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ABSTRAcr

This thesis develops and demonstrates a simple strain-space consti­

tutive model for yet clays. It has been seen that a strain-space formu­

lation of the constitutive behavior of engineering material s facH itates

the solution of boundary value problems involving these materials.

Soil. because of its multi-phase granular constitution poses challenging

problems in constitutive modeling. Although several stress-space

plasticity models exist for soils. they are not used commonly in

engineering practice due to their complexity. It is attempted herein to

develop and test a simple model which could result in simplified solu­

tions for some soil probl ems.

The model is based on the experimentally observed physical behavior

of soil. Certain approaches alien to conventional plasticity- are

employed so that the material behavior is closely predicted without sac­

rificing the simplicity of the model.

The model is initially developed for triaxial load systems. Its

predictions are then tested against other model predictions and experi­

mental data. The model is then generalized. The generalization renders

the model capable of handling general stress-strain states and finite

deformations.

Finally. the general ized model is used to solve an ideal ization of

a practical problem. The problem of a pile driven into a soil medium is

idealized as an expanding cavity in a homogeneous infinite medium. The
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solution predicted by the strain-space model is compared with other

model predictions and test results.
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CRAPI'ER I

INTRODUcrION

1.1 MOTIVATION

The term engineering is defined in Webster's dictionary as "the

application of science and mathematics by which the properties of matter

and sources of energy in nature are made useful to man in structures.

machines. products. systems and processes." One of the properties of

matter. specifically that of solids. that is of great relevance to this

study is its constitutive behavior. In designing and constructing engi­

neering systems it is necessary to understand their mechanical behavior.

In order to understand mechanical behavior. it is necessary to know the

local and global relationships between forces and displacements. From

past work in engineering mechanics it has been established that it is

more appropriate to relate stresses and strains for solids rather than

forces and displacements. The stress-strain relationships define the

consti tutive behavior of the sol id.

The purpose of developing constitutive equations for engineering

materials is to aid the study of the mechanical behavior of systems made

up of these materials. Therefore. before developing the constitutive

models it is useful to understand their role in such studies., In order

to achieve such an understanding it is helpful to consider the common

equations governing the mechanical behavior of solids.
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The equation describing the evolution of the deformation of a solid

may be written as

where,

= p (1.1)

is the coordinate vector of an element of the solid in the

reference state,

Y is the coordinate vector of an element of solid in any

general deformed state,

~(~.t) is the Cauchy stress tensor corresponding to a particle at

h is the body force per unit volume acting on the particle,

p is the local density of the element in the deformed state,

» is the displacement vector describing the relative dis-

placement of the particle from its reference position. and

t is time.

Equation (1.1) must be solved along with a set of initial and/or

boundary conditions which may be expressed in the form

= (1.2)

In order to solve equation (1.1). it is necessary to know the rela-

tionship between ~ and~. As mentioned previously, it is known that ~

can be related to the strain tensor ~ more readily than to~. The



strain tensor ~ is then related to », by the strain displacement equa-

tions

(1.3)

It is clear at this stage that the constitutive equation can be in

one of the following forms:

( 1.4)

or,

(1.5 )

where M£ and MG are vectors which may contain memory variables. If

equation (1.4) is used to relate the stress and strain tensors, £ can be

obtained as a function of » as follows:

=

However, if the relationship is expressed by equation (l.S), then

to express £ as a function of i or » as a function of ~, an inversion is

necessary. That is,

or,

= and =

=
-1

.G. (p) and =
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Both the constitutive equation (l.S) and the strain displacement equa­

tion (1.3) are very complex for general cases and hence make inversion

very difficult if not impossible. There are mauy cases for which an

analytic inversion is not possible, and it is therefore necessary to

resort to numerical inversion.

From the outline presented hereto, it is evident that the

constitutive equations formulated in the

(1.4) are preferable in comparison to their

form described by equation

alternative described by

equation (1.5). The constitutive equations given by equation (1.4) are

termed strain-space constitutive equations since the independent vari­

able is strain. Similarly. eqnations of the form given by equation

(l.S) are termed stress-space constitutive equations. Traditionally,

constitutive equations modeling soil plasticity are in stress-space,

which makes the solution process complicated. For this reason, it is

attempted herein to develop a strain-space constitutive model for clays.

1.2 PAST WORK

1.2.1 Strain-Space Plasticity

~anyof the recent advances in strain-space plasticity can be

traced to work done by Naghdi. Trapp and Casey on the one hand and Iwan

and Yoder on the other. Naghdi and Trapp (1975) described the

significance of a strain-space plasticity theory and proposed a model in

strain-space. Snbsequently Casey and Naghdi (1981) developed this

concept. Also Yoder (1981) and Yoder and Iwan (1981) developed a
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strain-space plasticity model exploiting the similarities between the

stress-space and the strain-space formulations. Although the work done

by the two groups show some minor differences. the basic concepts behind

the models are similar. In a recent paper. Mroz and Norris (1982) have

also looked into the strain-space formulations of plasticity.

Some of the advantages found to arise from the strain-space formu­

lation are:

1) In the case of the stress-space formulation of strain soften-

ing materials. the loading conditions must be defined

separately for the stable and the unstable regions. whereas in

the strain-space formulation

sufficient. Although strain

a single loading condition is

softening produces unstable

behavior, such instabilities are only local. In some recent

work done by Abeyaratne and Knowles in nonlinear elasticity,

it has been shown that global stability can be obtained even

while local instabilities exist. Hence the unstable case is

certainly one of interest.

2) In the case of multiple yield surface models in stress-space

plasticity, the surfaces are not allowed to intersect.

Intersection is excluded based on the argument that such

intersections destroy the uniqueness of the solution. But it

can be shown (Yoder, 1981) that the lack of uniqueness arises

purely because the formulation is performed in stress-space.
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In the strain-space formulation, unique solutions may be

obtained for intersecting yield surfaces.

1.2.2 Soil Plasticity

Soils must be modeled as distinctively different from metals.

The reason for such treatment stems from the following observations made

on soils.

i) Volume preserving deformations produce hydrostatic stresses.

ii) Pure volume changes produce shear stresses.

iii) There is plastic behavior under both shear and isotropic

loadings.

iv) No significant elastic region is observed.

Plasticity theory was basically developed for metals. The mechan­

ics of soil was carried out as an art until about 1925. Terzaghi, based

on his knowledge of the heat flow theory and the experience he obtained

from cousolidation tests on clay. published the mathematical theory of

consolidation (Terzaghi, 1923). This is considered by many as a land­

mark in soil mechanics (Glossop, 1968). From 1925 onwards, simple

problems in soils were solved using simple solid mechanics. The solu-

tions were often borrowed from elasticity theory.

Based on the experiments performed at Cambridge University, Roscoe,

Schofield and Wroth (1958) published their findings on the existence of

a critical void ratio. From these findings and the subsequent work done

by Roscoe. Schofield, Wroth. Poorooshasb and Thurairajah ( Roscoe. et
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a1.. 1958. 1963a. 1963b) • Roscoe~ et a1. (1968) published an elasto­

plastic constitutive model for soils. Also in this paper. the Cambridge

consti tutive model was presented within the conventional framework of

plasticity.

There are other models used to predict soil behavior. These

evolved basically from metal plasticity ideas. Dalalias (1976).

Dalalias and Herrmann (1980. 1982) developed a model based on the

concept of a bounding surface. whil e Prevost (1978) adapted a metal

plasticity model to soils. However. all the models used to describe

soil behavior are formulated in the stress-space.

De spi te all these constitutive models availabl e for soil probl ems.

most practicing engineers still use linear elastic solutions. the reason

being attributed to the complexity

constitutive models.

of the more sophistica ted

1 .3 OUTLINE OF PRESENr WORK

The main purpose of this work is to develop a constitutive model

for wet clays which is simple enoup to be used by practicins engineers.

For this purpose. the physical behavior of clay is studied from past

experimental observations. The Cambridge elliptic yield surface model

is considered as a auideline for two reasons. First. the model has a

minimum n'Ulllber of constants and secondly the model is developed based on

experimental observations of soil behavior. In Chapter II the elliptic

yield surface model is briefly outlined. From the fundamental concepts
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used in the development of the elliptic model, certain deductions of the

soil behavior are made in strain-space.

Using the strain-space implications of

coustitutive model is developed in Chapter III.

soil behavior a simple

The model is limited at

this stage to triaxial stress-strain systems. The model is developed

starting from a simple undrained monotonic loading situation. It is

progressively generalized to handle all triaxial loadings including load

reversals. The model is developed through these stages without losing

its simplicity.

The axisymmetric model thus developed is applied to some triaxial

tests with and without load reversals. The model predictions are

presented in Chapter IV and are compared there with the predictions of

the elliptic yield surface model and some experimental data.

Having established the validity of the axisymmetric model, it is

then extended to general three-dimensional stress-strain states with

finite deformations. The stress and strain tensors are defined formally

for general admissible motiODS. The question of the existence and

problem of an expanding

The solution of the strain-

coincidence of the principal frames of the stress and strain tensors is

also addressed in detail in Chapter V.

The generalized model is applied to the

cylindrical cavity in an infinite medium.

space model is compared with other predictions and some experimental

results obtained from pile tests. The strain-space prediction is also
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compared with the linear elastic solution for small deformations. These

results and comparisons are presented in Chapter VI.

Finally. certain conclusions regarding the strain-space model are

summarized in Chapter VII.
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CHAPI'ER II

SOME FUNDAlmNTAL CONSIDERATIONS IN SOIL lI>DELING

2.1 INTRODUCTION

Several constitutive models have been developed to study the

Prevost 1978),

They include

Burland 1965,

Pender 1978).

Berrmann

behavior of soils in the past two to three decades.

(i) single yield surface models (Roscoe, et al., 1958,

1967, DiMaggio and Sandler 1971, Lade 1975, 1977.

(ii) multiple yield surface models (Mroz 1982,

(iii) bounding surface models CDafalias and

(iv) endochronic models (Valanis and Read 1982), and (v) other

1980) ,

models

(Davis and Mullenger 1978). Of these models, the single yield surface

models developed by Roscoe, et al., and Burland based on critical state

theory have the least number of model parameters. These models are

chosen to be reviewed in this section. Based on the fundamental

concepts used in these models, a constitutive model will be developed

using strains instead of stresses as the independent variables. These

models. thus chosen as guides~ will require only a few parameters for

the strain-space formulation. Since such a strain-space formulation is

new, having fewer model parameters enhances the understanding of the

f ormul ation.

In section 2.2 soil models developed using the critical state

concept are reviewed. The development of these models in stress-space

is briefly outlined. The purpose of this section is to study the basic

concepts used in these stress-space constitutive models so as to develop
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the foundation for strain-space constitutive modeling of soils. Section

2.3 lays out the implications of these concepts in strain-space. Some

basic equations and properties necessary for the development of the

strain-space model are deduced in this section.

2.2 REVIEW OF MODELS BASED ON CRITICAL STATE CONCEPT

2.2.1 Background

The critical state concept was developed at Cambridge University

during the late 1950's. Roscoe. Schofield and Wroth (1958) postulated

the existence of a critical voids ratio line and verified this postulate

by means of test results on Weald clay. They also found confirmation

for their concepts in tests performed on silt and sand. Although the

critical state concept and its experimental confirmation were debated at

the time it was proposed. the concept is now well accepted as being

capable of predicting the behavior of clay. Subsequent tests on Kaolin

and London clay further reinforced the validity of the critical state

concept.

Based on the critical state concept and few other basic concepts on

soils. Roscoe. Schofield and Thurairajah developed a constitutive model

(Roscoe. et a1 •• 1963). One of the basic assumptions used to determine

the shape of the yield surface was based on incremental dissipative

energy. Roscoe. et al •• assumed that the incremental energy dissipated

per unit volume of soil during a general incremental load would be the

same as the incremental dissipative shear energy at a corresponding
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critical state. This assumption is explained in greater detail in

section 2.2.4. The model so developed was subsequently termed the Cam­

Clay model and will be thus referred herein.

The Cam-Clay model enabled the solution of simple boundary value

problems of soils. However, the non-uniqueness of the normal to the

yield surface at the hydrostatic axis led to considerable controversy.

Subsequently, Roscoe and Burland (1968) suggested & different form

for the incremental dissipative energy. He assumed that the incremental

dissipative energy during a general incremental deformation is same as

the square root of the sum of squares of the incremental dissipative

energy considered in the Cam-Clay model and the incremental dissipative

energy due to purely isotropic deformation. This assumption is further

explained in section 2.2.4. The yield surface thus deduced was of

elliptic shape and this model will hereto be referred to as the elliptic

yield surface model.

The elliptic yield surface model has a unique normal everywhere in

the axisymmetric stress-space. It also predicts triaxial results more

closely than the Cam-Clay model. But there are several possible assump­

tions that can be made about the incremental dissipative energy. Each

of these assumptions would lead to a different yield surface. Only by

checking with experimental observations can it be determined which of

these are more suited for soils.
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2.2.2 Definition of Basic Variables

In this section the basic stress and strain variables are

defined. UsinB a series of simplifying assumptions described below. the

number of such basic variables is reduced from twelve to four. These

simplifying assumptions are based on the stress and strain states

encountered during common triaxial soil tests. and some postulates on

the form of constitutive equations.

Since most tests are done under triaxial load-deformation condi-

tions. it is first assumed that the stress and strain tensors correspond

to triaxial states of stress and deformation. Both the Cam-Clay and

elliptic yield surface models were developed initially for this simple

case. However. the constitutive equations are then generalized to

relate a general stress state to a general strain state.

The second assumption is that there exist principal frames for the

stress and strain tensors. and that these frames coincide. The

existence can be proved for stress and strain tensors defined to be

symmetric. The coincidence assumption is motivated by the conventional

constitutive laws. In metal plasticity the components of the incremen-

tal plastic strain tensor are defined to be proportional to the gradient

of a scalar valued function with respect to the corresponding components

of the stress tensor. This can be stated as

pde.. cc
IJ

(2.1)
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where d8~. and a .. are the components of the incremental plastic strain
1J 1J

tensor and the stress tensor, respectively, in anyone given frame. The

scalar function g, defined as the plastic potential function mayor may

not coincide with the scalar function f which specifies the yield

surface. However, it is common in plasticity to define the function g

as a function of the stress invariants rather than a function of the

components of the stress tensor in a particular frame.

written as

This can be

g = (2.2)

where Il(~)' I2(~) and 13(~) are the three invariants of the stress ten­

sor. It can be shown th&t if the frame is chosen to be the principal

frame of the stress tensor, then, the components of the plastic incre---

mental strain tensor in that frame would form a diagonal matrix. This

observation motivates the assumption that the principal frames of the

stress and strain tensors coincide.

Finally, it is assumed that one of the principal axes coincides

with the axis of symmetry.

Under these assumptions, the components of the stress tensor in the

principal frame e' can be written as

=

o 0

o (2.3)
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Let ,2' I coincide with the axis of symmetry. Then. (JU = (Jur As in

all soil theories. the compressive stresse s are taken to be podtive.

Since soils are three-phase media with sand grains and pore fluid.

the stress at aUf region of the material is induced by

i) the stress on the solid lattice. and

ii) the pore fluid pressure.

This observation motivates a decomposition of the stress tensor. The

total stress tensor is decomposed into an 'effective stress tensor' and

a pore pressure as

(2.4)

where total stress tensor

more

therelating

behaviorstress to soil deformation predict soil

~' effective stress tensor (stress on solids)

Pf pore fluid pressure.

It has been verified that constitutive equations

effective

accurately than those using the total stress. Hence. only the effective

stresses will be used herein.

Let the first invariant of the effective stress tensor be termed

the effective pressure and be denoted by p. Then

p = (2.5)

Let a measure of shear stress be denoted by q and def iud as
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(2.6)

Any sym=etric stress state with one of the principal axes coinciding

with the axis of symmetry can thus be completely described by the vari-

abIes p and q. The two-dimensional space defined by the variables p and

q will be referred to as the 'Cambridge stress space.'

By the assumptions made in this section, it is implied that the

strain tensor is also axisymmetric and ~'I coincides with the axis of

symmetry. This results in the principal components of the strain tensor

being given by

where

=

=

o 0

o (2.7)

Let the incremental volumetric and shear strains be denoted by &v

and 6e. These variables are defined in terms of the incremental

principal components of ~ as

; oe (2.8)

The sign convention used for strains is such that the compressive

strains are taken to be positive.
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The void ratio e is defined as the ratio of the volume of voids in

the soil to the volume of solid particles in the soil. Further, the

solid soil particles are assumed to be incompressible. If V and 5V

denote the total volume of soil and its corresponding increment, then

v = V (1 + e)
s

where V is the volume of the solid components.
s

equation (2.9) and the definition of bV that

(2.9)

It follows from

bV =
_ oV

V = 5e---l+e
(2.10)

The ratio of effective shear stress to effective pressure is customarily

denoted by 11

= q/p (2.11)

The incremental strain variables ov and 08 are assumed to linearly

decompose into recoverable and plastic components according to the form

=
(2.12)

2.2.3 Fundamental Physical Concepts

The Cam-Clay model and the elliptic yield surface model are

developed based upon four fundamental physical concepts related to

soils.



- 18 -

i) Normal consolidation and elastic swelling.

ii) The critical state concept.

iii) The boundary surface concept.

iv) Zero elastic shear strains.

i) The behavior of soils during isotropic consolidation is as

shown in Figure (2.1a). The plastic compressive loading is termed as

'normal consolidation' and will be referred to by that phrase herein.

When the material is allowed to expand or swell. the path it takes is

referred to as 'elastic swelling.' The word elastic is used because the

forward and reverse paths are very close together and hence can be

treated as one.

