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ABSTRACT

This study investigate two methods to characterize
the largest amplitudes of ground motion and response time
histories. First, rms acceleration is investigated as
ground motion and response parameters to characterize the
strong motion amplitudes sustained over a given duration.
While rms acceleration is shown to be linearly related to
the peak acceleration of the grocund motion or response
time history, it does not consistently summarize the same
of number of cycles of ground motion or response whose
amplitudes will exceed the magnitude of the rms accelera-
tion. Rms acceleration does not retain specific informa-
tion on the near maximum peaks of a time history.

Second, a methodology is presented which does enable
prediction of the expected amplitudes of specific peaks of
ground motion and response time histories. The upper
half-tail exponential and Ravleigh distributions proposed
by Deherrera and Zsutty (1982) are shown to predict
the largest peaks of ground motion acceleration, velocity,
and displacement and acceleration response time histories
better than the traditional exponential and Rayleigh
distributions. Characterization of the probability
distributions of the largest peaks of an earthgquake time
histeory enables information to be retained on all the
near maximum peaks of the time history. This presents a
more comprehensive description of the expected loading
demands and response than the traditionally characterized
maximum value and rms acceleration parameters of an
earthquake time history.

Any opinions, findings, conclusions
or recommendations expressed in this
publication are those of the author(s)
and do not necessatily reflect the views
of the National Science Foundation
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CHAPTER 1
INTRODUCTION

1.1 BACKGRQUND

For simplicity in seismic hazard analysis and
seismic design, an entire expected ground motion or
response time historvy must be summarized by only a few
parameters which reflect the duration, the amplitude
levels, and the frequency content of the time history.
While the frequency content of an earthguake time
history is typically represented by the Fourier amplitude
spectrum or the response spectrum of a single-degree-of-
.freedom {SDOF) oscillator, the duration énd the amplitude
levels of ground motion and structural response have
been characterized by a number of different parameters,

The duration of the strong motion portion of an
earthquake time history should represent fhe total time
or the equivalent number of cycles over which the
largest and most damaging amplitudes of motion occur.
The duration of strong ground motion is required for the
selection of representative input records for response
studies of scils and structures and for generation of
artificial accelerograms. For response, duration
becomes important to characterize cyclic behavior, such

as low-cycle fatigue.



A number of time domain definitions have been
proposed to characterize strong ground motion. For a
given earthgquake record, however, the strong motion
duration and the times of the start and the end of the
strong motion defining the duration depend on the
duration definition assumed. The use of a given duration
measure is dependent on whether the ground motion
duration is to be related to specific amplitude levels of
the time history, to satisfy‘certain energy relation-
ships, or to be a function of wave arrival and faulting
characteristics. Typically, the time domain measures of
duration are defined independent of their influence on
structural response.

The amplitudes of strong ground motion and response
time histories directly characterize the levels of
loading and response. Traditionally, the amplitudes of
an earthquake time history are represented by only one
gspecific amplitude level of the time history: by the
maximum value of the time history, e.g., the peak
acceleration, or by a lesser amplitude level, e.g., root-
mean-square (rms) acceleration or effective peak accel-
eration (EPA}). Consedquently, specific information is not
retained on the amplitude levels and the duration of
all the lesser, but near maximum amplitudes of the time

history.



Therefore, this study investigates two methods to
characterize the largest amplitudes and strong motion
duration of ground motion and response time histories.
First, the dependence of the two-parameter characteriza-
tion of an earthguake time history, namely, rms accel-
eration, which characterizes the amplitudes sustained
over a given duration, on the duration measure is
addressed for ground motion and response time histories.
Because a number of studies have addressed the use of
rms acceleration as a ground motion parameter, this study
primarily focuses on rms acceleration as a response
parameter.

Second, the adeguacy of selected exponential and
exponential-like (Rayleigh and Weibull) probability
distributions to predict the largest peaks of ground
motion and response time histories is investigated.
Characterization of the pfobability distribution of the
largest peaks enables specific information on each of the
expected largest peaks of an earthquake time history to
be retained. Hence information is alsc implicitly
retained on the duration of these peaks in terms of
cyclic behavior.

Because this study focuses on the characterization
of the duration and the amplitude levels of earthquake

time histories, Sections 1.2 and 1.3 briefly review



parameters which have been devaloped to characterize the
duration and the amplitude levels, respectively, of
strong ground motion and structural response. Section
1.4 presents an overview of the methodology of this
study to characterize the amplitudes and the duration of
the maximum and near maximum peaks of earthquake time

histories,

1.2 DURATION OF STRONG GROUND MOTION AND STRUCTURAL
RESPONSE

In the time domain, the duration, T, of the strong
motion poftion of an accelerogfam is defined as the
elapsed time between the time of initial build-up of the
strong motion, TI’ and the time corresponding to the end
of the strong motion, T2, as illustrated in Figure 1.1

where:

T=T, ~-1T {1.1)

Because it is not clear what definitions of T1 and T2

are most appropriate for a transient signal, Tl and ‘I'2

have been determined for acceleration time histories

based on different time domain measures of duration.
Strong ground motion duration has been defined in

the time domain by Bolt (1973), Trifunac and Brady

(1975), McCann and Shah (1979), McCann (1980), McGuire



and Hanks {(1980), Bond, et al., (1980), and Vanmarcke and
Lai {1977, 1980}. Duration has also been defined in
terms of an equivalent number of cycles for use in
ligquefaction studies (e.g., Seed and Idriss, 1971;

Seed, et al., 1975). Procedures to determine the times
Tl and T2 corresponding to the beginning and the end of
the strong motion duration T in equation (1.1), respec-
tiﬁely, are briefly discusséd below for each time domain
measure of duration. The first two definitions discussed
below, which have been proposed by Bolt (1973) and
Trifunac and Brady (1975), will be investigated in
Chapter 2 as duration measures for calculation of rms
acceleration.

Bolt (1973) defines "bracketed duration" as the
elapsed time between the first (Tl) and the last (T2)
excursions of the acceleration time history greater than
a prescribed cutoff level, suqh as 0.05¢g (where o
represents the acceleration due to gravit?), as shown in
Figure 1.2. The bracketed duration is directly dependent
on the amplitude levels of the accelerogram. Therefore,
accelerograms with a peak ground acceleration (PGA) less
than the specified cutoff level will have zero duration.

Trifunac and Brady (1975) define duration as the
time during which a predetermined percentage of total

energy would be input to a structure. For use in



earthquake engineering, Arias (1970) has demonstrated
that the area under a sgquared acceleration time history
is equivalent to the total energy per unit mass dissi-
pated by all single degree of freedom oscillators. 1If
a{t) is the acceleration time history and T is the total
duration of the ground acceleration, then the Arias

Intensity, I, is defined as:

T
I = J [a(t)]% dt (1.2)
0

Duration should be based on that intensity which is
closely related to the strong motion contributing
significantly to the seismic energy. Accordingly,
Trifunac and Brady (1975) define duration to be the time
interval to accumulate between five and ninety-five
percent of the total Arias Intensity. Hence, Tl and T2
are the times at which five and ninety-five percent,
respectively, of the total energy is accumulated, as
shown in Figure 1.3.

McCann and Shah (1979) and McCann (1980) define
duration in a manner consistent with the use of rms
acceleration és a ground motion parameter to summarize
the amplitudes sustained over the‘strong ground motion

duration. In the time domain, the rms acceleration,

arms’ of an acceleration time history, a(t), is defined



over a given strong motion duration T in equation (1.1)
as:
2

a = % [ la(t)1%dt)
T1

l/2 (1.3)

The cumulative rms acceleration of the time history is
calculated at each time step of the digitized time
history from equation (1.3) by initially letting T1 be
equal to zero and time T2 be equal to the total time at
each time step. Then the time‘T1 in eguation (1.1) for

this definitionris the time at which the cumulative rms

acceleration of the ftime-reversed accelerogram starts a

steady decrease. The upper limit T, is found by applying

2
the same procedure to the griginal acceleration time
history, but the origin of the time history is now the
value of T1 computed from the time-reversed accelerogran.
In a study of the 1971 San Fernando, CA, accelero-
grams, McGuire and Hanks (1980) define T1 as the time of
the S-wave arrival and time T2 equal to T1 + 10 seconds.
The duration T of all records is assumed to be egual to
the faulting duration of 10 seconds. Bond, et al.,
{1980) define the times T1 and T2 to be the first and the
last times, respectively, of the direct S-wave arrival.
Vanmarcke and Lai (1980) propose a definition of

duration derived from the theory of stationary Gaussian



random processes, They assume that the strong motion
portion of the record can be defined, in a total sense,
by an equivalent stationary time history with a constant
frequency spectrum intensity equal to that of the entire
strong motion record. The duration T and the corre-
sponding rms acceleration, a,.ng’ are derived in this
method to guarantee tbat the total energy, I, in equaticon
{1,2) is preserved and a constant relationship between
PGA and A e is satisfied. This duration definition

does not determine explicit values of T1 and T2.

However, if the time of occurrence of the PGA is Tp, then

the times 'I'1 and T2 in equation (1.1) can be defined as:

r3
]

- 1.4
T, - T/2 { )

H
i

T .5
p+T/2 {1.5)

Bolt s duration is directly dopendent on the
specific amplitude levels of the acceleration time
history. Hence a value of zero duration will be given
by this definition if the cutoff level is less than the
PGA of the accélerogram. However, all other duration
measures discussed above are defined in terms of satis-
fying either various enerqgy or wave arrival relationships

and hence are not explicitly dependent on the amplitude

8



levels. For these definitions, the duration of the
accelerogram will always be greater than zero.

In addition, several of the time domain definitions
of duration do not show consistent trends when regressed
as functions of earthguake intensity measures and
distance from source to site. For example, Bolt's
{1973) bracketed duration, based on a specific accelera-
tion amplitude cutoff level, increases with increasing
Richter magnitude and decreases with increasing distance
from source to sgite. The Trifunac and Brady duration
measure, attenuated by Trifunac and Brady (1978),
Trifunac and Westermo (1977), and Dobry, et al., (1978),
increases both with increasing magnitude and increasing
distance from source to site but decreases with increas-
ing Modified Mercalli Intensity (MMI}). For the 19271 San
Fernando, CA earthquake records, McCann (1980) and Bond,
et al., (1980) did not observe any noticeable trends for
duration as a function of distance from source to site.
Vanmarcke and Lai {1977, 1980) found that duration
increases both as a function of increasing magnitude and
increasing epicentral distance.

However, the above studies indicaté considerable
scatter in the duration measures as a function of
magnitude and distance from source to site. McGuire and

Barnhard (1979) have found that when the duration



measures proposed by Bolt (1973) and Trifunac and Brady
(1975) are regressed as a function of magnitude, dis-
tance, soil type, and component direction, the residual
uncertainty is even larger than that typically calculated
in regression studies for PGA. Consequently, the
characterization of the duration of ground motion
accelerograms is highly dependent on the definition of
duration chosen. Different duration measures will lead
to different relationships of duration as functions of
a seismic severity parameter and source to site distance.
Moreover, these ground motion durations are defined
independently of their effects on structural response.
For example, O'Rourke, et al., (1982) investigate the
correlation between the Trifunac and Brady (1975)
definition to measure the duration of building response
recorded from the 1971 San Fernando, CA earthquake and
four measures of the causative ground motion duration.
Comparisons between the ground motion durations and the
rosponse duration indicate that the match between strong
ground motion duration and structural response duration
is a function of the natural period of the structure.
For structures with fundamental natural periods less than
two seconds, strong structural response begins approxi-
mately two seconds after the starting time T1 of strong

ground motion determined by any of the four duration
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measures. For many 1onger period structures, strong
structural response begins after the énd of the strong
ground motion duration and none of the ground motion
duration measures matches well with the time during which
strong structural response occurs,

As discussed above, the proposed time domain
definitions of duration result in different charac-
terization of strong ground motion, The attenuation
behavior of ground motion duration is dependent on the
assumed duration definition. Characterization of
ground motion duration in terms of cyclic behavior,
however, avoids the need to explicitly define duration.
The implicit cyclic behavior of ground motion and
response time histories will be addressed in this study
by retaining information on the largest peaks of earth-

guake time histories.

1.3  AMPLITUDES OF STRONG GROUND MOTION AND STRUCTURAL
RESPONSE

This section briefly reviews parameters which
characterize the amplitude levels of strong ground motioh

and structural response.
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1.3.1 AMPLITUDES OF STRONG GROUND MOTION

Parameters which characterize the amplitude levels
of strong ground motion include the following:
® Peak ground acceleration (PGA), peak ground velocity
(PGV), peak ground displacement ({(PGD)
{e.g., as reviewed in Idriss, 1978; Campbell, 1985)
# Effective peak acceleration (EPA), effective peak
velocity (EPV) .
(Seed and Idriss, 1971; Schnabel and Seed, 1973;
Ploessel and Slosson, 1974; Newmark, 1976; Whitman,
1978; Donovan, et al., 1978; Blume, 1979; Belt and
Abrahamson, 1982).
®# Root-mean-square (rms) acceleration
(Vanmarcke, 1976; Vanmarcke and Lai, 1977, 1980;
Mortgat and Shah, 1978; Hanks, 1979, 1982; McCann and
Shah, 1979; Mortgat, 1979; McCann, 19¢380; Bond, et al.,
1980; McGuire and Hanks, 1980; Hanks and McGuire,
1981; McCann and Boore, 1983)

For many of these amplitude parameters, attenua-
tion relationships have been derived to predict the
expected parameter at a site as a function of magni-
tude, distance from scurce to site, and local site
geology.  Idriss (1978) and Campbell (1985) review
available attenuation formulas., In addition, a number
of these parameters have been investigated as normali-
zation parameters to reduce the coefficient of wvaria-
tion of statistically derived seismic design response
spectra (e.g., Nau and Hall, 1982, 1984),.

The most widely-used characterization of strong

ground motion is PGA, the maximum absolute amplitude of

the ground motion acceleration time history. PGA has
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been a convenient parameter to characterize seismic
hazard since it can 5e directly scaled from the accelero-
gram. PGA has also been extensively used as a normali-
zation parameter to derive statistical seismic design
response spectra.

It is well-recognized, however, that PGA is not
necessarily the most important feature of a ground motion
time history which affects the structural response
{Schnabel and Seed, 1973; Dizon, 1977; Donovan, et al.,
1978). Observations from a number of earthguakes have
confirmed that the duration of the strong ground motion
influences significantly the degree of damage to both
structures and soils. Examination of records obtained
from the June 27, 1966, Parkfield, CA earthquake indi-
cates that little damage may be associated with large
accelerations if the duration is short (Cloud, 1967;
Housner, 1975), PGA has also been shown tc be a poor
indicator of the energy demands on a structure and
of the damage potential of the earthgquake excitation
{Kennedy, 1981).

As an improvement over the use of PGA to charac-
terize stronQ ground motion, a number of definitions of
EPA have been proposed. EPA typically defines a lesser,
near maximum amplitude level of the acceleration time

history or an amplitude level sustained over a prescribed
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number of cycles. Schnabel and Seed (1973) illustrate
that a 25 to 35 percent reduction of the PGA will affect
the spectral accelerations by less than ten percent,.
Hence, in many cases, the EPA of ground motion on rock
may be about 25 to 30 percent of the PGA. Newnmark
(1976), Housner and Jennings (1977), and Blume (1979)
define EPA as the zero—-period spectral acceleration value
of the design response spectrum. |

Seed and Idriss (1971) define "average equivalent
uniform acceleration” as the average acceleration of an
equivalent uniform number of cycles. Ploessel and
Slosson (1974) define "respectable high ground accel-
eration” as the average acceleration of the several
largest peaks which are repeated a significant number of
times, generally about five to ten times, in the time
history. Whitman (1978) defines EPA to be the intensity
of ground motion which produces the same response as the
actual motion when applied over a standard duration.
Finally, Bolt and Abrahamson (1982) define EPA to be the

goth

percentile acceleration of the time history.
Definitions of duration proposed for strong ground
motion gave impetus to the development of a two-parameter
description of strong ground motion, namely, rms accel-

eration, which by its definition in the time domain is

coupled with duration, as a summary of the amplitude
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levels of an accelerogram sustained over a given strong
motion duration. In the time domain, the rms accel-
eration, arms’ of an acceleration time history a{t) is
defined over a given duration T by equation (1.3).

. An advantage of using rms acceleration to charac-
terize ground motion is that this parameter can be
directly predicted from the properties of the seisnmic
source, e.g., the seismic moment and the stress drop.
Also, because rms acceleration is an average statistic
of the accelerogram, it should be insensitive to isolated
peaks that might contribute to the large uncertainty in
prediction of PGA. For a stationary Gaussian process,
the rms acceleration will have considerably lower
variation than the peak value, However, based on an
analysis of the 1971 San Fernandao, CA earthquake records,
McCann and Boore (1983) found that rms acceleration, when
regressed as a function of distance, has only a slightly
lower logarithmic standard deviation than the PGA and
concluded that tﬁe rms acceleration does not provide a
more stable measure of ground motion than does PGA.

The rms acceleration description of strong ground
motion requires the selection of the most appropriate
definition of duration needed tc compute the rms accele-
ration in equation (1.3). None of the time domain

definitions proposed for duration have been widely
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accepted to be the most suitable measure of strong ground
motion duration. Consequently, the rms acceleration
computed from edquation (1.3) is dependent on the duration
measure selected.

Another point of concern with the use of rms
acceleration as a ground motion parameter is the apparent
loss of information on particular acceleration levels.
Mortgat and Shah (1978) and Mortgat (1979), however,
have shown that rms accelefation is related by a constant
Kp to an acceleration level, Ap, which has a given proba-
bility p of being exceeded. The constant Kp depends only
on the probability level p. However, their characteri-
zation does not give information on the actual number of
cycles in the time history which will exceed Ap

To avoid the need to explicitly define duration and
yet retain information on both the amplitude levels of
and the duration of an acceleration time history, Moritgat
and Shah (1978), Mortgat (1979), Zsutty and Deherrera
(1979), and Deherrera and Zsutty (1982} have demonstrated
that the largest peaks of ground motion and response time
histories can be predicted from exponential, Ravyleigh,
Weibull, or Gamma functions. The Ravlieigh distribution
is also extensively used in random vibration analysis to
model the peaks of the time historv of a narrowband,

stationary Gaussian process (Crandall and Mark, 1963;
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Newland, 1975). However, in random vibration analysis,
the Rayleigh distribution is typically used to détermine
the average number of exceedances above or below a given
amplitude level. Information on the expected amplitudes
sustained over a given number of cycles, however, cannot
be obtained from random vibration analysis.

Zsutty and Deherrera (1979) and Deherrera and
Zsutty (1982), however, have retained specific infor-
mation on the largest peaks of an accelerogram by
modeling the probability distributions of the largest
peaks with the upper half-tail of'exponential, Rayleigh,
and Weibull probability distributions. In their study, a
peak is defined as the maximum absolute amplitude between
two consecutive zero crossings of the ground motion
acceleration time histery. As shown in Figure 1,4, the
kth largest peak, X(k), is the kth peak in the time
history when the peaks are ranked in descending order
from the largest, X(1), to the smallest peak. The peak
X(k) then summarizes the amplitude for which there will
be k/2 cycles of ground motion acceleration exceeding
this amplitude.

From the parameters of the proposed exponential
half-tail {(EHT) distributions and extremal statistics,
the mean value of a specific peak X(k) of interest can be

predicted. Consequently, their approach retains infor-
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mation explicitly on speéific amplitude levels and
impiicitly on the duration of an accelerogram. This
methodology will be utilized extensively in this study as
an improvement over the use of the ground motion para-
meters discussed above to characterize the amplitudes

of strong ground motion acceleration, velocity, and

displacement time histories.

1.3.2 AMPLITUDES OF STRUCTURAL RESPONSE

To characterize the amplitude levels of the response
of a single~degree-of-freedom (SDOF) oscillator subjected
to strong ground motion, statistically derived, seismic
design response spectra plot the maximum value only of
the response time history (e.g., Blume, et al., 1972;
Mohraz, et al., 1972; Newmark, et al., 1973; Hall, et

Pt

al., 1975a,b; Mohraz, 1976, Seed, et al., 1976b; Kiremid-
jian and Shah, 1978; Nau and Hall, 1982). It is well-

recognized, however, that structural response tg seismic
- excitation is not governed by the occurrence of a single
maximum amplitude value but rather by an overall duration
of response amplitudes sustained above a given level. By
retaining information on only one single maximum response

amplitude, present response spectrum techniques ignore

information on the amplitude levels and the duration of
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the lesser, but near maximum peak values of the response
time history. ‘

As a measure of "effective acceleration” of struc-
tural response, Mortgat and Shah (1978) present rms
acceleration spectra to represent a summary of response
peaks using a definition of response duration in which
the response is arbitrarily terminated when the response
acceleration peaks reach 10% of the largest response peak
and thereafter did not exceed that value. The resulting
rms acceleration spectra for a number of input ground
motions are simiiar in shape but "smoother" than tradi-
ticnal maximum acceleration response spectra., No study
is made, however, by Mortgat and Shah {1978), to inves-
tigate the sensitivity of the rms acceleration of
response to other possible definitions of response
duration. Consequently, this study will address the
sensitivity of rms acceleration as a response parameter
to various time domain definitions of response duration.

To characterize both the duration and the amplitude
levels of the response of a SDOF oscillator subjected to
strong ground motion, several researchers have eliminated
the need to explicitly define response duration by
retaining information on the cyclic behavior of the
response, Perez (1973, 1980) plots tripartite response

spectra for the response amplitudes sustained for a
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given number of cycles of a linear SDOF oscillator
subjecfed to ground motion records from the 1971 San
Fernando, CA earthquake. Perez and Brady (1984) plot
the average ratio of the relative displacement amplitudes
sustained over a given number of cycles to the maximum
displacement of the response time history as a function
of the oscillator period. This approach, however,
reguires a statistical study of the maximum response
sustained over each specific number of cycles in ques-
tion. Similarly, Prince (1984) plots, as a function of
the oscillator period, the ratio of the numbe: of
response peaks which exceed a given fraction of the
maximum response to the total number of peaks in the
response time history.

Deherrera and Zsutty (1982) have suggested that
the largest peaks of SDOF oscillator response can also be
modelled by the EHT probability distributions considered
for ground motion studies. This methodology would retain
information‘on specific levels of the largest response
amplitudes and would eliminate the need to derive
explicit relationships for each specific maximum and
near maximum amplitude of the response time history as
in Perez and Brady (1984) and Prince (1984). Conse-—

guently this study will also investigate the adequacy of
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the EHT distributions to model the largest amplitudes of

response time histories,

1.4 SCQPE AND OBJECTIVES

This study investigates parameters which charac-
terize both the amplitudes and the duration of the
largest peaks of ground motion and response time histor-
ies. While the emphasis of this study focuses on
parameters which summarize the response time history of
a linear, elastic SDOF oscillator, for insight and for
completeness, the parameters are also investigated for
strong ground motion.

First, rms acceleration, defined by equation (1.3),
is investigated as a parameter which sﬁmmarizes the
largest amplitudes of ground motion and response time
histories. Because a number of studies have addressed
the use of rms acceleration as a ground motion parameter,
emphasis is given in this study to the investigation of
rms acceleration as a response parameter. The objectives
are to detarmine the sensitivity of rms acceleration to
the duration measure over which the rms aceiefation is
computed from equation (1.3) and to charactefize the
levels of loading and response which are described by rms

acceleration.
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Rms acceleration is investigated for ground motion
and response as a function of the duration measures
proposed by Bolt (1973} and Trifunac and Brady (1975).
For response, average rms acceleration spectra are
presented for the response of a SDOF oscillator with 2,
5, and 10% of critical damping for soil and rock sites.

Second, this study investigates the adequacy of the
exponential, Rayleigh, and Weibull distributions to
model and predict the largest peaks of strong ground
mqtion, SDOF oscillator response, and recorded building
response time histories. The objective is to retain
information on both the amplitudes and the duration of
the strong motion portion of a ground moction or response
time history without having to explicitly define dura-
tion as required by the rms acceleration parameter.

The traditional exponential and Ravyleigh distri-
butions, as well as the EHT probability distributions
(exponential, Ravleigh, and Weibull) proposed by Deher-
rera and Zsutty (1982} to characterize ground motion
acceleration, are used to model the largest peaks of
earthquake time histories. Hence, this study extends the
EHT model to characterize the largest peaks of ground
motion velocity and displacement time histories and of
linear, elastic SDOF oscillator and recorded building

acceleration response time histories.
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The adequacy of the prcbability distributions
investigated to predict selected values of the kth
largest peaks of ground motion and response time his-
tories is investigated. For response, the average actual
acceleration spectra for the first, second, fifth, tenth,
and twentieth largest peaks of response time histories of
a SDOF os;illator with 5% critical damping are compared
to the average acceleration spectra computed for these
largest peaks predicted from the investigated probability
distributions. For recorded building response from the
1971 San Fernando, CA earthquake, the EHT distribution
(exponential, Ravleigh, dr Weibull) which best models the
largest peaks of a given building response time history
is determined and compared to trends observed for SDOF
oscillator response.

