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ABSTRACT

Because of cost, cylindrical, ground supported liquid storage tanks

are often not fixed to their foundation, even in seismic areas. For

such an unanchored tank made of steel, the weight of the cylindrical

shell is mostly insufficient to prevent local uplift due to seismic over­

turning moments. Although, for properly designed connecting pipes,

uplift itself is not a problem, it results in larger vertical

compressive stresses in the tank wall at the base, opposite to where the

uplift occurs. These compressive stresses have often caused buckling,

even in earthquakes whi.ch did not cause much damage to other structures.

Various investigators have studied the behavior of unanchored tanks

experimentally, but, due to the complexity of the problem, so far very

little theoretical work has been done. Two methods of analysis for

static lateral loads are presented: An approximate one in which the

restraining a~tion of the base plate is modeled by nonlinear Winkler

springs, and a more comprehensive one in which the two dimensional

nonlinear contact problem is solved by the finite difference energy

method. The theoretical results are compared with existing experimental

results and with the approach from current U.S. design standards. The

theoretical peak compressive stresses are in good agreement with the

experimental results, but in some cases exceed those calculated by the

code method by more than 100'.
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Finally. a new design concept. by which the tank wall is

preuplifted all around its circumference by inserting a ring filler is

described. It will be shown theoretically and experimentally that this

preuplift method SUbstantially improves the lateral load capacity.
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1. INTRODUCTION

1.1 MOTIVATION

For anchored tanks, the tank wall is effectively fixed to a founda­

tion which is sufficiently heavy to prevent uplift in the event of an

earthquake. This means that the anchor bolts must be able to transmit

the earthquake induced vertical tension in the tank wall to the founda­

tion. Methods for the seismic analysis of such tanks are well

established [Jacobsen (1949), Housner (1957, 1963), Veletsos and Yang

(1977). Shaaban and Nash (1975), Haroun (1980), Haroun and Housner

(1981, 1982 a,b), Liu and Lam (1983)], and complicating effects such as

the excitation of modes with a higher circumferential wavenumber due to

imperfections and geometrically nonlinear effects in the shell have also

been considered [Turner (1978), Haroun (1980), Zui and Shinke (1984),

Tani et al. (1984)].

In practice, anchoring a tank requires a large number of anchor

bolts and suitable attachments welded onto the tank wall, so that the

tension forces in the anchor bolts can be distributed evenly in the tank

wall. Poorly designed attachments, or an attempt to carry too high a

bolt force on a single attachment could result in tearing of the tank

wall. Also, a fairly massive foundation may be required, especially for

a larger tank. Thus, anchoring a tank is expensive, and, as a result,

many tanks are unanchored, even in seismic areas. This is especially

true for large capacity, broad tanks.
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When an unanchored tank is subjected to strong ground shaking, the

lateral force due to hydrodynamic pressures acting on the tank wall is

of the same order of magnitude as the weight of the liquid. Unless the

tank wall uplifts, the overturning moment induced by this lateral force

can only be balanced by the stabilizing effect of the weight of the

tank. For typical steel tanks the weight of the tank is much less than

the weight of the contained liquid. Therefore, the weight of the tank

is insufficient to balance the overturning moment due to hydrodynamic

pressures acting on the tank wall, and the tank wall uplifts locally, as

shown in Fig. 1.1. As a result, a crescent-shape strip of the base

plate is also lifted from the foundation. The weight of the fluid rest­

ing on the uplifted portion of the base plate provides the resisting

moment against further uplift.
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It must be emphasized that unanchored tanks are special in that

only the weight of fluid resting on the uplifted portion of the base

plate contributes to the stabilizing moment. whereas the entire mass of

liquid contributes to the overturning moment. This is different from

the usual case in which the entire weight of a structure and ~ts

contents contributes to the stabilizing moment. As a result. unanchored

fluid storage tanks are particularly prone to uplift problems.

Evidence of uplift can be found in the 1964 Alaska earthquake. dur­

ing which snow found its way underneath the base plate of some tanks

[Hanson (1973)] and during the 1971 San Fernando earthquake. when an

anchor bolt of a 30 ft tall and 100 ft diameter tank was pulled up by

14 in [Figure 7.21 in Jennings (1971)].

Although uplift itself is not necessarily associated with serious

damage. it can be accompanied by large deformations and major changes in

the stresses in the tank. The consequences of large uplift can include.

(1) Damage and breakage of connecting pipes.

(ii) Buckling of the tank wall because the vertical compressive

stresses in the portion of the tank wall which remains in contact

with the ground on the other side of the tank are greatly

increased.

(iii) Fracture at the junction between the base plate and the shell

wall due to cyclic plastic hinge rotations.
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Therefore. it is important to understand and be able to predict the

behavior of unanchored liquid storage tanks in earthquakes.

As will be seen in the next subsection. some experimental studies

on unanchored tanks have been performed. However. because of the

complexity of the problem. not much theoretical work has been done.

Although the experiments provide useful information for certain

prototype tanks. the results are not directly applicable for other tank

dimensions. Also. an improved understanding of the behavior of

unanchored tanks can be gained from theoretical analysis and comparison

with existing experimental results.

1.2 BACKGROUND

A very large number of papers have been published on the dynamic

behavior of anchored tanks. However. here the attention is focused on

the somewhat more scanty literature on unanchored tanks. Publications

on unanchored tanks can be divided into three categories.

(ii)

(iii)

Those documenting and evaluating the damage to unanchored tanks

during past earthquakes.

Experimental studies.

Theoretical studies.

These will be dealt with in the next three subsections.
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1.2.1 Experience from Past Earthquakes

The Prince William Sound, Alaska. earthquake of 1964 caused

extensive damage to oil tanks. most of which appear to have been

unanchored, as reported by Rinne (1967). For one of the tanks, plastic

deformations in the base plate (presumably developing due to uplift)

caused the tank to remain uplifted by 2 in after the earthquake. Many

tanks buckled near the base due to vertical compressive stresses. A few

of them collapsed as a consequence. Rinne defined a buckling resistance

coefficient. CR, to be the lateral force coefficient applied to the

total weight of the tank and contents1 for which the overturning stress2

at the base is equal to a "theoretical buckling stress,,3. He found that

tanks for which CR > 0.44 did not buckle at the base. whereas tanks for

which CR < 0.44 did. He concluded that there must have been a substan­

tial amplification or resonance buildup of the lateral forces. An

alternative explanation is that the tanks buckled at lower lateral

forces because of the large concentration of compressive stresses which

occurs if the tank uplifts.

1 Rinne approximated the total weight of the tank and contents by 1.1
times the weight of the contents. and assumed that the lateral force
acts at a height of 0.4 h above the base. where h 1s the height to
which the tank is filled.

2 The maximum vertical compressive stress at the base as calculated
with the assumption that the tank is anchored.

3 The "theoretical buckling stress" used by Rinne is about 0.18 times
what is generally known as the classical buckling stress [Timoshenko
and Gere (1961). p. 458. equation 11-1].
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Hanson (1973) took another look at the damage to tanks during the

1964 Alaska earthquake. He performed a calculation to estimate a peak

compressive stress for an unanchored tank which exceeds the peak

compressive stress for the anchored case by a factor of more than S.

Thus he concluded that a 20'g maximum ground acceleration and a lightly

damped spectral velocity of S = 2.0 ft/s was sufficiently intense tov

account for the observed damage. He also made the important suggestion

that the base be thickened near the junction with the shell wall. This

makes it possible for the base plate to carry the weight of the fluid on

a larger uplifted portion. Thus a larger hold-down force can be

developed. Finally, Hanson made the interesting observation that a

possible source of roof damage is that "uplift on one side of the tank

requires the roof to act as a structural diaphragm to hold the top of

the shell circular. This diaphragm action tends to make the roof buckle

unless it has been designed as a structural element." It will be seen in

Chapters 3 and 4 that, for a tank without a roof. uplift can indeed

result in large out-of-round distortions of the tank cross section

associated with inextensional deformation modes of the cylindrical

shell.

During the 1971 San Fernando earthquake [Jennings (1971)] several

tanks were also damaged, including a 100 ft diameter, 30 ft tall wash­

water tank at the Balboa Water Treatment Plant which experienced 14 in

of uplift as evidenced by a pulled up anchor bolt. The tank was

reported to be 1/2 to 3/4 full at the time of the earthquake and did not

buckle at the base. However, at the top, the tank wall buckled inward,
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possibly due to subatmospheric pressures induced by the increase in the

enclosed volume which is associated with uplift.

The Imperial County earthquake [Leeds (1980)], of magnitude

Mt = 6.6, also caused damage to a number of tanks located about S km

from the Imperial Fault. Since strong ground motion data were available

for nearby sites, Haroun (1983) was able to compare the observed damage

with predictions based on existing methods of analysis. He computed

overturning moments assuming that the tanks were anchored and rigid, and

determined the actual and allowable maximum compressive stresses using

the procedure recommended in the API standard 650 [American Petroleum

Institute (1979)1. He concluded that the current standards and codes

for seismic analysis of tinanchored tanks lead to a conservative design.

However, it is not clear whether the conservatism lies in the assumption

that the lateral loads are the same as for a rigid anchored tank, in the

method of estimating the peak compressive stress, or in the buckling

criterion.

Moore and Wong (1984} collected an extensive set of damage data

from the 1980 Livermore earthquake, the 1978 Miyaki-Ken-Oki earthquake

in Japan, the 1971 San Fernando earthquake, and from Alaska. From this

set of data and experimental results [Clough (1977), Niwa (1978), Clough

and Niwa (1979), Niwa and Clough (1982)], they concluded that the

maximum width of the uplifted strip of the base plate and the allowable

vertical stress in the tank wall given in the API standard 650 are too

small. By modifying these quantities they obtained good correlation

with the observed damage.
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Finally. the damage to a number of unanchored tanks during the 1983

Coalinga earthquake was studied by Manos and Clough (1985). Based on

accelerographs from a nearby site recorded during the main event. and

accelerographs from the tank sites recorded during aftershocks. they

estimated peak ground accelerations ranging from O~39g to O.82g for the

tank sites. Damage included buckling of the tank wall at the base. dam­

age to floating roofs. spilling of oil over the top of many tanks. and

damage to connecting pipes. All tanks included in the study were

unanchored. Manos and Clough concluded that current U.S. practice

[American Petroleum Institute (1979)] underestimates the sloshing

response of tanks with floating roofs and does not adequately address

the uplifting mechanism of tanks with floating roofs.

1.2.2 Experimental Studies

A number of shaking table tests were performed at the University

of California at Berkeley [Clough (1977). Niwa (1978), Manos and Clough

(1982)] using aluminum models. and for a full scale stainless steel wine

tank [Niwa and Clough (1982)]. Based on the modulus of elasticity of

aluminum. the models satisfy the requirement for similarity to steel

prototypes which are three times larger. Uplift and out-of-round defor­

mations of the cross section were a dominant feature of the response.

and resulted in larger displacements and stresses in the tank wall. In

several cases the measured vertical compressive stresses in the tank

wall exceeded the code allowable values. without any signs of buckling

or other distress. Manos and Clough (1982) measured stresses 2.85 and
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2.35 times larger than the allowable from the AWWA [American Water Works

Association (1979, 1984)] and API standards respectively. They also

showed that the peak compressive stresses could be reduced by using a

flexible foundation.

The observed response was quite complex, and the author believes

that more can be learned from the test results than has been learned to

date. Certainly these experimental results are an important basis for

comparison with any analytical models.

Somewhat simpler experimental results are obtained from static tilt

tests [Clough and Niwa (1979), Manos and Clough (1982), Shih (1981)] in

which a lateral load is induced by tilting the tank. Shih (1981) has

shown that the stresses due to tilting are similar to those induced by

seismic lateral loads (if the inertia associated with out-of-round dis­

tortions is neglected). Some of the results of these tilt tests will be

used in Chapters 4 and S, for comparison with analytical results.

Shih (1981), and Shih and Babcock (1980, 1984) use a different

approach for their experimental work: Their mylar tanks satisfy the

requirements for similarity with steel tanks 40 times larger. As a

result, models as small as S in in diameter can be used to represent

steel prototypes of a realistic size. Such models are easy to

fabricate. Since they are not damaged by buckling of the shell, the

same tank can be used in a number of buckling experiments. Another

advantage of mylar tanks is that residual stresses due to welding are

avoided. On the other hand, since mylar sheets are too flexible for the

use of straingages, stresses can only be determined by analysis. Also,
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for plastic deformations of the steel prototype, the similarity condi­

tions break down because mylar does not yield. This is important if the

steel prototype experiences some plastic deformation prior to buckling.

The mylar tanks were tested on a shake table (with harmonic and

transient excitation), and by static tilt. Test conditions which were

varied'include tank dimensions, base fixity condition (anchored or

unanchored), top condition (with or without a roof or stiffening rim),

and water level. In one of the transient tests the intensity of motion

which produced buckling for an anchored tank is up to 10 times larger

than for the unanchored case. Also, the experiments for the anchored

case indicate that buckling occurs at stress levels close to the classi-

cal value.

1.2.3 Theoretical Work

Despite the very large number of publications on the behavior

tanks in earthquakes. only a few deal with the analysis of unanchored

tanks.

The method of analysis that has enjoyed the widest use is that of

Wozniak and Mitchell (1978). which has been adopted in the AWWA and API

standards: Using a rigid-plastic beam model for the base plate shown in

Fig. 1.2, the maximum hold-down force due to the weight of flUid resting

•on an uplifted portion of the base plate is

• Eq. 1.1 is valid for any consistent set of units.
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M
Y

Figure 1.2: Rigid-plastic beam model used b; Wozniak and Mitchell
(1978) to calculate the hold-down force due to the weight of
fluid resting on the uplifted portion of the base plate.
Note: Since the moment at the plastic hinge location, H, is a
maximum, the shear must vanish there. Therefore, the unknown
distance HE and the force N can be determined by balancing
the vertical forces and mom~nts for the free body HE~ The hold
down force is equal to the weight of fluid resting over the
portion HE of the base plate.
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r
M~

N
max

Figure 1.3: Assumed distribution of vertical forces in the tank
wall at the base in the model of Wozniak and Mitchell (1978).
Note: The parameters N ~nd B are determined by balancing the
vertical forces and mom~~ts acting on the cylindrical shell.
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(1.1)

N = hold down force per unit length along the circumference of0

the shell, which is also the vertical membrane tension

developed in ~e shell at the base.

t = thickness of the base plate.

r yield stress of the base plate.y

p = hydrostatic pressure acting on the base plate.

For a rigid-plastic beam, the force No is independent of the amount of

uplift. In reality however. the displacements required to develop the

plastic hinges are so large that small deflection theory 1s no longer

applicable. Nevertheless. Wozniak and Mitchell assumed that the hold

down force given in Eq. 1.1 would be developed around the entire

circumference except in a contact region which spans an angle Zp. In

this contact region. the vertical force in the tank wall at the base is

assumed to vary linearly with respect to a coordinate y measured along

the loading axis as shown in Fig. 1.3. The resulting assumed distribu-

tion of vertical forces in the tank wall contains two unknown param-

eters: The maximum vertical force in the tank wall, denoted by N inmax

Fig. 1.3. and the angle spanned by the contact region. 2~. These two

unknowns can be determined by balancing the vertical forces and moments

acting on the shell.

What makes the model of Wozniak and Mitchell particularly simple is

that the magnitudes of the displacements do not enter in thecalcula-

tion. Other simplified methods have been proposed by Clough (1977),



- 14 -

Shih (1981), Cambra (1983), Ishida et al. (1985) and Leon and Kausel

(1986). None of these consider the deformations of the shell in deter­

mining the extent of the contact region and the distribution of vertical

stresses therein.

Auli, Fisher and Rammerstorfer (1985) present an analysis in which

the vertical restraining action of the base plate and the foundation is

modeled by a circular bed of nonlinear Winkler springs. In tension

these springs represent the restraining action due to the weight of

fluid resting on an uplifted portion of the base plate, and in compres­

sion they represent the rigidity of the foundation. A number of

different models were studied in order to obtain the force-deflection of

the springs in tension. In the one which best addresses the uplift

problem, Auli et al. use the finite element method to solve the

axisymmetric problem in which the base plate experiences a uniform

uplift all around the circumference. The resulting relationship between

uplifting force and uplifting displacement is then assumed to be appli­

cable locally when the uplift varies around the circumference. Aul!

et al. also performed a stability analysis for the shell with and

without imperfections, and found that buckling at the base occurred at

stress levels close to the classical value.

The concept of using equivalent Winkler springs to model approxi­

mately the restraining action due to the base plate is also used in

Chapter 4. The method of analysis presented therein was completed

before the work of Auli et al. (1985) was known to the author or

published, and can therefore be considered to be developed
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independently. It will also be seen in Chapter 5 that there are

instances when this method is not satisfactory.

So far the discussion on methods of analysis for unanchored tanks

has focused on the analysis of the tank for given lateral loads. Rock­

ing affects the dynamics of the tank, and therefore also the lateral

load level. A number of papers address the problem of the dynamic

analysis of liquid filled tanks including rocking [Ishida (1980), Sakai

et ale (1984), Haroun and Ellaithy (1985)J. In some cases the base of

the tank is assumed to participate in the rocking motion, in others the

base of the tank is assumed to remain flat, and only the shell undergoes

the rocking motion. What happens for an unanchored tank is somewhere in

between these two extremes: Close to the tank wall, the base plate

participates in the rocking motion, but at the center the base plate

remains in contact with the ground.

Ishida and Kobayashi (1985) use a four degree of freedom dynamic

model for a rocking tank. In order to obtain the properties of a rota­

tional spring which resists the rocking motion for an unanchored tank,

they assumed that the shell rotates as a rigid body. They also used a

circular bed of nonlinear Winkler springs to model the resistance to

vertical displacements of the tank wall at the base. An elastic-plastic

beam model with axial tension served to~timate the resistance to

uplift provided by the base plate. Ishida and Kobayashi also performed

shaking table experiments, and compared the results with those from a

time history analysis for their four degree of freedom system.



- 16 -

An effect which is not included in any of the dynamic rocking ana­

lyses is the vertical displacement of the combined center of gravity of

the tank and contents: At any time. the vertical displacement field for

the base plate can be decomposed into one component which is

antisymmetric in the coordinate y (Fig. 1.3). and a component which is

symmetric in y. During a cycle of rocking motion. the antisymmetric

part also undergoes one cycle of motion. but the symmetric part

undergoes two. Furthermore. the spatial average of the symmetric part

over the base plate is non-zero, indicating that the center of gravity

of the fluid undergoes two cycles of vertical motion for each cycle of

rocking. This not only increases the effective period of oscillation,

but may also contribute towards dangerously high hydrodynamic pressures.

1.3 SCOPE AND ORGANIZATION

The author believes that it is important to gain a thorough under­

standing of the statics problem of the tank subjected to lateral loads

before much confidence can be placed in any dynamic solution. Therefore

attention is focused on the analysis of the tank under given lateral

loads, and comparison with (for the most part eXisting) experimental

results.

Since, in a time history analysis, the solution to the dynamic

problem is obtained by solving a statics problem at each time step, the

solution presented is a key ingredient for solving the dynamic problem.

The method of analysis chosen for the static case is such that it can

readily be incorporated in a dynamic analysis. Also. any simplifying
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approximations which may emerge from studying the static solution are

also applicable for the dynamic case.

Although it is certainly desirable to obtain a dynamic solution to

the problem. the uncertainty in the maximum seismic lateral load a tank

might experience during its lifetime due to incomplete understanding of

the dynamic behavior is probably no larger than the uncertainty about

the intensity and frequency content of ground motion that might occur.

Therefore. for design purposes. a justiriable approach is to design the

tank for a given lateral load. which is estimated with due consideration

of ooth sources of uncertainty.

In Chapter 2 the axisymmetric problem in which the tank is

uniformly uplifted all around the circumference is solved. After study­

ing the behavior of the shell in Chapter 3. the relationship between

uplift and hold-down force from the axisymmetric analysis of Chapter 2

is used to define the properties of a bed of equivalent nonlinear

Winkler springs at the base. The analysis of the tank on such a bed of.

springs is formulated in Chapter 4. The validity of this equivalent

springs method is verified in Chapter 5 by solving the coupled. non­

axisYmmetric problem for the base plate and shell by the finite differ­

ence energy method. Both geometric and material nonlinearities are

considered in the analysis. Finally. a new design concept is proposed

and evaluated in Chapter 6. and the main conclusions are summarized in

Chapter 7.
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The symbols used are redefined in each chapter. except that the

nomenclature for Chapter 3 also applies for Chapter 4. Thus. for exam­

ple. in Chapter 2. u denotes the radial displacement of a point on the

base plate. whereas in Chapter 3 the same symbol is redefined to denote

the vertical displacement of a point on the cylindrical shell.
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2. AXISYMMETRIC UPLIFT PROBLEM

When the tank wall uplifts due to earthquake induced overturning

moments, it pulls the base plate up with it. Consequently, part of the

weight of the fluid resting on the uplifted portion of the base plate

becomes effective in resisting overturning moments. In this section the

relationship between the radial extent of the uplifted portion of the

base plate and the vertical uplift of the tank wall is studied by solv­

ing the axisymmetric problem in which the tank is uniformly uplifted all

around its circumference (see Fig. 2.1). It will be seen that due to

geometrically nonlinear effects in the base plate, membrane stresses

develop which are of I~r'imary importance.

In strict terms, the solution to the axisymmetric problem is not

applicable if the uplift varies around the circumference. However, if

the uplifted width in the radial direction is small compared to the

radius of the tank, and if the variations in vertical uplift are

gradual, intuition suggests that the relation between vertical uplift

and the uplifted width determined from the axisymmetric solution may be

approximately applicable at any given point on the circumference. Thus,

although axisymmetric uplift does not occur in an earttquake, the solu­

tion to this problem may be useful in developing an approximate method

of analysis for seismic lateral loads.
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2.1 DEFINITION OF THE PROBLEM

The axisymmetric uplift problem considered is shown in Fig. 2.1.

Point E will be referred to as the edge. and point C. as the contact

point. The displacements are taken to be u and w in the rand z

coordinate directions. respectively.

It is assumed that

a) The foundation is rigid and frictionless;

b) The tank is weightless and stress free when it is empty;

c) Both the base plate and the shell remain elastic. but a plastic

hinge can form at the edge. E. The stresses and displacements

due to the hydrostatic fluid load and an axisymmetric uplift

force per unit length. P. applied at the top of the tank. are

to be determined.

