismic loads.

In many respects the analysis of a horizontal-axis wind turbine blade is

similar to that of a helicopter blade. For the analysis of wind turbine

dynamics, some of the mathematical assumptions and approaches used in the

analysis of the airloads and vibrations of helicopter blades are still

valid. However, there is a fundamental difference in their functions: a

helicopter blade imparts energy into air flow to generate the lifting force
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whereas a wind turbine blade extracts energy from air flow to generate

electricity. Besides, there are several ~jor differences between them.

First, the gravity is a steady effect on a helicopter during its forward

flight, and it can be ignored when ca-pared with the aerodynamic forces

generated by the high speed rotation of the blade. In contrast, the

gravitational force is periodic on a wind turbine blade rotating about a

horizontal axis, and it is of the same order of magnitude as the aerodynamic

forces. second, a helicopter is normally controlled to operate at large

values of pitch angle in order to avoid a negative angle of attack due to

inflow. In·a·wind turbine, however, the angle of attack due to inflow is

always positive, and the blade pitch angle is controlled to be nearly zero or

even negative to meet the power schedule of the generator. Third, helicopter

rotor usually can be trimmed to operate in highly nonuniform flows whereas a

wind turbine rotor may not tolerate such nonuniformities. Fourth, the

vertical wind velocity gradient will not affect the helicopter dynamic

behavior since the rotor rotates almost horizontally. In contrast, the wind

turbine rotor operates in a vertical plane, and the velocity gradient causes

aSYMmetry in the airloads of the rotor which .ay have a significant effect on

the stability and response of the rotor systeM. Fifth, the white noise

approximation of turbulence in the analysis of helicopter blade MOtion [2-5J

may not be justifiable for wind turbine blades since the rotating speed is

much lower in wind turbine operations. Finally, helicopters will not be

exposed to earthquake excitations during their operations. Therefore, a wind

turbine is expected to have different dynamic characteristics and operate in

different parameter ranges then those of a conventional helicopter.
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1.2 A Review of Previous Work

A large n~ber of papers have been published on helicopter rotor

dynamics. some of which are useful for the present research and they will be

given a brief discussion.

Among the analyses of helicopter rotor dynamics, the simplest case began

with a deter.inistic, single-degree of freedom model. Shulter and Jones [6]

analyzed the uncoupled blade flapping motion, in which the reversed flow

effect was ignored, using Floquet's theory for periodi~ systems. ~ter,

Sissingh [7] considered the reversed flow effect which becomes important at

high adv~~d ratio. This analysis was extended by $issingh and Kuczynski [8]

who derived the equations for coupled flap-torsional motion. In their

derivation. the blade was assumed to be centrally hinged with an elastic

restraint at the center of tne hub. In the case of flap-lagging motion,

Ormiston and Hodges [9] proposed a simple .athematic MOdel consisting of a

rigid blade and root spring system. The elastic constants of the spring

system can be adjusted to account for elastic coupling and effects of nonzero

feathering angle. This analysis was extended to the nonlinear case by Peters

(10).

Next, we will review previous works on wind turbine dynamics. Ormiston

[11] has investigated uncoupled flapping blade .etion in the presence of axial

wind, cross wind, and induced flow. as well as the effects of linear vertical

gradients in the axial wind and cross wind, rotor shaft yaw precession and the

gravity forces. In the same paper he also discussed the uncoupled lead­

lagging response to gravitational and aerodynamic loads. His results showed

that for typical parameter values of a wind turbine, both the lead-lag and
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flap frequencies were high compared to those of typical helicopter rotors.

His results also showed that gravity forces dominated the lead-lag response.

Smith. Thresher. Wilson and MacDuff [12] investigated the coupling of

rotor flapping and tower translation in an attempt to identify the relevant

parameters. In their Model. the rotor hub was constrained to rotate about a

horizonta1 axis of fixed direction. and the bearing support structure was

allowed to move only in the axial direction. The two blades were hinged at
.

some distance from the center of the hub. A torsional spring at each hinge

tended to restore the blade axes to the radial direction. In their

investigation. two special cases were considered. both neglecting aerodynamic

forces. In the first case. the rotating speed was assumed to be constant and

the resulting equations indicated the existence of a parametric exictation due

to the gravitational field. In the second case. the rotor speed was assumed

to be high enough that gravity could be neglected. and the resulting equations

yielded natural modes of vibration. However. they have provided few numerical

results based on their equations.

Friedmann [13] has derived a set of general. nonlinear. partial

differential equations for coupled flap-lag-torsional .otion of a single wind

turbine blade and discussed methods for their solutions together with some

possible simplifications of the equations. In his derivation. the ~venportls

model for the variation of the .ean wind velocity in the earth1s boundary

layer was used. He also recognized the iMportance of turbulence loading and

suggested using an equivalent sinusoidal load to evaluate its effect.

However. he has published few numerical results that were based on his

equations. Moreover. the deterministic sinusoidal model for turbulence is not

satisfactory since atmospheric turbulence is a random phenomenon.
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Kaza and Hammond [14] investigated the flap-lag stability of wind turbine

rotors in the presence of velocity gradients and of helicopter rotors in a

forward flight using an approximate numerical solution. Their results showed

a decrease in blade damping with advance ratio in the case of a helicopter

rotor and little effect of the wind gradient on wind turbine stability. They

have prov~ded only one figure for windmills.

Spera (15] has investigated the blade vibrations of wind turbine

rotors. The blade vibrations were limited to the fu~damental flapping modes,

assumed to be elastic cantilever bending for hingeless rotor blades and rigid-

body rotation for teetering blades. The effects of the wind shear and tower. "
wake were taken into c~nsideration. He used a c~uter program in which

aerodynamic coefficients were obtained from a stored table of values, to

calculate the airloads on wind turbines and integrated the equations of motion

in time. Such an analysis is valuable as a design tool, but is not preferable

for basic research. The time domain numerical approach has some

disadvantages: 1) the interpretation of time histories is usually difficult,

and 2) the complicated nature of a large computer program and the high

computing costs prohibit any extensive parameter changes in the mathematical

model.

Wei and Peters [16] have studied the flap-lag instability of both heli-

copter and windmill blades as a function of design parameters and operating

conditions for various trimmed and untri.med conditions. The mathematical

techniques used in their study are the perturbation Method, multiple time

scales and the Floquet theory. Their results indicated that the trimmed and

untrimmed autorotation flight conditions were considerably less stable than

the power flight condition, and that gravity forces have little effect on
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stability in the case of axial flow at very high thrust coefficient. Their

results also showed that the effects of the IXill flow, velocity gradient on

blade damping were small. However, their emphasis was focused on helicopter

rotors rather than windmill rotors because the operating conditions and

control settings used were those of I helicopter.

1.3 Scopes of Present Research

The present research is directed at the dynamics of a wind turbine rotor

system under random seismic and turbulence excitations. Three types of blade

motion are investigated: 1) uncoupled flapping .otion, 2) coupled flap-lagging. .,
motion, and 3) coupled flap-lag-torsional .otion. Account is taken of the

aerodynamic, gravitational and vertical wind gradient effects.

In Chapter 2, a brief review of stochastic processes and stochastic

differentia' equations is presented. Special attention is paid to the

generalization of the spectral representation of a stationary random process

to that of a non-stationary process. The stochastic differential equation in

the sense of Ito is then introduced, followed by the Ito differential rule,

which is a useful tool to obtain equations for statistical Moments of system

response variables. Finally, the stochastic Iyeraging procedure for

converting physical equations to Ito's equltions and its 1~lication in terms

of convergence of sequence of physical processes to I Markov process are

briefly discussed.

The equations of uncoupled flipping, coupled flap-lagging and coupled

flap-lag-torsional motions are derived in Chapter 3. The effects of axial

wind, vertical wind gradients, cross wind and elastic coupling are included.

Ground motions and turbulence velocities are treated as random external
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excitations. The equilibrium solutions of coupled flap-lagging and coupled

flap-lag-torsional motions are obtained in this chapter using harmonic

balancing method. T~e control settings of a typical wind turbine are also

discussed.

Chapter 4 deals with the math~atical models of the random excitations.

Earthquake .accelerations are MOdeled as nonstationary random processes.

Turbulence velocities are modeled as stationary processes.

In Chapter 5, the equations of motion obtained i~ Chapter 3 are converted

to the ItS-type stochastic differential equations, from which the moment

equations for system response variables are derived. An outline is given of. .~

the approaches to obtain the moment stability conditions and response

moments.

In Chapter 6, the moment equations derived in Chapter 5 are solved

numerically. The effects of turbulence level and earthquake level are

investigated and presented graphically. The effects of some other parameters

such as turbulence correlation times and elastic coupling are also indicated.

C~apter 7 summarizes the principal conclusions and indicates some topics

for further research.
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CHAPTER 2

FUNIMEHTALS OF STOCHAST IC DIFFERENT IAL EQUAT IONS

2.1 Elements of Stochastic Process

mfferentia1 equations governing a physical system subjected to

excitations can be written as

i = 1;'2:'t... , n, k = 1, 2, ••• , m

(2-1)

where Xi are components of a state vector', t k(t) are exci tat ions, and a

repeated index implies summation over all values of the index. We shall

assume that ~k(t) are stochastic or random processes. To characterize l;k (t),

we review the following important concept of stochastic processes.

A. Random process with orthogonal increments [17J

~t Z(w) be a complex-valued random process defined on a ( w ( b.

Z{w) is said to have uncorrelated increments if

for any a ( WI < w2 ( w3 < w4 ( b, where the asterisk denotes the complex

conjugate. If the right hand side of Eq. (2-2) is zero, then Z(w) is said to

be a random process with orthogonal increment.



9

We define a deterministic function!'. such that

y(w} • (2-3)

where W o is an arbitrarily chosen reference point in the w-domain. Eq. (2-3)

impl ies that y Cwo) = O. It can be shown that if w2 ) wI

Let wI =w, w2 =w + d w in Eq. (2-4). We obtain

(2-5)

Note that ify(w) is differentiable (i.e. dy(w) is of the order of d w), dZ(w)

is of the order of (d w)1/2. Ify(w) is not differentiable, dZ{w} is also not

differenti.ble. Therefore, in either else an orthogonal increment process is

not differentiable. It .lso c.n be shown that an alternative definition for

,n orthogonal incr~nt process 1s

O.

(2-6 )

if w =w'
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B. Stationary random process

A random process x(t) is said to be stationary (in a strict sense) if its

statistical characteristics are invariant under tiMe Shifts, i.e., if they

rema1 n the sarne when t is repllced by t + 'f where 'f is arb1 trary [18].

For a stationary process the .ean value MUSt be a constant, say ~, and

the correlition function ~st be a function of time difference 'f, i.e.,

and

. ' ..

E[x(t)] =~

E[x(t)x(t+t}J '"' Rxxh) (2-7)

However, these may be true when x(t) is not strictly stationary, in whiCh

case, x(t) is said to be weakly stationary.

If ~ c 0, then a weakly stationary random process can be expressed as a

Fourier-Stieltjes integral representation•

•
x(t) '"' f e iw t dZ (w )- (2-8)

where Z(w) is In orthogonal increment process. Eq. (2-8) is known as the

spectral representation of a stationary process. To compute the correlation

function of x(t), we take the ensemble average of x(t) and x(t+t):

- ...
. .

'"' f e-lw"t d y (w) • R
xx

h )
-

(2-9)
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Eq. (2-9) shows that the correlation function of a weakly stationary process

also has a Fourier-Stieltjes representation. If Y (w) is differentiable, then

Rxxh) • je-iw'tyl(w)d w • f- e-iw't~xx~)dw- - (2-10)

where 11111. denotes differentiation with respect tow,and~xx~) =yl~) is

called the spectral density of x(t). If we let 'f (-) .. 0 then

y (w) = f ~xx(u) du-. .,

In this case, y(w) is called the spectral distribution function of x(t)

[17]. The mean-square value of x(t) is obtained from

•
E[x2(t)] .. Rxx(O) = Y{at)" J ~xx{w) dw-

(2-11)

(2-12)

. ;

Eq. (2-12) shows that ~ (w) descri bes the di stri but i on of the mean-squarexx
value in the w (frequency) domain.

c. Non-stltionary Random Process

For stltionlry processes, the spectrll representation is well-known and

has been used extensively in physical and engineering applications. On the

other hind, there has not been a general agreement on a similar representation

for non-stationary processes. several different attempts have been made [19-

22]; one of them is the evolutionary spectrum proposed by Priestly [22,23]

which has found important applications in earthquake engineering •
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This particular class of nonstationary process considered by Priestly has

a Stieltj!s integral representation,

•
x(t) It f a(t.w) !iwtdZ(w)- (2-13)

where a(t.w) 15 I deterministic function of t and w, and Z(w) is Igain an

orthogonal increment process. If a(w,t) = 1, the representation reduces to

the stationary form, Eq. (2-8).

The correlation function of x(t) is

• It.,

= ffill a(t 1 ,tI.l) a* (t 2 ,tI.l ) eiw (t1- t 2) d !' ~ )
.....

(2-14)

wherey(w) is the spectral distribution function of some stationary process.

When t 1 = t 2• Eq. (2-13) becomes

CD

(2-15)

If 'f (w) is di ff!rent iab1e, then

..
E[x 2(t)] = f la(t,w)1 2 ~(w) d w- (2-16)

As in the stati onary process. Ia( t .ud 12 If> ~) can be ; nterpreted as an energy
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density if E[x2(t)) is a measure of the total energy of the process at time t.

If a(w,t) does not depend on w i.e., a(w,t) = e(t), Eq. (2-13) becomes

•
x(t) • f e(t)e iwtdZ(w)- (2-17)

In this speci~l case, x(t) is called a uniformly modulated random process.

D. Markov Process [17]

A continuous stochastic process x(t) is called a Markov process if the

following Pfoperty is satisfied

that is, the past and future of a Markov process are statistically independent

when the present is known. A sufficient condition for being Markovian is that

x(t) has independent increments.

The conditional probability, Prob [x(t) < xl x(t o) = xo]' is called the

transition probability distribution function; its derivative with respect to x

is called the transition probability density, to be denoted by q(x,tlxo,t o)'

The transition probability density of a Markov process satisfies a partial

differential equation



1 ~ 2 1 3
~- q + ~- (Aq) - - _. (Bq) + -3 ~ (Cq) - ••• • 0
~t ~x 2~.,.2 ~x

lim
~t E[x(t+6t)where A • At+O -x(t)1 x(t) • x]

11m
~t E[{ x(t+At) _ x{t)} 2 1 x(t)8 • At+O = x]

1im
~t E[{ x(t+~t)- x(t)} 3 I x(t)C =flt+O = x]

•

14

(2-19)

are called.the derivate moments. When x(t) is also Gaussian, the derivate. .,
moments of an order higher than two vanish. In this case, Eq. (2-19) reduces

to the parabolic type

a a 1 ~2
-- q + - (Aq) - - - (Bq) so 0at ax 2~i

Eq. (2-20) is called the Fokker-Planck equation or Kolmogorov forward

(2-20)

equat ion.

For a multi-dimensional Markov process, the FOKker-Planck equation can be

written in a si.i1ar way

(2-21)

where xi are the components of a state vector X. and ai and bij are given by
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(2-22)

A Markov process whose transition probability density satisfies the Fokker­

Planck equation is also known as a diffusion process. The derivate moments

A ={ai} and B .. [b i j 1 are called the drift vector and the diffus i on mat ri x of

the diffusion process, respectively.

The significance of the transition probability density of a Markov

process is that for a given initial state, the transition probability density
. ."completely specifies the process x(t).

E. Brownian motion process (Wiener process) [24.25J

A stochastic process W(t) is called a Wiener process if it satisfies:

(i) W(t) is a Gaussian process

(i 1) W(O) = 0

(i i i) E[W(t)J = 0

(i v) E[W(t 1)W(t 2)] 2 min (t 1,t 2)j i.e.I: a

(2-23)

A unit Wiener process is one for which a = 1. It can be shown that W(t) has

independent increments, and thus satisfies the sufficient condition for being

Markovian. In fact, the Wiener process is the simplest Markov process.
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Furthermore. since being independent implies being uncorrelated.

2a dt.

o.
(2-24)

Therefore. the Wiener process is nowhere differentiable. This property. Eq.

(2-24) has provided the motivation for introducing ~tols differential equation

and Ito1s integral as we will see later.

. -.,
F. White noise process

AweaKly stationary random process with zero mean and a constant spectral

density is called a white noise; denoted by Z(t). That is.

~ (W)=Kzz
or

Rzz(~) .. 2JtK () (~). 't = t 2 - t 1 (2-25)

Eq. (2-25) indicates that Z(t) is also a delta-correlated process. A constant

spectral density implies that the energy content of the process is uniformly

distributed over the entire frequency range. The total energy. which is equal

to the infinite integral of the spectral density. 1s infinite. Therefore. the

white noise process is a theoretical idealization. and physically non-

existent. Nevertheless. such processes are sometimes useful as approximations

for physical processes and they may be used to obtain meaningful results.

The spectral density of a physically realizable process must be

negligible beyond some cut off frequency wc• Replacing a physical process by

a white noise process means that this cut-off frequency is taken to be
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infinity. This is permissible if the actual W c is considerably higher than

all frequencies which are important in a given physical problem.

It also can be shown that the derivative of I Wiener process is a white

noise, and a Markov process.

G. Exponentially correlated process

Now we discuss the statistical properties of a stochastic process ~ (t)

with an exponential correlation function. Such a prOcess satisfies the first

order differential equation.

. ..,
t = ~~ + Z(t) (2-26)

where Z( t) is a white no; se with zero mean and Rzzh) =~ zf ('t ). If the

initial condition is ~(to) =~o' then Eq. (2-26) has the solution

Using Eq. (2-27), we find the following expressions for the mean value and the

correlation function of t(t):

(2-28)

As t - to increases, the correlation function tends to its stationary form



The process t (t) becomes an approximation of white noise as CI + ., ~ + a,zz
but 0

2 • ~onstant.

When the excitations in , Eq. (2-1) are exponentially correlated, the

response state vector Xis not a vector Markov process. However, the expanded

(n+m)-dimensional state vector (xi~k) where i = 1,2, ••• ,n, K = 1,2, ••• ,m

is Markovian.. ."

"~
'.'
'"
~..
l-
."

.,

:.
- t

\~ ('t) • 0 2e~ h I

where
2 ~zz

o • ---
CI '
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(2-29)

2.2 Ito Stochastic Differential Equation

The governing equation for every diffusive Markov process can be written

in the following form:

dx = m(x,t)dt + o(x,t) dW(t) (2-30)

where W(t) is a unit Wiener process. Eq. (2-30) is equivalent to

t t
x(t) • x(O) + J m(x(u), u) du + J o(x(u),u) dW(u)

o 0
(2-31)

The second integral in Eq. (2-31) cannot be interpreted as a usual Stieltjes

integral, since the sample functions of W(t) are of unbounded variation. tt~

proposed that it be interpreted as a forward integral [27,28].

t
f a(x(u),u) dW(u)
o

N-l
= 1. i.m. t 0 (x (u ' ), u. )[W (u .+1) - W(u,' ) ]

/. , " ,max 6.. 0 1=1
(2-32)
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where 6 • ui+l - ui and 1. i .m. represents the so-called 1imit in the mean. It

is of interest to note that every pair of o{x{ui),u i ) and [W(ui+l) - W(ui)] are

independent, since the increment in Woccurs after the tiMe Ui' Eq. (2-30) is

called Ito's stochastic differential equaiton if the integral is interpreted as

Eq. (2-32).

In the case of a Markov vector, Eq. (2-30) is generalized to

(2-33)

j = l,a~ ••• ,n, k = 1,2, ••• ,m

It can be shown that the solution vector '(t) generated by Eq. (2-33) ;s

Markovian and has no derivatives [29]. Furthermore, the Fokker-Planck equation

for the transition probability density q of Markov vector' is given by

.~

; ~=
~t

(2-34 )

Comparing Eq. (2-34) and Eq. (2-21), the first and second derivate _oments are

seen to be

.. ~:
;

(2-35)

(2-36)
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2.3 Ito's Differential Rule

As indicated earlier. the transition probability density completely

specifies a Markov vector X(t) provided that the initial state is known;

however. to obtain a closed form solution for the transition probability

density 1s quite difficult if not impossible. The alternative is to obtain the

statistical ~oments of the system response •

For the computation of the statistical moment. we introduce the Ito's

differential rule. The advantage of using this rule lies in the fact that

similar Ito equations can be derived quite simply and without ambiguity for

arbitrorY,scalar functions of a Markov vector satisfying rather general

conditions. The Ito's differential rule may be stated as follows: Let xi by

the ith component of a Markov vector '. governed by Ito equation (2-33). and

let ~ (X.t) be a scalar function. then [27.28]

2
d ... (M- + m ~ - + .1 0 t ) dt + M- dW

If z: at i ox. 2 O'ikO'kj 0 x.ox. 0" • •
1 1 J ' J 0 Xi J

provided that the derivatives on the right hand side exist. The Ita

(2-37)

differential rule differs from the classical chain rule in the additional
2

term ~ O'ikO'kj ~~i:X; which results from the retention of terms of the order

(dW)2.

Equations for the first and second moments are obtained by letting the

scalar function. be xi and xrxs ' respectively. and taking the ensemble average

of the results; it leads to

(2-38)
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(2-39)

.;
o·

2.4 Approxi.ation of Physical Process by Markov Process

As aentioned earlier. Markov process is an idealized mathematical process,

and no physical process can be exactly Markovian. However, it is s~~etimes

reasonable to use such an approximation to obtain meaningful results.

The approximation is usually justified on the basis of how close the increments

in non-o~er1apping time inter~als are nearly being independent [17].

For convenience of discussion, we introduce the concepts of the relaxation

time for ~ Uyn~ic system and the correlation time of a stochastic process.

The relaxation time ~r is defined as the time required for the amplitude of a

free motion to decrease by a factor e- 1 or increase by a factor e. where e is

the base of natural logarithm. The correlation time of a weakly stationary

stochastic p~ocess may be defined as

•
't C = J 't IR(~} Icit IJ IR(·d Ich (2-40)

o 0

where R('t} is the correlation function of the stochastic process. When a

dynamic syst~ is subjected to a random excitation, the system response will

exhibit a Markov-like behavior if it is observed at time intervals greater than

the correlation time of the excitation. However. the observation time for the

response must not be too far apart to lose the essential characteristics. A

rough guideline is that the observation intervals should not be farther apart

than the relaxation time of the dynamic system. If 't C «'t ,then the responser '

is expected to show a near Markovian beha~ior when it is sampled at time

interval s of the order of 't r.
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When the relaxation time of a dyna~ic system is not much greater than the

correlation time of excitations, the Markov process theory still can be used.