Chapter 2 addresses the appropriateness of rms
acceleration as a ground motion and response parameter.
In Chapters 3 and 4, the exponential, Rayleigh, and
Weibull distributions are used to characterize the
probability distributions of the largest amplitudes of
strong ground motion and résponse time histories,
respectively. Finally, Chapter 5 summarizes the results

of this study and suggests extensions of this study for

future research.
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CHAPTER 2

ROOT-MEAN-SQUARE ACCELERATION AS STRONG GROUND MOTION
AND RESPONSE PARAMETERS

2.1 INTRODUCTION

This chapter investigates the use of root-mean-square
{rms) acceleration defined in equation {(1.3) as a parameter
to summarize the amplitude levels sustained over the strong
motion duration of ground motion and linear, elastic single-
degree—ofwfreedom (SDOF) oscillator response time histories.
Because a number of studies have addressed the use of rms
acceleration as a ground motion parameter, this chapter
focuses primarily on the characterization of rms acceleration
as a parameter to summarize the amplitude levels and duration
of SDOF oscillator response.

The objectives of this chapter are the following:

e to illustrate the sensitivity of strong motion

duration and the corresponding rms acceleration
to different time domain definitions of duration,

° to determine the levels of loading and response

which are characterized by rms acceleration by

illustrating the following:

& the relationship between the maximum accel-
eration and the rms acceleration of the time
history;

e the number of cycles of the time history whose

amplitudes will exceed the magnitude of the rms
acceleration.

To accomplish these objectives, the following four

durafion—dependent guantities are investigated in this
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chapter for strong ground motion and linear, elastic SDOF

oscillator response:

1) the strong ground duration,

2) the corresponding rms acceleration,

3) the relationship between the maximum acceleration
and the rms acceleration of the time historvy,

4) the peak number k of the kth largest acceleration
peak of the time history whose absolute amplitude is
nearest to the magnitude of the computed rms accel-
eration.

As discussed in Chapter 1, a number of different time
domain definitions have been proposed to characterize
strong ground motion duration. Because the durations
proposed by Bolt (1973) and Trifunac and Brady (1975) are
the most widely-used definitions in the literature, these
two definitions are selected in this study as duration
measures of ground motion and response.~ A brief review of
these duration measures has been presented in Chapter 1.
These two duration measures are alsoc selected to illustrate
the sensitivity of the four duration-dependent parameters
defined above to an amplitude-dependent duration (Bolt's)
and an amp;itudeuindependent duration (Trifunac and
Brady's). A cutoff value of 0.05g is used in Bolt's defi-
nition for both ground motion and response calculations.

As illustrated in Figure 1.4, a peak is also defined

in this chapter as the maximum absolute amplitude between
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two consecutive zero crossings of the ground motion or
response acceleration time history. Again, the kth largest

h peak in the time history when the

peak, X(k), is the kt
peaks are ranked in descending order from the largest,
X(1), to smallest péak. The peak X(k) then summarizes the“
amplitude for which there will be k/é cycles of motion
exceeding this amplitude. Hénce, item (4) describes the
number of cycles (k/2) of the ground motion or response
time history whose amplitudes will exceed the computed

rms acceleration value. Consequently, items (3) and (4)
both illustrate the levels of loading and response charac-
terized by rms acceleration. The relationship between
maximum acceleration and rms acceleration will also be
compared to the relationship between maximum acceleration
and the parameter 1/)\ of the exponential-like probability
distributions investigated in Chapters 3 and 4 to charac-
terize the largest peaks of ground motion and response
acceleration time histories, respectively.

Section 2.2 discusses the data base of ground motion
records analyzed and site geclogy classifications con-
sidered in this investigation. The four duration-dependent
parameters in Section 2.1 are investigated in Sections 2.3
and 2.4 for strong ground motion and SDOF oscillator
response, respectively. Finally, Section 2.5 summarizes

rms acceleration as ground motion and response parameters.
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2.2 DATA BASE QF GROUND MOTION RECORDS

The data base of 112 strong ground motion records used
to investigate rms acceleration are listed in Table 2.1.
These ground motion records represent the two orthogonal,
horizontal ground motionh components recorded at 56 re-
cording stations. Of the 112 horizontal ground motion
records considered, 68 records have been selected from the
Volume II records published by the California Institute of
Technology (1973). In this group of records, 34 are fronm
earthguakes prior to 1971 and 34 are from the 9 February
1971 San‘Fernando, CA earthquake. The remaining 44 records
are from the 15 October 1979 Imperial Valley, CA earthguake
and have been processed by Brady, Perez, and Mork (1982).

To investigate the influence of site geologvy, the the
recording stétions are divided into two site geology
categories: l"sc»il“ and "rock”™. Site category "rock”
cerresponds to the rock category per Seed, et al., (1976
a,b). Site category "soil” includes both the "stiff soil
conditions” and the "deep cohesionless soil conditions" per
Athe same references. Qf the 112 records considered, 86 and
26 records correspond to soil and rock sites, respectively.
While other researchers have considered more refined "soil"
classifications (e.g., Seed, et al,, 1976a,b; Dobry,
Idriss, and Ng, 1978; McGuire and Hanks, 1980), the two
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categories used in this study will adequately illustrate
‘the effects of site geology as in other studies which
utilized only two site categories (e.g., in Vanmarcke and

Lai, 1977, 1980; McGuire, 1978; and McCann, 1980).

2.3 RMS ACCELERATION AS A GROUND MOTION PARAMETER

This éection presents a brief characterization of
rms acceleration as a ground motion parameter. The
objective of this study is only to illustrate general
trends in the four duration-dependent ground motion
parameters listed in Section 2.1 which have not been
identified in previous investigations of rms acceleration.
These duration-dependent parameters are computed for each
strong ground motion record listed in Table 2.1 and are
summarized in Table 2.2 as a function of Bolt's and
Trifunac and Brady's duration measures.

The parameters in Table 2.2 are also graphed in
Figures 2.1 to 2.7 for combined soil and rock sites., While
considerable scatter is evident for many of the parameters
graphed in these figures, the scatter may be reduced by
incorporating the dependence of these parameters on
earthguake magnitude, distance from source to site, and
other geophysical parameters. In Figures 2.1 to 2.7 and in
the figures of Section 2.4, Bolt's and Trifuhac and

Brady's duration measures are referred to as "Bolt" and

28



"T & B", respectively,.

Figure 2.1 graphs PGA vs..ground motion duration for
Bolt's and Trifunac and Brady's durations. While con-
siderable scatter of the data is evident, the upper graph
for Bolt's duration indicates that Bolt's ground motion
duration slightly increases with increasing PGA. Such
behavior is exXpected since Bolt's duration is directly
related to specific amplitude levels of the time history.
For the data base considered, the PGA of six ground motion
records is less than 0.05g. Hence, Bolt's duration for
these records will be zero.

On the other hand, because Trifunac and Brady's
duration is based on energy considerations and is indepen-
dent of a specific amplitude level, this definition
will always give a nonzero value of duration. The lower
graph in Figure 2.1, which plots PGA vs. Trifunac and
Brady's duration, shows the ground motion duration in-
creases with decreasing PGA. Consequently, Bolt's and
Trifunac and Brady's durations show opposite trends as
a function of PGA.

A comparisdn of Bolt's duration vs. Trifunac and
Brady's duration is graphed in Figure 2.2. This graph
indicates that for about two-thirds of the ground motion
records considered, Trifunac and Brady's durations are

larger than Bolt's durations. Also, Figure 2.2 shows that
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for the six records with Bolt's duration egqual te zero,
Trifunac and Brady's duration ranged between about 12 and
32 seconds. Consegquently, an explicit time domain repre-
sentation of ground motion duration is sensitive to

the definition of duration assumed. As also discussed in
Chapter 1, different duration definitions give different
characterizations of the ground motion duration of a given
acceleration record.

Figure 2.3 graphs the rms accelerations computed by
equétion {1.3) as a function of duration for the ground
motion durations listed in Table 2.2 and shown in Figures
2.1 and 2.2. While the graph of rms acceleration vs.
duration from Bolt's definition shows considerable scatter,
the gréph of rms acceleration vs. duration from Trifunac
and Brady's definition shows a definite trend of decreasing
rms acceleration with increasing duration.

A comparison of the rms accelerations computed from
Bolt's and Trifunac and Brady's durations is graphed in
Figure 2.4. While Figure 2.2 shows considerable scatter in
the durations computed from these two definitions, Figure
2.4 indicateé that the corresponding rms accelerations
computed from these two definitions show leés sensitivity
to the duration definition. An inspection of Table 2.2
also shows that for a given record, the smaller of the two

duration values computed from Bolt's and Trifunac and
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Brady's definitions results in the larger value of the rms
acceleration.

To investigate the relationship between PGA and rms
écceleration, Table 2.2 lists the ratio of PGA to rms
acceleration (PGA/RMS) for the rms acceleration computed
for each ground motion record from Bolt's and Trifunac and
Brady's durations. Correspcondingly, Figure 2.5 graphs PGA
vs. rms acceleration computed from these two duration
measures. As indicated in Table 2.2 and Figure 2.5, the
rms acceleration values cbmputed from both definitions of
duration show a definite linear relationship between PGA
and rms acceleration; This linear relationship is most
distinct for the rms accelerations computed from Trifunac
and Brady's duration measure. The outliers shown in the
upper right hand corner in Figure 2.5 for PGA vs. rms
acceleration computed from Bolt's duration‘correspond to
the Pacoima Dam records from the 1971 San Fernando, CA
earthquake (C041 S16E and C041 S74W).

Hence rms acceleration appears to be a scaling down of
the PGA. Because rms acceleration represents a summary of
the strong motion amplitudes, this linear trend implies
that the PGA does contain information on the lesser, but
near maximum ground motion peaks. |

The ratic of PGA/RMS, however, may be less than 1 for

Bolt's duration. If the accelerogram contains only a few
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time steps whose amplitudes exceed the cutoff level for
Bolt's definition (i.e., the PGA is just slightly larger
than the cutoff level), then the resulting rms acceleration
computed from eguation (1.3) may slightly exceed the PGA.
For example, for the record A0O03 S90W, the PGA is just
slightly greater than 0.05g, the duration is 0.14 seconds,
and the PGA/RMS ratio is equal to 0.95.

To determine if the ratio of PGA/RMS is a function of
the definition of duration used to compute the rms accel-
eration, Figure 2.6 plots this ratio as a function of
Bolt's duration vs. Trifunac and Brady's duration. For the
majority of records considered, the ratio of PGA/RMS
acceleration is generally bounded between 3 and 6 for both
definitions of duration and hence is relatively independent
of the duration measure. .

Finally, the last two columns‘in Table 2.2 l1list the

h largest peak of the ground

peak number, k, of the kt
motion time history whose absolute amplitude is closest to
the computed rms acceleration value. O0f interest is
whether rms acceleration summarizes the same number of
cycles of ground motion for for each record and for each
duration measure. An inspection of the peak numbers k in
Table 2.2 indicates that there is considerable variation of

k from record to record and for a given record, between the

two duraticn measures. For a given ground motion record,
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definitions of duration describes a lesser am?litude of the
time history and therefore will correspond to a largér peak
number. The maximum value observed for k in this data base
is 124 for record IVOl 230 for the rms acceleration
computed from Trifunac and Brady's duration. Hence for
this record, there will be 62 cycles of ground motion whose
amplitudes exceed the rms acceleration value of 24.36
cm/sec2 . For this same record, the peak number cor-
responding to the rms acceleration from Bolt's duration is
84 and there will be 42 cycles of ground motion whose
amplitudes exceed the rms acceleration value of 34.79
cm/secz.

Figure 2.7 comparés the peak number corresponding to
the rms accelerations from Bolt's and Trifunac and Brady's
durations. The considerable scatter evident in this graph
indicates that the number of cycles of ground motion
characterized by rms acceleration varies from record to
record, is not constant for a given duration definition,
and for a given record, is not the same for both duration
measures. Therefore, rms acceleration does not represent
an amplitude sustained over a consistent number of cycles
for all ground motion records and duration measures.
Consequently, because a linear relationship is noted

between PGA and rms acceleration, rms acceleration does
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give specific information on the magnitude of only one
other peak in the time history, the PGA. Specific infor-
mation is not retained on the relative magnitudes of the
near maximum peaks.

In summary, this section briefly investigated the
dependence of rms acceleration on the duration measures
given by Bolt (i973) and Trifunac and Bra&y {1975). The
following dependence on the duration measures have been
noted for rms acceleration as a parameter of strong ground
motion:

® The ground motion duration is sensitive to the
duration definition.

e The rms acceleration is dependent on the duration
measure but is not as sensitive to the duration
measure as the calculated value of duration.

¢ The ratio of PGA/RMS ranges between values of 3
and 6 for both duration measures.

® The rms acceleration does not consistently
summarize the same number of cycles and hence
same.level of loading for each ground motion time
history and for each duration measure.

The next section addresses the dependence of rms accelera-

tion as a response parameter on the duration measures

given by Bolt (1973) and Trifunac and Brady (1975) investi-

gated as duration measures of response.
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2.4 RMS ACCELERATION AS A RESPONSE PARAMETER

The four duration-dependent parameters listed in
section 2.1 are computed for the rasponse of a linear,
elastic SDOF oscillator subjected to the strong ground
motion records listed in Table 2.1. Calculation of the
response of a SDOF oscillator subjected to strong ground
motion requires solving the equation of motion for a
viscously damped, linear, elastic SDOF oscillator shown in
Figure 2.8. Tﬁe equation of motion of a SDOF oscillator

at any time t is given as:

m* ¥(t) + ¢ * k(t) + k * x(t) = -m * a(t) (2.1)
where

m = mass of the system

c = wviscous damping of the system

Kk = stiffness of the system

%(t) = relative acceleration

%(t) = relative velocity

x(t) = relative displacement

a(t) = ground motion acceleration input
If equation (2.1) is divided by the mass m, then the

equation of motion becomes
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H(t) + 2 % B * g * X(t) + w° * X(t) = -a(t) (2.2)
where
w = (k/m)l/2 = natural frequency of the oscillator
g = ¢c/2um = percent of critical damping

The linear, elastic response given by equation (2.2)
is computed using the numerical procedure outline in Nigam
and Jennings (1968). The response is calculated for forty
(40) oscillator periods between 0.03 second and 30 seconds
at 13 equally-spaced oscillator periods for each cycle of
the logarithmic scale. The response is computed for 2, 5,

and 10% of critical damping.

2.4,1 PRELIMINARY INVESTIGATION

As a preliminary investigation, the four duration-
dependent parameters are computed for the acceleration
response of a>SDOF oscillator with 2, 5, and 10% of
critical damping subjected to eight well-studied ground
motion records taken from Table 2.1: A001 SOQOE, A004 S6SE,
AOl1l5 SBOE, BOZ9 NBG6E, B0O34 NBSE, CC41 S1B6E, C048 NOOW, and
IV1i9 230 (Bond). These parameters are graphed in Figures

2.9 through 2.21 as a function of Bolt's and Trifunac and

Brady's duration definitions.
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Firat, of interest in respyonse calilculations is the
number of cycles of response experienced rather than the
explicit time domain duration. If the time domain duration
of the response of a SDOF oscillator with a given period is
known, then the corresponding number of cycles of response
is equal to the duration multiplied by the oscillator
period. Therefore, the response durations determined from
Bolt's and Trifunac and Brady's durations are expressed in
terms of number of cycles and are graphed in Figures 2.9,
2.10, and 2.11,

Figures 2.9 and 2.10 graph, as a function of 2, 5, and
10% damping and oscillator period, the number of ;ycles of
response computed from Bolt's and Trifunac and Brady's
durations, respectively. Because the response at higher
periods will often have peak accelerations less than 0.05¢g,
Bolt's duration and the corresponding number of cycles will
be zero at these periods. Two trends are apparent in these
graphs, First, the number of cycles of response is
independent of damping. Second, because the actual number
of cycles in the total response time history decreases at
the longer periods, the number of cycles of response
for these duration measures decreases as the oscillator
period increases.

Figures 2.11 and 2.12 compare the number of cyclies of

oscillator response and the calculated time domain dura-
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tions, respectively, computed from the two definitions of
duration for 5% damping. In general, for periods less than
about 1 or 2 seconds, the number of cycles (or duration) of
response from Bolt's duration exceeds the number of cycles
{or duration) from Trifunac and Brady's duration. Bevyond
periods of about 1 or 2 seconds, the number of cycles (or
duratioﬁ) calculated from Bolt's definition becomes less
than the number of cycles calculated from Trifunac and
Brady's definition. Consequently, the duration or the
number of cycles of response is dependent on the duration
measure as observed for ground motion.

Second, the corresponding rms accelerations computed
by equétion {(1.3) for the response durations given by
Bolt's and Trifunac and Brady's definitions are shown in
Figures 2.13 and 2.14, respectively, for 2, 5, and 10%
damping. These rms acceleration spectra have been normai-
ized by the PGA. 1In general, the rms acceleration spectra
show the same shape as the traditionally plotted maximum
acceleration spectra and the magnitudes generally decrease'
with increasing damping.

Comparisons of the rms acceleration spectra for 5%
damping computed from Bolt's and Trifunac and Brady's
durations are shown in Figure 2.15. Typically for oscil-
lator periods less than 0.1 second or greater than about 1
second, the rms accelerations computed from the two
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definitions of duration are similar in magnitude. Between
0.1 second and 1 to 2 second, fhe rms accelerations
computed from Trifunac and Brady's durations are con-
siderably larger than from Bolt's duration for the response
to several of the ground motion records, e.g., B034 NB8SE,
C041 S16E, C048 NOOW, and Bond 230. As for ground‘motion,
this trend is also expected since in Figure 2.12, Trifunac
and Brady's durations in this period range for these
records are considerably smaller than Bolt's durations.
Hence, the magnitude of rms acceleration is dependent on
the duration measure. |

Third, as for ground motion, also investigated is the
relationship between the peak acceleration and the rms
acceleration of a given response time history. The
objective is to determine if the rms acceleration of a
response time historvy 1s a constant fraction of the peak
acceleration of the time history, Figures 2,16 and 2.17
graph the ratio of rms acceleration to peak acceleration as
a function of damping and oscillator period for Bolt's and
Trifunac and Brady's durations, respectively. Interest-
ingly, both figures indicafe that while the ratio of rms
accéleration to peak acceleration is independent of
damping, this ratio increases from 0.25 to about 0.50 with
increasing oscillator period.

For Bolt's duration, this ratic may, in some cases,
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exceed a value of 1. For oscillator periods where Bolt's
duration tends toward zero as the peak acceleration of the
response slightly exceeds the cutoff level of 0.05g, there
will be only a few time steps in the response time history
whose acceleration exceeds 0.05g. Consequently, the rms
acceleration calculated by equation (1.3) will approach the
peak acceleration or may even slightly exceed the peak
value. Hence, the ratic of rms to peak acceleration, as
shown in Figure 2.16 for the response to A004 S69E and Bond
230, may appreoach or exceed a value of 1.

A comparison of the ratio of rms to peak (maximum)
acceleration for 5% damping as a function of the two
duration definitions is shown in Figure 2.18. Except for
those oscillator periods where Bolt's duration tends toward
zero and hence this ratio takes on a value near 1, the two
duration definitions give reasonably similar values-of this
ratio (between 0.25 and 0.50) as the oscillator period
increases. Hence, the rms acceleration appears to be a
scaling down of the peak acceleration for both duration
measures as also observed for ground motion.

Fourth and finally, of interest is the peak number
k of the kth Jargest peak of time history which corresponds
to the amplitude level of the rms acceleration. Hence,
this peak number k is simply twice the number of cycles of

response whose amplitudes will exceed the amplitude level
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of the rms acceleration. Figures 2.19 and 2.20 graph,
based on the rms accelerations computed from Bolt's and
Trifunac and Brady's durations, respectively, for 2, 5, and
10% damping. the peak number k of the kth largest peak of
the response time history whose absolute amplitude is
nearest to the rms acceleration amplitude.

In general, these two figures show that for both
duration measures, as the pergent of critical damping
increases, the peak number k corresponding to the rms
acceleration decreases. For both duration measures, the
pealk number k is also a function of oscillator period and
reaches a maximum between periods of 0.05 second and 0.2
second. Consequently, for a given duration measure, rms
acceleration does not summarize a consistent level of
response for all oscillator periocds and damping values,

Figure 2.21 compares the peak number for the rms
accelerations for 5% damping computed from the two defini-
tions of duration. As observed for ground motion, the
larger rms acceleration value of response from the two
duration measures {Figure 2.15), corresponding to the
smaller duration value (Figure 2.12), typically corresponds
to the lower peak number k (Figure 2.21). This figure shows
that the rms accelerations computed from the two duration
measures also do not consistently summarize the same

number of cycles of response.
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In summary, the duration dependence observed for rms
acceleration as a ground motion parameter has also been
observed for rms acceleration as a response parameter,
Specifically, the following trends have been obéerVEd for
response rms acceleration computed from Bolit's and Trifunac
and Brady's durations:

e The response duration (number of cycles of response)
is dependent on the duration measure,

¢ The magnitude of the rms acceleration is dependent
on the duration measure.

[ ) The rms acceleration is a scaling down (between 0.25
and 0.50) of the peak acceleration of the response
time history. |

& The rms acceleration does not consistently summarize
the same level of response but is a function of

damping, oscillator period, and the duration measure.

2.4,2 AVERAGE RMS ACCELERATION SPECTRA

To facilitate a more comprehensive characterization of
rms acceleration as a response parameter, average peak
acceleration spectra, average rms acceleration spectra, and
average rms/peak acceleration spectra are computed for the
response of a SDOF oscillator with 2, 5, and 10% critical
damping subjected to the ground motion records listed in

Table 2.1. These average spectra are’computed separately
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for soil and rock sites. The average peak acceleration and
average rms acceleration spectra are normalized by the PGA
of the input ground motion record.

Average peak acceleration spectra (denoted as SA),
which are traditionally plotted for SDOF oscillator
response, are shown in Figure 2.22 for soil and rock sites
for 2, 5, and 10% of critical damping. These spectra will
be compared to the average rms acceleration spectra
computed below, The coefficient of variation of the
average peak acceleration spectra is shown in Figure
2.23. For both soil and rock sites, the coefficient of
variation decreases with increasing percent of criticai
damping and generally increases with increasing oscillator
period.

Average rms acceleration spectra for the rms accelera-
tions computed from Bolt's and Trifunac and Brady's
durations are shown in Figures 2.24 and 2.25 for soil and
rock sites, respectively. The average rms acceleration
spectra have similar shapes as the traditional average peak
acceleration spectra shown in Figure 2.22. Average rms
acceleration spectra are not computed for Bolt's durations
at periods greater than about 8 and 2 seconds for soil and
rock sites, respectively. Beyond these periods, there
were very few, if any, response records whose peak acceler-

ation exceeded the cutoff level of 0,05g,
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The coefficient of variation of the average rms
acceleration spectra computed for soil and rock sites are
shown in Figures 2.26 énd 2.217, respectively. The coeffi-
cient of variation of the average rms acceleration spectra
for s0il sites computed from Bolt's duration fluctuates
about a value of 0.4 as a function of oscillator period and
damping. With the exception of a few sporadic deviations,
a similar trend in the coefficient of variation is observed
for rock sites for Bolt's duration,.

The coefficient of variation of the average rms
acceleration spectra computed from Trifunac and Brady's
duration, however, shows similar behavior as the coeffi-
cient of variation in Figure 2.23 for .the average peak
acceleration spectra. In general, the coefficient of
variation based on Trifunac and Brady's duration decreases
with increaéing damping, increases with increasing oscil-
lator period, and is slightly higher than the coeffi-
cient of variation of the traditional average peak acceler-
ation spectra.

Figure 2.28 compares, for soil and rock sites for 5%
damping, the average peak acceleration spectrum and the
average rms acceleration spectra computed from Boit's and
Trifunac and Brady's durations. For both soil and rock
sites, the average fms acceleration spectra have similar

shape as the average peak acceleration spectrum and hence
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appear to be a scaling down of the average peak accelera-
tion spectrum. This relationship is explored in more
detail below.

A comparison cf the coefficient of variation of the
average peak acceleration in Figure 2.23 and of the average
rms acceleration spectra in Figures 2.26 and 2.27 is shown
in Figure 2.29., The following trends are noted for both
rock and soil sites. For periods less than 1 second, the
coefficient of variation of the average pealk acceleration
spectrum is less than the coefficient of variation of the
average rms acceleration spectra cdmputed from the two -
duration measures. However, for periods greater than
about 1 second, the average rms acceleration spectrum
computed from Bolt's duration gives the lowest coefficient
of variation. The coefficient of variation of the average
rms acceleration spectrum computed from Trifunac and
Brady's duration is greater than the coefficient of
-variation of the average peak acceleration spectrum for
all oscillator periods.

A comparison of the average rms acceleration spectra
for 5% damping computed from Bolt's and Trifunac and
Brady's durations is shown in Figures 2.30 and 2.31 for
soil and rock sites, respectively. For periods between 0.1
second and about 0.5 to 1.0 second, the average rms

acceleration spectra computed from Trifunac and Brady's
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lduration for both soil and rock sites are greater than the
spectra computed from Bolt's duration. At all other
periods, the rms acceleration spectra computed from

Bolt's duration are slightly greater. Conseguently, the
average rms acceleration spectra are sensitive to the
duration measure,

Figures 2.32 and 2.33 compare the average rms
acceleration spectra computed from Bolt's and Trifunac and
Brady's durations, respectively, as a function of the site
gealogy conditions. For both definitions of duration, the
following trends are observed. For periods less than about
C.1 secoﬁd, the spectra for soil and rock sites are
essentially identical. For periods between 0.1 second and
about 0.5 second, the response for rock sites exceeds
the response for soil sites. For periods greater than
about 0.5 second, the response for soil sites is amplified
greater than the response for rock sites. Hence, the
average rms acceleration spectra show similar sensitivity
to local site geology as observed for average peak acceler-
ation spectra, e.g., Seed, ggmgi., {1976b);: Mohraz (1976);
Kiremidjian and Shah, (1978).

