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AB STRACT

This thesis develops and demonstrates s simple strain-space consti-
tutive model for wet clays. It has been seen that a strainspace formu-
lation of the constitutive behavior of engineering materials facilitates
the solotion eof boundary value problems involving these materials.
Soil, because of its multi-phase granular constitution poses challenging
problenms in constitutive modeling, Although several stress—space
plasticity models exist for soils, they are mnot used commonly in
engineering practice due to their complexity. It is attempted herein to
develop and test & simple model which could result in simplified solun-
tions for some soil problems.

The model is based on the experimentally observed physical behavior
of soil. Certain approaches alien to conventional plasticity. are
employed so that the material behavior is closely predicted without sac—
rificing the simplicity of the model.

The model is initially developed for trisxial Iload systems. Its
predictions are then tested against other model predictions and experi-
mental data. The model is then generalized. The generalization renders
the model capasble of handling general stress—-strain states and finite
deformations.

Finally, the generalized model is used to solve an idealization of
8 practical problem. The problem of a pile driven into a soil medium is

ideelized as an expanding cavity in & homogeneous infinite medium. The
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solution predicted by the strain—-space model is compared with other

model predictions and test results.
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CHAPFTER 1

INTRODUCT ION

1.1 MCTIVATION

The term engineering is defined in Webster’s dictionary as "the
application of science and mathematics by which the properties of matter
and sources of energy in nature are made useful to man in structures,
machines, products, systems and processes.” One of the properties of
matter, specifically that of solids, that is of great relevance to this
study is its constituotive behavior. In designing and constructing engi-
neering systems it is necessary to understand their mechanical bekavior,
In order to understand mechanical behavior, it is mecessary to kmow the
local and global relationships between forces and displacements, From
past work in engineering mechanics it has been established that it is
more appropriate to relate stresses and strainms for solids rather than
forces and displacements. The stress—strain relationships define the
constitutive behavior of the solid.

The purpose of developing constitutive equations for engineering
materials is to aid the study of the mechanical bebhavior of systems made
up of these materials., Therefore, before developing the constitutive
models it is wseful to understand their role in such studies.. In order
to achieve such an understanding it is helpful to c¢onsider the common

equations governing the mechanical behavior of solids.
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The equation describing the evolution of the deformation of a solid

may be written as

azn(g.t)
div [gl(x,t)] + b = p — (1.1)
y at
where,
p 4 is the coordinate vector of an element of the solid in the
reference state,
¥y is the c¢coordinate vector of an element of solid in any

general deformed state,

gl{z.t) is the Caunchy stress tensor corresponding to a particle at

Xt
b is the body force per nnit volume acting on the particle,
p ’ is the local density of the element in the deformed state,
i is the displacement vector describing the <relative dis~

placement of the particle from its referenmce positionm, and

t is time.

Equation (1.1) must be solved along with a set of initial and/or

boundary conditions which may be expressed in the form
:c(n:ﬁt:l»t) = 9 (1.2)

In order to solve equatiom {(1.1), it is necessary to know the rela-
tionship between ¢ and §. As mentionmed previously, it is known that g

can be related to the strain temsor g more readily than to p. The
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strain tensor £ is then related to p, by the strain displacement equa-—

tions

g = gw . (1.3)

It is clear at this stage that the constitutive egquation can be in

one of the following forms:

g = alz.¥) (1.4)
or,

2 = elol) (1.5
where MS snd MG are vectors which may contain memory variables. If

equation (1.4) is used to relate the stress and strain temsors, g can be

obtained as a function of p as follows:

g = glatm) M1 .

However, if the relationship is expressed by equmation (1.5), then
to express g as & function of § or g as a function of g, an inversion is

necessary. That is,

g = & (@) ad g = z(m)

or,

g = g (@) and g = gl(g. M9 .
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Both the constitutive equation (1.5) and the strain displacement egma-
tion (1.3) are very complex for generzl cases and hence make inversionm
very difficult if not impossible. There are many cases for which an
analytic inversion is =not possible, and it is therefore mnecessary to
resort to nomerical inversionm,

From the outline presented hereto, it is evident that the
constitutive equetions formglated in the form described by equatiom
(1.4) are preferable in comparison to their alternative described by
equation (1.5). The constitutive equations given by eguation (1.4) are
termed strain-space constitutive equations since the independent vari-
gble is strain. Similarly, equations of the form given by equation
(1.5) are termed stress—space constitutive equations. Traditionally,
constitutive equations modeling soil plasticity are in stress—space,
vhich makes the solution process complicated. For this reason, it is

attempted herein to develop a strain-space constitutive model for clays.

1.2 PAST WORK

1.2.1 Strain—-Space Plasticity

Many of the recent advances in strain—space plasticity can be
traced to work done by Naghdi, Trapp and Casey on the one hand and Iwan
and Yoder om the other. Naghdi and Trapp (1975) described the
significance of a strain-space plasticity theory and proposed a model in
strain-space. Subsequently Casey and Naghdi (1981) developed this

concept. Also Yoder (1981) and Yoder and Iwan (1981) developed a
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strain—space plasticity model exploiting the similarities between the
stress—space and the strain—space formmlations. Although the work done
by the two groups show some minor differences, the basic concepts behind
the models are similar, In a recent paper, Mroz and Norris (1982) have
8lso looked into the strain—space formulations of plasticity.

Some of the advahtages found to arise from the straip-space formu-

lation are:

1) In the case of the stress—space formulation of straip soften—
ing  materials, the 1loading conditjons must be defined
separately for the stable and the unstsble regions, whereas in
the strain-space formulation a single loading conditionm is
safficient, Althongh strain softeming produces unstable
behavior, such instabilities are only local. In some receat
work dome by Abeyaratne and Knowles in nonlimear elasticity,
it has been shown that global stability can be obtained even
while local instabilities exist. Hence the unstable case is
certzinly one of interest.

2) In the case of multiple yield surface models in stress—space
plasticity, the surfaces irg not allowed to intersect.
Intersection is excluded based on the argument that such
intersections destroy the uniqueness of the solution. But it
can be shown (Yoder, 1981) that the lack of uniqueness arises

purely because the formulation is performed in stress—space.
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In the strain-space formulation, unique solutions may be

obtained for intersecting yield surfaces.

1.2.2 Soil Plasticity

Soils must be modeled as distinctively different from metals.
The reason for such treatment stems from the following observations made

on soils.

i) Volume preserving deformations produce hydrostatic stresses.
ii) Pure volume changes produce shear stresses.
iii) There is plastic behavior under botk shear and isotropic
loadings.

iv) No significant elastic region is observed.

Plasticity theory was basically developed for metals. The mechan—
ics of s0il was carried ont as ap art until about 1925. Terzaghi, based
on his knowledge of the heat flow theory and the experience he obtained
from consolidation tests on clay, published the mathematical theory of
consolidation (Terzaghi, 1923). This is considered by many as a land-
mark in soil mechanics {(Glossop, 1968). From 1925 onwards, simple
problems in soils were solved using simple solid mechanics. The solu-
tions were often borrowed from elasticity theory.

Based on the experiments performed at Cambridge University, Roscoe,
Schofield and Wroth (1958) published their findings on the existence of
8 critical void ratio. From these findings and the subsequent work done

by Roscoe, Schofield, Wroth, Poorooshasb and Thurairajak { Roscoe, et
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al., 1958, 1963a, 1963b) , Roscoe, et al. (1968) published an elasto-
plastic constitutive model for soils. Also in this paper, the Cambridge
constitutive model was presented within the conventional framework of
plasticity.

There are other models used to predict soil ©behavior. These
evolved basically from metal plasticity ideas, Dafalias (1976),
Dafalias and Herrmann (1980, 1982) developed a model based on the
concept of a bounding surface, while Prevost (1978) adapted a metal
plasticity model to soils, However, all the models wused to describe
soil behavior are formulated in the stress—space,

Despite all these coanstitutive models available for soil problems,
most practicing engineers still use linear elastic solutions, the reason
being attributed to the complexity of the  more sophisticated

constitutive models,

1.3 OUTLINE OF PRESENT WORK

The main purpose of this work is to develop a constitutive model
for wet clays which is simple enough to be used by practicing engineers,
For this purpose, the physical behavior of clay is studied from past
experimental observations. The Cambridge elliptic yield surface model
is considered as a guideline for two reasons. First, the model has a
minimun number of constants and secondly the model is developed based on
experimental observations of soil behavior, In Chapter II the elliptic

yield surface model is briefly outlinmed. From the fundamental concepts



used in the development of the elliptic model, certain deductions of the
soil behavior are made in strain—space.

Using the strain-space implications of soil behavior a simple
constitutive model is developed in Chapter III, The model is limited at
this stage to triaxial stress—strain ;ystems. Thke model is developed
starting from a simple undreined monotonic loading situation. It is
progressively genmeralized to handle all triaxial loadings including load
reversals., The model is developed through these stages without losing
its simplicity.

The axisymmetric model thus developed is applied to some triaxial
tests with and without 1load reversals. The model predictions are
presented in Chapter IV and are compared there with the predictions of
the elliptic yield surface model and some experimental data.

Having esfablished the validity of the axjisymmetric model, it is
then extended to general three—dimensional stress—strain states with
finjte deformations.' The stress and strain tensors are defined formally
for general admissible motions. The gquestion of the existence and
coingi&ence of the principal frames of the stress and strain tensors is
also addressed in detail in Chapter V.

The generalized model is applied to the problem of an expanding
cylindrical cavity in an infinite medium. The solation of the strain-
space model is compered with other predictions and some experimental

results obtained from pile tests, The strain—space predictiom is also



-9 -

compared with the lirear elastic solution for small deformations. These
results and comparisons are presented in Chapter VI,
Finally., certain conclusions regarding the straip-space model are

semmarized in Chapter VII,
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CHAPTER II

SOME FUNDAMENTAL CONSIDERATIONS IN SOIL MODEL ING

2.1 INTRODUCTION

Several constitutive mo¢e1s have been developed to study the
behavior of soils in the past two to three decades. They include
(i) single yield surface models (Roscoe, et al., 1958, Burland 1965,
1967, DiMaggio and Sandler 1971, Lade 1975, 1977, Pender 1878),
(ii) multiple yield surface models (Mroz 1982, Prevost 1978),
(iii) bounding surface models {Dafalias amd Herrmann 1980),
(iv) endochronic models (Valaris and Resd 1982), and (v) other models
(Davis and Mullenger 1978). Of these models, the single yield surface
models developed by Roscoe, et al., and Burland based on critical state
theory have the least onumber of model parameters. These models are
chosen to be reviewed inm this section. Based on the fundamental
concepts used in these models, a constitutive model will be developed
using strains instead of stresses as the independent variables. These
models, thus chosen as guides, will reguire only a few parameters for
the strain-space formulation, Since such a strain-space formulaetion is
pew, having fewer model parameters enhances the uwaderstaading of the
formulation,

In section 2.2 soil models developed using the critical state
concept are reviewed, The development of these models in stress—space
is briefly outlined. The purpose of this section is to study the basic

concepts used in these stress—space comstitotive models so as to develop



- 131 -

the foundation for strain-space constitmtive modeling of soils. Section
2.3 lays oot the implications of these comcepts in strain-space. Some
basic eguations and properties necessary for the development of the

strain—-space model are deduced in this section.

2.2 REVIEW OF MODELS BASED ON CRITICAL STATE CONCEPT

2.2.1 Background

The critical state concept was developed et Cambridge University
during the 1late 1950’'s. Roscoe, Schofield and Wroth (1958) postulated
the existence of & critical voids ratio line and verified this postulate
by means of test results on Weald clay. They also found confimmation
for their concepts in tests performed on silt and sand. Althoungh the
critical state concept and its experimental confirmation were debated at
the time it was proposed, the concept is now well accepted =as being
capable of predicting the behavior of clay. Subseguent tests on Kaolin
and London clay further reinforced the validity of the critical state
concept.

Based on the critical state concept and few other basic concepts on
soils, PRoscoe, Schofield a#d Thurairajah developed a constitutive model
(Roscoe, et al., 1963), One of the basic assumptions used to determine
the shape of the yield surface was based on incremental dissipative
energy. Roscoe, et al., assumed that tﬂé incremental energy dissipated
per unit volume of soil during a general incremental load would be the

same as the incremental dissipative shear energy at a corresponding



- 12 -

critical state. This assumption is explainmed in greater detail in
section 2.2.4. The model so developed was subsequently termed the Cam-
Clay model and will be thus referrgd herein.

The Cam-Clay model enabled the solution of simple boundary value
problems of soils, However, the non-uniqueness of the normal to the
yield surface at the hydrostatic axis led to comsiderable controversy.

Subsequently, Roscoe and Burland (1968) suggested a different form
for the incrementa] dissipative energy. He assumed that the incremental
dissipative energy during s general imcremental deformation is same as
the square root of the sum of squares of the incremental dissipative
energy considered in the Cam-Clay model and the incremental dissipative
energy dune to purely isotropic deformation. This assumption is further
explained in section 2.2.4. The yield surface thus deduced was of
elliptic shape and this model will hereto be referred to as the elliptic
yield surface model.

The elliptic yield surface Qodel has 2 unique normal everywhere in
the axisymmetric stress—space. It also predicts triaxial results more
closely than the Cam—Clay model. But there are several possible assump—
tions that can be made about the incremental dissipative energy. Each
of these assumption; would lead to a2 different yield surface, Only by
cﬁecking with experimental observations can it be determined which of

these are more suited for soils.
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2.2.2 Definition of Basic Variables

In this section the basic stress and strain variables are
defined. Using a series of simplifying assumptions described below, the
number of such basic variables is reduced from twelve to four. These
simplifying assumptions are based on the stress and strain states
encountered during common triaxial soil tests, and some postulates on
the form of comstitutive equations,

Since most tests are dome under triaxial 1load-deformation condi-
tions, it is first assumed that the stress and strain tensors correspond
to triaxial states of stress and deformationm. Both the Cam-Ciay and
elliptic yield surface models were developed imitially for this simple
case, However, the constitutive equations are then generalized to
relate 8 general stress state to a gemeral strain state.

The second assumption is that there exist primncipal frames for the

;
stress and strain temsors, &and that these frames coincide. The
existence can be proved for stress and strain tensors defined to ‘e
symmetric., The coincidence assumption is motivated by fhe conventional
constitutive laws. In metal plasticity the components of the incremen-
tal plastic strain tensor are defined to be proportional to the gradient
of 8 scalar valued functiog with respect to the corresponding components

of the stress tensor. This can be stated as

de? 25 (2.1)
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where degj and cij are the compoaents of the incremental plastic strainp
tensor and the stress temsor, respectively, in any one given frame. The
scaler function g, defined as the plastic potential function may or may
not coincide with the scalar function f which specifies the yield
surface, However, it is commom ir plasticity to defime the function g
as & function of the stress invariants rather than a fanctiom of the
components of the stress tensor in a particular frame, This can be

written as
g = S(Il(g).lz(g).13(g)) (2.2)

where Il(g), Iz(g) and Is(g) are the three invariants of the stress ten—
sor, It can be shown thzt if the frame is chosen to be the principal
frame of the stress tensor, then, the compoments of the plastic incre-
mental strain temsor in that frame would form a diagonal matrix., This
observnfion motivates the assumption that the principal frames of the
stress and strain tensors coincide.

Finally, it is assumed that ome of the principal azes coincides
with the axis of symmetry.

Under these assumptions, the components of the stress tensor in the

principal frame ¢’ can be written as

GI 0 0
@ =] 0 o 0 (2.3)
11 .
0 0 o
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%11 T °11r-
all soil theories, the compressive stresses are taken to be positive,

Let g’I coincide with the axis of symmetryf Then, As in
Since soils are three—phase media with sand grains and pore fluid,
the stress at anmy region of the material is induced by
i) the stress on the solid lattice, and
ii) the pore fluid pressure,
This observation motivates & decomposition of the stress tenmsor. The
total stress tensor is decomposed into an 'effective stress temsor’' and

a pore pressure ag
g = g+l (2.4)

where a total stress tensor
g’ effective stress tensor (stress on solids)
Pe pore fluid pressure,

It has been verified that constitutive eqguations relating the
effective stress to soil deformation predict soil bDehavior more
accurately than those using the total stress. Hence, only the effective
stresses will be used herein.