This is done by approxi~ating the excitations as outputs of linear filters

driven by Gaussian white noises, and extending the dimensions of the Markov

vector. The system response variables constitute only some, not all the

components of the resulting Markov vector. The exponentially correlated

process mentioned earlier is obtained by passing a white noise through a first

ord er f i Iter •

2.5 Sto~hastic Averaging Method

We shall assume that the Markov process approximation is justified for the

physical system, Eq. (2-1). The question now arises as how Eq. (2-1) can be

converted to an equivalent Ito equation, Eq. (2-33). The mechanism is provided

in what is now known as the stochastic averaging procedure, proposed by

Stratonovich [18] in 1961 on physical grounds and later justified rigorously by

Khasmiskii [30]. According to this procedure, the drift and diffusion

coefficients in the Ito equation corresponding to Eq. (2-1) are

(2-41)

o
= 2J gjrCl.t)9kS('l,t+-r) E~r(t) ~s(t+t )]dt- (2-42)

The physical implications of this procedure are clear. The first term of

Eq. (2-41), f j • represents the tendency for future drift of the response

variables Xj if random excitations were not present. With the random

excitations. the tendency is modified due to the correlation between the past
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excitations at t+t and the present excitations at t, where ~ is negative. The

integral in Eq. (2-41) sums up all the past correlation effects and lumps the

total effects at prese~t. Similarly, the integral in Eq. (2-42) sums up the

future diffusion tendency due to random excitations up to the present time.

The substitution of equivalent drift and diffusion into the Ito equation for

Markov vector is necessary, since the excitations dWk in Eq. (2-33) are

independent of the present state'i by virtue of Ito's interpretation, Eq. (2­

32), they affect only future diffusion, and are dissociated with the drift

[17] •

Eq: (~42) gives the elements of oc/, instead of matrix a itself.

However, only the product matrix oaT is required for the calculation of

EC, (X, t)] asshown i n Eq. (2 - 37) •

In the special case in which ~k of eq. (2-1) are physical white noise

processes, i.e.,

(2-43)

where ~ rs are constants, Eqs. (2-41) and (2-42) reduce to

(2-44 )

(2-45 )

The second term on the right-hand side of Eq. (2-44) is called the Wong-Zakai

correction [32,33J.
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CHAPTER 3

GOVERNING EQUATIONS OF MOTION OF A ROTOR BLADE

3.1 Physical Model

In this section, differential equations governing the coupled flap-lagging

motion of a single blade will be derived first which will serve as a basis for

later reduction to the uncoupled flapping motion and extension to coupled flap­

lag-torsional motion. In general, the assumptions c~only made in the

analyse5 at helicopter blades [9,10]. are equally appropriate for wind

turbines. These are briefly described as follows:

A. Structural model

(1) For flap and lead-lag motions, the blade is rigid,

centrally hinged, with linear elastic restraint at the hinge.

(2) The mass and the elastic centers coincide with the aerodynamic

center; and they lie along a straight line.

(3) The blade has uniformly distributed mass along the span.

B. Aerodynamic model

(1) Flow is incompressible and sectionally two-dimensional.

(2) Unear, quasi-steady strip theory is Ipplicable to calculate

the aerodynamic forces.

(3) The reversed flow due to the sidewind is negligible.

(4) Flow separation and stall do not occur.

The assumption of uniform mass distribution is not particularly accurate,

but it is made to simplify the formulation. However. the results should be
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valid qualitatively. When a sidewind is present, part of the wind turbine

rotor disc will experience a reversed flow as is the case for a helicopter

rotor 1n forward flight; that 1s, the flu1d flow will approach the trailing

edge of blade airfoil. For low s1dewind velocities, the reversed flow region

is very small and can be neglected.

It is well known that the strip theory is not strictly valid near the

blade tip. When the blade chord at the tip is finite, the lifting force based

on the strip theory is nonzero throughout the entire length of the blade. In

fact the lift must decrease to zero at the blade tip where the air flow must be
. .~

three-dimensional. To compensate for the inaccuracy due to the two-dimensional

flow assumption, the physical rotor radius R is usually replaced by an

equivalent radius RB for airload calculations where B is called the tip-loss

factor.

3.2 Formulation of Equations of Motion

In the derivation of the equations of motion, reference will be made of

the coordinate systems illustrated in Figure 3-1. The fixed coordinate system

-(X,Y,Z) is defined with a vertical Y direction downward and a Z direction

upwind. The rotating coordinate system (X',Y' ,Z·) rotates about Z axis at a

constant angular velocity Q. The blade coordinate system (x,y,z) is attached

to the blade and it has a y axis along the span, pointing outward. The wind

velocities are decomposed into the steady components, U and V, in the X and -Z

directions, and the random turbulence components, u, v and w in the X, -Z and Y

directions.

Consider a rigid blade mounted on a spring system at its root and rotating

about Z-axis at a constant angular velocity Q. The kinetic energy and
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potential energy for the coupled flap-lagging motion are given by

1 2- '2 mgR cos ~ cos (~ + e)

(3-1)

(3-2)

mR 3
where "." denotes one derivative with respect to time t. 1=-3-' g = the

* *gravity fo~~e. ~pc =the pre-cone angle. ~~ = flapping spring constant. ~C =

*lead-lagging spring constant. ~C • flap-lagging elastic coupling constant.

let ~ and C be two generalized coordinates. The corresponding generalized

forces can be computed as follows.

R
M~ = f F~ r dr

o

R
~ • f Fe r cos ~ dr

o

(3-3)

(3-4)

where F~ and Fe are forces due to aerodynamic and seismic effects.

The equations of IIlOtion may be derived by applying the Lagrange equation.

and case in the following nondimensional forms:

+ t 9 sin 13 cos (Qi + C) = '\ (3- 5)



+ i "9 cos ~ sin ~ (~ + C) • ,
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(3-6)

where .,- denotes one derivative with respect to the nondimensional time,

~ = 0 t, and

-
g/R 0 2

9 =

~~
* 2= K~~ /1 0. ''t * 2

~C = K CC II Q

~C =
* 2

K~C II Q

M
S

= M~ /1 Q 2

~ = 't/l Q2

Various terms appearing in the equations of motion will now be discussed.

A. Elastic Coupling Model

To estimate the elastic constants KPa' iCc' and ~C Ormiston and ~dge [9]

have proposed a si.ple model consisting of t.c sets of orthogonal springs with

a coll ect he pitch angl e e between them IS shown in Fi gure 3-2. In our

analysis of a wind turbine, the same model will be used to represent the

elastic property of the blade-hub assembly.

The blade is assumed to be rectilinear, untwisted, constant chord and

without hinge offset. A structural coupling parameter R is introduced, and

defi ned as
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(3-7)

The spring constants in eq. (3-7) are those shown in Fig. 3-2; namely) h(K, h)

is associated with the hub flap (lag) spring that remains aligned with the

rotor shaft, and K~b(K,b) with the blade flap (lag) spring that remains

aligned wi,th the blade. The configuration of Figure 3-2 reduces to a simple

equivalent single spring system at zero pitch angle which defines the rotor

blade nonrotating frequencies, w
8

and we;;. For this r.educed case the spring

constants are given by, respectively,

. .,
(3-8)

(3-9)

and 2 =wf3 K /IQ2
~

In tenms of these parameters, the equivalent spring constants used in Eq. (3-5)

and Eq. (3-6) are

Kf3f3
1 2 2 2 . 2 ] (3-10)=- [w + R(w - CAl ) 51 n e
t. f3 C ~

1 2 2 2 si n2e ] (3-11)\1; = - [w - R(w - w )
t. C;; C ~

~C
R 2 2 sin 2 e (3-12)=2i[w -w]C f3
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figure 3-2

Structural Model of Hub-Blade ~ssembl1 Simulating the flap-Leadlag Coupling.
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where

".... ~

The case R • 0 corresponds to one where the blade spring system is

entirely contained in the hub and the rotor blade does not rotate with pitch

angle change. On the contrary, for R • 1, the hub spring system is contained

in the blade spring and the rotor blade rotates in accordance with pitch angle

change. Variations in elastic coupling are accommodated by intermediate value

of P.

R". ~ismic Forces

Considering the effect of hub acceleration due to ground mction, let 9x'

9y and 9z be the acceleration components in the X, Y and Z directions,

transmitted to the hub due to ground motion. Then, the initial forces

corresponding to flapping and leadlagging motions are

obtained by substituting Eq. (3-13) and Eq. (3-14) into Eq. (3-3) and Eq. (3-4)

F~g= -m[gxsin(~-tt:) sin ~ + gycos~-tt:) sin ~+gz]

Fe g= m[gxcos(~-tt:) - gySin~iC)]

The nondimensional generalized forces attributed to ground motion can be

(3-13)

(3-14 )

and nondimensionalized,

(3-15)

(3-16)
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where

It is of interest to note that the coefficients of 9x and 9y are functions of

8 and C, not functions of S I and C'. It illlplies that the 9round acceleration

components 9x and gy appear in the stiffness terms of the equations of motion,.
but do not affect the system damping. In contrast, the coefficient of 9z does

not involve B, BI, r; or C '; therefore, 9z appears only in the inhomogeneous

terms of t~e equations of motion.

c. Aerodynamic Forces

The aerodynamic forces are obtained from a linear, quasi-steady strip

theory. The lift and drag components per unit length are

t • e..!£ (U 2 + U 2) si n (e ... )
2 T P c

d ..~ (U2 + 02) ~
2 T P a

(3-17)

(3-18)

U
where. • tan-1 i, is known as the inflow angle, and Up and UT ·are the

T
relative velocities perpendicular and tangent to the rotor disc,

respectively. The symbols~, a, c and Cd are defined in the NOTATION list.

The aerodynamic forces F and F as shown in Figure 3-3 are
Baero t aero

F p ~c [U-rS
Cd

= - UTU (l + -)J
Baero P a

F e.!£ [U2_ U Ue - t4 Cd
= -J

r; aero 2 p T P a

(3-19)

(3-20)
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Figure 3-3

~ ~__-: ...J'J Up

Blade Element Geometry.
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The velocity components Up and UT may be computed as follows:

Up • -(Vo + v - vi) cos ~ + (Uo + u) sin ~ sin (~iC) + r ~ (3-21)

UT • -(Uo + u) cos ""it:) + r(o + C) cos ~ + w sin (~it:) (3-22)

where Vo and Uo are the steady axial and crosswind components in the -Z and X

direction. v and u are the turbulence components in 'the directions of Vo and

Uo' w is the vertical turbulence, and vi is the induced inflow velocity.

It i.~ assumed that Vo and Uo vary linearly ",ith the vertical distance Y

from the ground. This is an approximation for the actual distribution of

velocity in the atmospheric boundary layer, an approximation proposed by

Ormiston [11]. Then

v0 = V[l-rK cos ~ cos (~-tr:)]

Uo • U[l-rK cos ~ cos ~ -tr;))

where k is a linear velocity gradient of the atmospheric boundary layer,

(3-23)

(3-24)

assumed to be the same in x and z directions. Substituting Eqs. (3-23) and (3­

24) into Eqs. (3-21) and (3-22), and nondimensionalizing.

Up = [l - xk cos ~ cos(~-tr;)] [..", cos ~ + ~ sin ~ sin(~-+t;)]

-\I co S ~ + A.cos ~ + 1) sin ~ sin (q, -+t;) + x eI
1

(3-25)



35

'ITT • -[l-xk cos ~ cos(~ 1C )] ~ cos(~ it;) - Tl cos (~if;)

where

. "

+ x(l-te') cos f! + t sin(l$Iit;)

A = VIR 0

~ = U/R 0

Ai = v;lR 0

v = vIR 0

11 = u/R Q

~ = w/R 0

(3-26)

Adopting the same terminology as that used in the helicopter analyses, ~ will

be referred to as the advanced ratio, Ai the induced flow ratio, and

V,11 and ~ non-dimensional turbulent velocity components.

As in the case of helicopter rotor in forward flight, reversed flows can

occur where UT bec~s negative near the blade root. For low crosswind

velocities, the effect may be neglected.

The following nondimensional generalized forces are obtained by

substituting the aerodynamic forces into Eqs. (3-3) and (3-4), integrating

along the blade from 0 to RB, and nondimensionalizing:

(3-27)

(3-28)
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acR 4
where y I: e..!.f-. is known as the lock nll1lber.

3.3 Flap Motion

The equation for uncoupled flapping Motion follows from letting ~ c O. in

Eq. (3-5):

~u + cos ~ sin~ + K~~{f3~pc) + ~g sin~ cos «$I

= ~ (3-29)

where ~ con~lsts of both the seismic and aerodynamic loads. which have been

obtained in Eqs. (3-15) and (3-19). After some algebraic work and neglecting

higher order terms of such small quantities as ~ • ~'. ~' t. T). v. 9x' gy

and 9z• the equation of motion may be cast in the following linear form:

(3-30)

where

C • CuO + Clltt

K • KUO + Klltt

F • FlO + F1t;t +

The coefficients C. K and F are dete~inistic periodic functions of «$I. and are

listed in Table I.

It should be noted that excitations in the axial directipn, ground

acceleration 9z and turbulence co~onent v. appear only in the inhomogeneous

terms; they do not cause instability of the system. Excitations in the other
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Table I continued
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cd 82 B3 2 B3
FIv = I {(1 + a) (-"2 ~ c + "3 k ~ C +"3)}

3
FIg I: - 2'

z

where C = cos q,. S c sin q,
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directions appear in the coefficients of ~ and/or ~ I; They affect the systelJl

stability.

3.4 Coupled Flip-lag Motion

The equations of motion for coupled flap-lagging motion are obtained by

substituting the generalized forces due to aerodynamic and seismic loads into

Eqs. (3-5) and (3-6). They remain to be coupled nonlinear differential

equations after judiciously neglecting some small terms. The equations can be

linearized by converting them to a corresponding set of equations for small
. -,

perturbations about a periodic equilibrium solution of the original nonlinear

system, 'e' f3 e and ee[l6]. Specifically, let

c =, + 6'e

f3 z 13 + 6~ (3-31)e

e =e + e 613 + e 6r;e 13 C

where 9
13

and 9, Ire pitch-flap and pitch-lag coupl i ng parameters whi ch

approximate the changes in the blade pitch angle due to changes in flap and

leadlag angles. For small Ingles of p and, •

sin 13 .. 13 + 613e
cos f3 .. 1 - f3 6f3e
s1 n , =C + 61; (3-32)e
cos C = 1 - r; 6Ce
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The linearized equations of motion are obtained by substituting Eq. (3-31) into

the nonlinear equations, collecting linear terms in o~ and 01;; and their

derivatives, Ind subtracting out the equilibrium solution which will be

discussed liter, to yield:

(3-33)

where [C] and [K] are two by two square matrices and F is a two by one column

matrix. The elements of [K], [C] and Fare
. ,~

Cu • CUo + Ci.J:~ + Cii,T) + C;jvv

K;j a K;jo + K;jgx9x+ Kij9y9y + K;jgiZ + Ki.J:~ + Ki~T)

F,' :: F,' gx 9 + Fi 9 + F, 9 + F, ~ + F, T) + F. V
X 9y Y , 9z Z 'It 'IT) 'v

+ K· , V
'Jv

where i, j = 1,2 and the coefficients Cij , Kij and Fi are listed in Table II.

It can be seen from Table II that, unlike the case of uncoupled flapping

Motion, the axill turbulence cOMPonent also appears ;n the homogeneous terms as

the other turbulence components. However, the roles played by various

earthquake co.ponents remain the same as those in the case of uncoupled

flapping .otion.

3.5 Coupled Flap-lag-torsion Motion

To investigate the three-way coupling of flap-la9-torsional motion, an

assumption is ~ade that the torsional mode is linear [2,8], in addition to

those assumptions listed previously in Section 2-1; namely, the torsional angle

is proportional to x, 0 ( x < 1. The equation of motion for torsion may be

written as follows:
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B3 84 84
+ .,,- A . - -4 AkS l; + ... ~ I)] + ~

", 1 e ~ e e
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Table II continued

82 3
-~~.s~ ) _lL se A]

~ 1 e 3 ere
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3 2 3 3 3
+ 2B ~ kC2~ + 8 A. C ~ + 8 C r.: + 8 S C') + 28 C e A ]

3 e '2 1 ere reT ere

~ ;

.. ':

"f' 3 -
+ -'C - 1" gS ~ e

2 3 3
_ B ~. s c + B C f3 I - 4B AkCS C )]21 ere -r- e



Table II continued

45

..,

3 3 3
_ 2B XkS~ + 8 S ~ I + B C ~ )]"""3 ere r e

B4 2 2 2... 82 2 28 3 2 2 283
- or- X k ell -.,. A113 + --.,- X kC 13 + BA A.f3 - --.,- k.\ ·X C f3 - e.. e €. e oJ e 1 e oJ 1 e e
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. ."

283 2 2B 3 B4
I 3 -+ --=r-)" kC C - -or- !Q..)., . C C - -pr- ~ S ~ ] + K +"I'f" 9 (C - S, )

oJ e oJ 1 e L e tC L. e

2 2B 3 2 2B 3 L 2 Cd 2B3
- SA Q3 + -.;- )., KC ~ - -3-)., KS f3 + ~ A . C ~ - - -.;- C ]e" eel e a oJ
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Table II continued

where C • cos ~. S • sin ~ and the coefficients of Cij' Kij and F1 are zero if

they are not 1i sted •

. ."
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(3-34)

wherew is the torsional natural frequency, Ind« is the tip torsional angle.
II

For I linear .ade, the generalized -ass Ind generalized forces Ire given by

1
"t • f x

2
i d(Rx ) • i I

0« ex

B
G • fqxd (Rx) • Rf qxdx

o

(3-35)

(3-36)

. ..,

where 1 is the sectional polar .ass MOment of inertia about the elastic axis,
«

I is the feathering mass moment of inertia of the blade, and q is the
ex

aerodynamic torque applied at the aerodynamic center of the blade.

Using a quasi-steady aerodynamic theory, the aerodynamic torque -ay be

cOlllputed from

3: -en- Q 2R Ur (x «I + ~ ) (3-37)

. The equations for coupled flap-lag-torsional.Motion are obtained by

combining Eqs. (3-5), (3-6) and (3-34), and replacing e by e + )b: in the

derivation of the generalized forces due to aerodynamic loads in Eqs. (3-5)

and (3-6). As before, the equations form a set of nonlinear coupled equations

which May be linearized about the equilibriL111 position, f3 e , Ce and a e• In

addition to Eq. (3-31), we let CI • a e + 6a in the nonlinear equations
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mentioned above. Subtracting out the equilibrium terms which will be

discussed later. neglecting the small quantities a e , ~~, r;~,

P,Fe and ~2 in the aerodynamic loads, and collecting the linear tenas

of6~,6r; and6a yield:

[6~ '1+ '(C) ~~ : + [K] fin • (3-38)

.;

'j

}

where [C) and [K] are three by three square matrices and F are three by one

column matrix. The elements of matrices [C). [K] and Fare

• CJJ. = C1· J' 0 + C.. F; + C.• " + C.. V1 1.1; lJn 1Jv

K1·J,· K1·J'0 + K., ~ + K.,,, + K.. v + K., -g + ki , -9 + k.. -g
1.1;'" 1Jn 1Jv lJg X Jg Y 1Jg Z

X Y z

where i, j • 1,2,3 and the coefficients of Cij' Kij and Fi are given in Table

II and Table III.

3.6 Periodic Equilibrium Solutions and Control Parameters

To linearize a set of nonlinear equations about the equilibrium solution

that equilibrium solution must first be obtained. Here, we shall discuss the

equilibrium solution for the flap-lag-torsional coupling which can be reduced

to that of flap-lagging coupling by letting torsional angle be equal to zero.

Neglecting the higher order products of ~. k, ~e' ee' ~~, a e , a~ and Se'

the equilibrium equation may be written as the following forms:
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Table III continued

4 5 5
+ U). -). k I + B - ). k(~ _ eel) _ B ~ I]

4' i e"5 e ere

. .,

3Ic2
wh ere F II: - --- • C II: cos ~ and S :a sin tV •

161 R2
a

and Fi are zero if it was not listed above or

The coefficients of Cij' Kij

in Table II.
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2 B3 84 B3 B3
a II + wall y F[~ C a I - -r- a I +~ C f3 -..,. f3 ]e a e 3 e 't e 2 e,,) e

(3-39)

(3-40)

(3-41)

(3-42)

'.'

"

Eqs. (3-39), (3-40) and (3-41) are coupled linear differential equations

with periodic coefficients. Approximate solutions can be readily obtained for

the equil i br1l1T1 sol uti ons in terms of the input parameters ~ , ~ i ' 9 e' Y , F, Ie

and f3 • The solutions can be written as Fourier series and will be approximated
pc

by truncating the series after the first hanmonic terms.

f3 e • f3 0 + f3 c cos 4J + ~s sin 4J

Ce = C0 + Ccco S 4J. + Cssin ~

a e = a 0 + a cCos ~ + a sCos ~
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When Eq. (3-42) is substituted into Eqs. (3-39), (3-40) and (3-41), a syste~

of linear algebraic equations is obtained by equating the· coefficients of

cos QI.o, cos. and sin ~ of each differential equation to zero. lllen, the

approximated equilibrium solutions can be written as follows.

01 .. H (3-43)

wherexT
= U3

0
~s ~c Co Cs 'c a o as a c]' 0 is nine by nine square matrix, and H

is nine by one column matrix. The nonzero coefficients of matrices 0 and Hare

given 1n·lable IV.

Before the equilibrium solutions of coupled flap-lag and flap-lag-torsion

motions can be determined, it is necessary to specify the relationship between

the wind velocity ratio)", induced flow ratio hi' and blade pitch angle Se.

This can be accomplished relatively simply by using momentum theory in

conjunction with the aerodynamic force per unit length, Eq. (3-19), in which we

assumed the flapping angle is small.

In this theory, the induced inflow are assumed to be uniformly distributed

over the rotor disc. By neglecting the sidewind ~ , Ind velocity gradient k which

are small compared to others, the dimensionless thrust coefficient and power

coefficient Ire given by

)"0 hi
Ct = 4 -' (l - -)

)" >..