Terzaghi observed that both the normal consolidation and the swel-

ling lines can be well modeled by logarithmic relationships. He

proposed that for normal consolidation.

" "e = e - ~ log (pip )r e r

and for el astic swell ing

(2.13)

e = (2.14)

The hat and the suffix r denote the values of the corresponding vari-

abIes along the normal consolidation line and at reference state.

respectively. This idealized relationship is shown in Figure (2.1b).

ii) The critical state concept proposed by Roscoe, Schofield and

Wroth was motivated by the following observations:
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a) Soil is a granular medium exhibiting sticking and tearing at

the solid-solid contacts. Thus. its behavior would resemble that of a

friction material. This would ~ean that when the effective shear stress

to effective pressure ratio. ~. reaches a particular value the material

would undergo internal slipping. Such internal slipping will produce an

overall flow behavior. This state where the soil sample continuously

deforms as a frictional material while p, q and e remain constant is

defined as the critical state. This implies that at critical state

q = M p (2.15)

where M. the critical state constant. is analogous to the frictional

constant.

b) All soils are three-phase mixtures of solid and pore fluid. As

the void ratio increases. the ratio of pore fluid to solids increases as

well. At large void ratios it is thus possible for the mixture to

behave more like a fluid. It was postulated by Roscoe. et al. (1958)

that there exists a finite value of void ratio. depending upon the pres-

sure, at which the material begins to flow as a frictional fluid. From

experiments performed on Weald clay. London clay and Kaolin at Cambridge

University. it was found that the relationship between the critical void

ratio and critical pressure can besiven by

e = e -). log (p /p )
c rc e c rc

(2.16)
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where the suffices c and rc indicate the values of the corresponding

variables at the critical state and at a reference critical state.

respectively.

It should be noted here that the projection of the critical state

line on the 10geP-e plane is parallel to the normal consolidation line.

Figures (2.2a) and (2.2b) show the projections of the critical state

line on the p-q and log p-e planes. respectively.
e

iii) Roscoe. et a1. (1958). motivated by Hvorslev's (1937) work on

shear stress at failure. plotted in p. q. e space. all the states

reached by normally consolidated saturated remoulded clay under a very

broad range of loading. They found a limiting surface within which lay

all these states. This surface was hence termed the 'state boundary

surface.' All states plotted lay either on or within the state boundary

surface. Thus. this surface defines the limit of the states that can be

realized by the clay. A portion of this surface is shown in Figure

(2.3). The intersection of this limiting surface with the p-e plane

satisfies Terzaghi's equation (2.13).

iv) Finally. it is assumed in both the Cam-Clay and elliptic

yield surface models that there are no recoverable shear strains.

However. the models assume that recoverable shear stresses exist. These

assumptions imply that the material is rigid-plastic in shear. Roscoe

and Burland (1968) propose a method of predicting plastic shear strains

for load paths within the yield surface. thereby producing plastic shear
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strains for shear stresses less than the corresponding yield value. But

this method does not follow directly £rom the ~od&l, and is rather

involved.

2.2.4 The Development of Stress-Space Constitutive Equations

From Terzaghi's equations (2.13) and (2.14) and void ratio-

volumetric strain equation (2.10), the re~erable and plastic incr~en-

tal volumetric strains can be given as

6vr
= ,Lh

l+e p

A.

and, &"P =
'J..-/< fu! (2.17)
1+e A.

P

The ratio of incremental plastic volumetric strain to incremental

plastic shear strain is denoted by the variable ,. From the assumption

of zero recoverabl e shear strain and the dief ini tion of , it follows

that,

&sr = 0

,.,
and, oeP :: 1. ~Q1! (2.18)t 1+e ,..

p

The yield surface, described by the scalar function f. is dependent

A
on p, q and p.

concept. Hence, f can be written as



- 2S -

A
f = f(p,q,p)

Consistency implies that.

(2.19)

6f
af af af A= - 6p + - 6q + - 6p =ap aq Aap

o (2.20)

Assuming associative flow

(2.21)

From the definition of the variables' and ~ and equations (2.20) and

(2.21) it follows that

A

~ = .Q.Q + -fuL.
A P If + ~
p

(2.22)

Since' denotes. by the associative flow rule. the slope of the

yield surface, the determination of , determines the yield function f.

Both the Cam-Clay model and the elliptic yield surface model assume that

, is a function of~. The functional form of , is determined in both

models from energy arguments. This derivation will be briefly outlined

below. first for the Cam-Clay model and then for the elliptic yield

surface model.

During the incremental deformation of a soil continuum, the energy

transferred to a unit volume of the soil lattice by the forces acting on

the continuum can be given by
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(2.23)

For a triaxial load deformation syste., equation (2.23) can be re-

written in terms of the components in the principal frame as

&E' =
, ,

aI&'I + 2aII&'II (2.24)

In terms of the variables used herein, &E' can be expressed as

&E' = p&v + q&, (2.25)

Further. the incremental energy &E' is decomposed into recoverable

and dissipated incremental energies. denoted by &U and &W. respectively.

&E' = &U + &W

The recoverable energy can be given by

(2.26)

&U =
r r

p&v + cP' (2.27)

and the dissipated incre.ental energy by

(2.28)

Bot4 the Cam-Clay and elliptic yield surface models assume certain

properties of &W and use them to derive the function ,.

The Cam-CI ay model assumes that the incre.ental di ssipa tive energy

for a general incre.ent is the same as the total shear energy

transferred at the critical state having the same shear stress. This

assumption leads to
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oW = M P 08

Equation (2.29) results in a , given by

, = M-l1

which in turn corresponds to a yield surface described by

A A
q - Mp log (pip) = f(p.q.p) = 0

e

(2.29)

(2.30)

(2.31)

Roscoe and Burland (1968) proposed that the incremental dissipative

energy during a general incremental load can be given by the square root

of the sum of squares of the incremental energy at the critical state

used in Cam-Clay theory and the incremental dissipative energy due to

the isotropic deformation. This assumption led to

6W = (2.32)

Equa ti on (2 .32) resul ts in a , and corresponding yield surface given by.

, = Ml-n 2
(2.33)

211

rp2 + 2 rp;
A

q - = f(p.q,p) = 0 (2.34)

This elliptic yield surface model resulted in prediction that fit-

ted the triaxial experimental results better than the Cam-Clay model.

Of the two critical state models. the elliptic model is used more

commonly. The model equations for the elliptic yield surface model are

summarized in the next section. It is the elliptic yield surface model

that will be used for comparisons hereafter. The yield surfaces for the
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CaJIl-Clay and elliptic yield suface models are shown in Figure (2.4a)

and (2.4b), respectively.

It is worthwhile noting a t this point that the itltersection of tho

yield surface and the critical state line in the p-q plane takes place

A
for values of pip equal to 2 and expel) for the elliptic yio1d surface

model and the Cam-Clay model, respectively.

2.2.5 SummarY of the Constitutive Equations for the Elliptic Yield
Surface Model

the yield suface is siven by

A
f(p,q,p) i 0 always.

A
a.) If f{p,q,p) < 0 Then, elastic loaditlg, and

&v ..

08 .. 0

A
b. ) If! (1', q, p) = () and

U l)p + .u &q < ()
Bp Bq

(2.35a)

then, unloading and &v and &8 are the same as in

a).

1\
c.) If f(p,q,p) = 0 and

(2.351»
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iH of- op + - 5q :: 0ap oq

then. neutral loadiJs.g and Bv and &2 are the same as in

al. (2.35c)

"-
d. ) If f(p, q,p) :: 0 and

liS + t; Sq ) 0 •op p

then

-l!:- !u1.
l+e p

= (2.3Sd)

2.3 S'I'RAIN-SPACE IMPLICA'Il()NS OF CIU'IICAL SiATE MOJW.LS

2.3.1 Isotropic Behavior

The iSQtrQpi~ behavior of soils is given by Terzaghi's equations

(2.13) and (2.14). Since the equations only relate the void ratio and

tbe pressure, they can easily be inverted to give

"e - e
" = -_..!'~-9 Pr up A
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r (0 - 0 )
1_ r +

Pr oxp L I< (
1 l)A 1- - - (o-e ) 1I< A. r J

(2.36)

Equation (2.36) expresses the pressure for both normally consolidated

and overconsolidated states in terms of the current void ratio, e, the
A

void ratio at normal consolidation e and the reference values p ,e •
r r

2.3.2 Critical State Behavior

The stress-space model uses stresses as its independent variables

along with some variables that act as memory variables in order to

produce plastic behavior. The elliptic yield surface model uses p, q

A
and p as the independent variables. At critical state, this set fails

to determine the dependent variable epsilon, uniquely. At this point,
A

p, q and p are fixed at their critical state value and 8 changes

indef initely whi! e e is fixed.

If the strains are considered as the independent variables instead
A

of the stresses, e and 8 along with a memory variabl e e become the

A
independent variables. Hence, p and q will be defined by e,8 and e.

Such a specification defines the aaterial deformation and stresses

completely through each stage of a critical state. This is aade possi­
A

ble because p and q are uniquely defined by e and e at critical state

and 8 varies independently. For this reason, a strain-space formulation

specifies critical state completely. Fisure (2.5) illustrates the arsu-

ment presented above in both the p-q and e-8 pl ane s.
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The critical state is identified in stress-space. as the state in

which the value of q/p. denoted by '1\. reaches the value of the critical

state constant M. However. it is possible to identify or define the

critical state based upon the value of the void ratio. Indeed. in the

original paper in which the critical state concept is introduced

(Roscoe. et al •• 1958). the emphasis is on the critical void ratio. In

strain-space. therefore. the critical state could well be defined by a

cri tical void ratio. denoted bye.. c

It is ev ide nt f rOlll the critical state concept that e will bec
A

ei ther a constant or may depend upon the memory variable e. From the

projection of the critical state line on the p-e plane it is clear that

A
e is not a constant. Hence e must be taken to be a function of e.c c

This implies that the void ratio at which critical state is reached

changes if and only if there are plastic deformations.

It was noted in section 2.2.4 that for the elliptic yield surface
A

model the ratio pIp is 2. Due to the logarithmic relationship betweenc

p and e for elastic swelling and due to the fact that elastic loadings

do not change e • it is clearly seen thatc

A
e • e + ~ log 2c e (2.37>

The projection of the critical state line on the logep-e plane along

with the normal consolidation line and elastic swelling line are shown

in Figure (2.6).
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Having established the basic framework. it is now possible to

express the stress variables at critical state in terms of the strain

variable. The pressure at critical state can be expressed simply by

restating equation (2.16) as

=
e -erc c

Pre exp A (2.38)

Once the pressure is determined. the shear follows trivially from the

second critical state condition that ~ = M. This results in

(2.39)

It should be noted here that any strain-space formulation should satisfy

this condition by reaching q = M P without a jump as e reaches

2.3.3 General Behavior

e •
c

Having explored the implications of the critical state model in

strain-space for some special cases. it is now appropriate to generalize

these implications for a more general loading. In the stress-space

model. after defining the isotropic relation given by equation (2.14).

the behavior is generalized by assuming that. for loadings with non-zero

shear stress increment. the relationship between p and e would still be

independent of both the instantaneous and incremental shear stresses.

This concept is referred to as the 'elasiic vall concept.'

Figure (2.7) illustrates this concept. The elastic wall concept

implies that all elastic states lie on a surface whose projection on the

p-e plane is given by CD. These surfaces are termed elastic walls.
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A
Any plastic loading changes the value of e. Hence. there is a

A
family of elastic walls. each corresponding to a particular value of e.

It can thus be deduced that

p =
A

p(e,e) (2.40)

Equation (2.36) can therefore be used to determine the values of p due

A
to any general loading. The role of e. the minimum void ratio reached

by the sample during the particular loading. is to account for memory.

2.3.4 Loading Surface in Strain-Space

Two implications of the stress-space models enable a very simple

loading surface to be establ ished in strain-space. The first implica­

A
tion is that the ratio of p and p is a constant. This implies that

c
A

(e-e ) is a constant and is given in equation (2.37). Hence, in strain­
c

A
space, for every given elastic wall which implies a given value of e,

A
the critical state lies a distance ~ log 2 to the right of e. For wete

cl ays this value of e imposes a limiting state
c

in strain-space
A

corresponding to each e.

The second implication arises from the assumption of zero elastic

shear strains. Experiments on soil (Thurairajah 1961. Ko 1966, Roscoe

and Burland 1968) tend to validate this assumption. In strain-space

this assumption implies a singular loading surface. The loading surface

will be a slit parallel to the void ratio axis. The loading surface

arising from these two implications is shown in Figure (2.8).
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A
During plastic loading the variable e changes and hence the loading

surface translates in the e-e plane without any rotation. It is hence

necessary to define a hardening law that will describe the relationship

A
between e and the strain-space variables e and £ for plastic loading.

2.4 SUMMARY

From a study of the basic concepts used in the most popular criti-

cal state models. it is clear that a model based on those concepts might

be formulated with strain as the independent variable. The basic

concepts have been used to deduce equations that would predict stresses

from strains. Having developed such a basic framework. it is possible

to develop a strain-space model.

When viewed from the standpoint of strain-space. the critical state

turns out to be a state which is completely defined. The strain-space

loading surface. though singular. is much simpler than the corresponding

stress-space yield surface. The fundamental assumption on critical

state implies that the critical state line is parallel to the normal

consolidation line in the log p-e plane. This resulted in a loading
e

surface of constant size in strain-space. The observations made in this

chapter will -be used to formulate a specific strain-space model for

soils. This is described in the next chapter.
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CHAPTER III

DEVaOPldENT OF THE MODEL

3.1 INTRODUCTION

The purpose of this chapter is to demonstrate the feasibility of

the development of a simple strain-space model for wet clays. It is not

specifically desired to improve on the accuracy of existing stress-space

model s. However, in the event of any basic physical behavior not being

captured by the stress-space model, an attempt is made to build such

behavior into the strain-space model.

The model developed herein differs from the classical plasticity

models. These differences are explained and justified in section 3.2.1.

This strain-space model is based on a variable new to soil modeling,

namely the over compression ratio. This variable is defined and its

physical significance is described in section 3.2.2.

Based on the above-mentioned basic concepts, a model is developed

in section 3.3. The development starts off with the simple case of

undrained triaxial loading which results in only one independent vari-

abl e. Having developed the model for this simple case it is then

generalized to triaxial monotonic loading and finally to general

triaxial loadings allowing load reversals.

Section 3.4 lists the model equations in a concise form.
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3.2 BASIC CONCEPTS

3.2.1 A New Approach to Constitutive Modeling of Soils

The work presented herein differs from conventional plasticity in

three fundamental aspects.

i} No decomposition is performed on stress or strain to distin-

guish elastic and plastic components.

ii} The flow is non-associative between the hydrostatic and

deviatoric components.

iii} The loading surface is singular.

i) In strain-space plastic models applied to metals, the

stresses may be decomposed using the concept of relaxation. When a

material is subjected to a certain value of strain, it will develop only

elastic stresses if the strain remains below the limit at which plastic

behavior begins. However, when the strains go beyond the elastic limit,

the material stresses relax to some value lower than the elastic value.

This reduction of stress from the extrapolated elastic value has been

termed the relaxation stress. Such a decomposition is illustrated along

with the equivalent stress-space decomposition in Figure (3.1). For a

general stress state, the decomposition into elastic and relaxation

stresses may be expressed as

= E R
II - II (3.1)
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where the superscripts E and R indicate the elastic and relaxation

stresses, respectively. The equivalent general stress-space decomposi-

tion is

= ~E + ~p (3.2)

In the case of soils, the decomposition shown in equation (3.1)

does not apply for either isotropic behavior or shear behavior. First,

consider isotropic behavior. Although there is no finite undeformed

state, assume a state with a value of p = p which is sufficiently low
r

that all subsequent values of p are larger than Pre Further, assume Pr

to be on the swelling line. All the above assumptions are made so that

the isotropic soil behavior will resemble the standard uniaxial stress

strain behavior on which the usual decomposition is based. This is

shown in Figure (3.2).

Let the soil be loaded from p so that p increases and e decreases.
r

The state point, initially moving along the swelling line, will switch

to the normal consolidation line at the intersection of the two lines.

If the decomposition of stress holds, then,

(3.3)

for state points lying on the normal consolidation line shown in Figure

(3.2) as AB. Consider a situation in which the loading is reversed at

point B~ If the deco~position holds for this case, the stress strain

curve will follow BC' on unloading since
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(3.4)

But experimental observations clearly indicate that this is not the case

and that the stress-strain curve follows Be. It is thus clear that the

linear decomposition fails to describe the isotropic behavior of soils

for isotropic loading. The reason for this lies in the fact that the p-

e relationship is non linear. Since the relationship is linear in a

log p - e plane, a logarithmic decomposition is required to define the
e

pressure.

Secondly, consider the shear behavior of soil. It has been

observed from soil experiments (Ko 1966, Thurairajah 1961) that soil

exhibits plasti: behavior from the onset of loading. Hence, for shear

loading, an elastic shear stress cannot be determined experimentally.

It is therefore necessary to artificially introduce a function E
q from

which the shear stress relaxes to produce the resulting shear stress.

For this reason the shear stress is not decomposed.

incremental stress is defined.

Instead, a total

ii) The second difference from the classical theory arises in the

flow rule. The model developed hereafter assumes that the shear and the

hydrostatic stress increments may be obtained by defining bo

independent hardening rules rather than by the combination of a harden-

ing rule and a flow rule.· In the strain-space theory, developed· along

the lines of the conventional stress-space plasticity theory, the incre-

mental stress relaxation is defined by
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where.

R
da .•

IJ
= dk ...MLae ..

IJ

(3.5)

Rda
ij

Components of the relaxation stress tensor

dk Scalar corresponding to a characteristic incremental

stress

G Complementary potential function

!ij Components of the strain tensor.