Let the first invariant of the effective stress tensor be termed

the effective pressure and be denoted by p, Then

P o= 5 (o +200.7) . (2.5)

Let a neasuré of shear stress be denoted by q and defined as
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q = (cI’ - GII') . {2.6)

Any symmetric stress state with one of{ the principal axes coinciding
with the axis of symmetr& can thus be completely described by the vari-
ables p and q. The two—dimensional space defined by the variables p and
q will be referred to as the 'Cambridge stress space,’

By the assumptions made in this sectiom, it is implied that the
strain tensor is also axisymmetric amnd g'I coincides with the axis of
symmetry. This results in the principel components of the strain tenmsor

beimg given by

SI 4] 0
e'
(g) = 0 ery 1] (2.7
0 0 e11T
where
11 T frir

Let the incremental volumetric and shear strains be denoted by bv
and O8e. These varisbles are defined in terms of the incremental

principal components of i as -

8v = bde, + 2b6e : se = % (681 - Be

1 II ) . (2.8)

II

The sign convention used for strains is such that the compressive

strains are taken to be positive,
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The void ratio e is defined as the ratio of the volume of voids in
the so0il to the volume of solid particles in the soil. Further, the
solid soil particles are assumed to be incompressible. If V end BV

denote the total volume of soil and its corresponding increment, then
vV = Vs(l + e) , (2.9)

where Vs is the volume of the solid components, It follows from

equation (2.9) and the definition of 8v that

be (2.10)

dv = - %¥

The ratio of effective shear stress to effective pressure is customarily

denoted by 7

n = gqfp . - (2.11)

The incremental strain variables 6v and 5e are assumed to linmearly

decompose into recoverable and plastic components according to the form

5v. + ByY

r

bv
. (2.12)

Se + deP

it

be

2.2.3 Fundamental Physical Concepts
The Cam-Clay mode! and the elliptic yield surface model are
developed based upon four fundamental physicel concepts related to

soils.
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i) Normal consolidation and eiastic swelling.

ii) 'The critical state concept.

iii) The boundary surface concept,

iv) Zero elastic shear strainms.

i} The behavior of soils during isotropic consolidation is =as
shown in Figure (2.1a). The plastic compressive loading is termed as
'normal consolidation’ and will be referred to by that phrase herein,
When the material is allowed to expand or swell, the path it takes is
referred to as 'elastic swelling.' The word elastic is unsed because the
forward and reverse paths are very close together and hence can be
treated as one,

Terzaghi observed that both the normal consolidation and the swei-
ling Iines can be well modeled by 1logarithmic relationships. He

proposed that for normal comsolidation,

A (A/
e = e - A loge p pt) {2.13)

The hat and the suffix r denote the values of the corresponding vari-

ables along the normal cossolidation line and at reference state,

respectively. This idealized relationship is shown in Figure (2.1b),
1i} The critical state concept proposed by Roscoe, Schofield and

¥roth was motivated by the following observations:
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a) Soil is a granular medium exhibiting sticking and tearing at
the solid-solid contacts. Thus, its behavior would resemble that of a
friction material. This would mean that when the effective shear stress
to effective pressure ratio, 7n, reaches & particular value the material
would nndergo internal slipping. Suchk internal slipping will prodace an
overall flow behavior. This state where the s0il sample coptinuously
deforms as a frictiopal material while p, q and e remain constant is

defined as the critical state. This implies that at critical state
q = Mp (2.15)

where M, the critical state constant, is analogouas to the frictional
constant,

b) All soils are three—phase mixtures of solid and pore fluid. As
the void ratio increases, the ratio of pore flunid to solids increases as
well. At large void ratios it is thus possible for the mixture to
behave more 1like a fluid., It was postulated by Roscoe, et al, (1953)
that there exists a finite value of void ratio, depending upon the pres-
sure, at which the material begins to flow as a frictional fluid. From
experiments performed on Weald clay, London clay and Kaolin at Cambridge
University, it was found that the relationship between the critical void

ratio and c¢ritical pressure can be given by

e, = e~ loge(pc/prc) (2.16)
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where the suffices ¢ and rc¢ indicate the values of the corresponding
variables at the critical state and at a reference critical state,
respectively.

It should be noted here that the projection of the critical state
line on the logep—e plane is parallel to the normal consolidation line.
Figures (2.2a) and (2.2b) skow the projections of the critical state
line on the p—q and logep-e planes, respectively.

iii) Roscoe, et al. (1958), motivated by Hvorslev's (1937) work on
shear stress at failure, plotted in p. gq, e space, 211 the states
reached by normally consolidated satunrated remoulded clay under a véry
broad range of loading. They found a limiting surface within which lay
all these states. This surface was kence termed the 'state boundary
surface.’ Al]l states plotted lay either on or within the state boundary
surface, Thus, this surface defines the 1imit of the states that can be
realized by the clay. A portion of this surface is shown in Figure
(2.3). The intersection of this limiting surface with the p-e plane
satisfies Terzaghi’'s equation (2.13).

iv) Finally, it is assumed in both the Cam-Clay and elliptic
yield surface models that there are no recoverable shear strains.
Roweveer, the models assume that recoverable shear stresses exist. These
assumptions imply that the material is rigid-plastic in shear. Roscoe
and Burland (1968) propose a method of predicting plastic shear strains

for load paths within the yield surface, thereby producing plastic shear
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strains for shear stresses less than the corresponding yield value. But
this method does mnot follow directly from the model, and is rather

involved.

2.2.,4 The Development of Stress—-Space Comstitutive Equations

From Terzaghi's equations (2.13) and {2.14) &and void ratio—
volumetric strain equation (2.10), the recoverable apd plastic incremen~

tal volumetric strains can be given as

r _ K &
Svi = ite p
A=K b1
_ S 2P
and, svF = 1re A (2.17)

The ratio of incremental plestic volumetric straim to incremental
plastic shear strain is denoted by the variable $. From the essumption
of zerc recoverable shear strain and the definition of ¢ it follows

that,

and, sef . (2.18)

fi

@
ik
o>y

The yield surface, described by the scalar function f, is dependent
a it
on p, q and p, This dependence is implied by the boundary surface

concept. Hence, f can be written as
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A
f = f(p,q,p) (2.19)
Consistency implies that,
A
5 = gy g U - 0 . (2.20)
op 2q 3p

Assmming associative flow

L]

ET5
B

= (2.21)

Q:lc»
F-R L
o
)

From the definition of the variables P and n and equations (2.20) and

(2.21) it follows that

. (2.22)

N
$p _ &p [ _6m_
‘l'; p T+

Since § denotes, by the associative flow rule, the slope of the
yield surface, the determination of § determines the yield function f.
Both the Cam—Clay model and the elliptic yield surface model assume that
9 is a function of n. The functional form of § is determined in both
models from energy arguments. This derivation will be briefly outlined
below, first for the Cam-Clay model and then for the elliptic yield
surface model,

.During the incremental deformation of & soil cortinuum, the energy
transferred to a uvnit volume of the soil lattice by the forces acting on

the continuom can be given by
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" T
S8E' = Tr(g'sg’) . (2.23)

For a triaxial load deformation system, equation (2.23) can be re-

written in terms of the components in the principal frame as

¥ ’
SE' = aIBaI + ZuH&sH . (2.24)

In terms of the variables used herein, 3E’ can be expressed as
8E' = pbv + gée . (2.29%)

Further, the incremental energy SE’ is decomposed into recoverable

and dissipated incremental energies, denoted by &5U and oW, respectively.
8E' = &U + &¥ (2.26)
The recoverable energy can be given by
80 = pdv" + gda® (2.27)
and the dissipated incremental energy by
W = p3vP + g8ef (2.28)

Both the Cam~Clay and elliptic yield surface models sassume certain
properties of 5W and use them to derive the function ¢.

The Cam—Clay model assumes that the incremental dissipative énergy
for a gemeral increment is the same as the total shear energy
transferred at the critical state having the same shear stress. This

assumption leads to
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8W = Mop B¢ . (2.29)
Equation {2.29) results in & ¢ given by
¢ = M-1q (2.30)
whick in turn corresponds to a yield surface described by
A A
q-Mp Ioge (p/P) = f£(p.q,p) = 0 . (2.31)

Roscoe and Buriand (1968) proposed that the incremental dissipative
energy during a general incremental load can be given by the square root
of the sum of squares of the incremental emergy at the critical state
ﬁsed in Cam-Clay theory and the incremental dissipative energy due to

the isotropic deformation. This assumption led to

3W = p \/(svp)z + Mz(sep)2 . (2.32)

Egquation (2.32) results in a ¢ and corresponding yield surface given by,

e
¢ = -—-"—h (2.33)
~Nn N

Wpl + & -¥pp = flpaep = 0 . (2.34)

This elliptic yield surface model resﬁlted in prediction that fit-
ted the triaxial experimental results better than the Cam-Clay model.
Of the two critical state models, the elliptic model is nused more
commornly, The model equations for the elliptic yield surface model are
summarized in the next sectionm, It is the elliptic yield surface model

that will be used for comparisons hereafter. The yield surfaces for the
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Cam—Clay and elliptic yield surface models are showa in Figure (Z.4a)
and (2.4b), respectively,

It is worthwhile noting at this point that the interssction of the
yield surface and the critical state lime in the p—q plane takes place
for values of ;/p equal to 2 and exp (1) for the elliptic yield surface
model and the Cam~Clay model, respesctively.

2,2.5 Summary of the Constitutive Fquations for the Elliptic Yield
Sarfsce Mode

The yield surface is given by
A A
flp.q,p) = szz + q? -Mpop

A
f(p,q,p) £ 0 always.

A
a.) If f(p,q.p) < O Then, elastic loading, and

- r_ K. S5p
v 8v ite p
8¢ = 0 . (2.35a)
A
b.) 1f f(p;q,p) = 0 and
af

af af
ap8p+aq5q<0 R

them, unloading and &v and && are the same as in

ﬂ)‘ (2.3%)

A
¢.) 1f f(p;q.l’-‘) = 0 and
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then, nentral loading and 8v and 82 are the same as in
). {2.35¢)

A
d.) If f(p,q,p) = 0 end

9 of
ap &p + 2q dq > 0 ,

then

it

s = MK [ER , _2nBy
l+e {p MZ + T}2

be = 8eP = -ﬁf —-—2-1’—2—(-6—2+-—24’~§1’—5 ) (2.354)
Hl—n !.p Ml + 7

2.3 STRAIN-SPACE IMPLICATIONS OF CRITICAL STATE MODELS

2.3.1 1Isotropic Behavior

The isotropic behavior of soils is given by Terzaghi’'s eguations
{2.13) and (2.14). Since the equations only relste the void ratio and

the pressure, they can easily be inverted to zive




[ (e~ ¢ ) A 1
P = p_ex [~ (——K——r‘- + (,l( - i—)(e—er)} . (2.36)

Equation (2.36) expresses the pressure for both normally consolidated
and overconsolidated states in terms of the current void ratio, e, the

A
void ratio at normal comnsolidation e and the reference values P.oe .

2.3.2 Critical State Behavior

The stress—space model uses stresses as its independent variables
along with some variables that act as memory variables in order to
produce plastic behavior. The elliptic yield surface model uses p, ¢
and ? as the independent wvariables, At critical state, this set fails
to determine the dependent variable epsilon, uniquely. At this point,
P, 49 and 3 are fixed at their critical state value and ¢ changes
indef initely while ¢ is fixed.

If the strains are considered as the independent varisbles instead
of the stresses, e and e ealong with a memory variable : become the
independent variables. Hence, p and q will be defined by e,e and :.
Such a specification defines the material deformation and stresses
completely throngh each stage of a critical state. This is made possi-
ble because p and q are uniquely defimed by e and : at critical state
and £ varies independently. For this reason, a2 strain-space formulation
specifies critical state completely. Figure (2.5) illustrates the argu-

ment presented above in both the p—q and e—e planes.
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The critical state is identified in stress—space, as the state in
which the value of q/p, denoted by 3, reaches the value of the critical
state constant M. However, it is possible to identify or define the
critical state based uwpon the value of the void ratio. Indeed, in the
original paper in which the critical state concept is introduced
(Roscoe, et al., 1958), the emphasis is on the critical void ratio. In
strain-space, therefore, the critical state could well be defined by a
critical void ratio, denoted by °o'

It is evident from the critical state concept that . will be
either a constant or may depend upon the memory variable :. From the
projection of the critical state line on the p—e¢ plane it is clear that
e is not a constant, Hence o must be taken to be a function of :.
This implies that the void ratio at which critical state is reached
changes if and only if there are plastic deformations.

It was noted in section 2.2.4 that for the elliptic yield surface
model the ratio 3/pc is 2. Due to the logarithmic relationship between

p and e for elastic swelling and due to the fact that elastic loadings

do not change e it is clearly seen that

A
e, = e+ K log, 2 . (2.37)

The projection of the critical state line on the logep—e plane along
with the mnormal consolidation line and elastic swelling line are shown

in Figure (2.6).
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Baving established the basic framework, it is now possible to
express the stress variables at critical state in terms of the strain
varizble. The pressure at critical state can be expressed simply by

restating equation (2.16) as

e —
- T¢ c
P, = P, ©IP Y . (2.38)

Once the pressure is determined, the shear follows trivially from the

second critical state condition that n = M. This results in

q = Mp . (2.39)

It should be noted here that any straip—space formulation should satisfy

this condition by reaching q = M p without a jump as e reaches €.

2.3.3 General Behavior
Having explored the implications of the critical state model in
strain—-space for some special cases, it is now appropriate to genmeralize
these implications for a more general 1loading. In the stress—space
model, after defining the isotropic relation given by equation (2.14),
the behavior is generszlized by essuming thgt. for loadings with non—zero
shear stress increment, the relationship between p and e would still be
independent of both the instantaneous and iﬁcremental shear stresses.
This concept is referred to as the 'elastic wall concept.’
Figure (2.7) illustrates this concept, The elastic wall concept
implies that all elastic states lie on a surface whose projection on the

p-e plane is given by CD. These surfaces are termed elastic walls,
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A
Any plastic loading changes the value of e. Hence, there is &
A
family of elastic walls, each corresponding to a particular value of e,

It can thus be deduced that
N .
p = ple,e) . (2.40)

Equation (2.36) can therefore be used to determine the values of p due
A
to any general loading. The role of e, the minimum void ratio reached

by the sample doring the particular loading, is to account for memory.

2.3.4 Loading Surface in Strain-Space

Two implications of the stress—space models enable a very simple
loading surface to be established in strain-space. The first implica-
tion is that the ratio of ; and P is a constant. This implies that
(?~ec) is & constant and is given in equation (2.37), Bence, in strain-
space, for every given elastic wall which implies 8 given value of :,
the critical state lies a distance K Ioge2 to the right of g. For wet
clays this #alne of ec imposes 2 limiting state im strain—-space
corresponding to each 2.

The second implication arises from the assumption of zero elastic
shear streains. Experiments on soil (Thurairajah 1961, Ko 1966, Roscoe
and Burland 1968) tend to Qilidate this assumption, In strain—space
this assomption implies a singular loading surface. The loading surface
will be a slit parallel to the void ratio aiis. The 1loading surface .

arising from these two implications is shown in Figunre (2.8).
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A

During plastic loading the variable e changes and hence the loading
surface translates in the e—e plane without amy rotation. It is hexce
necessary to define a hardening law that will describe the =relationship

A
between ¢ and the strain-space variables e and ¢ for plastic losding.

2.4 SUMMARY

From a study of the basic concepts used in the most popular criti-
cal state models, it is clear that a model based on those concepts might
be formulated with strain as the independent variable. The basic
concepts have been used to dednce equations that would predict stresses
from strains. Having developed such & basic framework, it is possible
to develop a strain-space model.

When viewed from the standpoint of strain—space, the critical state
turns out to be a state which is completely definmed. The strain-space
loading snrface, though singular, is much simpler than the corresponding
stress—space vyield surface. The fundamental assumption om critical
state implies that the critical state lime is parallel to the normal
consolidation 1line in the logep—e plane. This resulted in a loading
surface of constant size in strain—-space. The oObservations made in this
chapter will be used to formulate a specific strain-space model for

soils. This is described in the mext chapter.



- 40 -

CHAPTER III

DEVELOPMENT OF THE MODEL

3.1 INTRODUCTION

The purpose of this chapter is to demonstrate the feasibility of
the development of a simple strain—-space model for wet clays. It is not
specifically desired to improve on the accuracy of existing stress—space
models. However, in the event of any basic physical behavior pot being
captured by the stress—space model, an attempt is made to build such
behavior into the straim—space model,

The model developed herein differs from the <c¢lassical plasticity
models., These differences are explained and justified im sectiom 3.2.1.
This strain-space model is based on a variable new to soil modeling,
namely the over compression ratio. This variable is defined and its
physical significance is described im section 3.2.2.

Based on the above—mentioned basic concepts, a model is developed
in section 3.3. The development starts off with the simple case of
undrained triaxial loading which results in only one independent vari-
able, Having developed the model for this simple case it is then
generalized to triaxial monotonic loading and finally to general
triaxial loadings allowing load reversals,

Section 3.4 lists the model equations in a concise form.
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3.2 BASIC CONCEPTS

3.2.1 A New Approach to Constitutive Modeling of Soils

The work presented herein differs from conventional plasticity in
three fundamental aspects.

i) No .decomposition is performed on stress or straim to distinm
guish elastic and plastic components.

ii) The flow is non-associative between the hydrostatic and
deviatoric components,

iii) The loading surface is singular.

i) In strain-space plastic models applied to metals, the
stresses may be decomposed musing the concept of relazation. When a
material is subjected to a2 certain value of straim, it will develop only
elastic stresses if the strain remains below the limit at which plastic
behavior begins. However, when the strains go beyond the elastic limit,
the material stresses relax to some value lower than the elastic value.
This reduction of stress from the extrapolated elastic wvalue has been
termed the relazation stress. Such & decomposition is illustrated along
with the equivalent stress-space decomposition in Figure (3.1). TFor a
general stress state, the decomposition into elastic and relaxation

stresses may be expressed as

g = g -9 p) (3.1)
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where the superscripts E and R indicate the elastic and relaxzation
stresses, respectively. The equivalent general stress—space decomposi-—

tion is

E = £E + ﬁp . (3.2)

In the cage of soils, the decomposition shown in equation (3.1)
does not apply for either isotropic behavior or shear behavior. First,
consider isotropic behavior. Although there is no finite undeformed
state, assume & state with a value of p = P which is sufficiently low
that all subsequent values of p are larger than P, Further, assume P,
to be on the swelling line. Al]l the above assumptions are made so that
the isotropic soil behavior will resemble the standard uniaxial stress
strain behavior on which the nusual decomposition is based. This is
shown in Figure (3.2).