2.2 AXISYMMETRIC SHELL PROBLEM

Since the radial displacements of the shell are relatively small.

the linear theory for an axisYmmetrically loaded cylindrical shell

(Timoshenko and Woinowsky-Krieger. 1959) is applicable. According to

this theory. bending moments and shears in the shell decay rapidly with

distance from the edge. As a result. the shell may be assumed to be

sufficiently long that the solution depends only on the thickness and

elastic properties of the lowest course.· of the shell. In addition. the

fluid pressure is taken to be constant over the region of influence of

the shell. With these assumptions. the displacement and rotation of the
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shell at the edge are found to be given by

u =

= ..1.- [2M-AlI]
2D

s

(2.1)

(2.2)

in which

u = radially outward component of displacement of the edge;

~s = rotation of the shell-wall at edge. taken to be positive in

the anti-clockwise direction, as shown in Fig. 2.1;

H = radially inward force acting on the shell;

M = moment acting on the shell at the edge, defined to be

Positive when it acts in the same sense as the rotation ~ .s'

D = E t3/[12(1-~2)], the flexural stiffness of shell;s s s s

ES'~S = Young's modulus and Poisson's ratio for the shell,

respectively;

A = [tsa]f~[3(1-~;)]~. the characteristic length, which

determines the rate of decay of bending moments in the

shell;

p = Fluid pressure at the edge (point E in Fig. 2.1).
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a = Radius of tank, as defined in Fig. 2.1. Equations 2.1 and

2.2 will be used in the boundary conditions for the solu­

tion of the base plate problem.

2.3 GENERAL THEORY FOR BASE PLATE

For a typical tank the uplift may be of the order of 50 times the

base plate thickness. Since linear plate theory is only applicable for

deflections which are small compared to the plate thickness, a nonlinear

theory is required. The moderate deflection theory, also known as the

Von Karman plate theory [used by Timoshenko and Krieger (1959) and

Stoker (1968)] is applicable as long as the deflections are not too

large compared to dimensions of the plate. For even larger displace­

ments, the large deflection theory must be used. Here the equations for

large deflections are developed first, then the approximations of the

Von Karman theory are introduced.

In the development of the large deflection theory the following

assumptions are made in addition to those listed in Section 2.1:

1. The strains are small. As a result, the differences between

natural strains and engineering strains, or Piola-Kirchoff

stresses and Cauchy stresses, are negligible.

2. Changes in the distance of any point in the plate to the mid­

surface are negligible.

3. The pressure p is applied at the mid-surface.
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A typical segment of the base plate is shown in Fig. 2.2. It is

assumed that a point on the midsurface of the base plate moves from a

point (r.O) in the original (empty. not uplifted) configuration to a

point (R.w) = (r + u.w) in the loaded (full and uplifted) configuration.

The membrane forces. denoted Nr in the radial direction and He in the

tangential direction. are given by

(2.3)

(2.4)

in which e is the strain in the radial direction. and K is the exten­r

sional rigidity given by

(2.5)

in which E. ~ and t are Young's Modulus. Poisson's Ratio. and the thick-

ness of the base plate, respectively.

The radial and tangential moments. are taken to be positive when

they induce tension on the bottom of the base plate. and are given by

Mr = D(d' + ~ sin d/r)

Me = D(~d' + sin d/r)

(2.6)

(2.7)

in which d is the slope angle defined in Figs. 2.1 and 2.2. D = Kt2/12

is the flexural rigidity of the base plate. and the prime denotes

differentiation with respect to r. Here the radial and circumferential

curvatures. d' and sin d/r. respectively, are taken to be the rate of
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change of the unit normal vector to the mid surface per unit length in

the original configuration. The radial shear force is denoted by Or'

and acts as shown in Fig. 2.2. The shear force. the membrane forces.

and the moments are expressed as forces per unit length in the original

configuration.

Considering the changes in wand u for an infinitesimal change in

the material coordinate gives

(2.8)

(2.9)

The vertical and radial equilibrium equations for the segment of

the base plate shown in Fig. 2.2 may be written as

= Fv

= Fh

(2.10)

(2.11)

in which

R

F = r o Oro - f pRdRv
R

0

w r
Fh = r o Nro + f pRdw + f Nedr

r
0 0

(2.12)

(2.13)
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In Eqs. 2.12 and 2.13 Nro and Oro are the radial membrane force and the

shear force at the contact point. This shear force is generated by a

concentrated line reaction exerted by the foundation on the base plate.

The concentrated contact reaction occurs without deformations since the

foundation is assumed to be rigid. Without the contact reaction no

solution would be possible; it is required for the sudden change in

shear force. In reality however the foundation always has some flexi­

bility. and the concentrated line reaction redistributes over a finite

width.

A third equilibrium equation results from considering the moments

acting about the tangential axis on an element of the plate shown in

Fig. 2.3. In obtain<ng this equilibrium equation. note that the verti­

cal components of the moments MO cancel. and only the radial component

MO cos 0 changes through an angle dO. The resulting moment-shear rela­

tion is

(2.14)

There are now nine equations. 2.3. 2.4. 2.6 through 2.11 and 2.14

for the nine variables: u. w. sr' d. Nr • NO' Mr' Mo' Or. Many of the

variables could readily be eliminated. but here it is found convenient

to leave any simplifications of the governing equations for later. when

the method of numerical solution is discussed.

The boundary conditions are as follows. At r = rot the contact

point c:
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= 0 , M
r = o (2.15)

K(1+~)u/r = K(1+\» e r = (2.16)

The last conditions arise because. since the foundation is frictionless.

the entire portion of the base plate which remains in contact with the

ground is in a state of uniform. isotropic membrane forces

(Nr = NO = Nro for r < r o).

At r = a. the edge. Eqs. 2.1 and 2.2 for the shell need to be

considered. The horizontal radial force and moment reaction conditions

are:

and M = -M
r

(2.17)

(2.18)

If no plastic hinge forms. the additional condition is d = ds ; if a

plastic hinge does form. the moment at the edge must be the lesser of

the yield moments of the base plate. or the shell. Defining the lesser

of these two moments by M • the yield condition isy

M = -M = M
r y

The effect of a stiffening ring at the edge could also be included. but

is omitted here for simplicity.
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2.4 SOLUTION FOR MODERATE DEFLECTIONS

For moderate deflections sin ~ is replaced by ~ and cos ~ by unity,

except that in Eq. 2.9, 1- cos ~ is replaced by o/~2. In addition, terms

containing the factor 0er are neglected in Eqs. 2.8 and 2.9, and the

radial component of the shear force ~Qr is neglected in Eq. 2.11. Thus

Eqs. 2.6, 2.7, 2.8, 2.9, 2.10. 2.11 and 2.14 become:

M = D(d' + ~d/r) (2.19)r

Me = D(~d' + d/r) (2.20)

w' = - d (2.21)

u' = e _ 'kd2 (2.22)r

rQ - rNr~ = Fv (2.23)r

rN = Fh (2.24)r

(rM )' = Me + rQr (2.25)r

Finally, the difference between Rand r is neglected in Eq. 2.11 to give

F
v =

r

r 0 Qro - J prdr
Ro

(2.26)

and the horizontal component of the pressure force is neglected in Eq.

2.13 to give
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r

Fh = r 0 Nro + f Nedr
ro

(2.27)

All other equations and boundary conditions remain the same except that

the edge condition for radial force (Eq. 2.17) becomes H = Nr • This

nonlinear contact problem is solved by the shooting method: The loca-

tion of the contact point. as well as the radial membrane force (N ).ro

and the shear (Qro) at the contact point are assumed. This defines an

initial value problem starting at the contact point. which is readily

solved numerically. However. unless by chance the correct values of Nro

and Qro were assumed. the solution of the initial value problem will not

satisfy the boundary conditions at the edge. The mismatch in the

boundary condition may be expressed as an out-of-balance force. termed

Hob' and an out-of-balance moment. Mob. These out-of-balance forces

depend on Nand Q • They must vanish in order that the correct solu-ro ro

tion to the problem be obtained. Symbolically, these requirements may

be written as

(2.28)

(2.29)

These equations can be solved numerically, by Newton's method. to any

desired degree of accuracy. The gradient matrix can be obtained from a

set of linear, ordinary differential equations which are derived by

considering a perturbation to the governing equations, or, more

conveniently, by computing the gradient matrix numerically. Finally,
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solving the problem for a number of locations of the contact point. a

parametric description of the relationship between any two variables of

interest can be obtained.

Consider now the solution of the initial value problem in which N
r

and Or are known at the contact point. Perhaps the most natural

approach is to eliminate all variaoles except the displacements u and w

from the equations. This gives two coupled ordinary differential equa­

tions. of 3rd order in wand 2nd order in u. which can be solved by

standard numerical methods. This was attempted by the author who found

that assuming that u" and w'" vary linearly between nodal points. and

using a method similar to Newmark's method of integrating the equations

of motion. gives very poor results for any practicable step size. h. It

is expected that similar problems would be encountered for other numeri­

cal methods. The reason is that the equations contain the terms

u' + w,2/2 for the radial strain. Except very close to the contact

point. the magnitude of both u' and w,2/2 is much larger than the

magnitude of the sum. For the case in which u" and w'" are linear; u'

is quadratic. w' is cubic. and w,2/2 is a sixth degree polynomial.

Although u' and w,2/2 are smooth. the sum can exhibit strong variations

over a steplength. h. A similar phenomenon occurs in the finite element

method. and is known as membrane locking [Belytschko et al. (1984)].

The method described below avoids these difficulties by using an

integrated version of the radial eqUilibrium equation. assuming that the

radial strain varies smoothly within each step. and then calculating the

corresponding variation in u.
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It follows from Eqs. 2.3, 2.19, 2.20, 2.23, 2.24 and 2.25 that

fl' , = [(FV + rJFh)/D + fl/r - G'l/r (2.30)

(2.31)

From the boundary conditions at the contact point CEqs. 2.15, 2.16), it

is readily shown that at r = r .o·

(u, er' w, fl, fl' , G' , , Fh , Fv)

roNro Nro 0, O. 0,
Qro

!'o Nrc' Oro) (2.32)= (K (1+\» r o,
K(1+\»

,
D •

The variables on the left hand side of Eq. 2.32 will be termed the state

variables·. Any quantity of interest can be expressed as a function of

these state variables. Now, suppose all state variables are known at

r = r1 , and characterize their values at this point by a subscript 1-

Thus, u(r1) = u1, and so on. Let r 2 = r 1 + h for a small step h, and

characterize the values of the variables at r = r 2 by a subscript 2.

Thus u(r2) = u2, and so on. Assuming next that er and G" vary linearly

between r = r 1 , and r = r 2 , then all state variables at r = r 2 may be

obtained as a function ofEr and fl2 ". by evaluating the following

expressions in sequence.

fl' 2 = fl' + h(G" + fl" )/21 1 2 (2.33t

• They are not state variables in the strict mathematical sense of the
word, because they are interrelated.
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(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

Equations 2.33 to 2.35 are obtained by exact integration. Equations

2.36 to 2.38 result from trapezoidal integration, and Eq. 2.38 1s exact

if the fluid pressure p is constant between r 1 and r2. Equations 2.33

to 2.38 together with Eqs. 2.30 and 2.31 applied at r = r 2 are the set

of 8 equations which determine the state variables at r = r2 given their

value at r = r 1 • Numerical solution is simplified by the following

iterative procedure:

1. Start with ~"2 = ~"1 and sr2 = sr1.
,

2. Calculate ~2' ~2' w2' u2' Fh2 , FV2 from Eqs. 2.33 to 2.38.

3. Calculate ~"2 and sr2 from Eqs. 2.30 and 2.31.

4. Repeat steps 2 and 3 until convergence in ~"2 and sr2.

This scheme 1s applied repeatedly, starting with the values of the state

variables at the contact point given in Eq. 2.32, until the entire solu-

tion to the initial value problem is generated. With this solution

method, accurate results can be obtained with relatively large step

sizes, h. The results are identical to those that would be obtained by
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subdomain collocation: the average of the residual over each element

vanishes. For the example presented in the next section (a = 57 in.

t = t s = 0.078 in. p = 8.67 psi) for a 9 in width of the uplifted strip.

9 steps at h = I in gives results accurate to 0.11~ in M • 1.5~ in w.r

2.3~ in u. 4.~ in ~. 2.5~ inNr and 2.4% in N9 • For 36 steps at

h = 0.25 in. these percentages become 0.01~. 0.08%. 0.12~. 0.2~. 0.14%.

and 0.1~. respectively. Of several methods attempted by the author

this one yields the most accurate results for a given step size.

2.5 EXAMPLE PROBLEM

One tank for which stresses in the baseplate have been measured is

the stainless steel wine tank tested by Niwa and Clough (1982). This

tank has a radius of a = 57 in. the thicknesses of the base plate and

the lowest course of the shell are t = t = 0.078in. It is assumed thats

the tank is filled with water to a depth of 20 ft. for which the

hydrostatic water pressure is 8.67 psi. The elastic properties for the

stainless steel are taken to be E = 29 X 106 psi. and ~ = 0.3. Based on

a yield strength of 70 ksi for the stainless steel. the yield moment for

the plastic hinge which is allowed to form at the edge is found to be

My = 106.5 in-Ib/in. The displacements. shear forces. bending moments.

and membrane forces for widths of the uplifted strip of 9 in and 18 in

are shown in Figures 2.4 to 2.8. In Fig. 2.6 the shear force Q is
r

plotted as the continuous line. and the broken line shows the total

shear. including the shear force Q and the vertical component of ther

membrane force. -d N (see Fig. 2.2). The difference between the brokenr
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line and the continuous line is the vertical component of the radial

membrane force, ~ Nr • For the case when small deflection theory is

applicable, ~ Nr is negligible compared to Qr' and the broken and

continuous lines would coincide. Figure 2.6 shows that even when the

width of the uplifted strip is only 9 in, small deflection theory would

be in error. For an uplifted width of 18 in,' the shear is carried

almost entirely by the membrane force N , except in localized boundaryr

layers near the edge and contact point.

The radial membrane forces are shown in Fig. 2.8. They are

generated almost entirely by nonlinear effects: Due to the finite slope

of the baseplate in the radial direction, ~, there is a tendency for the

baseplate to move radially inwards. This inward displacement is

restricted by the tank wall and also by the base plate itself which

resists any axisymmetric deformation. Such restrictions to inward

motion generate the radial membrane stresses. The restraining effect of

the tank wall is represented by the radial membrane force at the edge.

The increase in the membrane force inward from the edge is due to the

restriction from the baseplate itself. It arises because the baseplate

is being deformed into a non-developable shape. As a consequence of

membrane action, the bending moments (Figs. 2.7 and 2.9) are relatively

small and do not increase as the uplifted width is increased from 9 in

to 18 in. In contrast, for the linear theory, the bending moments

increase as the square of the uplifted width, and the shape of the bend-

ing moment diagram is close to parabolic.
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2.6 SOLUTION FOR LARGE DEFLECTIONS

The governing equations for large deflections have already been

developed. It remains to cast them in a convenient form for numerical

implementation: Solving Eqs. 2.10 and 2.11 for Qrand Nr gives

Qr = [F.'v cos r/J + Fh sin r/J]!r

Nr = [-Fv sin r/J + Fh cos r/J]!r

Substituting Eqs. 2.6. 2.7 and 2.39 into Eq. 2.14 gives

r/J" ::: [(1+£1") (Fv cos tIJ + Fh sin r/J)!D + sin r/J cos r/J!r-r/J']!r .(2.41)

Substituting Eq. 2.40 into Eq. 2.3:

(2.42)

The numerical solution procedure is identical to that for moderate

deflections except that Eqs. 2.30 and 2.31 are replaced by Eqs. 2.41 and

2.42. and Eqs. 2.35 to 2.38-are replaced by

w2
::: w1 - h[U+£r1) sin r/J1 + (1+£r2) sin r/J2]/2

u2 = u1 + h[ tl £ + (1+£ri) (1-cos r/Ji ) l/2r i

FV2 = FV1 - P(R~-Ri)!2

(2.43)

(2.44)

(2.45)

in which
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i = 1,2 (2.47)

Equations 2.43 to 2.47 are obtained by trapezoidal integration of Eqs.

2.8. 2.9. 2.12 and 2.13. In evaluating 1-cos d for small values of ~.

the Taylor series expansion must be used to avoid numerical truncation

errors. By considering enough terms. I-cos ~ can be evaluated to the

full accuracy of the machine used.

As an example. the wine tank tested by Niwa and Clough (1982) is

considered again. The results for large deflections are so close to

those for moderate deflections that the difference could not be seen on

a plot. This confirms that the deflections in this problem (involving

rotations up to around 0.2 radians) are characterizable as moderate. not

large.

2.7 COMPARISON WITH EXPERIMENTAL RESULTS

If the width of the uplifted strip is small compared to the radius

of the tank. the conditions in the uplifted portion of a rocking tank

appear to be much the same as the conditions for the axisymmetric uplift

problem with the same amount of uplift at the edge. If this is so for a

rocking tank. for which stresses are changing as a function of the

circumferential angle, 9. the stresses and displacements for any value

of 9 may be approximated by those from the solution of the axiSYmmetric

problem with the appropriate vertical uplift at the edge. When this

hypothesis applies. the variations in stresses and displacements in the

circumferential direction will be referred to as weak. The comparison
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between experimental and theoretical radial membrane strains shown in

Fig. 2.10 is based on the assumption that circumferential variations are

weak and that the hydrodynamic pressure is small compared to the static

fluid pressure, so that its effect on the uplifted portion of the

baseplate may be neglected. At time 8.0s in Niwa and Clough's experi­

mental results, a peak uplift of about 1.6 in occurs. The experimental

points in Fig. 2.10 represent the measured radial strains at various

locations at time 8.0s, and the continuous curve represents the

axisymmetric solution for the case when the uplift at the edge is 1.6

in. As can be seen from Fig. 2.10, both theory and experiment show very

high membrane strains, but the spatial variations of membrane strain

differ: Theory predicts a steady increase in the radial membrane strain

towards the edge, due mainly to Poisson's ratio strains induced by the

very large hoop compressive force, Ne (Fig. 2.8). In contrast, the

experimental strains increase from 12 in to 6 in from the edge, then

drop dramatically, being close to zero at 3 in from the edge. Possible

reasons for this discrepancy include:

a) The neglected effect of hydrodynamic pressures.

b) Inapplicability of the assumption that the axiSYmmetric solu­

tion applies to non-axiSYmmetric uplift (assumption of weak

circumferential variations).

c) Experimental error.

d) Buckling of the base plate due to the large compressive

stresses in the circumferential direction.
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Which one of these explanations applies, or what combination, is not

clear, but some assessment is possible.

Hydrodynamic pressures have been measured in the experiment, and

are of the order of one-half the hydrostatic pressure. If variations in

the circumferential direction are indeed weak, it would be possible to

carry out the axisYmmetric analysis with a modified pressure, thus

obtaining a solution which includes the effects of hydrodynamic pres­

sures. Such a corrected theoretical solution would exhibit much the

same trends as the solution already obtained. Therefore the effect of

hydrodynamic pressure alone is not considered to be a valid explanation

for the drop in the experimental radial membrane strain close to the

edge.

The assumption of weak circumferential variations is debatable: If

it applies, the large circumferential compressive forces N& in the base

plate must vary around the circumference just as the uplift does. It

seems that, unless this is accompanied by large shear forces. ~r&' such

changes in Ne would violate equilibrium in the circumferential direc­

tion. However. it is hard to understand how the relatively slow varia­

tion in uplift around the circumference could cause the rather dramatic

change in strains observed.

Buckling of the base plate by circumferential compression is

thought to be the most likely explanation. Based on the theory of

buckling of plates under uniform uniaxial stress, and an estimated

effective half wavelength of S in in the radial and circumferential

directions. a buckling circumferential force" of Ne = 2000 lb/in was



- 46 -

calculated. Although, due to prebuckling curvature, the actual buckling

stress is somewhat higher than that predicted by the theory for flat

plates, buckling still seems likely before the maximum circumferential

force (N& = 5954 lb/in shown in Fig. 2.8 for 18 in uplifted width) is

reached.

To define more precisely when buckling by circumferential compres­

sion may be expected to occur, the computer program BOSOR5 (Buckling of

Shells of Revolution) developed by Bushnell (1974) was used. The

capabilities of this program include material and geometrically non­

linear analysis of shells (and as a special case, plates) of revolution

subjected to axisymmetric loads, and determination of bifurcation loads

for non-axisymmetric buckling modes. Numerical solution of the govern­

ing equations is based on the finite difference energy method. Just as

in the finite element method, the strains at integration points are

expressed in terms of nodal displacements, and the contributions to the

stiffness matrix from each integration point are summed. However,

whereas in the finite element method a displacement field is defined

within each element, and strains are computed by differentiation of this

displacement field; in the finite difference energy method, strains are

computed by finite difference expressions directly in terms of nodal

displacements. Although the capabilities of BOSOR5 do not include

contact problems, knowledge of the prebuckling solution from the shoot­

ing method makes it possible to simulate the prebuckling conditions in

the base plate by judicious choice of constraints and loading. Details

of how this can be achieved are given in Appendix A.
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Using BOSOR5 to look at the stability of asymmetric modes for vari­

ous locations of the contact point. it is found that the critical mode

occurs for n = 33 circumferential waves. when the radial extent of the

uplifted width is 12.75 in. the vertical uplift of the tank wall is 1.31

in. and the circumferential force at the edge is 3415 lb/in. The

buckling modes are shown in Fig. 2.11. Also this type of buckling is

illustrated in Fig. 2.12 for a mylar tank.

After the base plate buckles. the magnitude of circumferential

compressive force. INel. increases more slowly with increasing uplift.

Via Poisson's effect. this means that the radial membrane strains also

increase more slowly. In addition. since the radial membrane tension is

for the most part generated by the hoop compressive forces. the radial

membrane tension. N • also increases more slowly. Finally. there arer

local effects associated with buckling which vary over a half-

wavelength. These can further influence experimental strain readings.

Thus. bifurcation buckling appears to be the most likely explanation of

the difference between theory and experimental points in Fig. 2.10.

However. the other effects discussed may be contributing factors. too.

2.8 CONCLUSIONS

Solutions to the problem of uniform axisymmetric uplift of an

unanchored filled liquid tank indicate t~at:

1. Large membrane stresses develop in the base plate. These

membrane stresses carry a large part of the fluid pressure on
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Figure 2.12:
Reflected light photograph of the buckles in the base plate
of a mylar tank similar to the ones used by Shih(1981). An
axisymmetric uplift of 1/16" was applied by inserting a ring
filler under the shell wall at the edge. The ring filler
consists of a sheet of plexiglass with a hole of diameter a
few hundredth of an inch less than the inner diameter of the
shell. The dimensions of this tank are 5" for the diameter,
and 0.002" for the thickness of the shell and the base plate.
It is filled with water to a depth of a few inches.
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the uplifted portion of the base plate.