The method proposed herein defines each total stress increment

independently. For the simple triaxial case this leads to

(3.6)

Equations (3.6) along with the incremental relationship given below

can be used to find dq.

(3.7)

iii) Finally. it is found that the loading surface used herein is

singular in the e-t plane. However. since the incremental pressure and

the incremental shear are defined independently. the discontinuity of

the 51 ope at the tips pose s no probl em. Instead of the normal to the

loading surface. two independent hardening rules are proposed as in

equation <3.6). Loading is defined along the lines of conventional

plasticity. Any time the incremental load vector tries to take the
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strain state outside the loading surface, plastic behavior occurs.

Thus, the loading condition can be stated as

i)

ii)

de i= 0
A

e = e and de < 0 •
(3.8)

3.2.2 Over Compression Ratio

For wet clays the normal consolidation state and the critical

state define two limits for elastic states as shown in Figure (3.3).

Hence, it would seem natural to assume that the relative position of a

state between the two limiting states would have a great influence on

the material behavior. Having this in mind, a dimensionless variable ~

termed the over compression ratio is defined as follows:

A
e-e

~ = A (3.9)
e -e

c

For wet clays, 0 i ~ i 1. ~ = 0 corresponds to a normally

consolidated state whereas ~ = 1 corresponds to the critical state.

The stress-space over consolidation ratio (OCR), defined as the

ratio of the normal consolidation pressure divided by the current pres-

sure, is related to the over compression ratio as

A
A
p

= (3.10)

It ~as been shown in equation (2.37) that the difference between
A

e and e
c

is a constant and is given by 1< log 2.
e

This makes the
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A
variable ~ linear in e and e and reduces equation (3.10) to the very

simple form

3.3 DEVELOPMENT OF THE MODEL

3.3.1 Undrained Behavior

A
R
p = (3.11)

Undrained deformation of soils is one of the simple cases of

analysis in strain-space. In the axisymmetric the.ory, there are two

strain-space variables e and e. For undrained deformation, e remains a

constant and hence the only variable in the problem is e. Due to this

simplification, the strain-space soil model is developed first for the

special case of undrained deformation and is then extended to general

axisymmetric deformations and finally to the most general three-

dimensional deformation. The fundamental assumption made in the

Further, the irreversible

development of the simple strain-space model is that the incremental

behavior of wet clay can be expressed explicitly in terms of the over

compression ratio and the incremental and total strain variables.

First, the relationship for incremental pressure is developed.
A

From equations (2.36) it is clear that p is defined if e and e are

known. For a general strain-controlled deformation, e is given as one

of the independent variables. For the undrained case, the value of e is

a constant. To define p for undrained deformation it is therefore
A

necessary and sufficient to define e.
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"behavior of the material is represented by the presence of e in p. The

"variable e will be defined here in the incremontal fora.

"Let it be assumed that de can be related to da by the relation

"de = f 1 (e.e) • da

From the physical oharacteristics of soils it is known that

(3.12)

(3.13)

Equation (3.13) is obtained from the fact that at critical state 8 can

change indefinitely without affecting any other variable. Assuming that

f 1 is sufficiently smooth. this function may be expressed as a Taylor

series expansion in terms of ~ about the critical state. This leads to

(3.14)

Equation (3.13) implies that

a (e) = 0o

In order to simplify the model further it will be assumed that f1 is

well approximated by the first non-zero term of tho expansion in equa-

t10n (3.14). This results in

= (3.15)

From the development of the stress-space model reviewed in Chapter

II it is seen that dp and dq are related to (1+e)d8. Hence. using this
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observation in strain-space a
1

(e) ~ou1d be written as

The Dega tive sign is included so that b1 will be posi Uve.

A
equations (3.12), (3.15) tnd (3.16) de can be defined as

(3.16)

Combining

A
de = -b

l
(1+e) (1-~) • d8 (3.17)

For the undrained loading case, e is a constant. Therefore, equ-

A
tions <3.9) and (3.17) can be solved in closed form for ~ and e yield-

ing,

r-bl (1 + e ) (8-8 >1
~ = 1 - (1-~ ) exp I o 0 I

a L I J

r -b
i

(1+e ) (8-8 ) 1
(3.18)

A A. o 0
e e - L<1-~ >11 - exp l. I0 o l J

"here the suff ix 0 denotes the value of the corresponding vadabl e at

the beginning of undrained loading, and l. = 1< log 2.e
Equation (3.18)

can be combined with equation (2.36> to give

p = p exp f- (1 - 1) 1.(1-~ ) (1 - exp
o l I< A. 0

Only the first non-zero te%m of the expansion for f
1

i. considered in

developing equations (3.11), (3.18), and (3.19). However, if the Med

arise, for aay specific clay, it would be possible to include one or

more higher order terms. Whether or not such addl tional compl exi ty is

warranted will depend upon the accuracy of the available data along with
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confidence li.m.ita for the experiment, and the accuracy desired from the

model.

Next, consider modeling the shear stress for undrained loading. It

has been observed from stress-space calculations that the variable ~ is

more simply related to 0 and 8 than is q. For this reaSOn, it is

attempted herein to define a relationship for ~ as a function of e and

8. Having thus defined p and ~,. q can be calculated from equation

(Z.l1) •

"The independent variables in strain-space are e, 8 and e. For

undrained loading e remains a constant. Using these observations df\ can

be def ine d as

Set gl = 0 and

=
A lit. lit.

11 (e,a,e)da + 82 (e,8,e)de (3.20)

= = (3.21)

These assumptions reduce equation (3.20) to the simple form

= (3.2Z)

lit.
Both the incremental variables de and d~ are zero at the critical

sta te where ~ = 1. This imp! ies that 13 (~) should be bounded a t ~ = 1.

It is observed from experiments that the q-a relationship has a

very large slope at the origin. This can be used to deduce the behavior

of ~ around e = O. From equation (2.11) it can be shown that
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dq = ~dp + pd~ (3.23)

The value of pressure never becomes zero; that is p#O. However, for the

state of isotropic consolidation, q = 0 and ~ = O. If this state is

considered as the initial state. then at that initial state

dq = pd~ (3.24)

Thus. a very large initial slope for q with respect to £ also implies a

very large initial slope for ~ with respect to ~.

For the undrained loading

A
d~ = -dell

which impl ies that

as

The implications in the case of load reversals will be treated in sec-

tion 3.3.3.

The observation of the infinite or very large initial slope under

the simplifying assumptions results in

Lim
= CD (3.25)

for the undrained loading. From the above observations, it is necessary

to construct a function g3(~) which is bounded at ~ = 1 and unbounded at

the origin. To maintain consistency of accuracy. a single term of the

expansion of g3(~) about the critical state is considered. The
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-asingularity at the origin is introduced by ~ , a > O. This results in

which leads to

=

-a= C • ~o

C ~-a d';
o

(3.26)

(3.27)

For the undrained case under consideration, equation (3.27) can be

integrated in closed form. The integration produces the result

= _~ ~(l-a)
(l-a) .. o < a < 1 (3.28)

From experiments, it is evident that ~(O) = O. This implies that a < 1

for a non-trivial solution.

The cri tical state model impl ies that if the material is loaded

monotonically from ~ = 0 to ~ = 1, ~ should reach Mat ~ = 1. Since the

material has no way of knowing aDY load changes that are likely to take

place in the future, it is reasonable to assume that ~ will behave in a

manner such that it will reach M if l; reaches 1. This fact can be used

to evaluate the constant C and leads too

= O<a<1 (3.29)

3.3.2 General Monotonic Loading
A

For undrained loading, it was shown that de can be given by equa-

ti on (3.17) • It is assumed that, for general monotonic loading, the

effect of changing the void ratio as well as the shear strain is to

replace (l+e)da by d[(l+e)a]. This assumption gives the relationship
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A
between the incremental variables de, de and d£ as

Equation (3.30) can also be solved in closed form.

given by,

(3.30)

The solution is

t

- f~ . eXl' [b/ (C1+e<f»aC'> - Cl+e(t»eft»)]d' C3.31)

t
o

where, e = e(t) and £ = £(t) are parametric representations for the

loading path. Equation (3.31) can be used to compute p and q yield-

ing

t

+ f~ eXl' [ b/ <(l+e(f) hC'> - C1+eCt» eft) >] d']] (3.32)
t
o
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and

q = MP[l - (l-~o) up [-1 l(l+oh (l+e >e 1]o 0

+

t

J~ 0'1' [b!111+0(T»o(T) - (1+o(t» O(t»]

t
o

3.3.3 Load Reversals

The model has thus far been developed assuming the loading to be

monotonic. In this section the model is modified to take into account

the effects of load reversals. First. the term 'load reversal' is

defined within the framework of triaxial strain-space plasticity. Then.

the effects of load reversals on pressure are modeled. Finally. the

effects of load reversals are modeled for the shear stress.

The loading is def ined to be "reversed" in strain-space if

1) de changes sign and 0 < ~ < 1. or

2) de changes sign from negative to positive and ~ = O. The first

of the two conditions implies a reversal of the motion of the loading

surface in the e co-ordinate. The second condition relates to the state

moving from the normal consolidation curve to the swelling curve in the

p-e pI ane.

The effect of load reversal on the pressure can be modeled by modi-

fying Terzaghi's relationship given by equation (2.36). The modifica-

tion is simple and merely involves changing the reference or initial

valu~s of the variables to their values at the most recent load reversal
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state. This results in

r (e-eo)
Z A 1

p = Po exp 1- + I( (0 - o )1
L I< o J

AA
(0-00) = (e-e ) - l (~-~ )o . 0

(3.34)

where ~ is given by equation (3.31) with ~ ,e,8 corresponding to the
000

most recent point of reversal.

The effects of load reversal on ~ can be grouped into the effect of

reversal on the value of ~ and the effect of reversal on the functional

relationship between ~ and~. The former is already dealt with during

the modeling of the effects of reversal on p. The latter needs to be

def ined.

In defining the functional form of ~ for monotonic loading, the

asymptotic value of ~ as ~ reaches 1 was used. Following the same line

of argument it will be assUllled that a reversal would cause the function

for ~ to asymptotic to -X. Further, it is seen from experimental

results that, just after a load reversal, q changes with an infinite or

very large slope. These give rise to

=

with

h(~,O) = (I-a) X ~-a

and
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Lim
= CD (3.3S)

In order to deduce the function h, consider the impl ica tions of the

Bauschinger effect. The Bauschinger effect for a simple uniaxial case

is shown graphically in Figures (3.4a) and (3.4b).

effect can be described as follows;

Analytically, the

dO' = ~ (£) • de when e = e = 0 (r( 0) )
-1 0

(3.36)
8 -8 (1) ( 1) (r(l) )0 fordO' = ~ (-2-) de -e ~ e ~ It

0 0

where It denotes the value of & at the last point of load reversal in
o

the strain trajectory. The symbol £-1 denotes the value of the variable

8 corresponding to the next to last load reversal point. Considering

Figure (3.4b), let the current sta te be r(n) Then, will beon curve • e
0

the value of £ at the intersection of r(n) d r(n-I) and "'ill bean , 8_1

the value of £ at the intersection of r(n-1) d r(n-2)an •

Equation (3.36) describes the stress strain behavior for a single

reversal case including the Bauschinger effect. However, eqnation

(3.36) can be generalized to include a general load trajectory with

several reversals by requiring that

8-8

dO' = hI (IT r) • de otherwise

<:3037)



59

2~E'

H

( a )

E

( b)

FIGURE3.4 BAUSCHINGER EFFECT



- 60 -

In the strain-space model the easiest way to introduce effects of

load reversal on q would be through the 11-~ relationship. Clearly, this

is not equivalent to implementing the reversal condition on q-s. How-

ever, as will be explained in the nest chapter, it will be seen that

such an implementation results in characteristics very much like those

observed experimentally.

follows:

Such an implementation can be summarized as

-a
dTl = (I-a) M I~-~ol . sgn(da) • d~ , whenever lal >max (18_1 ' , 18

0
1l

~-~ -a
dll = (I-a) M 1--21 . sgn (de) • d~ , otherwise2

where

sgn (da) = 1

= 0

= -1

if da > 0

ifds = 0

if da < 0

(3.38)

It should be noted that the model for load reversals presented herein is

only developed and tested for the lUldrained axisymmetric load case. The

extension of reversal behavior for more complex loading situations is

beyond the scope of this work.
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3.4 MODEL EQUATIONS

The model can be summarized as ~ollors:

dv = del + 2dBn
de = 2/3(deI - dell)

deln = den

de = -(1+e)dv

a) If de = 0 and 0 < e < 1, then the behavior is elastic and

(3.39)

dq = 0

P = P exp L ! (e-e )1
o l I< oj

(3.40a)

b) If dB = 0 and de < 0 and e = 0, then the behavior is plastic

incrementally isotropic, and

dq = 0

p = Po exp r! (e-e )1
U. 0 J

(3.40b)

c) If dB ~ 0, then the behavior is plastic anisotropic and

A
de = -b1 (I-e)[(I+e)d8 + edel

-a
dll = (I-a) M le-~ol sgn (de)de whenever Is I >max {I 8_1 1 , I eo Il

e-e I-a
(I-a) 0 (3 .40c)= M 1-2-1 sgn (de)de otherwise

r (0-0
0

)
+ %.

A A 1
p = Po exp I- I< I< (e-e ) I

L o j

q = llP
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The principal stress variables can be found from p and q by

the relations

2
aX = p +-q

3

1 (3.41)an = p--q
3

alII = an

where

A

~ = ~t
t = I< loge2

y = ')..-/<
')..

a real and 0 < a < 1

b1 real and > 0

Wherever possible. the constitutive relations are stated in

integrated form rather than incremental form. For the case of monotonic

plastic loading. p and q can be determined in closed form and will

produce the results stated previously in equations (3.32) and (3.33).

3.5 SUMMARY AND CONCLUSIONS

A simple strain-space model has been developed in this chapter

based on observations made from the development of some stress-space

models. It has been established in this chapter that a constitutive

model capable of predicting soil behavior can be developed in strain-

space.
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The model developed herein does not follow the lines of conven­

tional modeling of plasticity. The use of a singular loading surface

poses no problems as hardening is defined independently, rather than by

a flow rule.

The model is extended to include load reversals. This extension is

achieved very simply by incorporating an effect similar to the

Bauschinger effect commonly used in metals. This is accomplished in the

~-~ space rather than the q-£ space. The aim of such an approach is

two-fold. First, it correctly models the strain softening effect on q.

This strain softening effect is achieved in the following ma~ner. Dur­

ing load reversal, the Bauschinger-like effect produces a reversal

response similar to the initial q-~ response. But the shear stres5 q is

the product of ~ and p, and p decreases during this loading. This

reduction in p results in the response of q becoming softer. Next, the

modifications performed on ~-~ do not increase the complexity of the

model. This is because ~ and ~ are related by a simple function given

by equation (3.38).

As seen in the formulation for the simple case ofaxisymmetry, the

strain-space formulation renders closed form analytic solutions for all

strain-controlled monotonic loading cases. This is not the case even

for the simplest loading condition for the stress-space model. The

extension of the constitutive relations to include load reversals is

also carried out in a straightforward manner and does not increase the

complexity significantly.
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The strain-space model has the further advantage that it uses only

three constants, namely, A,~, and M. These three constants can be

evaluated by simple tests. The constants A and ~ can be evaluated by

one-dimensional tests and M can be evaluated from any of the standard

triaxial tests such as the undrained or constant pressure test.

There are two other constants that appear in the model. namely

a and b
i

. . These constants are assumed to be independent of material

behavior and they will be verified to be so in Chapter IV. These two

constants will hereafter be referred to as the model constants. The

constants A. ~ and M which are assumed to depend On the material will be

referred to as material constants.
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CHAPTER IV

MODEL CALmRATION AND PREDICTIONS

4.1 INTRODUCTION

In this chapter the simple strain-space model is examined against

two independent sets of data. one based on the experiments performed at

Cambridge University (Roscoe and Burland 1968) and the other based on

experiments performed for the International Workshop on Constitutive

Behavior of Soil held at Grenoble in 1982. In section 4.2. the material

constants are determined from the nro data sets.

In section 4.3 the model constants a and b1 are obtained by

calibrating the model based on the uncrained Cambridge test data. and

then the results are compared with the undrained Grenoble test data. By

this exercise. the model constants are obtained and the assumption that

they are independent of the material is verified.

In the following sections. the model prediction is compared to the

two sets of data under constant pressure and cyclic loading conditions.

Wherever applicable the stress-space model prediction is also given for

compa ri son.

4.2 EXPERIMENTAL DATA

4.2.1 Cambridge Test Data

The data used to test the elliptic yield surface model prediction

is used here to compare with the strain-space prediction. These data
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were obtained on Kaolin. Two sets of experimental data are used herein.

The first set of data was obtained by Thurairajah (1961).

Thurairajah performed strain-controlled tests on normally consolidated

samples of Kaolin. These data were obtained under undrained conditions.

Thurairajah's tests were further confinned by Loudon (1967). Loudon

carried out the strain-controlled tests at half the strain rates of

Thurairaj ah' s experiments. The agreement of the results of these tvo

tests cleared up auy controversy that existed on the former's results.

The second set of data used herein is from tests performed by

Walker (1965). These were stress- controlled triaxial tests. The

specific data used herein are for the constant pressure triaxial test.

From both the tests it has been established that for Kaolin,

). = 0.27 (a)

1</), = 0.15 and (b)

M = 0.9 (c) (4.1)

The accuracies of these experiments are not given; nei ther can they be

ascertained without the raw data.

4.2.2 Grenoble Test Data

The test data analyzed below were prepared for the International

Workshop On Constitutive Behavior of Soils held at Grenoble in 1982.