Let the soil be loaded from P s0 that p increases and ¢ decreases.
The state point, initially moving along the swelling line, will switch
to the normal consolidation lime at the intersection of the two lines.

If the decomposition of stress holds, then,
ple) = pole) - prle) (3.3)

for state points lying on the normel consolidation line shown in Figure
(3.2) as AB. Consider & situation in which the loading is reversed at
point B, If the decomposition holds for this case, the stress strain

curve will follow BC’' on unloading since
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ple) = pE(e) - pR(eB). (3.4)

But experimental observations clearly indicate that this is not the case
and that the stress—-strain curve follows BC, It is thus clear that the
linear decompcsition fails to describe the isotropic behavior of soils
for isotropic.loading. The reason for this lies in the fact that the p—
e relationship is non lipear, Since the relationship is linear in a
logep ~ e plane, a logarithmic decomposition is required to define the
pressure,

Secondly, consider the shear behavior of soil. It has been
observed from so0il experiments (Ko 1966, Thurairzjah 1961) that soil
exhibits plasti: behavior from the onset of loading. Hence, for shear
loading, an elastic shear stress cannot be determined experimentally.
It is therefore necessary to artificially introduce a functiom qE from
which the shear stress relaxes to produce the resulting shear stress.
For this recason the shear stress is not decomposed. Instead, a total
incremental stress is defined,

ii) The second difference from the classical theory arises in the
flow rule. The mode]l developed hereafter assumes that the shear and the
hydrostatic stress dincrements may be obtained by defining two
independent hardening rules rather than bj the combination of & harden—
ing rule and a flow rule.. In the stréin—spnce theory, developed along
the lines of the conventional stress—space plasticity theory, the incre-

mental stress relaxation is defined by
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do?. = dk a6 (3.5)
ij de. .
1)
where,
dcgh Components of the relaxation stress tensor
dk Scalar corresponding to a characteristic incremental
stress
G Compl ementary potential functicn
81} Components of the strais tensor.

The method proposed herein defines each total stress increment
independently, For the simple triaxial case this leads to

dp = dk
(3.6)

dn = dk .
Equations (3.6) along with the incremental relationship given below

i

can be used to find dq.

da
q

=

+ 4o (3.7)
P

iii) Finally, it is found that the loading surface used herein is
singnlar in the e-¢ plane., However, since the incremental pressure and
the incremental shear are defined independently, the discontinmity of
the siope at the tips poses no problem. Instead of the normal to the
loading surface, two independent hardening rules are propcsed as in
equation (3.6). Loading is defined along the lines of conventional

=

blasticity. Any time the incremental Ioad vector tries to take the
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strain state outside the loading surface, plastic behavior occurs.

Thus, the loading condition can be stated as

i) de #0 or

A (3.8)
e

ii) e = and de ¢ 0 .

3.2.2 Ovef Compression Ratio

For wet clays the normal comsolidation state and the c¢ritical
state define two limits for elastic states as shown in Figure (3.3).
Hence, it would seem natural to assume that the relative position of a
state between the two limiting states would have &z great influence on
the material behavior, Having this in mind, a dimensionless variable [
termed the over compression ratio is defined as follows:

e—e

E = e ' (3.9)

c e
C

For wet <clays, 0 ( &

I~

1, £ =0 corresponds to a normally

consolidated state whereas £ = 1 corresponds to the critical state.

The stress—space over comsolidation ratio (OCR), defined as the
ratio of the normal consolidation pressure divided by the current pres-
sure, is related to the over compression ratio as

A
(ec-e)
= expit —“??—“ . {(3.10)

o>

It has been shown in equation (2.37) that the difference between

A
e. end e is 8 comstant and is given by K loge 2. This makes the
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A
variable £ linear in e and ¢ and reduces equation (3,10} to the very

simple form

A
2 - 2 . (3.11)
P

3.3 DEVELOPMENT OF THE MODEL

3.3.1 0Undrained Behavior
Undrained deformation of soils is one of the simple cases of
analysis im strain—space. In the axisymmetric the.ory, there are two
strain—-space variables ¢ and £. For undrained deformation, ¢ remains a
constant and hence the only variable in the problem is &, Due to this
simplification, the strain-space soil model is developed first for the
special case of undrained deformation and is then extended to gemeral
axisymmetric deformations and finally to the most general three-
dimensional deformation. The fundamental assumption made in the
development of the simple strain—space model is that the incremental
behavior of wet clay can be expressed explicitly in terms of the over
compression ratio and the incremental and total strain varisbles,
First, the relatiomship for incremental pressnre 1is developed.
From equations (2.36) it is c¢lear that p is defined if42 and e are
knowa. For a genmeral strain-controlled deformation, e is given as one
of the independent variables. For the undrained case, the value of e is
a constant, To define p for nundrained deformation it is therefore

A
necessary and sufficienat to define e. Further, the irreversible



_50_

A

behavior of the material is represented by the presence of e in p, The
A

variable ¢ will be defined here in the incremental form.

A
Let it be assumed that de can be related to ds by the relation
A
de = fl(e.ﬁ) . de (3.12)

From the physical characteristics of soils it is known that

fl(e.l) = 0 . (3.13)

Equation (3.13) is obtained from the fact that at critical state e can
change indefinitely without affecting anmy other variable, Assmming that
f1 is sufficiently smooth, this function may be expressed as a Taylor

series expansion in terms of & about the critical state. Thkis leads to

£ (e,8) = 2 (e) * (1-0)F . (3.14)
1 k;, &

Equation (3.13) implies that
no(e) = 0 ,

In order to simplify the model further it will be sassumed that f1 is
well approximated by the first non—zero term of the expansionm in equa-—

tion (3.14). This results in

fl(e,ﬁ) = a,(e) . {1-8) {3,15)

From the development of the stress—space model reviewed in Chapter

IT it is seen that dp and dn are related to (1+e)de. Hence, using this
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observation in straim—space al(e) could be written as
31(9) = -b1(1+e) . (3.16)

The negative sign is included so that b, will be positive. Combining

1
A
equations (3.12), {(3.15) and (3.16) de can be defined as

Fage ~b, (1+e) (1-F) . de . (3.17)

For the undrained loading case, e is & comstant. Therefore, equa-
A
tions (3.9) and (3.17) can be solved in closed form for § and e yield-

ing,

-5, (1 + & ) (e—e )7
1 - (1‘§°) exp l 1 ‘o o }
-b, (1+e ) (e-e ) 1] !

A [
e, - l(l—&o){i ~ exp (

o
"

(3.18)

3 2

|
b
where the suffix O denotes the value of the corresponding veriable at

the beginning of undrained loading, and f = K logel. Equation (3,18}

can be combined with equation {(2.36) to give

[ (1 1 *b1(1+eo)(e-so) ) 1

P = P, ex {~ (R - :) 1(1-50) (1 ~ exp L } (3.19)
Only the first mon—zero term of the expansion for fl is considered in
developing equations {(3.17), (3.18), and (3.,19). However, if the need
arises for amy specific clay, it would be possible to include ome or
more higher order terms. Whether or not such additional complexity is

warranted will depend npon the accuracy of the available data along with
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confidence limits for the experiment, and the accuracy desired from the
model.

Next, consider modeling the shear stress for undrained loading, It
has been observed from stress-space calculations that the variable yw is
more simply related to ¢ and ¢ than is g. For this reason, it is
attempted herein to define a relationship for m as a functiom of e and
2. Having thus defiped p and n,. @ can be calculated from eguation
(2.11),

The independent varigbles in strain-space are e, g aad 2. For
undrained loading e remains a constant, Using these observations dn can

be defined as

A A A
d‘\ = Sl(e,s.e)de + 82(90390)de . (3.20)
Set g = 0 and
A
A -
gz(e.s.e) = 33(275) = 83(§) . (3.21)

These assumptions reduce equation (3.20) to the simple form
A
dn = ss(t) . de . {3.22)

Both the incremental variables d: and dn are zero at the critical
state where £ =1, This implies that gs(t) should be bounded at & = 1.

It is observed from experiments that the g—s =relationship has &
very large slope at the origin. This c¢an be used to deduce the behavior

of n around & = 0. From equation (2.11) it can be shown that



dg = ndp + pdqn . (3.23)

The valne of pressure never becomes zero; that is p#0. BHowever, for the
state of isotropic consolidation, q =0 and £ = 0, If this state is

considered as the initial state, then at that initial state
dqg = pdn . (3.24)

Thus, a very large initial slope for g with respect to ¢ also implies a
very large initial slope for n with respect to E.

For the undrained loading

A
d¢ = -de/f
which implies that
an
A 7 ® as E =20 .
de

The implications in the case of load reversals will be treated in sec—
tion 3.3.3.

The observation of the infinite or very large initial slope uander
the simplifying assumptions resnlts in

Lim

for the undrained loading. From the above observations, it is necessary
to construct a function g3(§) which is bounded at £ = 1 and unbounded =zt
the origin, To maintsin consistency of accuracy, a single term of the

expansion of 33(5) about the critical state is considered. The
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singularity at the origin is introduced by € *, @ > 0. This results in

g3(8) = ¢ .8 " (3.26)

which leads to

in = C e ® de . (3.27)

For the undrained case under consideratiom, equation (3,27) can be

integrated in closed form, The integration produces the result

c {
. _ o (1-a)

From experiments, it is evident that n(0) = 0. This implies that a < 1
for a non—trivial solutiom,

The critical state mode! implies that if the material is 1loaded
monotonically from £ =0 to £ =1, n should reach M at £ =1, Since the
material has no way of knowing any load changes that are likely to take
place in the future, it is reasonable to assume that n will behave in a
manner such that it will reach M if & reaches 1. This fact can be nused

to evaluate the constant C° and leads to
1-a
n = ME , 0 {adl . (3.29)

3.3.2 General Monmotonic Loading

For undrained loading, it was shown that d: can be given by equa-
tion (3.17). It is assumed that, for general momotonic loading, the
effect of changing the void ratio as wéll as the shear strain is to

replace (1+e)de by d[(1+e)e]l. This assmmption gives the relstionship
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A
between the incremental variables de, de and de¢ as
A
de = -bl(l—t)[(l'fe)de + ede] . (3.30)

Equation (3.30) canm also be solved in closed form, The sclution is
given by,

b

(1-%) (1—&0) exp {- 71' {(1+e)e ~ (1+eo)eo]]

fl

t
. b
o B s [—ll {(1+e(P)e(D) - (1+§(t))e(t)}}d? (3.31)
t
o

where, e = e{(t) and ¢ = g(t) are parametric representations for the
loading path. Equation (3.31) can be used to compute p and q yield-

ing

l‘ (e—go)]
P = p_ exp I~ % .

by

exp [‘ Y log 2 ’ [(1 - F,o) {1 - exp [— 1 {{1+e)e - (1+e°)s°}l ]

. b
+ Jl e__%{)_ exp {—1'1_ {(1+e(P))e(P) ~ (1+e(t))e(t)]] d‘PH (3.32)
t .
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and

by

g = M p[l - (l—go) exp [— 7 f(1+e)e ~ (1+e°)eo}]

1-a

t
. , b
B ) [-}umwns(?) - (1re(t)) a(t)}] a?} (3.33)
t
o

3.3.3 Load Refersals
The model has thos far been developed assuming the lcading to be

menotenic. In this section the model is modified to take into account
the effects of load reversals. First, the term 'load reversal' Iis
defined withip the framework of triaxial strain—space plasticity. Then,
the effects of load reversals on pressure are modeled. Finally, the
effects of load reversals are modeled for the shear stress.

The loading is defined to be "reversed” in strainmspace if

1) de changes sign and 0 ¢ £ ¢ 1, or

2) de changes sigm from negative to positive and & = 0. The first
of the two conditionms implies a reversal of the motion of the loading
surface in the ¢ co-ordinate. The second condition relates to the state
moving from the normal consolidation curve to the swelling curve in the
p—e plane.

The effect of load reversal on the pressure can be modeled by modi-
fying Terzaghi's relationship given by equation (2.36). The modifica-
tion is simple and merely involves changing the reference or initial

values of the variables to their values at the most recent load reversal
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state. This results in

[ (e—e A 1
P = P, exp {- -'7?22 + % (s - °e)}

N A
(e-eo) = (e-eo) - l(&-&o) (3.34)

where & is given by equation (3.31) with Eo'eo‘eo corresponding to the
most recent point of reversal,

The effects of load reversal on n can be grouped intc the effect of
reversal on the value of £ and the effect of reversal on the functional
relationship between n and §, The former is already dealt with during
the modeling of the effects of reversal on p. The latter needs to be
defined.

In defining the functional form of n for mOnotonic- loading, the
asymptotic value of n as & reaches 1 was used., Following the same line
of argument it will be assumed that a reversal would cause the function
for n to asymptotic to -M, Farther, it is seen from experimental
results that, just after a load reversal, q changes with an infinite or

very large slope. These give rise to
dq = h(&,&o)dﬁ
with
B((,0) = (1-a) M & ©

and
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£ > to | h(§.§o) = = . (3.35)

In order to deduce the functiom h, comsider the implications of the
Bauschinger effect. The Bauschinger effect for a simple uniaxial case
is shown graphically in Figures (3.42) and (3.4b). Analytically. the

effect can be described as follows;

=g =0 (r(O))

do = hl(a) - de whem &, o
e —¢ (3.36)
de = hl( 2' de for ~si1) {e¥g zél) (fdl)) R

where €, denotes the value of g at the last point of load reversal im

the strain trajectory. The symbol €3

¢ corresponding to the next to last load reversal point. Considering

denotes the value of the variable

Figure (3.4b), let the current state be on curve I'(n). Then, e, will be

the value of £ at the intersection of P(n) and r(n—l)’ and E 4 will ©be
the value of ¢ at the interssction of [\ 2) ang P72}
Equation (3.36) describes the stress strain behavior for a single
reversal case including the Baunschinger effect. However, equation
(3.36) can be generalized to inciude a general 1load trajectory with

several reversals by requiring that

do

h1(|a-e°!) . d¢  whenever lzl > max {!3~1l.‘so‘}

s (3.37)
hl(l zol) . de  otherwise

do

I
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In the strain-space model the easiest way to introduce effects of
load reversal on q would be through the n—%f relationship. Clearly, this
is not equivalent to implementing the reversal condition on q-s. How—
ever, as will be explained in the next chapter, it will be seen that
such an implementation results in characteristics very much 1like those

observed experimentally. Such an implementation can be summarized as

follows:
-a
dn = (1-a) M |§'§°| . sgn(dg) . d¢ , whenever lsl > max [Ia_ll s Isol}
%, "2
dyn = (1-a) M I'j;—l . sgn(de) . 4E , otherwise
where
sgn(de) = 1 if de > O
= 0 if de = 0 . (3.38)
= -1 if dg ¢ O

It should be noted that the model for load reversals presented herein is
only developed and tested for the undrained axisymmetric load case. The
extension of reversal behavier for more complex Jloading situations is

beyond the scope of this work.
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3.4 MODEL EQUATIONS

The model can be summarized as follows:

dv = de, + 2de

I II
de = 2/3(dey - depp)
. (3.39)
deyypy = depg
de = —(l+e)dv
2) If de = 0 2nd 0 ¢ £ { 1, then the behavior is elastic and
dqg = 0
. (3.40a)
- -1 .. ]
P P, ®XP |~ X (e eo)J
b) If de = 0 and de < 0 and £ = 0, then the behavior is plastic

incrementally isotropic, and

dq = O
. {3.401)

= fL
b P, exp L (e-eo)}

¢) If de # 0, then the behavior is plastic anisotropic and

de = —bl(I—E)I(1+e)de + ede]

-a
dn = (1-a) M Ig—gol sgn(de)dt whenever lgl > max{le_ll , Ieol}

-£ 1-a
= (1-a) ¥ =2 sgni{de)dt otherwise (3.40¢)
2

[ (e—e)) aal
L (o
o L K TK (e °o)j
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The principal stress variables can be found from p 2nd gq by

the relations

- _l -
oy = P~ 34 (3.41)

where

»~
i
=

Y = Y
a real and 0 ¢( ¢ ¢ 1

b1 real and > 0 .

Wherever possible; the constitutive relations &are stated in
integrated form rather than incremental form, For the case of monotonic
plastic loading, p and q can be determined in <c¢losed form and will

produce the results steted previously in equations (3.32) and (3.33).

3.5 SUMMARY AND CONCLUSTIONS

A simple strain—space model has been dgveloPed in this chapter
based on observations made from the development of some stress—space
models. Tt has been established in this chepter that a constitutive
model capable of predicting soil behavior can be developed in strain-

space.
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The model developed herein does not follow the 1lines of conven-
tional modeling of plasticity. The use of a singular loading surface
poses no problems as hardening is defined independently, rather than by
e flow rule.