2. Bending stresses are relatively small except at the cylinder

base plate joint. where a plastic hinge is expected to form.

3. For the realistic example studied. results obtained by the

large deflection theory are virtually identical to those from

the moderate deflection (Von Karman) plate theory.

4. For large enough uplift. buckling of the base plate due to the

circumferential compressive forces occurs.

5. Buckling of the base plate is the most likely explanation of

the difference between the theoretical and experimental radial

membrane strains shown in Fig. 2.10.
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3. ANALYSIS AND BEHAVIOR OF THE CYLINDRICAL SHELL

In this chapter. some elementary solutions relevant for understand­

ing the behavior of the shell subjected to seismic loads and uplift are

discussed. and certain results are developed for later use.

If the material yields at a critical section in the shell. such as

near the base. it is likely that buckling would occur as a consequence

of the drastic reduction in the material stiffness. Hence. from a

design viewpoint. it is desirable to prevent yielding in the shell.

Also. for the purpose of analysis of a tank at loads below the collapse

load. plasticity in the shell need not be considered.

The importance of considering geometric nonlinearities in the shell

is more debatable. and will be discussed later. As a first approxima­

tion. linear shell theory is assumed to hold.

The linear analysis of cylindrical (or. more generally. conical)

shells using annular finite elements is well established. e.g •• Klein

(1964). This approach has been used by Haroun (1980). who also included

the nonlinear effects of the hoop force due to the hydrostatic pressure.

These results. as well as added stiffness matrices for the pressure­

rotation effect on the hydrostatic pressure. are summarized in Appendix

B. In the following pages some elementary solutions in the linear

theory of cylindrical shells are examined; these results are relevant in

understanding the behavior of an unanchored fluid storage tank.

Using superposition, the solution for an unanchored tank can be

expressed as the sum of:
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a) the solution for an anchored tank subjected to the loads

experienced by the unanchored tank, and

b) the solution for imposed displacements at the base of the tank,

and no other applied loads.

These two solutions will be discussed in sections 3.2 to 3.4, after

presenti·ng some basic definitions.

3.1 DEFINITIONS

The coordinates and displacement components are defined in Fig.

3.1. All definitions coincide with those of Flugge (1960), Chapter 5,

except that the angle which defines the point on the circumference is

denoted by 0 instead of Flugge's~. In accordance with Flugge's nota­

tion, the components of displacement are taken to be u in the direction

of increasing x, v in the direction of increasing 0, and w in the radi­

ally outwards direction. The internal membrane forces, Nx ' NO' NxO '

NOx ' are defined ~n Fig. 3.1b, and the internal moments Mx ' Mo' MxO and

MOx are taken to be positive when they generate a positive stress at the

inside of the shell. Shears Ox and °0 , defined in Fig. 3.1b, are

positive when they act radially inward on the face for which the outward

pointing normal is in the positive x and 0 directions, respectively.

The thickness of the tank is denoted by t, and the radius by a.
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3.2 COMMENTS ON THE SOLUTION FOR AN ANCHORED TANK

For an anchored tank, no inextensional modes are possible. This

means that it is not possible to deform the shell without generating

membrane strains. Smoothly varying loads from fluid pressure are

carried mostly by membrane action with relatively little deformation of

the shell. Except very close to the base, stresses and displacements

can be accurately determined from the statically determinate membrane

theory. Even close to the base~ the solution can be obtained with good

accuracy by superposing the solution from the membrane theory (which

involves radial displacements at the base) upon an approximate solution

for compensating imposed radial displacements at the base. which is

discussed in the next section.

3.3 COMMENTS ON SOLUTION FOR IMPOSED RADIAL DISPLACEMENTS AND ROTATIONS
AT THE BASE

The axiSYmmetric solution for a semi-infinite cylinder subjected to

imposed radial displacements and rotations about the circumferential

axis at the end (Timoshenko and Woinowsky-Krieger, 1959) is relatively

simple, and has been used_in Chapter 2 to formulate the boundary condi-

tions for the axiSYmmetric analysis of the base plate. Solutions for

imposed radial displacements and rotations that vary around the

circumference are much more complicated. However, the author has shown

that, as long as the variations in imposed displacements are slow in the

sense that the change in imposed displacement over a length of (at)f2 is

small, the axisymmetric solutioti, applied locally, is a good approxima-
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tion to the much more complicated solution for imposed displacements

which vary as functions of 9. Furthermore, as the thickness to radius

ratio, t/a, becomes very small, the error in the radial displacement and

its derivatives up to the 4th order decrease like (t/a)fz. Since this

result is not used extensively in what follows, the somewhat lengthy

derivation is omitted. Instead, the range of validity of the approxima-

tion is verified numerically using the solution given by Flugge (1960)

for a semi-infinite cylinder with loads applied at the base, x = o.

Suppose the radial displacement and rotation at the base are given by

r 'W 1 = U
h

cos n9
law/ax jx=O

in which Uh is a constant 2 X 1 vector. Then, from the solution for the

non-axisymmetric problem, the applied shear force and moment at the base

are

in which

[

laM e
Q +-~x a a9

Mx
= Ph cos nO

where Khn is a 2 X 2 matrix. If the axisymmetric solution is applicable

locally, Khn must be independent of n. The ratio of the elements of Khn

to the corresponding elements of Kho are shown in Fig. 3.2. For a given
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value of Poisson's ratio, these ratios depend on the harmonic number n,

and the radius to thickness ratio (aft). However, in the shallow shell

theory they depend only on a normalized harmonic number,

n/[3(1-~2)a2/t2]~. Plotting the ratios obtained from the general (not

necessarily shallow) shell theory as functions of this parameter, it was

found that the curves for aft = 500, 1000, and 2000 are indistinguish-

able. Hence, the shallow shell theory is seen to be essentially exact

for aft ratios typical of steel tanks. The error in applying the

axisymmetric solution locally for values of the normalized harmonic

number up to 1.0 is seen to be 2~ at most. An important implication of

this result is that if the circumferential displacement v of the edge of

the base plate is ne~;.Ligible, then, in as far as the boundary conditions

at the edge are concerned, the assumption of weak circumferential varia-

tions in the base plate is acceptable.

3.4 COMMENTS ON THE SOLUTION FOR IMPOSED VERTICAL DISPLACEMENTS AT THE
BASE

Due to diaphragm action of the base plate, it is assumed that the

horizontal displacements (radial and circumferential) at the base

vanish. The rotation of the tank wall about the circumferential axis is

assumed to be unrestrained and a vertical displacement U is imposed at

the base. Thus the boundary conditions at the base are

u = U, v = w = 0, M = 0 at x = 0·x (3.1)

For a vertical displacement at the base,
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u = cos nO

the vertical force at the base is

(3.2)

p = (3.3)

in which P. the vertical force at the base. is taken to be positive when

it "acts upwards. The sequence of stiffness coefficients. K~n' defines

the relation between vertical forces and displacements at the base. For

n = O. Eq. 3.2 defines an upward rigid body motion. for which Kvo = O.

For n = 1. the base undergoes a rigid body rotation about a horizontal

axis 0 = ± n/2. •So K = 0 •v1 For n L 2 however. the tank is deformed

and the stiffness coefficients are non-zero. It will be seen that for

small n. the stiffness coefficients for a tank with a baseplate. but

without a roof are of the order of (a/t)2 times smaller than for the

same tank with a roof. This radical difference arises because a tank

without a roof can accommodate the displacement at the base without

membrane strains.

3.4.1 Inextensional Deformation Modes of a Cylindrical Shell

For an inextensional cylindrical shell. the strains at the

midsurface must vanish. Thus

• Except that when nonlinear effects discussed in Appendix Bare
included. KV1 becomes negative.
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u' = 0

u. + v' = 0

v· + w = 0

in which

( ) , a ( ) ( ) . ...L ( )= a- =ax ao

The general solution to Eqs. 3.4 is

u = U

v = -(x/a)U· + V

w = (x/a)U· • - V·

in which U and V are ~rbitrary functions of 0 only.

(3.4 a-c)

(3.10)

(3.5 a-c)

If the horizontal displacements at the base are zero (u = v = 0 at

x = 0). then V = O. As a result. Eqs. 3.5 reduce to

u = U

v = -(x/a)U·

w = (x/a)U· •

(3.6 a-c)

Eqs. 3.6 represent the inextensional modes of an unanchored tank without

a roof. For U = cos nO. these become

u = cos nO

v = n(x/a) sin nO

w = -n2(x/a) cos nO

(3.7 a-c)

A roof inhibits out-of-round displacements at x = L. It follows

that only rigid body modes. but no inextensional deformation modes are

possible. Hence. a tank with a roof cannot be deformed without
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generating membrane strains.

3.4.2 Solution for a Tank With a Roof

For the analysis of the cylindrical shell the axisymmetric finite

elements developed in Appendix B can be used. However. a compatible

roof element needs to be added. For a typical roof consisting of a

steel plate supported by trusses. the rigidity in the vertical direction

is negligible. For the in-plane direction on the other hand, the

rigidity due to the steel plate is large, but the effect of the trusses

may be neglected. Hence, the stiffness matrix for a roof element can be

derived by solving the plane stress problem for a disk with loads

applied at the circumference. Timoshenko and Goodier (1970), p. 133

give a general expression for the Airy stress function for problems in

polar coordinates. The solution of interest is obtained by selecting

those terms which are not singular at r = o. For the case in which the

displacements at the circumference (r = a) are

w = wn cos n&

•v = v sin n&n

the radial and shear forces at circumference are

N = Nrn cos n&r

•Nr & = Nr&n sin n&

(3.8 a,b)

(3.9 a,b)

• For the case n = 0, sin n& is to be replaced by unity.
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in which

r
Nrn l r

Wn

1= KRn (3.10)

L Nr&n L
vn J

where KRn , the in plane stiffness matrix for the roof, is given by

ERtR [ 1 0

Ja (l-\)R) 0 0 for n = 0

ERtR [ 1 1

JKRn = for n = 1
a(3-\)a) 1 1

ERtR [ 2n-(1-\) 2-n(l-\»

Ja (l+\)R) (3-\lR) 2-n(1-\» 2n-(1-\»

for n L 2 (3.11)

where ER, \)R' t R are Young's modulus, Poisson's ratio and the thickness

of the roof, respectively. The finite element analysis of the tank with

a roof prooeeds by adding this in-plane stiffness matrix of the roof

into the approximate locations of the global stiffness matrix of the

shell. The results for a typical tank are shown in Fig. 3.3 by square

markers.

For comparison, consider the plane stress problem in a halfplane

with loads applied at the edge. Let x be the coordinate direction

normal to the boundary, such that x is positive in the halfplane, and

let y be the coordinate tangential to the boundary. Let u and v be the

displacements in the x and y direction, respectively. Specify the dis-

placements at the edge as
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u = cos (ny/a)

v = 0

Thus, the variation in u has the same wavelength as in the shell

problem. As in Eq. 3.3, the normal force at the boundary can be written

as

From the solution of the plane stress problem·

K =vn
2Etn

This stiffness is shown in Fig. 3.3 as curve (b). As might be expected.

for large n. the radius of curvature of the tank wall is small compared

to the circumferential wavelength. and the stiffnesses for the tank and

the halfplane coincide. More importantly, in this example, for any

n L 2. the stiffness for the tank with a roof is no less than half the

stiffness of the halfplane.

From the comparison of the tank with a roof to the semi-infinite

cylinder, it is seen that the roof has more of a stiffening effect than

a semi-infinite continuation of the cylinder. This occurs because the

solution for a semi-infinite cylinder with a large ratio of alt contains

terms in the expressions for the stresses and displacements which decay..
very slowly in x (Flugge, 1960).

• The general solution to this problem is given by Timoshenko and
Goodier (1970). The stresses and displacements decay like
exp (-nx/a) or x exp (-nx/a).

\
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3.4.3 Inextensional Solution for a Roofless Tank

When inextensional modes are possible. they are often so flexible

compared to deformational modes involving membrane strains that the dis-

placements associated with membrane strains become negligible compared

to those associated with inextensional deformations. Under such condi-

tions. the use of inextensional theory is in order.

Consider the determination of the vertical force that must be

applied at the base to generate the displacements described by Eqs.

3.6: It can be obtained from the principle of virtual work by applying

an inextensional virtual displacement. As a first step. the strains and

stresses through the thickness of the shell need to be determined. For

this purpose. substitute the inextensional displacement field (Eqs. 3.6)
• • •

into what Flugge (1960) refers to as the exact strain-displacement

relations for a cylindrical shell. expand the resulting expressions in

powers of the distance from the mid-surface. and neglect terms of second

and higher order. to obtain

8
X

= 0

8 0 = _,U [ U( 4) + U(2) ] (3.12 a-c)3a

'YxO = 2z [u(3) + U(1) ]
2a

in which 8
X

is the vertical strain. 8 0 the circumferential strain. 'YxO

the engineering shear strain. z is the distance from the mid-surface

(positive so that a + z is the distance of the point from the axis of

• The expressions are exact for infinitesimal displacements.



- 65 -

the cylinder). and

(3.13)

Now consider a virtual. inextensional deformation arising from a verti-

cal virtual displacement 6U at the base. and the corresponding virtual

displacements 6u. 6v and 6w. and virtual strains 6ex ' &e 9 and &Yx9

obtained by substituting U = &U into Eqs. 3.6 and 3.12. Equating the

virtual work done by the vertical force at the base. P. and loads Pro P9

and Px distributed over the surface of the cylinder to the virtual

change in strain energy yi.elds

=
211 L t/2

J J J
o (1) -t/2 ~

. Ec,e ET e 1
·--2 &8 9 +~ 61'x9 dz dx ad9
-~ J

(3.14)

By substituting for the real and virtual strains from Eqs. 3.12. and for

the virtual displacements from Eqs. 3.6. performing the integrations in

x and z. and integrating by parts in a. Eq. 3.14 reduces to

2n

= K
s

J [U(8) + (2_a2)U(6) + (1-2a2)U(4) - a2U(2)] &U ad9 • (3.15)

o
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where

Ks = (3.16)

Finally, since &U is arbitrary,

L

P + J (X p" + X· )da raPe + Px x
o

The corresponding stiffness coefficient for U = cos ne is

(3.17)

( 3.18)

Kvn
(3.19)

Comparing this expression to the stiffnesses for the tank with a roof,

it is seen that for small n these inextensional modes are of the order

of (a/t)2 times more flexible. Under such conditions. the inextensional

theory is a good approximation. However, the stiffness of the inexten­

sional modes increases like n8, and for

(3.20)

the flexibility due to inextensional modes is of the same order as that

for deformations involving membrane strains. This phenomenon is

illustrated in Fig. 3.4.
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3.5 CONCLUSIONS

The main purpose of this chapter is not to present techniques for

the analysis of the shell. That is done in Appendix B. Rather. it is

to review some relevant elementary solutions in order to help the reader

interpret and evaluate the results of the following chapters.

The principal conclusions drawn from the results presented are:

1. If the circumferential displacement v at the junction between

the base plate and the shell is negligible. then in as far as

the determination of the radial force and moment exerted by

the shell on the base plate is concerned. the assumption of

weak circumferential variations in the base plate is accept­

able.

2. For an unanchored tank without a roof. very flexible inexten­

sional deformational modes exist. which involve out of round

deformations of the shell. These displacements increase

proportionally with the distance from the base. A roof

prevents such inextensional modes. and is therefore expected

to have an important effect on the behavior of unanchored

tanks.

3. Although for some loading and boundary conditions. the

behavior of a cylindrical shell is well described by the

analytical approximations of this chapter; for an uplifting

tank. the behavior is sufficiently complicated to require the

use of numerical methods. such as the finite element method.
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The formulation for axisymmetric elements used for this

purpose, including a first order approximation for geometri­

cally nonlinear effects, is given in Appendix B.
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4. ANALYSIS OF A SHELL ON A BED OF VERTICAL NONLINEAR SPRINGS

In Chapter 2 the variations in the circumferential direction were

said to be weak if the conditions in the baseplate at any circumferen­

tial location. 9. were fully determined by the vertical uplift of the

edge at the same location. and did not depend on the vertical uplift of

the edge at other locations. If this is the case. and furthermore the

foundation can be represented by Winkler springs. then the unanchored

tank subjected to lateral loads can be modeled by considering the shell

(and roof if present) to be mounted on a circular bed of vertical.

nonlinear springs. The force per unit length-deflection relationship

for these nonlinear springs in tension is determined from the

axisymmetric uplift solution. and in compression from the properties of

the foundation.

In addition to the vertical boundary condition at the base of the

shell. the conditions for radial and circumferential displacements and

for rotation about t~e circumferential axis need to be described. If

the assumption of weak circumferential variations is followed strictly.

the radial force and the moment at any location are determined from the

axisymmetric solution by the vertical displacement at the same location.

In the circumferential direction. the stiffness of the base plate acting

as a diaphragm is large compared to the corresponding stiffness of the

shell. Hence. circumferential displacements at the base are small and

may reasonably be assumed to vanish.
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Simpler boundary conditions for radial displacement and rotation

are possible if interaction effects are small. In this case the verti-

cal force is hardly affected by the non-vertical displacements, and the

boundary conditions for radial displacement and rotation have little

bearing on the solution for vertical displacements. Since the base

plate offers a relatively large resistance to horizontal (radial and

circumferential) displacements, and a relatively small resistance to

rotations about the circumferential axis, it is assumed here that

horizontal displacements of the shell wall vanish at the base, and that

rotations about the circumferential axis are unrestrained. This assump-

tion is made only for the purpose of defining the relationship between

uplift and vertical forces acting on the shell at the base.

The formulation and solution for a tank on a circular bed of

nonlinear Winkler springs will be given in Section 4.1 for a limiting

case for which an analytical solution is possible, and in Section 4.2

for a more general case. Definitions given in Chapter 3 also apply here

and are not repeated.

4.1 ANALYTICAL SOLUTION FOR A LIMITING CASE

For an inextensional shell without a roof, Eq. 3.18 gives rise to

the possibility of solving contact problems analytically. Consider the

case in which the foundation is perfectly rigid in compression, and any

•uplift causes a tensile force Nx = NO at the base. Thus,

• This is the assumption made by Wozniak and Mitchell (1978) in what
has become part of the design standard of the American Water Works
Association (1979).



- 72 -

u L 0

U = 0

for

for
(4.1 a,b)

where R1 is the uplifted region and R2 is the region in contact with the

base. Since the foundation is rigid, P need not be finite in R2• It

may contain Dirac delta function singularities corresponding to verti­

cally upward point reactions. However, dipoles and higher order

singularities are not permitted, because they involve tensile as well as

compressive forces. Such tensile force cannot be generated (Eqs. 4.1).

With reference to Eq. 3.18 it is seen that this means that U(7) may be

discontinuous, but all lower derivations must be continuous everywhere.

Suppose now the contact region, R2• has some finite extent. Then U

and all its derivatives vanish in R2• Since the first six derivatives

of U must be continuous, this means that the boundary conditions for the

solution in the uplifted region R1 are

U(n) = 0 for n = 0.1, ••• ,6 (4.2)

at the boundary between regions R1 and R2• Thus, for the solution in

region R1 • there are 7 boundary conditions at each of 2 boundaries, a

total of 14 conditions. These are more boundary conditions than can. in

general. be accommodated by the solution of an 8th order differential

equation. As a result. it appears to be impossible to obtain a solution

in which the contact region has a finite extent.

A more fruitful approach is to seek solutions in which the contact

region R2 consists of one or more discrete contact points. While the

solution of such problems may be of some theoretical interest. their
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practical value is limited because the membrane deformations due to

point reactions in the vicinity of the contact points cannot be

neglected. On the other hand. away from the contact points. the effect

of local membrane strains associated with the point reactions may well

be small.

Here only the simplest contact problem is considered. the case in

which there is a single contact point. Since there can be no moment

applied at a contact point. this means that loads applied to the tank

must be such that the tank is just at the point of overturning.

Let the distributed loads due to lateral fluid pressure and the

weight of the tank wall be

Pr = -f(x) cos 9

P = 09

Px = 'tt

(4.3 a-c)

in which l t is the unit weight of the tank wall material. Substituting

Eqs. 4.1a and 4.3 into Eq. 3.18. and factorizing the differential

expression in U gives

(4.4)

in which Fo - 'ttL + NO' and F1 =t i f(x)dx is proportional to the

overturning moment due to lateral fluid pressure on the tank wall.
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The general solution to Eq. 4.4 which is symmetric in e is

u
FO ~

=
K 2 2s a

(F1/FO)e2 cos e

8(1+a2)

(4.5)

in which Ci are arbitrary constants to be determined from the boundary

conditions. The simplest case occurs when F
1

is such that the tank is

at the point of overturning. This happens when

= (4.6)

Under such conditions overall equilibrium can only be satisfied if there

is a single contact point at e = ±n. The boundary conditions at this

point are

u(n)(n)

U(n)(n)

= U(n)(-n)

= U(n)(-n)

= 0 for n = 0.1

for n = 2.3 ••.•• 6
(4.7 a.b)

Since U is symmetric in e. all even derivatives are also symmetric in e,

and therefore satisfy the continuity oonditions at & = ±n. However, the

odd derivatives are antisymmetr1c and must therefore vanish at e = ±n.

Hence the boundary conditions reduce to

U(n) (n) = 0 for n = 0,1,3,5 (4.8)

Eqs. 4.8 are four conditions for the four arbitrary constants C1 to C4•

However, the solution is not unique. This can be expected because the

tank is free to rotate about the contact point. For positive
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displacements in the vicinity of the contact point. U(2)(n) must be non-

negative. A limiting case occurs when

(4.9)

Using this condition in addition to Eqs. 4.8 leads to a unique solution

for the constants C1 to C4• The resulting expression for U is

n[cosh(a9) - cosh(an)]
2-

a3(1+a2) sinh (an)

2en -2)

4(1+a2 )
• ;o~h<a.) 1<1+008 &)

a(l+a) sinh(an)J

.(4.10)

By differentiating this expression according to Eqs. 3.6. the radial and

tangential displacements are obtained. At any given location. the

result can be expressed in the form

~ F0 .5i 2 f(lt
a = Et t a • ~) (4.11)

in which & stands for a displacement. and f( ••• ) is a dimensionless

function. The resulting deformed shape is shown in Figs. 4.1 and 4.2

for L/a = 1 and 2. respectively.