To verify if rms acceleration of response is a scaling
down of the peak acceleration of the response time history
as observed for ground motion, average rms acceleration/
peak acceleration spectra are graphed in Figures 2.34 and
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2.35 for soil and rock sites, respectively, as a function
of 2, 5, and 10% of critical damping. These figures show
that for both soil and rock sites, the spectrum computed
from Bolt's duration is independent of damping and in-
creases with increasing oscillator period from about 0.25
to approximately 0.7. The spectrum computed from Trifunac
and Brady's duration, however, is dependent on damping,
generally increases with oscillator period, and ranges
between 0,25 and 0,50.

A comparison of the rms/peak acceleration spectra for
Bolt's and Trifunaé and Brédy's durations for 5% damping is
shown in Figure 2.36. For periods less than about 1
second, the rms/peak valués are independent of the duration
measure. For periods greater than 1 second, the rms/peak
values are greater for Bolt's duration.

The coefficient of variation of the spectra shown in
Figures 2,34 and 2.35 is shown in Figures 2.37 and 2.38,
respectively. The coefficient of variation is seen to
slightly increase with increasing damping. Typically the
coefficient of variation fluctuates between 0.2 and 0.3 as
a function of oscillator period.

Consequently, the average rms acceleration spectrum
is a scaling down of the average peak acceleration spec-
trum. The scaling down, however, is a function of the
oscillator period, the percent of critical damping, and the
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duration measure. However, the average rms acceleration
spectrum given by Trifunac and Brady's duration gives a
more uniform scaling as a function of oscillator period
than the average rms acceleration spectrum given by Bolti's
duration. Again, this implies that the peak (maximum)
acceleration of the time history does retain information on
the lesser, near maximum amplitudes sustained over the

strong motion duration.

2.5 CONCLUSIONS

In summary, as a ground motion and a response para-
meter, rms acceleration has been §hown to be dependent on
the duration measures defined by Bolt (1973) and Trifunac
and Brady (1975) to calculate the rms acceleration from
equation (1.3). For both ground motion and response, the
following trends have been noted for the rms acceleration
parameter: .

e The rms acceleration is dependent on the duration

measure.

e A linear relationship is observed between the rms
acceleration and the peak acceleration of the
ground motion or response time history. For
response, the relationship is dependent on the
oscillator period and the percent of critical
&amping.
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e The rms acceleration does not consistently summar-
ize the same levels of loading or response for
each duration measure.

While rms acceleration is a summary of the amplitudes
over a given strong motion duration and is observed to be
related to the peak acceleration of the ground motion or
response time history, no further information can be
obtained from the rms acceleration representation on the
amplitudes of the lesser, near maximum amplitudes of the
ground motion or response time history. Consequently, the
next two chapters present a methodology to characterize the
largest amplitudes, or peaks, in ground motion and SDOF
response time histories in terms of the probability
distributions of the largest peaks of fhe time history.

An interesting observation in these next two chapters is
that for the investigated exponential-like probability
distributions, the parameter 1/\ of the distributions has
similar behavior as the rms acceleration parameter of

ground motion and SDOF oscillator response.
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CHAPTER 3

CHARACTERIZATION OF THE AMPLITUDES OF THE LARGEST PEAKS
OF STRONG GROUND MOTION TIME HISTORIES

3.1 INTRODUCTION

O0f interest to engineers for seismic hazard analvysis
and seismic design is the characterization of the strong
motion portion of an expected dground motion record during
which the largest amplitudes of excitation occur. Tradi-
tionally, the largest amplitudes of a ground motion
acceleration, velocity, or displacement time history have
been characterized by the maximum absolute amplitude of £he
time history, i.e., the peak ground acceleration (PGA),
‘peak ground velocity (PGV), or peak ground displacement
(PGD), respectively. Hence, specific information on the
amplitudes and the duration of the lesser, but near maximum
peaks of a ground motion time history is not retained.

While root-mean-square (rms) acceleration discussed in
Chapter 2 does represent a summary of the amplitudes
sustained over a given strong motion duration of the time
history, such representation does nct, however, retain
specific information on the relative magnitudes and the
number of cycles of potentially damaging, near ﬁaximum
amplitudes of the strong ground motion record. Information
on the largest peaks of ground motion acceleration and
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velocity time histories is needed for load level and energy
considerations. For most applications in seismic hazard
analysis, typically the maximum value of the ground motion
displacement time history, i.e., PGD, is of interest.

Consequently, this chapter investigates the adequacy
of the exponential, Rayleigh, and Weibull probability
distributions to model the maximum and near maximum
amplitudes, or peaks, of ground motion records. The
objective is to present a methedology to retain information
explicitly on the amplitudes of the largest peaks and
hence implicitly on the duration of the strong motion
portion of a ground motion time history. Characterization
of the largest peaks of ground motion acceleration,
velocity, and displacement time histories is presented.

A peak is again defined in this chapter as shown in
Figure 3.1 as the maxXimum absolute amplitude between two
consecutive zero crossings of a ground motion acceleration,

velocity, or displacement time history. The kth largest’

h peak of the ground motion time

peak, X(k), is then the k&
history when the peaks are ranked in descending order from
the largest to smallest peak., The first peak, X(1},
corresponds to the PGA, PGV, or PGD of a ground motion
acceleration, velocity, or displacement time historvy,
respectively., The peék X(k) then represents the amplitude

for which there will be k/2 cycles ¢of ground motion
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excitation exceeding this amplitude. Using extremal
statistics, prediction of the largest peaks from expo-
nential or exponential-like (Rayleigh and Weibull) proba-
bility distributions enables information to be retained on
the specific peak amplitude level X{k} corresponding fto an
implicit duration of k/2 cycles.

Prediction of the largest peaks of ground motion time
histories is investigated for the recorded strong ground
motion discussed in Section 3.2. The data base of ground
motion records in Table 2.1 used for the investigation of
rms acceleration in Chapter 2 is expanded in this chapter
for the ground motion study. The selection of the proba-
bility distributions investigated is discussed in Section
3.3. Model verification of the adequacy of the investi-
gated probability distributions to predict the largest
peaks of ground motion time histories is presented in
Section 3.4. Section 3.5 illustrates the relationships
between PGA, PGV, PGD, and the parameter 1/) of the
exponential and exponential-like probability distributions,.
The sensitivity of the predicted peaks to the number of
pealks in the distribution is addressed in Section 3.6.
Finally, Section 3.7 summarizes the findings of this ground
motion investigation and recommends extensions of this

study for future research.
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3.2 GROUND MOTION RECORDS ANALYZED

Prediction of the largest peaks of ground motiocn time
histories is investigated for 332 ground motion records
selected from 356 earthquakes, primarily in the western
United States, between 1933 and 1979. These ground motion
records represent the two orthogonal, horizontal ground
motion compeonents at 166 recording stations. Table 3.1
lists the earthquakes considered by date, location, and
Richter magnitude. Of the 332 records analyzéd, 288
records representing 34 earthquakes have been selected from
the Volume II records published by the California Institute
of Technology (1973}. 0f the 288 Volume II records
analyzed, 176 records correspond to horizontal components
of ground motion from the 9 February 1971 San Fernandoe, CA
earthquake. Forty-four (44) records have been selected
from the 15 Cctober 1979 Imperial Valley earthquake records
processed by Brady, Perez, and Mork (1982).

As in Chapter 2, to investigate thé influence of
site geclogy conditions, the site conditions of the
recording stations are divided into two site categories -
"rock” and "soil" - using the site categories defined by
Seed, et al., {1976a,b). Site category "rock" corresponds
to rock sites "where rock was considered to be shale-
like or sounder in characteristics as evidenced by a

shear-wave velocity greater than about 2500 fps' per Seed,
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et al., (1976a,b). In this investigation, the site
category "soil" includes the following two soil site
classifications per Seed, et al., (1976a,b):

1) "Stiff soil conditions -~ where rock as defined
above was overlain by less than about 150 feet
of stiff clay, sand, or gravel";

2) "Deep cohesionless scoil conditions - where rock as
defined above was overlain by at least 250 feet of
generally cohesionless soils',

Table 3.2 presents a listing of the recording stations for
the time histories analyzed and includes the earthquake
I.D. number from Table 3.1, the Richter magnitude,_the
site geology condition, and the epicentral distance. Of

the 332 records considered, 266 correspond to soil sites

and 66 to rock sites.

3.3 SELECTION OF PROBABILITY DISTRIBUTION MODELS

The largest peaks of ground motion acceleration,
velociti. and displacement time histories arebmodelled by
the exponential and exponential-like (Rayleigh and Weibull)
probability distributions listed in Table 3.3. This
section discusses the selection and the theoretical basis
of these probability distributions. The first two proba-
bility distributions listed in Table 3.3 are the tradi-
tional exponential and Rayleigh distributions. The
remaining five probability distributions are the exponen-

tial half-tail (EHT) distributions developed by Deherrera
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and Zsutty (1982)., While Deherrera and Zsutty (1982)
developed the EHT distributions to predict the largest
peaks of ground moction acceleration records, this study
extends these distributions to model the largest peaks of
ground meotion velocity and displacement time histories in

this chapter and of response time histories in Chapter 4.

3.3.1 TRADITIONAL EXPONENTTIAL, RAYLEIGH, AND WEIBULL
PROBABILITY DISTRIBUTIONS

The first two probabilify distributions listed in
Table 3.2 are the well-known exponential (Case 1) and
Rayleigh (Case 2) distributions from probabilitf theory
{e.g., Ang and Tang, 1984). Both the exponential and
Rayleigh distributions are used to model the probability
distributions of the entire set of peaks of the ground
motion records. Although the Weibull distribution will
only be investigated as an EHT probability distribution,
the theoretical basis qf this dis?ribution is also dis~
cussed below.

If the random variable X represents the set of peaks
of a ground motion time history, then the exponential
probability distribution function, fx(x), of the peaks is
given as:

=AX

fx(X) = e (3.1)
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where )\ is the parameter of the exponential distribution.
The mean, or expected value, E(X), and the variance, a;, of

X are given as:
E(X) = 1/ (3.2)

o2 = 1n® (3.3)
Note that the quantity 1/%\ will have the same units as the
random variable X. For example, if the random variable X
represents acceleration peaks, then the gquantity 1/% in
equation (3.2) will also have units of acceleration.
Deherrera and Zsutty (1982) have shown through a
simple change of variable transformation that if the set
of original peaks {X} of L ordered observations (from

largest to smallest} given as:
{X} = {xl 1x211111XL} . (394)

is not exponentially distributed, but the set of ordered,

transformed peaks {Y} given as:

n
,...,XL} (3.5)
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is exponentially distributed, then for n equal to 1, 1/2,
or 2, the set {X} follows the exponential, Weibull, or
Rayleigh distribution, respectively.

Hence, for the original, untransformed set of peaks
{X}, the probability distribution functions fi(x), fg(x),
and fi(x) corresponding to the exponential, Weibull, and

Rayleigh distributions, respectively, are given as follows:

E. -% X
fx(x) = xe e (3.6)
-~ % x
W v e W,
W
fx(x) = (3.7)
2J b4
2 .2
£2(x) = 422 x o (3.8)
X r ‘ ’

where xe' Xw' and Xr are the parameters of the exponential,
Weibull, and Rayleigh distributions, respectively. For the
transformed set 6f peaks (Y} given by edquation (3.5), the
probability distribution functions fy(y), £3(y), and £3(y)
corresponding to the exponential, Weibull, and Rayleigh
distributions, respectively, have the following exponen-

tial-like forms:

E
£4(y)

[
>
1]

(3.9)
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W
fY(Y) (3.10)
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Ny
|
>
5

R ——
fgly) =2 e (3.11)

. From the parameter )\ equal to gt A, O X for the

r
exponential, Ravleigh, or Weibull distributions, respec-
tively, and N, the number of peaks in the time history, the
mean value of the expected kth largest peak, i(k), can be

predicted from extremal statistics per Gumbel (1958) as:

N m

Rk) =2 1L 3l ‘ (3.12)
z=k

where m is equal to 1, 1/2, or 2 for an exponential,
Rayleigh, or Weibulil distribution, respectively. The mean
value of the largest peak, X(1) can also be expressed in

terms of the asymptotic formula:
(1) = 1/2(In N + 0.577)™ (3.13)
where m is defined in eguation (3.12).

3.3.2 EXPONENTIAL HALF-TAIL (EHT) DISTRIBUTIONS

The majority of the peaks of ground motion time
histories, however, will consist of smaller amplitude peaks
which do not contribute to the strong motion poftion cf the
record. Conseguently, inc;usion of these smaller peaks
will greatly reduce the accuracy of prediction of the

larger peaks 0of the ground motion time history. 1In a

58



methodology to retain information on the lesser, but near
maximum peaks without’the influence of the smaller, less
significant peaks, Deherrera and Zsutty (1982) developed
the exponential half-tail (EHT) distribution to charac-
terize only the uppér median of a given population of peaks
of the ground motion acceleration time history. The
objectives of the EHT distribution are to emphasize the
importance of the larger peaks over the smaller and less
important peaks and to allow the EHT model to select the
appropriate probability distribution function (exponential,
Ravyleigh, or Weibull) for the larger peaks without infiu-
ence of the smaller peaks. The EHT model will be inves-
tigated in this chapter and in Chapter 4 and is briefly
discussed below. A more extensive discussion is found in
Deherrera and Zsutty (1982).

The EHT model describes the largest peaks above
-a median, my, by an exponential or exponential-like
distribution (Rayleigh or Weibull) as shown in Figure 3.2.
The use of the median as a cutoff point is chosen for
convenience.énd because it is a well-established statis-
tical quantity. If the exponential distribution describes
the random variable Y, which represents the set of trans-

formed peaks of a given time history, as:

= Ay
fY(Y) =\ e (3.14)
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then the median, my, of the exponential distribution is:

my = In{(2)/X {3.15)
While the exponential distribution deécribing the larger
peaks will also extend into the region of the smaller
peaks, no probability statements will be in the lower
half-tail region. Hence, the zone of validity of the EHT
model is the upper half-tail of the expcnehtial distribu-
tion as shown in Figure 3.2. The first and second moments,
E'{Y] and E'[Y2], respectively, of the EHT distribution are

illustrated in Figure 3.2 and are as follows:

E'(Y] = /7 ¥ xe MY gy = 945%1 (3.16)
v
. f; ¢ e ay = 1.923 (3.17)

Y A

The half-tail moments can be used to find the expo-
nential distribution that best describes the probabilistic
behavior of the largest peaks above a‘median my. The
median mY can be related to the half-tail moments froml

eguations {(3.15), (3.16), and {3.17) as follows:

m, = 0.819 E'[Y] (3.18)
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or

m, = 0.499 (B'1v2131/2 (3.19)

The median mY is estimated for each time history by a
trial and error procedure which assumes that each trans-
formed peak Yi' starting with the largest peak, is the
median value. A check is made to determine if one or both
of the guesses for the median in terms of the estimates in
equations (3.18) or (23.19) is wvalid. The rank "i" of the
peak which makes these eguations valid is then equal to the
sample half size N/2 and the largest i peaks, from Y1 to
Yi' form the upper half-tail of a sample size N from an
exponential distribution with the parameter X. The
parameter \ can be estimated from equations (3.16) and
{3.17) as follows:

E'[Y]

E'[Y?]

X = 2.28 (3.20)

The parameter )\ and the sample size N are then used to
predict the expected peaks X(k) from equations (3.12) and
(3.13). The upper half-tail exponential, Rayleigh, and
Weibull distributions are referred in the remainder of this
study as the exponential (EHT), Ravyleigh (EHT), and

Weibull (EHT) distributions, respectively.
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Two criteria have been proposed by Deherrera and
Zsutty (1982) to determine whether the acceleration peaks
of a given time history can be best predicted by the
exponential (EHT), Ravleigh (EHT), or Weibull (EHT)
distribution. The first criterion is a graphical procedure
using an exponential probability distribution plot. Let
the random variable Y represent the set of ordered peaks in
equation (3.5) drawn from an exponential distribution. The
probability that the random variable Y exceeds a given
value Yi’ i.e., P{Y > Yi). is given by the exceedance
distribution function (EDF) of the exponential distribution
as:

P(Y > Y,) = e Yy (3.21)

If N observations of Yj are arranged in descending order,

Y1 > Y2 iee B> YN' then the EDF can be estimated by:
P(Y > Yi) = i/{(N + 1) (3.22)
where i is the rank of the observation Yi' If 1/(N + 1)

is a valid estimate for the EDF of the exponential func-
tion, then eguating equations (3.21) and {3.22) gives the

relationship:
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XYi = =-1In[i/(N + 1)] {(3.23)

If Yi follows an exponential distribution, then the
graph of -In{i/(N + 1)} vs. Yi would plot along a straight
line with slope )\ on exponential probability paper as shown
in Figure 3.2 for the upper half-tail exponential distribu-
tion. Lack of exponentiality would plot as a marked
nonlinear curve. Consequently, if the untransformed peaks
{X} in equation (3.4} plot concave upward or concave
downward on exponential probability paper, then the peaks
may be assumed to be drawn from a Ravyleigh or Weibull
distribution, respectively, as illustrated in Figure 3.4.
Figure 3.5 plots the untransformed acceleration, velocity,
and displacement peaks recorded during the 1971 San
Fernando earthguake at the base of the Heoliday Inn Build-
ing at 1640 Marengo Street. The acceleration, velocity,
and displacement peaks plot as Rayleigh, Ravleigh, and
exponential distributiocons, respeétively. Hence, to
determine if the largest peaks of a given time history
are best modelled by an exponential (EHT)}, Rayleigh (EHT),
or Weibull (EHT) distribution, the peaks are plotted on
exponential probability plot paper and the appropriate
trend is noted.

However, to provide a more analytical criterion to

determine the best EHT distribution which models the
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largest peaks, the second criterion proposed by Deherrera
and Zsutty (1982) is based on minimizing the weighted
square difference between the cobserved and the predicted
peaks in accordance with the rank of the peak. For a

given EHT distribution, if Yi is the observed ith largest

peak in the transformed space, Y; is the predicted ith peak
from the given BHT distribution, Di equals Yi - Y;, and Wi
2

equals Yi/Yl' then the weighted error sguared term, 87, is

equal to:

g = (3.24)

The upper limit N/2 of the summations will be Ne/2, Nr/z,
and Nw/2 for the exponential (EHT), Rayleigh (EHT), and
Weibull (EHT) distributions, respectively. For a given
accelerogram, the particular EHT probability distribution
which minimizes the error term 82 is then the distribution
selected by the EHT model to characterize the distribution
of the largest peaks of that record.

Consequently, this study initially assumes that the
largest peaks of ground motion acceleration, velocity, and
displacement time histories are modelled by the appropriate
EHT distribution {exponential, Rayleigh, or Weibull) which
minimizes 82 in equation (3.24). Table 3.4 summarizes the
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EHT distribution selected by eguation (3.24) to mininmize

82 for each ground motion component {acceleration, veloc-
ity, and displacement) of the 332 ground motion records
listed in Table 3.2. 1In Table 3.4, the exponential (EHT),
Rayleigh (EHT), and Weibull (EHT) distributions are
dencted by 0, 1, and 2, respectively. WAlso given in Table
3.4 are the corresponding EHT distribution parameters: 1/
and N/2, the number of peaks.of the upper half-tail of the
distribution.

No trends are observed from Table 3.4 in the selec-
tions of the EHT distribution by egquation (3.24) to model
the veliocity and displacement peaks given that the accele-
ratioh peaks are selected by equation (3.24) to follow a
given EHT distribution. 1In addition, there is no apparent
relationship between thé distributions selected to model
the largest acceleration, velocity, and displacement peaks
of the two orthqgonal components of ground motion at a
particular recording station.

For comparison purposes, the percentage of ground
motion records from Table 3.4 whose largest peaks are
selected by the criterion in equation (3.24) to be modelled
by the exponential (EHT), Rayleigh (EHT)., or Weibull
(EHT) distribution is shown in Table 3.5 for each ground
motion component (acceleration, velocity, and displacement)

and each local site category (soil and rock). Similarly,
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Tables 3.6 and 3.7 summarize the percentage of records
investigated from the ¢ February 1971 San Fernando, CA and
the 15 October 1979 Imperial Valley, CA earthguakes,
respectivel?, whose largest peaks are seliected by the
criterion in eguation (3.,24) to foilow one of the three EHT
distributions. Typically, Tables 3.5, 3.6, and 3.7 show
that for each ground motion component and site category,
for the greatest percentage of records, the largest peaks
are selected by equation (3.24) to follow the Ravleigh
(EHT) distribution. The only exception to this trend is
- the favoring of the exponential (EHT) distribution for
acceleration records for rock sites in Tables 3.5, 3.6 and
3.7 and velocity records for both rock and soil sites from.
the 1979 Imperial Valley earthquake in Table 3.7.
Consequently, because the exponential (EHT) and
Rayleigh (EHT) distributiocons are generally favored over
the Weibull (EHT) distribution, case 3 in Tablie 3.3»assumes
that the largest peaks of the ground motion components of
all 332 ground motion records follow the exponential (EHT)
distribution. Similarly, case 4 in Table 3.3 assumes that
the largest peaks of ail 332 records follow the Rayleigh
(EHT) distribution. Case 5 in Table 3.3, the General
(EHT) distribution, allows the EHT model weighted criterion
in equation (3.24) to select the best fit EHT distribution
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for each of the 332 records, resulting in the EHT distri-

butions listed in Table 3.4.

3.3.3 EHT DISTRIBUTIONS ASSUMING STANDARDIZED NUMBER
OF PEAKS, N*

An important result in Deherrera and Zsutty {1982)
is that for the purpose of predicting the expected kth
largest ground motion acceleration peak, ¥X{k), the number
of peaks N in equations (3.12) and (3.13), which varies
from record to record, can be replaced by a standardized
number of peaks, N*. The value of N* is derived from the
slope of the plot of 1/)\ vs. 1/2x{1ln N)m where m is egual to
1, 1/2, or 2 for an exponential (EHT)}, Rayleigh (EHT), or
Weibull (EHT) distribution, respectively. For example, the
slope of the plot will be equal to 1ln N for the exponential

(EHT) distribution and (1n N)1/2

for the Rayleigh (EHT)
~distribution.

Following the above procedure, N* is derived in this
study for ground motion acceleration, wvelocity, and
displacement records assuming that the largest peaks of all
ground motion records foliow Case 3, the exponential (EHT)
distribution, and Case 4, the Rayleigh (EHT) distribution,
in Table 3.3. Figures 3.6, 3.7, and 3.8 graph 1/)\ vs.

i/ (1In N)m for the exponential (EHT) and Rayleigh (EHT)

distributions for combined soil and rocik sites for ground
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motion acceleration, velocity, and displacament, respec-
tively. Table 3.8 lists the values derived for N* for the
soil, rock, and combined soil and rock categories. The N*
values computed for the three site geology categories are
very similar in value., Hence N* does not appear to be
sensitive to the site conditions. For the exponential
(EHT) distribution, N* is equal to 127, 37, and 20 for
acceleration, velocity, and displacement records, respec-
tively, considering soil and rock sites combined. Simi-
larly, for the Rayleigh (EHT) distribution, N* is equal to
48, 25, and 14 for acceleration, velocity, and displacement
records, respectively, considering soil and rock sites
combined. Hence, acceler%tion records contain the largest
number of peaks, and displacement records, the smallest.
The sensitivity of the peaks predicted from equations
{3.12) and (3.13) to the number of peaks, N, in the
distribution is addressed in Section 3.7. The N* values
derived for acceleration are in agreement with the values
derived by Deherrera and Zsutty (1982).

Using the N* values given in Table 3.8, the N¥*
exponential (EHT) and the N* Ravyleigh (EHT) distributions
in Table 3.3 (cases 6 and 7, respectively) assume that the
largest peaks of ground motion time histories can be
modelled by the exponential (EHT) and Rayleigh (EHT)

distributions, respectively, but where the number of
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peaks, N, is now replaced by the appropriate value of N¥,
The largest peaks then act as if they are derived from a

standardized sample size N¥*.

3.3.4 SUMMARY

In summary, of the seven probability distributions
considered in Table 3.3 te model the peaks of strong ground
motion records, two of the probability distributions are
the traditional exponential and Rayleigh distributions.
The remaining five distributioﬁs are variations of the EHT
distributions proposed by Deherrera and Zsutty (1982). The
next section addresses the adequacy of these seven proba-
bility distributions to model and predict the largest peaks

of ground motion time histories.