The model is extended to include load reversals. This extension is
achieved very simply by incorporating an effect simiiar to the
Bauschinger effect commonly used in metals. This is accomplished in the
n-f space rather than the q—¢ space, The aim of such an approach is
two—fold. First, it correctly models the strain softening effect on gq.
This strain softening effect is achieved in the following mazmer, Dur-
ing load reversal, the Bauschinger—like effect produces & reversal
response similar to the initial n~f respomse. But the shear stres; q is
the product of n and p, and p decreases dunring this 1loeding. This
reduction in p results in the response of g becoming softer. Next, the
modifications performed on n—& do not imcrease the complexity of the
model. This is because n and & are related by a simple function given
by equation (3,38).

As seen in the formulation for thé simple case of axzisymmetry, the
strain-space formulation renders closed form analytic scolutioms for all
strain-controclled monotonic loading cases. This is not the case even
for the simplest loading condition for the stress—space model. Tke
extension of the constitutive relations to include 1load reversals is
also carried out in a straightforward manmer and does not increase the

complexity significantly,



- 64 -

The strain-space model has the further advantage that it uses only
three constants, namely, A, KX, and M. These three constants can be
evaluated by simple tests. The constants A and K cen be evaluated by
one-dimensional tests and M can be evaluated from any of the standard
triaxial tests such as the undrained or constant pressure test.

There are two other constants that appear in the model, namely
a aand bl' -These constants are assumed to be independent of material
behavior and they will be verified to be so in Chapter IV. These two
constants will hereafter be referred to as the model constants. The
constants A, K and M which are assumed to depend on the material will be

referred to as material coanstants.
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CHAPTER IV

MODEL CALIBRATION AND PREDICTIONS

4.1 INTRODUCTION

In this chapter the simple strain-space model is examiped against
two independent sets of data, one based on the experiments performed at
Cambridge University (Roscoe and Burland 1968) and the other based on
experiments performed for the International Workshop om Constitutive
Behavior of Soil held at Grenoble in 1982. In section 4.2, the material
constants are determined from the two data sets.

In section 4.3 the model constants o and bl are obtained by
calibrating the model basgd on the uncdrained Cambridge test data, and
then the results are compared with the undrained Grenoble test data, By
this exercise, the model constants are obtained and the assumption that
they are indepeadent of the material is verified.

In the following sections, the model prediction is compared to the
two sets of data under constant pressnre and cyclic loading conditions.
Wherever applicable the stress—space model prediction is also given for

comparison,

4.2 EXPERIMENTAL DATA

4.2.1 Cambridge Test Data
The data used to test the elliptic yield surface model prediction

is used here to compare with the strain—space prediction. These data
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were obtained on Eaolin. Two sets of experimental data are used herein,
The first set of data was obtained by Thurairajah (1961).
Thurairajah performed strain-controlled tests op normally consolidated
samples of Kaclin., These data were obtained unnder undrained conditionms,
Thurairajah's tests were further confimed by Loudon (1967). Loudon
carried out the strain—controlled tests at half the strein rates of
Thurairajah's experiments. The agreement of the results of the;e two
tests cleared up anmy controversy that existed on the former’s results.
The second set of data used herein is from tests performed by
Walker (1965). These were stress— controlled triaxial tests. The
specific data used herein are for the constant pressure triasxzial test.

From both the tests it has been established that for Kaolin,

A o= 0.27 (a)
K/ = 0.15 and (b)
¥ = 0.9 (e¢) . (4.1)

The accuracies of these experiments are not given; neither can they be

ascertained without the raw dats.

4.2.2 Grenoble Test Data

The test data analyzed below were prepared for the International
Workshop om Constitutive Behavior of Soils held at Grenoble in 1982,
These tests were performed under controlled conditicns on a synthetic

¢lay. Unlike the Cambridge test data, the material constants are not
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given, For this reason, it is necessary to determine the material
constants based on the test data,

Figure (4.1) shows the test results for a one—dimensiomal consoli-
dation test. These results are plotted on a2 set of a semi-log axes.
The lines of bgst fit are calculated for the loading and 1loading-
unloading paths. From the slopes of these lines the material constants

2 and K are estimated to be as follows;

A = 0.21 + 15% (a)

=
I

0.032 + 38% (b) . (4.2)

The valv: of X was obtained using the method of least squares. The
possible error in A is estimated from the accuracy of the given data., A
larger number of date points and/or more seccurate measurements wounld
greatly improve the results. Th? valwe of K is tak;n to be the
arithmetic average of the slopes of the lines AB, AC, DE and DF shown in
Figure {4.,1). These slopes show a variation of %38 about the mean.

An error estimate on the determination of L and X is essential so
that sny deviations between the experimental and model prediction can be
compared in the 1light of the accuracy of the model constants as
determined from experiment. In the case of Cambridge data, such an
estimation is not possible without the raw data for A and K.

From»the test data it can be seen that the critical state ratio, M,

should be such that
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M ) 0.78 . (4.3)

The model computations are made for
M = 0.78 . (4.4)

It is necessary to note at this point that the void ratios for the same
effective pressure varies from experiment to experiment. A sensitivity
test for the model prediction was conducted based on these variations in

the void ratio e.

4.3 UNDRAINED TRIYAXTAL TESTS

4.3.1 Model Equations

In this section the incremental constitutive eguations of the
stress—space and the strain—-space models are solved to obtain material
response. The varisbles under considerstion are e,e,p,q and n, where 19
depends directly on p and q. The models are used to determine the fol-
lowing relations;

gle) {a)
ple) . (b) (4.5)

-]
[]

From equations (4.5a) and (4.5b) the stress trajectory f(p,q) =0 and
the relationship of n with e can be deduced. Since the load case under
consideration is undrained, the variable ¢ remains constant at its ini-

tial value and is hence not shown in the relations explicitly.
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The strain—space model results in

) o (1+e°) (e-eo)>>]
q = Mpo exp {—' X (1—&0) (1—exp ("b:l — j|
[ (1+e ) (g~e ) 1(1‘““)
. {1-(1—{0) (exp (— bl—""—‘r‘*‘“‘)).ll (a)
) 2L b1(1+e°) (a-eo) ) 1
P = pD + €Xp l- K (1-&0)@--011) - l } (b) (4.6)
where,
v = A-K/r
L = /(10532
A
- £-e
S 5T

and the suffix o denotes initial values,
From equations (4.6a) and (4.6b) it follows that the stress trajec—

tory is given by,

o ja
i

-ul.n

o lo

| o |

10302 = 0 . (4.7)

e o e o iy

log, qfl) + ¥
° L

And the relationship of n with = is given by

b, (1te ) (e _-e) (-8

|
£ ]

£
no= M|@A-g) lvexp - . (4.8)
L
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The stress—space model does not give a simple explicit closed form
solution. However, it could be solved in parametric form. The equa—

tions which must be solved are

2 Y
W am>
q = pon( ) (a)

R

_M‘zz" L
+110
P = P ( ) (v) {4.9)

Wom?

where n is related to ¢ by

1+ /M
K : _ -1
o " M(1+eo) {1Oge 1-n/M 2tan ~(n/M)

£ = ¢

1+ /M
o -1
- log, —H—I'no/M + 2 tan (no/m] . (4.10)

However, the stress trajectory can be solved in closed form and yields

¥
2,2
£ +q_/p

- = 0 . (4.11)
pO ‘Mz+q2 /p2

4.3.2 Model Calibration Using Cambridge Test Data

In this section, the prediction of the strain—space model and the
stress-space model given by equations (4.6) thromgh (4.11) are compared
with experimental observations. The purpose of this comparison is to

determine the best choice of @ and bl for the strain—space model.
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The coastant o is a measure of the change in g for changes in ¢
ground By From equation (4.6a), it is seen that as (e—eo) becomes
large the influence of o diminishes. For this reason o is determined by

considering the experimental behavior around the point (so,qo) in the

(g—~q) plane, Both mode! predictions of Qéﬁl along with the data are
o

shown in Figure (4.2).

The constant b1 is a measare of the rate at which q/p reaches its
asymptotic wvalue M, Since the exponential of b1 gives the exponential
rate of convergence to the asymptote, the rate of convergence is quite
sensitive to changes in the constant bl'

When equations (4.6a) and (4.9a), (4.10) are expanded around

(so,qo). it can be found that for the straim—space model
(g~q ) ~ (&g-¢ )l_a (4.12)
° : 0 »
and for the stress—space model
-, 0.2
(g qo) (g so) . (4.13)

From Figure (4.2) it is seen clearly that the stress—space predic-
tion for g which is substantially higher than the experimental values,
This indicates that the exponent in equation (4.12) should be larger

than that of equation (4.13), implying that

a < 0.8 .
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The value a = 0.5 is found to pgive a pgood fit to the experimental
observatior in the neighborhood of (eo,qo). An involved method of
curve—-fitting leading to a more accurate determination of a is not wused
at this stage because amy higher accuracy of curve fitting would be
inconsistent with the experimental accuoracies.

Having determined a, the strain—space model prediction for q/po as
a function of & is compared with the experimental data for different
valnes of b1. Figure (4.3) shows the results for several choices of bl.
The valne b1 = 0.3 is found to give the best fit to the experimental
observations.

For large values of (e-eo) the solutions of both the stress—space

and strain-space models asymptote to
afe. = — . (4.14)

For Raolin this value is 0.49.

Equations (4.6b) and (4.9b) with (4.10) give the relationship
between p/po and & as predicted by the strain-spece and stress—space
models, respectively. Pressure data are mnot available from the
Cambridge test. Therefore, only the model predictions are compared.
These predictions are shown in Figure (4.4).

Both the stress—space and strain—-space model predictions for p

to £ = 1 for large values of (e-eo). For Kaclin, the value

asymptote 2y

o

of E% is 0.56, Since the decay rate of the strain-space model is lower

than that of the stress—space model, the strain—space prediction of the

pressure is seep to be higher than for the stress—space model. However,
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the 1lower decay rate appears more consistent with the experimental
observations presented in Figure (4.2).

The strain—space model yields & stress trajectory for nundrained
loading given by equation (4.7) and the stress—space prediction is given
by equation (4.11). Both trajectories are shown in Figure (4.5). They
each start with infinite slope ir the p/po - q/p° plane, and they both

intersect the critical state line at

p
P = "2"5‘ (l)
p
¢ = "'2_3 b) . (4.15)

However, at the point of intersection of the critical state, the two
trajectories have different slopes. The slope of the trajectory implied

by the stress—space model is given by
da . - % P (4.16)

whereas that of the straim-space mocdel is given by

da _ _ M
dp 2y Ioge2 . (4.17)

The slope predicted by the strain—-space model is smaller than that
predicted by the stress—space model by a factor of 0.721 M. For Kaolin
this factor would be 0.649. This implies that for the strain-space
model to have no change in void ratio close to critical state, there
must be pgreater reduction in pressure to shear stress compared to the

stress—space model. However, during the initial stages of loading, the



- 717 -~

strain-space model requires more change in shear stress than the stress—
space model to maintain undrasined conditioas,

From the results obtained thus far, it is evident that the simple
strain-space model captures all of the qualitative behavior of the data
and the stress—-space model. Having established this, the Grenoble test
data will be nused to further demonstrate the accaracy of the strain-

space model,

4.3.3 Comparison with Grenoble Test Data

This section mses the values for the model coastants a and bl

determined from section 4.3.2. These valves are

a = 0.5
0.3 .

o
1]

The strain—space results with these model constants are plotted with the
stress—space prediction and the test deta. The material constants used

are as follows:

A = 0.21
K = 0.032
M = 0.78 .

Figures {4.6) and (4.7) show the strain-space and stress—space
mode]l predictions of the variation of pressure along with the experimen-
tal date.

The strain-space model clesrly shows much better agreement with the

test data compared to the stress—space model. One aspect in which the
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experimental results differ from both model predictions is the imitial
increase in pressure with shear strain. It is believed that this
difference is not due to inaccurate model prediction but rather to
inaccuracies in the experimental data. If the clay was actually
saturated, it would not be possible to have such & pressure increase,
However, if the model was not completely saturated,an increase could
occur., The rest of the behavior observed experimentally is predicted
very well by the model,

Figore (4.7) shows for botk model predictions the variation of the
shear stress with the shear strain. Once again the strain-space model
predicts results which are much closer to the datas as compared to the
stress—space prediction, Jt can also be seen that the stress—space
model reaches critical state much faster than the strain—space model and
the test data.

Figure (4.8) shows the stress trajectories. Apain, the strain-
space model oprediction is better as expected from the individual p/p0
and q/po predictions, The discrepancy with the data around the
beginning of the trajecfory is believed to be due to experimental errors
as discussed above., One further effect observed in the experimental
trajectory is the slight decreese of g around critical state line. The
basic physics used in the model does not predict such behavior. If it
is found that this behavior is important, the model will have to include
some‘additional basic physical behavior. However, at this point it is
not clear whether this behavior is real or is due to experimental

inaccuracies.
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Figure (4.9) shows the variation of vy with the shear strain,

4.3.4 Model Constants
In section 4.3.2 the strain—space model was calibrated using the
Cambridge test data. From this comparison it was determined that

a = 0.5

b, = 0.3 .

These constants were postulated to be independent of the material. This
postulate has been verified by using the results of the Gremoble experi-
ments, Therefore, these constants will be assigned the numerical values
stated above and treated as an integral part of the model. This results
in there being only three constants to be evaluated for zny material and

they may be obtained from well-established experiments.

4.4 CONSTANT PRESSURE TRIAXTAL TEST

4.4.1 Model Equations

For constant pressure tests,
dp = 0 .

This condition is easily incorporated into the stress—space model es p
is one of the independent variables. For the strair-space model the

condition that the incremental pressure is zero hes to be imposed



81

i T |
L] —— STRAIN-SPACE MODFL
;17  — -—— STRESS-SPACE MODEL
® EXPERIMENTAL DATA
o
Vg]
=l
~
o \\\O U
O
w o
wn \ ®
~ 0
. - N jul
N\ o
\ o
. .
(]
o — . ] T T A4
0.00 0. 25 0.50 0. 75 1.00
P/ P,
FIGURE 4.8 UNDRAINED TRIAXIAL TEST (GRENQBLE, 1982)
R 1 i 1 1
jan]
03]
o
o
[#a]
a S
~
o
o
(48]
-
——— STRAIN-SPACE MODEL
— — STRESS-SPACE MODEL
o © EXPERIMENTAL DATA
oy - T T T
0. 00 - B8.03 0. 06 0. C9 0.12
€
FIGURE 4.9 UNDRAINED TRIAXIAL TEST (GRENOBLE, 1982}

. 25

.15



- 82 -

implicitly. However, this results in the simple incremental conditiom

that
do = Lge .
Y

This condition gives way to a closed form solution for n, given by
0.5
e,"¢
= - PP . .18
n n, (u no){{l-k)logeZ] (4.18)
The stress—space model produces the result that

0.5
[ eo-e
no= oM+ (M—no)Lexp KT l] . (4.19)

For values of e clase to e0 which implies state points c¢lose to the ini-

tial state, equation (4.19) can be approximated as

0.5
eo—e
o= ong ¢ (”"‘o)(x-xl . (4.20)

From eguations (4.18) and (4.20) it is clear that the two models behave
very similarly close to the ipitial loading state and differ only by a

scaling constant of

1 _1\0.5 _

Once again, the strain-space model provides an explicit closed form

solution for the relationship between n and e given by
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0.5
-0.3{(1+e)e~(1+e e 1 7"
60O _. 0.5
n=m + (M—ﬂo)[l—exp X Tog2 ] (1 co) . (4.21)

However, the stress—space model yields only an incremental solution

which cannot be integrated in closed form. This stress—space resnlt is

given by
Ak
- - )u- . »
e~g_ = f 17e 1 dqn (4.22)
n M -n

where ¢ = e(y) and is given by eguation {4.19).
For the strezin-space model, the strain trajectory mnecessary to
produce constant pressure is found te be given by

-0.3[(1+e)e—(1+eo)£°]
A loge2

e, ~ &= (A—K)(logOZ) . (1*§°)[l-exp

] (4.23)

For the stress—space model, the constant pressure condition results in e

and z related by

¢.5

3 °0 ¢
e Z(M—qo) {exp kﬂK-I] / (1+e)
e-e_ = -'J' ' . 2 . de (4.24)
o 4 4 o
(A=) (M ~(M no) [exp oy 1} ]

1

4,4,2 Comparison with Cambridge Test Data

The results of the calculations for n(e) made with the stress—
space model and the strain-space model salong with the test data of

Walker (1965) are shown in Figure (4.10). It can be seen from this
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figure that both models predict results in agreement with the experimen—
tal data, the stress—space model predicting the experimental observa-
tions more closely around the inception of loading and the strain-space
model predicting better elsewhere.

From equaticns (4.,18) and (4.19) it is seen that both predictions

of 1 reach the critical state value, M, when
(eo—e) = (A-K) Ioge2 .

For Eaclin this value is 0.155, and M is 0.90. The experimental data,
though not esvailable for walmes of(eo - e)close to 0.155, indicate that
this could be am accurate prediction for (eo - e) at critical state.