As a numerical example, for a typical tank of radius a = 30 ft,

height L= 30 ft, thickness t = 0.25 in, made of steel

(E = 30 X 106 psi. ~ = 0.3, Yt = 0.28 lb/in3) with no tensile force
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PLAN

ELEVATION

Figure 4.1: Deformed shape of an unanchored, roofless,
inextension2l tan~ subjected to lateral loads.
L/a=l, F a /(E t )=0.25, v=O.3

o
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ELEVATION

Figure 4.2: Deformed shape of an unanchored, roofless,
inextensional tank subjected to lateral loads

2 3L!a=2, Fo a ICE t )=1.0, v=0.3
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generated at the base (NO = 0). the scale factor for the deformed shape

is

This means that the deformations would be 28 times larger than those

shown in Fig. 4.1. For No > O. the deformations increase even more. In

reality such large deformations do not occur because

1. Geometrically nonlinear effects become dominant;

2. Lateral loads change with a period which is short compared

with the time it would take for the computed deformations to

develop;

3. The tensile force developed at the base is not independent of

the amount of uplift. but increases with increasing uplift.

This tends to prevent very large amounts of uplift. In fact.

for a roofless tank with no bending rigidity at all. and

disregarding effects 1 and 2. the distribution of vertical

stresses at the base. as determined from the solution of the

shell problem. does not depend on the distribution of uplift

around the circumference. and must therefore be the same as

for an anchored tank. Under such conditions the distribution

of vertical stresses at the base for an unanchored tank is the

same as for the anchored tank. Furthermore. uplift at any

location on the circumference can be determined directly from

the force-deflection relation for the foundation.
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4. Roofless tanks are required to have a stiffening rim or wind

girder at the top, which tends to reduce the out-of-round

deformations.

While the solution for an inextensional tank without a roof

provides some insight into the behavior of the cylindrical shell under

conditions of seismic uplift, it also points to the need for a more

general method of analysis, one that 1.ncludes the effects of membrane

strains, a more general force-uplift relationship at the base, and the

tendency of the hydrostatic internal fluid pressure to prevent out of

round deformations of the shell.

4.2 NUMERICAL SOLUTION FOR THE GENERAL CASE

In this section, a numerical solution for the problem of the shell

on a circular bed of nonlinear Winkler springs is given. The Winkler

springs represent tbe restraining action of the foundation and the

baseplate. It is assumed that the stiffness of the foundation is

finite. As a result, finite displacements at the base imply finite

forces, and no singularities in :~,[;fi.': solution are expected. Under such

conditions, numerical solutiol~ by Gallerkin#s method can be expected to

converge to the correct solution.

4.2.1 Formulation

Consider the cylindrical shell, loaded, with or without a roof.

with boundary conditions at the base given by u = U. v = w = O. M = O.
x

Suppose the imposed displacement. U, is expressed as a cosine series in
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the form

U =
N
[
n=O

U cos n&n
(4.12)

Then. using the axisymmetric finite ~lements described in Appendix B.

the vertical force at the base can be obtained in the form

p =
N
[
n=O

p cos n&
n

(4.13)

where P. the vertical force acting on the shell at the base. is taken to

be positive when it acts upwards. and

(4.14)

In Eq. 4.14. F are the Fourier components of the reaction at the base
n

that would be present if the displacements at the base were zero all

around the circumference. and as in Eq. 3.3. K are the. vertical stiff­vn

ness coefficients of the shell.

At any point. the force acting on the circular bed of Winkler

springs is equal in magnitude and opposite in direction to that acting

on the shell. Thus. the equation for the springs is

-P = r(rr) (4.15)

where f(U) is the vertical force per unit length (positive upwards) act-

ing on the Winkler springs. For positive U. i.e •• an upward deflection.

f<u) is determined from the axisymmetric solution for the base plate

given in Chapter 2. For negative U. f(U) is given from the properties
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of the foundation. For the present formulation feU) is assumed to be a

known, nonlinear function. Substituting Eq. 4.14 into Eq. 4.13 and

using the resulting expression for P along with Eq. 4.12 in Eq. 4.15

gives

r.. (F + K U) cos ne + f (r.. U cos ne) = 0
n=O n vn n n=O n

Following Galerkin's method, multiply Eq. 4.16 by cos me,

m = 0,1,2, ••• ,N, and integrate around the circumference to obtain

(4.16)

in which

= 0 (4.17)

= 1 otherwise

for m = 0

(4.18)

The integral in Eq. 4.17 needs to be evaluated numerically. To avoid

locking of the problem, it is judged advantageous to make the number of

integration points equal to the number of Fourier harmonics used, N.

Physically, this is equivalent to replacing the continuous circle of

Winkler springs by discrete springs at locations e = in/No

i = 0,1, ••• ,2N-1. Thus Eq. 4.17 becomes

• (4.19)

where
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= !
2

= 1

for i =

otherwise

... -2N ,-N,O,N ,2N , •••

(4.20)

are weighting factors which arise because the points at 9 = O,n only

occur once, whereas other points occur at each side of the circumfer-

ence.

Equations 4.19 for m = 0,1,2, •••N are N + 1 coupled nonlinear equa-

tions for the unknown Fourier components of the displacements Uo'

U1 , ••• ,UN• They can be solved numerically. However, in many practical

cases, the stiffness of the foundation in compression is very high

compared with other stiffnesses. As a result, the displacements at

points that remain in contact with the foundation are very small.

Computing these displacements by summing Fourier components which are

not small in absolute value is potentially an illconditioned calcula-

tion. Difficulties can be avoided by the following transformation of

variables. Denote the displacement at 9 = jn/N by uj. Thus,

=
N
[
n=O

U cos (njn/N)
n

(4.21)

From Appendix C, Eq. C8, the inverse relation as derived from the theory

of discrete Fourier transforms is

(4.22)

Thus Eq. 4.19 can be rewritten in terms of what might be termed the

nodal displacements u j as follows:
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2 N j
+ - ,- y f(U ) cos(mjn/N) = -F &

N j;o j m m
(4.23 )

Finally, multiplying Eq. 4.23 by (2/N)YmYi cos(min/N), summing for

m = O,l ••• N, and making use of the discrete orthogonality relation given

in Eq. C6 of Appendix C yields

-i
= -F (4.24)

in which

N 2
"IiYj \' K & Y cos(mi7T/N) cos(mjn/N)

ml;;O vm m m

2y N
= 3N L Y & F cos(min/N)

m=O m m m

(4.25)

(4.26)

Equation 4.24 can be solved numerically by Newton's method with the

advantages that the matrix of coefficients Sij is symmetric, and only

the diagonal terms of the Jacobian or tangent matrix change at each

iteration.

4.2.2 Implementation

If the number of Fourier harmonics, N, is large, a large number

of Newton iterations and/or loading steps are required to obtain a

converged solution at load levels that are typical for earthquake

resistant design. In addition, the computational effort for each
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iteration increases like N3 • To reduce the effort for large N. the

program was implemented with the capability to restart the analysis with

a larger value of N. To achieve this. the nodal displacements Uj can be

interpolated as follows: Suppose N1 is the value of N for the first

run. and N2 £ N1 is the value of N for the restart. Then the nodal dis-

placements for the restart can be obtained from

N1
= \" U cos (nj1t/N2)
~n

j = 0.1 ••••• N2 (4.27)

in which Un are the Fourier amplitudes for the displacements at the last

load step of the first run. as obtained from Eq. 4.22 with N = N1.

With the restart capability. the user of the program can start with

a small value of N. increase the loads to the desired level in several

loadsteps, and restart at the desired load level with a larger value of

N. In this case convergence to a more accurate solution occurs in only

a few iterations. It is then possible to restart the program with an

even larger value of N. Thus a high degree of accuracy can be achieved

with a much reduced amount of computational effort.

4.2.3 Results

The analysis is performed for two tanks for which experimental

results from tilt tests by Clough and Niwa (1979). and Manos and Clough

(1982) are available. These will be dealt with in sections 4.2.3.1 and

4.2.3.2 respectively. Most of the discussion of the results is reserved

for Chapter S. where the same tanks will be reanalyzed by a more
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comprehensive method.

4.2.3.1 Tall Tank Tested by Clough and Niwa (1979)

Design details for this 15 ft tall, 7 ft-9 in diameter aluminum

tank are shown in Figure 4.3. The shell is fabricated out of three 5 ft

courses, the lower two being 0.090 in thick, and the third 0.063 in

thick. For the present analysis, it is modeled with 35 axisYmmetric

elements of lengths varying between 2 in near the base and top, and 8 in

at midheight. Nonlinear effects due to the internal hydrostatic pres­

sure described in Appendix B are included. The wind girder (stiffening

ring at the top rim) is modeled as a 2 in long thickened shell element,

assuming perfect bonding between the stiffening elements and the shell,

plus a 1-1/16 in X 3/16 in rectangular ring element at the appropriate

radial eccentricity to model the horizontal leg of the angle which forms

the outer part of the stiffening rim. The 4 X 4 stiffness matrix for

such a ring stiffener is given in Lee and Nash (1982), and restated in

Appendix D. The ring stiffener is attached to the top node of the

finite element model of the shell with zero vertical eccentricity.

Although in reality, the centroid of the stiffener is 3/32 in below the

top node of the finite element model, the assumption of zero vertical

eccentricity makes it possible to use the readily available results from

Lee and Nash (1982) and is expected to be a good approximation.

The roof consists of a flat, 1/16 in thick aluminum plate,

stiffened by two angle sections. The contribution to the stiffness

matrix from the flat plate is calculated from Eqs. 3.11. This stiffness



t
I

-86-

"-"".@
I

DETAIL-A OETAIL-B

ELEVATION (NORTH FACE)

~p
(36 ~ EOUAl. "ACE)

DETAIL-C

",," I ,.-."1.[M
.g=

0.0113"

STIFFENING RIM
DETAIL-E

0.010"
FILLET WELO
CONT .. aOUT

DETAIL-D

1'-" !l/'-

PLAN
FLAT ROOF

Figure 4.3: Design details of the tall aluminum tank
tested by Clough and Niwa (1979). (Reproduced from
their report with the authors' permission)
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alone is sufficient to suppress any out-of-round displacements at the

top. Therefore. neglecting the in-plane stiffness of the angles hardly

affects the stresses and displacements in the shell.

For the axisymmetric analysis of the base plate. it is assumed that

the entire base plate consists of one continuous sheet of 0.09 in thick

aluminum. In reality. the inner part of the base plate consists of a

1/8 in thick steel plate and is therefore stiffer. but this is offset by

the flexible joint between the 1/8 in thick steel plate and the 0.09 in

aluminum sheet (Detail-D in Fig. 4.3). The 2 in overlap of the base

plate beyond the shell wall is included as a ring with only an axial

stiffness prOVided by 0.18 sq. in of aluminum. The flUid pressure act­

ing on the base plate is calc~lated for zero tilt and assumed to be

constant.

The properties of aluminum are taken to be E = 10 X 106 psi for

Young's modulus. and ~ = 0.25 for Poisson's ratio. The yield stress of

the aluminum is taken to be sufficiently high to prevent formation of a

plastic hinge at the junction between the tank wall and the base plate.

To verify the sensitivity of the results to the last assumption. the

axisymmetric analysis was repeated for a plastic moment capacity of

60.75 in-lb/lb corresponding to a yield strength of 30 ksi. Even for

large uplift. when some hinge rotation occurs. the uplift force is not

sensitive to such rotations.

The force per unit length-deflection relation. F(U). for the

Winkler springs. for positive U. as obtained from the axisymmetric

analysis. is shown in Fig. 4.4. Linear interpolation is used for values
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between the points shown in Fig. 4.4. For negative U. compressive

forces. the Winkler springs are taken to be linear with a stiffness of

4.7 X 1010 lb/in2 • This high stiffness simulates a rigid foundation.

In applying the loads from fluid pressure to the shell. special

care had to be taken in the vicinity of the free surface. where the

fluid pressure only acts over part of the circumference of the shell.

At such locations. the fluid pressure on the wetted part of the

circumference can be expressed as a cosine series containing only two

terms. one of order zero and one of order one. However. on the dry part

of the circumference. the same expression is not valid since the pres­

sure is zero. For the purpose of applying the loads. the pressure at

every elevation mustoe expressed as a cosine s,eries which is valid on

the entire circumference. Where the circumference is partially wetted

such a cosine series contains infinitely many terms. Expressions for

the coefficients are given in Appendix E.

The analysis is performed for a 13 ft water depth. a tilt angle of

6.450
• and with and without the enclosing roof.

Convergence of the numerical method is studied in Figs. 4.5 and

4.6. The maximum uplift is seen to converge very rapidly. Although in

Fig. 4.5 convergence is from below. this is not necessarily the case.

The maximum vertical compressive force at the base converges somewhat

slower. because for N = 2 and 5. contact with the foundation occurs at

only one of the discrete Winkler springs. When this is the case. the

force in the one Winkler spring that is in compression may well be a

good approximation to the total compressive force transmitted from the
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foundation to the structure, but the length of the contact region is

less than the tributary length (na/N) for a discrete spring. As a

result, the calculated maximum vertical compressive force per unit

length is too low, and increases proportionately with N until there is

more than one Winkler spring in compression, or, equivalently, until the

l~ngth of the contact region exceeds the tributary length for a discrete

spring.

The distribution of vertical stresses at the base of the shell is

shown in Fig. 4.7 together with the experimental results by Clough and

•Niwa (1979) • As can be seen, both theory and experiment show a higher

compressive stress for the closed case. The reason for this is that the

roof suppresses the inextensional deformation modes, leading to an

increase in the vertical stiffness coefficients K and a decrease invn

the length of the contact region.

Perhaps the most marked discrepancy between theory and experiment

occurs at e = O. At this point, the uplift and the theoretical vertical

tension in the shell wall is a maximum, but the experimental stress is

zero. Almost equally surprising are the large tensile stresses at

e = 1350 and 2700 that were measured, but not indicated by the theory.

Although these discrepancies are significant, the most important

comparison is for the large compressive stresses. In design, the plane

of motion is unknown and the design must accommodate these stresses at

• The comparison neglects the small stresses (about 20 psi) caused by
the weight of the tank wall. These stresses are included in the
analysis, but not in the experiment where only the changes in
stresses from tilting were measured.
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any point in the circumference. For large compressive stresses, the

theory and experiment agree quite well.

The Fourier coefficients for the displacements are shown in Table

4.1.

TABLE 4.1. Fourier Amplitudes of Vertical Uplift at Base, U , Theory
nVersus -Experimental Results from Fig. 5.15 of Clough and

Niwa (1979)

Open Top Closed Top

n Theory Experiment Theory Experiment
(in) (in) ( in) ( in)

0 0.195 .46 0.193 .39

1 0.;"34 .54 0.205 .44

2 0.032 .06 0.003 .03

3 -0.003 .04 -0.003 .03

Both theory and experiment show larger displacements for the open case.

However, for n = 0, I, the experimental displacements are about double

the theoretical displacements.

For larger n, the theoretical displacement coefficients are essen-

tially zero, and the experimental values are also small, probably of the

same order as the error in measuring them and scaling them from figures

in the experimenters' report.

A comparison of the analytical results with the compressive

stresses calculated by the code procedure of Wozniak and Mitchell (1978)

is shown in Fig. 4.8. For the code analysis of the aluminum model, the
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yield stress of the base plate is taken to be 12 ksi, the appropriately

scaled value for a mild steel prototype with a yield stress of 36 ksi.

At a tilt angle of approximately 6.50
, the compressive stress calculated

by the code procedure increases to infinity. For larger tilt angles the

hold down force calculated by the code procedure is insufficient to

prevent overturning. On the other hand, for smaller tilt angles, the

maximum compressive stress from both the present analysis and the

experimental results (the latter available for the open top case only)

are higher than those from the code approach. Two reasons for this

difference are offered: Firstly, the distribution of vertical

compressive stresses :Is different from that assumed in the code

analysis. In fact, far the open case at tilt angles between 10 and 50,

the maximum compressive stress does not occur at e = 1800
• Secondly,

and more importantly, in the code analysis. it is tacitly, but errone­

ously assumed that the hold down force is fully developed for any amount

of uplift, no matter how small. In reality, a substantial amount of

uplift is required to develop the hold down force, and, as a result, the

length of the contact region decreases and the maximum compressive

stress increases.

Since developing the required hold down force for an infinitesimal

amount of uplift seems to be advantageous, the question that comes up

naturally is whether the tank can be designed so that such conditions

are achieved. It was in this context that the author conceived what

might be termed the preuplift method: An annular filler is inserted

under the tank wall as shown in Fig. 6.1. uplifting an annular region of
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the base plate. For a properly designed filler. most of the weight of

the fluid resting on that annular region is then carried by the filler

in compression. As a result. for the tank wall to loose contact with

the filler. the vertical tension in the tank wall must exceed the pre­

compression in the ring filler. The effect of such preuplift on the

behavior of a mylar tank is studied in Chapter 6 by analysis and experi-

ment.

4.2.3.2 Broad Tank Tested by Manos and Clough (1982)

Design details for this 6 ft tall and 12 ft in diameter alumi­

num tank are much the same as for the tall tank discussed in Section

4.2.3.1. The shell consists of two 3 ft courses of aluminum of

thicknesses of 0.08 in and 0.05 in for the lower and upper course.

respectively. The entire base plate consists of an outer annulus and an

inner portion. Both parts consist of 0.08 in thick aluminum sheet and

are joined by a double ring of 3/32 in countersunk rivets at 3 in spac­

ing. As before. the base plate is modeled as one continuous sheet of

0.08 in thick aluminum. All other design details. including the wind

girder. are identical to those for the tank of Section 4.2.3.1 and are

treated in the same way. The stiffness of the foundation in compression

is taken to be 10111b/in2 in order to simulate a rigid foundation.

The case considered is for the top open. 5 ft water depth. and 160

tilt. In order to prevent the water from overflowing due to the tilt.

the experimenters built an external structure to extend the tank. The

forces resulting from water pressure acting on the external structure
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were transmitted directly to the foundation and need therefore not be

considered in the analysis of the tank. Also, to prevent leakage

between the external structure and the tank a membrane was provided.

The force exerted by the membrane on the tank is small, and was there-

fore neglected.

Theoretical and experimental results for this br~ad tank are shown

in Figs~ 4.9 to 4.11. The experimental stresses are the changes in

•stresses due to tilting , measured 2 in above the base. Perhaps the

most remarkable feature of the vertical stress distributions is the

bimodal distribution of compressive stresses predicted by the theory,

which is not seen in the experimental data. Although surprising at

first, the theoretical result becomes more plausible when one bears in

mind that the tank under ~onsideration is broad and has no roof. As a

result, inextensional deformation modes can be expected to play an

important role. For an inextensional tank, there would be a number of

discrete contact points. For the case of Fig. 4.10, there would prob-

ably be two such contact points located near the maxima of compressive

stress shown in the figu~e. As the inextensionality requirement is

relaxed, the compressive point reactions redistribute over a finite

length resulting in a compressive stress distribution like that of Fig.

4.10.

Although the bimodal distribution of compressive stresses is

consistent with what one might expect from the inextensional theory,

• The theoretical stresses also include a 7 psi uniform compression at
zero. tilt, which is negligible compared to stresses associated with
tilting.
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comparing it to the unimodal experimental stress distribution does raise

some questions about the validity of the analysis and the assumptions

made. It will be seen in Chapter 5 that the bimodal distribution of

compressive stresses persists when the assumption of weak circumferen­

tial variations in the base plate is relaxed. Also, decreasing the

stiffness of the foundation in compression to 107lb/in2, a value more

appropriate for a layer of mortar on a steel tilt table, does not

noticeably change the stress distribution. An assumption which is more

debatable for the case of a broad tank than for taller tanks, is that

the changes in pressure acting at any point on the shell due to tilting

are small compared to the hydrostatic pressure at zero tilt. If this is

not true, then it is not appropriate to linearize the shell problem

about the full, but otherwise not loaded (or tilted) condition, as was

done in Appendix B.

The stress distribution from the code approach of Wozniak and

Mitchell (1978) is shown in Fig. 4.10 as line (b). Again the peak

compressive stress is seen to be much lower than that from the present

analysis and the experimental results.

As was the case for the tall tank (Fig. 4.7}F the experimental

vertical stresses are very small at & = 0, where the maximum uplift

occurs, while large vertical tensions were measured at & = 90°, and

2700
•

A puzzling feature of the experimental stress distribution is that

the area above the zero line appears to be larger than the area below

the zero line, indicating that there is a substantial net force acting
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downward. at an angle from the vertical equal to the tilt angle a. How-

ever. equilibrium of forces in that direction indicates that the net

force (or the change in the net force due to tilting) can be no larger

•than the weight of the tank wall. which is very small.

As for the tall tank. the measured uplift exceeds that predicted by

the theory. Here the maximum differs by a factor of 1.S as compared to

a factor of 2.4 and 2.3 for the n = 0 and n = 1 Fourier coefficients of

the uplift of the tall tank.

4.3 CLOSING REMARKS

It is seen that there are some significant differences between the

results from the tank analysis described in this chapter. and those from

experiments. Although some of these differences may be due to experi-

mental error. and the error from scaling the results from the experi-

menters' reports. the consistency of certain trends in the test results

strongly suggests that there are other reasons. For one. the assumption

of weak circumferential variations in the base plate, which forms the

basis of the analysis for the tank on nonlInear Winkler springs. may not

be a good one. Other possible reasons include: Geometrically nonlinear

effects in the shell. which are not considered in the linearized formu-

lation of Appendix B. yielding of the aluminum. initial strains (either

due to fabrication procedure. or due to yielding that may have occurred

during previous testing of the tanks). flexibility of the joint between

• To be precise, the average compressive stress at zero tilt is 7 psi,
and it decreases by (l-cos a) times that amount for a tilt angle a.
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the inner and outer parts of the base plate. friction between the base

plate and the foundation. or other modeling considerations. These

possibilities will be discussed further in the next chapter. when the

same experimental data are compared to the results of a more

comprehensive analysis which does not rely on the assumption of weak

circumferential variations.
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5. NON-AXISYMMETRIC ANALYSIS OF AN UNANCHORED TANK

In Chapter 4 it was seen that. in some instances. the measured

stresses and displacements due to tilting of two aluminum tanks differed

significantly from analytical results based on the assumption of weak

circumferential variations in the base plate. In this chapter. that

assumption is relaxed. in order to verify its validity and to see to

what extent it might be the cause of the difference between theoretical

and experimental results. This requires solution of the two-dimensional

nonlinear contact problem for the base plate.