)". )". 2
CQ = 4 -' (l _ -')

>.. )"

(3-44)

(3-45)
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d44- .. ~C

B3
d45 .. 1..6-- '" k(A i-A)

3 -
d46 = - 4" 9

84
d47 = ~8 . (A i-A)

_ LB3 LB\k
d49 - - 12 ~ "" i-A) + 2-0-

B2
dSl .. .:I.f- ~ (). i-A)

dS2 = K~r.:

B
3

dS3 = T (A i-A)

83
dS4 =T Ak(A i-A)

dS5 = ~C - 1

B4
dS8 .. T (A i-A)

83
d62 .. T- (A i-A )

d63 = ')C

d64 = - i 9
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The maximu~ power and maxi~Jm thrust which can be determined from £qs.

(3-44) and (3-45) occur when Ai =A/3 and A/2, respectively. The condition

Ai = ~ is not permissible since at the downstream velocity is A - ai' and the

condition Ai ) A/2 implies flow reversed in the wake.

A relation between A, A· and e can be obtained by equating the
. 1 e

integrated rotor thrust from £q. (3-19) to the thrust from the elementary

momentum theory. The result is

where a =:~, is known as rotor solidity, b is number of blades per rotor.

The negative sign on the radical is normally used, since otherwise it will

produce unrealistic Ai' for instance, as ge = 0, Ai =A which will cause the

flow reversal in the wake as mentioned above. This equation reflects the fact

that the induced flow ratio is a dependent variable that can be determined by

the independent variable A and the control parameter ge • The pitch angle Be

can be independently controlled to obtain desired rotor thrust or power.

Therefore, Eq. (3-46) can be solved as well as Eq. (3-43) for any given

combi nat i on of A and ee'

When the blade pitch angle is zero, the solution to £q. (3-46) is
2

Ai =~.~ • The zero power and thrust wi ndmi 11 i ng condition occurs when Ai =

o and Be = -)"I2B. Those two points where ge and Ai = 0 can be used to define

a simple approximation for Eq. (2-46)
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10 R
2

(1 + 1B e )"; • -8- ).. e

or
).. A·e • - ( 1 - 1)

e 28 ,., 82

S-

(3-47)

where the accuracy of the approximation in the practical range will be

discussed later.

Eq. (3-46) for the induced inflow is applicable for any arbitrary

combination of A and ee' However, for a typical con~tant rpn wind turbine,

the blade pitch angle is controlled to produce the maximum power output as

well as bq prevent overloading the power generator. A typical operating

schedule is the following. At low wind velocities, the pitch Ingle is

controlled to produce the maximum power available. At the rated design

condition, the rotor power output equals to the installed generator capacity

of the wind power plant and the pitch angle is to be controlled to prevent the

further power increase at the higher wind velocities. At the maximlJm

operating condition, the turbine will be shut down to minimize the riSK of

damaging the rotor.

To operate under this schedule, the induced inflow ratio will be given by

[11]

Ai z:" /3, A ( AR

(3-48)

where AR is the rated design wind velocity of the wind turbine plant.
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Figure 3-4 shows that the pitch angle variation with axial wind velocity

ratio A based on Eqs. (3-46) and (3-48), and Eqs. (3-47) and (3-48) for B =

.97, f· .053 and AR =.1. The result indicates that Eq. (3-47) is a good

approximation of Eq. (3-46) in the practical range of the wind turbine

operating condition. When A, Ai and ge are known, the equilibrium solutions

of the flap-lagging and flap-lag-torsional motions are ready to be calculated.

. .,
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-- -- - Ecis. (3-46) AND (3-48)
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CHAPTER 4

STOCHASTIC MODELS OF RANDOM EXCITATIONS

4.1 Earthquake Model

Since seismic waves are initiated by irregular slippage along faults

followed by numerous random reflections, refractions and attenuations within

the complex ground formations through which they pass, stochastic modeling of

strong ground motion seems appropriate [34]. If unlimited ground-motion data. .~

were available, representative stochastic models could be established directly

by statistical analyses. Unfortunately, strong-motion data are limited.

Therefore, one is forced to hypothesize forms of models, and 10 use the

available data in checking the appropriateness of these forms.

Acce1erograms usually show a phase of nearly constant intensity during

the period of most severe oscillation, which suggests that earthquake motions

may be modeled as white noise processes of limited duration. The simple

stationary white noise process has been used to model earthquake accelerations

[35].

However, the entire real accelerogram often shows a short phase of

intensity buildup to some maximum level. The intensity then remains fairly

constant for some time, after which it decays in an exponential fashion. This

appearance suggests that the nonstationary models could be more representa­

tive of actual strong ground motions. several nonstationary models for earth­

quake accelerations have been proposed [36-38], although their use gives rise

to some analytical difficulties, for instance, the statistical linearization

technique is no longer simple.
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In this study, we assume that ground acceleration can be .odeled by the

siMple expression:

g(·d • e(·d Zh) (4 -1)

in which lh) is a stationary random process and e(~) is an intensity function

having an appropriate form based on statistical analyses of real accelero­

grams. One form which has been suggested [39] is that given in Figure 4-1, or

eh) • (4-2)

where ~ 0 15 the initial time of earthquake and the constants ~l t'tZ' and c

should be assigned only after considering such factors as earthquake

magnitude, epicentral distance, etc.

The advantage of using Eq. (4-1) over other earthquake models stems from

the fact that the nonstationary character is restricted only to the intensity

function eh) and that through the use of the stationary random process Z(~),

the desirable properties of spectral description and orthogonal decomposition

can be preserved.

For the stationary random process Z(t), Many forms of power spectral

density have been proposed to reflect the influence of the local environments

[40]. Among them, the white noise model having a uniform spectral

distribution of frequency contents is frequently used for its simplicity and

reasonably adequate approximation to real spectra.



62

• c.- -'
. .d

3

2

E
N .~

\' \
E \c
1-
r \'-'
p

\[ .8 -c (T - T - 't )e 2 0
~ .7
U 2
N or-or
C .f.

(__0)

I 1"1-L o
}

0 C-. ..,
N

.4

.3

.2

, 1

/
0. --

0. .del. 80. 12.0. 160.
2.0. 6.0. 10.0. 140. 182.

D!MEI\J8!ONL...ESS T1ME

Fi gu re 4-1 Envelop Function of Earthquake.

't = O. 't 1 = 18. 't 2 = 78. c = 0.043
0



.'

)

63

In our study, the non-dimensional ground acceleration will be decomposed

into

gx(~) = e1(~)Zl(~)

gy(~) = e2 (41 )Z2(~)

gz(~) = e3 (41 )Z3(4))

(4-3)

where Zi are assumed to be uncorrelated Gaussian white noise processes, i.e.

• ''t
i = 1,2,3 (4-4 )

in which 5( ) is the Dirac delta function, ~ii are spectral constants defined

by

CD •

~ii =J E[li(s) Zi(s+t)]e-1
'twdt

...,

4.2 Turbulence Model

When a blade rotates in the atmosphere, the relative velocity of the

(4-5)

blade to air is comprised of two parts: the velocity of the blade itself and

the velocity of the air. The velocity of the air can further be divided into

the mean air velocity and the turbulence fluctuating about the mean air

velocity. In order to predicts wind turbine response characteristic in the

presence of atmospheric turbulence, it is important to identify and

characterize the turbulence field which is being convected past the rotor disc

when the blades are rotating.
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We shall assume that the steady aerodynamics is applicable. Then the

aerodynamic forces are determined by the instantaneous air velocity

distribution along each of the wind turbine blades. h is thus necessary to

characterize the wind turbulence field by a three-dimensional velocity vector

which varies randomly not only with time but also with the position in

space. The description of this turbulent velocity field requires a complete

set of joint probability distributions for different velocity components at

different time and different position in space. Clear1y. such a description

is not possible without considerable simplification.

It js.~enerally agreed that the atmospheric turbulence is approximate

Gaussian distributed [41-43J. Being a Gaussian process, the turbulent

velocity at each point is completely characterized by the mean and correlation

function. Since turbulence is defined as random fluctuation about the mean

wind velocity, the mean of the turbulence itself is zero. To model the

correlation function, the following assumptions are made. First, the

turbulent velocity is assumed to be locally homogenous. Second, the random

field is assumed to be isotropic for all separations for which it is

homogeneous. Under these assumptions, Holly [44J compared different

turbulence models and suggested that the turbulence field may be modeled as

stationary random processes with exponential correlation functions for the

analysis of horizontal-axis wind turbines. Such processes can be conveniently

represented by a {irst order stochastic differential equation of the form

X I = -0: X + Z(4J ) (4-6)

where Z(4') is a physical white noise, and ex is the reciprocal of correlation



65

time of process x(~). As shown earlier, the correlation function of x(~) is

given by Rxx('d = 02e-a h', in which 't is the difference of ~, and 0 2 is the

Meln square value of process x(~). The normalized correlation function is

shown 1n F1 g••-2.

In this study, the three components of turbulent velocity can be writte~

as follows.

l;.1 = -a 1~ + Z4 (lJ; ) (4-7)

I
= -« fI + Zs (<\1) (4-8)Tl

. .,
= + Z6 (~) (4-9 )v -« 3v

In which aI' a
2

and a3 are the reciprocals of correlation times of processes

t(<\1), Tl(<\1) and ,,(<\1), respectively, Z4' lS' and Z6 are assumed to be

uncorrelated Gaussian white noise processes with zero means, i.e.,

~. ·6 ('t )
11

(4-10)

where i = 4. 5, 6 and c:> i i and 0 ( ) are defi ned as before.
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CHAPltR 5

GOVERNING STOCHAsnc DIFFERENTIAL E~A nONS AND MOHENT RE SPONSE S

5.1 An Outline of the General Approach

In the linearized equations of·.otions derived in Chapter 3, random

excitations appear both in the coefficients (parametric excitations) and in

the inhomogeneous terms (nonparametric excitations). The random excitations

include the atmospheric turbulence velocities which are assumed to be

statio~a~ processes and the earthquake acceleration components which are

assumed to be nonstationary processes. All of the random excitations in the

linearized equations of motions are multiplied by periodic modulation functions

such as Kl1~ Cl1~' etc., which are originated from the rotor rotation. Of

course, the modulated random processes are not statistically stationary, even

though turbulence velocities are assumed to be stationary random processes.

To gain more insight into the properties of the equations of motions, we

investigate the corresponding homogeneous equations by dropping the inhomo­

geneous terms. If the random excitations are also neglected, then these homo-

geneous equations belong to the class of Hill's equations [45J - a class of

linear differential equations with periodic coefficients. In such a case, the

system can become unstable under certain combinations of parameters. The

addition of random parametric excitations to the system changes the stability

conditions. The existence of parametric random excitations can destabilize

some systems but stabilize other systems [46,47J.

As indicated earlier, each turbulence component is modeled as an

exponentially correlated random process. and each earthquake component is

modeled as the product of I deterministic .odulation function and a white noise
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process. If only the turbulence excitations are present, then the coefficients

and the inhomogeneous terms in the equations of motion are either periodic

functions or products of periodic functions and random processes. The state

vector of the system is not Markovian. However, if we extend the state vector

to include the turbulence components, i.e. adding Eqs. (4-7) through (4-9) to

the equations of motion of the dynamic system, then the new state vector

becomes Markovian, and a host of well-developed mathematical tools of Markov

process theory can be used. The extended system is nonlinear since the

parametric turbulence excitations are also treated as unknowns. If the

earthquake ~itations are also included in the analysis and if each component

of the ground acceleration is modeled as the product of an intensity function

and a Gaussian white noise process, the Markov process theory can still be

used.

For the convenience of applying the Markov process theory, each second

order differential equation will be replaced by an equivalent set of two first

order differential equations. Then employing the transformation formulas,

Eqs. (2-41) and (2-42), the drift and diffusion terms of corresponding Ito's

stochastic differential equations can be found. Furthermore, the equations

for the moments of the state variables can be obtained by using Ito's

differential rule Eq. (2-37) and taking the ensemble average of the resulting

differential equations. The moment equations become a sequence of coupled

linear periodic differential equations if only turbulence components are

present. The periodicity is lost when earthquake excitations are included

because the modulating functions of the earthquake models are not periodic.

In either case, the moment equations form an infinite hierarchy, in the sense

that the higher order moments will appear in
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the equations for lower order moments. Thus, only approximate solutions for

the lower order moments are obtainable by using a suitable closure scheme.

Perhaps the best known scheme is the Gaussian .closure in which the higher

.oments are assumed to be related to the first and second moments in the same

way as Gaussian random variables. In particular, the third moments which

appear in the equations of first and second m~~ents can be expressed as

f 011 ows [31]:

. .,
E[XiXjXk] = E[xiXj] E[xk] + E[xjXk] E[xi] + E[xixk]E[xj]

- 2E[xi] E[xj] E[xkJ (5-1 )

By substituting the above relationship into the first and second moment

equations, these equations become a closed set of coupled nonlinear

differential equations.

To examine the stability conditions for the first and second moments we

follow a linearization procedure used by Bolotin [50] and Owen [51J. The

nonlinear differential equations are re-fonmulated in tenus of the first

moments and the second central IKlIIents ~i • E(xi] and ~ij • E[(Xi'11i) (Xj­

~j)]. The products of the type Of!!1 .nd~ij are neglected, however, the

terms involving the mean square values of the turbulence velocity components

are retained. For the stability study the modulating functions of the

earthquake models are replaced by the constant unity, i.e., the earthqua~e

components are assumed to be physical white noise processes. This is

conservative and leads to meaningful results. The equations now become

a set of linear periodic differential equations, and the Floquet theory can be

used to find the stability condition of the dynamic system.
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To calculate the response moments, the original system of nonlinear

differential equations obtained from Gaussian closure is used. If all the

random excitations are stationary random processes multiplied by deterministic

periodic functions, then the statistics of the response will tend to periodic

steady-state functions if the response is stable 1n some sense. In contrast,

if the random excitations are not all stationary, which is the case when

earthquakes are also present, then the response statistics are transient­

like. In our calculations to be presented in Chapter 6, both the steady state

response moments of the dynamic system due to turbulence excitation and the
. "transient reponse moments due to earthquake excitation will be included.

5.2 Stochastic Differential Equations and Moment Equations for Response

Va ri abl es

In this section, the moment equations of uncoupled flapping, coupled

flap-lagging and coupled flap-lag-torsional motions are derived. For

simplicity, subscripts 9x' gy, gz, ~, T) and v in the matrices [F], [C] and [K]

are changed to 1,2, ••• , 6, respectively. The first order differential

equations corresponding to Eq. (3-30), (3-33) or (3-38), and Eqs. (4-7)

through (4-9) are recapitulated as follows:

X'(2i-l) = X(2i~

x' (21) = Fio - t=l (KikoX(2k_l)+CikoX(2k))

6 n

+ ~=4{ Fij - t=l (Kikj X(2k_l)+C i kjX(2k))} x(j+2n-3)

3 n
+ ~=1{ Fi j - ~= 1Kikj x(2k-l)} ej Zj (q, )

i-I, "'J n



\;
•

.. ~'.
.,

,.. '..
. ,'

Xl i z -a (i-2n}xi + Z(i-2n+3)(4>)

i=(2n+I}, (2n+2), (2n+3)
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(5-2)

.! ".

where xi are the components of state vector' and will be defined later, n is

the number of the generalized coordinates of the dynamic system, ej are the

earthquake intensity functions, and Zj~} are uncorrelated Gaussian white

noise processes. It must be noted that some of the coefficients are added for

the commensurability among the different equations of"motions such as KI1 6'

Cl16 , Kll3 , FII and FI2 of flapping motion and Fio of coupled flap-lagging and

flap-la~-tarsional motions. The state vector \ will now be approximated by a

diffusive ~rkov vector. The governing Ito stochastic differential equations

for the Markov vector can be obtained by using the Stratonovich stochastic

averaging method. Following Eqs. {2-44} and (2-45) drift coefficients are

m(2i-l} = X(2i}

n

m(2i} = Fio - ~=I (K ikOx(2k-I)+ CikO x(2k}}

6 n

+ ~=4{ Fij - ~=l (K ikj x(2k_I)+ Cikj x(2k})} x(j+2n_3}

i .. 1, 2, ••• , n

i =(2n+I), (2n+2), (2n+3)

The nonzero elements of the diffusion matrix are

(5-3)
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(5-4)

where 6 ij is the Kronecker delta. It is of interest to note that the Wong­

Zakai correlation term does not appear in the drift coefficient, Eq. (5-3), as

it often does for the random parametric excited systems.

To derive the first anrl second moment equations, we let the scalar

funct i on ~ be equal to xi and xi Xj in Eq. (2-37), and substitute Eqs. (5- 3)

and (5-4) into Eq. (2-37). After talcing the ensemble average of the results,

the first and second moment equations can be obtained. The first moment

equations are

"1' (2i-1) = M(2i)

n 6

HI (2;) = Fio - ~=1 (KikOM(2k-l)+CHO"(2k» +~.4{FijH(j+2n-3)

n

-l=1 (KHj M(2k_l)(j+2n_3)+ CHj M(2k)(j+2n_3»} :

i = I, •.• , n

;=(2n+1), (2n+2), (2n+3) (5-5)
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The second moment equations are

H' (2i-l)(2j-l) = H(2i)(2j-l) + "(2j)(2i-l)

n"I (2i)(Zj-l)·"(2j)(2i)+Fio"(2j-l) - \.1 (K ikO"(Zk-l)(2j-l)+ CikO"(2k)(2j-l»

6 n

+ ~"4{FilM(1+2n-3)(2j-l)- \=lKik1 "(Zk-l)(1+Zn-3)(2j-l) + CiklH(2k)(1+2n-3)(2j-l~

n

M
I

(2i)(2j) = FioM(2j) + Fj oM(2i) - ~=1 (K ikoM(2k-l)(ZJ)+ CikoM(2k) (2j)

6

+ Kjko M(fk-l)(2i) + Cjko M(2k)(2i) + L
1
=4{F il "(1+2n-3)(2j)

n

+ Fj1 "(1+2n-3)(Zi) - ~=l (K ik1 "(2k-l)(1+2n-3)(2j)

n n n

- Fjk ;:lKi1k M(21-1)+ ;=1 ~=lKilkKjSIcM(21-1)(2S-1)}

i tj • 1 t ••• t n

n 6

M
I

(2i)j = FioMj - i=l (K ikO"(2k-1)/ CikoM(2k)) + ~=4{Fi1H(1+2n-3)j

n
- L (K H1 M(2k_l)( 1+2n-3)j+ Ci 'k1 M(2k)( 1+2n-3)j)} - a (j-2n)M(2i)j ;

k=1
; = It .•. , n.

j z (2n+1), (2n+2), (2n+3).
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(5-6)

'.i
!
>

"

-
:;

where "i • E[xi]' "ij • E[xiXj]' and Mijk • E[xiXjXk]. It can be seen that the

first moment equations contain the first and second moments, and the second

moment equations contain the first. second and third moments. To obtain the

complete set of the first and second moment equations, we substitute Eq. (5-1)

into Eq. (5-6).' The second moment equations can be rewritten as the following.

. '"

"'I (2i-l)(2j-l) = "'(2i)(2j-1) + "'(2j)(2i-l)

n"I (2i)(2j-l)R"'(2i) (2j)+F io"'(2j-l) -\=1 (K iko"'(2k-l) (2j-l)+C iko"'(2k) (2j-l»

6 n
+ ~=4{ F11 "(1+2n-3) (2j -1) - t= 1 (Kn 1['" (2k-1)( 1+2n-3) "(2j -1)

n

",I (2i)(2j) • Fio"(2j) + Fjo"(2i) - ~=1 (K ikO"(2k-1)(2j)+ Ciko"'(21c)(2j)

6

+ KjIcO"(2k-l)(2i) + CjIcO"(2k)(2i) + ~=4{Fil"'(1+2n-3)(2j)



n

+ Fj1 M(1+2n-3)(2i) - l=1 (K ik1 [M(2k-1)(1+2n-3)M(2j)+ M(2k-1)(2j)M(1+2n-3)
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i.j=l••••• n

n 6

HI (2i)j = FioMj - ~=l (K ikO"(2k-Oj+ CnoM(2k)j) + ~=4{FilM(1+2n-3)j

n

- ~=1 (K i k1 [M(2k_l) (1 +2n- 3) Mj + M( 2k-1)j M( 1+2n- 3) + M( 1+2n-3)jM( 21<-1)
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i = I, .••• n,

j • (2n+l). (2n+2), (2n+3)

i,j = (2n+1), (2n+2), (2n+3)

. .~

It must be noted that the second moment is symmetric. i.e •• "ij ="ji.

The system of Eqs. (5-5) and (5-7) forms a complete set of moment

equations. They can be cast in the following matrix forms.

(5-7)

(5-8 )

where~T = [MI ••• "(2n) "(2n+1) "(2n+2) "(2n+3) "11 "12 ••• "1(2n+3}

"22 "23 ••• "2(2n+3) ••• "(2n+3}(2n+3)]· Vectors " A and N are of the same

order as (2n+3) + (2n+3) + (2n+2) + ••• + 1; and the square matrix a is of an

order (2n+3) + (2n+3) + (2n+2) + ••• + 1. Vector Ncontains the non-linear

terms which are the products of first and second moments.

For moment stability analyses, we replace the moments by the corresponding

central moment in Eq. (5-8) and linearized in the sense of Bolotin. The

linearized moment equations become
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I _

~ (2;-1'- ~(2;)

n 6 n

~'(2;)· - ~=1 (Kikcf (2k-l)+ CH:cf (2k)- ~a4 ~=l (KikJ! (2k-l)(j+2n-3)

+ C;j~ (2k)(j+2n-3»;

ill: 1. ...• n

11 ' (2; )( 2j -1) = 11 (2 i )( 2j -1) + 11 (2j )( 2 ; -1 )

. ."
6

11'(2;)(2j-l)=11(2;)(2j) + Fi cf(2j-l) +~=4 F;11(1+2n-3)(2j-l)

n

- ~=I (Kikcf (21c-I)(2j-I) + Cikcf (21c)(2j-I»

n

1l'(2;)(2j) = Fi cf(2j)+ Fj C¥(2i)- i=1(K ikcf(2K-1)(2j)+ Cikef(2k)(2j)

n

+Kjko 11 (21c-1 )(2;) + Cjkcf (21e )(2;» + ~=4 (F; 111 (1+2n-3)(2j)

3 n

+ Fj f1 (l+2n-3){2i» + \=1 at e~ Icle{ -F i1C~=1Kjslf (2s-1)

n n n

- Fjle~=/il~ (21-1) + ~=I ~=/ilkKjSIf (21-1)(2s-n};

i.j=I ••.•• n

,
~ (2i-I)j = ~ (2i)j- a (j-2n)11 (2i-l)j

n

11'(2i){ Ficfj -\:1(K i'kcf(2k-l)j + Cikcf(2k)j) -a(j-2n)~(2i)J



78

6 n

- ~.4 t.lC1j(1+2n-3)6J(1+2n-3)(K1kl~(2k-l) + C1k~(21t»;

1 • I, ••• , n

:;

j • (2n+l), (2n+2), (2n+3) (5-9)

where C1 11· are the mean square of turbulence components, ~ i· Hi' and ~ it

Mij - M;Mj are the central moments. The detailed list of the linearized

moment equations of uncoupled flapping, coupled flap~lagging and coupled flap­

lag-torsion is given in Appendix E. letting the intensity functions equal to

unity an~applying the method of Floquet transition matrix, one can determine

the stability conditions for any given combinations of parameters based on the

operating condition described in Chapter 3.