Figure (4.11) shows both model predictions along with the test data
for the function w{e). The stress—~space prediction of n for any given
value of ¢ under constant pressure lcading is somewhat higher than the
experimental values while that of the strain—space model is somewhat
lower. The closeness of prediction of both models to the experimental
observations 1is comparable, It 1is seen that the strain—space model
prediction of n with e lies above the stress—space model prediction in
the (n,e} plane, whereas in the (n,e) plane the strain-space model pred-
iction lies below the stress—-space model prediction. The reason for
such a change is clearly seen by observing the strain trajéctories for
constant pressure conditions implied by the two models.

The trajectories given by equations (4.23) and (4.24) are plotted

in Figure (4.12). From equation {4.23) it is seen that



85

~ T T T T
<
o :
Q
N
ao i
~
o
[Sp)
N
o .
6’ ~———— STRAIN-SPRCE MCDEL
— — STRESS-SPACE MCDEL
= © EXPERIMENTAL DATA
< = T T T -
0. 00 8.-83 0. 086 0.09 . 0.12 g.15

le, —¢e)
FIGURE 4. 10 CONSTANT PRESSURE TRIAXIAL TEST (KROLIN)

[ L T ¥ L i
—‘______.__.-

—— STRAIN-SPACE MODEL
. — — STRESS-SPACE MODEL
8 @ EXPERIMENTAL 0ATAH
o T T

0. 00 0.05 . Q.10 o oS 0.20  0.25

FIGURE 4.11 CONSTANT PRESSURE TRIAXIAL TEST (KRCLINJ



86

—— STRAIN-SPACE MODEL
\ - — — STRESS-SPACE MODEL

1.

T A

20 1. 24 1. 28 1.32 1.36

FIGURE 4.12 STRAIN TRAJECTORY FOR THE CONSTANT

PRESSURE TRIAXIAL TEST (KAQLIN)



_87_
€ 2> as (eo -e) = (MK 10g°2 .
For the case shown in Figure (4.12) this occurs when
e = 1,20 .

The numerical evaluation of equation (3.56) shows that the asymptotic
value of e for the strain—space model is also 1.20. However, the
stress—space model, due to its faster rate of reaching critical state,
reaches the asymptote faster than the strain~space model.

The reason for the stress—space prediction being btelow the strain—
space prediction in the (eo~e)-q plane but above tie straim~space pred-
ictiom in (e-m) plane is found in the strain trajectoric: predicted by
the two models. For a given value of (eo-e). the corresponding value of
¢ for the strain-space model is much larger than that of the stress-
space model. This effect re;ult; in the stress—space prediction of the
(n,e) relation being pushed towards larger ¢ compared to the stress—
space prediction. Since the two curves are c¢lose together in the
(eo—e)—n plane, the effect of the strainm trzjectory is large; in
magnitnde and hence pushes the strain—space curve in the (e~n) plane

below the corresponding stress—space curve.

4.5 CYCLIC LOADING TESTS

The soil models commonly in use fail to predict cyclic test results
very well, “The stress—space model considered herein fails to predict

any hysteretic loops, For this reason the experimental observations are
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compared only to the strain-space model. Load reversals considered
herein are only for undrained conditioms. Such an analysis has a wide
scope of application for most reversals encountered commonly in
practice, For example, earthquake loads have periods much smaller than
thet of the drainage time for most clays. When the material is subject
to one cycle of such high frequency load it would not have drained by
any significant amount. Therefore, the assumption that the respomse is

undrained is well justified.

4.5.1 Model Eguations

For load reversal under undrained conditions,

-b1(1+eo)(s—ao)

§E = 1- (1-§o) exp ( (a)
PR
e = e - fz (b)
-b,(1+e )(e=-g )
P = p, exp {%§1(1—§0)(1-exp 1 ? 2 )] (¢)
_ a
dn = (1-a) M 1+c°l sgn(de) . d& (d) (4.25)
where,
y = (=K [ A
[ = K IogeZ
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]
n

0 if [el > max [le_ll , ]eoll

1 otherwise
e = valne of ¢ at the last lineup of load reverssal
Ey, = of £ at the point of load reversal before the last omne.

4.5.2 Comparison with Cambridge Test Data
Monotonic undrained test results of Roscoe and Burland (1968)

were used to calibrate the strain-space model in section 4.3.2. In this
section small load reversals are imposed on the previously monotonic
lcading. The strain;space prediction along with the experimental
observations for the loading with reversals are shown in Figure (4.13).
The model prediction is remarkably close to the experimental observa-
tions. It is not surprising that the monotomic parts of the curve are
well predicted as the model has been calibrated for monotonic loading.

Several salient aspects observed experimentally durimg load
reversals are well captured by the strain—space model. These are:

1. As the loading progresses, the hysteresis loops become 1larger,
This is achieved by the model because of the proximity of the latter
points of reversal to the critical state, As the material gets closer
to the critical state, the pressure reduces. Since the shear stiffness
predicted by the model is proportional tc the pressure, the reduction in

pressure results in softening, This gives rise to larger hysteresis

loops.
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2. On load reversal, when the shear strain returns to the value at
which the loading was reversed, the shear stress reaches a value lower
than the value at the inception of load reversal, This is seen in both
the experimental observations and the model prediction. The Bauschinger
effect by itself implies that on return to the initial strain, the
stress would be the same. But the strair-space model applies the

Bauschinger effect to the (n,f) relationship, Since

9 = 1. PFr .

and during a complete loop the pressure would have decreased, the wvzlue
of q would be 1less on return although the value of n is the same on
return,

On continued loading after a reversal, the straio-space model
exhibits & discontinuity in the slope, whereas the experimental observa-
tions imply a smooth curve, The discontinuity arises because of the
switching condition described in equetion (4.25). However, as the
hysteresis loops get larger, the discontinuity on the slope reduces

significantly.

4.5.3 Comparison with Gremoble Test Data

Next, the straip-space model is msed to predict cyclic behavior
between fixed strains., This prediction is compared with the test data
prepared for the International Workshop on Coastitutive Behavior of
Soils held in Grenoble in 1982. The tests were performed under

controlled conditions on a synthetic cley. Figures (4.14a) and (4.14b)
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show the test data and model prediction, respectively, for the variation
of the octahedral shear stress with axial strain,

The model predicts shakedo;ﬁ and a limit cycle. But the shakedown
predicted by the model is very rapid at the beginning and heace reaches
the limit state more quickly than the test data. The rate of shakedown
depends greatly on the pressure behavior.

The limit cycle is reached between 45kPa and -36kPa for the test
dats and between +35kPa for the model. The maximum stress reached is
60kPa on for the test data and -59kPa for the model prediction. These
vzlues are within allowable errors. More importantly, the basic
characteristics seen in the test data are all captuted by the model
except for onme,

From the test data it is seen that, on reversal, the material
reaches an octahedral stress of 60kPa which is higher tham the stress at
reversal, 55kPa. This implies a kinematic hardening of a2 negative sense
combined with isotropic hardening, That is, the center of the loading
surface moves‘in & direction opposite to that of loading. This is very
uncommon ir conventional plasticity., Unless such a hardening is built
into the strain-space model it will not predict swch higher stresses on
reversal. However, the experimental observations made by Walker shown
in Figure (4.13) do not show the effect observed in the Gremoble test
data. As such, more experimental dats are necessary to make any conclu—

sions regarding this negative "kinematic” hardening,
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One other possibility is that the material behaves differently in
compression and in tension, The material may have different values of M
in tension and in compression. From the experimental data if it is seen
that ipdeed this is the reasonm, then the value of M would be larger in
tension than in compression. This can be very simply included in the
model by replacing M by either M; or Mc, depending on whether it is ten-
sion or compression, respectively.

In Figures (4.15a) and (4.15b) the Grenoble test data and the
strain-space model predictions sre shown for the variation of pressure
with straim. It is seen that the strain-space model predicts shakedown
but at a rate faster tham that of the test data. This can, however, be

improved by making the model calibration constant b, depend on strain,

1

A second and more important difference arises from the loops
described by the test data. The strain-space model does not predict
these loops because fhe plastic variable t is modelled to vary monoto#i-
cally with cyclic variations of ¢. According to Terzaghi’s equation, p

A
depends only on e and e, For undrained loading the relationship further

simplifies to

N
r = ple) .

A .
From the modeling of plastic hardenimg, & is expressed as a function of

~
e. The relationship given by Terzaghi for p as a function of e is mono—
tonic, Hence, it follows that for there to be loops in the p-z plane,

A
de should change sign depending om the change of sign of de. More data
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substantiating such pressure loops would be necessary to build such an

effect into the strain—space model.

4.5.4 Comparison with Other Models

In this section, the strain—-space model is c¢ompared with two
stress—space models for the case of cyclic loading between constant
strain limits described in the previous section. The models used in
this comparison are,

i) The Dafalias-Herrmann model (Dafalias, 1979; Dafalias, et al.,
1980, 1982). This model is based on the bounding surface theory
developed by Dafalias, It has nine material constants,

ii) A critical state model by EHoulsby, Wroth and Wood (1982).
Boulsby, et al., developed a model based on the modified Cam—Clagy model,
incorporating Hvorslev's failure criterion. This model is named by the
authors as the Roscoe-Hvorslev model. This has six material constants.

The material constants used in the Dafalias—Herrmann model are;

1. Slope of the normal comnsolidation line in the Iogep-e plane, A.
2. Slope of the elastic swelling line in the Iogep-e plane, K.

3,4. Critical state constants, Me'"c'
5. Shear modulus, G.

6,7. Characteristic lengths of the bounding surface, Re'Rc'

8,9. Another set of characteristic lengths of the ©bounding surface,

A LA
e’ e
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The Dafalias—-Herrmann model predictions shown here are from the

paper presented by Dafalias, et al., at the Grenmoble workshop (1982).

The values used for the material constants are given in Table (4.1).

the

TABLE 4.1

0,20 10,1 0.8 10.78 12,0 12.5 10,02 {10,022 }15 MPa

The material constants used in the Roscoe-Hvorslev model are:

Critical state constant, M,

Slope of the normal consolidation lime in the logcp - logev plane,
v,

Slope of the elastic swelling line in the logep - logev plane, K*.
Shear modulus, G.

Critical specific volume at unit pressure [.

Bvorslev surface intercept a.

The Roscoe-Hvorslev model predictions shown herein are taken from

proceedings of the Internastional Workshop on the Constitutive

Behavior of Soils, held at Grenmoble in 1982, These predictions are made

by the proponents of the model, namely, Houlsby, Wroth, and Wood. The

values wsed for the material constants are given in Table (4.2).
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TABLE 4.2
M A K* G r a
0.74 0,1225 0.0165 TMPa undeter— 0.141
mined

The strazin-space model, as described herein, wuses solely three

material constants.

They are:

1. Slope of the normal comsclidaticn line in the logep - ¢ plane, A.

2. Slope of the elastic swelling line in the loge ~ ¢ plane, K.

3. Critical state comstant, M,

The valnes of these three constants are shown in Table (4.3).

Figure (4,16) shows the variatjon of the shear

strain. The

TABLE 4.3
A K M
0.21 0.032 0.78

S ——— ——C— ———

stress with

loading is between constant strain limits of +0.010.

figore contains four curves. These curves are predicted by,

i)
i1)

iii)

The Grenoble experimental data,
The Dafal ias~Herrmann model,

The Roscoe-Hvorslev model, and

axial

The
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iv) The strain—-space model,

The bounding surface model predicts octahedral stresses much higher
than those observed experimentally. Although the experimental results
clearly show that the maximum stresses decrease as the loading
progresses, the bounding surface prediction shows a large increase in
the maximum compressive stress during the initial cycles.

The Roscoe~Hvorslev model predicts cycles that get smaller in the
strain direction and larger in the stress direction. Thkis produces the
result that, as the material is loaded between constant strairz limits,
the octahedral stress limits keep increasing. This is again contrary to
the experimental observatioms.

By comparison with the bounding suvrface model prediction and the
Roscoe—Hvorslev model prediction, it is seen that the straip—space model
prediction is much closer toc the experimental observations,

A main feature observed in several experiments is missing in the
predictions of both the Dafalias-Herrmann model and the Roscoe-Bvorsiev
model, This feature is the infinite slope in the e—q plame just after
reversal, Both models fail to predict this because of the usage of an
elastic shear modolus. This problem does not arise in the strain—space
model because it does not vse an elastic shear modulus.

Figure (4.17) shows the variation of pressure with axial strain
during cyclic loa&ing between constant strain limits, The predictions

of the three models are shown along with the experimental data.
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The bounding surface model shakes down monotonically in pressure.
The 1imit cycle is reached at a pressure valwe of 281kPa, This is much
higher than the value of about 120kPa observed from the experimental
results. The pressure reduces by large steps during the initial cycles.
As the loading progresses, the reduction in pressure becomes smaller.
The initial pressure rednctions are about the same as those cbserved
experimentally.

The Roscoe—~Bvorslev model predicts a shakedown in pressure which is
also monotonically decreasing. The final value reached is 236kPa
compared to the mean value of about 120kPa observed from the experimen—
tal results. This model also predicts a large reduction ir pressure
initially but the amount of reduction decreases rapidly as the nmber of
cycles increases.

Again, the strain-space model yields better predictions than the
other two models, All of the models predict a monotonic decrease in
pressure which contrédicts the looping seen in the experimental data.
The predictions of the values of the pressure at limit cycles are given
below for the three models, as a percentage of the mean 1limit cycle
pressure cbserved experimentally.

Bounding surface model 234%

Roscoe-Hvorslev model 197%

Strain-space model 158%
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4.5.5 Comparison for Cyclic Loading Between Constant Stress Limits

The comparison made herein is based on test data for cyclic load~
ing between constant stress limits. These tests were also performed for
the International Workshop on Constitutive Behavior of Soils., There are
three load cases in this test as listed in Table (4.4). The variables‘

tl and T, denote the stress limits in terms of octahedral stresses.

TABLE 4 .4

| | Consolidation | Cell t | | Void Ratio |
|Load Case | Pressure | Pressure | 1) 2 Af ter |
! ! kPa ! kPa ! kPa ! ¥Pa ! Consol idation :
BB i ] | ] 1 L}

: 1 } 400 } 400 } -27.8 = 30.6 ! 0.720 :
: 2 E 400 = 400 }"37.7 : 42 .4 } 0.713 :
' 3 I 400 ' 400 [-47 1 | 52.8 l 0,745 l
| | | R R

The values of the void ratio after consolidation for those 1load
cases shown in Teble (4.4) differ significantly from those given in the
previous cases. The void ratio values given in the monotonic loading
cases under the same consolidation pressure of 400kPa were 0.665 and
0.670. The maximum discrepancy in void ratio for a consolidation pres-
sure of 400kPs is 0.080, which is 11.4% of the mean value. When making
comparisons, these experimental inconsistencies must be taken into
consideration.

Figures (4.18) a, b and ¢ show the extremum axial strain values
reached during each cycle as a function of the logarithm of the number

of cycles, N. Figures (4.18) a, b and ¢ represent load cases 1, 2 and 3
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respectively. Denocte the extremomm axial strain values reacked in
compression ;nd in extension during the Nth cycle by ec(N) and Be(N).
respectively. The following wﬁbservétions can be made from Figures
(4.18) a, b and c.

It can be seen that the model predictions for all three load cases

show that;

a) ee(N) increases monotonically with N,
b) ec(N) decreases initially with N and then increases with N.

c) ec(N) becomes positive beyond & certain value of N.

The experimental data, on the other hand, indicate that ee(N)
increases with N, while ac(N) decreases vith N. Load case 1 shows very
low values of ee(N) and ec(N) for all the values of N considered. But
in load cases 2 and 3 this effect is seen very prominently. This
discrepancy is to be expected because of an assumption made during the
development of the model.

The reason for the discrepancy between the model prediction and the
experimental observation is better explained with the aid of some
figores., Figure (4.19) shows the model prediction for the load case 1
in the g—v plane. Let the term ‘forward path’ denote that part of the
cycle corresponding to increasing strain and stress and 1e£ the term
'reverse path’' denote the rest of the cycle corresponding to decremsing

strain and stress,
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From Figure (4.19) it is seen that the model predicts limit cycles
after about 5 cycles, Further, it can be moted that the strain incre-
ment Ae+(N) in the forward path is larger than the strain decrement
Ae (N) in the reverse path of the limit cycle. This difference clearly
results in 2 linear increase in the values of ae(N) and ec(N) with N,
for values of N larger than the limit cycle value,

It is also seen from Figure (4.19) that the prediction softens.
This would result in the difference (ee(N) - ec(N)) increasing with N up
to a value corresponding to the limit cycle, Such a softening temds to
increase se(N) and decrease sc(N). During the first few cycles the
softening effect dominates over the shifting effect arising from the
difference betwe:n Ae and Ae . Hence, se(N) increases and ac(N)
decreases for low values of N depending on the loading case, But as
loading progresses, softening reaches its maximum limit and the shift
effect dominates, thereby increasing both ee(N) and ec(N).

This shift is reduced if the forward stiffness increases while the
reverse stiffness remains unchanged. This type of behavior is shown in
Figure {4.20). This can be achieved in the model by simply increasing
the velwe of M for the forward path. Ian that case the model would
predict strain extrema such that ee(N) increases with N while ec(N)
decreases with N.