5.1 ASSUMPTIONS

The analysis employs the following assumptions

1. Linear. small deflection theory is applicable for the shell.

but nonlinear effects due to the internal hydrostatic pressure

described in Appendix B are included. This means that the

shell problem is linearized about the full but otherwise not

loaded (or tilted) cond1tion~

2. The moderate deflection Von Karman theory is used for the base

plate. This also implies that strains in the base plate are

small. and that the radii of curvature are much larger than

the thickness.

3. The base plate material is elastic-perfectly plastic. with a

Von Mises yield surface and a yield stress in uniaxial tension

of aye [c.f•• in Chapter 2 it was assumed that the moment-
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curvature relation is elastic-perfectly plastic, which is not

the same assumption].

4. In compression, the foundation under the base plate behaves

like a bed of Winkler springs with a modulus of subgrade reac­

tion kO (foundation pressure per unit deflection). In addi­

tion, there is a circular bed of Winkler springs of stiffness

ke (force per unit length per unit deflection) under the tank

wall. Neither set of Winkler springs can sustain tension.

5~ The :fou.ndation is frictionless, except at certain locations

close to the center where sliding of the tank can be prevented

by horizontal Winkler springs.

5.2 FORMULATION

For the non-axisymmetric analysis of the base, the finite differ­

ence energy method (FDEM) with an expansion of the displacements into a

Fourier series is used. This method has been used with considerable

success by Bushnell (1970. 1974, 1981) in his BOSOR (Buckling Of Shells

Of Revolution) computer code. However, in his formulation, finite dis­

placements are considered only for the n = 0 Fourier harmonic. The

higher Fourier coefficients of the displacements are infinitesimal.

Herein, all Fourier coefficients are allowed to be finite. This couples

the equations for the Fourier coefficients resulting in a much more

complicated problem requiring a much larger computational effort.

Despite this coupling, the FDEM has several advantages over the finite

element method:
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\
a) Membrane locking problems are avoided.

b) Fewer degrees of freedom are required for a given accuracy.

c) There are no rotational degrees of freedom.

d) Less computational effort is required to form the tangent

stiffness matrix.

e) The expansion of the displacements as a Fourier series is

compatible with the finite element formulation for the shell

given in Appendix B.

f) The method is simpler to implement.

On the other hand, the boundary conditions are a little more

complicated, convergence is not necessarily from below, and the computer

code had to be developed by the author. On balance, the advantages

outweigh these minor drawbacks.

Before concentrating on the details of the analysis of the uplift-

ing part of the base plate, three regions which are treated separately

must be established.

The first is a concentric circular inner portion of the base plate,

of radius al , chosen by the analyst such that no part of the inner por­

tion ever uplifts. It is modeled by annular finite elements, possesses

only horizontal degrees of freedom, and can be attached to the founda-

tion by linear, horizontal Winkler springs which prevent sliding of the

tank.

The second region is the shell and roof. It is modeled with the

axisymmetric cylindrical shell elements of Appendix B, with added
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stiffnesses due to the roof (Eq. 3.11) and ring stiffeners (Appendix D).

Since the equations for the first and second region are linear.

their internal degrees of freedom be eliminated by static condensation

to obtain linear boundary conditions for the third region. which is the

outer annular portion of the base plate. A portion of this third region

is uplifted. It has horizontal and vertical degrees of freedom. and is

nonlinear due to plasticity. contact. and finite displacements. The

rest of the discussion will concentrate on this nonlinear region. Since

most of the computational effort is spent here. it is advisable to make

this nonlinear region as small as possible by making the radius of the

inner part of the base plate. a1 • as large as possible.

The finite element formulation of structural problems involving

geometric and material nonlinearities is well known [Zienkiewicz (1977).

Bathe (1982)]. and will not be repeated here. The essential first steps

which vary somewhat from problem to problem are the following:

(i) To establish a finite set of generalized displacements which at

any time define the configuration of the structure•

(ii) •To express the strains in terms of those generalized displace-

ments.

• Here stresses and strains are to be understood in a generalized
fashion as vectors of equal dimension such that the dot product of
the stress with an increment in strain is the change in strain
energy density. This is the only requirement for the choice of
stress and strain vectors. The exact nature of these vectors
depends on. the structural element being modeled. Also. the change
in strain energy density may be a change in strain energy per unit
volume. per unit area. or per unit iength.
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(iii) To be able to calculate stresses and the tangent material matrix

(partial derivatives of the stresses with respect to the strains)

for any history of strains.

Once these three steps are achieved. the rest of the finite element

formulation follows standard procedures.

The only difference between the finite element method and the

finite difference energy method (FDEM) is that in the FDEM, displace-

ments are specified at certain nodal points without specifying exactly

how the displacements vary in between nodal points. and the strains are

•only defined at certain "integration points" as finite differences of

the nodal displacements.

Consider now step (i), describing the configuration of the

structure in terms of a finite set of generalized displacements. Let

there be NN real nodes, which are actually circles, equally spaced with

the first node on the inner boundary, r = aI' and the NNth node on the

outer boundary r = a. Thus the ith node is located at

r i = al + (i-l)h (5.1)

where

h = (a-al)/(NN-l) (5.2)

• These "integration points" are equivalent to the Gaussian
integration points often used in the finite element method when
numerical integration of the variations of the strain energy density
is required. Here they coincide with nodal points.
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Furthermore. in order to enforce the boundary conditions. a Oth node and

an (NN+1)th node are required at locations defined by Eq. 5.1 with

i = O. and i = NN+1 respectively. It is also advantageous to define

intermediate nodes. with the ith intermediate node located at

r = r i - h/2. for i = 1.2 ••••• NN. NN+1.

As illustrated in Fig. 5.1. the nodal displacements are

at nodes i = 0.1.2 ••••• NN. NN+1; and

NH
= [ u~ cos ne

n=O

(5.3)

(5.4)

=
Nfl
[
n=l

vn sin nO
i

(5.5)

at the intermediate nodes. i = 1.2 ••••• NN+1. In Eqs. 5.3 to 5.S u. v.

and w represent the displacements in the radial (positive outwards).

circumferential (positive anticlockwise as seen from on top). and verti-

cal (positive upward) directions. respectively. The superscript n is

used to identify the coefficients or the expansions. and should not be

interpreted as an exponent. NH and NW are the order of the last terms

in the Fourier series for horizontal and vertical displacement

components. respectively.

which satisfies

Finally N (0) is a cosine series of order NW
n
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m = n

= 0 for m 8 {0,1,2, ••• ,NW}-{n} (5.6)

From the theory of discrete Fourier transforms (see Appendix e), it is

readily established that

in which

= 1/2 for IS = •.• -2,-1.0,1,2, •••

= 1 otherwise

The advantage of using Eq. 5.3 rather than a simple cosine series is

that added stiffness due to vertical Winkler springs representing the

foundation is added into the diagonal elements of the stiffness matrix.

Since, for a rigid foundation, the added stiffness may be very large,

this is not only convenient, but essential to avoid excessive truncation

errors. In essence, using Eq. 5.3 rather than a simple cosine series is

equivalent to introducing the change of variables made in Section 4.2.1.

Before proceeding to step (ii), which is to express strains in

terms of the generalized displacements, it is appropriate to consider

how th~ variations in strain energy density will be integrated, in order

to establish what quantities should be used as strains for each

structural element, and at what points the expressions for the strains

are required. Four types of structural elements are considered here.
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2.
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The base plate itself.

The annular bed of Winkler springs of stiffness k (pressureo

per unit deflection) in compression.

3. The circle of Winkler springs under the base of the tank wall.

with stiffness k (force per unit length per unit deflection)e

in compression.

4. Linear constraints applied at any given real node. such as the

boundary conditions due to the inner part of the base plate at

node 1. and the boundary conditions due to the shell at node

NN.

Expressions for the variation in strain energy for each of these four

structural elements will be given in Sections 5.1.1 to 5.1.4. These

contributions must be summed to obtain the total variation in strain

energy.

5.2.1 Base Plate

Of the stress components a rr • arO' aOO' arz ' aOz ' and azz ' where

z is the vertical coordinate (positive upwards. with z = 0 denoting the

midsurface of the plate), only the first three are non zero. The varia-

tion in the strain energy per unit volume at location (r,O,z) can be

written as

in which

5U(r,O,z) T
= 5e a (5.8)
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(S.9a)

are the in-plane stresses. and

(S.9b)

are the strains. The contribution to the variation in strain energy due

to the plate is

a 1! t/2

J J J &U(r.9.z)dz rd9 dr

a1 -7t -t/2

(5.10)

in which t is the thickness of the base plate. Replacing the integra-

tions with respect to r and 9 by summations. and taking advantage of the

symmetry of the integrand with respect to 9. expression 5.10 becomes

NN r2TC NC1: hyi/NN r i NC ~ Yj/NC
1-1 l ~

t/2

J
-t/2

ZldZ]
J

(5.11)

in which NC. the number of integration points around the circumference.

is chosen depending on the accuracy desired. The remaining integration

across the thickness of the plate is also done numerically using

Simpson's rule with five integration points across the thickness. This

scheme is exact when the cross section remains elastic. and has the

advantage over Gaussian integration that there are points on both

surfaces of the plate. Thus yielding starting on the surface of the

plate is "detected" immediately. Furthermore. if the section becomes

fUlly plastic in pure bending. Simpson's rule with five integration
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points is also exact.

Following Kirchhoff's hypothesis that plane sections remain plane,

the strains are written as

£ B - z I<rr r

£9 = 8 - z 1<9 (5.12 a-c)
e

Br9 = ere - z I<r9 ,

in which Br , 8 9 and er9 are the midsurface (or membrane) strains, and

I<r' 1<9 and I<r9 are the curvatures. Their values at a generic integra­

tion point located at (r.9) = (r i , jn!NC) are given by:

[
NH 1 nn !+ ---2 (ui+ui+1)cos(njn NC)

n=O r i
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- 2;i (V~+V~+l)l sin(njn!NC)

+ [21h [ (W~+l-W~)N (jn!Nc)lri. [ wt;W(jn!Nc)ll n=O n JLr i n=O J. n

i.
NW

I<r = [ (W~_1-2w~+W~+1)Nn(jn!NC)
h2 n=O

i.
NW

1<& = [ w~ N~' (jn!NC)2-r i n=O

NW
+_1_ [ (w~+l-w~_l)Nn(jn/NC)

2hz'\ n=O

21<r& f [1 n n - ; W~lN~(j./NC) (S .13 a-f)= rih(Wi+l-wi-l)
n=O r i J

Equa.tions, 5.12 and 5.13 define the str.a.ins in terms of the general-

ized displacements. It only remains to establish the stress-strain

relationship, and the tangent material matrix. This is done in Appendix

F, using the method of radial return (or elastic predictor. radial

corrector method).

5.2.2 Annular Bed of Winkler Springs

The variation of the strain energy for the annular bed of Winkler

springs is
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C{x) = x

= 0
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a 7T

f f koC{w)lSw rd9 dr
a

1
-7T

if x ~ 0

otherwise

(5.14)

(5.15)

In equation 5.14 the vertical displacement w can be considered to be the

"strain." and 6 denotes a variation. With numerical integration expres-

sion 5.15 becomes

(5.16)

Note that the integration in & is replaced by summation over NW points.

which would normally be less than the number of points (NC) used for

integrating the strain energy in the plate. As in Section 4.2. this is

considered advantageous in order to avoid locking problems~ It also

means that these springs affect only the diagonal elements of the stiff-

ness matrix.

5.2.3 Circular Bed of Winkler Springs

In Chapter 6. tanks for which the tank wall is preuplifted by

placing a annular filler under the tank wall (Fig. 6.1) will be

analyzed. For such a tank. the force per unit length in the circular

bed of springs under the tank wall' is keCCw-wpre)' in which wpre is the
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preuplift. As a result. the contribution to the variation in strain

energy for these springs is

71

f keC(w-wpre)&w ada
-71

which is approximated by

(S.17)

In this chapter preuplift is not applied. and therefore W = o.pre

S.2.4 Linear Constraints

A linear constraint at node i arises from the static condensation

of any linear. axisymmetric structure attached to node i. Thus, there

is a constraint at node 1 due to the inner part of the base plate. and

at node NN due to the cylindrical shell and roof. The variation of the

strain energy for SUQh constraints can be written in the form

in which

(S.19)

for n = 0

1 otherwise (S.20)
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(5.21)

where

for n = 0.1.2, •••• NH

= c otherwise (5.22)

n n for n = 1.2, ••• ,NHV = ¥2( vi+v1+1)n

= 0 otherwise

2'Yn/ NW NW
w~ cos(nkn/NW)w = NW k~ 'Yk/ NWn

for n = 0,1 •••• ,NW

= 0 otherwise

for n = O.l •••• ,NW

(5.23 )

(5.24)

= 0 otherwise (5.25)

are the nth Fourier coefficients of the displacement components in the

r, &. z directions (base plate coordinates) and the rotation about the

circumferential axis respectively. Fn , 4 X 1 vectors. and Kn• 4 X 4

matrices. are obtained from the static condensation of the attached

structure. The elements of the 4 X 1 vector (Fn+Knqn) are the nth

Fourier coefficients of the forces per unit length and the moment per

unit length acting on the attached structure in the directions of the
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displacements 0 • V • 9 and the rotation ~ • respectively.n n n n

5.3 CRITERIA FOR CHOOSING NW. NH, AND NC

The convergence studies in Chapter 4 (Fig. 4) can be used as a

guide in choosing the number of Fourier harmonics required for the vert­

ical displacement. NW. For the choice of NH. the number of Fourier

harmonics for the horizontal displacements. and NC. the number of

integration points in the circumferential direction. the following

results were helpful.

Result 1:

If no yielding occurs. then the numerical integration in the

circumferential direction indicated in epression 5.11 is exact if

NC > max(2NW.NH) (5.26)

This result can be obtained by using eqs. 5.8 to 5.13 to evaluate the

nature of the integrand. and the discrete orthogonality relation of

Appendix C. It can also be shown that the variation in strain energy

due to bending is integrated exactly if NC > NW.

Result 2:

If

a) there is no yielding. and

•b) the horizontal loads are of Fourier order 2NW.

then the horizontal displacements are of Fourier order 2NW. Thus.
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for n > 2NW

This means that under such conditions, making NH greater than 2NW serves

no useful purpose.

Briefly, the reason is that vertical displacements of Fourier order

~~ induce membrane strains of Fourier order 2NW. If no horizontal dis-

placements are allowed while the vertical displacements are applied, the

horizontal forces that are reqUired to achieve this are also of Fourier

order 2NW. Releasing these, restraining forces results in horizontal

displacements of Fourier order 2NW.

Result 3:

Since the variation in the strain energy is not integrated exactly,

the displacements do not necessarily converge from below. A special

case occurs when

a) NW = 1, and

b) NN and NC are sUfficiently large to achieve essentially exact

integration of the variation of the strain energy in the base

plate.

What is special about this case is that even though the distributed

Winkler springs are replaced by discrete springs on the axis of loading,

the vertical displacement at any point on the circumference is in

between the displacements at the discrete springs. This means that for

a rigid foundation the displacements are non-negative over the entire

* Herein a function f(9) is said NO
be written in the form f(9) = [

n=O

be of "Fourier order" N if it can

f ein9
n
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circumference. Hence. the displacements (or. strictly. the work done by

the applied loads) are a lower bound.

5.4 IMPLEMENTATION AND COMPUTATIONAL CONSIDERATIONS

The generalized displacements are arranged into a vector q as

follows

... NH 0 NWv1 w1 ••• w1

NW 0
wNN ~N+1

NH 1
~N+l vNN+1

the total number of degrees of freedom is

NUMDOF = (NN+2)(NW+1) + (NN+1) (2NH+l) (5.28)

The generalized displacements which affect the stresses and strains at

the ith node are arranged into an "element displacement vector" qi as

follows

=

The number of elements in this element displacement vector is

NBD = 3(NW+1) + 2(2NH+1)

which is also the half-bandwidth of the tangent stiffness matrix.

( 5.29)
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Newton Iteration was used to solve the nonlinear algebraic system

of equations. The computational effort to factorize the tangent stiff-

ness matrix at each iteration is approximately proportional to NUMDOF

(NBD)2. which for NH = NW is in turn approximately proportional to

NN(NW)2.

S.S TEST PROBLEMS

The computer program developed for the non-axisYmmetric analysis of

the base plate will be referred to as NAAOAP (Non-AXisymmetric Analysis

of Annular Plates). Constraint conditions can be imposed at any of the

nodes. Using this feature. and setting the foundation stiffness to

zero. the program can be used for annular plate problems for which the

solution can also be obtained with the BOSORS program developed by

*Bushnell (1974) • For various axisymmetric problems. including one

involving a large amount of plastic deformation. the results from the

two programs are in good agreement.

In addition, to test the program for non-axisymmetric deformations,

with strong geometrically nonlinear effects, the following problem

involving bifurcation buckling with a relatively small number of

circumferential waves is solved: An annular plate of thickness t = 1 in.

6modulus of elasticity E = 29 X 10 psi, Poisson's ratio ~ = 0.3, inner

radius 100 in and outer radius 200 in is simply supported

(u = v = w = 0, M = 0) at the inner edge, and free at the outer edge.r

• Some of the features and capabilities of this program are described
in Appendix A.
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A transverse pressure p is applied. This produces an axisymmetric

deformation of the plate. However. as the pressure increases. large

compressive membrane forces develop near the outer edge in the

circumferential direction. These stresses eventually cause buckling in

a non-axisymmetric mode. From the BOSOR5 analysis. the buckling pres­

sure is found to lie between p = 0.21 psi and p = 0.22 psi as indicated

in Fig. 5.2 by the vertical lines. The circumferential wavenumber for

the critical buckling mode is n = 3. This means that the displacements

for the buckling mode vary like cos 3& or sin 3& in the circumferential

direction.

For the NAAOAP analysis. the tangent stiffness matrix should become

singular as the bucklir~ pressure is approached. To avoid this. a small

transverse line load (force per unit length = 0.003 lb/in cos 3&) is

applied at the outer edge. This introduces a small displacement (about

0.001 in in the transverse direction) with a circumferential variation

similar to that for the buckling mode. The non-axiSYmmetric line load

is kept constant. whereas the pressure p is increased gradually.

The NAAOAP analysis was performed with NN = 21 for the number of

nodes. NW = NH = 3 for the number of Fourier coefficients to be

included, and NC = 7 to achieve exact integration in the circumferential

direction. The n = 0 and n = 3 Fourier coefficients of the transverse

displacement at the outer edge are shown in Fig. 5.2. (The n = 1 and n

= 2 Fourier coefficients are less than 10-9 in. The n = 0 Fourier

coefficient is in excellent agreement (better than 0.2~ for pressures up

to the buckling pressure) with the axisymmetric solution from BOSOR5.
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Also. for the n = 3 Fourier coefficient. the behavior is exactly what

might be expected: The small displacement due to the non-axisYmmetric

line load is greatly amplified as the critical pressure is approached.

Beyond the critical pressure the non-axisYmmetric deformation increases

rapidly.

5.6 RESULTS

As in Section 4.2.3. the analysis is performed for the tall and

broad aluminum tanks tested at the University of California at Berkeley

[Clough and Niwa (1979). Manos and Clough (1982)]. These will be

discussed in Sections 5.5.1 and 5.5.2. In addition. a mylar tank tested

by Shih (1981) is analyzed. and the calculated uplift is compared with

the experimental readings in Section 5.5.3.

5.6.1 Tall Tank Tested by Clough and Niwa (1979)

This tank. and the assumptions made in modeling it. are described

in Section 4.2.3.1. The only difference in this section is that the

assumption of weak circumferential variations in the base plate is

relaxed. and the changes in pressure acting on the base plate due to

tilting are included. However. the effect of changes in the elevation

of a point on the base plate on the pressure at that point are

neglected. (Recall that the latter are included in the analysis of the

shell).
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The stiffness in oompression for the circular bed of Winkler

springs at the edge is taken to be 1011Ib/in2, and for the annular bed

of springs under the nonlinear portion of the base plate, the stiffness

10 / 3is taken to be 10 lb in •

The inner radius of the annular, nonlinear portion of the base

plate is a1 = 38.5 in (see Fig. 5.1). This allows for a maximum width

of the uplifted strip of 8 in. NN = 17 is used for the number of nodes,

resulting in a radial spacing of 0.5 in between nodes. The inner part

of the base plate is attached to the foundation with horizontal Winkler

springs of stiffness 2,500 Ib/in3 over a circle of radius 7.5 in at the

center of the tank.

Based on the convergence study in Fig. 4.6, NW = 30 is chosen so

that accurate values of the vertical stresses can be obtained. For the

horizontal displacements, NH = 12 is judged sUfficient. Finally,

NC = 61 is used to achieve exact integration around the circumference.

The results are shown in Table 5.1 lines 4 and 9, and Figures 5.3

to 5.7. In some cases the results of the experiments and the approxi-

mate analysis of Chapter 4 are also shown for comparison. Some of the

features of these results deserve discussion:

Figures 5.3 and 5.4 indicate that the base plate is uplifted rad1-

ally inwards from locations where the shell wall (outermost node or cir-

cle) is in contact with the foundation. This occurs because the fluid

pressure acting on the shell wall causes it to rotate about the

circumferential axis at the edge. This rotation is also experienced by

the base plate. and causes the base plate to uplift slightly inward from
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the edge.

TABLE 5.1. Fourier Amplitudes of Vertical Uplift at Base (in) for the
Tall Aluminum Tank Tested by Niwa and Clough (1979) [6.450

tilt. 13 ft water depth]

1. Harmonic number. n

Open Top:

2. Experiment1

3. Approximate theory of Chapter 4

24. Present analysis

35. Modified present analysis

46. Modified present analysis

Closed Top:

7. Experiment

8. Approximate theory of Chapter 4

29. Present analysis

10. Modified present analysiS3

11. Modified present analysis4

Notes:

o

0.46

0.195

0.225

0.316

0.422

0.39

0.193

0.222

0.313

0.428

1

0.54

0.234

0.267

0.362

0.468

0.44

0.205

0.234

0.323

0.436

2

0.06

0.032

0.034

0.038

0.038

0.03

0.003

0.003

0.004

0.004

3

.04

-0.003

-0.004

-0.004

-0.004

0.03

-0.003

-0.003

-0.003

-0.003

1. Experimental data obtained from Clough and Niwa (1979) with the
authors' permission.

2. Standard analysis. assumptions include no yielding. and the base
plate modeled as one continuous sheet of 0.09 in thick aluminum.

3. Modified analysis. includes plasticity in the base plate with a
yield stress of 12 ksi. and a perfectly flexible gasketed joint in
the base plate.