3.4 PREDICTION OF THE LARGEST PEAKS

The capability of the exponential and exponential-like
probability distributions in Table 3.3 to predict the
largest peaks of ground motion time histories is verified
analytically and graphically in this section. The analy-
tical verification is accomplished as follows:

1) by model verification through Kolmogorov-Smirnov
goodness—of-fit tests for 1, 5, and 10% signi-

ficance levels;

2) by minimization of the standard error between the
observed peak X(k) and the predicted peak X(k) for

selected values of the peak number k.
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In conjunction with item (2) of the analytical verifica-
tion, graphical verification is presented by pilotting the
observed peak X(k) vs. the predicted peak X(k) for selected

peak numbers k.

3.4.1 KOLMOGORQV-SMIRNCV TESTS

First, Kolmogorov-Smirnov tests are performed for the
first fivé probability distributions listed in Table 3.3.
The percentage of ground motion records passing the 1, 5,
and 10% significance levels for the Kolmogorov-Smirnov test
are listed in Tables 3.9, 3.10, and 3.11 for ground motion
acceleration, velocity, and displacement records, respec-
tively, as a function of site geology conditions. The
trends observed from the results of the Kolmogorov-Smirnov

tests are the following:

1) Regardless of ground motion component (acceleration,
velocity, or displacement) and site geclogy condi-
tions (soll or rock}, none of the records pass the
Kolmogorov-Smirnov test at the 1, 5, and 10% signi-
ficance levels when the peaks are modelled by the
traditional exponential, traditional Ravyleigh, and
General (EHT)-Weibull (EHT)} distributions.

2) Regardless of ground motion component and site geology
conditions, at least 82% of the records pass the
Kolmogorov-Smirnov test at the 1, 5, and 10% signi-
ficance levels when the peaks are modelled by the
exponential (EHT), Rayleigh (EHT), General (EHT)-
Exponential (EHT)}, and General (EHT)-Rayleigh (EHT)
distributions. ‘
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3) With the exception of ground motion displacement
records for soil sites, for the General (EHT)-
Rayleigh (EHT) distribution, all records pass
the Kolmogorov-Smirnov test at the 1, 5, and 10%
significance levels.

4} For all ground motion components and all significance
levels, for a given EHT probability distribution, a
slightly larger percentage of records for rock sites
pass the Kolmogorov-Smirnov test than for soil sites.

5} Overall, the level of significance has little influ-
ence on the percentage of ground motion records
passing the Kolmogorov-Smirnov test. The most
noticeable influence is evident for ground motion
acceleration records for rock sites whose peaks are
modelled by the exponential (EHT) distribution. At
the 1% significance level, 85% of the 332 records
passed the Kolmogorov-Smirnov test. At the 10%
significance Jlevel, all records passed the Kolmogorov-
Smirnov test. The difference of about 15% between the
percentage of records passing at the 1% and 10%
significance levels is the greatest effect of the
level of significance observed.

In summary, a high percentage of ground motion
records passed the Kolmogorov-Smirnov tests when modelled
by the exponential (EHT) and Ravleigh (EHT) distributions.
These two distributions are shown below in Section 3.4.2 to

best predict the largest peaks.

3.4.2 COMPARISONS OF PEAK X(k) vs. PREDICTED PEAK X(k)

Second, the capability of each probability distri-
bution to minimize the standard error between the observed
{actual) peak X(k) and the predicted peak i(k) is illus-
trated for ground motion peaks X{(1), X(2), X(5), X(10), and
X(20). The objective is to determine if successful

prediction of the ground motion peak X(k) depends on the
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probability distribution used to model the peaks of the
ground motion record. The standard error, E(k), of peak

X(k) is given as:

1/2
NREC X(k). - X(k)
z 1
i=1 xR}y
NREC - 1

i

E(k) (3.25)
where i is summed over the data base of ground motion
records in Table 3.2, NREC is equal to the number of
records with peak X(k), typically equal to 332, and
X(k)i and )-{(k)i are the observed and predicted kth largest
peaks, respectively, for record i of the data base.

The valﬁes of the standard error, E{(k), for ground
motion acceleration, wvelocity, and displacement records are
shown in Tables 3.12, 3.13, and 3.14, respectively, and are
based on all 332 records in the data base regardless of
site geology conditions. {The same trends have been
' observed for the standard error computed separately for
s0il and rock sites). In Tables 3.12 and 3.13, the
standard error, E(k), is computed for peaks X(1), X(2),
X(5), X(10), and X(20) for ground motion acceleration and
velocity records, respectively. Because a number of ground
motion displacement records did not contain peaiks X(10) and
X(20}, the standard error is not computed in Table 3.14 for

these peaks. For each peak X(k), the probability distri-
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butions are listed in these tables in order of minimum to
maximum values of E(k).

The trends noted in Tables 3.12, 3.13, and 3.14, which
are discussed below, are aided by the graphical comparisons
of the observed peak X(k) vs. the predicted peak X(k) in
Figures 3.9 through 3.15 for six of the seven probability
distributions listed in Table 3.3, Comparison of the
observed vs. predicted peaks from the traditional Ravleigh
distribution is not graphed in these figures since this
distribution was initially observed in this study to
predict a given peak X(k) least successfully of all
probability distributions considered.

For comparison, also graphed in each figure is the
line X(k) = X(k). Ideally, X(k) and X(k) should plot along
this line, However, if for a given probability distribu-
tion, the peaks tend to plot below this 1line, then that
distribution underpredicts the observed peak in the ground
motion acceleration records. Conversely, if the peaks plot
above this line, then the observed peaks are overpredicted
by that particular distribution. Figures 3.9, 3.10, 3.11,
and 3.12 graph the observed vs. predicted peaks X(1), X(5).,
X(10), and X(20), respectively, for ground motion accel-
eration records for both soil'and rock records combined.

Similar graphs are shown in Figures 3.13 and 3.14 for
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ground motion velocity peaks X(1) and X(5), respectively,
and in Figure 3.15 for ground motion displacement peak
X(1).

For ground motion acceleration records, Table 3.12
indicates that for predicting X{(1), i.e., the PGA, the
standard error E(1l) is comparably minimized by the Rayleigh
{EHT), N* Rayleigh (EHT), and Géneral (EHT) distributions.
Hence, an interesting result of this investigation is the
slight preference of the Rayleigh (EHT) distribution over
the General (EHT) distribution to predict X(1). Preference
of the prediction of the PGA from the Rayleigh (EHT)
distribution, which is based on modelling all the ground
motion records of the data base by this distribution, has
the advantage of eliminating the need to determine a priori
whether the expected acceleration peaks of a given site
under investigation will follow an exponential (EHT),
Rayleigh (EHT), or Weibull (EHT) distribution as suggested
by Deherrera and Zsutty (1982) for their EHT model.

The maximum values of the standard error, E{1), and
hence the worst predictors of X{(1), are given by the
traditional exponential and Rayleigh distributions. This
result is expected since these two distributions are
based on modelling the entire set of peaks of each ground
motion acceleration time history and hence the prediction

of the extreme values will not be as accurate. Figure 3.9
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illustrates the above conclusions for X{(1). While the
exponential distribution tends to underpredict X(1} for
most records, the remainder of the distributions show very
good agreement between X(1) and ﬁ(l), especially the
Réyleigh (EHT)} and N¥* Ravyleigh (EHT) distributions, as
noted above.

While the Rayleigh (EHT) distribution is preferred
over the other probability distributions to predict X(1),
the General (EHT) dand exponential (EHT) distributions are
favored for acceleration peaks X(2), X(5), and X(10). As
seen in Table 3.12, the General (EHT) distribution is only-
a marginally better predictor of these peaks than the
exponential (EHT) distribution. Consequently, this study
recommends the use of the exponential (EHT) distribution
as a simplification to predict these near maximum peaks.

For ground motion acceleration peaks X{%) and X(19),
Figures 3.10 and 3.11, respectively, show very good agree-
ment between the observed peaks and the peaks predicted
from the General (EHT) and exponential (EHT) distributions.
Again, the traditional exponential distribution tends to
consistently underpredict these peaks. The tendency of the
Ravieigh (EET) and N* Ravleigh (EHT) distributions to
overpredict these peaks is also illustrated in these

figures,
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Finally, for ground motion acceleration peak X(20),
Table 3.12 and Figure 3.12 show that the general (EHT)
distribution minimizes E(20), The exponential and exponen-
tial (EHT) distributions give the next smallest values of
E(20); however, the values of E{20) for these distributions
are slightly greater than twice the value of E(20) for the
General (EHT) distribution. As observed for peaks X(5) and
X(10), the Rayleigh (EHT) and N* Ravleigh (EET) distribu-
tions likewise tend to overpredict X(20).

For the largest peaks of ground motion velocity and
displacement time histories, however, the General (EHT)
distribution does not always minimize the standard error
E(k) between the observed peak X(k) and the predicted peak
i(k). As shown in Table 3.13 for ground motion velocity,
the Rayleigh (EHT) distribution minimizes the standard
error, E(l1), between the observed peak X{1) and the
predicted peak X(1). This trend is verified in Figure 3.13
for the PGV. Figure 3.13 shows that the exponential
distribution again tends to underpredict the PGV, while the
EHT distributions improve the accuracy in prediction of the
PGV.

An initially unexpected result of this investigation,
as illustrated in Table 3.13, is that while the exponen-
tial (EHT) distribution is favored for prediction of
the ground motion velocity peak X(2), the lesser ground
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motion velocity peaks X{5), X(10}, and X(20) favor the
traditional exponential distribution over the EHT distri-
butions. This trend is illustrated in Figure 3.14 for
ground motion velocity peak X(5).

For ground motion displacement, similar trends are
observed for E(k) as for ground motion velccity. As shown
in Table 3.14, the error E{(1) is minimized for peak X{(1),
the PGD, by either the Ravyleigh {(EHT) or General (EHT)
distributions. This trend is verified in Figure 3.15.
However, for the displacement peaks X{(2) and X(5), these
peaks are best predicted by the exponential (EHT) and
exponential distributions, respectively, which minimize
the standard error for these peaks in Table 3.14.

An inspection of Tables 3.12, 3.13, and 3.14 and
Figures 3.9 to 3.15 also indicates that the N* EHT distri-
butions can predict the largest peaks reasconably well. The
N* Rayleigh (EHT) distribution predicts X({1) guite well;
however, this distribution typically overpredicts the
lesser peaks X(2), X(8), etc. For these lesser peaks, the
N* exponential (EHT) distribution is a better predictor of
these peaks than the N* Rayleigh (EHT) distribution.

Table 3.15 summarizes the probability distribution
which minimizes E(k) for each ground motion component and
each peak X(k), An importént result of this study is that

for predicting the PGA, PGV, and PGD, the Rayleigh (EHT)
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distribution is favored over the other probability distri-
butions, including the General (EHT) and traditional
exponential and Rayleigh distributions. However, the
exponential (EHT) or traditional exponential distributions
are shown to best predict the near maximum peaks X(2),
X{58}), X(10), and X(20).

Because the Rayleigh (EHT) distribution is derived
from squaring the original set of peaks in the ground
motion time history, this distribution is strongly infiu-~
" enced by the maximum peak, X(1). Hence, this distribution
wil; not predict the lesser, near maximum peaks as well.
The exponential (EHT) and the traditional exponential
distributions, however, are derived from the untransformed
set of peaks of the time history and therefore give lesser
weight to the extreme values than the Rayleigh (EHT) and
Rayleigh distributions. Consequently, the two exponential
distributions will be more influenced by, and hence, more

representative of, the lesser, near maximum peaks.

3.5 RELATIONSHEIPS BETWEEN PGA, PGV, PGD AND 1/

Also of interest in this study is to determine if
there is a direct relationship between the observed peak
X(1) and the EHT parameter 1/)\ of a given time history,
where )\ is the parameter derived for the exponential (EHT)

and Rayleigh (EHT) distributions. The parameter 1/\ will
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have units of acceleration, velocity, or displécement if
the modelled peaks are from a ground motion acceleration,
velocity, or displacement time history, respectively.
Figures 3.16, 3.17, and 3.18 graph the relationship
between the PGA, PGV, and PGD and 1/)\, respectively,

from both the exponential (EHT) and Rayleigh (EHT) distri-
butions for all records irrespective of site geology. For
both EHT probability distributions, these graphs show a
definite linear relationships between the maxXimum values
{PGA, PGV, and PGD) and 1/x. For the exponential (EHT)
distribution, the PGA, PGV, and PGD are approximately 4 to
5 times greater than the corresponding 1/% values. For the
Rayleigh (EHT) distribution, the maximum values appear

to be about a factor of 2 times greater than 1/\. The
linearity between the maximum values and 1/\ is most
evident for ground displacement.

Hence the parameter 1/)\, which represents the charac-
teristic acceleration, velocity, or displacement, shows a
similar relationship to the maximum value as for PGA and
the rms acceleration parameter for ground motion. The
parameter 1/\, which is related to the maximum value of the
time history, is a parameter characterizing the largest
peaks of the time history. This implies that the maximum
value, X(1), does contain information on the lesser, near

maximum peaks. The linear relationship between the maximunm
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value of the time history and i/% in Figures 3.16, 3.17,
and 3.18 appears to be independent of site geoclogy.

Since the PGA, PGV, and PGD have been shown to
attenuate in a number of studies as a function of Richter
magnitude and distance from the source, the parameter 1/
should also attenuate. Hence if an attenuation relation-
ship for 1/) is known and the peaks are assumed to come
from.a standardized number of peaks N* in Table 3.8, then
the expected ground motion peaks X(k) can be predicted for
a given site, .A preliminary attenuation relationship for
1/2 for the exponential distribution is given by Deherrera

and Zsutty {(1982).

3.6 SENSITIVITY OF PREDICTED PEAKS TO NUMBER OF PEAKS, N

The ground motion peaks in sections 3.4 and 3.5 have
been predicted from equations (3.12) and (3.13) which are
dependent on two parameters of the assumed probability
distributions: 1/) and the number of peaks, N. It was
shown in Section 3.3 that the number of peaks N of each
ground motion time history can be replaced by a standard
number of peaks, N*, given in Table 3.8. From this table,
it is evident that ground motion acceleration time his-
tories have the largest number of peaks, and ground motion
displacement, the smallest number. This section discusses
the sensitivity of the prediction of the peaks from
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equations (3.12) and (3.13) to the number of peaks N in
the exponential and Ravyleigh distributions.

Assuming a unit value of \, Figures 3.19 and 3.20
graph the magnitudes of X(1), X(2), X(5), X(10), and X{20)
predicted from equation (3.12) for the exponential and
Rayleigh distributions, respectively, as a function of the
number of peaks N in the distribution. Both figures show
that the magnitude of the predicted peaks X(k) increases
monotonically as N increases. As the number of peaks N in
the distribution decreases and approaches the peak number
k, the magnitudes are most influenced by changes in N. As
N increases with respect to the peak number k, the peaks
become less sensitive to changes in N.

The effect of the percent change in N on the magni-
tudes of the predicted peaks X(k) is shown in Table 3.16
for the exponential distribution. The folleowing trends
are noted in Table 3,16 for the exponential distribution
and would also be observed for the Rayleigh distribution:

e For a given peak X(k) and a given number of peaks
N, as the percent change in N increases, the mag-
nitude of X(k) increases.

e For a given peak X(k) and a given percent change
in N, as the number of peaks N in_the distribu-
tion increases, the magnitude of X(k)} becomes less
sensitive to increases in N.

e For a given number of peaks N and a given percent
change in N, as the peak number k of X(k) increases,
the magnitude of X(k) becomes nmore sensitive to

changes in N,
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Also of interest is g comparison of the relative
magnitudes of the predicted peaks X(2), X(5), X(10) and
X(20) with respect to the maximum peak X(1). Figures 3.20
and 3.21 plot the ratio i(k)/i(l) as a function of the
number of peaks N for the exponential and Rayleigh distri-
butions, respectively. The following trends are observed

in these two figures:

® The ratio X(k)/X(1) increases as N increases.

® As observed for ﬁ(k), the ratio is most sensi-
tive to N for small changes in N as N decreases
and approaches the peak number k.

Recall from Table 3.8 that the standardized number of
peaks N* is largest for acceleration time histories and
smallest for displacement. Hence based on the above
observations for i(k) as a function of the number of peaks
N in the distribution, the magnitudes of the displacement
peaks will be the most sensitive of the three ground

motion components to changes in N.

3.7 CONCLUSIONS

This chapter demonstrates that the largest peaks of
ground motion time histories can be characterized by
traditional and modified (EHT) exponential and Rayleigh

distributions. Successful prediction of a specific ranked
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peak, X(k), however, is shown to depend on the particular
probability distribution which models the peaks of the
ground motion time history. While the Rayleigh (EHT)
distribution best predicts X(1), i.e., the PGA, PGV, and
PGD, the near maximum peaks X{2), X(5), X(10), and X(20)
are best predicted by either the exponential (EHT) or the
traditional exponential distribution.

For ground motion acceleration, velocity, and dis-
placement time histories, the following trends are also
observed when the largest peaks are modelled by the
ex;dnential (EHT) and Rayleigh (EHT)} distributions:

® the EHT parameter 1/\ 1s a constant fraction
of the maximum value of the time history
° the number of peaks in the time history can be
replaced by a standardized number of peaits N*.
The resulting N* EHT distributions are shown
to adequately model the largest peaks.
In general, site geclogy is not observed to be a dominant
factor for characterization of the probability distribu-
tions and prediction of the largest peaks of ground motion
time histories.

The following extensions of the ground motion study
in this chapter are proposed to improve the characteri-
zation of strong ground motion:

1} Develop attenuation formulas for 1/)\ predicted

from the exponential (EHT) and Rayleigh {EHT)
distributions for ground motion acceleration,
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velocity, and displacement time histories.
Using the attenuated value of 1/)\ with a
standardized number of peaks N*, the expected
largest peaks X(K) can be predicted at a given
site. Also to be investigated is whether 1/)
is a more stable parameter when attenuated than
the maximum value X({1).

2) Empirically attenuate the near maximum ground
motion peaks X{(2), X{5), X(10), etc., as a
function of magnitude, source to site distance,
etc.

3) For a given EHT distribution, investigate the
relationships among the values of 1/)\ computed for
ground motion acceleration, velocity, and displace-
ment. Of interest is whether similar trends would be
observed as for empirically derived relationships
among PGA, PGV, and PGD.

4) For a given ground motion component (accel-
eration, velocity, or displacement), investi-
gate the relationship between the values of
1/% computed from the exponential (EHT) and
Ravleigh (EHT) distributions. Deherrera and
Zsutty (1982) have investigated this relation-
ship for acceleration.

5) Investigate the use of 1/\ as a normalization
parameter for seismic design response spectra.

6) Incorporate information on the distribution of

the largest peaks to derive more represen-—

tative, simulated ground motion time histories.

Chapter 4 parallels the characterization of the
largest peaks of ground motion time histories by charac-
terizing the largest péaks of linear single-degree-~of-
freedom oscillator and recorded building response time
histories, The traditional and upper-half tail (EHT)
distributions are also investigated in Chapter 4 to

determine which distribution best predicts the response

peaks.
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CHAPTER 4

CHARACTERIZATION OF THE AMPLITUDES OF THE LARGEST
PEAKS OF RESPONSE TIME HISTORIES

4.1 INTRODUCTION

For seismic design, response spectra are tradi-
tionally plotted for the maximum amplitude of the response
of a linear, elastic single-degree-of~freedom (SDOF)
oscillator subjected to strong earthguake ground motion.
Such characterization, however, does not retain information
on the amplitudes and the duration of the lesser, but near
maximum peaks of the response time history which contribute
to the strong motion portion of the response.

Therefore, utilizing the probability distributions
investigated in Chapter 3 for ground motion, the objective
of this chapter is to characterize explicitly the ampliQ
tudes and implicitly the duration of the largest peaks of
the response time history of é linear, elastic SDOF
oscillator subjected to earthguake excitation and of the
building records obtained during the 9 February 19871 San
Fernando, CA earthguake. The methodology of this chapter
"will parallel the characterization of the largest peaks of

ground motion time histories in Chapter 3.

85



The adequacy of the traditional exponential and
Ravleigh distributions, as well as the upper half-tail
exponential (EHT), Rayleigh (EHT), and Weibull (EHT)
distributions, to model and predict the largest peaks
of response time histories is addressed. The emphasis of

this chapter will focus on characterizing the probability

distributions of the largest peaks of the acceleration
response time history of a SDOF sysfem subjected to strong
ground motion. This characterization avoids the need to
derive explicit, empirical relationships for the maximum
and near maximum peaks §f é response time history as in
Perez and Brady (1984) and Prince (1984).

Also investigated in this chapter is which EHT proba-
bility distribution (exponential, Rayleigh, or Weibull)
best characterizes the largest peaks of building response
{acceleration) records obtained from 45 buildings during
the San Fernando, CA earthquake of 9 February 1971.

The objective is to determine if the largest peaks of
building response records follow the same probability
distributions as for SDOF oscillator response time
histories.

For structural response, a peak is defined in this
chaptef as the maximum absolute amplitude between two
consecutive zero crossings ofrthe acceleration, relative

velocity, or relative displacement time history. As shown
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in E'lgu:'e 4.1, the kth largest peak, X(k)l Of a response

time history is the kth

peak of the time history when the
peaks are ranked in descending order from the largest,
X(1}, to smallest peak, The peak X(k} then summarizes the
amplitude above which there will be k/2 cycles of response
exceeding this ampiitude.

Section 4.2 presents the methodoleogy used in this
chapter to model the probability distributions of the
largest peaks of the acceleration response of a SDOF
oscillator subjected to strong ground motion. The adequacy
of the investigated probability distributions to predict
the largest peaks of SDOF oscillator response time histor-
ies is verified in Section 4.3. The relationshipn between
peak acceleration and the parameter 1/% derived from the
exponential (EHT) and Rayleigh (EHT) distributions is
illustrated in Section 4.4.

Average 1/) acceleration spectra, normalized by peak
ground acceleration (PGA), are presented in Section 4.5 for
the exponential (EHT) and Rayleigh (EHT) distributions.
Tégether with a standardized number of peaks N*, derived as
a function of the oscillator period, and the expected PGA
of the site, the value of 1/) given by these spectra can be
used to predict the largest peaks X({k) from eguations
{3.12) and {(3,13) for SDOF oscillator response at that

site. Section 4.6 characterizes the EHT probability
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distributions of recorded building response. Finally,
Sectior 4.7 reviews the findings of this chapter and
suggests future research te characterize structural

response.

4.2 INVESTIGATION FOR SDOF OSCILLATOR RESPONSE

Characterization of the largest peaks of response time
histories is investigated for a SDOF oscillator subjected
to the 112 horizontal ground motion records listed in
Table 2.1 which are also used in Chapter 2 for investi-
gation of rms acceleration. Again, as discussed in
Chapters 2 and 3, to investigate the effects of site
geology conditions on the characterization of the largest
response peaks, the soil conditions of the recording
stations are divided into the same two site categories:
"soil" and "rock".

The response of a SDOF oscillator subjected to strong
ground motion is computed, as discussed in Chapter 2, from
the numerical procedure outiined in Nigam and Jennings
{1968)., The response is initially calculated for 2, 5, and
10% of critical damping; however, this chapter will
primarily focus on the characterization of the response for
5% of critical damping, which is a representative value of
damping for a wide range of structural systems. The
response is calculated for forty (40) oscillator peribds
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between ©.03 second and 30 seconds at approximately 13
equally—spaced oscillator periods for each cycle of the
logarithmic scale. 1Initially, the probability distribu-
tions of thevlargest peaks of acceleration, relative
velocity, and relative displacement response are inves-
tigated; then, the remainder of the investigation will

focus on the characterization of acceleration response.

4.2.1 SELECTION OF PROBABILITY DISTRIBUTION MODELS

The largest peaks of acceleration, relative velocity,
and relative displacement response time histories of a
SDOF oscillator are modelled by the exponential or
exponential-like probability distributions analyzed in
Chapter 3, For characterization of response peaks, the
largest peaks of the response time‘history of a SDOF
oscillator are modelled by the probability distributions
listed in Table 4.1. The first two probability distribu-
tions are again the well-known exponential and Rayléigh
distributions given by egquations (3.6), (3.7}, (3.9) and
(3.10). These two distributions are derived using the
entire set of peaks of each response time history.

As in a ground motion time history, a number of peaks
of a response time history, however, will consist of
smaller amplitude peaks which do not contribute to the
strong motion portion of the record. Conseguently,
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inclusion of these smaller amplitude peaks in the deri-
vation of the exponential or Rayleigh digtributions will
greatly reduce the accuracy of prediction of the maximum
and near maximum peaks which comprise the strong motion
portion of interest. To improve the prediction of the
larger peaks, the EHT distributions used in Chapter 3 for
ground motion studies will also be used to model only the
upper half-tail response peaks without the influence of the
smaller peaks,.

Initially, all three EHT distributions, i.e., the
exponential (EHT), Rayleigh (EHT), and Weibull (EHT)
distributions, are considered to model the largest peaks of
acceleration, relative velocity, and relative displacement
response time histories. However, based on the results
described below in a preliminary investigation, only the
exponential (EHT) and Rayleigh (EHT) distributions will be
investigated in depth to model response peaks.