A second observation relates to ec(;). The value of ec(l) should
coincide with the value of strgin obtained from & monotonic loading test
corresponding to the same stress. This must be the case because the

material has no way of knowing the difference between a losding which
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will be continued monotonically and one which will be reversed. There—
fore, it is possible to compare those values of ec(l) for the different
loading cases with those cobtained from the monotonic loading case shown
in Figure (4.7). The strain values corresponding to the monotonic load-

ing case are shown in Table (4.5).

TABLE 4.5
Load case Stress value (g) at Strain from
first reversal (kPa) q’Po monotonic data
1 ' ~ 59 -0.15 0.0019
2 - 80 -0.20 0.0038
3 =100 0,25 G.0060

The values of ¢ tabulated in Table (4.5) are shown by horizontal 1lines
in Figures (4.18) a, b and c. It is also known that during cyclic load-
ing in shear, soil samples soften. This fact is further substantiated
by the experimental data shown in the previous section. Therefore, the
initial strain limit ec(l) should lie on the line correspoading to the
monotonic loading value of £, and at least one of the two straim limits
ec(N). ee(N) of the subsequent cycle should Iie outside omne of those
lines, This is not the case for the experimental data except for load
case 3, This is clearly 2 contradiction. For this reason the experi-
mental data in this case are suspect.

Fipnally, it is interesting to compare the strain amplitudes {peak-

to-peak) at limit cycle. The limit cycle amplitudes of the strain-space
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model predictions are compared with the maximum amplitude available from

the experimental data. These values are presented in Table (4.6),

TABLE 4.6
Maximum Strain Amplitude
Load Case
Experimental Data Model Prediction
1 Negligible 0.014
2 0.010 0.026
3 ' 0.036 0.040

From the values of Table (4.6) it can be seen that load case 3 has
only a 10% difference betweer the experimental data and model predic—
tion. This is to be expected because this is the only load case that is
consistent with the momotonic loading results as far as the experimental
data are concerned. Load cases 1 and 2 start with very low strain
ampl itndes, in the case of the experimental data. Hemnce, the two load

cases 1 and 2 cannot really be nsed in the comparison.

4,1 SUMMARY AND CONCLUSIONS

The model developed in Chapter III is first calibrated in this
chapter by comparing its undrained predictions with the Cambridge model
predictions. From this calibration, the model constants a and b1 are
evaluated. These constants are then verified by checking with Grenoble
data., In all the undrained cases, the strain-space model outperforms

the comparable stress—space model. The strain—-space model does better
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despite its simplicity which leads to simple closed form solutions for
many cases of loading.

Secondly, the model is tested for constant pressure loading,
Although this is a loading conditijon im stress—space, the strain—space
model still gives easier and simpler solutions than its stress—space
counterpart. Its quantitative predictions are at least as good es those
of the stress-space model., Finally, the strain-space model is wused to
predict c¢yclic behavior., Most models are incapable of reproducing this
behavior. Once more, the simple straipn-space model predicts cyclic
behavior very well, All the gnalitative behaviors explainable by basic
physical concepts and observed experimentally are captured by the
strain—space model,

VWhen compared to some well—accepted stress—space models, the simple
strain-space model predicts the c¢cyclic behavior significantly better.
Further, the strain—space model requires only three material constants
as opposed to six‘or nine for the other two models comsidered. These
three material constants can be determined from some very.simple tests.

In conclusion, the tests performed show very clearly the usefulness
of the strain—space model, The model is based on highly simplified
assumptions. If desired, it would be possible to make this model more
complex, thus achieving higher accuracy of prediction. But within the

experimental accuracies available, such complexity does not appear
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justified. Further, the purpose of this work is to develop a simple

model.
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CHAPTER V

GENERALIZATION OF THE INFINITESIMAL. STRAIN AXISYMMETRIC MODEL

5.1 INTRODUCTION

The strain—space constitutive model developed for wet—clay thus far
holds for axisymmetric load deformation systems with infinitesimal
deformations, In this chapter the infinitesimal deformationm model will
be generalized, assuming that the same type of basic material behavior
holds during finite deformations. The stresses and the strains could be
defined alomg the 1lines of finite deformation, nonlinear elasticity
theory, However, as c¢ould be shown, when taking the limit of
inf initesimal def ormation, the finite theory will approach the
infinitesimal theory, thereby ensuring consistency with the results
obtained previously.

Most soil engineering problems do not have a simple geometry or
loading. Nevertheless, the study of simple cases such as axisymmetry
and plane strain provide a deeper ﬁnderstanding of the material
behavior, Having conducted one such study, it is desirable to extend
the understanding thus obtained to more general situations. With this
in mind, the model is generalized to relate a general state of strain to
a general state of stress.

Section 5.2 sets up the basic notions of motion, strain and stress.
This is followed by a discussion of the existence and coincidence of the

principal axes of the stress and the strain tensors chosen, The concept
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of effective stress is motivated mathematically. Finally, some vari-
ables are defined from the stress and strain temsors.
In section 5.3 the axisymmetric comstitutive model is generalized

to the general 3-dimensional case based on a pair of assumptions,

5.2 DEFINITION OF THE BASIC VARIABLES

5.2.1 Deformation and Strain During a General Admissible Motion
Consider a solid body which, in its reference state, occopies a

region Ro in the three—dimensional Euclidean space 5?3. Without loss of
generality, the time corresponding to this reference state may be Taken
as zero, Edges, corners, and comnectivity are permitted to exist in the
region Ro. During subsequent deformation in time t, the body occupies a
sequence of regions Rt, in G?s.

Let an infinitesimal regiom in Ro be defined as a 'particlé.' Pick
‘an  origin 0 in 5?3 and let x be the position vector of such a particle
in Ro. Let z be the position vector from 0 to the point in Rt, which is
occupied at time t by the same particle.

The motion of such & solid body can nmow be described by

v{z,t) = x + gi{x.t) ¥(;.t) € 9?3 T

t = [0,T] . (5.1)

The vectors z,p and y along with the regions Ro and Rt are shown in Fig-
usre (5.1). Equation {5.1) describes a general motiomn. In order to be
able to carry out analysis, certain conditions are imposed on this

motion. These conditions are motivated by the following physical ideas:
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i) Motion takes place without rupture or tesring.
ii} No two particles occupy the same position at amy ome given point
in time.
iii) Lines through any point X inm R should correspond uniquely with
lines through Z(;,t) in Rt and vice versa.
iv) Velocities Yy, and accelerations, g, should exist such that

2
yiz.t) = % v{x,t) 5 alx.t) = _6_2 yi(x,t) Vy € Rt . (5.2)

The above ideas translate into the following mathematical state—

ments, not necessarily in the same order:
i) Z(;,O) = X Yz € Ro (5.3)
i) ye e i R3 x (5.4)
iii) Z(.,t) is (1-1) on Rt ¥teEcx
iv) Y(Z)x(z.t) ’ g% x(z.t) are continmous for V y €R, , t€r.

Any motion defined by a8 y satisfying the above conditions is hereafter

referred to as an admissible motiom.

Define the deformation gradient tensor F as follows,

FE = Yz ylz,t) ¥z € R y €R t €< . (5.5)

-~

tl

Using F, the Lagrengian strain temsor can be defined by
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E=>®E-V . (5.6)

Note that such a definition results in extensive strains being positive.

From its definition, it is clearly evident that the strain teasor E
given by equation (5.6) is symmetric. This property of symmetry will be
found to be very useful during the generalization of the simple
constitutive model. The Lagrangian strain tensor is chosen here in
preference to the Eulerian or the Almansi strain tensor for the reason
that a Lagrangian formulation of the equilibrium equations is more

commonly used in the mechanics of solids.

$.2,2 Traction and Stress

Consider the particle P given by x in Ro, and which is mapped to
Z in Rt by an admissible motionm, y= Z(x,t). Let D° be the region con-
taining all particles in a neighborhood of P bounded by the surface So.
By the definition of the admissible motion these particles will be
mapped onto a corresponding neighborhood Dt in Rt bounded by a surface
St' 'These surfaces and regions are shown in Figure (5.2).

Postul ate the existence of a vector field

t = t(yv.n.t) ’ y € Rt ’ t€< (5.7)

~

where p is an arbitrary unit vector,
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Further, require that,

i) t be continuous iny , § and t.

ii) The total force on Dt due to contact be

[tz.2.0 . aaty

S¢

wher B is the unit normal to St at the particle under considera—
tion, and dA(y) is the infinitesimal area normal to g.

~

iii) The total moment about 0 on Dt dume to contact be

| v X tty.av0daly) (5.8)

S

The vector field t satisfying all the above requirements is termed the

traction vector field.
Let t{y,t) be a tensor field whose compoments in &a frame e are

given by [1:]:j =Ty and are related to the components {z}g = t. of the

vector field t in the same frame ¢ by the relatiomship

Tij(z;t) = tj(Z:ﬂi;t) . (5.9)

Such a tensor field z(y,t) is the Cauchy stress tensor (also referred to
as the True stress tensor).

Clearly, the Cauchy stress tensor depeands on tke curreat coanfignra-—
tion Rt rather than on the reference configuration Ro' However, scolid

mechanics is more amenable to solutions in its Lagrangian form. As such
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it would be convenient to define a stress tesnsor referred to the
configuration RO,
Cauchy’s Theorem: For eny ¥y in Rt and any unit vector 3 the trac-

tion vector can be expressed as,

, t €T, Hnli2 =1 (5.10)

Hy.n.t) = ¢ly,t)s , v € Rt

~

where T(y,t) is the Caunchy stress temsor. Also it can be shown that the
relationship between the unit normal N in the reference configuration

and the unit normal p in the deformed configunration can be given by,

dA(y) o -1
N = dA(L) E (det E) "n . (5.11)

From (5,10} and (£.11) it can be shown that

dA(x)

, ~T
t = = .
~(Z.n,t) :(Z,t)n {det B) Ay zE ° N . (5.12)
Define a stress temsor ¢ by the following relation,
~T
g = (det F) z E . (5.13)
Then,
- dA(R)

The stress tensor defined by equation (5,13) is termed the Nominal
stress tensor (also referred to as Piola~Kirchhoff stress temsor, Engi~

neering stress tensor, and Pseudo-stress tensor).
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The symmetry of the stress and strain temsors is a property which
greatly simplifies analysis. For this reason a second Piola-Kirchhoff

stress tensor, 8, is defined as follows,
§ = E'g¢ . (5.15)

The definition of the admissible motion demands that F be non—singular.
This non—singunlarity clearly justifies the existence of the tensor E-l.

Combining equations (5.13) and (5.15) it can be seen that
8 = (et PE zE T . (5.16)

5.2.3 The Existence and Coincidence of the Principal Frames _of the
Stress and Strain Tensors

In conventional plasticity, it is common to assume that tﬁe
principal frames of the strgss and strain tensors coincide. This
coincidence assumption simplifies the constitutive relationms. It is
sufficient, under this assumption, to relate the incremental principal
components of the stress tensor to the incremental and total components
of the principal strain temsor., If such a coincidence assmmption is not
made, then the six iscremental components of the stress temser need to
be specified independently. Such & specification would involve some
alternate assumpfions. For this reason, the coincidence assumption is
widely wused. It can be shown that coincidence is also implied by some

other fundamental assumptions commonly made in plasticity,
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Before addressing the issue of coincidence of the principal frames,
it is clearly mnecessary to establish the existence of such principal
frames for the tensors under consideration, From linear algebra it is
seen that a necessary and sufficient condition for the existence of the
principal frame of a tensor is that it be symmetric, For this reasom it
is necessary to explore the symmetry of the stress and strain tenmsors.

The Lagrengian strain tensor is symmetric by definition and hence
will possess & principal frame, However, the symmetry of the stress
tensor is mnot so obvious.

The conservation of gngular momentum of & continuum free of body

moments implies that

r = =z . (5.17)

Equation (5.15) along with equation {(5.13) results in

' = EET .

For infinitesimal deformations the influence of F is wvery small, and
therefore the three stress teansors I,g and 8 are almost equal, However,
during finite deformations, the compoments of F differ significantly
from those of ], and hence the three stress tensors have quite different
properties.

The first Piola-Kirchhoff st;ess tensor g js symmetric only under
very special motions. As it is preferable to develop constitutive equa-~

tions not restricted to some special motions, except for the very essen—
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tial restrictions such as admissibility, the second Piola-Kirchkhoff
stress teasor is used in this work.

From equation (5.16) and equation (5.17) it follows that
£ =5 . (5.18)

which implies that for admissible motions under the absence of body
moments the second P}ola—Kirchhoff stress tensor is symmetric. Which in
turn implies that this tensor possesses a principal frame at every state
point.

Within the framework of elasticity theory it can be shown that the
principal frames of the Lagrangian strain tensor and the principal frame
of the second Picla—Kirchhoff stress tensor coincide for isotropic
materials.

Under classical plasticity theory using any general flow rule, it
can be shown that the principal frames coincide incrementally under
restrictive circumstances, The conditiom sufficient for the coincidence
is that the plastic potential function g should depend on the stress
tensor, only through its ianvariants, When this condition is satisfied,
it can be shown that the incremental plastic strain tensor will have a
principal frame coinciding with that of the stress temsor, By the basic
definition of the elasticity tensor, the principal frame of the incre-
mental elastic Lagrangian strain tensor and that of the second Piolea-

Kirchhoff stress temsor coincide., Therefore, the principal frame of the
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second Piola-Kirchhoff stress tensor and that of the incremental total
strain tensor coimcide.

In this work the constitutive equations are developed without using
a restrictive assumption of flow rules. For this reason, the
coincidence of the principal frames of the incremental second
Piole~Kirchhoff stress tensor and the total Lagrangian strain tenmsor is
teken as an assumption.

Tt is worth noting at this point that within the {framework of
conventional plasticity, it can only be shown that isotropy is a suffi-
cient condition for the coincidence of the principal frames. For this
reason it cannot be argued that the coincidence assumption demands
isotropy., Fur:nermore, the theory developed herein is free of any flow
rule, and ever the sufficiency proof depends greatly on the existence of

2 flow rule,

5.2.4 Effective Stresses

Saturated soil is a two—phase medium consisting of pore flanid
which is commonly water sand a solid lattice of soil particles. The
concepts of stress and strazin developed hereto arise from continuum
mechanics where there is only a single mediom. Hence, to address the
state of stress on a mixture such as soils, certain modifications are
necessary. In the area of practical soil mechanics it has been observed
that it is possible to describe a stressvtermed 'effective stress’  omore

sccurately than the total stress. In the paragraphs that follow an
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attempf is made to present this concept of effective stresses within a
mathematically rigorous framework.

Figure (5.3) shows a sample. region of soil composed of & solid
lattice and pore fluid. This region is cut along a plane and an elemen—
tal area dA is considered. In this elemental area dA, a part dAS is
occupied by solids whereas. another part dAf is occupied by the pore
fluid.

Assume that there exist contiavous and twice continvounsly

differentiable tensor and scalar fields Ss(;,t) and pf(x,t) respectively

so that
E, = [ s,z.vnd
A
s
= (5.19}
Ag

where, Es is the force transmitted across As by solids and Ef is the
force trensmitted across Af by fluids.
The total force transmitted by the two-phase medium across the area

A would be

s
[

Es +Ef' . {5.20)
Further,

A = A + 4 . (5.21)
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Section x— X

(b)

FIGURE 5.3 STRESSES AT AN INFINITESIMAL SOIL AREA
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Postulate the existence of another continuous and twice continu-

ously differentiable tensor field S(x,t) so that,

E = [s&.thaar . (5.22)
A

This tensor S{x.,t) would be the stress tensor if the media were treated
as a single phase homogeneous material,

From equations (5.19), (5.20) and (5.22) it follows that,

[somaa = [ s eoaa + [ -p@oad, . (5.23)

A As Af

If equation (5.23) is takenm to hold for every choice of A, then

dAs dAf
$(x,t) = 8,&.t) 3 -p(xt) A .

Using the decomposition of A from equation (5.21), in the incremental

form,

dAs dAs
Sx,t) = Ss(x,t) T pf(x,t)l (1 - :ﬁ;) . (5.24)

Let r{(x) be defined by

dA (x)
PTY = r(x) .

(5.25)
dA =20

Then,
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Sx.t) = S (t)ir(x) - pelx, 0221 - x(x)) . (5.26)
It is argued commonly in soil mechanics that
r{x) - 0 and ﬁs(x,t) . rl(g) o 8'(x.t} . (5.27)
where §'(z,t) is finite, Imvoking (5.27) on (5.26) results in
S(x,t) = §'{x,t) - pf(z.t) A {5.28)

Equation (5.28) is the commonly wused stress decomposition equation,

where

S(x.t) total stress tensor
S'{x,t) effective stress tensor
Pelx,t) pore fluid pressure .,

The sign convention for stress is still maintsined as temsile stresses
positive, However, pressures are takenm as compressive positive.
Althongh the decomposition given by egquation (5.28) is the form
commonly used im soils, some investigators ( Garg and Nur, 1973; Nur
and Byerlee, 1971; Terzaghi, 1923; Robinson, 1959; Handin et al., 1963;
Muorrell, 1963; Skempton, 1961; Geertsma, 1957; Suklje, 1969; and Biot
and Willis, 1957) have looked deeper into the effect of r(x) on the
stresses and suggest different forms of scalar mmnltipliers for the fluid
pore pressure. Since no one of these alternative approaches is as
widely accepted as the simple decomposition given by equation (5.28),

the simple decomposition will be used herein.
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5.2.,5 Stress and Strein Variables

Since the existence of the principal frames for stress and strain
tensors to be wused herein has been established and their coipcidence
assumed, it is snfficienmt to relate the incremental principal components
of stress to the principal components of strain.