As mentioned previously, for Moment response analyses the steady state

response is emphasized if only turbulence is present, and the transient moment

responses are required if both turbulence and earthquake are present. In the

first case, we let the intensity functions, el' e2 and e3' be zero in Eqs. (5­

5) and (5-7), and integrate the system of differential equations starting from

an arbitrary set of initial conditions until the moments converge to periodic

functions with period~. In the second case, we impose the earthquake

excitations upon the system which has reached its stationary state in the

presence of some moderate turbulence; that is, we obtain the transient

solutions of Eqs. (5-5) and (5-7) with the initial conditions which are the

steady state solutions due to some turbulence excitation alone. In our

calculations, however, earthquakes are assumed to commence at ~ = 0, I'
nand ;, respectively.



79

In the case of uncoupled flapping Motion, n-l Ind 1T • [xl xl x3 x4 xS) •

~ ~. ~ ~ v]. The total number of equations for the first Ind second Monents

is twenty. The detliled .oment equations Ire given in Appendix A. Since Eq.

(3-30) is linearized about the zero flapping Ingle, the stability of the

system of Eq. (5-9) is interpreted as for the zero flapping angle. The

solutions'of the first and sixth components of vector' represent the mean and

mean square flapping angles.

In the case of coupled flap-lagging motion, n ='2 and 1: T • [xl x2 x3 x4

Xs x6 x7] II: 1:6~ 6~' 6C 6e' t ~ v], giving rise to thirty-five first and second

moment eqaltions, as detailed in Appendix B. Since Eq. (3-33) describes a

perturbed .otion from an equilibrium flap-lagging motion, the stability should

be interpreted as that of the equilibrium solution, ~e' Ce and ee. The first

and eighth components of vector Yare the mean and mean square of the

perturbed flapping angle, and the third and twenty-first components are those

of the perturbed lead-lagging angle.

Finally, for coupled fhp-lag torsion motion, n = 3 and 1 T=

[Xl Xl x3 x4 Xs x6 x7 Xa Xg]" 1:6f3 6~' 6C 6C' 6a 6a' ~ ~ v]. Then Eq. (S-8)

contains fifty-four equations for the first and second moments. The detailed

moment equations are given in Appendix C. Again, the stability is interpreted

as that of the ~uilibrium solutions, ~e' Ce , a e and ge• The first Ind tenth

components of vector Yare the mean and mean square of the perturbed flapping

angle. The third and twenty-seventh components are those for the perturbed

leadlagging angle and the fifth and fortieth components for the perturbed

torsional angle.
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CHAPTER 6

NUMERICAL EXAMPLES

Some numerical results will be presented in this chapter to illustrate the

applications of the procedure developed herein. The equilibrium solutions when

required are calculated first using Eq. (3-43). Next, Eq. (5-9) is used to

determine the moment stability conditions. The statistical moments are then

calculated when the motion is stable. The moment responses include two parts:

1) steadj ~~ate solutions without the presence of earthquakes, 2) transient

state solutions with both turbulence and earthquake. To calculate part 2, the

intensity functions are assumed to be the same for three earthquake components

and are given in Fig. 4-1.

Fig. 6-1 and Fig. 6-2 show the equilibrium solutions of coupled flap-

lagging and flap-lag-torsional motions in a typical operating condition. These

results are based on the following parametric values: V = 30 ft/sec (9.15

m/sec), U c 6 ft/sec (1.83 m/sec,) R = .2, R I: 50 ft (15.25 m), 0 = 6
a,8 2

rad/sec, 'Y I: 8, 8 = .05, Cd = .01, ~pc = 0, e~ = 0, aC= O').R = .1, k =

.02, w~ I: 1.414 and Wc I: 1.871. For coupled flap-lag-torsional Motion, the

values W I: 33 and F = .72 are used. The periodic equilibrium solutions shown
a

in Fi g. 6-1 correspond to ~ 0 = .0118, ~ c = -.0007, ~ c I: -.0012, Col: .0012,

Cs = -.0108 and 'c = .00001. The maximum angles of flapping and leadlagging

in the equilibrium solutions are 0.757 0 and 0.693 0 which are also the maximum

responses for the deterministic case. Fig. 6-2 shows the equilibrium

solutions with an additional degree of freedom in torsion. The flapping and

leadlagging motions are almost identical to those in Fig. 6-1, and the
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torsional equilibrium angle is near zero everywhere. This is because of the

fact that the last three rows on the right hand side of Eq. (3-43) are zero,

and the torsional mode is much stiffer than flapping and leadlagging.

A large number of cases were considered in the analyses of uncoupled

flapping, coupled flap-lagging and coupled flap-lag-torsion. All the three

modes were found to be very stable, even when the turbulence level is extremely

high. Table V gives the largest norm among the eigenvalues of the Floquet

transition matrix for different cases. Since computation of eigenvalues of the

Floquet transition matrix of a dynamic system involving many equations with

periodic toefficients would be very expensive, the stability condition under

unusual parameter combinations was not considered. Our main effort in the

present study, therefore, was expended to obtain the moment responses for

coupled flap-lagging and flap-lag-torsional motions. The parametric values

used in the calculation of moment response are the same as those used for

determining the equilibrium solutions. Any exceptions will be indicated

individually.

The steady state solutions of moment response to turbulence alone are

presented first. Fig. 6-3 shows the computed first moments for the uncoupled

flapping motion. The results indicate that the turbulence root-.ean-square

(nms) level has little effect on the mean flapping angle which is

indistinguishable from the non-turbulence deterministic solution. However, the

rms shown in Fig. 6-4 increases about 18% from the deterministic one for a high

turbulence rms level and about 4.7% for a low level. The flapping angle

for the deterministic case is the one associated with zero turbulence rms

level. The reason for labeling the strength of turbulence in terms of the rms

value instead of spectral level is that the spectral level of an exponentially
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The largest Norm Among Eigenvalues of the F10quet Transition Matrix
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Case MOtion V nns value of largest nonn among
ft/sec (m/sec) u. Y and w eigenvalues

ft/sec (m/sec)

1 flap 30. (9.14) 3.0 (.914) .059857

2 flap 30. (9.14) 20.0 (6.10) .060081

3 flap 50. (l5.24) 3.0 (.914) .059914

4
. -.,

50. (15.24) 20.0 (6.10) .060005flap

5 flap-lag 30. (9.14) 3.0 (.914) .948321

6 f1 ap-1 ag 30. (9.14) 20. (6.10) .932839

7 flap-lag 50. (15.24) 3.0 (.914) .944450

8 flap-lag 50. (15.24) 20. (6.10) .932710

9 flap-1ag- 30. (9.14) 3.0 (.914) .943482
torsion

10 f1 ap-l ag- 30. (9.14) 20. (6.10) .932245
torsion

11 f1 ap-l ag- 50. (15.24) 3.0 (.914) .944213
torsion

12 f1 ap-l a9- 50. (15.24) 20. (6.10) .932616
torsion

* .6667. el = e2 = e3 = 1. ~ll =~33 = #~22 = .92698xl0- 7•T1 = T2 = T3 =

't o= 0; other parameters values are the same as those used for determining

the equilibrium solution
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correlated process is a function of frequency. The effects of turbulence

rms level on the moment responses of the coupled flap-lagging motion are

depicted in Figs. 6-5 through 6-8. The mean flapping and leadlagging perturbed
.

angles are shown in Figs. 6-5 and 6-7. whereas the rms perturbed angles are

shown in Figs. 6-6 and 6-8. The mean perturbed angles are very small in all

cases. The rms perturbed angles are about 58~ and 23% of their respective

equilibrium angles for flapping and leadlagging motions at a turbulence rms

level of 5 ft/sec (1.52 m/sec). and about 29% and 12% at a low level of 2.5

ftlsec (0.76 m/sec). The results indicate that adding the leadlagging degree
. .~

of freedom tends to lower the rigidity of the flapping mode.

The effects of the turbulence correlation time Ti and of the elastic

paremeter R on the responses of coupled flap-lagging motion are also compared.

Figs. 6-9 through 6-14 show the variation of moment response with the turbulence

correlation time at the same rms turbulence velocity of 5 ft/sec (1.52 m/sec) rms

in all three directions. The mean and rms angles of the flapping and leadlagging

responses computed for different correlation times are very close to each

other. This indicates that within the practical range investigated the

excitation correlation time does not have a profound effect on the moment

responses. Figs. 6-13 through 6-16 show the Moment responses of coupled flap­

lagging Motion with different values of elastic coupling parameter R at the same

turbulence rms level. The mean and rms responses computed for varying value of R

are not much different. It must be noted that when we change the value of R. the

equilibrium solutions are also changed; however. t~e changes in the maximum

equilibrium angles are small compared to the maximum angles themselves.

Therefore. a slight change in the F value still leads to the same general



results. Figs. 6-17 through 6-22 illustrate the mean and rms angles of the

flapping. leadlagging and torsional moment responses computed for different

turbulence rms levels. The mean and nms torsional responses are almost equal
.

to zero; the results for flapping and leadlagging responses are very close to

those obtained previously without the torsional degree of freedom. The same

conclusion has been reached for equilibrium solutions.

Next, the transient moment responses due to both turbulence and earthquake

excitations will be presented. It is assumed that the steady state motion due

to turbulence excitation is present when the earthquake excitation occurs

at ~ = O.-'Figs. 6-23 and 6-24 show the transient responses of mean and rms

angles of uncoupled flapping motion computed for the same turbulence level but

different earthquake levels. The curves indicate that the response statistics

remain periodic; that is, an earthquake in the range of level considered does

not affect the moment response of uncoupled flapping motion. The mean and rms

angles for the coupled flap and leadlag responses are shown in Figs. 6-25

through 6-28. Figs. 6-25 and 6-27 indicate that both the mean flap and leadlag

angles are very small, and that there is no influence of earthquake excitation

on the mean angles. As shown in Fig. 6-26, the n.s flapping angle of the

transient solution differs only slightly from the steady state periodic due to

turbulence excitation alone. In constrast, the nI5 angle of the leadlagging

response is affected by the earthquake excitation. tt is about 8% of the

corresponding equilibrium solution for a nondimensiona1 earthquake level of

9.2698 x 10-8 and about 1% for a low earthquake level of 9.2698 x 10-9• The

effect of different starting times of earthquake excitation on the transient

solutions of coupled flap-lagging motion is also investigated. Figs. 6-29

through 6-32 illustrate the mean and rms angles of flapping and lead-lagging
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responses. They show that the effect of different starting times is not very

significant. The results for the transient response of coupled flap-lag­

torsional motion Ire expected to be similar to those obtained without the

torsional degree of freedom since the torsional Mode has been found to be very

stiff previously.

. .~
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CHAPTER 7

CONCLUSIONS

7.1 Summary of Present Research

The main results obtained in this study are summarized as follows:

1) For uncoupled flapping motion. the in-plane turbulence velocity

components affect the system stability since they appear in the

coefficients of the equation of motion. whereas the axial turbulence

comp~~ent does not change the stability condition and it appears only in

the inhomogeneous terms. For coupled flap-lagging or flap-lag-torsional

motion. all three turbulence components affect the system stability as

well as the responses.

2) The in-plane earthquake acceleration components appear in the

coefficients of stiffness matrix and the inhomogeneous terms in the

equations of motion. The axial earthquake acceleration component appears

only in the inhomogeneous tenms.

3) The equations for the statistical moments of response variables form an

.: infinite hierarchy for which some closure scheme must be used to obtain

.~

4)

approximate solutions. The nonlinearity is originated from modeling the

turbulence excitation to be filtered white noise processes.

Without the presence of earthquake. the moment equations form a set of

differential equations with periodic coefficients and its solutions tend

to periodic functions with period~. With earthquake, the statistical

periodicity no longer exists.
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5) The uncoupled flapping, coupled flap-lagging and coupled flap-lag-torsion

are found to be very stable under normal operating conditions.

6) The mean and rms responses of torsi ona1 motion are very sma 11; therefore

the torsional degree of freedom has little influence on the moment

responses of the flapping and lead1agging motions. On the other hand,

adding the lead-lagging mode softens the flapping mode significantly.

7) The effect of turbulence is higher on the flapping response than on the

lead1agging response. However, earthquake has some effect on 1eadlagging

but almost no effect on flapping.

8) The·m~an response is nearly the same as the deterministic response

without random excitations. This is the case for uncoupled flapping,

coupled flap-lagging and coupled flap-lag-torsion. The rms responses are

strongly dependent on the levels of random excitations. Within the

practical range of turbulence level, the rms responses of flapping and

leadlagging motions are significant compared to the deterministic

responses. However, the rms responses due to an earthquake are small.

Therefore, turbulence is likely a main cause for structural fatigue.

7.2 Proposed Areas for Future Research

The following is a list of potential topics for future study:

1. The present single blade analysis can be extended to a multi-blade

analysis by using the multiblade coordinate transformation [48].

2. The effect of dynamic inflow may be considered; however, the derivation

may be very complicated since inflow becomes position dependent.

3. The dynamic effect of the yawing angular velocity of the rotor axis may

be investigated. As the wind direction changes, the wind turbine must be

reoriented until the rotor axis is aligned with the wind direction. This

rotation will result 1n large flapwise moments on the blades.
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Appendi x A

Moment Equations of Flap Motion

In this appendix, the detailed first and second moment equations are

given. In these equations, "i and "ij denote E[Xi] and E[XiXjJ, respectively,

and each overdot denotes one differentiation with respect to the non­

dimensional time ~. The flrst moment equations are

loti =·~2

~2 = FlO - Kllo"l-C 1lo"2 + F14"3 + Fl S"4 + F16"S - Kl14"13

- Cl14"23 - Kl1S"14-C1lS"24

lot3 = -a 1M3

'k4 = -a 2"4

'kS = -a 3M5

The second moment equations are

(A-I)

'ku = 2M12

'k12 = "22 + F1aMl - K110Mll - CllaM12 + F14"13 + F1S"14 + F16"lS
2

- Kl14[2M13"1 + "11"3 - 2M1"3] - Cl14["1l"3 + "13"2 + "1"23
2

- 2"1"2"3] - Kl1S[2M14"1 + "11"4 - 2M1"4) - Cl1S[Ml l"4 + "1"24 + "14M2

- 2M1"2"4]

'k13 = "23 - a 1"13

""14 = "24 - a 2"14

lotlS = "25 - a 3"15
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t.. 2 2
1'122 : Ot F13 e3 ~ 33 + 2F 10'12 - 2KUO"lZ - 2C ll 0'4Z2 + 2F 14"23

2 2 2 2
+ ZF1S"24 + 2F 16"Z5 + 2n[Klll el ~11 + KUZeZ~ZZ] "11

- 2C I1 4[ 2H23M2 + "22M3 - 2M~3] - 2KI14[MIZ"3 + "13MZ
2

+ "1"23 - 2"1"2"3] - 2C 11 5 [2H24"Z + "Z2"4 - 2"2"4]

- 2Kl1 5["lZ"4 + "14"2 + "24"1 - 2Ml "2"4]

~Z3 ~ FIO"3 - K110H13 - C110"23 + F14"33 + F15"34 + F16"35
Z

- a 1"23 - C114["2"33 + 2M3"23 - 2MZ"3] - K114["1"33
2 .

+ 2M13"3 - 2"1"3] - C11S["23"4 + "24M3 + "34M2

- 2'42"3"4] - K11S["13"4 + "14"3 + "34"1 - 2M1"3"4]

lot24 :hFlO"4 - KllO"14 - CUO"Z4 + F14"34 +. F1S"44 + F16"4S

- a "'24 - CI14["23"4 + "Z4"3 + "34"2 - 2M2"3"4]

- Kl14 ["13"4 + "14"3 + "34"1-- 2"1"3"4] - CI15[2"24"4
2 2

+ "2"44 - 2H2"4] - Kl1S["1"44 + 2"14"4 - 2M l "4]

lot25 = F10"S - K110"15 - C110"2S + F14"3S + F1S"45 + F16"55

- a 3"25 - CI14["23"S + "25"3 + "35"2 - 2"Z"3"5]

- KI14[MI3"S + "15"3 + "35"1 - 2M l"3"S] - CI1 5["24"5

+ "25"4 + "45"Z - 2HZ"4"5] - KI15["14"5 + "15"4 + "45"1 - 2M1"4M5]

M33 = 2rl> 44 - ax 1"33

1434 = -(a 1+ a Z) "34

lot35 = - (a 1+ a 3) "35

1444 = &?I> 55 - ax Z"44

~45 = - (a 2 + a 3) "4S

1-1S5 =~66 - 2a 3"55 (A-2)



Appendi x B

Moment Equations of Coupled Flag-lag Motions

In this appendix. the detailed first and second moment equations of

coupled flap-lag motion are given. The first moment equations are

l-11 = "12

~2 = -K11 oMl - C110~2 - K120M3 - C120"4 + FI4"S - F1S"6
. t"

+ F16"7 - Kl14~15 - Cl14M25 - K124"35 - C124M45

- ~11S"16 - C11S"26 - K125"36 - C12SH46 - Kl16"17

- Cll6M27 - K126M37 - C126M47

l13 ='44

~4 = -K210'41 - C21oM2 - K22oM3 - C22o"4 + F24M5 + F2SM6

+ F26"7 - K21 4'41S - C214M2S - K224"3S - C224"45 - K21SM16

- C21 S"26 - K2 2SM36 - C22 S"46 - K216"17 - C216"27

- K225"37 - C226"47

l1s = -0: IMS

"6 = -0: 2"6

M7 = -0: 3147

The second moment equations are

l111 = 2M12

~12 ="22 - KIIO~ll - C1Io"12 - KI20"I3 -C12OM14 + F14M15 + F1SM16
2

+ F16"17 - Kl14[2MIM15 + "11"S - 2141"5] - Cl14[M12MS+ M15M2
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+ "25M1 - 2M 1M2MS] - K124[M13M5 + M15M3 + "3SM1 - 2M1"3MS]

- C124["14"5 + "151'44 + "45"1 - 2"1"4"S] - Kl15[ZM1M16 + 1'411"6
2

- 2M1~] - Cl1S["lZ"6 + "16M2 + "~6M1 - 2M1"Z"6] - K1Z5 ["131'46

+ ~16~3 + "36"1 - 2M 1"3M6] - C125 ["14"6 + "16"4 + "46"1 - 2M1"4~6]

- K116[2M17"1 + "111'47 - Z"~7] - C116["1ZM7 + "17"2 + "Z7"l - 2Ml"ZM7]

- K126("13"7 + "1171'43 + "37"11 - 2Ml"3"7] C [1'4" +" " +" "- 126 14 7 17 4 47 1

- 2"1"4"7]

~13 = "23 + M14

~14 =~24 - K210"11 - C210"12 - K22oM13 - C220"14 + FZ4"15 + F2S"16

+ F26"17~- K21 4[2M 1SM 1 + "1I1MS - 2MiMs] - CZ14["12M5 + 1'4251'41

+ "15M2 - 2Ml"2MS] - K224[M13MS + "15"3 + "35"1 - 2MIM3"S]

- C224["14"S + "115"14 + M4SM1 - 2M l"4"S] - K21S( 2M16Ml + "11"6
2- 2"1 "6] - C21 S[M12M6 + 1'4 16"12 + "26"1 - 2M1M2"6] - K22S[M13M6

+ "16M3 + "1361'41 - 2M 1M3"6] - C225[M14"6 + "16"4 +M4~1 - 2MIM4M6]
2

- K216[2"17Ml + "111 1'47 - 2"11 1'47] - C216[M1ZM7 + 1'417"12 + "27"1 - 2M1MZM7]

- K226["113"7 + M17M3 + 1'4371'41 - 2MIM3"7] - CZ26[M14M7 + 1'417"4 + "47"11

- 2M l "14"17 ]

~lS = "ZS - Cl 1M1S

"'16 = "26 - Cl Z"116

1417 = ~7 - Cl 3"117

M22 = Ot[Fi1 ei~ll + Fi2 e~22 + Fi3 e~ III 33] - a\tei ~1l[FllK111M1

+ FllK121M3] - 4ft e~22 [F12K1l2"l + F12K122"13J - 4ne~ ~33
2 2 2

[F 13K1l 3M1 + F13K123M3] + 2ne1 ¢>U [K l11"1 11 + K121 "133
2 2 2

+ 2K11 1K121M13] + 2ne2 ~22 [K 1l2 "11 + K122"33 + 2K 112 K122M13]
2 2 2

+ 2lte3 ~33[K113 1'4 11 + K123 "133 + 2K113K123"13] - 2KllOM12

- 2C 110"22 - 2K120M23 - 2C120M24 + 2F 14M25 + 2F 15"26 + 2F 16M27
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- 2Kl14[M1ZM5 + "1SM2 + "25"1 - 2M1"ZM5] 2C [ZM M +" ~- 114 25 2 2£"5
Z

- 2"2 "S] - 2K IZ4["23M5 + "35"l + "25"3 - 2Ml"3"5] - ZC 1Z4["l4M5

+ MZSM4 + "4S"2 - 2M2"4MS] - ZK1lS["1z"6 + M16"2 + "26"1 - 2M1"lM6]
Z

2C11 S[2M26"2 + "22"6 - ZM2 "6] - 2K12S["23"6 + "26"3 + "36M2

- 2M2"3"6] - 2C12S["24"6 + "4~2 + "26"4 - 2M2"4"6] - 2K116[M12M7
2

+ "17"2 + "27"1 - 2M1"2"7] - 2C116[2M27"2 + "22"] - 2"2"]]