A preliminary investigation is made to determine if
the largest peaks of SDOF oscillator response time his-
tories favor the exponential (EHT), Rayleigh (EHT), or
Weibull (EHT) distributidns. Table 4.2 shows, as a
function of the natural period of a SDOF oscillator with 5%
damping subjected to the ground motion in Table 2.1, the
fraction of acceleration, relative velocity, and relative
displacement response time histories whose largest peaks
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are selected by the criterion in eéuation (3.24) to best be
modelled by one of the three EHT distributions. This table
combines the response records for both soil and rock sites.
The largest peaks in response time histories generally
favor either the exponential (EHT) or Ravleigh (EHT)
distributions. For periods greater than about 0.1 second,
however, the Rayleigh (EHT) distribution is preferred over
the exponential (EHT) distribution. Between oscillator
periods of 0.1 second and 1 second, typically less than 20%
of the response records follow a Weibull (EHT) distribu-
tion.

The fraction of relative displacement records
following a given EHT distribution is approximately the
same as for acceleration; this trend is not observed,
however, between relative velocity and acceleration
records. For the response records considered separately
for so0il and rock sites as shown in Tables 4.3 and 4.4,
respectively, the favoring of the exponential (EHT) and
Rayleigh (EHT) distributions, as discussed above for
combined scoil and rock records in Table 4.2, is similiarly
observed.

In addition, the trends noted above for a SDOF
oscillator with 5% damping have alsc been observed for the
response of a SDOF oscillator with 2% and 10% of critical

damping. For comparison, Table 4.5 shows that as for 5%
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damping, the largest peaks of response time histories of a
SDOF oscillator with 2% and 10% damping with ﬁeriods
between 0.1 second and 10 seconds also favor the expo-
nential (EHT) and Rayleigh (EHT) distributions. Again, the
Rayleigh (EHT) distribution is preferred over the expo-
nential (EHT) distribution. An interesting trend is also
noted in Table 4.5, As the oscillator period increases and
the percent of critical damping increases, the fraction of
response records modelled by the exponential (EHT) and
Weibull (EHT) distributions increases, and the fraction
modelled by the Rayieigh (EHT) distribution decreases.

In general, the Rayleigh (EHT) distribution is favored
over the exponential (EHT) distribution. The'preference of
the exponential (EHT) and Ravleigh (EHT) distributions for
oscillator periods between 0.03 second and 30 seconds is
also shown in Tables 4.6 and 4.7 for the response of a SDOF
oscillator with 5% damping subjected to two well-known
ground‘motion records: the 1940 E]l Centro, CA Comp SOOE
and the 1979 Imperial Valley, CA earthquake, Bond's Corner,
Comp 2300, records, respectively.

Consequently, the third and fourth probability
distributions considered in this study are the exponential
(EHT) and Rayleigh (EZHT}) distributions, which are Cases 3
and 4, respectively, in Table 4.1. It is assumed that the

largest peaks of all response records can be modelled by
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these two distributions irrespective of the EHT distribu-
tion selected by the criterion of equation (3.24). Hence,
the Weibull (EHT) distribution is not considered for SDOF

oscillator response studies.

4.2.2 RELATIONSHIP BETWEEN 1/ OF ACCELERATION, RELATIVE
VELOCITY, AND RELATIVE DISPLACEMENT TIME HISTORIES

The remainder of this study will focus primarily on
modelling the probability distributions of the largest
peaks of the acceleration response time histories of a SDOE
oscillator subjected to strong ground motion. However,
the largest peaks of relative velocity and relative
displacement time histories can be predicted using the
parameter 1/\ of the EHT distributions of the largest peaks
of acceleration time histories. The pseudo-spectral
relafionships which relate peak absolute acceleration to
peak relative velocity or peak relative displacement
are shown below to be generally valid for the parameter 1/)
of the exponentiall(EHT) and Rayleigh (EHT) distributions.

Let 1/xa,_1/xv, and 1/xd be equal to the EHT parameter
1/\ derived for the largest peaks of an acceleration,
relative velocity, and relative displacement time history,
respectively, for either the exponential (EHT) or Ravleigh
(EHT) distribution. If the largest peaks of the accelera-
tion, relative velocity, and relative displacement response
time histories are assumed to be modeled by the same EHT
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distribution, then investigated below is whether the

following “pseudo-spectral" relationships are satisfied:

i}

1/x w * l/XV {(4.1)

2

I/ W ¥ 1/)\d (4.2)

]

where @ is the circular freguency of the SDOF oscillator.
The freguency w is related to the natural period, T, of the

oscillator by the relationship

w = 21n/T (4.3)

The objective is to determine if the relative velocity and
relative displacement peaks could be successfully predicted
from egquations (3.12) and (3.13) using fronm 1/xv and 1/)\d
calculated from 1/xa.

For illustration, the relationships in eguations
{(4.1) and {4.2) are graphed in Figurés 4,2 through 4.13 for
the exponential (EHT) and Ravleigh (EHT) distributions for
the response of a SDOF oscillator with 5% damping and
oscillator pericds of 0.1 second, 1.0 second, and 10
seconds. These periods are selected to represent a range
of oscillator periods most frequently encountered in
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seismic design. These graphs are plotted irrespective of
site conditions.

Figures 4.3, 4.5, 4.7, 4.9, and 4.11 show that
equation (4.2), which relates 1/>\a to l/xd, is satisfied
almost identically at all three oscillator periods for both
EHT distributions. Hence the relative displacement peaks
can be successfully predicted from the relationship l/xd =
(1/xa)/w2. However, for the relationship between 1/xa and
1/XV given by equation (4.1}, Figures 4.2 and 4.4 show that
for both the exponential (EHT) and Rayleigh (EHT) distribu-
tions, respectively, the parameter w * 1/xv typically is
less than 1/)\a for oscillator response at a period of 0.1
second. Conseguently, to predict the largest peaks of
reiative velocity time histories from ecquations (3.12) or
(3.13) using the relationship l/kv = (l/ka)/m would lead to
overprediction of the largest peaks of the relative
velocity time history.

For an oscillator period of 1 second, equation (4.1)
is satisfied almost identically by beth tﬁe exponential
(EHT) and Ray;eigh {EHT) distributions as shown in Figures
4.6 and 4.8, respectively. At an oscillator period of 10
seconds, howeveyr, Figures 4.10 and 4.12 show that for both
the exponential (EHT} and Rayleigh (EHT) distributions,
respectively, the parameter w * 1/xv is typically greater
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than l/xa. Hence, the relative velocity peaks would be
underpredicted from the relationship 1/xv = (l/xa)/w.
Therefore, while the relative displacement peaks can
be predictedAdirectly from information on the acceleration
peaks, successful prediction of the relative wvelocity peaks

is a function of the oscillator period.

4.3 PREDICTION OF THE LARGEST PEAKS

The capability of the traditional and modified (EHT)
exponential and Rayleigh distributions listed in Table 4.1
to predict the largest peaks of response time histories is
verified in this section as follows:

® Analytically, by computation of the percentage
of acceleration response records for ascillator
periods of 0.1, 0.5, 1, 2 and 10 seconds
passing selected significance levels of the
Kolmogorov-Smirnov test;

e Graphically, by comparison of the average
actual acceleration spectra computed for
response peaks X{(1), X(2}), X(5), X(10), and
X(20) with average acceleration spectra
computed for these peaks predicted from the
exponential, Ravleigh, exponential (EHT), and
Rayleigh (EHT) distributions.

4.3.1 KOLMOGOROV-SMIRNCV TESTS

As in Chapter 3 for ground motion,.as a part of model
verification, Kolmogorov-Smirnov tests are performed for
the probability distributions listed in Table 4.1. The
percentage 6f response records for oscillator periods of
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0.1, 0.5, 1, 2, and 10 seconds and with 5% danmping passing
the 1, 5, and 10% signhificance levels of the Kolmogorov-
Smirnov test are listed in Tables 4.8, 4.9, and 4.10 for
acceleration, relative velocity, and relative displacement
response, respectively, irrespective of site geology.

The following trends are noted:

¢ Regardless of response component {acceleration,
relative velocity, or relative displacement),
none of the records pass the Kolmogorov-Smirnov
test at the 1, 5, and 10% significance levels
when the peaks are modelled by the traditional
exponential and Rayleigh distributions.

® Regardless of the response component, between
80 and 90 percent of the response records pass
the Kolmogorov-Smirnov tests at the 1, 5, and
10% significance levels when the peaks are
modelled by the exponential (EHT) and Rayleigh
(EHT) distributions.

® For both the exponential (EHT) and Rayleigh
(EHT) distributions, the percentage of records
passing the 1, &, and 10% significance leveles
is almost identical for acceleration, relative
velocity, and relative displacement records.

The results of the Kolmogorov-Smirnov tests for
response records are consistent with the results obtained
in Section 3.4.1 for ground motion records. The
traditional exponential and Rayleigh distributions do not
pass the Kolmogorov-Smirnov test for both ground motion and
response records and generally do not predict the near
maximum peaks with reasonably accuracy. The majority of
records modelled by the exponential (EHT) and Rayleigh

(EHT) distributions, however, do satisfy the Kolmogorov-
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Smirnov tests and are generally the best predictors of the
largest peaks, especially for ground motion and response

acceleration time histories.

4.3.2 AVERAGE ACCELERATION SPECTRA FOR X(k)

The remainder of this chapter is devoted to charact-
erizing the largest peaks of acceleration response time
histories for SDOF oscillator response with 5% damping.
First, as an initial part of graphical model verifi-
cation, comparisons are presented in Figures 4.14, 4.15,
and 4.16 for combined soil and rock sites to illustrate the
adequacy of the probability distributions in Table 4.1 to
predict peaks X(1), X(10), and X(20}), respectively, of the
acceleration response time histories of a SDOF oscillator
with 5% criticél damping and 1 second period. For aid in
comparison, also shown in each graph for X(k) is the line
K(k) = K(k).

The upper two_graphs for acceleration peak X(1}) in
Figure 4.14, corresponding to the traditional exponential
and Rayleigh distributions, show that typically the
maximum acceleration peak is underpredicted by these
distributions which are derived from the entire set of
peaks of each response time history. However, accuracy in
the prediction of X(1) is improved by modelling oniy the

largest peaks of the response time history by the exponen-
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tial (EHT) and Ravleigh (EHT) distributions as shown in
the'lower two gréphs. The Rayleigh (EHT) distribution
predicts X(1) with very good accuracy and with slightly
better accuracy than the exponential (EHT) distribution.
In Figures 4.15 and 4.16, the near maximum acceleration
peaks X(10) and X(20), respectively, are better predicted
by the exponential {EHT) distribution than the Rayleigh
{EHT) distribution. However, the exponential {EHT)
distribution tends to underpredict these peaks. The
Rayleigh (EHT) distribution tends to overpredict these
peaks.

As a second and more extensive part of graphical model
verification, average acceleration spectra computed for
actual (observed) peaks X{(k) in acceleration response time
histories are compared tc the average acceleration spectra
of these peaks predicted by the four probability distri-
butions listed in Table 4.1, Avefage actual acceleration
spectra computed for‘peaks X(1), X(2), X{(5), X(10), and
Q(ZO) of the response of a SDOF oscillator with 6% critical
damping and for periods between 0.03 second and 10 seconds
are shown separately for scil and rock sites in Figure
4.17. Each peak X(k) has been normalized by the PGA of the
input record. The spectra for acceleration peak X(1) is
the traditionally plotted maximum acceleration response
spectra. PFigure 4.17 indicates that for both scil and rock
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sites, the average acceleration spectra of the near maximum
peaks X{2), X(5), X(10}, and X(20) are éimilar in shape to
the traditional average maximum acceleration spectrum for
X{(1). The spectra of the lesser peaks appear to be a
scaling down of the maximum peak spectrum.

The coefficient of variation of the average actual
acceleration spectra shown in Figure 4.17 is graphed in
Figure 4.18. For both soil and rock sites, Figure 4.18
shows that the coefficient of variation of the average
actual acceleration spectra increases with increasing peak
number k and with increasing oscillator period. The
average actual acceleration spectra computed for the near
maximum peaks do not reduce the scatter observed in the
spectrum plotted for the maximum acceleration peak.

Hence, the uncertainty of the amplitude of X({(k) increases
as the peak number k increases.

Comparisons of the average actual acceleration spectra
for 5% damping for scil vs. rock siteé for peaks X(1),
X(2), X(5), X(10), and X(20) are shown in Figures 4,19
through 4.23, respectively. For peaks X({(1), X(2), X(5),
and X{10), the site geology effects are a function of the
oscillator period as shown in Figures 4.19 through 4.22,
Typically, for pericds less than about 0.15 second, the
response for soil sites is amplified slightly greater than

the response for rock sites. For periods between 0.15
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second and about 0.30 second, the spectral amplification
for rock sites is slightly greater than for soil sites.

For periods greater than about 0.3 second, the spectral
amplification is greater fﬁr soil sites. For acceleration
peak X(20), Figure 4.23 indicates that for all oscillator
periods, the spectrum for soil sites has greater amplifica;
tion than the spectrum for rock sites.

To illustrate the accuracy of the different proba-
bility distributions of Table 4.1 to model the largest
peaks of acceleration response time histories, Figures 4.24
through 4.28 compare the average actual acceleration
spectra graphed in Figure 4.17 with the average accel-
eration spectra of peaks X(1), X{2), X(5), X{(10), and X(20)
predicted from the exponential, Rayleigh, exponential
(EHT), and Rayleigh (EHT) distributions. The average
acceleration spectra for each predicted peak X(k) has been
computed by normalizing X(k) by the PGA. In these figures
and in other figures in this chapter, the investigated
probability distributions are abbreviated as follows: E,
exponential; R, Rayleigh: E-EHT, exponential (EHT):; and
R-EHT, Rayleigh (EHT).

Figure 4.24 shows that for both soil and rock sites,
X(1) is best predicted by the Rayleigh (EHT) distribution,
which tends to slightly overpredict X(1) between periods

of about 0.1 second and 1 second; otherwise, for all other
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periods, the agreement between the actual and the Rayleigh
(EHT) spectra is excelient. The exponential (EHT) spectrun
tends to overpredict beth the actual spectrum and the
Ravleigh (EHT) spectrum. Both the traditional exponential
and Rayleigh spectra underpredict the actual spectrum by a
factor of about 2 to 3. The Rayleigh distribution under-
predicts X(1) by the greatest difference.

Comparison of the actual and predicted spectra of
X{2) in Figure 4.25 shows that for both soil and rock
sites, X(2) is very accurately predicted (slightly over-
predicted) by both the exponential (EHT) and Ravleigh
(EHT} distributions. The Ravyleigh (EHT) spectrum is
almost identical to the actual spectrum. As for X{1), the
traditional exponential and Ravyleigh distributions under-
predict X(2) by at least a factor of 2.

However, the actual spectra of X(5), X(10), and X(20)
in Figures 4.26, 4.27, and 4.28, respectively, are bounded
by the Rayleigh (EHT) spectrum as an upper limit and the
exponential (EHT) épectrum as a lower limit. The dif-
ference, or deviation, between the actual spectrum and the
spectra predicted from the EHT distributions for these
peaks is seen to increase with increasing peak number k.
As the peak number k increases, the exponential (EHT)
spectrum ¢generally becomes a better match to the actual
Spectrum than the Rayleigh (EHT) spectrum. This is most
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clearly illustrated in Figure 4.28 for peak X{(20) for both
soil and rock sites. Also, the traditional exponential
and Rayleigh distributions underpredict X(5), X(10), and
X{20), but as the peak number k Iincreases, the exponential
distribution, rather than the Rayleigh distribution,
becomes the worst predictor of the peaks.’

Hence, as also noted for the largest peaks of ground
motion time histories, the exponential (EHT) and Rayleigh
(EHT) distributions, derived from consideration of only
the largest peaks of a response time history, are better
predictors of the magimum and near maximum acceleration
peaks than the traditional exponential and Ravyleigh
distributions. Moreover, as illustrated in Figures 4.24 to
4.28, the adequacy of the different probability distribu-
tions to model and predict the largest peaks islfound to be
the same for both soil and rock sites, i.e., site geology
is not a factor in characterizing the distributions of the
largest peaks.

Also of interest is the variability of the average
acceleration spectra of the predicted peaks compared to the
variability of the average acceleration spectra of the
actual peaks. Consequently, Figures 4.29 to 4.33 compare
the coefficient of variation of the average actual accel-
eration spectra with the coefficient of variation of the

average acceleration spectra of the peaks predicted from
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the exponential (EHT) and Rayleigh (EHT) distributions in
Figures 4.24 to 4.28. The following trends are noted:

#¢ The coefficient of variation of the spectra of the
predicted peaks show similar behavior as the coeffi-
cient of variation of the actual spectra, i.e., the
coefficient of variation increases with increasing
oscillator period.

¢ The coefficient of variation of the spectra of the
predicted peaks is very close to the coefficient
of variation of the actual spectra. However, as the
peak number k increases, the differences between the
coefficient of variation of these spectra increases.

e For peak X(1), the minimum value of the coefficient
of variation for any oscillator period is given by
the actual spectra. For peaks X(2), X(5), X(10), and
X(20), the spectra of the predicted peaks are
observed to minimize the coefficient of variation for
a number of oscillator periods. This is most
pronounced for peak X{(20) in Figure 4.33.

The scatter of the average acceleration specfra of
the predicted peaks is comparable to the scatter observed
for the average acceleration spectra of the actual peaks.
Consequently, this indicates, along with the comparison of
the actual and predicted spectra in Figures 4.24 to 4.28,
that the Rayleigh (EHT) and exponential (EHT) distributions
can succeséfully model the largest peaks of acceleration
resonse time histories. The Rayvleigh (EHT) distribution
best predicts the first few largest peaks of the accel-
eration response time history, e.g., X(1), X({(2) and X{(5).
As the peak number increases, e.g., for peaks X(10) and

X(20) however, the exponential (EHT) distribution becomes

a better predictor of the peaks (but underpredicts) than
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the Rayleigh (EHT) distribution. A similar trend is

observed in Section 3.4.2 for ground motion acceleration,.

4.4 RELATIONSHIP BETWEEN PEAK ACCELERATION AND 1/

As for ground motion, also of interest in this study
is to determine if a relationship exists between the
observed peak X(1), i.e., the peak acceleration, and the
parameter 1/)\ derived from the exponential (EHT) and
Rayleigh (EHT) distributions. Recall that the parameter
1/ will have units of acceleration. Figures 4.34, 4.35,
and 4.36 graph peak acceleration vs. 1/\ for the response
of a SDOF oscillator with 5% damping and coscillator periods
of 0.1 second, 1 second, and 10 seconds, respectively, for
the exponential (EHT) and Ravleigh (EﬁT) distributions,
as a function of soil and rock sites.

For both EHT distributions, a linear relationship is
observed between the peak acceleration and 1/\. The
relationship appears to be a function of the oscillator
period and the EHT distribution modelled but independent of
the site geology. For the exponential (EH:} distribution,
the ratio of peak acceleration to 1/\ is seen to decrease
from about 5 for a period of 0.1 second (Figure 4.34a) to
about 3.5 for a period of 10 seconds (Figure 4.36a) for
the exponential (EHT) distribution. A similar trend is

noted for the Rayleigh (EHT) distribution, but where the
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ratio of peak acceleration to 1/\ is about one-half the
value of the exponential (EHT) distribution. Hence, a
linear relationship exists between the peak acceleration
and 1/x which is a function of the oscillator period. The
parameter 1/)\ appears to be a scaling down of the peak
acceleration of the time history. This trend implies that
the peak acceleration does contain information on the
lesser peaks of the time history which are summarized by
the 1/\ parameter. Hence for response acceleration, 1/
is similar to the rms acceleration parameter for response

observed in Chapter 2 in Figures 2.34, 2.35, and 2.36.

4.5 AVERAGE (1/))/PGA ACCELERATION SPECTRA

The advantage of characterizing the largest peaks by
the exponential (EHT) and Rayleigh (EHT) distributions is
that any specific peak level, X(k), can be predicted from
the two parameters, \ and N, of these distributions.
_Consequently, average 1l/\ acceleration spectra are derived
in this section to predict the expected largest response
peaks at a given site from the exponential (EHT) or
Rayleigh (EHT) distributions. If the expected PGA of a
given site is known, for example, from attenuation studies,
then from proposed average acceleration spectra computed
for 1/, which are normalized by the PGA, and for é known

standardized number of peaks, N*, derived for each
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oscillator period, any specific response peak X{(k) can be
predicted from equations (3.12) and {(3.13).

First, using the same methodology as in Chapter
3, the standardized number of peaks, N*, is derived for
SDOF oscillator response with 5% damping as a function of
oscillator period for the exponential (EHT) and Rayleigh
{EHT) distributions. Because average acceleration spectra
are computed for (1/)\)/PGA, the values of N* for both the
exponential (EHT) and Rayleigh (EHT) distributions are

calculated from the following two relationships:
(1/\)/PGA vs. [(1/x * (1n N)™1/PGA (4.4)
1/% vs. 1/x * (in M)© (4.5)

where again m is equal to 1 and 1/2 for the exponential
{EHT) and Rayleigh (EHT) distributions, respectively.
These EHT distributions have been shown in Section 4.3 to
successfully model the largest acceleration peaks. The
second relationship is used in Chapter 3 to derive stan-
dardized N* values for grdundrmotion time histories.

For both EHT distributions, these two relationships
are graphed separately for soil and rock sites in Figures
4.37 through 4.40 for the acceleration response of a SDOF

freedom oscillator with 5% damping and 1 second period.
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These relationships follow a linear trend as also observed
for the second relationship for ground motion acceleration
in Figure 3.6. Hence, standardized N* wvalues can also be
derived for SDOF oscillator response.

The standardized N* values computed for the accelera-
tion response of a SDOF oscillator with 5% damping are
listed in Tables 4.11 and 4,12 for the exponential (EHT)
and Rayleigh (EHT) distributions, respectively, as a
function of oscillator period for combined soil and rock
sites, soil sites, and rock sites. The N* values comﬁuted
from the relationships in (4.4) and {4.5) are essentially
the same. For both EHT distributions, the standardized
numbey of peaks N* reaches a maximum value for oscillator
periods around 0.1 second. Beyond 0.1 second, N* decreases
and ranges between 7 and 20 for periods greater than 10
seconds.

At oscillator periods of 0,08 second, 0.6 second, and
3.5 seconds for rock sites for the Rayleigh {EHT) distri-
bution, the acceleration response for several ground
motion input records listed in Table 4.13 are cbserved to
contain an unusuaily large number of peaks when modelled
by the Ravyleigh (EHT) distribuﬁion. This resulted in
unustually large N* values for these three periods as shown
in Table 4.12. However, the large N* values do not appear

to be consistent with the trends observed at nearby
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oscillator periods or for the exponential (EHT) distribu-
tion. Consequently, N* is also computed for these periods
with the ground motion records in Table 4.13 removed from
the data base in Table 2.1. The revised N*¥ values for
these periods are listed in parentheses in Table 4.12 and
appear to be more consistent with the N* values obtained
for other oscilliator periods,

Figures 4.41 and 4.42 graph separately for soil and
;ock sites, the standardized number of peaks, N*, derived
for the exponential (EHT) and Rayleigh (EHT) distributions,
respectively. The revised N* values are plotted in Figure
4.42 for rock sites for the Rayleigh (EHT) distribution.
These figures indicate that the N* values for the expo-
nential (EHT) distribution are relatively insensitive site
geology; however, site effects become more pronounced for
the Rayleigh (EHT) distribution.

The sensitivity of the largest peaks predicted by
equations (3.12) and (3.13) to the number of peaks N in the
exponential and Rayleigh distributions has been addressed
in Section 3.6. As seen in Tables 4.11 and 4.12, the N*
values are the smallest at the longer oscillator periods,
Hence the predicted peaks ét these periods will be most
sensitive to changes in N.

The average (1/)\)/PGA spectra derived for SDOF

oscillator response with 5% damping are shown in Figures
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4.43 and 4.44 as a function of soil and rock sites for the
exponential (EHT) and Rayleigh (EHT) distributions,
respectively. The spectra shown in these figures are
similar in shape and behavior as the average actual
acceleration spectra derived for the peaks X(k) in Figure
4.17 and the average rms acceleration spectra for 5%
damping developed in Chapter 2 in Figures 2,32 and 2.33.
Hence agéin 1/% is observed to be an rms-I1ike parameter.
For periods between about 0.15 second and 0.30 second, the
(1/7\)/PGA spectra derived for both tﬁe expconential (EHT)
and Rayleigh (EHT) distributions for rock sites show
slightly greater amplification than the spectra for soil
sites. At all other periods, the amplification is greater
for soil sites than for rock sites. |

The coefficient of variation qf the spectra shown in
Figures 4.43 and 4.44 is shown in Figures 4.45 and 4.46,
respectively. For the average (1/)\)/PGA spectra derived
for both EHT distributions, the coefficient of wvariation
of these spectra increases with increasing oscillator
period. The magnitudes and behavior of the cpefficient of
variation as a function of oscillator period are very
similar in shape to the coefficient of variation of the
average actual acceleration spectra in Figure 4.18.

The exponential (EHT) probability distribution of the

largest peaks characterized by the average (1/)\)/PGA
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spectra from Figure 4.43 and the N* values from Figure 4,41
and Table 4.11 is referred to below as the N¥ exponential
(EHT) distribution. Similarly, the Rayleigh (EHT) proba-
bility distribution characterized by the average (1/\)/PGA
spectra from Figure 4.44 and the N* values from Figure 4,42
and Table 4.12 is referred to below as the N* Rayleigh
{EHT) distribution.