These tests were performed under controlled conditions On a synthetic

c1 aYe Unlike the Cambridge test data, the material constants are not
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given. For this reason. it is nece ssary to determine the material

constants based on the test data.

Figure (4.1) shows the test results for a one-dimensional consoli­

dation test. These results are plotted on a set of a semi-log axes.

The lines of best fit are calculated for the loading and loading­

unloading paths. From the slopes of these lines the material constants

A and ~ are estimated to be as follows;

A = 0.21

~ = 0.032

± IS'*'

±38'l1

(a)

(b) (4.2)

The val~~ of A was obtained using the method of least squares. The

possible error in A is estimated from the accuracy of the given data. A

larger number of data points and/or more accurate measurements would

greatly improve the resul ts. The value of ~ is taken to be the

arithmetic average of the slopes of the lines AB, AC. DE and DF shown in

Figure (4.1). These slopes show a variation of ±38 about the mean.

An error estimate on the determination of A and ~ is essential so

that any deviations between the experimental and model prediction can be

compared in the light of the accuracy of the model constants as

determined from experiment. In the case of Cambridge data. such an

estimation is not possible without the raw data for A and ~.

From the test data it can be seen that the critical state ratio. M.

should be such that
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M 2 0.78

The model computations are made for

M = 0.78

(4.3)

(4.4)

It is necessary to note at this point that the void ratios for the same

effective pressure varies from experiment to experiment. A sensitivity

test for the model prediction was conducted based on these variations in

the void ratio e.

4.3 UNDRAINED TRIAXIAL TESTS

4.3.1 Model Equations

In this section the incremental constitutive equations of the

stress-space and the strain-space models are solved to obtain material

response. The variables under consideration are e,e,p,q and ~, where ~

depends directly on p and q. The models are used to determine the fo1-

lowing relations;

q

p

=

=

(a)

(b)
(4.5)

From equations (4.5a) and (4.5b) the stress trajectory f(p,q) = 0 and

the relationship of ~ with.£ can be deduced. Since the load case under

consideration is undrained, the variable e remains constant at its ini-

tial value and is hence not shown in the relations explicitly.
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The strain-space model results in

(a)

r 1.1 ~ bl (1+e ) (a-a ») 1
p = p • up 1- {l-e )l-exp _ 0 0 1

o LI< 0 ~ J
(b) (4.6)

where.

"( = (A-/() IA

1 = I< log 2e

e =
A

e-e
i

and the suf f bodenoto s i ni ti al value s.

From equations (4.6a) and (4.6b) it follows that the stress traj ec-

tory is given by.

log
e = 0 (4.7)

And the relationship of ~ with 8 is given by

(4.8)

1 (I-a)

I
J

b1 (1+e ) (e -e)o 0
l-exp - 1

r
~ = M I (l-e )

l 0
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The stress-space model does not give a simple explicit closed form

solution. However, it could be solved in parametric form. The equa-

tions which must be solved are

~+rt2
y

q = Po 11(r+rt~)

r 2 y

p = Po Cr:;)
where ~ is related to £ by

Ca)

(4.9)

=
l+rt/M -1 I
I-111M - 2tan (11 M)

- log
e

1+rt 1Mo
1-tl 1Mo

(4.10)

However, the stress trajectory can be solved in closed form and yields

4.3.2 Model Calibration Using Cambridge Test Data

(4.11)

In this section, the prediction of the strain-space Dlodel and the

stress-space model given by equations (4.6) through (4.11) are compared

with experimental observations. The purpose of this comparison is to

determine the best choice of a and bI for the strain-space Illodel.
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The constant a is a measu~e of the change in q for changes in &

aro1Ul.d From equation (4.6a) , it is seen that as (8-e ) becomeso

large the influence of a diminishes. For this reason a is determined by

considering the experimental behavior around the point (8 ,q ) in theo 0

(s-q) pI ane. Both model predictions of .ilil along with the data are
Po

shown in Figure (4.2).

The constant b
I

is a measure of the rate at which q/p reaches its

asymptotic value M. Since the exponential of bl gives the exponential

rate of convergence to the asymptote, the rate of convergence is quite

sensitive to changes in the constant b1 •

When equations (4.6a) and (4.9a), (4.10) are expanded around

(e ,q ), it can be found that for the strain-space model
o 0

(q-q ) ... (8-8 )1-a
o 0

and for the stress-space model

(4.12)

(q-q) ... (8-8 )0.2 (4.13)
o 0

From Figure (4.2) it is seen clearly that the stress-space predic-

tion for q which is substantially higher than the experimental values.

This indicates that the exponent in equation (4.12) should be larger

than that of equation (4.13), implying that

Co < 0.8
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The value a = O.S is found to give a good fit to the experimental

observation in the neighborhood of (t ,q ).
o 0

An involved method of

curve-fitting leading to a more accurate determination of a is not used

at this stage because any higher accuracy of curve fitting would be

inconsistent with the experimental accuracies.

Having determined a, the strain-space model prediction for q/p as
o

a function of e is compared with the experimental data for different

values of b
l

. Figure (4.3) shows the results for several choices of b
l

.

The value b
i

= 0.3 is found to give the best fit to the experimental

observations.

For large values of (e-e ) the solutions of both the stress-space
o

and strain-space models asymptote to

=

For Kaolin this value is 0.49.

-.M..
2r

(4.14)

Equations (4.6bl and (4.9b) with (4.10) give the relationship

between plpo and t as predicted by the strain-space and stress-space

model s, respectively. Pressure data are not available from the

Cambridge test. Therefore, only the model predictions are compared.

These predictions are shown in Figure (4.4).

Both the stress-space and strain-space model predictions for p

asymptote to ~ = JL for large values of (e-e). For Kaolin. the value
p 2r 0o

1of -- is 0.56. Since the decay rate of the strain-space model is lower
2r

than that of the stress-space model. the strain-space prediction of the

pressure is seen to be higher than for the stress-space model. However,
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the lower decay rate appears more consistent with the experimental

observations presented in Figure {4.2).

The strain-space model yields a stress trajectory for undrained

loading given by equation (4.7) and the stress-space prediction is given

by equation (4.11). Both trajectories are shown in Figure (4.5).

each start with infinite slope in the pIp - qfp plane. and they botho 0

intersect the critical state line at

p =
Po

2r

Po
q = M

2r

(a)

(b) (4.15)

However, at the point of intersection of the critical state. the two

trajectories have different slopes. The slope of the trajectory implied

by the stress-space model is given by

M
dp = 1

y
(4.16)

whereas that of the strain-space model is given by

M
dp

M
2y log 2

e
(4.17)

The slope predicted by the strain-space model is smaller than that

predicted by the stress-space model by a factor of 0.721 M. For Kaolin

this factor would be 0.649. This implies that for the strain-space

model to have no change in void ratio close to critical state. there

must be greater reduction in pressure to shear stress compared to the

stress-space model. However, during the initial stages of loading. the
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strain-space model requires more change in shear stress than the stress­

space model to maintain undrained conditions.

From the results obtained thus far, it is evident that the simple

strain-space model captures all of the qualitative behavior of the data

and the stress-space model. Having established this, the Grenoble test

data will be used to further demonstrate the accuracy of the strain­

space model.

4.3.3 Comparison with Grenoble Test Data

This section uses the values for the model constants a and b
i

determined from section 4.3.2. These values are

=
=

O.S

0.3

The strain-space results with these model constants are plotted with the

stress-space prediction and the test data. The material constants used

are as follows:

A =
~ =
M =

0.21

0.032

0.78

Figures (4.6) and (4.7) show the strain-space and stress-space

model predictions of the variation of pressure along with the experimen­

tal data.

The strain-space model clearly shows much better agreement with the

test data compared to the stress-space mOdel. One aspect in which the
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experimental results differ from both model predictions is the initial

increase in pressure with shear strain. It is believed that this

difference is not due to inaccurate model prediction but rather to

inaccuracies in the experimental data. If the c1 ay was actually

saturated. it would not be possible to have such a pressure increase.

However. if the model was not completely saturated.an increase could

occur. The rest of the behavior observed experimentally is predicted

very well by the model.

Figure ·(4.7) shows for both model predictions the variation of the

shear stress with the shear strain. Once again the strain-space model

predicts results which are much closer to the data as compared to the

stress-space prediction. It can al so be seen that the stress-space

model reaches critical state much faster than the strain-space model and

the test data.

Figure (4.8) shows the stress trajectories. Again. the strain­

space model prediction is better as expected from the individual pIp
o

and q/p predictions. The discrepancy with the data around the
o

beginning of the trajectory is believed to be due to experimental errors

as discussed above. One further effect observed in the experimental

trajectory is the slight decrease of q around critical state line. The

basic physics used in the model does not predict such behavior. If it

is found that this behavior is important. the model will have to include

some additional basic physical behavior. However. at this point it is

not cl ear whether this behav ior is real or is due to experimental

inaccuracies.
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Figure (4.9) shows the variation of ~ with the shear strain.

4.3.4 Model Constants

In section 4.3.2 the strain-space model was calibrated using the

Cambridge test data. From this comparison it was determined that

Cl = O.S

b1 = 0.3

These constants were postulated to be independent of the material. This

postulate has been verified by using the results of the Grenoble experi­

ments. Therefore, these constants will be assigned the numerical values

stated above and treated as an integral part of the model. This results

in there being only three constants to be evaluated for any material and

they may be obtained from well-established experiments.

4.4 CONSTANT PRESSURE TRIAXIAL TEST

4.4.1 Model Equations

For constant pressure tests,

dp = 0

This condition is easily incorporated into the stress-space model as p

is one of the independent variabl es. For the strain-space model the

condition that the incremental pressure is zero has to be imposed
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However, this results in the simple incremental condition

d~ = ! de
1

This condition gives way to a closed form solution for ~, given by

= (4.18)

The stress-space model produces the result that

0.5

~ = ~o + (M-~o)[exp ~~~: - 1] (4.19)

For values of e close to e which implies state points close to the ini­
o

tial state, equation (4.19) can be approximated as

= (4.20)

From equations (4.18) and (4.20) it is clear that the two models behave

very similarly close to the initial loading state and differ only by a

scaling constant of

(
1 )0.5 = 1.2

log 2
e

Once again. the strain-space model provides an explicit closed form

solntion for the relationship between ~ and 6 given by
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[

-0.3[(1+e)e-(1+e )e ] ]0.5 0 5
(M-11 ) l-exp 0 0 (1-~ \ .

o A log 2 of
e

(4.21)

However, the stress-space model yields only an incremental solution

which cannot be integrated in closed form. This stress-space result is

given by

e-e
o

).-/<
l+e

(4.22)

where e = e(~} and is given by equation (4.19).

For the strain-space model, the strain traj ectory nece ssary to

produce constant pressure is found to be given by

e - e
o

= ().-/<) (log 2) • (1-2; )fl-exp
e 0 l

-O.3[(1+e)e-(1+e )e ]
o 0

). log 2
e

] (4.23)

For the stress-space model, the constant pressure condition results in e

and e related by

e-t
o =

e

- J
e

o

.de (4.24)

4.4.2 Comparison with Cambridge Test Data

The results of the calculations f'or 11(e) made with the stress-

space model and the strain-space model along with the test data of

Walker (1965) are shown in Figure (4.10). It can be seen from this
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figure that both models predict results in agreement with the experimen-

tal data, the stress-space model predicting the experimental observa-

tions more closely around the inception of loading and the strain-space

model predicting better elsewhere.

From equations (4.18) and (4.19) it is seen that both predictions

of ~ reach the critical state value, M, when

(e -e) = (A-~) log 2o e

For Kaolin this value is 0.1SS, and M is 0.90. The experimental data.

though not available for values of (eo - e) close to 0.155. indicate that

this could be an accurate prediction for (e - e) at critical state.
o

Figure (4.11) shows both model predictions along with the te~t data

for the function ~(e). The stress-space prediction of ~ for any given

value of e under constant pressure loading is somewhat higher than the

experimental values while that of the strain-space model is somewhat

lower. The closeness of prediction of both models to the experimental

observations is comparable. It is seen that the strain-space model

prediction of ~ with e lies above the stress-space model prediction in

the (~,e) plane. whereas in the (~.e) plane the strain-space model pred-

iction lies below the stress-space model prediction. The reason for

such a change is clearly seen by observing the strain trajectories for

constant pressure conditions implied by the two models.

The trajectories given by equations (4.23) and (4.24) are plotted

in Figure (4.12), From equation (4.23) it is seen that
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(e - e) -? ("A.-/() log 2
o e

For the case shown in Figure (4.12) this occurs when

e :; 1.20

The numerical evaluation of equation (3.56) shows that the asymptotic

value of e for the strain-space model is also 1.20. However. the

stress-space model. due to its faster rate of reaching critical state.

reaches the asymptote faster than the strain-space model.

The reason for the stress-space prediction being below the strain-

space prediction in the (e -e)-~ plane but above tne strain-space pred­
o

iction in (e~) plane is found in the strain trajectori~~ preGicted by

the two models. For a given value of (e -e). the corresponding value of
o

E for the strain-space model is much larger than that of the stress-

space model. This effect results in the stress-space prediction of the

(~.e) relation being pushed towards larger e compared to the stress-

space prediction. Since the two curves are close together in the

(e -e)-~ plane. the effect of the strain trajectory is larger in
o

magnitude and hence pushes the strain-space curve in the (e-~) plane

below the corresponding stress-space curve.

4.5 CYCLIC LOADING TESTS

The soil models commonly in use fail to predict cyclic test results

very well. 'The stress-space model considered herein fails to predict

any hysteretic loops. For this reason the experimental observations are
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compared only to the strain-space model. Load reversals considered

herein are only for undrained conditions. Such an analysis has a wide

scope of application for most reversals encountered commonly in

practice. For example. earthquake loads have periods much smaller than

that of the drainage time for most clays. When the material is subject

to one cycle of such high frequency load it would not have drained by

any significant amount. Therefore. the assumption that the response is

undrained is well justified.

4.5.1 Model Equations

For load reversal under undrained conditions,

-bl (l+e )( e-e )
~ 1 - (l-~ )

o 0= exp
0 l

A
e = e - l~

0

[~(l-~o)(l-exp
-b

1
(l+e )(e-e )

)]o 0p = Po exp t

<-< 1--
dll = (I-a) M l+C

o
sgn(de) • d~

where,

(a)

(b)

(c)

(d) (4.25)

r = (').-/<) / A.

l = /<10g2
e
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= 1 otherwise

e :;
0

e =-1

value of e at the last lineup of load reversal

of e at the point of load reversal before the last one.

4.5.2 Comparison with Cambridge Test Data

Monotonic undrained test results of Roscoe and Burland (1968)

were used to calibrate the strain-space model in section 4.3.2. In this

section small load reversals are imposed on the previously monotonic

loading. The strain-space prediction along with the experimental

observations for the loading with reversals are shown in Figure (4.13).

The model prediction is remarkably close to the experimental observa­

tions. It is not surprising that the monotonic parts of the curve are

well predicted as the model has been calibrated for monotonic loading.

Several salient aspects observed experimentally during load

reversals are well captured by the strain-space model. These are:

1. As the loading progresses. the hysteresis loops become larger.

This is achieved by the model because of the proximity of the latter

points of reversal to the critical state. As the material gets closer

to the critical state. the pressure reduces. Since the shear stiffness

predicted by the model is proportional to the pressure. the reduction in

pressure results in softenlng.

loops.

This gives rise to larger hysteresis
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2. On load reversal. when the shear strain returns to the value at

which the loading was reversed. the shear stress reaches a value lower

than the value at the inception of load reversal. This is seen in both

the experimental observations and the model prediction. The Bauschinger

effect by itself implies that on return to the initial strain. the

stress would be the same. But the strain-space model applies the

Bauschinger effect to the (~.~) relationship. Since

q = ~ • p

and during a complete loop the pressure would have decreased, the value

of q would be less on return although the value of ~ i~ the same on

return.

On continued loading after a reversal. the strain-space model

exhibits a discontinuity in the slope, whereas the experimental observa­

tions imply a smooth curve. The discontinuity arises because of the

switching condition described in equation (4.25). However. as the

hysteresis loops get larger, the discontinuity on the slope reduces

significantly.

4.5.3 Comparison with Grenoble Test Data

Next. the strain-space model is used to predict cyclic behavior

between fixed strains. This prediction is compared with the test data

prepared for the International Workshop on Constitutive Behavior of

Soils held in Grenoble in 1982. The tests were performed under

controlled conditions on a synthetic clay. Figures (4.l4a) and (4.14b)
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show the test data and model prediction. respectively. for the variation

of the octahedral shear stress with axial strain.

The model predicts shakedown and a limit cycle. But the shakedown

predicted by the model is very rapid at the beginning and hence reaches

the limit state more quickly than the test data. The rate of shakedown

depends greatly on the pressure behavior.

The limit cycle is reached between 45kPa and -36kPa for the test

data and between ±3SkPa for the model. The maximum stress reached is

60kPa on for the test data and -S9kPa for the model prediction. These

v.:.lues are within allowable errors. More importantly. the basic

char.acteristics seen in the test data are all captured by the model

except for one.

From the test data it is seen that, on reversal. the material

reaches an octahedral stress of 60kPa which is higher than the stress at

reversal, SSkPa. This implies a kinematic hardening of a negative sense

combined with isotropic hardening. That is, the center of the loading

surface moves in a direction opposite to that of loading. This is very

uncommon in conventional plasticity. Unless such a hardening is built

into the strain-space model it will not predict such higher stresses on

reversal. However. the experimental observations made by Walker shown

in Figure (4.13) do not show the effect observed in the Grenoble test

data. As such. more experimental data are necessary to make any conclu­

sions regarding this negative "kinematic" hardening.
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One other possibility is that the material behaves differently in

compression and in tension. The material may have different values of M

in tension and in compression. From the experimental data if it is seen

that indeed this is the reason, then the value of Mwould be larger in

tension than in compression. This can be very simply included in the

model by replacing Mby either M or M depending on whether it is ten-e c.

sion or compression. respectively.