- 2K126["23"] + "3]"2 + "27"3 - 2M2"3"]] - 2C126["24"] + "2]"4

+ "47"2 - 2M2"4"7]

1-123 = "24 - K11o"13 -C11d"23 - K12o"33 - CIZo"34 + F14M3S + F15M36

+ F!6H37 - KI14["13"5 + "15"3 + "35M1 - 2M1M3"S] - C114[M23"5
Z

+ "25"3 + "3S"2 - 2MZ"3"S] - KIZ4[2M3S"3 + "33"S - 2"3"5]

- CI24["34MS + "3S"4 + "45"3 - 2M3"4"S] - K115["13"6 + "16"3

+ "36"1 - 2Ml"3"6] - C11S["23"6 + M26M3 + "36"2 - 2M2"3"6]

- K12S[ 2M36"3 + "33"6 - 2"iM6] - C12S["34"6 + "36"4 + "46"3

- 2M3M4"6] - KI16["13"] + "17"3 + M37"1 - 2Ml"3"]] - CI16["23M7
2

+ "2]"3 + "37"2 - 2MZ"3"]] - K126[ 2M37"3 + "33"7 - 2"3"7]

- C126["34"] + "37"4 + "47"3 - 2M3M4"]]
L 2 Z Z Z
1"124 = 2:Jt [FU F2l el ~ll + F1ZF22 eZ ~22 + F13F23 e3 ~33] - ate l ~ll

2
[F11 K211Ml + FZ IKU1"1 + FU K2Z1"3 + FZI Kl 21"3] - 2neZ ~22

2
[F12K212"l + F2ZKllZ"1 + F1ZK22Z"3 + F22KIZz"3J - Ct e3 ~ 33

2
[F13K213"l + F23K1l3"1 + F13KZ23"3 + FZ3K1Z3"3] + at e1 ~ 11

2
[Kll1K2U"1l + K121 KZ21M33 + K1l1 KZZ1"13 + K1Z1K211"13] + ate2 ~22

2
[Kl1ZK21Z"1l + K122K22Z"33 + K1l2K2Z2"13 + KIZZK212"13] + at e2 ~ 33

[Kl13K213Mll + KIZ3K223M33 + Kl1 3K223"13 + KIZ3K213"13] - K110"14

- C110"24 - K120"34 - CIZO"44 + F14"4S + Fl S"46 + F16"47 - K210"12

- CIZ0"22 - K2Z0M23 - C220M24 + F24"25 + F2S"26 + F26"27

124
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- K11 4["14"S + "15"4 + "4S~1 - 2M 1M4Msl - C114["24"S + "2SM4

+ M45"2 - 2M2M4MS1 - K124[M34MS + "3SM4 + "45M3 - 2M3"4MS]

- C124[2M4SM4 + ~44MS - 2M~"S] - Kl15["14M6 + "16M4 + "46Ml

- 2M l"4"S] - CI1 5["24"6 + "26"4 + "46M2 - 2M2"4"S] - KI25["34"6 + "46M3

+ "36"4 - ~3"4M6] - C12S[ 2M46"4 + "44"6 - 2"~6] - K11S["14"7 + "17M4

+ "47"1 - 2M1"4"7] - CI 16["24"7 + "27"4 + ~47"2 - 2M2"4"7] - K1Z6[M34"7
2

+ "37"4 + M47M3 - 2M3"4"7] - C12S[ 2M47M4 + "44M7 - 2"4"7 1 - KZ14 ["1ZMS
Z

+ "15"2 + "2S"1 - 2H1M2M5] - C21 4(2MZS"2 + "22"S - 2MZMS]

- KZ24["23MS + "25"3 + M3SM2 - 2M2M3"S] - C224[M24"S + "25"4

+ "45tl4~ - 2M2"4MS] - K21 5[M12"6 + "16M2 + "26"11 - 2M1f1 2"6]

- CZlS(2M26"12 + "Z2"6 - 2M~6] - KZ2S("23"6 + "26"3 + "36M2

- 2M 2"3"6] - C225["124"6 + M26"4 + M46M2 - 2M2M4"61 - K216 [M12M7

+ "17"2 + "127"1 - 2M1"2"7] - CZI 6[2MZ7"2 + "22"] - ZM~7]

- K226[M23"7 + "27M3 + "37M2 - 2M2"3"]] - CZ26["24M7 + "Z7"4

+ "47M2 - 2M2M4M]J

~25 =-a 1"25 - KI10"IS - Cl1oM2S - K12OM3S - CI20M4S + FI4"SS + FIS"S6
2

+ F16"S7 - KI14[2MlSMS + "55"11 - 2M1"S] - CI1 4[2M ZSMS + M2"SS
2 2]

- Z"2MS] - K124[ 2"13SMS + "SS"3 - 2"13"S - C124[ 2M4S"S + "55"4

- 2M4M~] - K1IS[M15M6 + "IS"S + "56"1 - 2"11"SM6J - CIIS["2S"6 + "26MS

+ "56"Z - 2M2"S"6] - KI2S["3S"S + "36MS + "56"3 - ~3"S"6] - CI2S[M4SM6

+ "46"S + "56"4 - 2"4MSM6] - KI16("IS"] + "17"5 + "57"1 - 2M I"SM7]

- CI16["2S"] + "27"S + "57"2 - 2"12MSM7] - KI26["3S"] + "37MS + "S7M3

- 2M3"S"7] - C126[M4S"7 + M47MS + "S7M4 - 2M4"S"]J

~26 = -a2"26 - KI10M16 - CI10M26 - K120"36 - C120M46 + F14"S6 + FlS"66 + F16H67

- KlI4[MlSH6 + M16MS + MS6M1 - 2M IMSM6J - C11 4[M2S"6 + M26MS + MS6M2

- 2M2"1S"6] - K124[M35M6 + "36"S + "56M3 - 2M3MS"16] - C124[M4SM6
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2
+ M46~S + "S6M4 - 2M4~S"16] - KllS[~16~6 + "66"11 - ~1~6J - CllS

2 2
[2M26"6 + ~66~2 - 2M2"16] - K12S[2M36"6 + "66~3 - 2M 3M6] - C12S

2 .
[2M46~6 + "66"4 - 2M4"6J - Kl16["16"] + "17~6 + "67M1 - 2M1"6"]]

C (M .
- 116 26M] + "27"6 + "67"2 - 2M2"6~7] - K126["36"] + "37"16

+ "67"3 - 2M3~6"]] - C126[H46"7 + "47"6 + "67"4 - 2M4"6M]J

~7 : -«3"127 - K1 10"117- C110~27 - K120~37 - C120~47 + F14M57 + Fl sM67 + F16M]]

- K114[~15M7 + MI7~S + "57Ml - 2"1"S"17] - Cl1 4["25"7 + "57M2 + M27"S

- 2M2M5M7] - K124["3SM7 + M37"5 + "57"3 - 2M3"15M]J - CI24["45M7 + "147"5

+ "57"4 - 2"4"5"17] - K115["16M7 + "17"16 + M67"1 - 2M1M6"7] - C115["26"7
. ...

+ "27"6 + "67M2 - 2M2"6M7] - K125["36"7 + "37"6 + "67"3 - 2M3"6"7]

- C125["46"7 + "47"6 + "67"14 - ~4"6"17] - K116( 2M IJ"7 + "77"1
222

- 2M1"7] - C116[2M27"7 + "77"2 - 2M2"7] - K126[2M37"7 + "3"77 - 2M3"7 J
2

- C126[2"147"17 + "77"14 - 2"14"7J

"'33 : 2M34

M34 : "44 - K210"13 - C210~23 - K22oH33 - C220"34 + F24"135 + F25"36 + F26"37

- K214["113MS + "115~3 + "35"1 - 2Ml"3~SJ - C214["23"5 + "25"3 + "35"2
2

- 2M2"3"5] - K224[2M35"3 + "33"5 -2"3"S) - C224["34"5 + "35"4 + "45M3

- 2"3"4"5] - K215["13"G + "16"3 + "36"1 - 2"1"3"6J - C215["23"6 + "3"26
2 .

+ "36M2 - 2M2"3"6] - K225[ 2M36"3 + "33"6 - 2M3~] - C225["34"6 + "36"4

+ "46M3 - 2"3"4"6] - K21 6["13"7 + "17"3 + "37"1 - 2M1"3"7]

- C216[M23"7 + "27"3 + M37"2 - 2M2"3"7] - K226[2M37"3 + M33"7
2

- 2"3"17] - C226[M34M7 + "37"4 + "47"3 - 2M3"4"7]

l435 = "45 - a 1"135

M36 = "46 - a 2"36

M37 = "147 - a 3"137
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L 22 22 22 2
"44 = 2Jt[f21e1 ~ll + F22 e2 ~22 + f 23 e3 ~33] - 4n e1 ~ll[f2{?l1"11

+ F21I(Z21"3] - 4tte~22 [F221(Z12"11 + F221(222"3] - 4ne~~33
Z 2 2

[f231(213"1 + F231(223M3] + 2It e1 ~ 11[I(Z 11M11 + K221 M33
2 2 2

+ 2K211K221"13] + 2. e2 If>22[K212 "11 + Ki22"33 + ZK212 Kz22 "13]

+ at e2 ~ [K2 "11 + 1(2 "133 + 2K21 31(223"13] - 2K21oM14 - 2C21()lo1
3 33 213 223 24

- 2K22~34 - 2CZ20~44 + 2F 24M4S + 2F 2SM46 + 2F 26M47 - 2K214["14"S

+ M1S"4 + "14S"1 - 2"1H4"S] - 2C214[M24"S + M2S"4 + "4SM2 - 2HZ"4"S]
. 2

- 2K224["34"S + "35M4 + "4SM3 - 2M3"4"S] - 2C224[2M45M4 + M44"S - 2"4 M5]

- 21(215["14"6 + "16M4 + "146"1 - 2H1H4"6] - 2CZ15[M24M6 + "26"4 + "146"2

- 2M2M4~6] - 2K225[M34"6 + "36M4 + M46M3 - 2M3"4M6] - 2C22S[2"46M4

+ "44"16 - 2MiM6] - 2K216(M14M7 + "17"14 + "147"11 - 2MIM4M7] -. 2C2i6

[M24M7 + "27"14 + "47M2 - 2M2"4M7J - 2K226["34"7 + "137"4 + "47M3
2

- 2"3"4"7] - 2C226[2M47M4 + "44"7 - 2M4"7 J

1'145 = -«1"4S - 1(210"IS - C210"2S - 1(220"35 - C220"4S + F24"55 + F2SMS6
2 2

+ F26MS7 - K214[2"15"S + "SSM1 - 2M1MS] - C214[2M25MS + MS5"2 - 2M2"S]
2 2

- K224[ 2H35MS + "55M3 - 2H3"SJ - C224[2M4S"1S + M5SM4 - 2M4HS] - K215

["lS"6 + "16MS + "S6"1 - 2H1"S"6J - C21S["2SM6 + "26MS + "56"2 - 2"2"5"6]

- I(22S["3S'46 + M36MS + "56"3 - 2M3"S"'6J - C22S["'45"'6 + "46"'S + MS6"'4

- 2M4M5"6] - I(Z16["15"7 + "17M5 + "57"1 - 2M1"1SM7] - CZI6["2SM7 + "27M5

+ "57MZ - 2M2"5M7] - 1(226["135"17 + "37"5 + "S7M3 - 2M3"5"7] - C226

["45"7 + "147"5 + "S7"4 - 2M4MSM7]

~46 = -«2"46 - KZ1 0"16 - C210"26 - K220"36 - C220"'46 + F24"1S6 + F2S"66 + F26M67

- 1(214["15"'6 + HI6"S + "56"1 - ~1"S"6] - C214["25"6 + M26"S + "56M2

- 2"2"15"16] - 1(224["'35M6 + "36"S + M56"13 - 2M3"5M6] - C224 ["145M6

+ "46"'S + "56"4 - 2"4"S"'6] - 1(21S[2"16"6 + "66M1 - 2M1"~J - e21S
2 2

[2M26"'6 + "166"2 - 2H2"6] - 1(22S[ 2H36"6 + "66"3 - 2M3M6] - C22S[2H46M6
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1Z8

+ ~6"4 - ~4"~] - K216["16"7 + "17"6 + "67"1 - 2"1"6"7] - CZI6["26M7

+ "27"6 + "67"2 - 2M2"6"7] - KZ 26["36"7 + "37"6 + "67"3 - 2M3"6"7]

- C226["46"7 + "47"6 + "67"4 - 2"4"6"7]

~47 s -a3"47 - K21oM17 - C21OM27 - K22oM37 - C220~47 + F24"S7 + F2S"67 + F26"7]

- K214["1S"7 + "17"S + "57"1 - 2"1"5"7] - C214["2S"7 + "27"S

+ "57"2 - 2"2"5"]] - K224["3S"7 + "37"5 + "S7"3 - 2M3"5"]] - C224

(~45"7 + "4~5 + "57"4 - 2"4"5"]1 - K21S[MI6~7 + "17M6 + ~7Ml - 2"1"6"7]

- C215["26"7 + "27M6 + "67"2- 2M2"6"7] - K225["36"7 + M37M6 + "67"3

- 2M3M~M7] - C225["46"7 + "47M6 + "57~4 - 2M4"6"7 J - K216[2M17"7 + "77M1

- 2Mt"'~ - C216 [2M27"7 + "77"2 - 2M2"7] - K226 ( 2M37"7 + "77M3
2 2

- 2M3"7] - C226 [2"47"7 + "4"77 - 2"4 "7]

lotS5 = at ~44 - ax 1"155

~56 = - (0: 1+ 0: 2) "56

"'S 7 = - (0: 1 + 0: 3) "57

"'66 = 2n ~5S - ax 2"66

~6 7 = - (0: 2+ a 3) "67

Mn = 2n ~66- ax 3"?7 (B-2)



Appendix C

Moment Equations of Coupled Flap-lag-torsion Motion

In this appendix, the detailed first and second moment equations are

given. The first moment equations are

~1 = M2

~2 = -Kl10~1 - C1IOM2 - K120M3- C12OM4 - K130MS - C130Ms

+ F14M7 + F15~8 + F16M9 - Kl14M17 - Cl14~27 - K124M37. .,
- C124M47 - K134MS7 - C134~7 - Kl 1SM18 - CllSMZ8 - K12SM38

- C12SM48 - K13SMS8 - C13S"68 - K116M19 - C11 6"Z9 - K126M39

- C126"49 - K136MS9 - C136M69

~3 = M4

~4 = -KlIOMl - CZ1 0M2 - K220~3 - Cl20M4 - KZ30MS - C23OM6

+ F24"7 + FZS"8 + FZ6Mg - KZ 14M17 - CZ14MZ7 - KZ24M37

- C224M47 - K234MS7 - CZ34M67 - KZlSM18 - CZ1SM28 - K22SM38

- C22S"48 - KZ3SMS8 - C23SM68 - KZ16"19 - CZ 16MZ9 - KZ26M39

- C226"49 - K236"S9 - C236"69

~S = M6

~6 = -K31oMl - C310"2 - K3ZoM3 - C3Z0M4 - K330"S - C330M6

+ F34M7 + F3SM8 + F36M9 - K314M17 - C314MZ7 - K234M37

- C324M47 - K334MS7 - C334~7 - K31SM18 - C31SM28 - K32SM38

- C32SM48 - K33SMS8 - C33SM68 - K316M19 - C316M29 - K326M39

- C326M49 - K336MS9 - C336M69
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1-1] .. -a 1M]

1-1a = -azMa

l19 = -a 3'19

The second moment equations are

~11 .. 2'41z
~12 = '1Z2 - K110M11- C11 0M12 - KI20M13 - C120MI4 - K13QM15 - C130MI6

2
+ F14M17 + F15M1a + F16M19 - Kl14[ 2M17Hl + "II"] - 2M1M]]

- C11 4["12'17 + "17M2 + "27"1 - 2M1"2M]] - K124["13M7+ M17"3

+ "37"1 - lM1"3M7] - C124[M14"] + "17M4 + "47"1 - 2M1"4"]]

- K134[MfsM7 + "17"S + "S7"1 - 2M1"SM7] - C134("16M7 + M17"6
2

+ "57"1 - 2MIM6M7] - K115( 2M18Ml + "lIMa - 2Hl Ma] - C11S

[M12"a + "laH2 + "28"1 - 2"1"2"a] - K1Zs[M13"a + "laM3 + M38M1

- 2M1"3M8] - C12S["14'1a + MlS"4 + "4aM1 - 2M1"4"8J - K135

["15"S + "18"S + "S8M1 - 2'41"S"8] - C13S[M16"8 + "18"6 + "68"1
2

- 2M1M6M8] - K116[ 2M 19M1 + "11"9 - 2 "lMg] - C116[M12M9 + M19"2

+ "29Ml - 2Ml"2M9] - K126["13"9 + "19"3 + "39"1 - 2"1"3M9J

- C126["14M9 + M19"4 + "4gMl - 2M 1"4"9 J - K136["lS"9 + "lgHS

+ M59"1 - 2M1HsMg] - C136("16Mg + M19"6 + M69"1 - 2M1M6Mg]

1-113 =MZ3 + "14

~4 = Mz4 - K210Hll - C21~12 - K22o"13 - C2zOM14 - KZ30MlS - C230H16
2

+ F24"17 + F2SM1A + F26M19 - K214[ 2M17"1 + "11"7 - 2M1M7]

- CZ1 4[M12"7 + "17"2 + "27"1 - 2"1"2"7] - K224["13"7 + "17M3

+ "37M1 - 2M1"3'17] - C224["14H7 + "17"4 + "47"1 - 2Ml"4~17J

- K234["lS"7 + "17MS + MS7"1 - 2M1"S"7] - C234["16"7 + "17M6
2

+ "57Ml - ~lM6M7J - KZlS[2M18M1 + "ll"a - 2M IMs] - CZls[MlzMa

130

(C-l)



131

+ H1BMl + H2BM1 - 2M1"2MS] - K22S[MI3MS + H1SH3 + "3SMl - 2M 1"3MS]

- C22S("14"S + "ISH4 + "4S"1 - ~1"4"S] - K23S[HlS"S + HlS"S

+ HSSM1 - 2M l"SM8] - C235["16"S + "IS"6 + "68"1 - 2M1M6M8]

- K2l 6[2M19"1 + "11"9 - 2HiH9] - C216("12"9 + "19"2 + "29"1 - ZM1"l"9]

- K226(MI 3"9 + "19"3 + "39"1 - 2"1"3"9] - C226["14"9 + "19"4

+ "49"1 - 2"1"4"9] - K236["1SMg + H19"S + "59"1 - 2M1"5"9]

- C236[M16M9 + "19"6 + "69"1 - 2M1"6H9]

~lS = "25 + "16

~16 = ~l6 - K310Mli - C310M12 - K32oM13 - C3ZQM14 - K33oM1S - C330"16 + F34M17
2

+ F3?",~ + F36M19 - K314[2"17"1 + "11"7 - 2M1"7] - C314 ["12"7

+ "17"2 + "27M1 - 2"1"2"7] - K324[M13"7 + "17"3 + "37Ml - 2Ml"3"7]

- C324["14"7 + "17"4 + "47"1 - 2"1"4"7] - K334["ISM7 + "17"5

+ "57"1 - 2M1M5"7] - C334["16"7 + "17"6 + "67"1 - 2"1"6"7]
2

- K31S[ 2M laM1 + "11"a - 2M1 "8] - C31S["ltMS + "la"2 + "2S"1

- 2M1"2"8] - K32S["13"a + "18"3 + "3a"1 - 2Ml"3"S] - C32S["14"8

+ "la"4 + "4S"1 - 2M1"4Ma] - K33S("IS"S + "la"S + "SS"l

- 2Ml"sMaJ - C335["16"a + "1a"6 + ~aMl - 2"1"6"S] - K316
2

[2M19"1 + "11M9 - 2M1"9] - C316[M12"9 + "19"2 + "29"1 - ZM1"2"9]

- K326(M13Mg + "lgH3 + "39Ml - 2"1"3"9] - C326[M14"9 + "19"4 + "49"1

- 2M1"4"9J - K336["IS"9 + "19"S + "59"1- 2M1"S"g] - C336["16M9

+ "19"6 + "69M1 - 2"1"6"9]

1-117 = "27 - (11"17

111S = "2a - (12"18

1-119 = "29 - (13"19

1 22 2
~22 = &tel ~ll[Fl1 - 2F U K111"1 - 2F llK1Z1"3 - 2F llK131"S + K111"1l

+ Ki21"33 + Ki31MSS + 2KI11K121"13 + 2K111 K131"1S + 2K1Z1K131"3S]
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2 [ 2 2 2
+ aez tZ>zz F12 -2F 12K112Ml - 2F 1ZK122M3 - 2F 12K13t'15 + K112"'1l + K122"133

2
+K 132"1SS + 2K112K122M13 + 2K11ZK132M1S + 2K122K132"135 ]

2 Z 2
+ 2Jte3 ~33[F13 - 2F13K1l3~1 - lF13K123"13 - 2F 13K133MS + KU3MU

2 2
+K123M33 + K133MS5 + 2K113K123M13 + 2Kl 13K133MlS + 2K123K133"3SJ

+ 2{ -K1I0"112 - CII0~22 - K1Z0MZ3 - C120M24 - K13ryM2S - C13d"26 + F14M27

+ F1SM28 + F16M29 - K114["11z"7 + "117"12 + "127"11 - 2M1"12M7J - C114
2

[2"127"12 + "22"17 - 2M2 "7] - K124[M23"7 + "27"3 + "37MZ - 2MZM3~7]