The adequacy of the N* exponential (EHT) and N¥*
Rayleigh (ZHT) distribuytions to predict acceleration peaks
X{(1}, X(10), and X(20) of the response of a SDOF osciliator
with 5% damping and 1 second period subiected to the ground
motion in Table 2.1 is shown in Figure 4.47, As in Figures
4.14, 4.15, and 4.16 for these same peaks, Figure 4.47
graphs the observed peak X(k) vs. the predicted peak X(k).
‘The appropriate N* values for soil and rock sites are used
to predict these peaks. For these peaks, both N* EHT
distributions are seen to predict X(k) with comparable
accuracy when predicted by the exponential (EHT) and
Rayleigh {EHT) distributions in Figures 4.14, 4.15, and
4.16.

As further verification, Table 4.14 compares the
ocbserved vs. predicted peaks X(1), X(2), X(5), X{(10), and
X(20) as a function of oscillator pericﬁ for a SDOF
oscillator with 5% damping subjected to the 1940 El Centro,

CA record {A001, Comp SOOCE). An inspection of Table 4.14
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- indicates that, overall, the acceleration peaks can be
predicted reasonably well by the N* EHT distributions.
Consequently, the N* EHT distributions developed in
this section can be used to predict the expected largest
peaks of SDOF oscillator response at a given site. Such
characterization provides a more complete description of
the expected response than the traditicnally maximum value

only predicted from seismic design response spectra.

4.6 INVESTIGATION FOR RECORDED BUILDING RESPONSE

The objective of this section is to determine if the
largest peaks of building response records can be modelled
by the EHT probability distributions investigated in this
chapter for linear, elastic SDOF oscillator response.
Specifically investigated is whether the largest peaks of"
recorded acceleration response also favors the Rayleigh
(EHT) distribution as for SDOF oscillator response.
Analyzed are the acceleration records obtained at the roof
and the base of 45 buildings during the San Fernando, CA
earthquake of 9 February 1971. Only very minor structural
damage was observed in these buildings due to this earth-
gquake. Using the criterion in equation‘(3.24), the appro-
priate EHT distribution of the largest acceleration peaks

of each of the two orthogonal, horizontal components
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recorded at both the roof and the base of each building is
determined.

The records anaiyzed are from the Volume II records
published by the California Institute of Technology (1973)
and are listed in Table 4.15 by CalTech EERL number,
building name, and address. A brief description of each
building is summarized in Table 4.16. ‘A number of the
buildings had fundamental earthguake periocds greater than 1
second. The soil conditions of the recording stations are
again divided into the two site categories used for SDOF
oscillator response studies. Four buildings are located on
rock and 41 buildings on soil sites, Because only a few
buildings are located on rock sites, however, the effects
of site geology are not considered.

_Figure 4.48 shows an exponential probability plot for
the acceleration peaks recorded at the roof of the Holiday
Inn Building located at 1640 S. Marengo Street, Comp S52W,
during the 1971 San Fernando, CA earthquake. As for the
basé acceleration records shown in Figure 3.5, the accesler-
ation peaks plqt concave upward and hence follow a Ravyleigh
distribution.

The parameters of the EHT distribution selected by
the c¢riterion of eguation (3.24) to best model the largest
accelieration peaks at the roof and the base of each

building are listed in Table 4.17. The heading "D" in
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Table 4.17 corresponds to the type of EHT distribution
selected: 0, exponential; 1, Rayleigh; and 2, Weibull.
Table 4.18, which summarizes the selection of the EHT
distributions in Table 4.17, indicates that for the
majority of both roof response and the base motion records,
the acceleration peaks favor the Rayleigh (EHT) distri-
bution. The Weibull (EHT) distribution is favored the
least.

Table 4.19 compares the EHT distributions at the
roof and the base of each building. A comparison of the
distributions of the two orthogonal components at a given
level indicates that the distribution selected is not
necessarily the same in both orthogonal directions. In
addition, for a given component (direction), the distribu-
tions selected to model the roof and base acceleration
peaks are not necessarily the sanme.

To determine if the EHT distribution type selected by
egquation (3.24) for the roof and the base records is a
function of the earthquake period of the building, Table
4.20 summarizes the selected EHT distributions as a
function of earthquake period. For acceleration response
records at the roof, Table 4,20 indicates that for build-
ings with fundamental earthgquake periods less than or
equal to 0.5 second, the exponential (EHT)} distribution is

preferred. In fact, for this period range, none of the
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building records folloﬁ the Raylieigh (EHT) distribution.
Bevond a period of 0.5 second, the largest peaks of
recorded response favor the Ravleigh (EHT) distribution.
For the base motion records, the Rayleigh (EHT) distri-
bution is preferred over the other EHT distributions, with
the exception of the exponential (EHT) distribution for
periods between 0.5 second and 1 second.

Consequently, the largest peaks of recorded building
response at the roof and the base are seen to favor the
Ravyleigh (EHT) distribution over the other EHT distribu-
tions, This preference follows the general favoring of the
Rayleigh (EHT) distribution observed for linear SDOF
oscillator response in Tables 4.2 through 4.5 for 2, 5, and
10% damping.

Fiﬁally, comparisons of the observed peak X(1) Qs.
the predicted peak X(1) from the appropriate EHT distri-
bution in Table 4.17 for building response recorded at the
roof are shown in Figure 4.49. The agreement between X(1)
and X(1) is best for the Rayleigh (EHT) distribution,
again.indicating the preference of this distribution to
model structural response. Typically, both the exponential

(EHT) and Weibull (EHT) distributions overpredict X(1}.
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4.7 CONCLUSIONS

Characterzation of the probability distributions of
the largest peaks of response time histories facilitates a
comprehensive description of the maximum and near maximum
'response amplitudes and the number of cycles of response
over which these amplitudes are sustained. The Ravleigh
{EHT) and exponential (EHT) distributions are shown in this
chapter to successfully predict the largest acceleration
peaks of SDOF oscillator response time histories better
than the traditional exponential and Rayleigh distri-
butions. From the parameters of the EHT distributions, the
expected amplitude sustained over a given number of cycles
can be determined.

The characterization of the acceleration response
time histories of a SDOF oscillator with 5% of critical
damping can be summarized as follows:

. The average actual acceleration spectra of response
peaks X(2), X(58), X(10}), and X{20) are similar in
shape as the average actual acceleration spectra of
X(1).

) The largest peaks of acceleration response time
histories are shown to generally favor the Rayleigh
(EHT) distribution.

® The nmaximum and the second largest acceleration
response peaks, X(1) and X(2), respectively, can be
successfully predicted (slightly overpredicted) by

both the Rayieigh (EHT) and exponential (EHT)
distributions for both soil and rock sites.
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Prediction of the near maximum acceleration
peaks X(5), ¥(10}), and X(20) are bounded by
the Rayleigh (EHT) distribution as an upper
l1imit and the exponential (EHT) distribution
as a lower limit for both s0il and rock sites.

A standardized number of peaks, N*, which replaces
the actual number of peaks N determined for each
acceleration response time history, can be derived
for SDOF oscillator response as for ground moticn

and is a function of the EHT distribution, oscillator
period, and site conditions,

Using the derived N¥ values, any expected peak
aof acceleration response at a given site can
be predicted from the average (1/\)/PGA
spectra derived for the exponential (EHT) and
Rayleigh (EHT) distributions.

The parameter 1/) of the exponential (EHT) and
.Rayleigh (EHT) distributions is shown to be linearly
related to the peak (maximum) acceleration of the
response record. Hence the parameter 1/)\ appears

to be a scaling down of the peak acceleration. This
relationship is a function of the EHT distribution
and the oscillator period. Because the parameter 1/
represents a summary of the largest response peaks,
the linear relationship between peak acceleration and
1/% implies that the peak acceleration does in fact
retain information on the lesser, but near maxXimum
peaks.

Assuming a given EHT distribution, the para-
meter 1/%\_ determined for acceleration response
is found ¥o be identically related to the
parameter 1/)\ . determined for relative dis-
placement response by the pseudo-spectral
relationship

- 2 .
1/la = W 1/Xd

‘where w is the circular frequen%K of the oscillator.
This relationship enables the k largest reiative
displacement peak to be predicted from information
on the distribution of the largest acceleration
peaks. The pseudo-spectral relationship

= *
_1/)\a w 1/xv
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where 1/)_ 1is determined for relative velocity
response, is a function of the oscillator pericd.

® The largest peaks of acceleration response of
building records obtained during the 1971 San
Fernando earthguake are generally shown to
favor the Ravlieigh (EHT) distribution. Hence,
the probability distributions which model the
largest acceleration peaks of recorded response
are consistent with the distributions seliected
to model the largest acceleration peaks of the
response of a SDOF oscillator.

® Site geclogy conditions do not appear to be a
factor in the seilection of the probability
distribution which best predicts the accel-
eration response peaks.

Proposed extensions of this study for future research
are the following:

1) Investigate the effects of refined soil site
categories and other damping values on the
characterization of the average (1/)\)/PGA
spectra.

2) Investigate the effects of refined soil site
'categories and other damping values on the
standardized number of peaks N*.

3) Investigate the relationship between 1/)
determined from the exponential (EHT) distri-
bution and 1/ determined from the Ravleigh
(EHT) distribution for SDOF oscillatcr acceler-
ation response.

4) Investigate other normalization parameters for
the average 1/)\ spectra.

5} As an alternative method to retain information
on specific response peaks, empirically derive
from regression analysis the relationship
describing the relative magnitudes of all the
largest acceleration peaks X(k) for SDOF
oscillator resonse as a function of percent of
critical damping and oscililator. This method-
ology will retain information on all the
expected largest peaks at a particular oscil-
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lator period and avoid the need to derive
explicit reiationships for X(k).
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CHAPTER 5

CONCLUSIONS

This study investigates two methods to characterize
the largest amplitudes of ground motion and response time
histories. First, rms accéleration is investigated in
Chapter 2 as ground motion and response parameters to
characterize the strong motion amplitudes sustained over a
given duration. The dufation reguired to compute rms
acceleration in the time domain is computed from the
duratibn measures defined by Bolt (1973} and Trifunac and
Brady (1975). The rms acceleration is found to be depen-
dent on the duration measure.

For ground motion, rms acceleration is found to be
linearliy related to the PGA. Hence, the PGA does contain
information on the lesser peaks of the ground motion time
history. For SDOF oscillator response, rms acceleration is
similarly shown to be a scaling down of the peak accelera-
tion of the response time history but the scaling is a
function of the percent of critical damping, the oscillator
period, and the duration measure.

In addition, for ground motion, rms acceleration does
not consistently summarize the same number of cycles whose
amplitudes will exceed the rms acceleration for each ground

motion record and for each duration measure. Similarly for
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response, rms acceleration does not consistently summarize
the same number of cycles whose amplitudes Qill exceed the
rms acceleration for each damping value, oscillator
period, and duration measure. Hence, the rms acceleration
paramter does nqt give consistent information on the number
of cycles of the ground motion or response time history
whose amplitudes will exceed the magnitude of the rms
acceleration, With the exception of the PGA or the

peak response acceleration, the.rms acceleration repre-
sentation does not give specific informétion on any of the
expected lesser, but near maximum peaks of a time ﬁistory.

However, Chapters 3 and 4 present a methodoigy
which enables prediction of the expected amplitudes of
specific peaks of ground motion and response time his-
tories, respectively. The largest peaks of ground motion
records, acceleration time histories of a SDOF oscillator
response, and recorded huilding response can be predicted
from the upper half-tail exponential (EHT) and Rayleigh
{EHT) distributions proposed by Deherrera and Zsutty
{1982).

Overall, the traditional exponential and Rayleigh
distributions generally are not successful predictors df
the largest peaks of ground motion and acceleration
response time histories. In general, the Rayleigh (EEHT)

distribution is shown to best predict the maximum peak,
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X{1), of ground motion (i.e., PGA, PGV, and PGD) and
acceleration response time histories. For the lesser peaks
of ground motion time histories, i.e., X{(2), X{(5), X(10},
and X(2), either the exponential (EHT) or the traditionail
exponential distributions are better predictors of these
peaks than the Rayleigh (EHT) or the traditional Ravleigh
distributions.

For SDOF oscillator response with 5% damping, the
Rayleigh (EHT) distribution best predicts X(1), the
maximum acceleration of the time history. The second
largest peak, X(2), is predicted successfully by both the
Rayleigh (EHT) and expcnential (EHT) distributions.
However, the prediction of the lesser acceleration response
peaks X(5), X(10), and X(20) is bounded by the Ravleigh
{({EHT} distribution as an upper limit and the exponential
(EHT) distribution as a lower limit.

For both ground motion and SDOF oscillator response
time histories, the parameter 1/)\ of the EHT distribu-
tions, which characterize the largest peaks of the time
history, is shown to be related to the maximum value of
the time history. Hence, the parameter 1/)\ is similar to
an‘rms—like parameter.

This study also shows that the number of peaks N in an
earthguake time history can be replaced by a standarized

number of peaks N* for prediction of the largest peaks. N¥*
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values are derived for ground motion acceleration, velo-
city, and displacement time histories and for accelera-
tion response time histories of a SDOF oscillator with 5%
damping. For response, the N*¥ values are a function of
the oscillator period.

For grouhd motion, the standarized N* values could be
used with attenuation formulas derived for the EHT parame-
ter 1/%\ to predict the expected largest ground motion
peaks at a givén sitg. For response, average (1/)\)/PGA
spectra are presented which can be used with the N*
values to predict the expected kth largest acceleration
response peakks at a given site.

For recorded building response from the 1971 San
Fernando, CA earthquake, the largest peaks of the accelera-
tion response records at the roof and thelbase are shown
to favor the Rayle;gh (EHT) distribution. This trend is
consistent with the favoring of the Ravleigh (EHT) distri-
bution for the acceleration response of a SDOF oscillator.

Extensions of this study for future research have been
presented in Sections 3.7 and 4.7 for ground motion and
SDOF oscillator response, respectively, which recommend
further investigation of the characterization of the
largest peaks of ground motion and response time histories.
Retaining information on the relative magnitudes of the

_near maximum peaks as well as the maximum peak of a time
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history presents a more comprehensive description of
the expected loading demands and response than the tradi-
tionally characterized maximum value and rms acceleration

parameters of an earthguake time history.
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TABLE 3.3

Probability Distributions Analyzed in Investigation

CASE NUMBER PROBARILITY DISTRIBUTION
1 Exponential
2 Rayleigh
3 Exponential (EHT)
4 . Rayleigh (EHT)
5 General (EHT)1

Exponential (EHT)
Rayleigh (EHT)
Weibull (EHT)

. 2
6 N* Exponential (EHT)

7 N* Rayleigh (EHT)3

1Model selects the appropriate distribution from the three listed.

2Same as Case 3 but assumes a standardized number of peaks, N*.

3Same as Case 4 but assumes a standardized number of peaks, N¥*.
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TABLE 3.4

Summary of EHT Probability Distributions
for Ground Motion Time Histories

Ground Motion Acceleration Velocity Displacement
Record Dist ¥ N/2 LA Dist. N/2  1/) Dist. N/2  1/)
ROGL SA0E a 137 54.60% 1 172 le.ad46 1 12 5. 00%
ABOL S%0uW 0 154 38.662 1 28 7.98% 1 5 11.099
A002 S44al ] 72 14.122 0 57 1.02% 1 4 1.293
ADDZ MN4slW 0 50 20.285 0 50 1.352 1 4 < 1.513
Q003 SO0E 0 1lou 8.%62 1 22 3.040 1 11 1.520
AUD3 S90W 1 31 25.188 1 16 4.420 1 11 1.6%4
AQD4 N21E 0 153 27.2%8 0 56 2.921 1 11 3.6%7
Al04 S69E B 1480 27.587 1 48 3.446 1 = B8 4.914
A00se S00W 1 S0 21.8%21 1 23 2.172 0 20 1.118
A004 N9OE 1 48 19.%82 1 21 4,412 0 15 1.621
ACDZ SO0 1 472 22.137 1 29 3.138 1 13 2.0%4
Al07? NYOE 1 S4 19.723 1 18 4.343 1 g 3.326
Al08 N11lw 1 14 80.782 2 56 204 0 18 2.783
ANDB NZ9E 1 9 142.407 2 4% 1.0727 1 3 8.03¢6
ABOS N4SE 2 112 6.133 2 55 1.515 2 17 212
ADD? N4saW 2 120 5.207 2 44 1.317 0 14 2.25%6
- A0l So0w 1 54 15.186 1 37 1.994 1 15 1.216
CA0L1l sS90w 1 40 . 22.823 1 30 2.274 0 31 .8%2
AlL4a NO9W 2 296 1.132 2 &7 .125 1 g .711
All4 NBILE 2 285 1.138 2 93 021 1 ) .553
AO15 N1OE 1 8 43.611 1 3 2.848 1 2 1.37¢
A0l% S80E 1 11 53.725 2 56 166 1 7 424
R1lée SUOSE 2 220 2.308 2 71 L2068 1 4 651
ADle S81Ww 1 17 28.467 2 74 L1723 01 7 505
A017 NZ6E 2 187 1.032 1 27 L7931 8 .318
AOLl7 SE4E 0 66 4.823 1 18 599 1 ] .619
AD19 S60W 2 230 3.126 2 53 1.272 1 12 6.250
A019 8940l 1 45 24,107 1 17 6.208 1 8 5.81%9
BO21 SGBW g 55 264.448 2 6/ .881 2 19 1.072
BO21 NB8Z2W 2 209 3.841 2 50 L7291 4 0.322
8023 NOOE 0 74 5.067 0 44 432 1 6 L4246
BO23 NSOW 0 80 4.74¢ 0 58 L4221 14 L21%
B024 S00W 1 49 $6.808 2 125 L6371 11 2.238
B024 SS90 0 148 35,160 1 23 5.608 1 12 1.966
B025 S00W 2 321 2.413 2 4% L2672 la .093
B02% S%0W 1} 18 38.883 1§ 4 4,593 1 2 2.283
Bl246 N4S5E 2 183 3.228 1 11 3.292 1 2 2.384
BO26 S45E 2 195 2.%66 2 117 219 2 31 L0087
BO27 N4BE 0 59 11.283 1 21 1.235 1 11 1.061
8027 S45E 1 27 12.241 1 43 1.334 1 11 1.029
2029 NO4l 1 69 62.267 0 49 >.831 2 28 .507
BO29 NB8sE 0 144 40.982 1 158 9.149 2 33 .518
BO30 N44E 2 2040 1.99% 2 64 L322 1 9 1.02¢6
B30 S48E 2 214 2.068 1 16 2.294 1 3 1.023
BO31 N21E 2 237 1.776 2 82 .21% 1 9 .2g7
BO31 S6%9E g 66 12.141 10 63 661 1 12 . P66
B032 S04E 4 142 25.7329 69 1.87 1 8 1.487
B032 386l 0 137 30,791 2 120 522 1 B 1.963
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TABLE 3.4
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(Cont'd.)
Ground Motion Acceleration ‘ Velocity Dlsplacement
Record Dist. N/2 1A Dist. N/2 1/x Dist. N/2 1/x
BO34 NOSW 2 222 Z.017 2 61 883 1 3 2.9840
B034 NBGE 2 174 9,184 1 10 11.978 0 13 1.932
BU37 N&SW | 23 55.507 2 46 680 1 4 2.522
5037 325U, 5 12 20.983 2 51 L2831 0 4 1.8901
BU3E N3sW g 117 2.604 1 17 575 1 & 863
B33 SS5al 0 136 2.017 1 20 L3901 % 313
B039 SlitE 1 11 10.131 0 23 .522 1 o . 470
BU39 NZ%E 1 13 $.10% 0 13 .628 1 5 . 768
B040 N33E g 1%s1 6.179 0 50 723 1 8 .10
B040 NSZPW 0 1323 Z.107 1 21 1.946 1 A 1.5562
C048 NOGW 1 33 104.189 1 13 15.383 1 12 7.007
C048 S%P0W 1 41 65,771 1 13 12.820 1 2 74672
054 NSZW 2 230 3,454 1 é 10.026 0 10 3.182
C054 S38U 1 32 50.132 2 46 .886 1 4 6.558
- Di%6 NZ1E 2 340 6.%594 0 42 32.174 1 7 2.1%9%
D056 N&?W 0 81 47.167 2 26 1.021 1 4 5.0%0
D057 SaoW 1 28 49.134 D 25 3.799 1 5 4.679
D57 N9OE 1 2% 68.241 1 11 10.034 2 36 .B5R2
oosg8 sonu 1 32 80.013 2 -0 .60a 1 4 4.607
D058 N9OE 1 23 103.450 1 12 10.532 1 4 8.2388
DOS9 N4sh g 64 26.128 1 16 4,629 2 28 . 395
D0S? S44u 0 48 31.423 0 25 3.728 2 24 S Y-
DD&Z N38W g 64 25.5%53 2 51 .78% 10 4 3.95¢
D062 S52U 1 28 66.653 1 9 8.873 0§ 9 1.832
D06S Suou 0 51 25.7%% 2 39 L9722 1 &% 5.78%
D0&% S90W 1 23 70.997 1 8 11.255 1 5 7.5%91
D048 NOOE 1 23 42.029 2 49 469 0 o 2.226
D068 N9IE 0 56 20,435 1 2 6.642 1 4 4.31%
E072 N7SW 1 23 41.5%2 1 7 11.012 1 5 g.328
E072 M1SE 1 27 54.514 0 12 5.744 1 4 6.534
E07% NODE ] S8 29.806 2 4% 1.172 0 11 2.818
EQPS S90W i 27 53.2%9 1 7 10.202 1 5 6.%35
ER78 N5OW g 52 24.874 0 1% 5.453 2 19 .708
ED78 S4a0W 2 318 4.054 2 49 .B1” 2 23 L4726
E0B3 S00W 1 25 80.717 2 54 9288 0 13 2.27%
E0332 N9POE 1 26 76.243 1 15 g3.118 U 3 2.%34
F3é Ng3uW 0 60 19.844 2 54 212 1 5 Z.800
FORs SO 1 32 36,334 2 67 B2 26 525
FOBZ” S04E 1 76 10.853 1 30 2.328 1 15 1.894
Foa>7 S8s&ul 1 57 12.78% 0 44 1.446 1 14 2.706
FOoBB S70E 1 17 127.008 O 19 8.3%53 1 2 6.7263
F088 S20uW 1 25 93.%947 1 10 11.7272 2 35 L3104
Foa9 S53E 0 61 29.559% 1 7 11.361 1 4 8.30¢9
FD8% S37UW 0 al 26.212 2 51 .B92 2 25 .647
FO%2 Se2E o 55 14.834 1 ) 2.637 2 12 .568
- F092 S28W 0 51 16.692 1 20 2.748 1 5 3.422
FO%5 S48E 1 272 42.880 2 54 .B1% 2 27 521
FO9% SO2u 1 26 42.%28 2 54 718 2 22 661
F098 SBE3E 2 323 5.846 1 ? 10.621 1 ] 7.384
FO98 S37U 0 &0 372.473 0 26 4.166 2 13 LIED



TABLE 3.4

{(Cont'd.)
Ground Mot ion Acceleration Velocity Displacement
Record Dist.t /2 1/%  Dist. N/2 1/X  Dist. N/2 1/

F101 S00W 1 36 17.528 1 14 1.270 1 4 . 640
F181 N9OE 1 38 17.384 1 15 1.132 1 3 . 798
F102 NOUE 1! P2 4.603 1 8 L2721 3 . 477
F102 N9UE 1 58 7.18% @ 22 331 1 5 . 443
F103 NOOE 1 54 29.4084 1 27 2.056 1 S 1.427
F133 N2 QW 1 53 50.892 1 28 2.378 1 4 1.4a6
FL0% S0o0W 1 33 372.721 2 61 L3930 15 1.081
F10% N9OE 1 35 33.213 1 10 4,47% 0 18 1.277
Gli0s S00W g 116 17.1g1 2 119 221 0 33 .338
GlUs SP0W it} 52 372.3727 1 26 2.778 2 33 . 243
3107 NOOE U 82 18.551 1 1z 4.116 1 10 1.412
107 N9OE 1 24 48.768 0 24 3.333 1 ) 3.89°5%
G108 NOOE 2 384 4.393 1 1z 5.120 1 10 1.4%0
5108 N9OE 2 01 4.148 2 100 643 2 38 309
Gl1ip S$82€E 0 48 39.217 2 101 483 @ 18 1.226
110 Sn8W 1] 78 25.663 2 v 379 2 39 .158
G112 N3GE 0 55 21.678 2 39 .847 0 9 3.149
5112 N52W 1 38 35.350 2 37 P25 0 13 2.374
Gll4 S&UE 1 4% 52.722 O 33 2.3%1 1 3 2.063
114 S30W 0 24 24.334 1 28 4.267 1 15 1.328
H11% N11E 1 A4l 21.8%3 0 37 6.198 1 é 7.787
H115 NZ9W 1 40 66.772 1 13 11.003 1 12 5.042
H11l8 $S4BE 1 43 15.466 0 31 3.86% 1 27 2.207
H118 S451d 1 59 14.721 0 35 2.349 9 30 1.768
H121 S90W 0 76 23.7g% 1 8 8.794 0 10 2.369
H121 S0DW 1 29 54.326 1 11 5.7274 1 5 2,333
H124 S90W 1 62 12.764 1 12 2.275 1 8 1.220
H124 S00W 1 44 15.465 1 11 2.829 1 8 1.511
1132 S81E D 108 24.28% 1 19 Z.883 1 19 3.669
[137 S0%W 1 41 57.180 ¢ 32 5.662 0 15 2.285
J141 NZ1E 2 315 2.920 2 102 .540 0 12 . 995
Jlal S6%9E g 112 172.228 2 88 500 1 8 1.8628
Jd142 S69E 0 149 25.413 0 46 1.172 1 6 670
J142 821 2 409 4,105 2 52 L4260 14 .%08
J143 N2Z1E ] 69 23.352 1 15 2.352 1 7 1.089
J143 N&69W 0 31 22,331 1 ls 2.132 1 5 1.373
J1l44 N21E 2 274 10,009 2 99 560 1 7 1.000
J1l44 N&ZW 2 313 3.624 1 29 3.053 1 4 4.839%99
J145 S00MW 1 38 55.979 1 12 15.198 1 19 B.%32
J145 S90W 1 29 54,272 1 11 14,5927 2 42 . 785
3148 NUODE 1 35 50.692 1 8 8.685 1 4 4.082
J1l48 S90W 1 34 53.011 1 11 ?.0659 1 4 6.322
K187 S53E 2 282 3.992 1 7 ?.789 0 22 2.253
K157 S37u 1 63 22.611 1 g B.%48 2 36 . 409
L1664 NOOE 2 30% 3.908 2 63 570 2 23 .296
L1s6s 59101y 0 55 32.973 2 6% .83 2 31 281
L1771 N33E 1 1 .714 1 24 %1l 1 S . l1.0%8
L171 NS7W 0 103 2.838 0 26 .621 1 8 1.127
ML76 N37E 1 340 39.383 2 58 L2152 30 654
M178 SB3E ] a1 21.850 2 56 .87 1 ] 7.6569
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TABLE 3.4

(Cont'd.)