In order to remain along ‘the lines of the development of the
axisymmetric¢ theory, certain stress and strain variables are defimed
here to be related by the three-dimensional coastitutive relations.
These variables are defined in gemeral terms based on the stress and

strain invariants. The volumetric dilatation denoted by v is given by
v = det F .

Since the strain tensor E is defined in terms of F, v ¢cen be related to

E as
vom (14 2L(E) + 4L(E) + 813(5)}% . (5.29)

In soils, the void ratio e is more commonly used than the

volumetric strain v and these are related in the Lagrangian sepse as

dv = ’ (5.30)

where e, is the void ratio at a reference state related to 3. This

results in ¢ being related to E as
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o = (Lre)(1 +2I(B) +4L(E) + L@ . (53D
A measure of shear strain is defined by e as follows,

3%
L

@
"
o

]
(B -3 11(5)1)2} : (5.32)

e ——my

It is found that the variables e and & redace to those defimed in
Chapter II when E reduces to the axisymmetric primcipel strain. Hence,
the definitions are consistent with those made previocusly.

The stress is the dependent temsor in the formulation developed
herein. Since the theory is developed as an incremental theory, it is
necessary to definme some varisble based on the incremental stress ten—
sor. As described earlier, the stress used is the second Piola —Kirchh-
off stress.

The incremental pressure is defined by simply taking a third of the

first invariant of the incrementsl stress tensor and reversing the sign.
dp = - I (a8") (5.33)
371 y

A measure of the shear stress is defined as

¥
dq 11

™ ju

las' + dpnz} ) (5.34)

The normalized shear stress variable used extensively in the model is

defined in terms of the total stress variables and is given by

n = qfp . (5.35)
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As in the case of the strain variables, the stress variables are
also chosen so as to approach the variables defined in Chapter II when
the stress temsor is principal and axisymmetric. This ensures the

consistency of the general three-dimensional model.

5.3 THREE DIMENSIONAI CONSTITUTIVE MODELING

5.3.1 Basic Assumptions

In the previous section the independent model variables ¢ and s
kad been defined for a2 general state of stress. These were the model
variables that were employed in the axisymmetric theory. Therefore, by
using these variables directly in the axisymmetric comstitumtive model,
the incremental stress variables dp and dq can be found. The general
theory, however, should give all the components of d§’'. At this stage,
to achieve the goal of predicting all the cOmﬁonents of §', some bésic
assumptions are required.

For the axisymmetric stress—strain situation the state of stress or
strair can be completely specified by the magnitudes of the hydrostatic
and deviatoric components. This is seen <clearly from Figure (5.4).
Either the stress or strain temsor at any given point can be completely
specified by their principal compements, This enables the state to be
plotted in & three—-dimensional space. For the case of axisymmetry about
one of the principgl axes EI‘ say, all states would lie on the plane,
€1 < fr1rt Hence each such state point is uniguely determined by the

magnitude of the projection of the state vector along and normal to the
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axis of equal inclinationm. However, when the axisymmetry assumption is
relazed and a general state is considered, such specification will not
give a nunigue state but a set of states lying on & circle on the
deviatoric plane with its radius equal to the magnitude of the
deviatoric component. Therefore, mnot only the magnitude but also the
direction of the deviatoric component is necessary to specify the state
completely.

It is assumed here that dering a general state of stress and strain
the magnitudes of the components of the stress and strain tensors along
and perpendicular to thelaxis of equal inclination have the same relz—
tionship as in the case of axisymmetric stress—strain situations. This
justifies the use of the constitutive equation developed in Chapter IIX
to determine dp and dg using e and &. Furthermore, this assumptionm will
render consistency when the tensors take the special case of
axisymmetry.

Having made the first assumption, a rule is to be prescribed now to
determine the direction of the incremental deviatoric¢ component, It is
assumed here that the incremental deviatoric components of stress and
the corresponding deviatoric components of strainm are parallel to each
other end ha?e the same sense. In the stress—space formulations, a very

similar assumption is made.

5.3.2 Implications of the Basic Assumptions
The first assumption mentioned states that all states having the

same magnitude of the deviastoric strain have the same dp and dq. This
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implies that equations (3.40) hold for the gemeral stress—strein state
when de, de, dp and dq are defined as in equations (5.31) through
(5.34).

The second assumption states that the incremental deviatoric stress

and the deviatoric strain are parallel. This assumption implies that,

B trr EIr 111 €rrr I

Eqoations (5.33) and (5.34) result in the following egquations when

expressed in terms of the primcipal incremental stresses

dp = - % (S’ + dS'  + dS’' .0 (5.37)

__1—- [ 2 r 2 ’ - i 2 ) - ’ 2!’3
dg -.\f;-[(ds 1 ds II) + (dS I ds III) + (4% 11t ds I) 1 .(5.38)

Equations (5.35), (5.36) and (5.37) result in,

dg CErrterrrley)

3y2 ¢
-28..)

dq CCrrrttrieyr
Wz ¢

{e . +e,,—2¢ )
48 SPUR'IAAD i § Sl 6 .

111 - 3VE; P :

ds 1 = dp -

dS'II = dp -

(5.39)

5.3.3 The Loading Surface

In order to be consistent with the first of the two assumptions
made in the previous section, the loading surface is defined as the pair

of surfaces of two concentric cylinders of radii differing by an
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infinitesimal gquantity. This is shown in Figure (5.5). This loading
surface is not the same as the Von Mises surface because of the fact

that all the state points lie on or just below the surface.

5.4 SUMMARY

In this chapter the strain-space plastic constitutive model
developed for the axisymmetric stress—strain system is generalized to
include general stress and strain states.

The strain and stress defined rather loosely previously are defined
more rigorously and the limiting assumptions more clearly stated., The
idea of effective stress is motivated mathematicall:. Heving defined
the stress decomposition in this mapner a well-iccepted simple
decomposition is used and its limitations stated. Based on the strain
and siress tensors chosen, some simple strain and incremental stress
variables are defined along the 1limes of those defined in  the
axisymmetric case.

Finally, two assumptions are made imn order to generalizé the
axisymmetric model to a general state. The first assumption implies
that the megnitude of the deviatoric stress and strain are related in
the same manner as the shear stress and straim variables in the
exisymmetric case, The second assumption is used to derive the direc—
tion of the incremental deviatoric stress by setting it parallel to the

incremental deviatoric strain.
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The model thus developed is simple and quite accurate. All the
essumptions have been laid down clearly so that the domain of applica-
tion of the model is well defined. The main aim behind the development
of this model was simpl ici'ty without loss of rigor and it appears that

this has been achieved.
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CHAPTER VI
APPLICATION OF THE MODEL TO THE EXPANSION
OF A CYLINDRICAL CAVITY
6.1 INTRODUCTION

In this chapter, the simple strain-space model generalized in
Chapter V is applied to a general problem. The problem of an expanding
cylindrical cavity is comsidered because it is representative of z pile
driving problem. An understanding of the stress fields arising from the
expansion of the cylindrical cavity will provide a better insight into
the properties of the stress field produced during the driviag of a2
pile.

In section 6.2 the problem of &rn expanding cylindrical cavity in an
infinite medium is modeled as a plane strain axisymmetric problem. The
governing equations are deduced. The rapid expansion of the cavity is
imposed &and the deformation field is hence derived. Based on that
deformation field, the stresses and pore pressures are determined,

In section 6.3 the equations are solved aumerically and the solu-
tions are presented. These solutions are compared with some experimen-
ta]l results and two other predictions ip section 6.4. The predictions
used hereir are those made by Ladanyi (1963) and Davis and Mullenger,
(1984) Interestingly enough, Ladanyi’'s calculations are indeed a strain-
space approach,

Finzlly, the observations made in this chapter are summarized and

presented along with conclusions in sectien 6.5.
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6.2 MATHEMATICAL MODELING
6.2.1. Deformation and Straim
From equation (5.6) it is seen that the Lagrangian strain tensor

E is defined as
E=%GEE-L .
where
E = V(x)z(x.t)
and Z(x.t) = z +a(x,t) .
Substituting 3 for y results in
E = 1+iRax.t) . (6.1)

This in turn gives rise to

E = %W(@" + ) + @i . (6.2)

In the case of infinitesimal deformations, the term (En)T(Eu) is dropped
as it turas out to be much smaller than () and (ﬂn)T. However, in
order to allow for finite deformations, this term is retained herein,
Select a cylindrical polar coordinate system with the z axis coin-
ciding with the axis of symmetry of the cavity, In this system of axes

the gradient operator will be
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_ 3 . % 3 2
(&) = epar* R a6’ %0z (6.3)

where £pr 2g and g, are the onit vectors in the R, ¢ and z directions,
respectively, Let the frame defined by this set of axes be e.
Let Ups B, U, be the components of the displacement vector g in

the R, © and z directions, respectively. Then,

d aue anz
¥zl = (;_Ra )ﬂgR+(gR BR)QEG-"(ER R)ng

g 2up £9 dzg
R o0’ ¥t (3 ) @55

+
——
I

£g 90y £o 9%g
+ (R ) ] £g * ( ) ] 26
£ au
*e
(g ) B,
+ (g EEB ) g + (g EEQ ) e + (g EEE) Qg (6.4)
z dz R z 8z 0 z 9z z '

where the components of 2 8 b are defined in terms of the componments of

g and b as, (g ﬁh)ij = aibj' i, j € (1,3).

agR Oge
But 0 - %o and e - &g - (6.5)

Substituting eguations (6.5) in (6.4) and writing the components of

Yi(z)u in e, the frame under consideration,
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6uR aue auz

3R 3R 2R

du T Ju du

e _ 1 7% 2 1% ™ 1%
Nxm” = \x3e "% R 99 ' R R o6 |- (6.6

2% % o,

z dz oz

For an axisymmetric problem without twist,

“R = uR(R. z, t)
u, = (]
vo= uz(R,z,t) . (6.7)

The conditions given by equation (6.7) will resmlt in

du du

= % )\

(Ux)nl® = 0 :R-R 0 (6.8)
e S
gz oz

If it is assumed further that the continuum deforms under plane strain

conditions then,

up = uR(R.t) and e, = 0 . (6.9)

This assumption simplifies the gradient to



Up R 0 0
el = 0 % 0 {6.10)
0 0 o/
where,
%, T 3

Equation (6.10) and equation (6.2) together define E as

1 2
vt 2 (R 0 0
e _ "R 102
(E}® = o 2 o (R) 0 . (6.11)
0 0 0

6.2.2 Stress and Equjlibriom
Consider the current configuration of the infinitesimal region of
continuum shown in Figure (5.2). For the equilibriuvm of this region,

balance of linear momentum implies that

2
[1.ovm+ [ taam = [p. 22 @o . o . 612

at
Dt St Dt
£ body force vector,
b4 traction vector in the deformed configuration,

p density in the deformed configuratiom, and
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B displacement vector

In the ebsence of body forces, and when inertial effects are negligible,

equation (6.12) reduces to

[1.am =0 . (6.13)
St
From Equation (5.14)
dA(x)
L = dA{y) o

When this is applied to equation (6.13) it gives rise to,

[esam - o . (6.14)

S
o

From the divergence theorem,

j (Ux)g)avizg) = 0

D
o

for every choice of Do_ Therefore,

Yx)g = 0 . (6.15)

From equation (5.15)
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and from equation {5.28)
g = 8 -1 .
These relations reduce equation (6.135) to

2o ES) - T @ER) = 0 . (6.16)

At this point the assumption regarding the coincidence of principal
frames greatly simplifies the problem. The Lagrangian strain tensor,
under the assumption of axisymmetry and plane strain, turas oot to have
a diagonal component matrix in the c¢oordinate frame chosen herein.
This, along with the coincidence assupmption, implies that the second

Piola Kirchhoff stress temsor, 8, and hemce §’, will also have a diago-

nal component matrix in this frame, and the components are given by

S'p 0 0
{81¢ = 0 S's 0 (6.17)
0 0 S
z
1+ag p 0 o
{F1® = 0 1+% o /. (6.18)
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From equations (6.16), (6.17) and (6.18)

2 “r

1 e 3 _
*g (g, p R Pr "5, ((Ivug gleg) =

R

e SN R
((1+15 1S ((1+1{ )pf) = 0

y .12
8 R 30

Equations {6.1%9a, b and ¢) describe the equilibrium

the strains are

for stresses. For this reason,

ap
f
YN 0 and

e
9z -

These two conditions imply that

P, = pf(R.t) .

Therefore, the entire

problem depends on two
namely, R and t,
6.2.3 Simplifying Assumptions
There are two main assumptions made in

expansion of the cavity. The first

assumption

L -
ar (175 g)S'p) + § ((Ltuy )S'p — (1437 )8%g)

0 (a)
(b)
. (c) (6.19)
conditions. Since

only functions of R and T, this will also be the case

(6.20)
independent variables
analyzing the initial

is that the cavity
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already exists and only its expansion is modeled. This assumption
renders the corresponding motion to be admissible. If the inception of
the cavity is considered, then a rupture of the continuum is inevitable.
A rupture violates assumptioms i) and ii) of sectiom 5.2.1, which are
required for the motion to be admissible, For this reascem, it is
assumed here that the cavity already exists.

The second assumptior is that the expansion rate of the cavity is
much higher than the velocity of pore water through the scil medium
under the pressure gradients developed during the expansion. This flow

of fluid is given by Darcy's eguation

ép
v = e ’ (6.21)
p.g OR
£
where
v the velocity of the pore flnid relative to the soil lattice
Ps pore fluid pressure

) 4 permeability of soil
Pe density of the pore fluid

Under the pressure gradients commonrly encountered in clay, v is on the

order of 1072 ¢m/sec, Therefore, the assumption is valid for expansion

rates on the order of mm/hr, or faster.
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This assumption implies that during initial expansion of the cavity
the relative velocity of the pore fluid may be assumed to be negligible,
Hence, the soil may be assumed to be deforming under undrained condi-

tions.

6.2.4 Formnlation Associated with the Rapid Expansion

From the second assumption made in the previous section it
follows that the deformation may be taken as nndrained. Since in soil
mechanics the deformation of the solid soil particles is mneglected and
water is taken to be incompressible, an undrained deformation implies
that the volume of the sample is conserved. The conservation of volume

implies that

det (F) = det (1 +Ww) = 1 .
This results in
R
(1+“R,R)(1 +~E)1 = 1
and hence
Up
Lrtr "t ;% - % e = 0 . (6.22)

Equation (6.22) can be solved in closed from resulting in

= \fnz . ri(t) - Ri - R, (6.23)

where
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Ro initial radius of the cavity
fo(t) cavity radius et any given time t

The current radius r can be given by

e - Rim = VB2

Figure (6.1) shows a cross section of the infinite medium perpendicular

to the z axis.

A non-dimensional current radius r®* can be defined as follows:

V., ho%
rO-RO
r¢=—§= 1+ > . (6.24)
R
Then,
r¥-1
nR,R = T e *

The introdoction of r* in this manmer produces 2 strain tensor dependent

only on r¥*. This, in turn, produces stresses which are only dependent

on r¥., Therefore, it is sufficient to derive the response for

varying
r*,
The strain tensor can be expressed in terms of r* as
2
- sf_i% 0 0
2r¢
;‘2_1

E(r*) = 0 I‘E*‘ 0 - (6.25)

Therefore,
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FIGURE 6.1 GEOMETRY OF THE EXPANDING CYLINDRICAL CAVITY
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tp T - L:;g% (a)
2r®
-1 o)
¢ T 2
e, = 0 (c) {6.26)
which results in
e = e (a)
o
r'z-l. 2 4
g = = 1+ %" + r* . {6.27)
2
37

If the expansion begins from a normally consolidated state, then

so = 0, Solving the constitutive egumations for this case results in
-0.3(1+e )e(r*)
= _h (4o o
P P, exp{ X (1-exp 7 ) (a)
-0.3(1+e°e)e(r') 0.5
g = Mpil-exp T . (6.28)

Equnation (5.39) defines the primcipal stress components in terms of
p and q. And hence the principal stress components can be given by

9 2
2+g% _
I dq Py * S'Ro (a)

qo" 1+1"“2+Jr‘4

q 2
2

q ,r1+r*2+r‘4
o

W

S’ = p+

2]
-]
]
-]
+
Iy

dq - p, + S'g, (b)



Sl

unp

q
f dg - p  + S . o) (6.29)
q,

o z
’1+r‘2+r‘4 0

Since S'R. S'e and S’z have been found, the pore pressure pg cen be

obtained from equation (6.19a) which reduces to

_@_(ﬂ)_.ﬁ.,(l{pf)_ A = 0 . (6.30)

re* Ps

This is the only equation that cannot be solved amalytically.