In Figures (4.1Sa) and (4.1Sb) the Grenoble test data and the

strain-space model predictions are shown for the variation of pressure

with strain. It is seen that the strain-space model predicts shakedown

but at a rate faster than that of the test data. This can. however, be

improved by making the model calibration constant b
i

depend On strain.

A second and more important difference arises from the loops

described by the test data. The strain-space model does not predict

A
these loops because the plastic variable e is modelled to vary monotoni-

cally with cyclic variations of s. According to Terzaghi's equation, p

A
depends only on e and e. For undrained loading the relationship further

simplifies to

p =
A

p(e)

A
From the modeling of plastic hardening, e is expressed as a function .of

A
e. The relationship given by Terzaghi for p as a function of e is mono-

tonic. Hence, it follows that for there to be loops in the p-e plane.
A

de should change sign depending on the change of sign of ds. More data
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substantiating such pressure loops would be necessary to build such an

effect into the strain-space model.

4.5.4 Comparison with Other Models

In this section. the strain-space model is compared with two

stress-space models for the case of cyclic loading between constant

strain limits described in the previous section.

this comparison are,

The models used in

i) The Dafalias-Herrmann model (Dafalias. 1979; Dafalias. et al ••

1980. 1982) • This model is based on the bounding surface theory

developed by Dafalias. It has nine material constants.

ii) A critical state model by Houlsby. Wroth and Wood (1982).

Houlsby. et al •• developed a model based on the modified Cam-Clay model.

incorporating Hvorslev's failure criterion. This model is named by the

authors as the Roscoe-Hvorslev model. This has six material constants.

The material constants used in the Dafalias-Herrmann model are:

1.

2.

3,4.

s.

6,7.

Slope of the normal consolidation line in the log p-e plane. A.
e

Slope of the elastic swelling line in the log p-e plane, ~.e

Critical state constants, M ,M •
e c

Shear modulus, G.

Characteristic lengths of the bounding surface, R ,R •
e c

8,9. Another set of characteristic lengths of the bounding surface.

A ,A •
e c
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The Dafalias-Herrmann model predictions shown here are from the

paper presented by Dafalias. et al •• at the Grenoble workshop (1982).

The values used for the material constants are given in Table (4.1).

TABLE 4.1

I I I I I I I I I
I ). I I< I )1 I M IR I R I A I A I G

1°·20 I0.1 I°~8 I0.~8 12~0
I c I e I c I
12

•
S I0.02- I0.02 115 MFa

The material constants used in the Roscoe-Hvorslev model are:

1. Critical state constant, M.

2. Slope of the normal consolidation line in the log p - log v plane.
e e

)'..
3. Slope of the elastic swelling line in the log p - log v plane. /<••

e e

4. Shear modulus, G.

S. Critical specific volume at unit pressure r.
6. Hvorslev surface intercept Q.

The Roscoe-Hvorslev model predictions shown herein are taken from

the proceedings of the International Workshop on the Constitutive

Behavior of Soils. held at Grenoble in 1982. These predictions are made

by the proponents of the model. namely, Houlsby. Wroth. and Wood. The

values used for the material constants are given in Table (4.2).
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TABLE 4.2

t I I
H "'. 1<. G r a

0.74 0.1225 0.0165 7MFa undeter- 0.141
mined

The strain-space model. as described herein. uses solely three

material constants. They are:

1. Slope of the normal consolidation line in the log p - e plane. A.
e

2. Slope of the elastic swelling line in the log - e plane. 1<.
e

3. Critical state constant. M.

The values of these three constants are shown in Table (4.3).

TABLE 4.3

Ir-:--O-.2-1----T--O-.-O-32---+--0-.-7-8--

Figure (4.16) shows the variation of the shear stress with axial

strain. The loading is between constant strain limits of ±a.OIO. The

figure contains four curves. These curves are predicted by.

i) The Grenoble experimental data,

ii) The Dafalias-Herrmann model.

iii) The Roscoe-Hvorslev model, and
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iv) The strain-space model.

The bounding surface model predicts octahedral stresses much higher

than those observed experimentally. Although the experimental results

clearly show that tho maximum stresses decrease as the loading

progresses. the bounding surface prediction shows a large increase in

the maximum compressive stress during the initial cycles.

The Roscoe-Hvorslev model predicts cycles that get smaller in the

strain direction and larger in the stress direction. This produces the

result that. as the material is loaded between constant strain limits.

the octahedral stress limits keep increasing. This is again contrary to

the experimental observations.

By comparison with the bounding surface model prediction and the

Roscoe-Hvorslev model prediction. it is seen that the strain-space model

prediction is much closer to the experimental observations.

A main feature observed in several experiments is missing in the

predictions of both the Dafalias-Herrmann model and the Roscoe-Hvorslev

model. This feature is the infinite slope in the e-q plane just after

reversal. Both models fail to predict this because of the usage of an

elastic shear modulus. This problem does not arise in the strain-space

model because it does not use an elastic shear modulus.

Figure (4.17) shows the variation of pressure with axial strain

during cyclic loading between constant strain limits. The predictions

of the three models are shown along with the experimental data.
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The bounding surface model shakes down monotonically in pressure.

The limit cycle is reached at a pressure value of 281kPa. This is much

higher than the value of about 120kPa obserVed from the experimental

results. The pressure reduces by large steps during the initial cycles.

As the loading progresses. the reduction in pressure becomes smaller.

The initial pressure reductions are about the same as those observed

experimentally.

The Roscoe-Hvorslev model predicts a shakedown in pressure which is

also monotonically decreasing. The final value reached is 236kPa

compared to the mean value of about 120kPa observed from the experimen-

tal resd ts. This model also predicts a large reduction i~ pre~sure

ini ti ally but the amount of reduct ion decrease s rapidly as the nm:;:ler of

cyel es increase s.

Again, the strain-space model yields better predictions than the

other two model s. All of the models predict a monotonic decrease in

pressure which contradicts the looping seen in the experimental data.

The predictions of the values of the pressure at limit cycles are given

below for the three models, as a percentage of the mean limit cycle

pressure observed experimentally.

Bounding surface model

Roscoe-Hvorslev model

Strain-space model

234'11

197~

1 S8'11
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4.5.5 Comparison for Cyclic Loading Between Constant Stress Limits

The comparison made herein is based on test data for cyclic load-

ing between constant stress limits. These tests were also performed for

the International Workshop on Constitutive Behavior of Soils. There are

three load cases in this test as listed in Table (4.4). The variables

~1 and ~2 denote the stress limits in terms of octahedral stresses.

TABLE 4.4

I Consol ida ti on Cell Void Ratio
ILoad Case Pressure Pressure ~1 ~2 After
I kPa kPa kPa kPa Consol ida tion
I
I 1 400 400 -27.8 30.6 0.720I
I 2 400 400 -37.7 42.4 0.713I
I 3 400 400 -47.1 52.8 0.745
J

The values of the void ratio after consolidation for those load

cases shown in Table (4.4) differ significantly frail those given in the

previous cases. The void ratio values given in the monotonic loading

cases under the same consolidation pressure of 400kPa were 0.665 and

0.670. The maximum discrepancy in void ratio for a consolidation pres-

sure of 400kPa is 0.080, which is 11.4" of the mean value. When making

comparisons, these experimental inconsistencies must be taken into

consideration.

Figures (4.18) a, band c show the extremum axial strain values

reached during each cycle as a function of the logari thm of the number

of cycles, N. Figures (4.18) a, band c represent load cases I, 2 and 3
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Denote the extremum axial strain values reached in

th
compression and in extension during the N cycle by e (N)

c and e (N).
e

re spe ct i vely. The following observations can be made from Figures

(4.18) a. band c.

It can be seen that the model predictions for all three load cases

show that;

a) e (N) increases monotonically with N.
e

b) e (N) decreases initially with N and then increases with N.
c

c) 8 (N) becomes positive beyond a certain value of N.
c

The experimental data, on the other hand, indicate that 8 (N)
e

increases with N, while e (N) decreases ~·ith N. Load case 1 shows very
c

low values of e (N) and e (N) for all the values of N considered. But
e c

in load cases 2 and 3 this effect is seen very prominently. This

discrepancy is to be expected because of an assumption made during the

development of the model.

The reason for the discrepancy between the model prediction and the

experimental observation is better explained with the aid of some

figures. Figure (4.19) shows the model prediction for the load case 1

in the £~ plane. Let the term 'forward path' denote that part of the

cycle corresponding to increasing strain and stress and let the term

'reverse path' denote the rest of the cycle corresponding to decreasing

strain and stress.



105

I I I I I I

(a )
CASE I

00/ -
0 0 00 /

.........-

I I I I I I

, I I
0
0 I I I

0
0 ( b )

0
0 CASE 2

0
- 0 -

0
0 0

rjJ0,., A

0 A
A "'v
v OV A

I I I I I I

I 0 I I I I

0
(C)

CASE 3
0

>- -
) 6

A A

0

~ °6

~ 6 -
0 Model Prediction
A Experimental Data

- Monotonic Limit
If I I I I

o

0.04 --~-~-.......~......,..-.....,..---,.-....,

0.02 -

-0.02

- 0.02 __-'"I.- ........_~-----'------'

0.04

-0.04
I 2 4 8 16 32 64 128

CYCLE NUMBER J N
FIGURE 4.1 8 STRAIN EXTREMA FOR CYCLIC LOADING

WlTH CONSTANT STRESS LIMITS

0.02
\II

r-- 0:E
-J

z -0.02-<t 0.04a::
r-
en

0.02



106
I;)
Col

c:i:~--~---'---l""-~-r----r----,
CD

I;)
Col

e:i
"'-I---~---r----r----r----r-----1
1_0• os 0.00 O. os O. 10 O. is Q.20 O.2S

~liEAR STRAIN _10·'

FIGURE 4.19 CYCLIC LOADING UNDER CONSTANT STRESS LIMITS

'oct

EQUAL STIFFNESS

-FIGURE 4.20 EFFECT OF UNEQUAL STIFFNESSES



- 107 -

From Figure (4.19) it is seen that the model predicts limit cycles

after about S cycles. Further. it can be noted that the strain incre­

ment Ae+(N) in the forward path is larger than the strain decrement

Ae-(N) in the reverse path of the limit cycle. This difference clearly

renl ts in a 1 inear increase in the values of e (N) and e (N) with N.e c

for values of N larger than the limit cycle value.

It is also seen from Figure (4.19) that the prediction softens.

This would result in the difference (se(N) - 8 c (N» increasing with N up

to a value corresponding to the limit cycle. Such a softening tends to

increase e (N) and decrease £ (N).
e c

During the first few cycles the

softening effect dominates over the shifting effect arising from the

difference between +Ae and As • Hence. s (N)
e

increases and e (N)
c

decreases for low values of N depending on the loading case. But as

loading progresses. softening reaches its maximum limit and the shift

effect dominates. thereby increasing both e (N) and s (N).e c

This shift is reduced if the forward stiffness increases while the

reverse stiffness remains unchanged. This type of behavior is shown in

Figure (4.20). This can be achieved in the model by simply increasing

the value of M for the forward path. In that case the model would

predict strain extrema such that e (N) increases with N while s (N)e c

decreases with N.

A second observation relates to £ (1). The value of £ (1) shouldc ,. c

coincide with the value of strain obtained from a monotonic loading test

corresponding to the same stress. This must be the case because the

material has no way of knowing the difference between a loading which
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will be continued monotonically and one which will be reversed. There-

fore. it is possible to compare those values of £ (1) for the differentc

loading cases with those obtained from the monotonic loading case shown

in Figure (4.7). The strain values corresponding to the monotonic load-

ing case are shown in Table (4.5).

TABLE 4.5

Load case IStress value (q) at I Strain from Ifirst reversal (kPa) I q/PO monotonic data

1 - 59 1-0.15 0.0019

2 - 80 1-0.20 I 0.0038

3 -100 1-0
•
25 0.0060

The values of e tabulated in Table (4.5) are shown by horizontal lines

in Figures (4.18) a. band c. It is also known that during cyclic load-

ing in shear. soil samples soften. This fact is further substantiated

by the experimental data shown in the previous section. Therefore. the

initial strain limit t (1) should lie on the line corresponding to the
c

monotonic loading value of e. and at least one of the two strain limits

e (N). e (N) of the subsequent cycle should lie outside one of those
c e

1 ine s. This is not the case for the experimental data except for load

case 3. This is clearly a contradiction. For this reason the experi-

mental data in this case are suspect.

Finally. it is interesting to compare the strain amplitudes (peak-

to-peak) at limit cycle. The limit cycle amplitudes of the strain-space
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model predictions are compared with the maximum amplitude available from

the experimental data. These values are presented in Table (4.6).

TABLE 4.6

I Maximum Strain Amplitude
IILoad Case

Experimental Data Model Prediction I

1 Negl igibl e 0.014 I

2 0.010 0.026

3 0.036 0.040

From the values of Table (4.6) it can be seen that load case 3 has

only a 10% difference between the experimental data and model predic-

tion. This is to be expected because this is the only load case that is

consistent with the monotonic loading results as far as the experimental

data are concerned. Load cases 1 and 2 start with very low strain

ampl itudes, in the case of the experimental data. Hence, the two load

cases 1 and 2 cannot really be used in the comparison.

4.1 SUMMARY AND CONCLUSIONS

The model developed in Chapter III is first calibrated in this

chapter by comparing its undrained predictions with the Cambridge model

predictions. From this calibration, the model constants a and b
i

are

eva! ua ted. These constants are then verified by checking with Grenoble

data. In all the undrained cases, the strain-space model outperforms

the comparable stress-space model. The strain-space model does better
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despite its simplicity which leads to simple closed form solutions for

many cases of loading.

Secondly, the model is tested fox conatant pressuxe loading.

Although this is a loading condition ~ streas-space, the strain-space

model still gives easier and simpler solutions than its stress-space

counterpart. Its quantitative predictions are at least as good as those

of the stress-space model. Finally, the strain-space model is used to

predict cyclic behavior. Most models are incapable of reproducing this

behavior. Once more, the simple strain-space model predicts cyclic

behavior very well. All the qualitativ~ behaviors explainable by basic

physical concepts and observed experimentally are captured by the

strain-space model.

When compared to some well-accepted stress-space models, the simple

strain-space model predicts the cyclic behavior significantly better.

Further, the strain-space model requires only three material constants

as opposed to six or nine for the other two models considered. These

three material constants can be determined from some very simple tests.

In conclusion, the tests performed show very clearly the usefulness

of the strain-space model. The model is based on highly simplified

assumptions. If desired, it would be possible to make this model more

complex, thus achieving higher accuracy of prediction. But within the

experimental accuracies available, such complexity does not appear
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justified. Further. the purpose of this work is to develop a simple

model.
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CHAPI'ER V

GFNERALlZATION OF mE lNFINITESDIAL S'1RAIN AX!StMME'I1lIC H>DEL

S.1 INTROD'UCTION

The strain-space constitutive model developed for wet-cl~ thus far

holds for axisymmetric load deformation systems with infinitesimal

deformations. In this chapter the infinitesimal deformation model will

be generalized. ass1lllling that the same type of basic material behavior

holds during finite deformations. The stresses and the strains could be

defined along the lines of finite deformation. nonlinear elasticity

theory. However. as could be shown. when taking the limit of

in! ini te simal deformation. the finite theory will approach the

infinitesimal theory. thereby ensuring consistency with the results

obtained previously.

Most soil engineering problems do not have a simple geometry or

loading. Nevertheless. the study of simple cases such as a:dsymmetry

and pI ane strain prov ide a deeper understanding of the material

behavior. Having conducted one such study, it is desirable to extend

the understanding thus obtained to more gener.l situations. With this

in mind. the model is generalized to relate a general state of strain to

a general sta te of stress.

Section 5.2 sets up the basic notions of motion. strain and stress.

This is followed by a discussion of the existence and coincidence of the

principal axe s of the stress and the strain tensors chosen. The concept
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of effective stress is motivated mathematically. Finally, some vari-

abIes are defined from the stress and strain tensors.

In section 5.3 the axisymmetric constitutive model is general ized

to the general 3-dimensional case based on a pair of assumptions.

5.2 DEFINITION OF THE BASIC VARIABLES

5.2.1 Deformation and Strain During a General Admissible Motion

Consider a solid body which, in its reference state, occupies a

3region R in the three-dimensional Euclidean space m
o

Without loss of

generality, the time corresponding to this reference state may be :aken

as zero. Edges, corners, and connectivity are permitted to exist in the

region R. During subsequent deformation in time t, the body occupies a
o

f . ... . ~3sequence 0 reg10ns ~t' 1n ~ •

Let an infinitesimal region in R be defined as a 'particle.' Pick
o

origin 0 in 1R 3 and I et I be the position vector of such a partiel e

in R
o

' Let y be the position vector from 0 to the point in R
t

, which is

occupied at time t by the same particle.

The motion of such a solid body can now be described by

= ¥(., t) e [R3

't = [0, T]
(5,1)

The vectors I,» and y along with the regions Ro and Rt are shown in Fig-

ure (5.1). Equation (5.1) describes a general motion. In order to be

able to carry out analysis, certain conditions are imposed on this

motion. These conditions are motivated by the following physical ideas:



114

"-



- 115 -

i) Motion takes place without rupture or tearing.

ii) No two particles occupy the same position at anyone given point

in time.

iii) Lines through any point .l in Ro should correspond uniquely with

lines through y(~.t) in Rt and vice versa.-
iv) Veloci ties :z. and accelerations. A. should exist such that

• (5.2)

The above ideas translate into the following mathematical state-

ments, not necessarily in the same order:

v ~ € Ro
(5.3)

(5.4)

iii) y( •• t) is (1-1) on R
t

V t € ~

iv) ~(y)~(y,t) t € ~ •

Any motion defined by a Y satisfying the above conditions is hereafter

referred to as an admissible motion.