Ground Motion Acceleration Velocity Displacement
Record ‘Dist. N/2 1/x Dist. N/2 1/\  Dist. N/2 1/X
M179 S00W 0 117 3.279 1 2 612 1 > L4268
M179 NZROE 1 1% 23,242 2 33 L1271 4 .533
M180 S00W 1 a4 11.088 1 31 2.243 1 1la 1,743
M1203 S920i4 1 59 12.010 1 1s 4.185 1 15 3,278
M1B83 Mimy 0 144 2.384 1 12 1.76% 1 5 LAL12
M183 NZ5E g 119 ?.267 1 22 1.322 1 & 206
Mlga SE5E 0 169 7.219 2 53 L2171 g . 646
M1l84 S251 ¢ 133 2.1%6 1 21 1.38% 1 9 376
N185% S50E 1 20 26.690 1 25 1.724% 1 10 .966
N185 S40W 1 58 30.%262 1 30 2.017 1 11 . 295
N18é S37E 0 99 17.036 0 43 1.720 2 30 .2%8
N13s S53W 0 115 19.616 1 14 4.4848 0 23 1.1%4
N1827 NILISE 0 142 10.284 0 &0 623 1 9 . 589
N187 NPSW 1 46 34.4%¢6 1 34 1.3 1 7 . 418
N188 NS4E 1 30 47.908 ¢ 22 2.568 1 5 5.825%
N188 N3s&l 1 31 84.%971 0 40 2.%14 0 19 1.314
N191 N6SE 1 59 11.13¢ 1 20 2.122 1 17 1.250
N1%1 S26GE 0 124 6.020 1 24 2.244 1 11 1.680
N192 N2Z29E 1 410 43.543 1 7 8.090 1 5 4.265
N192 N61lW 1 21 47.223 1 7 19.25¢ 1 . ] 4,71%
N195% N33E g 119 Z2.731 1 264 1.910 @ 31 LA92
N19% N&2W 0 128 46.528 0 66 876 1 17 1.1/°%
N1%96 NZ6W 1 45 17.304 1 13 4.705 0 12 2.214
N1%s S1l4ald 1 47 15.604 1 12 4.%523 1 12 3,337
N1%927 N4SE g 113 4.404 1 21 955 1 5 O3
N1%97 NaSw 0. 93 6.85% @ =11] 510 1 Q .549
0198 S00W 2 284 5.1 2 45 976 1 4 4,249
0198 S90W 1 35 76.695 1 14 7.45%45 0 14 1.522
01%9 NZBE 1 28 63.7202 0 23 4.407 0 13 2.%10
01%9 Na&2W 2 267 6.375 1 9 11.49% 1 [ 5.943
0204 NOQE 1. 40 10.58% 1 iz 4.0%9% 1 1% 2.928
0204 NSUE 1 oo 2.371 12 11 2.131 1 L 4,218
0205 N21W 1 69 11.1722 1 20 3.766 1 19 3.031
0205 Ss%W 1 75 11.90% 1 1% 4.894 1 12 4.222
0206 NOCE 0 124 6.676 52 L6761 12 . 740
0206 N?POE 9 121 6.569 1 35 1.2%0 1 14 L4993
0207 NBaE 2 414 1.%61 2 24 .188 1 12 L.628
3207 N34 2 347 2.004 2 58 . 258 1 7 .84
0210 S545E 0 122 6.131 0 40 .604 0 16 . 425
0210 S45y g 123 7.329 1 26 1.32a43 1 11 .680
P2l4a S854W 1 20 77.59% 2 41 1.132 1 5 4.647
P214 S01E 1 26 J6.049 1 19 8.377 1 2 &4.320
P217 SO0W 0 55 23.728 0 28 3.53&6 1 4 5.492
F217 N%OE 1 21 42.38% 1 7 B3.9264 1 4 5.549
P220 S00W 1 73 9.770 O 31 1.545 1 7 3.524
P220 N%OE a 109 6.613 1 22 2.9%8 1 12 3.2%%5
P221 NO3E 0 148 2%.827 1 i8 2.466 1 & 1.228
P221 NBZW 0 122 29.720 1 15 3.23% 1 3 3.40%
FP222 S00W 1 o3 12.%5172 1 24 3.267 1 13 2.387
pP222 S90W 1 72 10.47% 52 1.187 2 27 . 2872
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TABLE 3.4

(Cont'd.)
Acceleration Velocity Displacement
Ground Motion .

Record Dist. N/2 1/% Dist. K/2 1/x Dist. d/2 1/x
F223 NBGE 0 P4 11.912 1 11 2.341 1 5 1.195
P223 N351 g 112 $.9%8 0 35 .B53 1 5 1.074
P231 MOOE 1 440 17,076 1 12 2.378 1 5 a4.7’76
P231 S20u 1 39 17.211 0 25 3.400 1 & 6.034a
G233 S12u 1 22 131.872 0 31 6.60% @ 13 4,544
Q233 N7BW 1 39 $0.543 1 13 .19 1 14 4,526
@226 SOUTH 0 g6 32.136 1 10 7.202 1 9 2.2%1
Q236 EARST 0 128 21,735 2 53 451 2 21 334
Q239 SOUTH 1 34 %8.8%55 1 11 g.333 1 5 5,452
L2339 EAST 0 B4 26.%954 2 51 L9451 4 4,490
Q241 N37E 1 38 44,197 2 50 .897 2 18 .597
241 No3y 2 241 3.652 0 20 4.643 0 15 2.561
R244 NS3uW 2 263 3.636 2 37 1.047 1 5 5.528
R244 S37W 0 55 25,683 2 49 .B81 0O 11 2.491
R246 SOUTH 0 78 22.6%4 2 46 .80%9 2 22 LGH9
R246 EAST 1 37 50.337 0 15 4.%66 2 19 654
R24% Nd44aE 0 8> 17.834 1 g 8.288 40 13 2.767
R24% S46E 1 31 39.%85 1 13 5.169 0 15 1.728
R251 N37E 1 26 B82.443 1 11 8.425 1 4 5.455
R251 S53E 2 188 5.226 2 51 1.024 1 3 5.8%¢%
R253 N30W 2 234 6.461 0 15 5.479 1 4 6.511
R253 Se0W 0 58 39.920 0 22 4.489 1 3 7.339
$2%5 NO8E 1 24 62.2%8 Q0 21 5.481 ¢ la 4.499
5255 N82u 0 70 22.521 2 39 1.017 @ 20 2. 464
S258 N29E 1 27 28.296 2 34 .210 0 11 2.826
5258 Ss1E ] 6% 15.402 1 11 9.3%3 1 7 5,769
5262 N83W 1 17 35.343 0 15 6.466 1 6 ?.349
5262 S07W 0 39 20.032 1 & 15,153 1 5 F.426
S26% SOUTH 1 28 51.222 1 5 ?.7la 1 5 4.584
8265 WEST 1 35 54.036 0 13 4.713 1 3 7.231
5266 NORTH i} 64 31.392 @ 26 4.057 1 2 4.0%9
S268 WEST 1 28 58.537 2 36 1.226 1 5 6.234
S267 NORTH 1 38 24.626 @ 22 3.188 1 7 4,764
S267 EAST a 29 11.55¢ 1 11 2.31% 1 s 5.371
T286 NORTH 0 165 10.308 1 32 3.134 1 17 2.341
T286 EAST 1 6% 18.25% 1 26 2.734 1 15 1.%68
T287 WORTH 0 128 5.766 1 23 1.330 1 4 1.072
T287 EARST 0 130 5.224 1 24 1.456 1 L/ .52%
T288 NORTH 0 311 .81a 1 g 692 1 10 . 640
T288 EARST g 213 5.562 2 120 .186 1 16 . A19
T28%9 NORTH 0 231 2.%66 2 124 L1301 14 530
T28% EAST g 1le? 3.624 10 29 Br7 2 29 . 1383
L2%4 NaS 1 41 2.407 1 28 .658 1 g .624
1294 S4%4 g0 103 2.%10 1 24 832 1 é .08
U2%9% NORTH 0 14 6.605 1 7 271 1 g L1079
U295 EasST 0 13 4.809 0 13 .085 1 5 L0927
U297 NORTH 0 50 14.502 2 53 L1031 é . 489
U297 EAST 0 33 17.676 1 S 2.063 1 3 .55
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(Cont'd.)
Acceleration Velocdity Displacement
Dist. N/2 1/ Dist. N/2 1/} Dist. ¥/2 /A
2 196 1.3%6 0 78 542 1 12 471
2 212 1.1°% 0 74 .458 1 11 L5472
2 190 2.%963 1 68 1.250 1 7 l.864
2 211 3,070 0 75 1.053 1 9 1.180
2 221 1.640 0 83 .56 1 g .6183
2 201 1.279 1) 66 B850 1 2 L6772
1 32 26.21% q 57 1.9%0 ¢ 24 585
1] &9 16.28%9 2 105 .>268 2 27 L2327
1 35 3.756 1 14 1.109 0 1> .594
g 59 2.220 0 40 JA48 1 11 . F27
2 18?7 2.27% 2 110 270 0 29 334
2 178 3.069% 2 117 L2572 22 .328
0 39 11.327 1 17 1.55%6 1 8 433
1 20 17,961 1 1z 1.4%% 0 16 J3a4
a 11 40.186 2 52 374 4 2.341
2 198 1.205 @ 16 1.7277 1 4 1.524
2 274 .871 2 &7 143 1 ? 930
2 244 879 2 66 L1271 11 .HB26
1 11 19.681 1 5 1.206 1 3 554
2 77 1.547 1 10 546 1 3 . 240
1 15 65.098 0 - 20 Z.055 1 3 1.241
2 131 5.4%9 2 35 438 1 5 615
0 21 21.043 0 4 1.647 1 4 1.322
1 13 29.036 1 10 .987 1 5 1.140
1 9 57.078 0 25 1.112 1 & L9057
1 19 30.0%32 1 38 654 1 5 P36
1 4% 8.332 1 17 L7441 4 L9567
0 82 3.916 0 18 L3721 5 L6973
0 114 2.503 1 12 568 1 4 L8720
2 188 704 1 5 1.17% 1 4 1.245
D 1240 S 2.3%92 1 13 2.296 1 12 1.852
1 60 4,939 0 42 L2330 22 L 6ié
0 77 1.472 0 43 249 1 7 .294
0 77 1.481 ¢ 26 .305% 1 7 390
1 46 4.2%90 1 26 1.054 0 14 390
1 43 4.765 1 19 1.208 1 Q . 989
0 P64 1.483 1 20 L7281 & 1.045
0 94 1.853 10 37 527 1 7 .835
0 8% 3.2%5 1 27 1.%06 1 12 1.254
2 33 3.410 1 1z 2.090 1 12 1.302
0 $3 2.16%9 1 12 1.312 1 5 1.274
0 83 2.3%¢ 1 12 1.247 1 11 . A5n
g 165 22.153 ¢ 31 2.176 1 8 2.416
1 58 &n.228 0 19 3,212 1 b 3.168%
2 248 11.441 2 41 1.362 1 4 2.502
1 21 1%7.502 1 11 15.011 1 8 5.1a7
1 38 96,271 2 26 1.803 0 g 5.013
1 24 131,639 2 40 1.840 @ 12 2.802
Z2 192 8.114 ¢ 8 22.920 1 3 27.648
2 215 2.89% 0 1z $.872 1 7z 5.559



TABLE 3.4

(Cont'd.)

Grodﬁﬁ Mot ion vAcpeleration Velocity Displacement
Record Dist, N/2 1A Dist. N/2 1/x Dist. N/2 1/x
Dngs e 20 2. 185 12.37a4 0 6  26.892 0 8 13.75%
[ 140 T 226 12.204 0 21 12.108, 1 5 12.0%1
I 230 25 204 13.289 D 4 EF6.310 0 15 14.397
Tt 140 3 .22  69.920 O ? 19.308 1 3 15.620
TLgEe T 23 o L4 F4.628 0 0 23 26.256 O 5 13.895
[U57 1a0 2 197 6.727 0 g 13.878 D 7 5,454
PodgE. 230 0 54 91.841 0 8 14.177 1 4 16.216
[LFs 140 2 234 13.484 1 4 30.152 2 17 1.302
108 360 0 42 105.096 0 10 13.483 1 7 7.199
[Lae 220 1 .23 179,701 O 9 17.547 1 3 19.806

080 33.988 1 4 24,540 1 5 14.361
o 69 41.315 2 30 2.085 2 18 1.028
1 19 176.948 2 45 1.886 0 11 3.792
1+ 33 165.737 0 26 7.638 1 7 7.571
1 53 51.888 O 26 4.076 1 9 4.632
1 48 57,677 1 12 9.506 1 2 4,348
0 115 23.784 0 36 2.900 1 10 3.207
1 47 51.483 0 37 2.957 1 2 3.024
2 248 4.597 2 46 736 0 12 1.962
0 122 19.%63 0 13 4.20% 1 9 4,493
0 116 12.485 1 13 5.%07 1 12 2.664
o 112 16.185 0 22 3.210 1 11 3.463
2 224 5.680 2 62 L4071 é 1.034
0 105 17.418 O 46 981 1 ? 1.089
1 48 25.190 O 31 1.161 1 & .967
1 40 19.921 1 12 1.702 1 5 .824
2 119 4.605 2 56 664 2 22 L1722
2 151 3.244 2 49 544 1 8 1.217
0 49  160.1272 1 14  22.846 2 25 . 788
B 5% 128.746 1 12 21.473 Q0 8 3.525
[z 31% 2 249 5,201 2 27 1.652 1 9 5,086
[Li20 225 2 244 5,320 2 24 1.859 U 11 4.474
Uzl 315 1 28 105.040 O 11 11.572 1 4 12.384
[Uzl 225 1 28 106.531 1 3 26.355 1 5 8.072
[ 315 1 45 g8.680 1 16 8.464 1 11 3.689
juss 225 ¥ 56 51.823 0 37 4.335 1 6 3.178

1 0 - Exponential (EHT) Distri?ution
1 - Rayleigh (EHT) Distribuﬁlon
2 - Weibull (EHT) Distribution
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TABLE 3.8

Standardized Number of Peaks N* in Ground Motion Records
for the Exponential (EHT) and Rayleigh (EHT) Distributions

PROBABILITY DISTRIBUTION

Ground Motion Ceomponent Exponential (EHT) Rayleigh (EHT)
Acceleration
Soil 128 47
Rock 121 52
Soil and Rock 127 48
Velocity
Soil 36 26
Rock 41 21
Soil and Rock 37 25
Displacement .
Soil 21 14
Rock 16 13
Soil and Rock 20 14
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TABLE 3.9
Percentage of Ground Motion Acceleration Records

Passing Selected Significance Levels of
the Kolmogorov-Smirnov Test

SIGNIFICANCE LEVELS

DISTRIBUTION 17 5% 10%
Soil (266 records)
Exponential C 0 0
-Rayleigh ' 0 0 0
Exponential (EHT) 82 85 91
Rayleigh (EHT) 86 87 89
General (EHT)
Exponential (EHT) 91 36 98
Rayleigh (EHT) 100 100 100
Weibull (EHT) 0 0 0

Rock (66 records)

Exponential 0 0 0
Rayleigh 0 0 ‘ 0
Exponential (EHT) 85 92 100
Rayleigh (EHT) | 90 93 9%
General (EHT)
Exponential (EHT) 1006 106 100
Rayleigh (EHT) 100 100 100
Weibull (EHT) 0 0 0

Soil and Rock (332 records)

Exponential 0 0 0]
Rayleigh 0 0 0
Exponential (EHT) 84 88 96
Rayleigh (EHT) 88 90 92
General (EHT)
Exponential (EHT) 96 97 99
Rayleigh (EHT) 100 100 100
Weibull (EHT) 0 0 0
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Percentage of Ground Motion Velocity Records
Passing Selected Significance Levels of

TABLE 3.10

the Kolmogorov-Smirnov Test

DISTRIBUTION
Soil (266 records)
Exponential

Rayleigh
Exponential (EHT)
Rayleigh (EHT)

General (EHT)
Exponential (EHT)

Rayleigh (EHT)
Weibull (EHT)

Rock (66 records)
Exponential

Rayleigh
Ekponential (EHT)
Rayleigh (EHT)

General (EHT)
Exponential (EHT)

Rayleigh (EHT)
Weibull (EHT)

Soil and Rock (332 records)
Exponential

Rayleigh
Exponential (EHT)
Rayleigh (EHT)

General (EHT)
Exponential (EHT)

Rayleigh (EHT)
Weibull (EHT)

SIGNIFICANCE LEVELS

1Z

5%

107

91
86

95
100

96
91

100
100

94
89

97
190

150

96
87

97
100

97
92

100
100

97
89

99
100

97
87

37
100

99
92

100
100

98
90

99
100



Table 3.11
Percentage of Ground Motion Displacement Records

Passing Selected Significance Levels of
the Kolmogorov-Smirnov Test

SIGNIFICANCE LEVELS

DISTRIBUTION 17 57 10%
So0il (266 records)
Exponential 0 4] 0
Rayleigh : 0 0
Exponential (EHT) 926 96 97
Rayleigh (EHT) 82 82 82
General (EHT)
Exponential (EHT) 93 93 93
Rayleigh (EHT) 93 98 98
Weibull (EHT) 0 0 0

Rock (66 records)

Exponential 0 0 0
Rayleigh 0 0 0
Exponential (EHT) 100 100 100
Rayleigh (EHT) 30 92 92
General (EHT)
Exponential (EHT) 95 95 95
Rayleigh (EHT) 100 100 100
Weibull (EHT) 0 0 0

Soil and Rock (332 records)

Exponential

Rayleigh 0 0 0

Exponential (EHT) 98 98 98

Rayledigh (EHT) 86 87 87

Gegi;ieﬁgi (EHT) % 94 94
Rayleigh (EHT) 96 99 99
Weibull (EHT) 0 0 0
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TABLE 3.12

Standard Error, E(k), Between Observed X(k) and Predicted X(k)

PEAK
X(1)

X(2)

X(5)

X(10)

X(20)

Peaks in Ground Motion Acceleration Records
(Soil and Rock Records Combined)

PROBABILITY DISTRIBUTION

Rayleigh (EHT)

N* Rayleigh (EHT)
General (EHT)
Exponential (EHT)

N* Exponential (EHT)
Rayleigh
Exponential

General (EHT)
Exponential (EHT)

N* Exponential (EHT)
Rayleigh (EHT)

N* Rayleigh (EHT)
Rayleigh
Exponential

General (EHT)
Exponential (EHT)

N* Exponential (EHT)
Exponential
Rayleigh (EHT)

N* Rayleigh (EHT)
Rayleigh

General (EHT)
Exponential (EHT)
Exponential

N* Exponential (EHT)
N* Rayleigh (EHT)
Rayleigh (EHT)
Rayleigh

General (EHT)
Exponential
Exponential (EHT)

N* Expomnential (EHT)
N* Rayleigh (EHT)
Rayleigh (EHT)
Rayleigh
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E(k)

0.09
.11
.14
.18
.19
.29
.39

OO OO0

.12
.13
.15
.18
.23
.26
.37

QO QOO OO O

.10
.12
.23
.33
.46
.47
.68

SO TCOOODOO

.11
.15
.30
.34
.70
.72
.88

OO O OoC O

.11
.24
.24
.59
.20
.37
.82

=0 O 00



TABLE 3.13

Standard Error, E(k), Between Observed X(k) and Predicted X(k)

PEAK
X(1)

X(2)

X(5)

X(10)

X(20)

Peaks in Ground Motion Velocity Records
(Soil and Rock Records Combined)

PROBABILITY DISTRIBUTION

Rayleigh (EHT)

N* Rayleigh (EHT)
Exponential (EHT)
General (EHT)

N* Exponential (EHT)
Rayleigh
Exponential

Exponential (EHT)
General (EHT)

N* Exponential (EHT)
Rayleigh (EHT)
Exponential (EHT)
Rayleigh

N* Rayleigh (EHT)

Exponential

General (EHT)
Exponential (EHT)

N* Exponential (EHT)
Rayleigh

Rayleigh (EHT)

N* Rayleigh (EHT)

Exponential

General (EHT)
Exponential (EHT)

N* Exponential (EHT)
N* Rayleigh (EHT)
Rayleigh (EHT)
Rayleigh

Exponential

General (EHT)

N* Exponential (EHT)
Exponential ({EHT)

N* Rayleigh (EHT)
Rayleigh (EHT)
Rayleigh
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iy
-~
—

.09
.13
.15
.16
.16
.28
.33

OCoOoOOoo o0 M

.13
.14
.20
.27
.28
.29
.31

DOoOOoO QOO0

.20
.21
.42
.53
.92
.98
.11

OO0 OooOOo

.21
.43
.61
.82
.78
.97
.72

NKHE~OOOO

.42
.68
.21
.25
.31
.72
5.31

BB e OO



TABLE 3.14

Standard Error, E(k)}, Between Observed X(k) and Predicted X(k)

Peaks in Ground Motion Displacement Time Histories
(Soil and Rock Records Combined)

PEAK
X(1)

X(2)

X(5)

PROBABILITY DISTRIBUTION

Rayleigh (EHT)
General (EHT)

N* Rayleigh (EHT)
Exponential (EHT)

N* Exponential (EHT)
Rayleigh
Exponential

Exponential (EHT)
General (EHT)
Rayleigh (EHT)

N* Rayleigh (ENT)
N* Exponential (EHT)
Exponential
Rayleigh

Exponential
Rayleigh
Exponential (EHT)
General (EHT)
Rayleigh (EHT)

N* Rayleigh (EHT)

N* Exponential (EHT)
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(k)

.08
.08
.10
.13
.14
.27
.39

CSCCOODOoOoO O Im

.06
.14
.17
.18
.19
.26
.26

COO0OCoOoC

.43
.61
.82
.70
.72
.72
.91

el = =R =]
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TABLE 3.16

Percent Change in Magnitude of Predicted Peaks X(k) Due to
Percent Exponential Change in Number of Peaks N in the Distribution

Percent Change in N

N 10 50 100 200
X(1): 10 3 14 24 38
20 3 11 19 31
50 2 9 15 24
100 2 8 13 21
200 2 7 12 19
300 2 6 11 17
X(2): 10 4 18 30 48
20 3 14 23 37
50 2 10 18 28
100 2 9 15 24
200 2 8 13 21
300 2 7 12 20
X(5): 10 10 44 76 120
20 6 25 43 68
50 4 16 27 A3
100 3 13 22 34
200 2 10 18 28
300 2 9 16 25
X(10): 10 90 385 . 658 1043
20 12 51 87 138
50 6 24 40 64
100 4 17 29 46
200 3 13 22 35
300 3 12 20 31
X(20): 10 - - - -
20 ' 186 790 1351 2142
50 10 42 72 114
100 6 24 42 66
200 4 17 29 47
300 3 15 25 40
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TABLE 4.1

Probability Distributions Analyzed for
SDOF Oscillator Response

Case Number

1

2
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Probability Distribution

Exponential
Rayleigh
Exponential (EHT)

Rayleigh (EHT)
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TABLE 4.6

EHT Distributions Selected to Model the Largest Peaks
in Acceleration Response of SDOF Oscillator with 5% Damping
Subjected to 18 May 1940 El Centro, CA, Comp SOOE, Record

1
EHT DISTRIBUTICN

Period Relative
{Sec) Acceleration Relative Velocity Displacement
0.00 E R R
0.03 E R E
0.035 E W W
0.04 E R E
0.05 E R R
0.06 R R W
0.07 E E W
0.08 E W E
0.10 E E E
0.125 R E R
0.15 E E E
0.175 E E E
0.20 R R R
0.25 E E E
0.30 E E E
0.35 R E R
0.40 R E R
0.50 E E E
0.60 E E E
0.70 R R R
0.80 E E E
1.00 W W W
1.25 R R R
1.50 R R R
1.75 R R R
2.00 R E R
2.50 R R R
3.00 R R R
3.50 E E E
4.00 E E E
5.00 R R R
6.00 R R R
7.00 R R R
8.00 R R R
10.00 R R R
12.50 R R R
15.00 R R R
17.50 R E R
20.00 R E R
25.00 R E R
30.00 R E R

1 E - Exponential

R - Rayleigh
W - Weibull 162



TABLE 4.7

FHT Distributions Selected to Model the Largest Peaks
in Acceleration Response of SDOF Oscillator with 5% Damping
Subjected to 15 October 1979 Imperial Valley Earthquake,
Bond's Corner, Comp 230°, Record

~EHT DISTRIBUTION!