4. Modified analysis as described in note 3. but the tilt angle was
incrsased to 8.50 with subsequent unloading to a tilt angle of
6.45 •
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Figure 5.3: Nodes (circles) and contact points (stars) for the
analysis of the nonlinear portion of the base plate of the tank
tested by Clough and Niwa (1979). [13ft water depth, 6.450 tilt,
open top] Each star indicates a discrete Winkler spring in
compression.
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Figure 5.4: Nodes (circles) and contact· points (stars) for the
analysis of the nonlinear portion of the base plate of the tank
tested by Clough and Niwa (1979). [13ft water depth, 6.450 tilt,
closed top] Each star indicates a discrete Winkler spring in
compression.
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The vertical stresses at the base are in good agreement with those

from the approximate analysis. The peak compressive stress also agrees

with the experimental result, but the small stress at 9 = 0 and large

tension at 9 = 900 and 2700 observed in the experiment are not matched

by the theory.

o .
The sharp peaks in shear stress near 9 = 180 (Fig. 5.6) appear to

be associated with the large rate of change in the vertical compressive

stresses. Similar sharp peaks were obtained in the approximate analysis

of Chapter 4 with N = 100 for the number of Fourier harmonics. This

suggests that these peaks are not due to discretization error, but arise

from some other cause. On the other hand, choosing NH = 12 does not

allow circumferential displacements at the base which have Fourier

components of order n 1 13. Such displacements could release some of

the stress associated with the peaks. Thus, while the peaks exist, the

analysis may exaggerate them somewhat.

The experimental shear stresses were measured 5 in above the base.

It seems likely that at this elevation the sharp peaks would barely be

noticeable. Even if the peaks were present 5 in above the base, not

enough measurements were taken to detect them. Finally, although the

peaks are remarkable, the stress levels are still low compared to the

vertical compressive stresses.

The vertical displacements at the edge (Table 5.1) are a little

larger than those from the approximate analysis of Chapter 4, but still

significantly smaller than the experimental displacements. In order to

examine to what extent these differences might be due to plasticity and
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the flexibility of the gasketed joint in the base plate (Detail D in

Fig. 4.3). the analysis is repeated with the following assumptions:

(i) The base plate material is elastic-perfectly plastic with a yield

stress uniaxial tension of 12 ksi. This corresponds to a yield

stress of 36 ksi for the hypothetical steel prototype.

(ii) The gasketed joint in the base plate is perfectly flexible. To

balance the lateral component of force which the shell exerts on

the base plate. a shear force which varies like sin 9 in the

circumferential direction is applied at the inside edge of the

outer annular portion of the base plate.

For this modified analysis. the nonlinear portion of the base plate

extends inward from the edge to the gasketed joint. The tilt angle was

increased gradually to Clough and Niwa's (1979) "standard" tilt angle of

6.450
• Then. in order to examine the effects of residual plastic

strains resulting from previous loading of the tank. the tilt angle is

increased to 8.50 (the largest tilt angle for which Niwa and Clough

(1979) report results) and reduced again to the standard tilt of 6.450
•

The analysis is performed with NN = 21. NW = 5. NH = 4. NC = 6 which is

judged sufficient for accurate values of the n = 0 and n = 1 Fourier

coefficients of the displacements. Results (Table 5.1). lines 5. 6. 10

and 11) indicate that plasticity in the base plate and the flexibility

of the gasketed joint increases the n = 0 and n = 1 coefficients for the

uplift by a factor of 1.4. Loading to a tilt angle of 8.50 and unload-
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(a) non-axisymmetric solution, closed top, 6.450 tilt
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(c) axisymmetric solution
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ing further increases the n = 0 and n = 1 coefficients of the uplift by

a factor of 1.3 to 1.4. Including all these effects results in n = 0

and n = 1 Fourier coefficients of the uplift which are reasonably close

to the experimental values.

The comparison between the results from the comprehensive analysis

of this chapter and the approximate method of Chapter 4 serve to evalu­

ate the assumption of weak circumferential variations. In Figs. 5.8 to

5.11 this assumption is examined more closely by looking at the rela­

tionship between the vertical uplift and various quantities of interest.

An example of such a quantity of interest is the vertical uplifting

force acting on the base plate at the edge. This uplift force is also

equal to the vertical tension in the shell wall. For a given tilt

angle, the values of' the uplift force and the vertical uplift can be

sampled at vari.o'Us points. around the circumference for which some uplift

occurs, and plotted. as in Fig. 5.8, lines (a) and (b). If the

circumferential variations are indeed weak, this relationship between

the uplift force and the vertical uplift should coincide identically

with that from the axisymmetric solution [Fig. 5.8, line (c)]. As can

be seen, the agreement for this case is fairl~' good.

Figures 5.9 to 5.11 are similar plots for other quantities of

interest. Perhaps the plot which best reveals how the assumption of

weak circumferential variations might break down is the one for the

circumferential membrane force, N&, at the edge (Fig. 5.9). It appears

that the large circumferential compression that might be expected from

the axisymmetric solution where' the uplift is a maximum redistributes to
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other points on the circum~erence. As a result o~ this circum~erential

spreading o~ the compressive ~orce N&, the axisymmetric solution

overestimates the circum~erential compression where the upli~t is a

maximum, but where the upli~t is small and the circum~erential compres­

sion exceeds that ~rom the axisymmetric solution.

For reasons explained in Chapter 2, the circum~erential compression

at the edge determines to a large extent how much membrane action is

present in the base plate. For small circum~erential compression at the

edge, there is little membrane action, and a smaller upli~t ~orce is

required ~or a given amount o~ upli~t. Hence, the circum~erential

spreading of the circum~erential compression should decrease the uplift

force for large values o~ uplift and increase it for small values of

uplift. This is what is observed in Fig. 5.8.

5.6.2 Broad Tank Tested by Manos and Clough (1982)

The description of this tank and the assumptions made in modeling

it can be found in Section 4.2.3.2. Results are shown in Figures 5.12

and 5.13. It is seen that in this case relaxing the assumption o~ weak

circumferential variations in the base plate increases the vertical

uplift by a factor of more than 2. One reason ~or this might be that

flexible inextensional modes in the shell wall make a distribution of

vertical uplift at the edge possible, for which relatively little

membrane action is developed in the base plate.
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Figure 5.12: Nodes (circles) and contact points (stars) for the
analysis of the nonlinear portion of the baseplate for the tank
tested by Manos and Clough (1982). [5ft water depth, 160 tilt,
open top] Each star indicates a discrete Winkler Spring in
compression.
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line), and the experimental readings (markers joined by a dashed
line) for the broad aluminum tank tested by Manos and Clough (1982).
[5ft water depth, 160 tilt, open top]. The experimental data are
used with the authors' permission.
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Another contributing effect is that, where the base plate uplifts

the most, the fluid pressure is reduced due to tilting. This applies

especially to broad tanks because

a) For a given tilt angle, the change in pressure due to tilting

is a larger fraction of the pressure at zero tilt.

b) A larger tilt angle is required to generate a given overturn­

ing moment.

This effect is included in the analysis of this chapter, but not in the

approximate analysis of Chapter 4.

The breakdown of the assumption of weak circumferential variations

is confirmed in Fig. 5.14. where the uplifting force for larger values

of the uplift is seen to be much smaller than would be expected from the

axisymmetric solution.

Given the large change in the vertical uplift that occurs upon

relaxation of the assumption of weak circumferential variations, it is

remarkable that the distribution of vertical stresses hardly changes.

It still exhibits the bimodal distribution of compressive stresses which

is not seen in the experimental data. The analysis even indicates that

the shell wall uplifts at & = 1800
• As was explained in Section

4.2.3.2, this is consistent with what might be expected from the

inextensional shell theory. Although the experimental vertical stresses

do not confirm this, the measured radial displacements at the top rim do

give an indication that there may be some tendency for uplift at

& = 1800
• To see this, note that if there is uplift at & = 1800

, then
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TOP RIM
RADIAL DISPL.

N-

Figyre 5.15: Top rim radial displacements. Reproduced from Fig. 5.2.1

in Manos and Clough (1982) with the authors' permission.

[5 ft water depth, 160 tilt, rigid foundation, open top].

it is expected that the uplift at 9 = 1800 is a local maximum. This

means that the second derivative of the uplift with respect to 9

(denoted by U·· in Chapters 3 and 4) is negative. From Eq. 3.6c it is

seen that the radial displacement must therefore be negative. i.e.,

inwards. This is exactly what is shown in Fig. 5.15. Although Eq. 3.6c

applies for inextensional tanks only, the argument is still relevant,

because for a broad, roofless tank such as this one, inextensional

deformation modes play an important role.

5.6.3 Mylar Tank Tested by Shih (1981)

In his Figure 5.7. Shih (1981) gives the results of a static tilt

test on an unanchored mylar tank. The tank used is 5 in in diameter,

10.5 in tall, and the thickness is 0.002 in for both the base plate and

the shell •. A stiffening rim was provided which essentially prevents

out-of-round
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deformations at the top. For the analysis, the same effect is achieved

with a 0.02 in thick, flat mylar roof. Shih set the tank on a tilt

table at a constant tilt angle of 10.30 and gradually filled it with

water, measuring the vertical uPlift1 and the width of the uplifted

strip of the base piate. 2

In modeling the tank, the elastic properties for mylar are taken to

be E = 0.735 X 106 psi for Young's modulus, and ~ = 0.3 for Poisson's

ratio. Sliding of the tank is prevented by horizontal Winkler springs

of stiffness 103 Ib/in3 on a 2 in diameter circle at the center of the

tank. The stiffnesses for the vertical springs are taken to be

k = 3,446 Ib/in3 under the base plate, and k = 516,900 Ib/in2 at theo e

edge.

The radial spacing of the nodes in the nonlinear portion of the

base plate is 0.05 in. The analysis is performed with NW = NH = 3,

NC = 4. This is sufficient to obtain accurate values of the uplift.

In the analysis, the loading process by filling of the tank is

simulated by computing the appropriate load vector at each loading step.

This means that the water level increases from one loading step to the

next. As a result, the stiffness matrix of the shell also changes due

to the nonlinear effects associated with the hydrostatic pressure. For

simplicity, such changes in the stiffness matrix of the shell are not

included in the analysis. Instead, the stiffness matrix of the shell is

1 With feeler gauges.

2 By inserting dye under the uplifted portion of the base plate, the
extent of the uplifted portion became clearly visible.
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computed for a water depth of 6.5 in and assumed to remain constant.

The analytical results are compared with Shih's experimental read­

ings in Fig. 5.16. The agreement is acceptable. if one considers the

uncertainty in measuring the displacement with feeler gauges. Some of

the differences between theory and experiment may also be due to the

stiffening effect of a bead of epoxy used to bond the shell to the base

plate.

5.7 SUMMARY AND CLOSING REMARKS

The comprehensive method of analysis developed in this chapter

enables the assumption of weak circumferential variations in the base

plate to be relaxed. In doing so it is seen that for a tall tank. this

assumption is acceptable. For a broad. roofless tank. however. the

assumption seems to be acceptable for calculating the distribution of

vertical stresses in the shell at the base. but not for calculating the

uplift.

Significant differences between theoretical and experimental

results remain. even after relaxing the assumption of weak circumferen­

tial variations in the base plate. Exactly why these discrepancies

occur is not clear. However. a number of possible explanations can be

suggested and evaluated.

Due to its high thermal conductivity. aluminum is difficult to

weld. Therefore. some imperfections and residual stresses are inevit­

able. There may also be some additional residual stress from forming of

the aluminum sheet. Whereas for the linear behavior of a structure. the
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changes in stresses due to external loading are unaffected by residual

stresses, this does not apply for the base plate of a tank, for which

the behavior is markedly nonlinear. In particular, it seems likely that

there were some residual circumferential tension due to welding at the

shell-base plate joint. This tends to reduce the membrane action in the

base plate, resulting in larger uplift for a given tilt angle.

It was seen that for the tall aluminum tank, yielding of the alumi­

num, and the flexibility of the gasketed joint in the base plate have a

strong influence on the uplift. The broad aluminum tank did not have a

gasketed joint, but its behavior may have been affected by yielding of

the aluminum at the time the tilt test was performed, or by residual

plastic strains resulting from previous loading of the tank.

Some important effects may have been lost in the linearized formu­

lation for the shell. It would appear, for example, that the relatively

sharp peaks in the distribution of ~~mpressive stresses at the base may

be redistributed by the geometric shortening that occurs when a vertical

line on the shell wall becomes a curve. This would, result in a somewhat

lower peak compressive stress.

Finally, friction between the base plate and the foundation is not

considered in the analysis. Such friction forces can change the

distribution of membrane forces in the base plate. This in turn may

affect membrane action in the uplifted portion of the base plate.

In summary, there are several possible reasons for the differences

between the theoretical and experimental results. What is not clear 1s

exactly what effects are responsible for the differences in each case.
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Resolving this would require improved capabilities for analysis. includ­

ing a fully nonlinear formulation for the shell. in conjunction with

carefully designed experiments.
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6. THE PREUPLIFT METHOD

For an unanchored tank, uplift is necessary so that the earthquake

induced overturning moment can be balanced by the weight of the fluid

resting on an uplifted portion of the base plate. Thus uplift enables

the weight of the water to participate in stabilizing the tank. How-

ever, uplift also can result in damage to connecting pipes or buckling

of the shell wall due to the concentration of vertical compressive

stresses at the base.

The question that comes up naturally in this context is: Is it

possible to reap the benefits of uplift ,(stabilization by the weight of

the fluid resting on an uplifted portion of the base plate) without

incurring its detrimental effects? This can indeed be achieved, if the

tank wall is preuplifted all around its circumference by a ring filler,

as shown in Fig. 6.1.

U
'::'

I§f".... ~~

RING
FILLER

Figure 6.1: A preuplifted tank.
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The ring filler is designed in such a way that it carries not only the

weight of the tank wall and roof. but also the weight of part of the

fluid which rests on the preuplifted portion of the base plate. For

uplift to occur. this preload on the ring filler must be overcome by the

seismically-induced,vertical tension in the shell wall. Thus. for light

to moderate ground shaking the tank wall remains in contact wi th the

ring filler all around its circumference. and the tank behaves essen­

tially as if it were anchored even under shaking that would otherwise

cause substantial uplift. Furthermore. it will be seen that even under

ground shaking strong enough that the tank wall locally looses contact

with the ring filler (i.e•• major amounts of uplift). preuplift improves

the per~ormance o~ the tank for any given lateral load. This conclusion

is supported by experimental and theoretical results. First the experi­

ments and method of analysis are described. then the results presented

in the figures are discussed.

6.1 EXPERIMENTS

A mylar tank was fabricated following the methods of Shih (1981):

The vertical seam in the tank wall was lapped and bonded with 1/4" wide

double sided tape. At the junction between the shell wall and the base

plate (henceforth referred to as the edge). a thin bead of epoxy was

used as a bonding agent. At the top. a lucite ring prevents any out-of­

round deformations of the cross section.

The dimensions for the model tank are S" for the diameter. 9-7/8"

for the height. and 0.002" for the thickness of both the tank wall and



Figure 6.2: Experimental setup for tilt
tests on a mylar tank.

Figure 6.3: Buckling of an unanchored mylar
tank.
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the base plate. Since the modulus of elasticity for mylar, 735,000 psi

±~ as quoted by Shih (1981) from Weingarten, et al. (1960), is a factor

of 40 less than that for steel, the model tank satisfies the conditions

of similarity with a steel tank 40 times larger. This means that the

hypothetical steel prototype is 16 '-8" in diameter, 32 '-11" tall, and

both the tank wall and the base plate are 0.08" thick. This shell

thickness is close to the minimum that would be required to support the

hydrostatic water pressure, if the tank were full.

The test setup is shown in Fig. 6.2. A static lateral load was

induced by tilting the specimen on a tilt table which was designed for

calibrating accelerometers. In doing so, the vertical lap joint in the

shell was oriented on the axis of loading, opposite to the region of

vertical compression. Two types of tests were performed:

(i) The tank was filled with water to a depth of 4-9/16" at zero

tilt, and the tilt angle was increased in increments of about

30
, measuring the maximum uplift at each increment with

feeler gauges (results in Fig. 6.5).

(ii) The tilt angle was held fixed, and the tank was filled slowly

through the aluminum tube visible in Fig. 6.2, until the

first signs of a buckle (much smaller than the one shown in

Fig. 6.3) could be detected Visually, using light reflected

on the tank wall. The water levels at buckling are shown in

Fig. 6.7 for various tilt angles. Each experimental point is

the average of two readings.
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In the buckling tests. the first buckle always formed near the base. at

the axis of loading. If the water level was increased further. the

buckle gradually increased in size and more buckles formed (as in Fig.

6.3). This agrees with Shih's (1981) observation that unanchored tanks

do not collapse for water levels significantly higher than the water

level at which the first buckle can be detected. However. in contrast

to Shih (1981). who measured collapse water levels. here all experimen­

tal data relate to incipient buckling. The author considers this to be

a more appropriate failure criterion. because mylar tanks probably owe

much of their post buckling strength to the fact that the mylar does not

yield at stress levels which. when scaled to prototype stresses. are

well above the yield stress for the mild steels out of which tanks are

typically made.

All tests were performed with and without preuplift. The ring

filler consists of a 1/32" thick square sheet of plexiglass with a hole

whose diameter is a few hundredth of an inch less than the inner diame­

ter of the tank. This insures that the entire circumference of the tank

wall is supported by the filler even if there is a small error in

centering the filler.

To prevent slipping of the tank it was bonded to its foundation at

the center by a 1/4" square piece of double sided tape.

6.2 ANALYSIS

From Chapter S. for the tall aluminum tank tested by Clough and

Niwa (1979). the results from the comprehensive method of analysis are
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in close agreement with those from the approximate analysis method

described in Chapter 4. The theoretical maximum compressive stresses

also agree with the experimental results. Since the mylar tank under

consideration in this chapter has about the same height to diameter

ratio as the tall aluminum tank of Chapter 5. the approximate method of

analysis is used. For the case with preuplift. the vertical uplift

varies gradually around the circumference. therefore the accuracy of the

approximate method may be expected to be better for the case with

preuplift.

Consider the problem of the tank for which the base plate has been

replaced by a ring of nonlinear Winkler springs. The force per unit

length-deflection relationship for such springs is shown schematically

in Fig. 6.4. For a tank without preuplift. the applicable curve is

ABCD. The segment BCD of this curve is obtained from the axisymmetric

uplift solution. and segment AB is taken to be linear. with a slope ke

that is representativ~ of the stiffness of the foundation in compres­

sion. In the analysis reported herein a large number. k = 106Ib/in2•e

is used to simulate a rigid foundation.

Preuplift ~an be accounted for simply by modifying the force­

deflection relation of the Winkler springs. In this case the force-

deflection relation is represented by curve A'CD in Fig. 6.4. in which

the segment A'C is taken to be a straight line of slope k ,e

representative of the flexibility of the foundation and the ring filler

in compression. In the present analyses. the ring filler as well as the

foundation are taken to be rigid. Correspondingly. k = 1061b/in2 ise
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Figure 6.4:
Schematic force-deflection relation for the nonlinear
Winkler springs at the base of the tank, without
preuplift (curve ABCD), and with preuplift U (curve
A'CD). 0
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used. as for the case with no preuplift.

6.3 DISCUSSION OF RESULTS

The theoretical and experimental values of the uplift obtained with

and without preuplift are shown in Fig. 6.5 as a function of the tilt

angle. For the preuplifted case. the uplift shown in Fig. 6.5 includes

the preuplift. The uplift due to tilting is much smaller for the

preuplifted case. Also. for tilt angles greater than about 100
• both

theory and experiment indicate that the total uplift is less for the

preuplifted case.

The agreement between theory and experiment for the case without

preuplift is excellent. However. two compensatory effects may have been

involved: On one hand it was found that the approximate method of

analysis. based on the assumption of weak circumferential variations in

the base plate. yields a maximum uplift slightly (10 to 20%) smaller

than that from the more comprehensive analysis. On the other hand. the

stiffness of the bead of epoxy. which bonds the base plate to the shell.

and the stiffness of a small extension of the base plate on the outside

of the tank wall were neglected in the analysis.

For the case with preuplift. Fig. 6.5 indicates that uplift due to

tilting is less than predicted by the analysis. Perhaps one of the more

important contributing factors to this difference is the stiffening

effect of the bead of epoxy at the edge. When the tank is uniformly

uplifted all around the circumference. the edge tends to move radially

inward. Due to the restraining action of the shell and the bead of
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epoxy. this gives rise to a radial membrane tension in the base plate.

For a larger radial tension at the edge. more membrane action is

developed in the base plate. and the hold down force for a given amount

of uplift is increased. This means that the restraining action due to

the axial stiffness of the bead of epoxy will tend to decrease the

uplift for a given water level and tilt angle.

The axial stresses at the base. as obtained by analysis. for a

water level of 4-9/16" and a tilt angle of 100 are shown in Fig. 6.6.

The stresses are expressed as a fraction of what is generally referred

to as the classical buckling stress [Timoshenko and Gere (1961)]. given

by

= (6.1)

in which E. ~. t. R are Young's modulus. Poisson's ratio. the thickness

and the radius of the shell. respectively. The location on the

circumference is defined by an angle e. which is measured from the axis

of loading. with e = 0 on the side which is subject to uplift. Clearly.

the maximum compressive stress at e = 1800 is dramatically reduced by

preuplift. No attempt was made to measure the stresses in the mylar.

The stress distributions in Fig. 6.6 suggest that buckling due to

the vertical compressive stress would occur at a higher tilt angle

and/or water level if the tank is preuplifted. This is confirmed by the

experimental data in Fig. 6.7. where the tilt angle for a given water

depth at buckling is seen to be 1.S to 2.0 times larger for the case

with preuplift. Since the lateral load is approximately proportional to
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the tilt angle. this means that the preuplift increases the lateral load

capacity by a factor of up to 2.

In order to obtain the theoretical tilt angles and water depths at

buckling. it was assumed that the shell buckles when the peak vertical

compressive stress reaches the classical buckling stress given in Eq.

(6.1). This assumption is open to debate. On one hand. experiments on

cylindrical shells in uniform axial compression [Weingarten. et ale

(1960). Babcock (1974). Shih (1981)] indicate that the buckling loads

are extremely sensitive to imperfections in the shell. and may be less

than half the classical buckling load. On the other hand Shih (1981)

found in his tilt tests on anchored mylar tanks. that the calculated

peak compressive stress at buckling was about 1.24 times the classical

value. He also discusses how the nonuniformity in the prebuckling

stress field can result in higher buckling stresses. For an unanchored

tank. one might expect that this effect of nonuniformity is even more

pronounced. because the region of large vertical compressive stresses is

smaller.