Define the deformation gradient tensor f as follows.

VI. € Ro
.t € ~ • (s.S)

Using E. the Lagrengian strain tensor can be defined by
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(5.6)

Note that such a def in! tion resul ts in extensive strains being positive.

From its definition, it is clearly evident that the strain tensor I

given by equation (5.6) is symmetric. This property of symmetry "i11 be

found to be very useful during the general ization of the simple

constitutive model. The Lagrangian strain tensor is chosen here in

preference to the Eulerian or the Almansi strain tensor for the reason

that a Lagrangian formulation of the equilibri1Jlll equations is more

commonly used in the mechanics of solids.

5.2.2 Traction and Stress

Consider the particle P given by ~ in Ro' and "hich is mapped to

y in Rt by an admissible motion, y = y(~,t). Let Do be the region con-

taining all particles in a neighborhood of P bounded by the surface S •o

By the definition of the admissible motion these particles "i11 be

mapped onto a corresponding neighborhood Dt in Rt bounded by a surface

St. These surfaces and regions are shown in Figure (5.2).

Postul ate the ex! stence of a vector field

where» is an arbitrary unit vector.

t e 1: (5.7)
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Further. require that.

i) t be continuous in y • ~ and t.

ii) The total force on Dt due to contact be

J,t(!•.u. t) • dA(y)

St

when n is the unit normal to St at the particle under considera­

tion. and dA(y) is the infinitesimal area normal to ~.

iii) The total moment about 0 on Dt due to contact be

J y X .t(y,.u. t)dA(y)

St

(5.8)

The vector field 1 satisfying all the above requirements is termed the

traction vector field.

Let ~(y.t) be a tensor field whose components in a frame e are

given

vector

e
by {~J .• = ~ .•

1J 1J

field 1 in the

and are related to the components {.t}~ =
J

same frame e by the relationship

t. of the
J

~ .. (y.t)1J _ = (5.9)

Such a tensor field ~(y.t) is the Cauchy stress tensor (also referred to

as the True stress tensor),

Clearly, the Cauchy stress tensor depends on the current configura-

rather than on the reference configuration R •
o

However. sol id

mechanics is more amenable to solutions in its Lagrangian form. As such
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it would be convenient to define a stress tensor referred to the

configuration R •
o

Cauchy's Theorem: For any y in Rt and any unit vector» the trac­

tion vector can be expressed as,

! e Rt ' t e 't , II Jl.11 2 1 (S.10)

where ~(y.t) is the Cauchy stress tensor. Also it can be shown that the

relationship between the unit normal ~ in the reference configuration

and the unit normal ~ in the deformed configuration can be given by.

dA(y) T 1
~ = dA(~} E (det E)- »

From (S.10) and (:.11) it can be shown that

(S.l1)

.t(y.~. t)
dA(~) -T

(det f) dA(y) toE ~ (5.12)

Define a stress tensor ~ by the following relation.

-T
~ = (det E) ~ E

Then.

dA(_)
1(y(_.t) , ~,t) = dA(y) ~ ~

(5.13)

(5.14)

The stress tensor defined by equation (5.13) is termed the Nominal

stress tensor (also referred to as Piola-Kirchhoff stress tensor, Engi-

neering stress tensor, and Pseudo-stress tensor).
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The symmetry of the stress and strain tensors is a property which

greatly simplifies analysis. For this reason a secondPiola-Kirchhoff

stress tensor. J. is def iud as follows.

-1J = E Sl (5.15)

The definition of the admissible motion demands that E be non-singular.

This non-singularity clearly justifies the existence of the tensor E-1 •

Combining equations (5.13) and (5.15) it can be seen that

(5.16)

5.2.3 The Existence and Coincidence of the Principal Frames of the
Stress and Strain Tensors

In conventional plasticity. it is common to assume that the

principal frames of the stress and strain tensors coincide. This

coincidence asslJIDption simpl if les the consti tutive rei ations. It is

sufficient. under this assumption. to relate the incremental principal

components of the stress tensor to the incremental and total components

of the principal strain tensor. If such a coincidence assumption is not

made. then the six incremental components of the stress tensor need to

be spe cil ied independently. Such a specification would involve some

alternate assumptions. For this reason. the coincidence assumption is

widely used. It can be shown that coincidence is also implied by some

other fundamental assumptions commonly made in plasticity.
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Before addressing the issue of coincidence of the principal frames.

it is clearly necessary to establish the existence of such principal

frames for the tensors under consideration. From linear algebra it is

seen that a necessary and sufficient condition for the existence of the

principal frame of a tensor is that it be symmetric. For this reason it

is necessary to explore the symmetry of the stress and strain tensors.

The Lagrangian strain tensor is symmetric by definition and hence

will possess a principal frame. However. the symmetry of the stress

tensor is not so obvious.

The conservation of angular momentum of a continuum free of body

moments implies that

I = ~T

Equation (S.lS) along with equation (5.13) results in

=

(5.17)

For infinitesimal deformations the influence of E is very small. and

therefore the three stress tensors I.~ and ~ are almost equal. However.

during finite deformations. the components of E differ significantly

from those of 1. and hence the three stress tensors have quite different

properties.

The first Piola-Kirchhoff stress tensor ~ is symmetric only under

very special motions. As it is preferable to develop constitutive equa­

tions not restricted to some special motions. except for the very essen-
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tial restrictions such as admissibility. the second Piola-Kirchhoff

stress tensor is used in this work.

From equation (5.16) and equation (5.17) it follows that

= ~T (5.18)

which implies that for admissible motions under the absence of body

moments the second Piola-Kirchhoff stress tensor is symmetric. Which in

turn implies that this tensor possesses a principal frame at every state

point.

Within the framework of elasticity theory it can be shown that the

principal frames of the Lagrangian strain tensor and the principal frame

of the second Piola-Kirchhoff stress tensor coincide for isotropic

materials.

Under classical plasticity theory using any general flow rule. it

can be shown that the principal frames coincide incrementally under

restrictive circumstances. The condition sufficient for the coincidence

is that the plastic potential function g should depend on the stress

tensor, only through its invariants. When this condition is satisfied.

it can be shown that the incremental plastic strain tensor will have a

principal frame coinciding with that of the stress tensor. By the basic

definition of the elasticity tensor, the principal frame of the incre­

mental elastic Lagrangian strain tensor and that of the second Piola­

Kirchhoff stress tensor coincide. Therefore. the principal frame of the
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second Piola-Kirchhoff stress tensor and that of the incremental total

strain tensor coincide.

In this work the constitutive equations are developed without using

a restrictive assumption of flow rules. For this reason, the

coincidence of the principal frames of the incremental second

Piola-Kirchhoff stress tensor and the total Lagrangian strain tensor is

taken as an assumption.

It is worth noting at this point that within the framework of

conventional plasticity, it can only be shown that isotropy is a suffi-

cient condition for the coincidence of the principal frames. For this

reason it cannot be argued that the coincidence assumption demands

isotropy. FUTLDermore. the theory developed herein is free of any flow

rule, and eveL the sufficiency proof depends greatly on the existence of

a flow rule.

5.2.4 Effective Stresses

Saturated soil is a two-phase medium consisting of pore fluid

which is commonly water and a solid lattice of soil particles. The

concepts of stress and strain developed hereto arise from continuum

mechanics where there is only a single medium. Hence. to address the

state of stress on a mixture such as soils, certain modifications are

necessary. In the area of practical soil mechanics it has been observed

that it is possible to describe a stress termed 'effective stress' more

accurately than the total stress. In the paragraphs that follow an
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attempt is made to present this concept of effective stresses within a

mathematically rigorous framework.

Figure (S .3) shows a sampl e. region of soil composed of a solid

lattice and pore fluid. This region is cut along a plane and an elemen-

tal area dA is considered. In this elemental area dA. a part dAS is

occupied by solids whereas another part dAr is occupied by the pore

fluid.

Assume that there exist continuous and twice continuously

differentiable tensor and scalar fields ~s(~,t) and Pf(~.t) respectively

so that

£s = f .s (~, t )~dAs s
A

s

£f f -Pf(x,t)~dAf
(5.19)

=

A
f

where, f is the force transmitted across A by solids and E
f

is the
s s

force transmitted across A
f

by fluids.

The total force transmitted by the two-phase medium across the area

A would be

(5.20)

Further.

(5.21)
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FIGURE 5.3 STRESSES AT AN INFINITESIMAL SOIL AREA
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Postulate the existence of another continuous and twice continu-

ously differentiable tensor field ~(~.t) so that.

E = J S(~.t)A dA (5.22)

A

This tensor ~(~.t) would be the stress tensor if the media were treated

as a single phase homogeneous material.

From equa tions (5.19). (5.20) and (5.22) it follows that.

J Ss (~. t) A dAs + J -Pf (~. t)AdAf

As Af

(5.23)

If equa tion (5.23) is taken to hold for every choice of A. then

Using the decomposition of A from equation (5.21). in the incremental

form.

Let r(1,) be def ined by

(5.24)

Then.

Lim
dA ~ 0

dA (I.)
s

= (5.25)
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= (5.26)

It is argued commonly in soil mechanics that

and (5.27)

where ~'(~,t) is finite. Invoking (5.27) on (5.26) results in

= (5.28)

Equation (5.28) is the commonly used stress decomposition equation.

where

.s(;~. t)

~'(~.t)

PfC., t)

total stress tensor

effective stress tensor

pore flnid pressnre

The sign convention for stress is still maintained as tensile stresses

positive. However. pressures are taken as compressive positive.

Although the decomposition given by equation (5.28) is the form

commonly used in soils. some investigators ( Garg and Nur. 1973; Nur

and Byerlee. 1971; Terzaghi. 1923; Robinson. 1959; Handin et al •• 1963;

Murrell. 1963; Skempton. 1961; Geertsma. 1957; Suklje. 1969; and Biot

and Willis. 1957) have looked deeper into the effect of r(~) on the

stresses and suggest different forms of scalar multipliers for the fluid

pore pressure. Since no one of these alternative approaches is as

widely accepted as the simple decomposition given by equation (5.28).

the simple decomposition will be used herein.
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5.2.5 Stress and Strain Variables

Since the existence of the principal frames for stress and strain

tensors to be used herein has been established and their coincidence

assumed. it is sufficient to relate the incremental principal components

of stress to the principal components of strain.

In order to remain along the lines of the development of the

axisymmetric theory. certain stress and strain variables are defined

here to be related by the three-dimensional constitutive relations.

These variables are defined in general terms based on the stress and

strain invariants. The volumetric dilatation denoted by v is given by

v = det f

Since the strain tensor E is defined in terms of E. v can be related to

E as

(5.29)

In soils. the void ratio e is more commonly used than the

volumetric strain v and these are related in the Lagrangian sense as

dv = -4L
1+e

o
(5.30)

where e is the void ratio at a reference state related to ~.
o

results in e being related to E as

This
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A measure of shear strain is def ined by e as follows.

(5.31)

e = (5.32)

It is found that the variables e and a reduce to those defined in

Chapter II when E reduces to the axisymmetric principal strain. Hence.

the definitions are consistent with those made previously.

The stress is the dependent tensor in the formulation developed

herein. Since the theory is developed as an incremental theory. it is

necessary to define some variable based on the incremental stress ten-

sore As described earlier. the stress used is the second Piola -Kirchh-

off stress.

The incremental pressure is def ined by simply taking a third of the

first invariant of the incremental stress tensor and reversing the sign.

dp 1= --I (d~')3 1 (5.33 )

A measure of the shear stress is c1efiued IS

dq (5.34)

The normalized shear stress variable used extensively in the model is

defined in terms of the total stress variables and is given by

= qjp (5.35)
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As in the case of the strain variables. the stress variables are

also chosen so as to approach the variables defined in Chapter II when

the stress tensor is principal and axisymmetric. This ensures the

consistency of the general three-dimensional model.

5.3 THREE DIMENSIONAL CONSTITUTIVE MODELING

5.3.1 Basic Assumptions

In the previous section the independent model variables e and 8

had been defined for a general state of stress. These were the model

variables that were employed in the axisymmetric theory. Therefore. by

using these variables directly in the axisymmetric constitutive model,

the incremental stress variables dp and dq can be found. The general

theory, however. should give all the components of d~'. At this stage,

to achieve the goal of predicting all the components of ~', some basic

assumptions are required.

For the axisymmetric stress-strain situation the state of stress or

strain can be completely specified by the magnitudes of the hydrostatic

and deviatoric components. This is seen clearly from Figure (5.4).

Either the stress or strain tensor at any given point can be completely

specified by their principal components. This enables the state to be

plotted in a three-dimensional space. For the case ofaxisymmetry about

one of the principal axes ~I' say, all states would lie on the plane.

£11 = £rlr· Hence each such state point is uniquely determined by the

magnitude of the projection of the state vector along and normal to the
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axis of equal inclination. However. when the axisymmetry assumption is

relaxed and a general state is considered. such specification will not

give a unique state but a set of. states lying on a circle on the

deviatoric plane with its radius equal to the magnitude of the

deviatoric component. Therefore. not only the magnitude but also the

direction of the deviatoric component is necessary to specify the state

compl etely.

It is assumed here that during a general state of stress and strain

the magnitudes of the components of the stress and strain tensors along

and perpendicular to the axis of equal inclination have the same rela­

tionship as in the case of axisymmetric stress-strain situations. This

justifies the use of the constitutive equation developed in Chapter III

to determine dp and dq using e and e. Furthermore. this assumption will

ofcasespecialrender consistency when the tensors take the

axi symme try.

Having made the first assumption. a rule is to be prescribed now to

determine the direction of the incremental deviatoric component. It is

assumed here that the incremental deviatoric components of stress and

the corresponding deviatoric components of strain are parallel to each

other and have the same sense. In the stress-space formulations. a very

similar assumption is made.

5.3.2 Implications of the Basic Assumptions

The first assumption mentioned states that all states having the

same magnitude of the deviatoric strain have the same dp and dq. This
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implies that equations (3.40) hold for the general stress-strain state

when de. de. dp and dq are defined as in equations (5.31) through

(5.34) •

The second assumption states that the incremental deviatoric stress

and the deviatoric strain are parallel. This assumption implies that.

dS' n-dS ' III
= =

en-eIlI

dS'III-dS'I

&III-&r
(5.36)

Equations (5.33) and (5.34) result in the following equations when

expressed in terms of the principal incremental stresses

dp = - t (dS'I + dS'II + dS'III)

Equations (5.35). (5.36) and (5.37) result in,

(5.37)

.(5.38)

dS'
I

dS'I1

=

=

dS'III = (5.39)

5.3.3 The Loading Surface

In order to be consistent with the first of the two assumptions

made in the previous section. the loading surface is defined as the pair

of surfaces of two concentric cylinders of radii differing by an
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This is shown in Figure (5.S). This loading

surface is not the same as the Von Mises surface because of the fact

that all the state points lie on or just below the surface.

5.4 SUMMARY

In this chapter the strain-space plastic constitutive model

dev~loped for the axisymmetric stress-strain system is generalized to

include,general stress and strain states.

The strain and stress defined rather loosely previously are defined

more rigorously and the limiting assumptions more clearly stated. The

idea of effective stress is motivated mathematicall~. Having defined

the stress decomposition in this manner a well-accepted simple

decomposition is used and its limitations stated. Based on the strain

and stress tensors chosen, some simple strain and incremental stress

variables are defined along the lines of those defined in the

axisymmetric case.

Finally, two assumptions are made in order to generalize the

axisymmetric model to a general state. The first assumption implies

that the magnitude of the deviatoric stress a~d strain are related in

the same manner as the shear stress and strain variables in the

axisymmetric case. The second assumption is used to derive the direc­

tion of the incremental deviatoric stress by setting it parallel to the

incremental deviatoric strain.
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The model thus developed is simple and quite accurate. All the

assumptions have been laid down clearly so that the domain of applica­

tion of the model is well define-d. The main aim behind the development

of this model was simplicity without loss of rigor and it appears that

this has been achieved.
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CHAPTER VI

APPLICATION OF THE roDEL TO mE EXPANSION
OF A CYLINDRICAL CAVITY

6.1 INTRODUCTION

In this chapter, the simple strain-space model generalized in

Chapter V is applied to a general problem. The problem of an expanding

cylindrical cavity is considered because it is representative of a pile

driving problem. An understanding of the stress fields arising from the

expansion of the cylindrical cavity will provide a better insight into

the properties of the stress field produced during the driving of a

pi! e.

In section 6.2 the problem of an expanding cylindrical cavity in an

infinite medium is modeled as a plane strain axisymmetric problem. The

governing equations are deduced. The rapid expansion-of the cavity is

imposed and the deformation field is hence derived. Based on that

deformation field, the stresses and pore pressures are determined.

In section 6.3 the equations are solved numerically and the solu-

tions are presented. These solutions are compared with some experimen-

tal results and two other predictions in section 6.4. The predictions

used herein are those made by Ladanyi (1963) and Davis and Mullenger,

(1984) Interestingly enough, Ladanyi's calculations are indeed a strain-

space approach.

Finally, the. observations made in this chapter are summarized and

presented along with conclusions in section 6.S.
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6.2 MATHEMATICAL MODELING

6.2.1. Deformation and Strain

From equation (5.6) it is seen that the Lagrangian strain tensor

,g is def ine d as

. T
ii = 3fs <E E - 1)

where

and

Substi tuting .I for y resul ts in

This in turn gives ri se to

(6.1)

(6.2)

In the case of infinitesimal deformations, the term (2)>)T(2>>) is dropped

Tas it turns out to be much smaller than <2B> and (2)>). However, in

order to allow for finite deformations, this term is retained herein.