- C124[M24"17 + "127"14 + "47M2 - 2M2"14~7] - K134[M25"7 + "127"15 + "57M2

- ~2MS"171 - C134[M26M7 + "27"6 + "67M2 - 2"12"16"17] - KllS[M12Ma

+ M1~M2~+ M2aM1 - ZM 1M2"a] - C11S[2M28H2 + "122"18 - 2M~Ma] - K125

[M23Ma + M2a~3 + "138"2 - 2"2M3"aJ - C125["124"8 + "2a"4 + "4a"2

- 2M2"4"1a] - K13S[M2SMa + "28"15 + "158"12 - 2"1 2"15"18] - C135["126"a

+ "128"16 + "168"12- 2M2M6"1aJ - K116[M12M9 + "119"2 + "129"11 - 2M1M2"19J
2

- C116( 2M29M2 + "122"9 - 2M2Mg] - K126["ZJ"9 + "29M3 + "39M2 - 2"12M3M9J

- C126["24"19 + "29M4 + "149"2 - 2M2M4M9J - K136[M25M9 + "129"15 + MS9~2

- 2M2"1S"9J - C136["26"9 + "29"16 + "69M2 - 2M2M6M9]}

~23 ="24 - Kll0M13 - CI10"23 - K120"33 - C120"34 - K130"135 - C130"36 + F14M37

+ F15~3a + F16M39 - K114["113"7 + "17M3 + "37M1 - 2M1"3M7] - C114["23"1 7

+ "27M3 + "137"2 - 2M2"3"7J - K124[ 2M37M3 + "133"7 - 2"1~7J - C124["34"7

+ "37"14 + "47M3 - 2"13"4"7] - KI34["35"] + "37"S + "57M3 - 2"13"15"7]

- C134["36"1 7 + "3]"16 + ~7"3 - 2"13"6"]1 - K115["13M8 + "118"13 + "38"11

- 2M1"13"aJ - C11 5["23"a + "28"3 + "3a"2 - 2M2"3"8J - K12S[2"138"3
2

+ "33"8 - 2M3M8J - C125["34"8 + "38"14 + "48M3 - 2M3"4"8] - K135

["135"1a + M3aMS + "SaM3 - 2M3"5M8J - C135[M36M8 + "38"16 + "68M3

- 2"3"6"18] - K116[M13M9 + "119"13 + "39"11 - 2"1"13"9] - C116[M23M9 + M29M3
2

+ "39M2 - 2M2M3MgJ - K126[2M39M3 + "133"19 - 2M3Mg] - C126[M34"9



.,

,
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+ "39"4 + "49"3 - 2M 3M4M9] - K136["3S"9 + "39"S + "S9"3 - 2M3"S~9]

- C136["36"9 + "39M6 + "69"3 - 2"3"6"9]
2

"'24 • 2ne1 ~1l[FllF21 - (F llK211 + F21Kll1)"1 - (F llK221 + F21K121)"13

(F 11K231 + F21K131) "5 + KIIIK211"11 + K121K221"33 + K131K231"SS

+ (KIIIK221 + K211 K121)"13 + (K111K231 + K131 K211)"15 + (K121K231

+ K131K221)"3S] + 2ne~ ~22 [F 12F22 - (F 12K21 2 + F22K1l2)M1 - (F12K222

+ F22K122)"3 - (F 12K232 + F22K132)MS + Kl12K21iM11 + K122K222"33

+ K132K232"5S + (Kl1 2K222 + K212K122)"13 + (K112K232 + K132K212)"lS
2

+ (K122K232 + K132K222)"3S] + at e3 ~33[F13F23 - (F 13K213 + F23K1l3)"1

- (F13K2~3 + F23K123)M3 - (F13K233 + FZ3K133)"S + Kl1 3K213M11 + K123K223"33

+ K133K233"SS + (Kl1 3K223 + K213K123)"13 + {Kl13K233 + K133K213)"lS

+ (K123K233 + K133K223)M3S] - Kl10M14 - C110M24 - K120M34 - C12OM44

- K130M4S-C130M46+F14M47+F1SM48+F16"49-K210M12-C210M22-K220M23

- C220"24-K230"2S-C230"26+F24M27+F2sM2a+F26"29-Kl14["14"7+M17"4

+ "47"1 - 2M1"4"7] - C114["24M] + "27"4 + "47M2 - 2M2"4"7J - K124[M34"7
2

+ "37"4 + "47"3 - 2M3"4"7J - C124( 2M47"4 + "44M7 - 2M4"7) - K134("4SM7

+ M47"S + "S7"4 - 2M4"S"7] - C134["46"7 + "47"6 + "67"4 - 2H4"6"]]

- K11S("14"a + "la"4 + "4S"1 - 2H1"4"a] - C115["24"a + "2SM4 + "4S"2

2M2"4"8] - K12S["34MS + "38"4 + "48"3 - 2M3"4"8] - C12S[2M48"4 + "44M8
2

- 2M4MgJ - K13S["4s"a + "4S"S + "5S"4 - ~4"s"aJ - C13S["46"S + "48"6

+ "68"4 - 2H4M6M8] - Kl 16["14"9 + "19"4 + "49M1 - 2M1M4H9] - Cl16["24"9

+ "29"4 + "49M2 - 2"2"4M9J - K126["34"9 + "39"4 + "49"3 - 2M3"4"9]
2

- C126(2M4gM4 + "44"9 - 2M4"g] - K136[M4SM9 + M49MS + "S9"4 - 2M4MSMgJ

- C136[M46Mg + "49M6 + M69M4 - 2M4"6"9] - K214[M12M7 + "17M2 + M2]"1
2

- 2M1"2"7] - C214[2M27M2 + "22"] - 2M2"]J - K224["23"7 + "27"3 + M37"2

- 2"2"3"7] - C224[M24"7 + "27"4 + "47"2 - 2M2M4M7] - K234["2S"] + M27M5
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+ "57"Z - 2Ml "5M7] - CZ34[MZ6M7 + "27"6 + M67MZ - 2M 2"6M7] - KZ1S[Ml?Ma
2

+ "1aM2 + M2S"1 - 2M1M2MS] - CZlS[2M2SM2 + "22"a - 2"2"S] - Kl2S["23Ma

+ "2aM3 + "3a"2 - 2M2"3"a] C225["24"a + "2a"4 + "4a"2 - 2M2"4"a]

- KZ3S["2S"S + Mla"S + "SS"2 - 2M2"s"a] - C235["Z6"a + "2a"6 + "6SM2

- 2Ml"6"aJ - K216[M1Z"g + M19"2 + "29"1 - 2M1"2M9] - CZ16[2M2gM2 + "22"9
2'

- 2M2Mg] - K226[M23"9 + M2gM3+ M39"2 - 2M2M3"9] - C226["24"9 + "29M4 + M49"2

2M2M4Mg] - K~36["25"9 + M2gMS + Ms9"2 - 2M2"5"9] - C236["26"9 + "29M6

+ M69"2 - 2M2M6"g]

~2S ="26 - K110"1S - C110"25 - K120"35 - C12OM4S - K130"55 - C130"56 + F14MS7. ...
+ F1SMS8 + F16~59 - K114[M1S"7 + "17MS + "57"1 - 2M1M5M7J - C114["2SM7

+ "27"5 + "S7"2 - 2"2MSM7] - K124[M3S"7 + "37"5 + "57M3 - 2M3"5"7]
2

- C1Z4["4SM7 + "47"S + MS7M4 - 2M4"SM7] - KI 34[ 2M57"S + "SS"7 - 2"5"7]

- CI34["56"7 + "S7H6 + M67"S - 2"5"6"7] - K11S["lS"a + MlaHs + "SSMI

- 2M1"SMaJ - CI15["2S"a + Mza"S + "SaM2 - 2MzMsMa]- KI2S["35Ma

+ "3aMS + "58"5 - ZM3MsMaJ - C125["45"a + "48M5 + "5a"4 - 2"4"S"a]
2

- KI35[2MsaMs + "S5"a - 2MsMa] - C135["56"a + "5a"6 + "6a"S - 2Ms"6"a]

- KI16["1S"9 + "lgMS + "SgMI - 2M1"S"g] - C116["2S"9 + "2gMS + "SgM2

- 2MZ"S"gJ - K1Z6["3S"9 + "39M5 + "S9"3 - 2"3"S"9] - C126["4S"9 + "4gMS
2

+ "S9"4 - 2M4"S"gJ - K136[2MsqMs + "S5"9 - 2M5MgJ - C136[M56"9

+ "59"6 + "69"S - 2"5"6"9J

10126 = Otei ~ll [FllF31-(FllK311+F31K111)"I-(FUK321+F31KlZ1)"3-(FllK331

+ F31K131)MS+Kl11K311Ml1+K121K321"33+K131K331MSS+(K111K321+K121K311)
2

"13 + (K11 1K331 + K131K311)"IS + (K121K331 + K131K321)M3S] + ate2 ~22

[F12F32-(FI2K312+F3ZKIIZ)Ml-(F1ZK3ZZ+F3ZK1ZZ)M3-(F1ZK33Z+F3ZKI32)MS

+ K1I2K31ZMll + K122K322M33 + KI32K332M55 + (K112K322 + K122K3I2)M13
2

+ (K 11 2K332 + K13ZK31Z)M15 + (K12ZK332 + K13ZK322)M3SJ + at e3 ~33
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[F13F33-(F13K313+F33K113)M1-(F13K323+F33K123)M3-(F13K333+F33K133)MS

+ K113K313Mll + K123K323M33 + K133~333M5S + (K l1 3K323 + K123K313)M13

+ (K l1 3K333 + K133K313)M1S + {K123~333 + K133K323)M3S] - K110"16

- C110"26 - K120M36 - C120"46 - K130"S6 - C130M66 + F14M67 + F1SM68 + F16~9

- K310M12 - C310"22 - K320"23 - C320M24 - K330M25 - C33oM26 + F34"27 + F3SM28

+ F36~29 - K11 4["16"7 + "17"6 + "67M1 - 2"1M6H7] - Cl14["26M7 + "27M6 + M67MZ

- 2M~M6M7]- K124[M36M7 + "37M6 + ~7H3 - 2M3M6M7] - C124[M46M7 + "47"6

+ "67"4 - 2M4M6M7] - K134[MS6M7 + "S7M6 + "67"5 -' 2M5M6"7] - C134[2M67M6
2

+ "66"7 - 2M6M7] - K11S["16"8 + "18~6 + "68"1 - ~lM6"a] - C11S[M26M8 + M2SM6

+ M6a~Z - 2M 2M6Ma l - K125[M36M8 + M38M6 + M6aM3 - 2M3M6Ma] - C12S[M46Ma

+ "48M6 + "68M4 - 2M4M6M8] - KI3S[MS6M8 + MS8M6 + "6aMS - 2MsM6"a] -CI3S[
2

+ 2M68M6 + "66Ma. - ~6Ma] - K116[M16M9 + M19"6 - "69"1 - lM1"6"9] - C116

["26"9 + M2gM6 +M96M2 - 2M2M6M9J - K126[M36"9 + M39M6 + "6gM3 - 2M3M6M9J

- C126["46M9 + M49"6 + M69"4 - 2M4M6"g] - KI36[MS6Mg + "S9"6 + "6gMS
2 .

- 2M5M6"gJ - C136[2M6gM6 + M66Mg - 2M6MgJ - K314[M12M7 + "17"2
2

+ "27Ml - 2M1"2H7] - C314[2M27"2 + "22"7 - 2"2"7J - K324[M23"7 + "27M3

+ "37M2 - 2M2"3"7] - C324["24"7 + M27"4 + "47"2 - 2"2"4"7] - K334["2S"7

+ "27M5 + "57M2 - 2M2MSM7J - C334["26"7 + "27"6 + "67H2 - 2M2"6M7J
2

- K31S["12M8 + "18M2 + "28Ml - 2M1"2"8J - C31S[2H2a"2 + "22Ma - 2"2"aJ

- K325[H23Ma + M28M3 + "3a"2 - 2M2"3Ma] - C32S["24Ma + "2a"4 + "4aM2

- 2M2"4M81 - K335[M2SMa + M2SMS + "SaM2 - 2M2M5M8] - C33S["26"a + "laM6

+ M6SM2 - 2M2M6M8] - K316["12M9 + "19"2 + "29M1 - 2M1M2Mg] - C316[2M2gM2
2

+ M22M9 - 2M2MgJ - K326[M 23M9 + "29M3 + "39M2 - ~2M3M9J - C326[M24Mg

+ "29"4 + M4gM2 - 2M 2"4M9J - K336[M2S"g + "29M5 + "59"2 - ~2M5M9J

- C336[M26Mg + M29M6 + M69M2 - 2M2M6"9J

~27 = -alM27 - Kll0"l7 - C110MZ7 - K1ZoM37 - C120M47 - K130MS7 - C130M67 + F14M77
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+ F1SM78 + F16~79 - Kl1 4[2M17M7 + "77Ml - 2M~"l] - Cl1 4[2M27"7 + "77"2
2 2 2

- 2H7"2] - K124[2M37"7 + "77"3 - 2M7M3] - C124[ 2M47M7 + "77M4 - 2"7"4]
2 2

- K134[2"S7"7 + "77"S - 2"7"S] - C134[ 2M67"7 + "77"6 ~ ~"7M6] - KI IS

["17"a + "18"7 + "78"1 - 2H1"7M8] - C11S[M27"8 + "28"7 + "78"2 - 2M2"7"a]

- K12S["37"a + "38M7 + "78M3 - 2M3M7"a) - C12S["47"a + "4aM7 + "7a"4

- 2M4"7"8) - K13S["S7"8 + "S8"] + "78"S - 2HS"7"8] - C13S["67"8 + ~8M7

+ "78M6 - 2M6M7M8] - Kl16[M17M9 + M19"7 + "79M1 - 2M1M7"9] - C116["27M9

+ "29M7+M7gM2-2M2"7"9]-KI26[M37Mg+"39"7+M79"3-2M3M7Mg]-CI26[H47M9

+ "49"7 + "]9M4 - 2M4~7M9] - K136[MS7M9 + MS9M] + "]g"S - 2M5M]"g] - C136

[~~ + "69"] + "79"6 - 2M6"]"91

~28 =_a
2
M28 - KII0"18 - C110M28 - K120M38 - C120M48 - K130MSa - C13oM68 + F14"78

+ FIS"SS + F16"a9 - KI1 4["1]"a + "IR"] + "]aM1 - 2M1"]MaJ - Cl1 4["27"a

+ "28"] + "78"2 - 2M2M]MaJ - KI24["3]M8 + M3aM] + "]aM3 - 2M3"]"a]

- CI24["47"a + "4a"] + "]8"4 - 2M4"]Ma] - KI34[Ms7"a + "58"7 + "7a"S

- 2"5"]"a] - CI34[M67"8 - "68M] + "7aM6 - 2M6M]"aJ - KllS[~~la"a + Ma8"1
2 2 2

- 2M8Ml ] - Cl1 S[2M28M2 + "S8"2 - 2"aM2J - K12S[2M38Ma + MS8"S - 2"aM3J

- C12S[2M4a"a + "aa"4 - 2M~M4] - K13S[2Msa"a + "sa"s - 2M~S] - C13S[2M68M8
2

+ "aa"6 - 2"a"6] - Kll6[MlaMg + "lgMa + "SgM l - 2M1MS"g] - Cl16["2SM9

+ M29"a + "89"2 - 2M2MaMg] - K126["38"9 + "39"a + "a9M3 - 2M3"S"gJ - C126

["48"9 + "49M8 + MS9"4 - 2"4"S"9] - KI36["S8"9 + "S9"S + "S9"5 - 2"S"S"g]

- C136["6a"g + M6gMS + M89M6 - 2M6"aMg]

~29 = -a3"29 - K110M19 - C110"29 - K120"39 - C120"49 - K130MS9 - C130Msg + F14M;9

+ F1S"S9 + F16"99 - K114["17"9 + "19"] + "79"1 - 2M1"7"9] - CI14[M27"9

+ "29"] + "]gM2 - 2M2M]"gJ - K124["37"9 + "39M] + "79~3 - 2M3"]"9]

- C124[M47"9 + M49"] + M]9M4 - 2M4H7M9] - KI34["S7"9 + "S9M] + "7gMS

- 2MS"]Mg] - CI34[M6]Mg + M69M] + M7gM6 - 2M6M]"9] - Kl1 S[MI8M9 + MlgMa
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+ Ma9"'l - lMl"'S"'g] - CllS[M2aM9 + M29"1a + "1a9M2 - lMzMaM9] - K12S[M 3SMg

+ M39~8 + "a9"3 - ~3Ma"9) - C12S["4a"9 + "4gMa + "a9"4 - 2"4Ma"9)

- K13S[Msa"19 + MS9"1a + "189"15 - 2Ms"1a"19] - C135["168"19 + "69"18 + "a9"16

- 2M6"a"9J - Kl1 6[Z"119"9 + Mg9"1 - 2M~"1] - Cl16[ 2M29M9 + "99"2 - Z"~M2]
2 2

- K126[2"39"19 + "99M3 - 2M9"3] - C126[Z"49"9 + "99"4 - 2"9"4]
2 2

- K136[2MSgMg + Mgg"S - 2Mg"S] - CI36[2M69"9 + "99"6 - 2Mg~]

'~33 = 2M34

~34 = ~44 - K210M13 - C210"1Z3 - K220M33 - C220"34 - K230M35 - C23oM36 + F24M37

+ F2SM3S + F26"39 - K214[M13~7 + "17M3 + "37"11 - 2M1M3M7] - C21 4

[M23"~+ "27"3 + M37M2 - 2M2M3M7] - K224[2M37M3 + M33"7 - 2"jM7J

- C224["34~7 + "37"4 + "47"3 - 2M3"4"7] - K234["3S"7 + "37"5

+ "57"3 - 2M3"S"7] - C234[M36"7 + M37M6 + "67"3 - 2M3"6"17]

- K215[M13"S + "lSM3 + "3S"1 - 2M1"3MS] - C21 5[M23Ma + "ZaM3

+ "3aM2 - 2M2M3Ma] - K22S[ 2M 3aM3 + "133"a - 2M~Mg] - C225[M34"a

+ "13S"14 + "48M3 - 2"3M4"18] - K23S[M3S"a + "3SMS + "58"3 - 2M3"SMa]

- C235[M36MS + M38M6 + M6aM3 - 2M3"6Ma] - K216[M13M9 + M1g"13

+ "39"1 - 2M1M3"9] - C216["23M9 + "29M3 + "39"2 - 2M2"3M9]
2

- K226[2M39M3 + "133"19 - 2M3Hg] - C226["34"9 + "39"14 + M49"13

- ~3M4Mg] - K236[M35M9 + "139"5 + M59M3 - 2M3"S"1g] - C236[M36M9

+ "39"6 + "69M3 - 2"3"16M9]

10135 = M45 + M36

~36 = "'46 - K310M13 - C310M23 - K320M33 - C320M34 - K330M3S - C330"'36

+ F34M37 + F3SM3a + F36M39 - K314[M13M7 + "17M3 + 1~37M1 - 2M1M3M7]

- C314[M23M7 + "27M3 + "37M2 - 2M2M3M7] - K324[2M37M3 + "33M7 - 2"jM7]

- C324[M34M7+M37M4+M47M3-2M3M4M7]-K334[M35M7+M37MS+M57M3-2M3MSM7J

- C334[M36M7+M37t16+M67M3-2M3M6M7]-K3lS[M13MS+MlSM3+M3SM1- 2M1M3Ma]
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- C31S[MZ3MS + ~ZRM3 + M3SMZ - 2M2M3MS] - K32S[ 2M 3sM3 + M33MS - lMjMs]

- C325[H34MB+M38"4+M48M3-2M3M4M8]-K33S[H3S"8+M38~5+MS8M3-2M3~5M8]

- C33S[M36MS+M38M6+M68M3-2M3M6~S]-K316[M13Mg+~19M3+M39Ml-2MIM3M9]

- C316[M23~9+M29M3+~39M2-2M2M3"9]-K326[2M39"3+M33"9-2"~Mg]

- C326[M34Hg+M3gM4+M4gM3-2M3M4M9]-K336[H3SMg+M3gMS+MS9~3- 2M3MSMg]

- C336["36M9 + "39M6 + M69M3 - 2M3"6M9]

lot37 = M47 - a IM37

lot38 = M48 - a 2M38

~39 = H49 - a 3~39
t. 2 ~ 2 2
1"\44 = 2n~1~1l[F21 - 2F21K211Ml-2F21K221M3-2F21K231HS + K211Mll + K221M33

2 2
+ K231MSS + ZK211 K221M13 + ZK211K231HIS + 2K221 K231H3S] + 2rt eZ ~ 22

2 2 2 2
[F22 -2FZZK212Ml-2F22K222M3-2FZZK232MS+KZI2Hll+KZ22M33+K232 MS5

Z 2
+ ZK212KZ32M13 + 2K212K232MlS + 2K222K232H3S] + Ote3 ~33[ F23

2 2 2 2 2 2
2F23K213Ml-2F23K223M3-2F23K233MS + KZ13 "11 + K223 H33 + KZ33 "S5

+ 2K213K223M13 + ZK213K233MlS + ZKZ23K233M3SJ + 2{ -K210M14 - C210M24

- K220H34 - C220"44 - K230"4S - C230M46 + F24M47 + F2SM4S + F26M49

- K214[M14~7+M17M4+M47M1-2MIM4M7]-C214[M24M7+M27"4+M47M2-2M2M4M7]

- K224[M34"7 + "37M4 + M47M3 - 2M3"4M7] - C224[ 2M47"4 + "44"7 - 2M~7J
- K234[H4SM7+M47MS+MS7"4-2M4MSM7]-C234[M46M7+M47M6+M67M4-2"4~"7)

- K21S[M14"S+MlS"4+M48"1-2Ml"4MS]-c21S["24"8+M2S"4+M4SM2-2MZM4MS]

- K22S[M34MS + "38M4 + M48M3 - 2M3M4M8J - C225[ 2M4SM4 + "44"S - 2M~8]

- K23S[M4SMS+M4SMS+MS8M4-2M4"SMS]-C23S[M46MS+M4SH6+M6SM4-2M4M6MS]

- K216[M14Mg+M19M4+M4gM1-2M1"4"9]-C216[M24Mg+M2gM4+M4gM2- 2M2M4MgJ

- K226[M34Mg + M39"4 + M4gM3 - 2M3"4M9J - C226[2M49M4 + M44"9 - 2M~9J

- K236["4SMg+M4gMS+MS9"4-2M4MSMgJ-C236["46Mg+M4gM6+M6gM4-2M4M6Mg~

M45 = M46-K210M15-C210"25-K220M3S-C220M45-K230MSS-C230M56+F24MS7
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+ FZSMS8+F26MS9-KZ14[MlSM7+M17MS+MS7Ml-ZMlMSM7]-CZ14[MZSM7+M27MS