The theoretical tilt angles and water levels at buckling. obtained

with the classical buckling criterion. are shown in Fig. 6.7. by broken

lines. They confirm that preuplift substantially increases the lateral

load capacity. Also. the agreement with the experimental data is cer­

tainly acceptable, if one considers the uncertainties in the buckling

stress.
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The calculated peak compressive stress at the tilt angles and water

levels for which incipient buckling was observed in the experiments will

be referred to as the experimental buckling stress. The ratios of these

experimental buckling stresses to the classical value of Eq. (6.1) are

plotted in Fig. 6.8. The average value is 0.83 as indicated by the bro-

ken line. Fig. 6.8 also indicates that neither the internal pressure

(which is proportional to the water level), nor the circumferential

angle spanned by the contact region, or whether or not the tank is

preuplifted seem to.have any significant influence on the experimental

buckling stress.

6.4 CLOSING REMARKS

Both the theOretical and experimental results presented show that

preuplift substantially increases the capacity of an unanchored tank to

withstand lateral loads due to tilting. There is little doubt that the

same conclusion would apply for seismic lateral loads.· However, a

number of questions remain unanswered at this time.

(i) Uplift will affect the dynamic response of the tank, by

increasing its period of oscillation. For a preuplifted

tank, this increase in the period of oscillation is less

pronounced. Depending on the relative frequencies of the

earthquake and the tank, this means that the preuplifted

tank may experience a lateral load which is higher or lower

• Shih (1981) has shown that for an anchored tank, the stresses due to
tilting are similar to seismically induced stresses.
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than that for the case without preuplift.

(ii) The static stresses in the base plate induced by the

preuplift may have some detrimental effect over long periods

of time. Indeed. for most mild steel tanks preuplift

results in flexural yield at the shell-base plate junction.

This means that the weld at the junction must be stronger

than both the shell and the base plate. and embrittlement of

the heat affected zone must be avoided.

(iii) Some of the effectiveness of the preuplift could be lost due

to creep strains in the base plate developing before the

earthquake.

(iv) When. after a cycle of uplift. the tank wall descends upon

the ring filler. the rapid vertical deceleration of the tank

wall may well contribute to a large local hydrodynamic pres­

sure acting on the preuplifted portion of the base plate.

This could increase the plastic strains in the base plate

and at the junction with the shell wall. As a result some

of the effectiveness of the preuplift could be lost. and.

ultimately. there may be some danger of tearing at the

shell-base plate junction. This problem could be avoided if

the ring filler is designed so that under normal operating

conditions. it fills the space between the base plate and

the foundation. but carries vertical loads only at the edge.

This can be achieved by choosing a cross section of the ring

filler which matches the deformed shape of the base plate
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due to a uniform uplifting force applied at the edge only.

Some of these questions also apply to unanchored tanks without

preuplift. For example. the local hydrodynamic pressures mentioned in

(iv) above may contribute to the formation of the "elephant foot bulge"

so commonly observed. While these issues remain to be studied. and in

some cases may limit the effectiveness of preuplift somewhat. the author

concludes that preuplift will in most cases significantly improve the

behavior of unanchored tanks subject to earthquake loads.
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7. SUMMARY AND CLOSURE

When a cylindrical steel tank is subjected to earthquake loads, the

seismically induced vertical tension in the shell wall at the base

exceeds the vertical compression due to the weight of the tank wall and

roof (if present). This is true even for relatively light ground shak­

ing. For an unanchored tank, the resulting net vertical tension causes

the shell wall to uplift. The base plate is therefore also uplifted.

Thus a hold-down force is developed due to the weight of fluid resting

on the uplifted portion of the base plate.

The analysis of this problem requires consideration of the shell

and the base plate, inclUding nonlinear effects due to finite displace­

ments, yielding of the steel, and loss of contact with the foundation.

The assumptions made in the method of analysis recommended in the

current design standards of the American Water Works Association and the

American Petroleum Institute are in most cases not applicable, and can

result in calculated peak compressive stresses which are too low. On

the other hand, the allowable peak compressive stress is also much lower

than that observed. Therefore the current design standards are

inconsistent rather than necessarily unconservative.

In an attempt to provide a more realistic idealization of the

problem, two methods of analysis have been developed~ Both are based on

the moderate deflection, Von Karman, theory for the base plate, and a

linearized formulation for the shell.
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The first method of analysis is an approximate one ~n which the

tank wall is supported from below by a circular bed of nonlinear Winkler

springs. When in tension. these Winkler springs represent resistance to

uplift provided by the base plate. When in compression. the Winkler

springs represent the stiffness of the foundation. The force-deflection

relation for the Winkler springs is determined from the solution of the

axisymmetric problem in which the tank wall is'uniformly uplifted all

around the circumference. Three computer programs are used for this

approximate analysis: One to solve the axisYmmetric uplift problem. one

to perform a static condensation on the tank wall. and the third uses

the output of the previous two to solve the contact problem. Each of

these could be run on a personal computer.

The second method of analysis is a more comprehensive one in which

the non-axiSYmmetric problem for the partially uplifted base plate is

solved. This is achieved by the finite difference energy method. using

an expansion of the displacements as a Fourier series in the

circumferential direction. Since both material and geometrical

nonlinearities are included. the variations in the strain energy need to

be integrated numerically. A tangent stiffness matrix is obtained in

which there is coupling between the various Fourier coefficients of the

displacements. This makes for a large amount of computational effort if

a large number of Fourier coefficients are included in the analysis: A

typical problem with 31. Fourier coefficients for the vertical displace­

ments and 13. Fourier coefficients for the horizontal displacements took

• Including the coefficient of order zero.
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10 to 15 minutes on a CRAY XMP-2-4 computer. This is about the number

of Fourier coefficients required for accuracy in the vertical stresses

in the shell wall at the base. However. accurate values of the uplift

displacements can be obtained using only two or three Fourier coeffi­

cients. As a result the computational effort is reduced by two to three

orders of magnitude (a factor of 102-103). This is important in apply­

ing the method for dynamic analysis: The inertial forces and

hydrodynamic pressures can be obtained with fairly good accuracy and

relatively little computational effort from a time history analysis.

using a small number of Fourier coefficients. The most severe inertial

forces and hydrodynamic pressures can then be applied as static loads in

a subsequent analysis using a larger number of Fourier coefficients. in

order to obtain accurate values of the stresses.

In comparing the results from the approximate method of analysis

based on the assumption of weak circumferential variations in the base

plate to the more comprehensive approach. it is seen that for a tall

aluminum tank which was loaded by applying a static tilt. the results

from the approximate method of analysis are in close agreement with

those from the more comprehensive method. For a broad. roofless tank

however. the approximate analysis is distinctly less satisfactory.

As expected. the analyses show that uplift results in a large

increase in the peak compressive stress in the tank wall at the base.

For a given lateral load. these calculated peak compressive stresses are

in good agreement with experimental results. In some cases they exceed

the stresses calculated by the procedures outlined in the current API
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and AWWA standards by a factor of more than 2. On the other hand,

experiments on mylar tanks indicate that the peak compressive stress at

which buckling occurs is close to the classical value, which is much

larger than the allowable compressive stress permitted by the current

design standards.

For most fluid storage tanks, the thickness to radius ratio is such

that vertical compressive stresses can be expected to cause elastic.

buckling before they cause yielding. This is especially so if buckling

occurs well before the classical buckling stress is reached. However,

as has been suggested by Chen (1984), the combination of vertical

stresses close to the classical buckling stress, hoop stresses due to

internal hydrostatic and hydrodynamic pressures, and bending stresses

due to the restraint at the base may well cause the material to yield

before the point of elastic instability. In such cases plastic buckling

can be expected to occur soon after the onset of yielding, because of

the decrease in the material stiffness. This would probably result in

what is generally referred to as an elephant foot bulge.

Hence, yielding as well as elastic instability should be considered

as a possible failure mechanism for the tank wall. Whereas for elastic

instability, internal pressure tends to increase the buckling stress,

for yielding, internal pressure produces hoop tension and bending

stresses which combine with the axial compressive stress to produce a

more severe loading condition. This is especially important if the

internal pressures are amplified by resonant breathing modes [Haroun and

Tayel (1984,1985 a,b), Sakai et al. (1984), Veletsos and Kumar (1984)],
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and by the vertical motion of the base associated with rocking.

Although agreement of the theoretical results with available

experimental results is good in some cases. in other cases there are

significant discrepancies. These discrepancies could be due to geome­

trically nonlinear effects in the shell. yielding of the aluminum.

residual stresses (due to welding. forming of the aluminum sheet. or due

to plastic strains that may have developed during previous testing of

the tanks), friction between the base plate and the foundation, or other

inaccuracies in the mathematical idealization of the tank. Which of

these effects is responsible for the discrepancies in each particular

case, and to what extent experimental errors may also be involved is not

clear.

In order to explain more precisely the differences between theoret­

ical and experimental results, it seems that a program that allows an

interplay between testing and analysis would be required. In an

integrated program, experimental features could be addressed by special

analyses and potential problems indicated by the analysis could be

investigated experimentally. For example, the influence of friction

between the foundation and the base plate could be virtually eliminated

by greasing the surfaces. The tank could be annealed in order to

eliminate residual stresses. Or. if this is impractical. an attempt

could be made to estimate the residual stresses and they could be

included in the analysis. Finally, a high strength material could be

used to eliminate the effect of plasticity; or, alternatively. if

plasticity is important the entire loading history for the tank could be
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reproduced analytically.

In any future experiment it would be important to measure the

stresses and displacements at several locations on the uplifted portion

of the base plate, since this is where the geometrically nonlinear

effects are most pronounced. The stress-strain behavior of the material

should be determined experimentally. Also, the effect of heating and

cooling from nearby welds on the stress-strain behavior should be

investigated.

Using the preuplift method (Fig. 6.1) the hold-down force due to

the weight of the fluid resting on an uplifted strip of the base plate

can be developed without many of the undesirable consequences of uplift.

It is shown by analysis and experiment, that for a 5 in diameter and 9­

7/8 in tall mylar tank, a preuplift of 1/32 in increases the resistance

to lateral loads due to tilting by a factor of up to 2.

Some questions regarding the preuplift method remain to be

investigated: For example. preuplift affects the dynamics of an

unanchored tank and therefore has some influence on the maximum lateral

force and overturning moment. Also, the relatively large stresses in

the base plate during operating conditions may have some detrimental

effects such as creep, and the possibility of leakage due to the growth

of microcracks. The loss of the effectiveness of the preuplift due to

creep strains could be evaluated by an axisYmmetric analysis, if a suit­

able description for the creep behavior of the steel can be found.

Although these issues deserve to be studied in more detail, it appears

that the seismic performance of unanchored tanks 'can be improved
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APPENDIX A - BUCKLING ANALYSIS OF BASE PLATE WITH BOSORS

This appendix explains the use of the computer program BOSORS by

Bushnell (1974) to determine the critical load for circumferential

buckling in the base plate. Since BOSORS does not have built-in

capabilities for contact problems, a separate analysis is reqUired for

each location of the contact point. The BOSORS mathematical model for

the example problem of Chapter 2 is shown in Fig. A1. In this figure

and in the rest of this appendix the node numbers used refer to those

specified by the user. The program inserts additional nodes at junc-

tions in order to model the boundary conditions.

The base plate is modeled as a single conical segment beginning at

(r,z) = (0,0) and ending at (r,z) = (S7,0). Nodes 1 to 21 are equally

spaced on the portion of the base plate which remains in contact with

the ground. Nodes 21 to 73 are also equally spaced, and the actual

spacing is chosen such that node 21 is at r = r , the location of theo

contact point. At this node no rotation. or vertical displacement are

allowed.

The shell is modeled by a second segment with 61 equally spaced

nodes covering a length of 15 in. This length is considered sufficient

to model accurately the constraint provided by the shell for rotations

and horizontal displacements. In addition, although the vertical stiff-

ness of a 15 in length of shell is lower than that for the full length

of the shell, it is seen from Fig. 2.11 that this vertical stiffness is

sufficient to suppress any vertical displacements associated with the
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buckling mode at the edge.

At the junction between the base plate and the shell, continuity of

all displacement components and the rotation is required. The plastic

hinge is allowed to form naturally by yielding of the material, which is

taken to be linearly strain hardening from 70 ksi at first yield to 70.5

ksi at 1% strain for loading in uniaxial tension. The stress resultants

(membrane forces and bending moments) are obtained by numerical integra-

tion of the stresses at 7 points across the thickness of the plate. For

the prebuckling analysis, the flow theory of plasticity is used with a

Von Mises yield surface, and for the buckling analysis the deformation

theory of plasticity is used.

The loading is applied as shown in Fig. A1, the applied pressure pa

and the uplift force P being given bya

in which

p
a =

= (D1)

(D2)

p = actual pressure as defined in Chapter 2,

P = uplift force determined by the shooting method (P depends

on r ), ando

~ = loading parameter.

Thus the loads are applied proportionally such that when the load param-

eter reaches unity, the conditions for the contact problem are matched.

Although the loading path in this analysis is different from that for
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the contact problem in which the radius to the contact point changes.

this hardly affects the prebuckling conditions. since path dependencies

can only be introduced due to yielding at the plastic hinge. As long as

the direction of loading does not change. such path dependencies are

limited to interaction effects between the various bending and membrane

stresses. which are neglected.

To verify that the prebuckling conditions are sUitably simulated by

the above procedure. stresses and displacements obtained with BOSORS

were compared to those obtained by the shooting method. Fig. A2 shows

the comparison of vertical displacements. radial bending moments and

circumferential membrane forces. Similar agreement was obtained for

other quantities. The most noticeable difference is in the hoop

compressive force near the edge. It occurs due to interaction between

radial bending and circumferential compression: In the presence of

large radial bending moments the capacity in circumferential compression

is reduced. The effect of a finite plastic hinge length in the BOSORS

model upon the response near the edge is apparent in Fig. A2a. Since

the extent of such local effects is small compared to the buckling

wavelength. they were neglected.

The trial and error procedure for determining the buckling load is

as follows:

1. Estimate the radius to the contact point. r • when bucklingo

occurs using results obtained by the shooting method. and sim-

pIe plate buckling formulae.
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2. Construct the BOSOR5 model consistent with the chosen value of

r , and determine the value of the load parameter ~ ato

buckling. If it exceeds unity, try again with a smaller value

of r o; if it is less than unity, try again with a larger value

of r •o

3. Keep trying until the value of r is found for which bucklingo

occurs at ~ = 1. For the example tank considered, this occurs

for r = 44.25 in, corresponding to an uplifted width ofo

12.75 in.
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APPENDIX B - CYLINDRICAL AXISYMMETRIC SHELL ELEMENT

Klein (1964) has presented a derivation of the stiffness matrix for

conical. and. as a special case, cylindrical shell elements in which the

displacements and stresses vary as trigonometric functions in the

circumferential direction. However, for the special case of a cylindri-

cal element his results are not stated in a convenient form. Haroun

(1980) considers the specific case of a cylindrical element, but did not

state the elements of the stiffness matrix explicitly. In the following

pages, an outline of the derivation of such explicit expressions is

given, and the final results are stated. The second section in this

appendix is devoted to the added stiffness arising from non-linear

effects due to internal fluid pressure.

Bl. DERIVATION OF STIFFNESS MATRIX FROM LINEAR SHELL THEORY

The derivation is based on what Flugge (1960) refers to as the

"exact"· relationship between the strains at any point and the

midsurface displacements. and the principle of virtual displacements.

Thus. the need to use classical shell theory and stress resultants is

avoided. This approach is generally known as the degeneration approach.

A typical element. and the coordinate system used are shown in Fig. B1.

It coincides with that of Flugge (1960). with Flugge's ~ replaced by 9.

The thickness of the shell, t, is taken to be uniform throughout the

• Flugge's "exact" strain-midsurface displacement relations are only
exact for infinitesimal displacem~s. In other strain-midsurface
displacement relations given by Flugge's (1960) the additional
assumption that the thickness is very small compared to the radius
is made.
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element, and the radius to the midsurface is a. As is indicated in Fig.

Bl, the intersection of the plane x = 0 and the cylinder will be termed

node 1, and the intersection with the plane x = Le , where Le is the

length of the element, will be termed node 2.

The displacement components of the midsurface are defined as:

u = Vertical component of displacement, positive 1n the direc-

tion of increasing x.

v = Circumferential component of displacement positive in the

direction of increasing 9.

w = radial displacement, positive outward.

These displacements vary as functions of x and 9. The 9 dependence may

be eliminated by making use of the orthogonality of trigonometric func­

tions. In particular it is well known (Flugge, 1960) that in the

linear shell theory the solution for radial and vertical loads varying

as cos n9, and tangential loads varying as sin n9 may be written as

u = u cos n9n

I
v sin n9 for nFOn

v = v for n=O
0

w = wn cos ~

(Bla)

(BIb)

(Blc)

in which un' vn' wn are functions of x only. In the finite element

model it 1s assumed that un ~nd vn vary linearly between nodal points,

and wn varies as a cubic polynomial. Thus the displa~ement in the ele-
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ment is fully determined by the values of u , v , w , and dwn/dx at then n n

nodal points. These nodal displacements are arranged into an element

displacement vector q as follows

= [
1 1 1 1 2 2 2 2 ]Tu v w (dw /dx) u v w (dw /dx)n n n n n n n n

(B2)

in which u1 = displacement un at node 1, etc. The Fourier coefficientsn .

of the displacements are then given by

(B2)

in which the 3 X 8 interpolation matrix N is given in Table B1.

Using the relation between midsurface displacements and the strains

at any location within the shell given in Flugge (1960), the strains

can be expressed in the following form:

e(x,~,z) = ~(~) B(x,z) q
n

(B3 )

in which the variables in parentheses indicate functional dependence,

and

z = Distance from point under consideration to the mid surface,

positive when the point under consideration is on the out-

side of the mid surface.



TABLE BI. Expressions for Matrices Nand B

~ 0 0 0 " 0 0 0

N = I 0 ~ 0 0 0 " 0 0

0 0 N1 L1 0 0 H2 LZ

_-1.. I " I " ..l- .t " I "0 - N - L 0 - N - L
L 8 1 a 1 L 8 2 a 2
e e

B = I nf _ il±.tl o't(2+\) N' nIDAt ' nn !.1.±ll nID+t2 ' nt<2+Xl. L'- 80+\) aU+t;) L1 - aU+t;) a (1+\> N2L aU+t;> 1 L 8(1+~) 2 I Ie e ......
(Xl
V1

2 «1+n2I) L
Z

. I

n!
2

0 U+n I> N 0 nn U+n I2 N jl+n I2 L
8 80+t;> 1 aO+t;> I 8 aU+t;> 2 aU+t;> Z

L

in which

t; = Z/8

~ = 1 - X/Le " = x/Le

NI = 1 - 3<x/L )z + 2<x/L )3 Nz = 3<x/L )2 _ 2<x/L )3
e e e e

LI = Lel(x/Le> - 2<x/Le>2 + <X/Le>3] Lz = Lel-<x/Le>2 + <X/Le)3]

>' = 8 i < >dx
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& = 3 X 1 vector containing the vertical strain, the engineering

shear strain, and the hoop or circumferential strain in the

order stated.

~ = sin n9 1
oos~

B = 3 X 8 matrix of interpolation functions and their

derivatives given in Table B1.

Nodal loads are defined as forces or moments applied at the midsurface

of the shell, expressed as a force or moment per unit length measured

along the midsurface of the shell. Any twisting moments acting about x

axis are replaced by their statically equivalent tangential and radial

shear forces. This leads to the following nodal forces:

pi = Vertical membrane force at node i acting in the direction of

increasing x.

Ti Tangential shear force at node i acting in the direction of

increasing 9.

Oi = Radial shear force at node i acting radially outwards.

Mi
= Moment at node i acting in the same sense as the rotation

dw/dx.

These nodal forces are arranged into an element load vector as follows:



- 187 -

(B4)

Note that R depends on &. Since all radial and vertical loads vary as

cos n&. and all tangential loads vary as sin n&. R can be expressed as

-R = e- Rn
(B5)

-in which R is independent of &, and e- is a 8 X 8 diagonal matrix. then

first and last four elements of which are given by cos n&. sin n&.

cos n&. cos n& in the order stated.

The principle of virtual displacements can be written

in which

Le t/2 2n

f f f 6e
T
De(a+z)d9dzdx

o -t/2 0

2n

= S (e. 6q )T(e.R )ad9n n (B6)

&qn Arbitrary vi.rtual displacement vector.

£Ie = 6B &qn = virtual strains associated with virtual displace­

ments &qn.

(B7)

Substituting for e from Eq. B3 gives



- 188 -

Le t/2 2n 2n

6q~ f f aT f e- TD6d9 B(a+z) dzdx qn = 6q~ f
o -t/2 0 0

- Te- -e- d9 aRn • (B8)

Finally. carrying out the integration with respect to 9. and considering

the arbitrary nature of the variation &q gives

in which

Le t/2

K = f f aTDB(l+z/a)dz dx

o -t/2

is the 8 X 8 symmetric element stiffness matrix. Carrying out the

(B9)

(BI0)

integrations indicated in Eq. 10. expressing the integrals as a power

series in (t/a). and neglecting terms of the order (t/a)S and higher

gives:

Kll KSS
~ r..l.. + (1-9)

Len
2

(1+k)]
= =

1_~2 L 2
3a2

l e

K12 -KS6
~ [n(~;\»]= =
1_~2

K13 = -KS7 = Et [~ + n2k(1;~)]
2a(1-~2)

~
L

[n
2
k(¥) - ~]K14 = KS8 = _ ak + ~

1_~2 L 12ae
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Et L2
n= ~e,,--_

(l_~2) 30 a2
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L2 [1+(n2-1)2kJe

420 a2

[

2 L3[1+(n2-1)2kJ 4 L 2k]
= J.L 4 a k + ~e + ~5n

I_\)2 Le 105 a2

r
2 _L3~[l_+_(_n_2_-1_)_2_k_J _ Len

2
kj= J.L k..k_ e

I_\)2 L Le 140 a2 15 J

in which

(Bl1)

k .It:
12 2a

(B12)

Because of the large amount of algebra involved and the possibility of

errors. Eqs. Bl1 were obtained with the aid of a symbolic manipulation

computer program. and verified numerically on an example. For the

reader who wishes to use these elements and check numerical values of

the elements of the stiffness matrix. an example is provided in Table

B2.