Select a cylindrical polar coordinate system with the z axis coin-

ciding with the axis of symmetry of the cavity. In this system of axes

the gradient operator will be
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(6.3 )

where ~R' ~& and ~z are the unit vectors in the R. & and z directions.

respectively. Let the frame defined by this set of axes be e.

Let ~. u&' Uz be the components of the displacement vector » in

the R. & and z directions. respectively. Then.

£& aUR
fi itR +

£&
~)

a~R
+ (- --) (- fi aeR a& R

ita aUa
i ite +

~e aite+ (- --) (R" Ue) Q aeR ae

~e au z
+ ('R aG) & s:.z

+ (6.4)

where the components of A i ~ are defined in terms of the components of

l! and .b as, (A i ~) " = a.b., i, j € 0.3).
1J 1 J

But
as:.e

and ae = - £R (6.S)

Substituting equations (6.S) in (6.4) and writing the components of

"Sl(.)Jl in e. the frame ·under consideration.
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aUR aUe au'_z
aR 3a aR

nZ(.)lI} e
1 aUe ua 1 au

(6.6)= --+-
_ ---Z.

R ae R R ae .
aUR aUe auz
az az az

For an axisymmetric problem without twist.

ua = uR(R,z,t)

ue = 0

u = u (R.z.t)z z

The conditions given by equation (6.7) will resul t in

(6.7)

aUR au
0

_z
\aR aR

{2( ;t)x!l e = 0
~

0 )R

aUR au
0

_z
oz az

(6.8)

If it is assumed further that the continuum deforms under plane strain

condi tions then.

u =R ~ (R, t) and U
Z

= o (6.9)

This assumption simplifies the gradient to
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uR,R 0 0 )
{~(;.):uJ e 0 ~ 0 (6.10)

R /
0 0 0 /

where,

~.R =

Equation (6.10) and equation (6.2) together define g as

1 2
0uR•R + 2" (~.R) 0

(g}e = 0 ~ + 1(~)2 0
R 2 R

0 0 0

6.2.2 Stress and Equilibrium

(6.11)

Consider the current configuration of the infinitesimal region of

continuum shown in Figure (5.2). For the equilibrium of this region,

balance of linear momentum implies that

S ! . dV(y) + S tdA(y) = f p • ~ <it"t) dV(y)
cH

2
.

D 8
t

Dtt

1. body force vector,

! traction vector in the deformed configuration.

p density in the deformed configuration, and

(6.12)
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n displacement vector

In the absence of body forces. and when inertial effects are neg! igib!e,

equation (6.12) reduces to

f 1. dA{y) = 0.

St

From Equation (5.14)

When this is applied to equation (6.13) it gives rise to.

(6.13)

I a 11 dA{~)
S

o

From the divergence theorem.

Q (6.14)

f ('SZ(;t,) g:) dV (X) :: 0

D
o

for every choice of Do' Therefore.

From equa tion (S .IS)

lZ = f oS

(6.1S)
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.s' - p 1f

These relations reduce equation (6.15) to

(6.16)

At this point the assumption regarding .the coincidence of principal

frames greatly simplifies the problem. The Lagrangian strain tensor,

under the assumption ofaxisymmetry and plane strain, turns out to have

a diagonal component matrix in the coordinate frame chosen herein.

Tn is, along 'IV ith the coincidence as sumption, impl ies that the se cond

Piola Kirchhoff stress tensor, §, and hence S', will also have a diago-

nal component matrix in this frame, and the components are given by

o

S'
9

o

o

o

S' z

) (6.17)

o

1+ ~
R

o

(6.18)
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From equations (6.16), (6.17) and (6.18)

= 0 (a)

1..1.. «l+~R )S') 1 a «l+~) )
R as 6 - i a6 R p f = 0 (b)

(c) (6.19)

Equations (6.19a, b and c) describe the equilibrium conditions. Since

the strains are only functions of Rand T, this will also be the case

for stresses. For this reason,

apf
= 0 anda9

apr
= 0az

These two conditions imply that

Pf = PieR. t) (6.20)

Therefore, the entire problem depends on two independent variables

namely, Rand t.

6.2.3 Simplifying Assumptions

There are two main assumptions made in analyzing the initial

expansion of the cavity. The first assumption is that the cavity
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already exists and only its expansion is modeled. This assumption

renders the corresponding motion to be admissible. If the inception of

the cavity is considered, then a rupture of the continuum is inevitable.

A rupture violates assumptions i) and ii) of section 5.2.1, which are

required for the motion to be admissible.

assumed here that the cavity already exists.

For this reason. it is

The second assumption is that the expansion rate of the cavity is

much higher than the velocity of pore water through the soil medium

under the pressure gradients developed during the expansion. This flow

of fluid is given by Darcy's equation

v

where

(6.21)

v the velocity of ~he pore fluid relative to the soil lattice

Pf pore fluid pressure

k permeabi! ity of soil

Pf density of the pore fluid

Under the pressure gradients commonly encountered in clay. v is on the

order of 10-8 em/sec. Therefore, the assumption is valid for expansion

rates on the order of mm/hr, or faster.
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This assumption implies that during initial expansion of the cavity

the relative velocity of the pore fluid may be assumed to be negligible.

Hence, the soil may be assumed to be deforming under undrained condi-

tions.

6.2.4 Formulation Associated with the Rapid Expansion

From the second assumption made in the previous section it

follows that the deformation may be taken as undrained. Since in soil

mechanics the deformation of the solid soil particles is neglected and

water is taken to be incompressible. an undrained deformation implies

that the volume of the sample is conserved. The conservation of volume

imp! ies that

det (f) = det <1 +~) = 1

Th is resul ts in

and hence

~ ~
~. R + R + R . ~. R = 0

Equation (6.22) can be solved in closed from resulting in

where

(6.22)

(6.23)
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ini ti al radius of the cav ity

cavity radius at any given time t

The current radius r can be given by

r = R + ~ =

Figure (6.1) shows a cross section of the infinite medium perpendicular

to the z a:d s.

A non-dimensional current radius r* can be defined as follows:

Then.

r* (6.24)

~.R =
r*-l

r*

The introduction of r* in this manner produces a strain tensor dependent

only on r*. This. in turn. produces stresses which are only dependent

on r*. Therefore. it is sufficient to derive the response for varying

r*.

The strain tensor can be expressed in terms of r* as

Therefore,

(_ r.
2

_1 0
2r*2

. 2
g(r*) = 0 '.I!....::!.

\
2

0 0

o

o

o

(6.25)
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2
sR = ~

2r*2

2

So = l:!-.=1
2

s = 0z

(a)

(b)

(c) (6.26)

e = e (a)
0

2r* -1. ~1 2 4 (6.27)s = + r* + r*
3r*2

If the e=pan~ion begins from a normally consolidated state, then

& = O. Solving the constitutive equations for this case results ino

exp [- 7f (I-np
-O.30+e )s(r*)

1
0

p = Po l

Mp [l-exp
-O.3(1+e e)s(r*) rs

0
q = t

(a)

(b) (6.28)

Equation (5.39) defines the principal stress components in terms of

p and q. And hence the principal stress components can be given by

s' a = 1
p + 3 dq - p + S'

o Ro
(a)

S'o = dq - p + S'o· 90 (b)
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S'
z = p+l

3 dq - p + S'o z
o

(e) (6.29)

Since S'R' S'& and S' z have been found. the pore pressure Pf can be

obtained from equation (6.19a) which reduces to

i (R S' R) _ i-( R p f) _ r* S' + r* P
aR r* llR r* & f = o (6.30)

This is the only equation that cannot be solved analytically.

6.3 THE SOLUTION

6.3.1 Numerical Implementation

In order to compute the numerical values of the stresses and pore

pressures during the expansion. it is necessary to assign numerical

values to the material constants. The material used for this purpose is

Iaol in. The values of the material constants for Kaolin ( Roscoe et

al •• 1968 ) are given in Table (6.1).

TABLE 6.1

0.27

I<

0.0405

M

0.90

The strain components are defined in terms of the non-dimensional

radius r* as given by equations (6.26a). (6.26b) and (6.26c). The

strain-space variables e and £ are given by equation (6.27). From these
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variables, the effective pressure p, and the effective shear stress q,

can be found with the aid of equations (6.28a) and (6.28b). From p and

q the effective stresses S'R, S'& and S' z can be evaluated using equa­

tions (6.29a), (6.29b), and (6.29c). Finally, the pore pressure can be

obtained from the equilibrium equation which is given in a simplified

form by equation (6.30). Equations (6.28) and (6.29) require the

initial values of p and q while equation (6.30) requires boundary values

of S'R, S'& and Pf.

The initial conditions are taken as follows,

s' (R,O)z

Equation (6.31) implies that

= So

= So

= So

= (6.31)

p(R,O)

q(R,O)

= s)
o

= 0

and

(6.32)

Further, define some non-dimensional variables as follows.

•S'R(R,t) =
S' (R t)-S
R' 0

S
o

; = S' +1
R
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• S' (R t)-S • •e' 0
S'e(R.t) = ; S& = S' +1

S &
0

• S' (R t)-S • •z· 0
S' (R. t) = ; S = S' +1

z S z z
0

p·(R. t)
p(R.t)= S

0

q*(R. t) 9 (R, t)= S
0

• Pr(R.t)-ProPr (R. t) = (6.33)
S

0

The boundary conditions are chosen at a point infinitely f~r away

from the cavity wall. It is assumed that

feR. t) = f(R.O) = ro
Vt € (O.T)

and V R > R
CD

(6.34)

where f may refer to any of the variables considered in this chapter.

There are two implications made by equation (6.34). One is that before

the expansion the stresses. strains and displacements are uniform over

the entire space under consideration. The other is that during the time

under consideration. the variables do not change their values from their

respective initial values at points sufficiently far away from the

cavity wall.

It has been shown that the strain tensor and hence all the

components of the stress tensor and the pore pressure depend only on r*.

This implies



- 153 -

But

Therefore,

r* ~
(r /R )2 - 1

o 0= 1+~-
(R/R )2

o

r* = r*(R/R.r /R )
000

(6.36)

This in turn implies that

f(R,t) = f(R/R, r IR )
000

(6.37)

The variables are evaluated by a simple computer code developed

using the finite difference method. The non-dimensional radius R/R
o

represents the radial coordinate. For numerical computation this vari-

able has to be discretized. From equations (6.24) and (6.26) it is seen

that the strains are high at points near the cavity wall and that they

decrease rapidly at points farther away from the wall. For this reason,

the stresses and pore pressure will also vary rapidly in the vicinity of

the cav ity wall. Therefore. it is necessary to choose more points of

computation close to the cavity wall than away from the wall. This is

achieved by uniformly

dimensional radius array

discretizing 10g10(R/Ro)'

(R./R ) is defined as
1 0

The discretized non-
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where

(R.fR )
1 0

= (R IR )i/N
CD 0

R the largest value of R to be considered, and
CD

N number of computation points

The code was tested with different choices of Rand N. The
C»

comparisons were made on the pore pressure predictions as the pore pres-

sure is the final variable calculated. The errors in all other vari-..
abIes would be reflected in the pore pressure as it contains, in its

•calculation, all variables except S. The values of the pore pressure
z

corresponding to the different sets of values considered for Rand N
C»

are shown in Table (6.2). For this test run, the value of the expansion

ratio r IR was taken to be 1.1.
o 0

TABLE 6.2

R IR •N PfC» 0

1,000 10 0.76667
I

2.000 100 I 0.78597
I I I

3.000 1,000 I 0.78616
I

5.000 100,000 0.78616

4,500 1,000 0.78616
I .

900 1.000 0.79197

600 1,000 0.79500
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It can be seen from Table 6.2 that increasing N beyond 3,000 or inereaa-

•ing R~/ao beyond 1,000 doe s not change the value of Pf expressed to five

significant place.. Since five significant places are considered suffi­

ciently accurate for the prediction, N and a~/ao are taken to be 3,000

and 1,000, respectively, in the comp.tations that follow.

The computations are made for values of l' fa varying frca. 1.0 too 0

1.5. The value of l' /1. equal to 1.0 corresponds to the initial stateo 0

with no expansion. Hereafter, this state is referred to as the

reference state and the values of all the variables corresponding to the

reference state are referred to as the reference values.

6.3.2 Model Predictions

The stresses and pore pressure calc.lated are graphically

presented in this section. The variables are shown as hnctions of the

non-dimensional reference radi.s afRo' Each flUlction is plotted for

several values of the e%pansion ratio l' /1. • The values of 1'o/Ro usedo 0

here are 1.01, 1.02; 1.0S, 1.1, 1,2 and 1.5. Expansion ratios more than

1.5 are not shown as they induce strains I argo l' than So-r. around the

cavity wall and most experilllental data .sed in the model are valid only

for strains up to 2~.

Figure (6.2a) shows the variation of the non-dimensional effective

pressure p*. The value of p. is 1 for all values of 1./1.
0

durinS the

l'oference stato. When l' /1. is 1.01, p. drops below 1 in the vicinityo 0

of the cavity, but the effect is not felt beyond distances of three

times the cavity radius. As the expansion ratio increases, the val.e of
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p* drops at the cavity wall and the effect propagates farther. When

- .
r /R reaches a value of 1.2, p at the cavity wall reaches its critical

o 0

state value of 0.55 and remains at that value thereafter.

Figure (6.2b) shows the variation of the non-dimensional effective

*The value of q is zero for all values of R/R in the
o

reference state. The behavior of q* during the subsequent deformation

is similar to that of p* except for three main differences. The first

difference is that the value of q* changes very rapidly at the initial

stages of expansion.,. This is to be expected because of the very high

value of shear modulus at the inception of loading.

The second difference is that q* reaches its critical state value

of 0.50 at the cavity wall for an expansion ratio of about 1.05. This

expansion ratio is much smaller than that corresponding to p*, which is

1.20. Such an observation is consistent with experimental observations.

From the data presented in Chapter IV for undrained expansion it is seen

clearly that q* reaches its critical state value faster than p*. The

fact that q* reaches its critical state value faster than p. can also be

seen from the stress trajectory shawn in Figure (6.3).

Finally, q* increases as the expansion progresses, while p*

decreases.

Figure (6.4) shows the variation of the n~n-dimensional effective

•radial stress S'R as a function of the non-dimensional radius R/R
o

• •S' R
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can be expressed in terms of p* and q* as follows •

where.

•S' R = p* + 1
3

(6.38)

z*(r*) = q*(r*)

It is seen from Figures (6.2a) and (6.2b) that p* decreases and q*

increases as r /R increases. Further. it is also found that the rate
o 0

of increase of q* is much higher than the rate of decrease of p* for

values of ro/Ro close to 1. It is hence clear that for values of r
O

/ R
o

•close tc 1. S'R will increase.

But q. reaches its critical state value at expansion ratios much

smaller than those corresponding to p*. For this reason. as the expan-

•sion proceeds S'R will begin to reduce. finally reaching a steady value •

•These effects seen from the equation defining S'R are found in

Figure (6.4). *S'R is zero in the reference state. namely. for r /R =1.
o 0

As r /R increases to 1.01. it is seen that the valueo 0
*of S'R at the

cavity wall has become positive. •For the value of r /R = 1.02. S'R is
o 0

still positive at the cavity wall. but is smaller than the value

corresponding to r /R =1.01.o 0
For values of r /R =1.05. and 1.1. the

o 0

•value of S'R at the wall is negative ant decreasing. Beyond r /R =1.1
o 0

•the value of S'R at the wall remains constant at its critical state
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•value of -0.15. Also, the positive values of S'R propagate away from

the c~ity wall as the expansion proceeds.

Figure (6.S) shows the variation of the non-dimensional effective

•tangential stress S'e. • •Unl ike the case of S'R' S' a decrease s from its

reference value of zero during all stages of expansion. The value of

*g'a at the wall also reaches its critical state value of -0.75 at an

expansion ratio of about 1.1.

• •The reason that the behavior of g'a is different from that of S'R

•can b: seen by taking a closer look at the equation defining S'a. From.
equa t ion (6.2 9b ) ,

•s'a

where,

=

q*

1 f
p* - 3 0 ~

1+2r.2

2 4 dz·
l+r* + r*

(6.39)

z*(r*) = q.(r*>

Although p* decreases while q* increases, the coefficient of the term

•containing q* is negative. Therefore, S'a would be always decreasing.

Figure (6.6) shows the variation of the non-dimensional effective

•axial stress S' •z
•Here again it is found that S' always decreases from
z

*its reference value of zero. The value of S' at the wall reaches itsz

critical state value of -0.45 for an expansion ratio of about 1.1 •

•The reason for the monQtonic decrease of S' is more subtle than
z
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*The stress S' is defined as
z

where

*S'
z = (6.40)

z*(r*) = q*(r*)

At the reference state. r* is unity. As the deformation proceeds

r* increases. Let

r* = 1 -to 11 • p. 2 0

Then. it can be seen from equations (6.28a) and (6.28b). that. for

values of J.l very much smaller than 1.

p*

q* 11

This. in turn. implies that

and.

* 3/2S' 1-I1+cl1z

•Therefore. S' will reduce initially. As the deformation progresses, q*z

will reach its critical state value. while p* is still decreasing. When

this occurs it can be seen from equation (6.40) *that S' will behavez

1 ike p*. thereby decreasing in value. •For this reason. S' decreases
z

monotonically.
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Figure (6.1) shows the variation of the non-dimensional pore pres-

sue with R/R for different values of r /R •
o 0 0

The non-dimensional

pore pressure decreases monotonically. It is seen from the figure that

even after the stresses reach their critical state values at the wa11#

the pore pressure at the wall keeps increasing. This occurs because the

pore pressure depends on the eqUilibrium of the soil mass. The

equilibrium equation corresponding to a state where the stresses,

•
S'~ have reduced

reduces to

..
to their respective critical state values S'Rc'

•
S'R'

•S' Gc

=
...