+ M57~2-ZM2MSM7]-KZ24[M3SM7+M37MS+MS7M3-2H3MSM7]-CZ24[M4SM7+M47MS

2
+ MS7M4-2M4MSM7]-K234[ZMS7MS+MS3M7-2MSM7]-CZ34[MS6M7+MS7M6+M67MS

- ZMSM6M7]-KZlS[MlSM8+M1aMs+MsBMl-2MlMsMa]-CZ1S[Mzs"a+M2aMS+MSSMl

- 2M2MSMB]-KZ2S[M3SMa+M3SMs+MSaH3-2M3MsMa]-CZ2S[M4SMa+M4SMs+MSBM4
2

2M4"S"B] - K23S[2MSBMS + "ssMa - 2"SMS] - C23S["S6"S + "SSM6 + "6BMS

- 2MSM6MS]-K216[MlSMg+MlgMS+MSgMl-2MlMSMg]-C216[MZSMg+M2gMS+MSgM2

- 2MZMSMg]-KZ26[M3SMg+M39MS+MS9M3-2M3MSMg]-CZZ6[M4SMg+M4gMS+MSgM4
Z

- 2M4MSMg]-K236[2MSgMS+MSSMg-ZMSMg]-C236[MS6Mg+MS9M6+M69MS - 2MSM6Mg]

~46 = 2n;i.~11[F21F31-(F21K311+F31K211)Ml-(F21K321+F31K221)M3-(FZ 1 K331

+ F31K231)MS+KlIIK311M11+K221K321"33+K231K331MSS+(K211K321+K221K311)
2

"13+(K211K331+K311K231)M1S+(K221K331+K231K321)M3S]+ 2ne2 ~22[F22F3Z

- (F Z2K312 + K3ZK21Z)M1 - (F 2ZK322 + F32K22Z)M3 - (F22K332 + F32K232)MS

+ KZ1 2K31ZMll + KZZ2K3ZZM33 + K232K332MSS + (K 212K32Z + K222K312)M13
2

+ (K212K332 + K3IZKZ32)M1S + (K222K332 + K232K32Z)M3S] + 2ne3 ~33[F23F33

- (F 23K313 + F33K213)M1 - (F23K323 + F33K223)"3 - (F23K333 + F33K233)MS

+ K213K313MI1 + K223K323M33 + K233K333MSS + (K2I3K323 + K223K313)M13

+ (K Z1 3K333 + K313K233)M15 + (k223K333 + K233K323)M3S] - Kll0M16 - ClI0MZ6

- KZ20M36 - C22oM46 - KZ3oMs6 - CZ30M66 + F24M67 + FzsM6a + F26M69 - K214

[MI6"7 + M17"6 + "67"1 - 2M1M6"7]-C214[M26"7+MZ7M6+M67"Z-2MZM6M7]

- K224["36M7+M37"6+M67"3-2M3M6M7] C224[M46"7 + M47"6 + "57"4 - 2M4M6M7J
2

- K234[MS6"7 + MS7M6 + "67MS - 2MS"6"7] - CZ34[ 2M67"6 + "66"7 - 2M6M7]

- K21S[M16MS+MlSM6+M6SMl-ZMlM6Ma]-CZlS[MZ6MS+M2SM6+M6SM2-2MZM6M8J

- K2?S(M36M8+~38M6+M68M3-2M3M6"SJ-C22S[M46MS+M4SM6+M68M4-2M4M6MS]
2

- KZ35["S6"8 + "5S"6 + M6SMS - 2MSM6"S] - C23S[2"68"6 + "66M8 - 2M6M8]

- K2I6[M16M9 + MI9M6 - 2MIM6M9J - C216[M26M9 + M29M6 + "69M2 - 2M2"6M9]
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K2?6[M36Mg+M39M6+M6gM3-2M3M6Mg]-C226[M46Mg+M4gM6+M6gM4- 2M4M6M9]
2

- K236["S6"9+MSgM6+M6gMS-2MSM6"9]-C236[2"69"6+"66"9-2"6"g]-K310"14

- C310"Z4-K320"34-C3Z0"44-K330"4S-C330"46+F34"47+F3S"4S+F 36"49

- K314[M14"7+M17"4+H47Ml-2Hl"4"7]-C314[MZ4"7+MZ7"4+H47"2-2MZ"4M7J

- K3Z4[M34"7 + M37"4 + "47M3 - 2M3"4"7] - C324[ 2M47"4 + "44"7 - ZM~7J

- K334["4S"7+"47"S+"S7M4-2H4"S"7]-C334["46"7+M47"6+M67"4-2M4"6"7]

- K31S[M14Ma+M18M4+M48M1-2M1"4MS]-C31S[Mz4"a+M2aM4+M4S"Z-ZMZ"4"S)
2

- K325[M34"a + "38M4 + M4aM3 - 2M3"4"S] - C325[ 2M48"4 + "44"a - 2M4MaJ

- K335["4S"a+M4SMs+MsaM4-2M4"S"aJ-C32S[M46MS+M4SM6+M6SM4-2"4"6"S)

- K316[~14M9+M19"4+M49"1-2Ml"4MgJ-C316["24M9+M29"4+M49"2-2M2M4M9 J

2
- K326["34"9 + "39"4 + "49M3 - 2H3"4"9J - C326[2"49"4 + "44"9 - Z"4"9J

- K336[M45"9+M4gMS+M59"4-Z"4"S"9]-C336["46"9+"49"6+M69"4-ZM4"6M9]

~47= ~1"47-K210M17-C210M27-K220~37-C220M47-K230"57-C230M67+F24"77+ F 2SM78
2 2

+ F26M79 - K214[2"17"7 + "77M1 - 2M 1"7] - C214[ 2M27M7 + "77"2 - 2"7M2J
2 2

- K22 4[2M37"7 + "77"3 - 2"7"3J- C224[2M47"7 + "77"4 -2"7M4] - K234[2MS7"7
2 2

+ "77MS-2"7"S]-CZ34[2"67"7+"77"6-2M7"6]-K21S["17"a+"lS"7+"7a"1- 2"1"7"a]

- C21S["27"a+M2a"7+"7S"2-2M2"7MS)-KZ2S[M37"a+M3S"7+"7S"3-2M3M7"a)

- C22S[M47Ma+M48M7+M7S"4-2M4"7"a]-Kz3S[Ms7"a+MsaM7+"7a"s-ZMsM7"a]

- CZ3S["67"a+"6S"7+"7S"6-2M6"7"a]-K216[M17"9+M19"7+M79"1-ZM1"7"9]

- C216[M27"9+M29"7+"79"2- 2M2"7"9J-K226[M37"9+M3gM7+M79"3- 2M3"7"9J

- C226["47Mg+M49"7+M79"4-ZM4M7"9)-K236[MS7"9+MS9"7+M7gMS-2MSM7M9J

- C236(M67Mg+M69M7+M79"6-~6M7"9)

~48= ~2M4a-K210M18-C210M2a-K220M3~-C220M4a-K230M58-C23oM68+F24M78+F2SMa8+F26M89

- K214[M17M8+M18M7+"78Ml-2MIH7MaJ-C214[M27"a+M2aM7+"7aMz-2M2M7M8)

- K224["37MS+M38r~7+M78M3-2"3M7"S]-C224[M47M8+M48M7+M78M4- 2M4M7"S]

- K234[MS7M8+MS8M7+M7aMs-2MsM7M8J-C234[M67Ma+M6BM7+M7aM6-ZM6M7MBJ
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2 2
- KllS[2MlaMa+Ma8Ml-2MaMl] - C21S[2M28M8+"8aM2-2MaM2]-K22S[2M3aM8 + MaaM3

2 2 2
- 2"8M3]-C22S[2"4S"8+MSS"4-2"8"4]-K23S[2M5a"8+"a8"S-2"a "5]-C23S

2
[2M68Ma+"asM6-2"8M6]-Kl16["lS"9+"19"8+"SgMl-2Ml"SMg]-Cl16["2aMg

+ "29Ma+MagMl-2H2MS"g]-K226["3S"9+M3gM8+M89"3-2M3"S"9]-C226["48"9

+ "49"a + "a9"4 - 2M4"a"g] - K236["S8Mg + Msg"a + "89"S - 2Ms"a"g] - C236

["68"9 + "Gg"a + "ag"6 - 2M6"8"9]

~49= ~3M49-K210"19-C210M29-K220"39-C22OM49-K3l0MSg-C23OM69+F24M79+F2SMa9+F26Mgg

- K214["17"9+M19"7+"79"1-2M1"7"9]-C214["27Mg+M2gH7.+M1gMl-2M2M7"g]

- K224[M37Mg+M39M7+M7gM3-2M3M7"9J-Cl24[M47"9+"4gM7+M7gM4- 2M4"7M9J

- K234[MS7M9+MSg"7+M7gMS - 2MS"7M9] - C234[M67"9 + "69M7 + "7gM6 - 2M6M7M9]. .,
- K21S["la"g+M1gMa+"ag"1 - 2"1"8"9] - C215["28"9 + "2g"a + "89M2 - 2"2"a"g]

- K22S["3aMg+M39Ma+MagM3 - 2M3"a"g] - C22S["48"9 + "49"a + "a9M4 - 2M4MaMg]

- K23S["S8"9+MSgMa+Mag"s - 2M5"8"9J - C23S["68M9 + "Gg"a + "a9"6 - 2M6"a"gJ
2 2 l

K216[2M19Mg+MggM1-2MgM1]-C216[2M2gM9+MggM2-2MgM2J-K226[2"3gMg+MggM3- 2MgM3J
2 2 2

- C226[2M49"g+MggM4-2"g"4J-K236[2"Sg"g+Mgg"S-2"gMS]-C236[l"69"9+"9gM6- 2"9"6]

~SS= 2MS6

~S6= ~6-K310"lS-C310"2S-K3l0M3S-C32oM4S-K330"SS-C330MS6+F34"S7+ F3SMSa+ F 36"S9

- K314[M1S"7+M17"S+MS7"1 - 2"1"S"7] - C314["2SM7 + "27"S + "S7"2 - 2M2"S"7]

- K324["3SM7+M37"S+"57M3 - 2M3"S"7] - C324["4S"7 + "47"5 + "S7"4 - 2M4"5"7]
2

- K334[2"S7"S + "55"7 - 2MS"7] - C334["S6"1 + "57"6 + "67"S - 2MS"6M7]

- K31S[M1SMa+MlaMs+MsaM1 - 2M1"s"a] - C31S["2SMa + "2aMS + "SaM2 - 2Ml M5MaJ

- K32S[M35Ma+M3aM5+"Sa"3 - 2M3"5"a] - C325["45"a + "4aM5 + "SaM4 - 2M4MSM8J
2

- K33S[2"saMs+M55"a-2MsMa] - C33S["S6"a + "SaM6 + "6aMS - 2Ms"6"a]

- K316[M1SMg+M19M5+MSgMl-2M1"S"9]-C316["2SMg+MlgMS+MSgMZ-2M2M5Mg]

- K326[M3SMg+M3gMS+M3gM3 - 2M3"S"9] - C326["4S"9 + M4gM5 + MSgM4 - 2M4M5M9]
2

- K336[2MS9MS + MSSMg - lMSMg] - C336["56M9 + MS9"6 + M69MS - lMSM6MgJ

MS7= "67 - a 1MS7
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1158="'6R - a 2"'58

lo159= M69 - a 3M59
L _ 2 [2 2 2 7.
'"'66- 3te1 /%Ill F31 - 2F31K311"1l-2F31K321Mr2F31K331MS+K3ll"'1l+K321M33+K331""S5

2 2
+ 2K311K321"113 + 2K311K331"lS + 2K321K331"lS] + &e2 ~22[F32 - 2F32K3121'11

: 2 2 2
- 2F32K322"3 - 2F 32K332"1S + K31 z"11 + K322"33 + K332"SS + 2K31 2K322"'13

2 2
+ 2K312K332"1lS + 2K322K332M3S] + Q e3 ~ 33[F33 - 2F33K313"1 - 2F33K323"'3

, 2 2 2
2F33K332M5 + K313"1ll + K323"33 + K333MS5 + 2K313K323M13 + 2K313K333M1S

+ 2K323K333"13S] + 2{ -K310"'16 - C3101l126 - K320"136 - C320"146 - K330M56.
- C330"'66+F34M67+F3SM6B + F36M69 - K314[M16"7 + M17"16 + M67"'1 - 2~1"16M7J

- C314["126M7+M27"16+M67"12 - 2M2"16"17] - K324["'36M7 + "37M6 + "67M3 - 2"13M6M7J
. ."

- C324[M46"17+M47"16+M67M4-2"t4"'6"17] - K334["1S6"17 + "157"16 + M67"1S - 2M5M6"17]
2

- C334[2"167M6 + M66"17 - 2M6'17] - K31S[M16Ma + "118"16 + ~a"11 - 2"11M6"1a]

- C31S["126"18+"128"16+"168M2-2M2"16Ma] - K325[M36M8 + M38M6 + M68"13- 2M3M6M8]

- C325[M46M8+M48M6+M68M4-2"14M6MS] - K335[M56"'S + M5S"'6 + "6SMS - 2"1S"'6MSJ
?

- C33S[2"168M6 + "'66"1S - 2"16"'8] - K316[M16"19+ "'19"16 + "G9Ml - 2M1M6Mg]

- C316["126Mg+M29M6+M6qM2-2M2"16"1g] - K326[M36M9 + M39"16 + M69M3 - 2M3M6Mg]

- C326[M46Mg+"149M6+M69M4-2M4M6Mg] - K336["'S6M9 + "59"16 + "69M5 - 2M5"'6M9]
2

- C336[2M6gM6 + "66"9 -2M6MgJ}

lo167 = -a1M67-K310"117-C31G"1Z7-K320"37-C320"147-K330MS7-C330"167+F34M77+F3SM7S

+ F36"79-K314[2M17"7+M77"1-2M~M1]-C314[2M27M7+M77M2-2M;M2]-K324[2'137M 7
2 22

+ "77M3-2"7"3]-C324[2M47"7+M77"4-2M7"4] - K334[2MS7"7 + "77"5 - 2 "7M5]
2

- C334[2M67M7 + "77M6 - 2M7"6] - K31S["17"a + "lS"7 + "7aM1 - 2M1M7MS]

- C31S[M27MS+M2SM7+"178M2-2M2"17M8] - K32S["37"S + "'38"7 + "7aM3 - 2M3M7MSJ

- C325[M47M8:M48M7+"78M4-2M4M7M8] - K335[MS7MS + "SSM7 + "7SMS - 2M5"17M8J

_ C335[M67"18+M68M7+M78M6-2M6M7MSJ - K316[M17M9 + MlgM7 + "79M1 - 2M 1M7M9J

_ C316[M27Mg+M2gM7+M79M2-2M2M7MgJ-K326[M37M9 + "39"17 + M79M3 - 2M3M7M9J

_ C326[M47Mg+M49M7+M79~4-2M4M7Mg]-K336["'57M9+ M59~7 + M79M5 - 2MSM7MgJ
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- C336[M67Mg + M69M7 + "79M6 - 2M6M7M9]

~6S= ~2M6S-K310MI8-C310M28-K320"38-C320"48-K330"58-C330M68 + F34M78 + F3SMS8

+ F36Ma9-K314[M17Ma+MlSM7+M7aMl-ZMlM7Ma] - C314[M27MS + M28M7 + "7SM2

- 2MlM7Ma]-K324["37"S+M38"7+"78"3 - 2M3M7"8] - C324["47"a + M4S"7 + M78M4

- 2M4M7~a]-K334[MS7M8+MS8M7+"7a"s-2MsM7Ma] - C334[M67Ma + ~8M7 + M78M6

- 2M6M7M8J-K31S[2"18M8+MasMl-2"~lJ-C31S[2Mla"8+M88M2-2M~2]-K32S[2M38M8

+ H88M3 -2M~M3] - C32S[2M48M8+"a8M4-2"~4]-K335[2MS8M8+M8aMs - 2M~M5]
2

- C33S[2M68"a+"a8M6 - 2Ma"6] - K316[M18"9 + "lgMS +. "SgMI - 2M1MSMg]

- C316["2SMg+M29Ma+MagMl-2M2MaMg] - K326[M3a"9 + "3gMa + Mag") - 2M3M8MgJ

- C326[~4aM9+M49Ma+Ma9M4 - 2M4MaMg] - K336["S8M9 + "Sg"a + MagMS - 2MSMSMgJ

- C336[M6SM9 + "69M8 + MSgM6 - 2M6MaMgJ

~6q= ~3M69-K310M19-C310M29-K320M39-C320M49-K330MSg-C330"69+F34M79+F3SM89+F36Mg9

- K314[M17M9+M19M7+M79Ml-2M1M7MgJ-C314[Ml7Mg+M2gM7+M79M2-2M2M7M9]

- K324["37"9+M39"7+M7gM3 - 2M3"7M9] - C324[H47"9 + "49M7 + H79"4 - 2M4M7"9J

- K334[MS7Mg+MS9M7+M7gMS - 2MSM7M9] - C334[M67M9 + "69M7 + "79"6 - 2M6M7M9]

- K31S["la"g+M1gMa+MSgM1 - 2M1"a"g] - C31S["2aMg + "2g"a + "a9M2 - 2M2MaM9]

- K32S["3aMg+M39Ma+"a9M3 - 2M3"aM9] - C32S[M4SM9 + M4gMa + "ag"4 - 2M4MS~gJ

- K33S[Msa"g+MSgMS+MSg"S - 2MS"S"gJ - C33S[~aMg + "69M8 + "a9~6 - 2M6SM8MgJ
222

- K316[2M19Mg+M99"1+~9M1]-C316[2Ml9Mg+M99M2-2H9~]-K326[2"39Mg+MggM3-2MgM3]
222

- C326[2M4gMg+MggM4-2H9"4]-K336[2MSgMg+M99MS-2H9"S]-C336[2"69"9+"99"6- 2M9"6]

J1n = -ZI 1"n + 2Jt ~44

l~7S= -(0:1 + a2)M78

l-179= - (0: 1 + a 3 )M79

1.188= -20: 2M8S + 2Jt ~55

"'89= -(0: 2 + a 3)M89

J1g9= - 20: 3 '199 + 2n ~66 (C- 2)
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Appendi x 0

COmparison of Equilibrium Solutions

In this appendix, the equilibrium solutions given in Chapter 3 are

compared with those obtained by other more precise methods. Restituting the

nonlinear terms into the equations for the flap-lag-torsional motion, Eqs. (3-

39), (3-40) and (3-41), we obtain

e ll + "'" ." K 0 + (K + 1 'In + K + 3 -f), 3 -gv.e q>'l-e -aePpc aa JPear;r;e "2 g'C e-"2 ~l-e

(D-1 )

(D- 2)
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(0-3 )

Those nonlinear terms are 2Bet~ - ~g ~ffe in Eq. (0-1) and -2B e(l +r;~)a~ in

Eq. (0-2).

The system of Eqs. (0-1), (0-2) and (0-3), can be replaced by six first

order differential equations by letting xT = [xl x2 x3 x4 Xs x6] =

Cae B~ Ce r;~ Qe Q~]. They are

. .,
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Xl =
6 (0-4 )

Eq. (0-4) can be solved numerically for a given parameter combination, using a

suitable computer routine; e.g. OGEAR routine of IMSL computer software.

Another alternative to finding the equilibrium solutions is similar to

that used in Chapter 3. except that the nonlinear terms are retained in Eqs.

(0-1) and (0-2). By substituting Eq. (3-42) into Eqs. (0-1), (0-2) and (0-3),

and equat i ng the coeffi ci ents of cos O/J, cos 1/1 and sin 11, we obtai n a system

of nine algebraic equations which can be expressed as the summation of Eq. (3­

43) and some additional terms due to the nonlinearity; namely,

01 + N = H (D- 5)

where 1, 0 and H are the same as Eq. (3-43). N is a nine by one column matrix

of nonlinear terms. The nonzero components of N are
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3- 3-
"1 = -B~c+B6s -'{gBo's -"{ 9B st o

3- 9- 3-
"2 = .~ ot C • '2" 9 BcJ 0 • "S" 9 Bf s ·'S'9B c t C

3- 3-
"3 = tl3cfs - 8' 9 B~C - 8' 9 BCl;S

"4 = -B oB C. C - B08 sr. s

1 2 1 2
"s = ~Jc - Bs86c + "2 Bc1;s - lBstS

. '.,
1 2

- ~08S
1 2 (0-6)"6 = - "2 BC 1; C - BS8 C. S +"2 8 s t c

Eq. (0-5) has the same form as that studied by Klotter [49J. He utilized the

orthogona1i ty of functions cos 0., cos. and sin tjJ and suggested that for the

first approximation the nine algebraic equations can be decomposited into three

sets of three algebraic equations multiplying each of the orthogonal functions

and integrating over the period Or •

The system of Eq. (0-5) also can be solved numerically without being

simplified to three separate sets.

For the comparison of the equilibrium solutions, the plot of periodic

solutions obtained by the two methods mentioned above and the one used in

Chapter 3, are presented. Becaus~ of a large number of parameters involved,

the comparison is limited to those parameter values given in Chapter 6. Fig.

0-1 shows that the equilibrium solutions obtained from Eq. (3-43) and Eq. (0-5)

respectively are almost identical, and are only slightly different from those

obtained from the original Eqs. (0-1), (0-2) and (0-3). These results
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indicate that the nonlinear terms have little effect on the equilibrium

solutions and that the higher harmonic components in the exact solutions are

negligible. Therefore. the linearized harmonic balancing method is an

adequate approach in the present case.