The total strain energy in an element is o/maqTKq

rraqTKq for n = O. not simply o/~TKq. as is usually the

for n F O. and

case.



TABLE B2. Element Stiffness Matrix - Numerical Example

Properties:

Radius to mid-surface:

Length of element:

Thickness of shell:

Elastic properties:

Harmonic number:

Resulting Element Stiffness Matrix. K:

a = 360

L = 2..

t = 0.5

. 6
E = 30 X 10 • ~ = 0.3

n = 5

I
I-'

'"t-'
I

695716.32
5723.4432

-6868.1641
-27512.145
-682361.62
-74404.762
-6868.0997

27512 .145

265822.26
53"2.6256
18318.993
7"404.762

-227665.97
2288.6320

-12210.012

1"38.6122
7"48.0615
6868.0997
2288.6320
87.780661
1322.6171

7....05.101
27512.145
12210.012

-1322.6171
1S951.194

695716.32
-5723 .....32

6868.1641
-27512.145

symmetric

265822.26
53"2.6256

-18318.993
1438.6122

-7448.0615 74"05.101
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The performance of the element was checked for a semi-infinite

cylinder with loads applied at the edge x = O. For this problem the

analytical solution is given in Flugge (1960). The finite element

model was constructed by discretizing a finite length of the cylinder.

enforcing the boundary conditions for a semi-infinite cylinder (avail-

able from the analytic solution) at one end. and applying edge loads at

the other end. The numerical tests were carried out for n = 0 and

n = S. and a cylinder with aft = 720. which is typical for a tank. It

was found that the elements performed very well: Better than S~

accuracy was obtained with elements of length equal to the characteris-

tic length of the cylinder.

~ = [
close to the edge, and better than 1~ for half that element size. If

only axial force and tangential shear is applied at the edge, better

than S~ accuracy in the displacements u. v and w was obtained for an

element length of a!4. and better than 1~ accuracy for half that element

length. This indicates that in a region where bending stresses are

negligible. element lengths of af4 to a!8 can be used. If bending

stresses are important. the element length should be of the order of

(at)~.
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B2. ADDED STIFFNESS DUE TO NON-LINEAR EFFECTS

Much like the air pressure in a soap bubble tends to maintain its

spherical shape. the fluid pressure in a cylindrical storage tank tends

to maintain its round shape. This increase in the stiffness of the

shell due to the hydrostatic fluid pressure is a non-linear effect. By

established methods for the finite element solution of problems involv-

ing geometric nonlinearities (Zienkiewicz. 1977). the tangent stiffness

matrix for a shell element subjected to an internal pressure p can be

obtained. The added stiffness due to initial circumferential hoop

forces has been derived by Haroun (1980) and is given in Table B3 for

the coordinate system used here.

Another effect which can be of some importance is the pressure-

rotation effect. Since the direction of the normal to the shell surface

changes. so does the direction of the pressure load. In addition. the

area of an element on the shell changes. so the magnitude of the pres-

sure force changes. Changes in area are proportional to membrane

strains which tend to be much smaller than the rotations (expressed in

radians). Hence. the pressure rotation effect is more important than

the change in area. Here both effects are included. However. the

effect of changes in the elevation of the free surface due to deforma-

tions of the shell is not considered.
~~ ~

Let r 9 and x be orthonormal unit vectors pointing in the direction

of increasing r. 9 and x respectively (see Fig. Bl). Then. in the

deformed shell. the position vector of a point (9.x) on the midsurface

of the shell is



TABLE B3. Initial stress matrix K to be added to the element stiffness matrix K defined in Eqs.a
Bll and B12 in order to account for the circumferential stress due to a uniform internal
pressure p.

n2 Le
2 L

0 0 0 ~ 0 0 03 6

(1+n2)L 7n Le
2

U+n
2

)Le 3n Le
2

~ ~ 0 -~
3 10 10 6 10 15

13U+n2)L llU+n2)L2 3n Le 9U+n2)L 13U+n2)L~ I
I-'e e 0 e \!)- .p..35 210 10 70 420 I

U+ 2)L3 2 13(1+ 2)L2 (1+ 2)L3
K =.12

n e
0
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A- A- A-n = (a+w)r + v9 + (x+u)x (B13)

Assume that the pressure p is constant over an element. From Fig. B2 it

is seen that the force exerted by the pressure over an element d9dx of

the shell is given by

dt = p(~ d9) X (~ dx) (B14)

evaluating the cross product, and neglecting terms which are quadratic

in the displacements gives

A- A- A-
dt = (Xx+Y9+Zr)ad9dx

in which

X = _ 1! w'
a

Y = 1! (v-w.)
a

Z = p +1! (u -+w+v·)
a

where

( ) , = 1- ( ) and ( ) . = 1- ( )
ax a9

(B15)

(B16 a-c)

X, Y and Z represent the forces per unit area acting in the vertical,

tangential, and radial directions, respectively. The vertical and

tangential forces are due to the pressure-rotation effect. In the

expression for the radial force Z, the first term is due to the direct

pressure, and will be omitted since it is already present in the usual

linear formulation of the problem. The additional terms in Eq. B16c
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arise due to the change in area.

Substituting Eqs. Bl into Eqs. B16, and noting that the hydrostatic

pressure p is a function of x only and not of 9, it is seen that

(X,Y,Z) = (Xn cos n9 , Yn sin n9 , Zn cos n9) (BI7)

where

X = R w'
n a n

Yn = R (v +nw )ann

Z = P + R (u' +w +nv )
n ann n

The corresponding nodal loads are given by

~ Xn

~ Yn

N1 Zn
L L1 Zne

R = f dxn 1'\ Xn0
1'\ Yn

N2 Zn

L2 Zn

(BI8)

(BI9)

Substituting from Table Bl, Eqs. B2, and Eqs. B18 into Eqn. B19, and

performing the integration yields
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R = - K qn p n
(B20)

for the energy equivalent nodal loads for the pressure-rotation effect,

in which K is given in Table B4. K represents an added stiffness due
p p

to the pressure-rotation and the change in area of an element of the

shell. The sum of the added stiffnesses due to the initial hoop force

and due to the pressure-rotation effect is given in Table BS.

B3. DISCUSSION OF SYMMETRY

Note from Table B4 that there are two pairs of elements in Kp

which make the matrix non-symmetric. The reason for this is that the

pressure load as defined here is non-conservative. To see this,

consider the following closed cycle of deformations:

o. Start with an undeformed shell element.

1. Extend the element in the vertical, x-direction so as to

increase its length from L to L + AL. Since this involvese e e

only vertical displacements, the work done by the pressure

force during this step is

2. Expand the element in the radial direction so as to increase

its radius from a to a + Aa. The work done by the pressure

force during this step is
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3. Remove the extension in the vertical direction. so as to

reduce the length of the element back to Le • As in step 1.

only vertical displacements are involved. Thus

4. Remove the expansion in the radial direction. bringing the

element back to its original. undeformed configuration. The

work done by the pressure load during this final step is

The total work done by tpe pressure force during this closed cycle of

deformation is

AW = =

which is non-zero. This proves that the pressure force is non-

conservative. Hence. it should come as no surprise that the finite ele-

ment formulation leads to a non-symmetric matrix.

Consider now the physical problem of liquid in a tank. Since for

any configuration of the tank. the liquid has a well defined gravita-

tional potential. the hydrostatic pressure acting on the tank is a

conservative load. and for any conservative system. the tangent stiff-

ness matrix is symmetric. However. for the tank-water system to be

conservative in the mathematical formulation of the problem. it would be
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necessary to consider the effect of changes in elevation.of the free

surface due to deformations of the shell, and the effect of changes in

elevation of any point on the shell wall on the pressure at that point.

Such a formulation would lead to a symmetric stiffness matrix. Hence.

the lack of symmetry of the matrices given in Tables 4 and 5 is a result

of approximations made in their derivation.

Computationally~ non-symmetric matrices are undesirable because of

the additional computational effort and storage required. Since here

the lack of symmetry arises from neglecting an effect which is presumed

to be unimportant, it seems reasonable to make the matrix symmetric. In

an attempt to do this one might consider only the pressure-rotation

effect. and not the change in area of an element of the shell. In this

case. the 1st. 2nd. 5th and 6th rows of Kp' would remain unchanged, but

the 3rd, 4th. 7th and 8th rows would become zero. This would make the

matrix K much more non-symmetric. Thus there is a good reason top

include the effect of changes in area of an element of the shell wall.

Consider the lack of symmetry in the matrix Kp that remains when

the effect of changes in area is considered. Those elements of the

matrix K which do not have a symmetric counterpart on the other side of
p

the diagonal will be referred to as the "non-symmetric elements" of K •
P

They are Kp31 = -Kpll = Kp57 = -Kp7S = p/2. Note that they are

independent of element properties. Furthermore, if two elements

subjected to the same internal hydrostatic pressure are connected. and

their stiffness matrices are superposed in the appropriate way, the non-

symmetric elements of the matrices related to the connected node cancel.
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For a storage tank. the hydrostatic pressure varies with elevation. so

for any pair of elements the average hydrostatic pressure for the upper

element is slightly lower than for the lower element. as is shown in

Fig. B3. Hence. the non-symmetric elements of the element stiffness

matrix do not cancel completely when the global stiffness matrix is

formed. For node B of Fig. B3 the non-symmetric elements in the global

added stiffness matrix Kp are k13 = -k31 = (P2-Pl>/2. They apply to

degrees of freedom 1 and 3 shown in Fig. Bl. If the origin of these

non-symmetric terms is traced through the derivation given above. it is

seen that: The non-symmetric elements above the diagonal are due to the

vertical component of the pressure force arising from the rotation w'/a.

The non-symmetric elements below the diagonal on the other hand are due

to the increase in radial component of the pressure force arising from

changes in area associated with the vertical membrane strain u'/a.

Since strains tend to be much smaller than rotations. it is tempting to

achieve symmetry by changing the sign of the non-sYmmetric elements

below the diagonal. In the following such a modification will be

justified further.

Consider the determination of k31 directly. with reference to Fig.

B3: In the undeformed configuration of Fig. B3a. the nodal force for

degree of freedom 3 is
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Next apply a displacement A in the direction of degree of freedom

number 1. The resulting configuration is shown in Fig. B3b. together

with the pressure distribution that corresponds to the assumption that

the pressure is a constant at a given location on the shell. In this

deformed configuration. the nodal force for degree of freedom 3 is

with

However. more realistically. one might assume that the pressure at a

given elevation is a constant. Thus if a point on the shell moves vert­

ically. it may move into a region of different pressure. In this case.

the nodal force for degree of freedom 3 is obtained by applying the

pressure distribution of Fig. B3a to the elements in their deformed

configuration of Fig. B3b. Omitting terms of order A3 or higher. the

resulting energy consistent nodal force is found to be

which can be re-written in the form

with =

Thus. with the assumption that the pressure is a constant at a given

elevation. the non-symmetric element k31 changes sign. and the lack of

symmetry disappears. Similar considerations for other elements of the

global stiffness matrix lead to the conclusion that the other elements
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•are not affected by the possibility that the pressure ~t a given point

on the shell may change due to verti~al displacements at that point.

Hence. it is recommended that the added stiffness matrix be taken to be

symmetric by using the upper triangular part of the matrices given in

Tables 4 and 5.

B.4 CONCLUDING REMARKS

It must be emphasized that the added stiffness matrix derived here

is the change in the tangent stiffness matrix due to loading by the

hydrostatic fluid pressure. Additional seismic loads produce further

changes in the tangent stiffness matrix and introduce coupling between

the various Fourier harmonics (Tani et al. 1984). Ignoring these

effects is equivalent to linearizing the problem about the full. but

otherwise unloaded state. This is a good approximation only if addi-

tional loads due to the earthquake are small compared to the hydrostatic

fluid pressure. That is. the hydrodynamic pressures must be small

compared to the hydrostatic pressure. Under strong shaking. the

hydrodynamic pressures are often of the same order as the hydrostatic

pressure. Under such conditions accurate solution of the non-linear

problem would require simultaneous solution of non-linear equations at

every load or time step. Therefore. although the analysis based on the

tangent stiffness matrix derived in this appendix requires no more

effort than a fully linear analysis. the accuracy for large seismic

loads is open to question.

• Except for the term k14 • where degree of freedom 4 is the rotation,

for which the effect is of higher order in the displacements.
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APPENDIX C - RESULTS FROM THE THEORY OF DISCRETE FOURIER TRANSFORMS

The fundamental relation on which the theory of discrete Fourier

transforms is based. quoted. for example. in Brigham (1974), can be

written in the form

2¥=1 /
n'=o e

i1trn
N = 2N tor I" = ••• -2N,0,2N, •••

= 0

or, taking the real part of Eq. Cl,

2N-l
n~ cos (1trn/N) = 2N

= 0

but,

otherwise

for I" = ... -2N.O.2N•...

otherwise ;

(Cl)

(C2)

2
n

\C=-:1f=o cos (1trn/N) (C3)

where

= 1

for n = .•. -2N,-N,O.N.2N••••

otherwise (C4)

Substituting n = 2N-m. the last sum becomes
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=
N
[

m=O
Y cos[nr(2N-m)/N]m

which by periodicity and symmetry of the cosine function is seen to be

equal to the first term on the right hand side of Eq. C3. Hence Eq. C2

becomes·

N
[ yncos(nrn/N) = N
n=O

for r = ••• , -2N, 0 , 2N, •••

_. 0

Using Eq. CS it can be shown that

otherwise- (CS)

-N2 [N YnYi cos(min/N) cos(nin/N)
1=0

for m,n = 0,1,2, ••• ,N (C6)

where 5 is the Kronecker delta. Furthermore, Eq. C6 can be used tomn

show that if

and

x(9) =
N
[

n=O
x cos n9n

• A different form based on values of
9 = nr(n-l/2)/N does not involve Y
of problems this form does not lea9
physical interest at 9 = 0 and n.

the cosine function at
factors, but in the formulation
directly to quantities of
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xi
N

= x(in/N) = [ xn cos(n1n/N) (C7)
n=O

then

2y N 1x =
N

n k Y1x cos(n1n/N) (C8)n
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APPENDIX D - STIFFNESS MATRIX FOR A RING ELEMENT

From Lee and Nash (1982), the elements of the 4 X 4 stiffness

matrix for a ring stiffener, \'JJlich is compatible with the element stiff-

ness matrices of Appendix Bare

rn: -~J 2
K14 = EIz + GI t

~

la3 a4 • a4
L 0 0 J 0

2
K22 = EA D-

a2

K23
EA ___n_ [1 + n

2
e]

a a a
0

EA
[1 2f EI

(1_n2)2K33 = +~ +-Z
2 a a4a
0 0

EIz [1 + ~j2 + G~t[na]
2

K44 = (D1 a-f)2a a ao
0 0

a = radius to midsurface of shell, as in Appendix B

a = radius to centroid of ring stiffenero

e = a -a = radial eccentricity (vertical eccentricity must be zero)o

A = cross sectional area of the ring stiffener

I second moment of area for the cross section of the ring about thex

vertical axis
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I = second moment of area for the cross section of the ring aboutz

the horizontal axis

It = torsional constant for the ring cross section

E = Young's modulus for the ring

G = Shear modulus for the ring

n = Fourier harmonic number (as in Appendix B)

The elements of the 4 X 4 stiffness matrix for the ring not stated

in Eqs. D1 are either determined from symmetry. or are zero.

Lee and Nash (1982) also included the effects of prestress in the

ring. As a result. they also need to consider the reduction of pre-

stress in the shell due to the presence of the ring. This requires the

axisymmetric problem to be solved before stiffness matrices for

asymmetric loads can be formed. However. in the author's jUdgment. the

stiffening effect due to prestress is approximately the same no matter

whether the hydrostatic internal pressure is carried as a prestress in a

ring stiffener or in the shell. Hence. assuming that all the internal

hydrostatic pressure is carried as a prestress in the shell is expected

to be a good approximation. This is the assumption which was made in

Appendix B wherein the membrane theory was used to calculate the pre-

stress in the shell. Thus. using the ring element without prestress

along with the formulation for the shell in Appendix B accounts for all

of the prestress.
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APPENDIX E

In this appendix expressions for the internal fluid pressure acting

on the shell wall during a tilt test are given, and expressed as a

Fourier series. The definitions of Section 3.1 are used here without

restating them. Also, let the location of the surface at zero tilt be

at x = xs ' and d = Xs - x be the depth under the surface at zero tilt.

Then the pressure distribution around the circumference for any given x

can be written in the form

p =
m

[ Pn cos n9
n~

(E1)

in which three different expressions for the Fourier coefficients p
n

apply depending on whether the circumference is fully wetted, partially

wetted, or not wetted.

For x < x - a tan a, the circumference is fully wetted, ands

=

=

= o n l 2 (E2 a-c)

in which Yf is the unit weight of the fluid.

For Xs - a tan a < X < Xs + a tan a, the circumference is partially

wetted. The end of the wetted portion occurs at 9 = ±9
0

in which
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cos 9 = d/(a tan a)o

The coefficients for a Fourier series which is valid on the entire

circumference are

(E3)

Yf [ a(n-9o ) + a sin a sin 90]Po = -;- d cos

PI
2Yf

[-d a sin 90 + a sin
[Sin 290 n-9o

11= cos a - 2n 4 .

2Yf
r-d

sin n90 rSin(n+l)~o +Sinfn-l' 901
1Pn = cos Q. + a sin a

n L n l 2(n+U 2(n-1 J

for n L 2 (E3)

Finally. for x L Xs + a tan a. the circumference is entirely above the

fluid. and

= 0 for all n (E4)

In order to obtain the nodal load vector for an element. it is necessary

to multiply the Fourier coe~ficients p by the appropriate interpolation
n

functions (given in Appendix B) and to integrate vertically. When the

inside of the element is fully wetted. this integration can be performed

analytically. Otherwise. numerical integration must be used.
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APPENDIX F - STRESS-STRAIN RELATION FOR THE BASE PLATE

In this appendix the stress-strain relation for an elastic-

perfectly plastic material with a Von Mises yield envelope in plane

stress is adapted for use in the non-axisYmmetric analysis of the base

plate of Chapter 5. The assumption that during each loadstep, yielding

occurs at a constant stress equal to the stress at the end of the

loadstep is adopted. It is shown that this gives rise to what is

generally known as the method of radial return, or elastic predictor,

radial corrector method.

As in Eqs. 5.9 the stresses and strains are arranged into vectors

=

and

(Fl)

respectively. The vertical strain 8 is also nonzero, but need notz

(F2)

enter in the derivation. Rather than using the results for six

components of stress and strain, and specializing them for plane stress

conditions, it is much more convenient to derive the results directly

for plane stress conditions. For this purpose note that if Drucker's

postulate is valid for any closed stress path it is, in particular, .

valid for any closed stress path for which a = a = ae = O. Itz rz z

follows that the flow rule for plane stress conditions can be written as
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= aF dA.aa (F3)

in which the partial differentiation with respect to the stress vector

denotes the gradient with respect to the stress components, apt are the

plastic strains, and

F(a) with A

-1

2 :1
I

6J
(F4)

is the yield function, which vanishes on the yield surface, and a isy

the uniaxial yield stress. The elastic stress strain relation can be

written as

a =

where

are the elastic strains, and

(FS)

(F6)

D
[

1 ~

~ 1. .
(F7)

Using Eqs. F3, FS, F6, and the consistency condition,

dF = (F8)

one obtains
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(F9)

The expression in square brackets is the tangent material matrix. To

evaluate it as a function of the stresses. note from Eq. F4 that

H = Aaaa (FlO)

The tangent material matrix enables the increment in stress due to

an infinitesimal strain increment to be determined. However. in the

analysis of the base plate. the strain increment from one loadstep to

the next 1s finite. rather than infinitesimal; this requires additional

attention.

Henceforth. let a and & denote the stresses at the end of the

loadstep and let ao and 8
0

be the stresses and strains at the beginning

of the loadstep. The problem at hand is to determine a given 8. 8 ando

Go. In general. a depends on the path from &0 to 8 in the three dimen­

sional strain space. It is therefore necessary to make an assumption

which will define this strain path. Perhaps the most natural assump-

tion. and the one that is generally preferred (Krieg and Krieg. 1977;

Schreyer. Kulak and Kramer. 1979). is the assumption that the total

strain path is a straight line from one loadstep to the next. If this

assumption is adopted. a set of ordinary differential equations can be

defined for the stress path and the stress a at the end of the loadstep.

For plane stress conditions. this set of ordinary differential equations

needs to be solved numerically.
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An alternative assumption, which turns out to be more convenient

mathematically, is that the plas"tic strain path is a straight line from

one loadstep to the next. This means that yielding must occur at

constant stress. In addition, to define the stress and strain paths, it

is assumed that the constant stress during the yielding process is the

stress at the end of the loadstep, a. As a result, the plastic strain

increment for the loadstep can be written as

The stress at the end of the loadstep is

(Fll)

a (F12)

which, after substitution from Eq. Fll becomes

•a = a - A DAa

where

(F13)

•a (F14)

is sometimes referred to as the elastic predictor stress. From Eq. F13.

a can be expressed as a function of the unknown parameter A as follows

a = (F15)

which when substituted into Eq. F4, and enforci~g the yield conditi~n.

F = 0, gives an equation in which the only unknown is A. To solve this

equation by Newton iteration. note from Eq. F15· that
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da = -(I+A DA)-l DAa
dA (F16)

and, using the chain rule, the derivative required in the Newton-Raphson

iteration can be expressed as

which, on substitution from Eqs. FlO and F16, becomes

dF T -1-- = -(Aa) (I+ADA) DAadA

(F17)

(FiS)

The numerical procedure for finding the plastic strains at each loadstep

is

1. • •Calculate a from Eq. F14, and F(a ) from Eq. F4.

* •2. If F(a ) ~ 0, no yield occurs during the loadstep, and a = a •

If F(a*) > 0, continue the procedure, starting with aO

A = 0, i = O.o

•= a ,

3. Compute ~i from Eq. F1S, with a = ai' and obtain an improved

estimate of A from

A = ~ _ F(_1+1)/ dF
i+l Ai v dA

4. Calculate ai +1 from Eq. F1S with A = Ai +1 , and compute

F(ai+i) •

S. Repeat steps 3 to 4, incrementing i, each time, until
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This assures that the distance from the yield surface is no

more than 8 times the yield stress. The value used for 8 is

-40.5 X 10 •

The method presented here is generally known as the radial return

method. which according to Schreyer et ale (1979) originated from

Mendelson (1968). It has been found to give results that are in reason-

ably good agreement with those from the assumption that the total strain.

path is a straight line. no matter how large the loadstep.
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