.. * (2r~""-1\ .. •r*( S' c.,. -Prj - --~-l (S' -p)
OJ..., .J I RC f

r

Although the stresses remain constant at the critical state, the defor-

mation proceeds. Hence r* would not remain a constant. For this rea-

..
son, the slope of P

f
would be changing even after the stresses reach

their critical state value.

6.4 COMPARISON WITH OTHER RESULTS

6.4.1 Experimental Results

Fig~re (6.8) shows the model prediction for the non-dimensional

pore pressure as a function of the non-dimensional deformed radius t/r
o

along with some experimental results. The model prediction shown

corresponds to an expansion ratio of 1.5. The experimental results are



165

3

0 L.O a STERMAC (965)

A KOIZUMI a ITO (1967)

c BJERRUM 8 JOHANNESSEN (I961l

LLJ 2
a::
=>en
en
lLJ
a::
~

w 0cr:: AO
0 o D A 0
~

0

D
0

0
0 D

1 10 100

r/ro

FIGURE 6.8 COMPARISON OF' THE MODEL PREDICTIONS WITH

EXPERIMENTAL DATA



- 166 -

those of Lo and Stermac (1965). Koizumi and Ito (1967). and Bjerrun and

-Johannessen (1961).

From the figure it is clear that the experimental results shows a

very large scatter. The scatter is due to the influence of reaction

piles, disturbance of the stress field by the measuring devices and

inaccuracies involved in device location. Given such a scatter. the

model prediction is close to the mean of the experimental observations.

6.4.2 Ladanyi's Calculations

:In this section. the strain-space model prediction is compared

with Ladanyi's calculations (Ladanyi. 1963). Ladanyi observes that an

undrained plane strain triaxial test produces stress states similar to

those produced by an expanding cylindrical cavity. Using this

similarity, he directly calculates the components of stresses induced

during .the expansion of a cylindrical cavity. from the triaxial data.

There are three main differences between the strain-space model

calculations and Ladanyi's calculations. First. Ladanyi's calculations

are based on test data for Dr~en clay. Since consolidation test

results were not available from his paper it was not possible to obtain

the material constants A. t. and M necessary for calculations. using the

strain-space model. For this reason the strain-space model results

correspond to Kaolin. However. both clays are similar in structure and

mechanical behavior.
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The second difference is in the stresses and strains employed.
~

Ladanyi uses Eulerian strains and Cauchy stresses whereas the strain-

space model uses Lagrangian strains and second Piola-Kirchoff stresses.

Finally, Ladanyi's calculations imply that the resnlts are only a

function of the non-dimensional deformed radius r/r. The results of
o

the strain-space calculations indicate that the independent variables

are r/ro and r o/ R ' Ladanyi's results would imply that the stresses at
o

the wall do not vary with the degree of expansion, but that is not the

case i~ reality.

Figures (c,9a) and (6.9b) show the strain-space model prediction

and Ladanyi's resl:~ts, respectively. Taking into account the differ-

ences mentioned above, the two results are qualitatively very similar.

Both show critical state is reached close to the wall. that is,

r/r ~ 1. The calculations made by Ladanyi indicate that critical state
o

is attained approximately for r/r i 3. while the strain-space calcula­
o

tions indicate that it occurs for r/r ~ 1.5. This is mainly due to the
o

difference in the material properties.

From the undrained shear stress strain curve used in Ladanyi's

calculations it is seen that q reaches 0.9 times its critical state

value for an axial strain of about 0.4%. From the data on Kaolin

presented in Figure (4.2) it is seen that this value is about 2%. This

would ~learly result in the Dr~en clay reaching critical state at

strains much smaller than those for Kaolin. This. in turn. implies that



168

2 p*+ p;
(/)

S~+ p;UJ
(/)
(/)
UJ
a::....
(f) ------

~--,-
",

",

0,
~~

10 100
r/r

STRAIN-SPACE MOD~L PREDICTION <KAOLIN)

3-

.* *
SR + Pt

p*+p;

S'*+ p*8 f

(f)
w
(f)
(f)

UJ
a::
I- -,

5,*(/)

R
-----~

p* --'"
ttl"

--:;----58 __--,-..-_ .......

'0 100

r / r0

LADANYI'S CALCULATIONS (DRAMMEN CLAY)

FIGURE 6.9 COMPARISON OF STRESS DISTRIBUTIONS



- 169 -

any prediction using Drammen clay data will show critical state behavior
~

for values of rlr larger than those based on Kaolin.
o

Consider the variation of the normalized effective radial stress

As rlr decreaseso
•from 100. SR increases. initially reaching a

maximum value of about 1.10 and 1.05 in the cases of the strain-space

prediction and Ladanyi's calculations. respectively. The strain-space

•prediction of SR reaches a maximum for rlro = 7. while Ladanyi's calcu-

lations reach this maximum for rlr = 15.
o

•In both cases SR becomes

negative at the cavity wall, namely, at rlr = 1.
• 0,

The normalized effective pressure p. and the normalized effective

•tangential stress Sa increase monotonically in both cases.

•The variation of the normalized pore pressure. Pf' is quite

different between the two predictions. In the case of the strain-space

prediction. the pore pressure increases as rlr decreases and the slope
o

of the curve also increases monotonically. But in the case of Ladanyi's

•prediction. although Pf increases monotonically with decreasing rlr •o

the slope increases and then decreases. reaching a constant value. This

discrepancy is mainly due to the different types of strains employed in

the two methods. The Lagrangian strain increases much faster than the

Eulerian strain as rlr decreases.
o This results in very large

Lagrangian strain components around the cavity wall. This makes the

pore pressure gradient steeper in the vicinity of the cavity wall.
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6.4.3 Predictions of a Rate Type Model

The model used for comparison is a rate type model developed by

Davis and Mullenger (1~84). The model uses among other constants a

shear modulus denoted by~. The value taken for ~ is 6.4 times the

critical state pressure. The critical state pressure is of the same

order of magnitude as the initial pressure. The values commonly used

·for clays are an order of magnitude higher than those used by Davis and

~fullenge r. Davis and Mullenger did not use material constants

corresponding to any specific material. Therefore. the materials are

different between the ~a predictions.

Figure (6.10a) shows the strain-space model prediction while Figure

(6.10b) shows the Davis and Mullenger prediction. Both predictions are

for quantities at the cavity wall. Qualitatively the two results are

similar. The main differences arise from that fact that Davis and

Mullenger use a constant shear modulus while the shear modulus of the

strain-space model is infinite at the inception of the expansion and

reduces rapidly thereafter. The stress components are ordered in the

same way for both predictions

.. .. ..
S' 2.S' 2.S'R z &

..
But the prediction of S'R is quite different between the two models

quantitatively.
..

Both ~e values of maximum S'R and the expansion ratio

corresponding to it are different between the two models. Table 6.3

shows these values for the two model predictions along with those from

Ladanyi's calculations.



o
If)

o
III

...:Iii iii ...:, iIi i ,

.....
--.].....

5';""R...... -,.,.,

' ...
""'-. .*

'- Se'. .......

./

(b)

RATE TYPE MODEL (HYPOTHETICAL CLAY)

•,
,
".­

"- ...

"'- ...

o
o.-

....
•

w
a:
::>0
<nUl
(fl •

W O

a:
n..

(flO

W lll

(l)d
(fl'
w
a:
I­
eno

a

..,

./
,/

/'
/

WQ~
a:

O

/ .*
°d ------....... Sz.. ---,--~.

STRAIN-SPACE MODEL (KAOLIN)

.*SR __-------
' .*
,

........ Sz _~ .... --- ----' ----
" ,*". Se • _,~_-_.-._-_._._---_.-

.-
o
o

....,
( 0 )

(1)0
Will
(1)0
(I) •

W
ex:
I­
(1)0

o

Wa:g I~ __
o .
n.. Q

..,

W
ex:
::J o
(I) III
(I) •

W Q

ex:
n..

OJ I oJ ......... I~ ~,
.. iii i • , , , > i
1.00 1.02 1.0' 1.06 1.08 1.10 1.00 1.02 1.04 1.06 1.08 1.10

EXPANSION RATIO ro/Ro EXPANSION RATIO ro/Ro

FIGURE 6.10 VARIATION OF THE CAVITY WALL STRESS~S.



-172 -

TABLE 6.3

I I• I r IR at •S'R maxim1Dll

I
S'R maxo 0

IStrain-space I 0.1 I 1.00S
IModel I

IIRate Type I
0.05 1.00S

IModelILadany i' s 0.8 I 1.07
Cal cuI a ti ons

The pore pressure predictions differ quite significantly in charac-

ter b~tween the two models. In both cases the pore pressures increase

monotonically with increasing r /R. But the gradients of pore pressure
o 0

differ. In the case of the strain-space prediction, the gradient of the

pore pressure is high for low values of r /R and reduces monotonically
o 0

reaching a constant positive value for the range of strains considered.

The prediction made by Davis and Mullenger shows that the pore pressure

begins with a zero gradient at r /R =: 1
o 0

and then increases,

subsequently reaching a positive constant higher than that of the

strain-space prediction.

Ladanyi's calculations show a deviation from the strain-space pred-

lction, but the deviation is in the opposite direction to that shown by

Davis and Mnllenger. At large strains, which correspond to smaller

values of r /R, Ladanyi's calculations show that the pore pressure
o 0

increase is lower than that predicted by the strai~-space model.
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6.4.4 Elastic Solution

Finally, a comparison is made with an elastic solution. Since

such a solution is only valid for small strains, a linear elastic model

is used to predict solutions for expansion ratios up to 1.01. There

were two options available for elastic modeling. These were - using a

compressible material with volume preserving deformation or using an

incompressible material. The former was chosen because the latter

requires that the effective pressure be specified independently. The

material constants E and ~ were taken to be 100 Sand 0.3,
o

respe ct i vely.

Figure (6.11) shows the elastic solt:.::ion along with the strain-

.... ...
space model prediction for the variables Pf' S'R and S'e as functions of

r /R. For the material constants and range of expansions considered,
o 0

the two results are reasonably close. For the range of expansion ratios

considered the strain depends linearly on the expansion ratio and hence

the elastic solutions are linear. Further, unlike Davis and Mullenger

prediction, the pore pressure increases fram the onset of the expansion.

The strain-space prediction shows infinite slopes at r IR = 0 because
o 0

of the infinite shear modulus at the inception of loading.

6.S S~W~y AND CONCLUSIONS

In this chapter the strain-space model is applied to a problem of

an expanding cylindrical cavity. It has been seen that the effective

pressure and the effective shear stress can be obtained in closed form.

The stress components and the pore pressure can be obtained after some
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simple numerical integration. The simple nature of the model makes

possible such a straightforward solution process.

The solutions obtained from the model are compared with;

i) available experimental results,

ii) calculations made by Ladanyi directly from the' results of

experiments bearing some similarity to the expanding cavity,

and

iii} the prediction made by Davis and Mullenger using a rate type

so i1 mode I. and

iv) tte elastic solution.

The experimt'nts show resul ts with very large scatter. Tne scatter

is due to several reasons. Usually in pile experiments the loading is

performed by introducing reaction piles and these piles are about 5 to

10 diameters away from the pile under experimentation. It is clear that

this would affect the pressure distribution around the experimental

pile. Therefore. the reliable readings are only those obtained very

close to the experimental pile.

Secondly, the measurement of stress greatly depends upon the flexi­

bility of the pressure transducers. Since soil is a soft medium. the

measuring devices itself can easily affect the stress fields. Finally,

the measurements must be made at depths sufficiently below the free

surface of the soil so as to eliminate heaving effects and local

failure. Hence. instruments have to be placed a few meters below the

ground level. This is achieved by driving the instruments into the
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A slight inclination of these tubes will

-cause large errors in locations at a few meters' depth.

In spite of all the potential sources of error in the experiment,

the solutions obtained by the simple strain-space model predict pore

pressures reasonably close to those observed from the experiments.

The second set of results used for comparison are those from

Ladanyi's calculations. The simple strain-space model prediction is in

good agreement with Ladanyi's prediction, although

constants are somewhat different.

the material

The third set of results are those from the prediction of a rate

type soil model and once again qual itatively reasonabl e agreement is

found.

It is evident from the comparisons made in this chapter that the

simpl e strain-space model is capable of predicting general soil

behavior. The simplicity of the model yields simple solutions. Hence,

the strain-space model can be applied to other soil problems with cer-

tain simplifying assumptions made to facilitate analytic solutions.
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CHAPI'ER VII

SUMMARY AND CONCLUSIONS

A simple strain-space constitutive model is developed herein for wet

cl ays. Despite the large number of soil constitutive models available,

the linear elastic solution is still popular in soil practice mainly

because of its simplicity. With the aim of simplicity in mind, the

model developed herein was based on a few physical characteristics of

soils rather than on fitting extensive experimental data. From the past

theori~s and experimental observations it was observed that the plastic

behavior of clays would depend upon a nondimensional quantity defined

herein as the over compression ratio. By defining the stresses to be

functions of strains and this over compression ratio, it has been found

that very simple functions are capable of predicting clay behavior quite

accurately. The identification and use of this key variable greatly

simplifies the formulation. Furthermore, as the model is developed in

the strain-space, the solution process is also simpler. These two

effects together make it possible to obtain closed form analytic solu­

tions for a wider class of problems.

The model was initially developed for undrained, monotonic,

triaxial loading cases. A very simple generalization was used to relax

the constant volume, or the undrained, constraint. The model that

evolved from this simple generalization has been verified by analyzing

its prediction for constant pressure triaxial tests.

tions are seen to substantiate the model.

T.nese verifica-
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Having relaxed the undrained constraint. the model was modified to

accommc,date load reversals. This was achieved by introducing a

Bauschinger-like effect in the relationship between the normalized shear

stress and over compression ratio. First. the simplicity of the model

is not adversely affected. Secondly. the model predicts the softening

behavior commonly observed in soils under repeated cyclic loadings

(shake down phenomena).

The generalized model was once again verified. The verification

was made against two independent sets of test data and the prediction of

a few other well-accepted constitutive models. The simple ~:rai~-space

model not only gives simpler solutions but also predicts the cxperlmen­

tal observations more closely than other models.

Finally, the model was generalized to three-dimensional stress-

strain states. The stress and strain tensors were defined from the

basics along the lines of nonlinear elasticity. The concept of

effective stresses was presented mathematically and the model was

generalized in a simple manner within the framework of these defini-

tions. The generalized model was then tested by using it to solve the

problem of an expanding cylindrical cavity. The model prediction was

compared with two other predictions. with a linear elastic solution and

with some data obtained from pile tests. The prediction of

model agrees qualitatively quite well with the other

the simple

models. A

quantitative ~omparison is not possible because of insufficient data on

the material s used in the other predictions. However. all the
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predictions are for normally consolidated clays. The pile test data are

also p~edicted quite well by the model.

In summary, a simple model to predict the constitutive behavior of

wet clay has been developed herein. The model is sufficiently general

to handle any loading and has been tested for validity against experi-

mental data. In order to use the model, the numerical values of three

common material constants, A, ~ and M are necessary. These constants

are obtained from a simple undrained or constant pressure shear test and

from a one- or two-dimensional consolidation test. Such straightforward

derivation of the constants renders the model very attractive in solving

engineering problems.

In the strain-space formulation the undrained problems turn out to

be a simple case. The stress under general circumstances depends upon

the current void ratio, shear strain and a memory variable. When the

deformation takes place under undrained conditions. one of the three

independent variables, namely, the void ratio, remains constant and

hence the problem is greatly simplified. Most clays have permeabilities

of the order of 10-
8 em/sec. The normal head gradients are of order

1 m/m, thus resulting in pore fluid flow rates of the order of 10-8

em/sec. For soil deformations that take place at rates of a few orders

of magnitude higher than this value, the deformation is well

approximated by an undrained deformation. For this reason, the

undrained deformation assumption is quite common for transient solu-

tions. The final steady-state solution will, of course, depend upon the

drainage properties and must be solved in all its generality. The
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problem of the pore pressure diffusion subsequent to the initial expan­

sion of the cylindrical cavity is currently under investigation. The

only solution currently available ( Randalph and Wroth, 1979 lfar this

diffusion problem is based on linear elasticity theory.

If it is desired to i~prove the accuracy of the model, a few simple

changes may be made. However, a word of caution is in order here. It

is not desirable to demand high accuracies from a model until the input

constants can be determined to the same or slightly higher accuracy.

With the current state of experimental technology, it is believed that

the model is sufficiently accurate a~ it is. Nevertheless, the accuracy

can be improved by taking more terms for the hardening functions gi~en

in equation (3.14) or for the shear st:'ess response function given in

equation (3.26). At this stage only a single term approximation is used

in both cases•.

Another place for improvement is in the load reversal formulation.

Some expe~iments indicate that the shear stress-shear strain relation-

ships do not remain sy~etric when loading is applied in opposite direc-

tions, fr~ an isotropically consolidated state. Such a benavior can be

incorporated into the model by defining two values for the critical

state constant M. One value corresponds to tensile loading; the other

corresponds to com?ressive loading. In the current mod~l these are

taken to be equal.

The model can now be applied to solve any problem involVing wet

clays. It is only through such repeated applications and the subsequent

analysis of the solutions that the advantages of this model can be
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established. The model has been formulated with simplicity in mind.

From tne starting point of determining the material constants to the end

of obtaining the solution. the model has been kept as simple and as

accurate as possible, thereby making its usage straightforward.
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