. .,
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Appendix E

Linearized Moment EquationsforStability Analyses in the Sense of Bolotin

In this appendix, the detailed moment equations linearized according to

the Bolotin-Owen procedure are given. In these equations, 11,' and 11 .. denote
lJ

E[X i ] and E[(Xi"'l1i)(X j ""tJ j)J respectively; the overdo~ denotes one

differentiation with respect to the non-dimensional time~. The moment

equations for the stability analysis of flapping motion are. .,

•
111 = 11 2

~ 2 = - Kll(JlI-Cl1(Jl2- K11.fl13- C11.fl23- K11 SJ 14-C11SJ 24

~ 11 = 2u 12

~ 12 ~ 22+ FlCP 1- K11 cP 11- CU (Jll/ F1.fl13+ F1SJ 14+ F16 U 15

·11 13 = 1.1 23 - a lu 13

·1114 = lJ 24 - at 14

•
lJ 15 := 11 25 - a:f 15

~ 22 = 2F10 1.1 2 - 2KII 0 11 12 - 2C 110 lJ 22 + 2F1.fJ 23

2 2 2 2
+ 2F191 24 + 2F1ftl 25 + a.r [KIlle1 t 11 + K112e2 t 22] u 11

~ 23 = - Kll CJl13 - Cl1CJl 23 - a lu 23 - (1 33 (Kll~1 + Cl1~ 2)

~24 = - Kll CJl14 - Cl1 eJJ24 - (144(K ll !f11 + Cll !f12) -at24

•
IJ 25 = -K l1 (}J 15 - Cl1 (}J 25 - OJ 25 ( £-1)



151

The moment equations for the stability analysis of coupled flap-lag are

=\.12

:z -Kll()ll - Cll()l 2 - K12()l 3 - C12()l4

- Kll4115 - C11~ 25 - K124J 35 - C124 II 45

- Kll~ 16 - CU~ 26 - K12~ 36 - C125J 46 - KU8117

- CllEP 27 - K12ff 37 - C126 lJ 47

=1J 4

~ 4 = -K21 ()l1 - ~ l(}J 2 - K22GJ 3 - C22GJ 4

-K2i~·I5 - ~14J.l 25 - K224J.l 35 - ~24J 45 - K21 9116

- ~1~ 26 - K22~ 36 - ~2~ 46 - K21BJ 17 - CzI81 27

- K225l 37 - Cz26Jl47

~ 11 = 2u 12

~ 12 =1122 - Kll OJ 11 - CllOJ 12 - K120J 13 -C12OJ 14 + F14J 15 + FlSJ 16

+ FI 6l-' 17

U13 = lJ 23 + II 14

~ 14 = lJ 24 - K2lC'J 11 - C2IlY 12 - K220J 13 - C220J 14 + F241I5 + F25116

+ F26l-' 17

lJ 15 =lJ 25 - a III 15

.-
<

'" ..

:

..,
\.I

'.:'"
1

, .- \.I 2
"

. '.",
,;,.

. .~
.. ,. ..
"
~

"t". .
1J 3

.
\.I 16 =lJ 26 - a tJ 16.
II 17 = lJ 27 - a Jl117

~ 22 = - 4rr ei •II [F11 K11111 1 + F11KI2llJ 3J

- 4n e~ 22 [F12K11~ 1 + F12K122-l3J - 4rr e~ t 33
2 2 . 2

[F13K11Jl1 + F13KI 2Jl 3 J + 3r e1 t 11 [K U1tl 1l + K12l tl 33

2 2 2
+ 2Kl ll K12111 13J + 3r e2 ~ 22 [K Il2 II 11 + K122l 33 + 2K1l2 K122-J 13J
222

+ 3r e3 • 33[K113 lJ 11 + K123 lJ 33 + 2K1l 3K12Jl13J - 2Kll OJ 13
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- 2C 11 (Jl22 - 2K 12(Jl23 - 2C 12(Jl24 + 2F l4J 25 + 2F 191 26 + 2F 16 II 27

~ 23 = 11 24 - K11(JJ 13 -CU(JJ 23 - K120J 33 - C120J 34 + F14l 35 + F191 36

+ F1~ 37

~l4 =-aef6 1l [F llKlllll 1 + Fl1K1l1ll1 + FU Kl211l 3 + Fl1K1211l 3]
Z' 2

- 2rel t2Z[FIZK21l-l1 + FZlK11l-l1 + F12K22~3 + FZlKlll-l3 ] - Ore3 t 33 ,
l

[F13Kll3J 1 + F23Kll3J 1 + F13K223J 3 + Fl3K12:Jl3 ] + Or e1 t 11
, 2

[K111K211U 11 + K121K221U 33 + K1l 1K221U 13 + K121 K211U13 ] + Or e2 • 22
2

[K1l2K21~ 11 + K122K22~ 33 + K112K22~ 13 + K122~21~ 13] + Or eZ t 33

[K1l3K21J1 11 + K123K22Jl 33 + K1l3K22Jl13 + K123 K213J 13 ] - KllOJ 14

- C11(JJ 24 - K12CJl34 - C120J 44 + Fl 4l45 + FI 9146 + FUtl 47 - K210J 12
. t"

- C1l(Jl 22 - K22()J 23 - C22(Jl 24 + F24l 25 + Fl 9126 + F2G' 27

~ 25 = -n III 25 - Kll()J 15 - CUOJ 25 - K120J 35 - CI20J 45 - a 55 (Kll~ 1 + Cll.f' 2

+ K124l 3 + C12~ 4)

~ 26 = -a ZJ 26 - Kl10J 16 - CllOJ 26 - K120J 36 - C120J 46 - a 66 (K 115M1 + C115M2

+ K1251 3 + C12 91 4)

~ 27 = -a :f27 - Kl1 (}J 17 - CllGJ 27 - K12GJ 37 - C12GJ 47 - a 77 (K11 tf 1

+ C11 BJ l + K12G' 3 + C12fYl4)

~ 33 = 4J 34

~ 34 = 1144 - KZHJ!13 - CZ1 (}J 23 - Kl2(}J 33 - C22(}J 34 + F24l 35 + FZ9J 36 + F2tP 37

•
11 35 = 11 45 - a III 35
•
11 36 = 11 46 - a 't 36
•
II 37 =1147 - a 'f37

~ 44 = - 4. ei 6 11 [F 21 K211fJ1 + F21 K221fJ 3]
2 2

4ne2¢22 [F22K212fJl + F22K222fJ3J - 4ne3 ~33
2 2 2

[F23K213fJl + F23K223fJ3] + 2" e1 ~11[K211fJl1 + K221 fJ33
2 2 2

+ 2K211K221fJ13 J + Or e2 • 22[K212 1111 + K22t 33 + 2K212K222 II 13J

+ 2 [2 + 2 + 2K213K223" ] - 2K21~' - 2C 21 1>·Or e3 • 33 K213 II 11 K223 II 33 ~13 v'-' 14 v-' 24
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- K22GJ 37 - C22GJ 47 - C1n(K216J 1 + C216 tJ 2

(E- 2)

- 2K22(1134 - 2C22(1144 + 2F 24145 + 2F 29J 46 + 2F 29147

~ 45 = -a lu 45 - K21~ 15 - C21 ()l 25 - K22 cy 35 - C22QJ 45 - (J 55 (K214tJ 1 + C2141 2

+ K224J 3 + C2241 J 4)

~ 46 • -a t 46 - K2IC)J 16 - C2H).I 26 - K22Gl 36 - C22Gl 46 - CJ 66(K 21 SJ 1 + C21 9J 2

+ K2291 3 + C22 51l 4)

U47 = -:l i47 - K21 (}J 17 - C21GJ 27

+ K22 GJ 3 + C22 61 1 4)

Finally, the moment equations for the stability analysis of the coupled flap-

lag-tors;o"~motion are

.
lJl =u2

~ 2 = -KU (Jll - Cl1()l2 - K12(}l 3 - K13(JJ 5 - C13(}J 5

- Kll~ 17 - C1l4fJ 27 - K124iJ 37

- C124-147 - KI34JJ 57 - C134JJ 67 - Kll9118 - CllS"- 28 - K129'- 38

- C125' 48 - K135!' 58 - C135'! 68 - K1l6' 19 - Cl16'l29 - K12&4 39

- C12@l49 - K136t' 59 - C136'"! 69
•
lJ3 =u4

~ 4 = -Kl1 (}J 1 - C21(}J 2 - K22(}J 3 - C22(}J 4 - Kl3(JJ 5 - C23(}J 6

- K214J 17 - C21~ 27 - K224l-' 37

- C220fJ 47 - K234!l 57 - C23¢'67 - KZI9-' 18 - CZ 1B' 28 - K22 5- 38

- C225 1 48 - K23~' 58 - C23B t 68 - K216J 19 - CZ 16J 29 - KZ261 39

- C22@l49 - K236Jl59 - C23&169



.'

"

,.,.

1S4

•
\JS=\J6

~ 6 z: -K31CJll - C31CJl2 - K320J 3 - C32(}J 4 - K33CJl 5 - C330 \J 6

- K31 .fJ 17 - C31 4J-l27 - K234J-l37

~24J 47 - K33~ 57 - C334J 67 - K319118 - C31 9128 - K32SJ 38

C32P 48 - K3391 58 - C33 91 68 - K318119 - C31 8129 - K328139

- C32ft! 49 - K33fYl 59 - C33 fYl 69

~ 11 = ~ 12

~ 12 = \J 22 - Kll (Jlll - Cl10J 12 - K12(}J 13 - C12(}l14 - K13CJl15 - C130 \J 16

+ F1\J
ti'7 + F1SU 18 + F1&J 19

•
\J 13 = \J 23 + \J 14

~ 14 = \J 24 - K21 C\J 11 - C11~ 12 - K22~ 13 - Cz2~ 14 - K23~ 15 - Cz3~ 16

+ F24J-l17 + F2SU 18 + F2&J 19

•
lJ 15 = \J 25 + \J 16

~ 16 = \J 26 - K31 (1111 - C31 (1112 - K32(Jl13 - C32cP 14 - K33(1115 - C33(1116 + F3~ 17

+ F39118 + F3fil19
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+ 2{ -KllC'J 12 - CllCJl 22 - K12CJl 23 - C12CJl 24 - K13()l25 - C13CJl 26 + F141 27

+ Fl 91 28 + F16u29}

U23 I: }J 24 - KllCJl 13 - CllCJl 23 - K12CJl 33 - C1Z(}J 34 - K13(}J 35 - C13(1136 + F14J 37

+ F15p 38 + F16J 39

il 24 = &ei ~ll [- (FllK211 + FZIK111}.Jl - (FllKZ21 + F21K1Z1}.J3

- (F11KZ31 + F21KI31)>J 5 + K1l1K21f-J 11 + K1Z1KZ2l'l33 + K131 K231J 55

+ (K11 1K221 + K211K121)u13 + (K111K231 + KI31K211);15 + (K121KZ31
2 .

+ KI31 K221)1 1 35] + ZreZ I Z2 [- (F12K212 + F2ZK1l2h.ll - (F1ZK222

+ F2ZK122)U 3 - {F12K232 + F22K132W 5 + K112KZ12lJ II + K122K22l.l33. ..,
+ K132K232J S5 + (K 11 2K222 + K212K122}; 13 + (Kl12K232 + K132K212}J 15

2
+ {KI22K232 + K132K222 W35] + 2w e3 • 33[ - (F13K213 + F23K1l3~ 1

- (F13K223 + F23K123>U 3 - (F13K233 + F23K133>U 5 + K1l3K21 :Jlll + K123KZ2:Jl33

+ K133K23Jl55 + (K113K223 + K21 3K123>U 13 + (K113K233 + K133K213~ 15

+ (K123K233 + K133K223hJ 35] - KU lY14 - Cll f1J 24 - K12f1J 34 - C12(JJ 44

- K13CJl 45 -C130M46+F1~ 47 +F1ftl48 +F1Gl49 -K210MIZ-~1(1J 22 -K22(JJ 23

- Cz2()l 24 -K23CJl 25 -Cz3()l 26 +F241 27 +F2P 28 +F26l129

~ 25 = 1J 26 - Kll()l15 - CllCJl 25 - K12CJl 35 - CIZ()l45 - K13CJl 55 - C13(Jl56 + FI 41 57

+ Fl 51J 58 + F1~ 59

U26 = &-e~ ¢ll [-(FUK311+F31KllIW 1 -(FllK321+F31K121W 3 -(FllK331

+ F31K131)lJ 5 +Klll K31111 11 +Kl21K32111 33 +K131 K331lJ 55 +(KlllK321 +K121K311)
2

lJ 13 + (K1l1K331 + K131K31l >U 15 + (KI2lK331 + K131 K32 1>U 35 ] + Or eZ 4>22

[-( FIZK312+F3ZK11Z>U 1 - (FIZK322+F32K122 W3 - (F12K332+F32K132 >u 5

+ K11 2K31l-J 11 + KI22K32~ 33 + K132K33~ 55 + (K1l2K322 + K122K312hJ 13
2

+ (K1l2K332 + K132K312)U 15 + (KI22K332 + K132K322)U 35J + 2ITe3 4>33

[-( F13K313+F33K1l3>U 1 - (F13K323+F33KI23W 3 -( F13K333+F33K133N 5

+ K1l3K31:Jlll + K123K32Jl33 + K133K33Jl55 + (K113K323 + K123K313N 13
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+ (K1l3K333 + KI33K313)~ 15 + (K123K333 + K133K323N 35] - Kl1 CJl 16

- CllCJl 26 - KI2CJl 36 - C12CJl 46 - K130M56 - C13(}J 66 + Fl~ 67 + F1SJ 68 + FIe l 69

- K31(1ol12 - C31 0tt 22 - K32cf 23 - C32/24 - K33cf 25 - C33cf 26 + F3f 27 + F3? 28

+ F39' 29

:~ 27 = 1 III 27 - KU (fl17 - Cl1 (fl27 - K12CJl 37 - C120J 47 - K130J 57 - C13Cf 67

- (J n(KU '4lJ 1 + Cl1 4l12 + K12.fl3 + C12.fJ 4 + K1341J 5 + C134J16)

~ 28 = '"f1 t 28 - Kll()J 18 - CU()J 28 - K12 ()J 38 - C12()J 48 - K130 1 58 - C130168

- (J 88Kll~ 1 + Cll~ 2 + K12:tJ 3 + C1Z914 + K13~ 5 + C13916)

~ 29 = -a f29 - Kllr1' 19 - C11r1' 29 - K120J 39 - C12(1149 - K13()159 - C13(}J 69

- C199t~lltYJ 1 + CllGJ 2 + K128J 3 + C1Z8J 4 + K135J 5 + C13616)

!~ 33 = 4J 34

~ 34 = ~ 44 - K21O,J 13 - ~1O,J 23 - KZ2QJ 33 - ~2O,J 34 - KZ3O,J 35 - Cz3Q.J 36 + F2~j 37

+ F25l'138 + F2611 39
•
\l 35 => lJ46 + )J 36

:. 36 =~ 46 - K310 ~ 13 - C31(}J 23 - K32 (}J 33 - C3Z(Jl 34 - K330135 - C33(}J 36

+ F34' 37 + F3~ 38 + F361139

·1.137 = \147 - t) I 1J 37

·,J 38 = ~ 48 - a tJ 38
•
~ 39 = 1J 49 - a f 39

~ 44 = 3r ei t 11 (- 2F21 K211 Ml -2F21 K2211J 3 -2F21 K2311J 5 + K~l1~ 11 + K~211.1 33
2 2

+ K2311J 55 + 2KZ11K2211J 13 + 2K211 K23111 15 + 2K22I K23 l1J 35] + Or eZ 4>22
222

[-2F22K21~1 -2F22K22 2-13 -2F22K232J 5 +K21 ;?J 11 +K222133 +KZ32 ~ 55
2

+ 2K212K232.J 13 + 2KZI2K232.J 15 + 2K222KZ3~ 35 ] + Dr e3 4>33
2 2 2 2 2 2

2F23K21 111 -2F23K22 :}J 3 -2F23K233J 5 + K213 }lll + K223 \I. 33 + KZ33 ~ 55

+ 2K213K22 J.113 + 2K213K23}J 15 + ZK223K23}J 35] + 2{ -K21(Jl14 - CzIGJ 24

- K220 1 34 - e220J44 - K230J 45 - C230 J 46 + F24J 47 + F2SJ 48 F26J 49
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~ 45 = 1I 46 -K21 (1l15 -~1(1l 25 -K22(JJ 35 -~2(JJ 45 -K23(JJ 55 -~3(JJ 56 +F24, 57

+ F29J58 +F26iJ 59

P46 = a e~ 4>11 [-( FZ1K311 +F31 K211 >u 1 - (F21 K3Z1 +F31K221}; 3 - (FZ 1K331

+ F31K231)~5 +K211K311>J11 +K221K321lJ33 +K231K331lJ 55 +(K211K321+K221K311)
2

u 13 ~(K211 K331 +K311 K231)11 15+ (K221 K331 +K231 K321 hJ 35]+ Or e2 ¢ 22

(-(F22K312 + K32K212 N1 - (F22K322 + F32K222) lJ 3 - (F22K332 + F32K232}~ 5

+ K212K31Z.J 11 + K222K32~ 33 + KZ32K332J 55 + (K212~322 + K222K312),J 13
2

+ (K21 2K332 + K312K232 L 15 + (K222K332 + K232K322h 35] + Or e3 ¢ 33

[-(F23K313 + F33K213)U 1 - (F23K323 + F33K223>U 3 - (F23K333 + F33K233 N5. ."
+ K213K31:Jlll + K22 3K32J133 + K233K33J155 + (K213K323 + K223K313~ 13

+ (K213K333 + K313K233)U 15 + (K223K333 + K233K323 hJ 35 ] - K2HJJ 16 - Czl(}J 26

- K22(}J 36 - ~2(JJ 46 - K230J 56 - ~3(}l 66 + F24>J 67 + F2~ 68 + F2&- 69

- K310J14 - C31~24- K32~34 -C32~44 -K33~45 -C33()l46 +F3o?-47 +F3SU48+F36·~.l\9

;'47 = "'fl 1:J 47 -K21(jL17 -~1~27 -K22c1l37 -~2dJ.47 -K23~57 -Cz3C1-67

- C1'77(K214)l1 + Cz14Jl 2 + K22~J 3 + Cz241 4 + K234)J 5 + Cz34J1 6)

~ 48 = -a t 48 -K21 (}l18 -Cz1(}l28 -K22 ()l 38 -Cz2(1l48 -K23(1l58 -Cz3O-' 68

- (188(K2151J1 + Cz151J2 + K2291 3 + Cz2514 + K235J 5 + Cz35J 6)

~ 49 = -a f 49 -K21()J 19 - Cz10J 29 -K22(JJ 39 - Cz2(}, 49 -K32()l59 - Cz3(}, 69

- t! 99 (K21 EYJ 1 + CzU;lJ 2 + K22~J 3 + Cz2fiJ 4 + K23fiJ5 + Cz3GJ 6 )

;'155 = ~ 56

~ 56 =U66 -K31()-l15-C31lJl25-K32lJl35-C32lJl45-K330'l 55- C330'l56+F34il57+F35 1 58+F36~.5't

•
p 57 = IJ 67 - '1 IlJ 57.
lJ 58 = lJ 68 - a ~ 58
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222
- 2F32K32~ 3 - 2F32K33~ 5 + K31 t 11 + K32 t 33 + K33 t 55 + 2K312K32~ 13

2
+ 2K312K33~ 15 + 2K322K33~ 35] + ~ e3 • 33 [- 2F33K31 :JJ 1 - 2F33K32 :JJ 3

222
- 2F33K33~ 5 + K31 111 + K32133 + K33 jl55 + 2K313K32Jl13 + 2K313K33Jl15

+ 2K323K33Jl 35] + 2{ -K31CJl 16 - C31 ()J 26 - K32CJl 36 - C32CJl46 - K33()J 56

- C33CJl 66 +F34lJ 67 +F39168 + F36ll 691

U67= -a IlJ 67 -K31 (1117 - C31 (11 27 -K32()J 37 - C32()J 47 -K33~ 57 - C33CJ! 57

- rr 77 (K31 4lJ 1 + C31 4lJ 2 + K324J 3 + C32 41 4 + K334J 5 + . C334J6)

~ 68= -a 2"168- K31(JJ 18 -C31 ()J 28 -K32 (1J 38 -~2()J 48 -K33(1J 58 -C33lr 68

- (J 88(.K3~J 1 ... ~1912 ... K32 5J 3 + C32 9J 4 + K32 SJ 5 ... C335J 6)

~ 69= "U f 69 -K31(1l19 -C31 (1J 29 -K32(1l 39 -~2(Jl49 -K33(Jl59 -C33 CJl 69

- a 99(K31 (YJ 1 ... ~1(YJ 2 + K326 lJ3 ... ~26~4 + K336":5 ... C336)J6) (E-3)
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Appendi x F

Stability Analyses of Nonlinear Moment Equations

In this Appendix, the stability of the system governed by Eq. (5-8) is
,

re-examined using the variational equations of Poincare in the neighborhoods

of its singular points. The singular points can be det~rmined by letting the

right hand side of Eq. (5-8) equal to zero. If,i is a singular point of the

system, then it satisfies
. "

(F-l)

The variational equation of the system can be obtained by substituting

'\ = yi + EX into Eq. (5-8), and expanding the nonlinear matrix N in a Taylor

series,

(F- 2)

where

N
y

=

. . . . .
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and an overdot denotes one derivative with respect to the nondimensional time

~. The first order variational equation of the system is given by

.
1 = (F- 3)

Since ,i is a known singular point Eq. (F-3) is a linear periodic equation if

the intensity functions of the earthquake are assumed to be equal to unity.

Then, the Floquet theory can be used to determine the stability condition of

the dynamic system at ,i for any given combination of parameters (associated
. .,

with a given operating condition as described in Chapter 3).

It must be noted that since Eq. {F-l} is a set of nonlinear algebraic

equations multiple singular points are possible, each of which must be

investigated separately. However, in the present study only one singular

point is found to be meaningful physically. and it can be obtained numerically

by iteration. A first trial may be obtained by neglecting the nonlinear terms

in Eq. {F-l} because without the turbulence the system is linear and with

turbulence the solution is expected to deviate only slightly from the linear

one. An alternative first trial may be the trivial zero solution. In fact,

the solutions obtained from these two approaches converged in our numerical

calculations.

Our calculations were carried out, however, only for the coupled flap-lag

motion because of the following reasons: I} the uncoupled flapping m~tion is

very stable, 2} the torsional degree of freedom has little influence on the

dynamic behavior of flap and leadlag motions and 3) the cost is very high for

computing the eigenvalue of the Floquet transition matrix of a dynamic system

involving a large number of equations with periodic coefficients. The values
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of parameters used in the calculations were the same as those of cases 5. 6. 7

and 8 in Table V. The largest norms of the state vector defined by Eq. (5-9)

at the singular point over one period are ~000769 for case 5. ~027677 for

case 6••0000779 for case 7 and ~028446 for case 8. These results indicate

that under the excitation of a high level turbulence the singular point is

shifted farther away from the zero position; and for a moderate turbulence

level the singular point is quite close to the zero position. The largest

norms of the eigenvalues of the Floquet transition matrices are .943535 for

case 5, ~32597 for case 6, ~44804 for case 7 and ~32468 for case 8. These

results·di1fer from those obtained from the Bolotin method less than 1%.

Therefore, the Bolotin method is sufficiently accurate if the turbulence level

is moderate.
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