Period Relative
(Sec) Acceleration Relative Velocity Displacement

[ N N e el el
oMo N o

= W m

XU PRERNNNHE RO 00O TS0

.00
.03
.035
.04
.05
.06
.07
.08
.10
125
.150

o9
o
AAHXONMOMAOEZI IR A IO L OIoR = ===E2mmommmomimim AR o Am

- Exponential
- Rayleigh

- Weibull 163
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TABLE 4.8

Percentage of Acceleration Response Records of SDOF Oscillator
with 5% Damping Passing Selected Significance Levels of
the Kolmogorov-Smirnov Test
(112 Input Records)

Distribution and Significance Level
Osillator Period 1% 5% 10%
Exponential
0.1 sec 0 0 0
0.5 sec 0 0 0
1.0 sec ¥ 0 0
2.0 sec 0 0 0
10.0 sec Q 0 0
Rayleigh
0.1 sec 0 0 0
0.5 sec 0 0] 0]
1.0 sec 0 0 0]
2.0 sec 0 0 0
10.0 sec 0 0 0
Exponential (EHT)
0.1 sec 82 84 84
0.5 sec 83 34 84
1.0 sec 84 84 84
2.0 sec 86 88 88
10.0 sec 81 81 82
Rayleigh (EHT)
0.1 sec 80 80 82
3.5 sec 84 86 36
1.0 sec 86 88 88
2.0 sec 38 90 90
10.0 sec 83 85 85
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TABLE 4.9

Percentage of Relative Velocity Records of SDOF Oscillator
with 5% Damping Passing Selected Significance Levels of
the Kolmogorov-Smirnov Test
(112 Input Records)

Distribution and Significance Level
Oscillator Period 1% 5% 10%
Exponential
0.1 sec 0 0 0
0.5 sec 0 Q 0
1.0 sec 0 0 0
2.0 sec 0 0 0
10.0 sec 0 0 0
Rayleigh
0.1 sec 0 0 0
0.5 sec 0 0 0
1.0 sec 0 0 0
2.0 sec 0 0 0
10.0 sec 0 0 0

Exponential (EHT)

0.1 sec 84 84 84
0.5 sec 85 85 86
1.0 sec 86 86 87
2.0 sec 88 90 90
10.0 sec 83 84 84
Rayleigh (EHT)
0.1 sec 84 86 36
0.5 sec 86 87 87
1.0 sec 87 88 88
2.0 sec 88 88 88
10.0 sec 84 86 86
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TABLE 4.10

Percentage of Relative Displacement Records of SDOF Oscillator
Response with 5% Damping Passing Selected Significance Levels
of the Kolmogorov-Smirnov Test
{112 Input Records)

Distribution and Significance Level
QOscillator Period 1% 5% 10%
Exponential
0.1 sec 0 0 0
0.5 sec 0 0 0
1.0 sec 0 0 Q
2.0 sec 0 0 0
10.0 sec 0 0 0
Rayleigh
0.1 sec 0 0 0
0.5 sec 0 0 0
1.0 sec 0 0 0
2.0 sec 0 0. 0
10.0 sec 0 0 0
Exponential (EHT)
0.1 sec 82 84 84
0.5 sec 83 84 84
1.0 sec 34 84 84
2.0 sec 86 88 88
10.0 sec 81 82 82
Rayleigh (EHT)
0.1 sec 80 80 ' 82
0.5 sec 84 86 86
1.0 sec 86 88 88
2.0 sec 88 90 a0
10.0

sec 3 85 85
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TABLE 4.11

Standardized Number of Peaks, N*¥, for Exponential {(EHT)
Distribution for SDOF Response with 5% Damping

PERTOD SOTL & ROCK . SOTL ROCK
(Sec) N1l N2 2 N1t N2? N1t Nz 2
0.030 115 123 120 125 103 112
0.040 124 133 135 137 103 111
0.050 158 160 176 169 123 128
0.060 175 187 177 177 168 184
0.070 197 212 198 197 195 209
0.080 206 232 211 208 194 205
0.100 202 227 203 219 199 207
0.125 1886 197 181 182 203 231
0.150 157 164 158 168 157 173
0.175 153 160 152 158 154 173
0.200 131 142 131 138 131 130
0.250 101 109 105 109 92 120
0.300 88 91 89 92 84 107
0.400 73 44 78 89 62 71
0.500 62 74 63 61 62 61
0.600 59 73 61 62 50 45
0.700 55 70 54 51 60 57
0.800 49 66 48 47 50 45
1.000 42 57 42 47 41 40
1.250 36 49 41 46 26 23
1.500 38 51 41 42 32 30
1.750 a7 48 39 45 32 31
2.000 28 41 29 32 23 22
2.500 33 38 a3 33 35 33
3.000 27 32 27 28 25 23
3.500 26 29 26 26 28 25
4.000 27 28 27 29 24 22
5.000 25 26 25 26 27 26
6.000 23 23 23 23 25 26
7.000 20 22 20 21 26 26
8.000 20 20 20 21 23 22

10.000 16 18 16 17 20 20

12.500 13 16 12 12 21 19

15.000 13 16 12 13 18 17

17..500 13 16 13 13 16 13

20.000 13 16 13 13 11 9

25,000 13 16 13 13 16 16

30.000 14 16 14 13 15 15

;Nl - Standardized N* froml/\ vs. (1/)) * (1n N)
N2 - Standardized N* from (1/3)/PGA vs. (1/2\)*{1ln N)/PGA

167



TABLE 4.12

Standardized Number of Peaks, N*, for Ravlieigh (EHT)
Distribution for SDOF Oscillator Response with 5% Damping

PERIOD SOIL & ROCK SOIL ROCK
(Sec) N12 N2? N1l N2? N1t N22
0.030 36 52 35 46 37 32
0.040 40 53 50 61 27 23
0.050 58 71 a0 79 32 30
0.060 55 69 60 69 46 42
0.070 65 85 74 58 49 490
0.080 93(66) 88(75) 66 70 205(57) 234(60)
0.100 71 89 75 74 60 62
0.125 60 69 57 53 74 96
0.150 67 20 65 a5 73 64
0.175 65 60 73 53 51 59
0.200 53 57 50 65 60 71
0.250 49 59 52 66 43 58
0.300 50 62 49 83 51 62
0.400 51 51 78 55 28 25
0.500 33 45 39 38 25 22
0.600 41(36) 42(41) 37 43 95(28) 133(28)
0.700 49 42 52 65 32 25
0.800 35 37 356 47 33 28
1.000 28 34 34 as 19 18
1.250 20 27 24 25 13 12
1.500 20 27 22 23 17 16
1.750 21 24 21 21 20 19
2.000 21 23 22 25 14 14
2.500 18 19 18 18 18 17
3.000 16 19 16 17 18 17
3.500 15(16) 17(17) 15 16 40(19) 50(20)
4.000 17 19 17 17 17 16
5.000 16 17 16 15 18 18
6.000 14 14 14 13 14 14
7.000 14 “15 14 14 12 12
8.000 15 15 156 15 16 16
10.000 10 13 10 11 15 14
12.500 13 14 13 16 8 7
15.000 18 17 20 22 8 7
17.500 13 14 14 13 8 7
20.000 11 12 11 i0 9 8
25.000 13 11 13 14 8 7
30.000 15 14 16 18 8 7

1N1 - Standardized N* from 1/\ vs. (1/)\) * Jin N.
2N2 - Standardized N* from (1/))/PGA vs. (1/)) * /Jln N/PGA.

3Number in { ) is standardized N* excluding rock records
listed in Table 4.13.
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TABLE 4.13

Rock Records Excluded from Standardized N* Calculations
for the Rayleigh (EHT) Distribution

Period
_{Sec) _ _Record _
0.08 AQOl5 S18E
BO25 SOOW
B025 S90W
BO37 S525W
C041 S74W
G106 S90W

g.60 AO0l15 S8QE
' BO25 SOOW

BO25 S90W

B040C N33E

CO041 ST4W

3.50 C041 S16E

CO41 ST74W
L1666 S9OW
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TABLE 4.14

Comparison of Observed vs. Predicted Acceleration Peaks
from the N* Exponential (EHT) and N* Rayleigh (ENT)
Distributions for SDOF Oscillator Response with 5%
Damping Subjected to AQOO1l Comp SCGOE (Soil Site)

Peak and
Period (Sec) . ACTUAL N* Exponential (EHT) N* Rayleigh (EHT)
X(1): 0.1 sec 555.4 543.6 564.5
0.5 sec 819.3 773.1 896,1
1.0 sec 507.7 710.7 642.3
2.0 sec 175.1 202.0 194.4
5.0 sec 29.7 37.5 32.7
10.0 sec 15.0 16.7 14,9
X(2): 0.1 sec 494.3 461.0 511.5
0.5 sec 809.6 630.4 800.3
1.0 sec 456.9 568.9 571.6
2.0 sec 159.9 158.5 170.7
5.0 sec 25.2 29.2 28.4
10.0 sec 13.4 12.6 12.6
X(5): 0.1 sec 394.8 371.6 447 .1
0.5 sec '517.8 475.8 681.5
1.0 sec 403.0 415.4 483 .4
2.0 sec 135.,7 111.4 140.7
5.0 sec 23.2 20.2 22.8
10.0 sec 9.0 8.1 9.6
X(10): 0.1 sec 322.9 310.0 396.8
0.5 sec 415.9 369.4 585.8
1.0 sec 199.5 309.7 411.8
2.0 sec 89.8 79.0 115.5
5.0 sec 8.9 13.9 18.0
10.0 sec 5.9 5.1 6.9
X(20): 0.1 sec 250.0 250.7 341.2
0.5 sec 308.8 266.8 475.8
1.0 sec 99.3 207.8 328.5
2.0 sec 44.7 47.7 84.4
-5.0 sec 4.8 7.9 11.6
10.0 sec - - -
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Table 4.17

EHT Distribution Parameters of Building Acceleration
Response REcorded at the Roof and the Base

Bldg. EERL Acceleration
No. No. o on/2 1/ X
1 Co48 NOOW . 1 33 104.189

C048 S90W 1 41 65.771
€050 NOOW i 18 188.008
C050 S90W 1 32 144,238
2 C051 N36E 1 36 45,302
C051 NS4W 1 27 51.677
C053 N36E 1 18 78.270
€053 NS4W 1 34 80.405
3 C054 538w 1 32 50.137
C054 N32W 2 230 3.456
€055 S38W 1 34 49.986
C055 N52wW 2 121 7.510
4 D059 N46W 0 64 26.128
D059 S44W U 68 31.423
D061 Na6W 1 19 46.184
D061 S44W 1 18 46.172
5 D62 N38W 0 64 25.553
D062 S52W 1 28 66.653
D064 N38W 1 20 114.224
D064 S32W 1 19 190.551
4] D065 NIOE 1 23 70.997
D065 SOOW 0 51 25,755
D067 N9OE 1 15 175.999
D067 SOOW 1 20 102.849
7 EQ75 NOOE 0 58 29.806
EQ075 S90W 1 27 53.259
EQ77 NQOE i 28 114.776
EQ77 NSQOE 1 29 108.832
8 E083 SOOW 1 25 80.717
E083 NIOE 1 26 76.243
E085 SOOW 0 52 50,012
E085 NIQE 1 14 106.865
9 F089 S53E 0 61 29.559
F089 837w 0 60 26.212
F091 S53E 0 62 87.605
FO091 S37w 1 29 102.444
10 F095 S88E 1 22 42.880
FQ95 S02W 1 26 42.528
F097 S88E 1 23 118.139
F097 s02wW 0 60 61.329
11 F098 S53E 2 323 5.846
F098 837w 0 60 37.473
F100 S53E 2 352 11.285
F100 S37wW 1 25 159.102
12 G108 NOOE 2 384 4.393
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TABLE 4.17

{Cont'd.)
Bldg. EERL __Acceleration
No. No. DL N/2 1/x2
G108 N9OE - 2 301 4.148
G109 NOOE 1 46 126.319
G109 N9OE 1 28 173.750
13 G110 S08W 0 70 25.663
G110 S82E 0 48 39.217
G111 508W 0 50 45.594
Gl11 S882E 0 53 68.814
14 G112 N38E 0 55 21.678
G112 N52W 1 36 35.350
G113 N38E 1 18 77.742
G113 N52W 1 15 54.507
15 H115 N79W 1 40 66.772
H115 NI11E 1 41 91.853
H117 N79% 1 42 92.244
H117 NL1E 1 34 136.993
16 H118 S45E 1 43 15.466
H118 S45W 1 50 14,721
H120 S45E 1 29 56.115
H120 845W 0 73 29.216
17 H124 S90W 1 62 12.764
H124 SOOW 1 44 15.465
H126 S90W 1 35 48.591
H126 S00W 0 63 29.764
i8 1128 590W 0 79 15.528
1128 NOOE i 31 28.558
I130 S90W 1 "32 122.751
1130 NOOE 0 51 63.005
19 131 N4OW 0 83 27.775
I131 NSOE 1 32 75.510
1133 N4OW 1 29 106.493
1133 N50E 0 43 77 464
20 1134 S36E 1 41 35.732
I134 NS4E 1 21 49.511
1136 S36E 1 17 146.325
I136 N54E 0 59 60.943
21 1137 SO9W 1 41 57.150
1137 S81E Q0 108 24,285
1139 S09W i 25 102.274
1139 S81E 1 25 98.131
22 J145 S90W 1 29 54.272
J145 S0OW 1 38 55.979
J147 S90W 1 27 158.609
J147 SOOW 1 31 189.376
23 J148 S90W 1 34 53.011
J148 NGOE 1 35 50.692
J150 890w 1 20 101.818
J150 NOOE- 1 26 154.030
24 K157 S37W 0 63 22.611
K157 S53E 282 3.992
K158 S37wW 1 15 118.730
K158 S53E 0 28 75.945
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Table 4.17

{Cont'd.)

Bldg. EERL Acceleration
No. No. bl N/2 1/32
25 L166 S90W 0 55 32.973

L166 NOOE 2 309 3.905
L168 S90W 1 20 92.410
L168 NOOE 1 23 47,203
26 . M176 S53E 0 60 21.850
M176 N37E 1 30 39.383
M178 S53E 0 51 25.208
M178 N37E 1 20 61.389
27 M180 SOOW 1 64 11.088
M180 S90W 1 59 12.010
M182 SOOW ! 70 27.129
M182 S9OW 1 56 34.294
28 Nig88 N3eWw 1 31 64,971
N188 NS4E 1 30 47.908
N190 N36W 1 35 61.049
N190 N54E 1 34 46.663
29 N192 N29E 1 40 43.543
N192 N61W 1 31 47.223
N194 N29E 1 28 938.385
N194 N61W 0 34 39.498
30 0199 N28E 1 28 63,702
0199 N62W 2 267 6.375
0201 NZ8E 1 16 114.542
0201 N62W 2 94 9.911
31 P214 S89W 1 20 77.595
P214 SO1E 1 26 76.049
P216 S89W 0 48 106.855
P216 SO1E 0 55 92,148
32 P217 SOOW 0 55 23.728
P217 NSQE 1 21 42.385
P219 SOOW 1 24 96.291
P219 N90OE 1 25 126.088
33 Q233 N78W 1 39 90.943
Q233 512w 1 22 131,572
Q235 N78W 1 39 110.451
Q235 S12w 0 98 76.719
34 Q236 SOUTH O 86 32,136
Q236 EAST 0 126 21.735
Q238 SOUTH 1 28 51.438
Q238 EAST 2 127 6.807
35 Q239 30UTH 1 34 58.655
Q239 EAST 0 84 26.956
Q240 SOUTH O 44 30.052
Q240 EAST 1 i6 70.157
36 Q241 N53W 2 241 3.652
Q241 N37E 1 38 44,197
Q243 N53W 1 25 135.891
Q243 N37E 1 30 88.659
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Table 4.17

{Cont'd.)

Bldg. EERL Acceleration
No. No. DI §/2 1/ 22
37 R244 S37W 0 55 25.683

R244 N53W 2 263 3.636
R245 S37W 0 71 70.390
R245 N53w 0 44 90.877
38 R246 SOUTH O 78 22.694
R246 EAST 1 37 50.337
R247 SQUTH 1 21 110.600
R247 EAST 2 97 9.765
39 R249 S46E 1 31 39.985"
R249 N44AE 0 37 17.834
R250 S46E 1 33 49.754
R250 N44AE 1 15 70.355
40 R251 N37E 1 26 82.443
R251 S53E 2 188 5.226
R252 N37E 0 73 85.403
R252 S53E 0 66 85.131
41 R253 N30w 2 234 6.461
R253 Se6QW 0 58 39.920
R254 N30W 1 33 136.344
R254 S60W 2 299 7.061
42 S255 N82W 0 70 22.521
5255 NOSE 1 24 62.258
$257 N32w 1 46 92.039
5257 NOBSE 0 51 58.813
43 5258 S61E 0 65 15.407
$258 N29E t 27 28.296
5260 S61E 1 23 113.462
5260 N29E 0 31 55.302
44 5262 S07W 0 39 20.039
5262 N83W 1 17 35.343
5264 S07W 1 9 77.777
8264 N83W 2 53 7.520
45 S267 NORTH 1 38 24.626
8267 EAST 0 99 11.556
5269 NORTH 1 28 28.352
$269 EAST 1 30 39.986

1p_pistribution Type: O-Exponential, 1-Rayleigh, 2-Weibull

2Units are cm/sec/sec
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TABLE 4.18

Number of Building Acceleration Records at Roof
and Base Whose Largest Peaks Follow A Given EHT Distribution

Component
EHT Distribution Roof Base
Exponential 23 29
Rayleigh 60 50
Weibull 7 11

180



kS : .| 09°0 MLES 8604 001d

181

M M 0g° 0 ) 4€£SS 8604 0014 11
¥ 3 080 Mzos 6904 £604

4 ! 09°0 488S $604 £604 01
a b 09°0 MLES 6801 1604

q q ov°0 J£SS 6804 1604 6
q b ov'1 306N £803 5803

! a 09°1 MOOS £801 5804 8
4 ’ ! 0s° 1 J06N 5,03 AL

3 d 09°1 HOON 5.0 £L0d L
3 q 0z'1 MOOS v 5900 £900

b ¥ Coetrt . d06N 5900 L90a 9
4 4 _ 0z°1 MZss z90a 900

3 b 001 MSEN 2900 +90d S
£ ¥ 09 MyvS 6500 1900

3 | 05°'¢ MOPN 6500 1900 v
M M - MZSN ¥S02 5500

u | - M8ES 50D 5500 g
q - 08°2 MPSN 150D £500

¥ d 06°¢ 498N 150D £500 z
d ! ve 1 MO6S 8400 0500

4 4 09°1 MOON 840D 0500 1

aseg Jooy Surpiing (09S) potraad UOTIOSII( pI0oo9Yy oseqg pa1020y Jooy Xaquny
. Burpring Surpring Surpring

NOIIAGIYISIA IH3
~oxm:¢:upmm

SP1009y UOT]BAS[IIIY dseg pue jooy Jurpiing
ut s)eaq 1se8ae] oyl [opoW 03 PeIVSISS SUOTINQTLISTQ 1HA FO uostxedwo)

61"y HTdVL



ool [=-4 < m - - -4~ m=

m g [~ -4 -4 - -4 L=

ool

M
M

o

- -4 [=--4

e om

Y
b

aseq

Jooy Surpring

NOLINGIYLSIA LH3

00°T

09°0
(93g) potaaq

Surpring
ajenbyiieg

€8S LS
MLES LSTN
J00N 8vir
MO6S svir
M00S Syir
Mo6S Syir
J18s LSTY
M60S LETI
apsN yerl
d9¢S peTI
J0SN I¢1l
MOVN g1l
J00N 8¢11
M0O6S 8¢C1I
MO0S YZIH
MO6S YZIH
asys SITH
4SS 8TTH
1IN STIH
M6LN STTH
MZSN A3
48¢N A48
4¢8S 0119
M80S 0t1d
JO6N 8019
JO00N 8019
uotr3Idex1q pioooy aseq

(*p,3u0)) 61°v FIAVL

8sti

85T ve
0SIe
0SIr £z
Lvir
LvIr e
6511
6ET1 1 £4
9¢11
9¢11 0z
gETI
se1l 61
0£11
0g1! 81
9zZ1IH
9ZTH L1
OCTH
0Z1H 91
LTIH
LT st
119
cIIo 1
1119
119 €1
601D
601Y A
p1od9y Jooy Jaqunp
3urpiing

182



M q
1 q
¥ b
M ¥
q b
o |
q M
a o
4 ]
d o
o o
3 d
u 1
4 ;|
M M
o d
¥ 1
o o
b |
q |
b |
o b
¥ d
] q
M d
a 4
sseq Jooy durpring

NOTINGTHLSIA IHA

0g°¢C

0¢°¢
(995) potiad

Burpring
ayenbyzaey

MESN
MLES

JLEN
MESN

1seq
yanos

1seg
yinog

MZ1S
M8LN

J06N
MOON

q10s
M68S

MZON
482N

MI9ON
46¢ZN

apsN
MOEN

MO6S
MOOS

4L¢N
g4¢£$s

JOON
MO6S

uot10911q

(*py3u0d) 61°v H14VL

(A 7AY SHTY
224 skzY LS
1¥2d X 240
192D £HTd 9¢
6520 orzd
6520 ored s§
9¢2h gsed
95D 8570 ve
11%40] s£2d
csed ssed £s
Lled 61zd
L1zd 6124 14
vled 91zd
vied 91zd 1€
6610 1020
6610 1020 og
761N v6IN
Z61IN P6IN 62
881N 061N
881N 061N 82
08T Z8TW
08T Z8TN Lz
9LIN SLIN
9LIN SLIN 92
9911 8911
9911 8911 sz
pa0d9Y oseyg pxooay jJooy Jaqunpn
durpring

183



= o= SA-4 w

=g

Y
q

-4

o=

= = = W [= %3]

Sl

M
|

oseq

Jooy Burpring

NOILNAIYISIA 1Hd

0Lz

0ge
(99S5) potxad

Butping
ajenbyiaegy

1seg
10N

MESN
MLOS

I6ZN
198

480N
MZ8N

" M09S
MOSN

4¢SS
JLEN

FyN
a9s

iseq
_ Yanog

uotdRIL(

(*P,3u0d) 61°¥ 414VL

uoTINQIXISIA TINqIaM - M
uorinqraastq ydragdey - ¥
UOTINGIAISTY [eriusuodxyg - I z
2's °1qel Iod
L928 6928
L9S 6928 14
298 v9zs
298 vozs 144
85Z8 09zs
85ZS 09zS 142
§SZS LSTS
5528 LSZS 4
gszy vsed
g5y A°T4 184
ised Zs
iscd zsad o¥
6y (14
6vzY 052y 6¢
opzd Lyzd
9y Lyzd 8¢
paoo9y aseq pI0d9y jooy Jaquny
Burpiing

184



TABLE 4.20

Number of Building Acceleration Records Following a Given EHT
Distribution as A Function of Buiiding Period, Tl

Component

Distribution Roof Base
T < 0.5

Exponential (EHT) 5 1

Rayleigh (EHT) 0 4

Weibull (EHT) 1 1
0.5 <T <1

Exponential (EHT) 6 9

Rayleigh {EHT) 14 8

Weibull (EHT) 1 4
1 <T <2 i

Exponential (EHT) 10 10

Rayleigh (EHT) 20 19

Weibull (EHT) 2 3
2<T <3

Exponential (EHT) 1 4

Rayleigh (EHT) 13 10

Weibull (EHT) 1 1
3<T

Exponential (EHT) 0 4

Rayleigh (EHT) 9 5

Weibull (EHT) 1 1

lror three buildings, earthquake period is not known.
Therefore, only 84 records are considered.
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Figure 2.5
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Figure 2.22 Average peak acceleration spectra for soil and
: rock sites for 2, 5, and 10% damping.
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for soil sites for 2, 5, and 10% damping based on
RMS acceleration computed from Bolt (1873) and
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Figure 3.6
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Figure 3,7
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Figure 3.22 Relative magnitudes of the expected peaks
X(2), X(5), X(10), and X(20) compared to

X(1) predicted from the Rayleigh distri-

bution as a functiou of the number of

peaks, N, for a unit value of A.
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