6.3 THE SOLUTION

6.3.1 Numerical Implementation

In order to compute the numerical values of the stresses and pore
pressures during the expansion, it 1is necessary to assign numerical
values to the material constants, The material used for this purpose is
Eaolin. The wvalues of the material constants for Kaolin ( Roscoe et

al., 1968 ) are given in Table (6.1).

TABLE 6.1

l A K M |

{ |
0.27 0.0405 0.90 i

The strain components are defined in terms of the non-dimensional
radius r* as given by equations {6.26a), (6.26b) and (6.26¢c). The

strain-space variables e and £ are given by equation (6.27)., From these
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variables, the effective pressure p, and the effective shear stress g,
can be found with the aid of eguations (6,28a) and (6.28b). From p and
q the effective stresses S'R, S'9 and S'z can be evaluated using equa-
tions (6.29a), (6.29b), and (6.2%:). Finally, the pore pressure can be
obtained from the equilibrium equation which is given in a simplified
form by equation (6.30). Equations (6.28) and (6.29) =require the
initial values of p and q while equation (6.30) reguires boundary values
of S'R, S'9 and Pe-

The initial conditions are taker as follows,

S'R(R.O) = So
S'G(R.O) = So
S'Z(R'O) = SO
P,(RO0) = p. . (6.31)
Equation (6.31) implies that
p{R,0) = So’ end
q(R,0) = 0 . (6.32)

Further, defime some non—dimensional variables as follows.

S'R(R.t)—So

S i g R
o)

;.R -
SR( :t) =



* S'G(R‘t)_so " P
S’B(R,t) = S H S6 = § 9+1
0
S (R:t}-s -
s *r,t) = —Z °o . §* - §'n
z So z z
p*(R,t) = p—%‘-t—)-
]
gr,t) = URH
o
. pf(R.t)*pfo
pf(R.t) = So . (6.33)

The boundary conditions are chosen at a point infinitely fur away
from the cavity wall, It is assumed that

f(R,t) = f(R,0) = fo ¥t € (0,T)

and ¥ R >R, (6.34)

where f may refer to any of the variables considered in this chapter.
There are two implications made by equation (§.34). One is that before
the expansion the stresses, strains and displacements are uniform over
the entire space under consideration, The other is that durimg the time
under consideration, the veriables do not change their values from their
respective initial values at points sufficiently far away from the
cavity wall,

It has been shown that the strain tensor and hence all the
components of the stress tensor and the pore pressure depend only on r*,

This implies
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f(R,t) = =¥ .
But
(r°/R°)2 -1
r¥ = 1+ -——'—“'?;—— . (6.36)
(R/Ro)
Therefore,
¢ = r‘(R/Ro.ro/Ro) .

This in ture implies that

f(R,t) = f(R/Ro,ro/Ro) . (6.37)

The verisbles are evaluated by ¢ simple computer c¢ode developed
using the finite difference method. The non-dimensional radius R/R0
represents the radial coordinate. For numerical computation this wvari-
able has to be discretized. From equations (6.24) and (6.26) it is seen
that the strains are high at points near the cavity wall and that they
decrease rapidly at points farther away from the wall. For this reason,
the stresses and pore pressure will also vary rapidly in the vicirity of
the cavity wall. Therefore, it is mecessary to choose more points of
computation close to the cavity wall than away from the wall., This is
achieved by uniformly discretizing IOgIO(R/Rc)' The discretized non-

dimensional radius array (Ri/Ro) is defined as
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i/N

(R, /R) = (R/R) ,
where-
Rm the largest value of R to be considered, and
N number of computation points .

The code was tested with different choices of R, and N. The
comparisons were made on the pore pressure predictions as the pore pres-
sure if the final variable calculated. The errors in all other wvari-
ables ?would be reflected ir the pore pressure as it contains, in its
calculation, all variables except S:. The values of the pore pressure
corresponding to the different sets of values comsidered for R anrd N

are shown in Table (6.2)., For this test run, the value of the expansion

ratio rO/R0 was taken to be 1.1.

TABLE 6.2
*

N Rm/Ro Pe
1.000 16 1 0.76667
2,000 10¢ | 0.78597
3.000 1,000 | 0.7861¢6

5,000 | 100,000 | 0.78616
4,500 1,000 [ 0.78616

900 1,000 [ 0.79197

600 1,000 | 0.79500
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It can be seen from Table 6,2 that increasing N beyond 3,000 or increas—
ing R,/Ro beyond 1,000 does not changes the value of p; expressed to five
significant places. Since five significant places are considered suffi-
ciently accurate for the prediction, N and kﬁ/Rb are taken to be 3,000
and 1,000, respectively, in the computations that follow,

The computations are made for values of ro/Ro varying from 1.0 to
1,5, The value of ro/ko equal to 1.0 corresponds to the initial state
with no expansion. Hereafter, this state is referred to as the
reference state and the values of all the variables corresponding to the

reference state are referred to as the reference values.

6.3.2 Model Predictions

The stresses snd pore pressure calculated are graphically
presented in this section, The vearisbles are shown as functions of the
non-dimensional reference radius R/Ro. Bach function is plotted for
several values of the expansion ratio rO/RO. The values of ro/Ro used
here are 1,01, 1,02, 1,05, 1,1, 1,2 and 1.5. Expansion ratios more than
1.5 are not shown as they indoce strains larger than 50% around the
cavity wall 2nd most experimental data used in the model are valid only
for strains up to 20%,

Figure (6.2a) shows the variation of the non-dimensiomal effective
pressure p%. The valne of p®* is 1 for all values of R/Ro during the
reference state, When te/Ro is 1.01; p* drops below 1 in the vicinity
of the cavity, but the effect is not felit beyond distances of three

times the cavity radius, As the expansion ratio increases, the value of
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p* drops at the cavity wall and the effect propagates farther. When
ro/Roqieaches a value of 1.2, p‘ at the cavity wall reaches its critical
state value of 0.55 and remains at that value thereafter.

Figure (6.2b) shows the variation of the non-dimensional effective
shear stress q¢. The value of q. is zero for all values of R/Ro in the
reference state, The behavior of g* during the subsequent deformation
is similar to that of p* except for three main differences, The first
difference is that the value of q* changes very rapidly at the initial
stages: of expansion, This is to be expected because of the very high
value ;f shear moduluns at the inception of loading.

The second difference is that q®* reaches its critical state value
of 0.50 at the cavity wall for an expansion ratioc of zbout 1.05. This
expansion ratio is much smaller than that corresponding to p*, which is
1.20. BSach an observation is consistent with experimental observationms.
From the data presented in Chapter IV for undrained expansion it is seen
clearly that gq* téaches its critical state value faster than p*. The
fact that q* reaches its critical state value faster thapn p* cap also be
seen from the stress trajectory shown in Figure (6.3).

Finally, ¢®* increases as the expansion progresses, while p*
decreases,

Figure (6.4) shows the variation of the pon-dimensional effective

. *
radial stress S’R 2s a8 function of the non-dimensionsl radius R/Ro. S'R



157

2,00

1,50

[1]1]

4

rﬂ/Rﬂz |.0f

fn /Ro= I -50 7
g
o
e
o",
2
o0 2.00 3.00 4. 00 5.00 5.00 7.00. ».00 8,00 10.00
RAODIAL DISTANCE (R/Ro)
FIGURE 6.2q VARIATION OF THE NON-DIMENSIONAL PRESSURE
S
-
“ J
¥
c-ﬂ
e 1
wr
o
Eg re/Ro= 1,50
i)
8 \\ 1
[ =
<
¥ -:::::::::::::::-—‘
lﬂg fo/ Ro = 1.01 ——'—mw;
8
9 :
3
“yroo 2.00 3.0 4.00 €.00 6. 00 7.00 %.00 s.00 18,00
RADIAL DISTANCE (R/Ral

FIGURE 6.2bVARIATION OF THE NON-DIMENSIONAL SHEAR STRESS



SHEAR STRESS, q*

158

1,00

0. 60 0. 80

0. 40
i

0,20

. 00

0. 00 0. 20 a. 40 0. 60 0. 80
PRESSURE, p*

FIGURE 6.3 STRESS TRAJECTORY AT THE WALL

1.Q0



- 159 -

can be expressed in terms of p* and q®* as follows,

-

qt
2
* *
gr = preif %< & AN (6.38)
3 1+r'2 + r'4
where,
Z'(r‘) = q.(r') .

It is seen from Figures (6.2a) and (6.2b) that p* decreases and q*
increases as rO/RO increases, Further, it is also found that the rate

of increase of g* is much higher than the rate of decrease of p* for

values of rO/RO close to 1. It is hence clear that for values of T /R
o

close zo 1, S'; will increase,.

But q* reaches its critical state value at expansion ratios much
smaller than those corresponding to p*. For this reason, as the expan-—
sion proceeds S'; will beéin to reduce, firally reaching a steady valee.

These effects seen from the equation defining S'; are found in
Figure (6.4). S'; is zero in the reference state, namely, for ro/Ro=1.
As rO/Ro increases to 1.01, it is seen that the value of S'; at the
cavity wall has become positive. For thg valne of ro/Ro = 1.02, S'; is
still positive at the cavity wall, but is smeller tham the value
corresponding to rO/Ro=1.01. For wvalues of ro/ko=1.05, and 1.1, the

L J .
value of S’R at the wall is pegative and decreasing. Beyond ro/R°=1.1

®
the value of S’R at the wall remains constant at its critical state
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»
value of -0.15. Also, the positive values of S'R propagate away from
the c&%ity wzll as the expansion proceeds.
Figure (6.5) shows the variation of the mnon-dimensional effective

* * |
tangential stress S’e. Unlike the case of S'R, S' decreases from its

8
reference value of zero doring all stages of expamsiom. The value of
S'; at the wall also reaches its critical state value of —0.73 at an
expansion ratio of about 1,1.
The reason that the behavior of S'; is different from that of S’;
can bf seen by taking a closer look at the equmation defining S';. From

-

equatibn (6.29b),

q‘
* *
D R B e L (6.39)
1+r%" + ¥
0
where,
z*(r*) = q*(r*) .,

Althonpgh p* decreases while ¥ increases, the coefficient of the term
contzining q% is negative. Therefore, S'; would be always decressing.
Figure (6.6) shows the variation of the non-dimensional effective
axial stress S':. Here again it is found that S': always decreases from
its reference value of zero, The value of S': at the wall reaches its

critical state valme of —-0.45 for an expamsion ratio of about 1.1.

. *
The reason for the monotonic decrease of S'z is more subtle than
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P .
that for S’G. The stress S'z is defined as

-

-
S’
z

7

q.

2 -1

p* +-_§; | == . dzv (6.40)
0 1+r*" + r*

wvhere
2*(r%*) = q*(r*) .

At the reference state, r* is unity. As the deformation proceeds

r* increases. Let

r¢ = 1 +pu ., p 20 .

Then, it can be seen from equations (6.28a) and (6.28b), tkat, for
values of pg very much smaller than 1,

p* ~ (1-p) and,

a* ~  p .

This, in turn, implies that

3/2

S" ~ 1 -+ oeq
z .

Therefore, S’: will reduce initially. As the deformation progresses, ¢*
will reach its critical state value, while p* is still decreasing. When
this occurs it can be seen from equation (6.40) thkat S': will Tbehsave '
iike p*, thereby decreasing in value., For this reason, S': decreases

monotonically.
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Figure (6.7) shows the variation of the non—dimensional pore pres-
sure -}; with R/Ro for different values of ro/Ro' The non-dimensional
pore pressure decreases monotomically. It is seen from the figure that
even after the stresses reach their critical state values at the wall,
the pore pressure at the wall keeps increasing. This occurs because the
pore pressure depends on the eguilibriom of the scil mass. The

equilibriem e¢quation corresponding tv a state where the stresses, S/,

R
*® * ¥
S'9 have reduced to their respective critical state values S'Rc' S'Gc
reduces to
2 d * 2
rtY - 1} P * * 1 * *
(-~—-—-—-—- = *{(S', -p, —(~ =1 (S$'~p,) (6.41)
* 3
e gy 6c °f JUERV AR e

Altboungh the stresses remain coastant at the critical state, the defor-

mation proceeds. Hence r* would not remain a constant. For this rea-
*

son, the slope of Ps would be chanping even after the stresses reach

their critical state value.

6.4 COMPARISON WITH OTHER RESULTS

6.4.1 Experimental Results

Figure (6.8) shows the model prediction for the non-dimensionmal
pore pressure as a function of the non~dimensional deformed radius r/r0
along with some experimental results, The model prediction shown

corresponds to an expamsion ratio of 1.5. The experimentazl results are
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those of Lo amd Stermac (1965), Koizumi and Ito (1967), and Bjerrun and
Johanmessen (1961).

From the figure it is clear that the experimental results shows &
very large scatter. The scatter is due to the influence of reaction
piles, disturbance of the stress field by the measuring devices and
inaccuracies involved in device 1locatiomn, Given such & scatter, the

model prediction is c¢lose to the mean of the experimental observatioms,

6.4.2 Ladanvi's Calculations

<In this section, the strain-space model prediction is compared
with Ladanyi’s <calculations (Ladanyi, 1963), Ladanyi observes that am
undrained plame strain triaxial test produces stress states similar to
those produced by =an expanding cylindrical cavity. Using this
similarity, he directly calculates the components of stresses induced
during the expansion of a cylindrical cavity, from the triaxial Aata.

There are three main differences between the strain-space model
calculations and Ladanyi’s calenlations. First, Ladanyi's calculations
are based on test data for Drammen clay. Since consclidation test
results were not available from his paper it was not possible to obtain
the material constants A, X and M necessary for calculations, using the
strain—-space model, For this reason the strain-space model results
correspond to Kaclin. However, both clays are similar in structure and

mechanical behavior.
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The second difference is in the stresses and strains employed.
Ladan;} uses Eulerian strains and Canchy stresses whereas the strain-
space model uses Lagrapgian strains and second Piola-Kirchoff stresses.

Finally, Ladanyi’s calculations imply that the results are only a
function of the non-dimensional deformed radius t/ro. The results of
the strain-space calculations indicate that the independent wvariables

are r/ro and ro/R . Ladanyi's results wounld imply that the stresses at
o}

the wall do not vary with the degree of expansion, but that is mnpot the
c#se in reality.

Figures (¢ .92) and (€.9b) show the strain-space model prediction
and Ladanyi’'s results, respectively. Taking into account the differ—
ences mentioned above, the two results are gqualitatively wvery similar.
Both show c¢ritical state is reached c¢lose to the wall, that is,
r/ro > 1. The calculations made by Ladanyi indicate that critical state
is attained approximately for r/rO £ 3, while the strain—space calcula-
tions indicate that it occurs for r/r0 ¢ 1.5, This is mainly due to the
difference in the material properties.

From the undrained shear stress strain curve used ir Ladanyi’s
calculations it is seen that q reaches 0.9 times its critical state
value for an axial strain of about C.4%. From the data on Kaolim
presented in Figure (4.,2) it is seen that this value is about 2%. This
would clearly result in the Drammen clay reaching critical state at

strains much smaller than those for Kaolin., This, in turn, implies that
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any prediction using Drammen clay data will show critical state behavior
for vglnes of r/ro larger than those based on Kaolin.

Consider the variation of the pormalized effective radial stress
-

*
R As r/ro decreases from 100, SR increases, initially reaching a

maximum value of about 1.10 and 1.05 in the cases of the strain-space

)

prediction and Ladanyi’s calculations, respectively. The strain-space
.
prediction of SR reaches g maximom for r/ro = 7, while Ladanyi’'s calcu~
*
lations reachk this maximmm for r/ro = 15. In both cases SR becomes

negatiye at the cavity wall, namely, at r/ro = 1.

T;e normal ized effective pressure p*¥ and the mnormalized effective
tangential stress S; increase monotoniczlly in both cases.

The variation of the normalized pore pressure, p;. is quite
different between the two predictions. In the case of the strain-space
prediction, the pore pressure increases as r/r0 decreases and the slope
of the curve alsc increases monotonically. But in the case of Ladanyi's
prediction, although p; increases monotonically with decreasing r/rn,
the slope increases and then decreases, reaching a constant value, This
discrepancy is mainly due to the different types of straims employed in
the two methods. The Lagrangisn stresin increases much faster than the
Eulerian strain as r/ro decteasés. This <results in very large

Lagrangian strain components around the cavity walil. This maekes the

pore pressure gradient steeper in the vicipity of the cavity wall,
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6§.4.3 Predictions of & Rate Type Model

~ The model used for comparison is a rate type model developed by
Davis and Mullenger (1984). The model uses among other constaats 2
shear ﬁodulus denoted By pu., The valme taken for p is 6.4 times the
critical state pressure. The critical state pressure is of the same
order of magnitude as the initial pressure. The values commonly used
‘for clays are an orxder of magnitude higher than those used by Davis and
Mullenger. Davis and Mullenger did not use material constants
corresgonding to amy specific material. Therefore, the materials are
differ;nt between the two predictions.

Figure {(6.102) shows the strain-space model prediction while Figure
(6.10b) shows the Davis and Mullenger prediction. Both predictions are
for guantities at the cavity wall. Qualitatively the two results are
similar. The mein differences arise from that fact that Davis and
Mullenger use a constant shear modulus while the shear modolus of the
straip—space model is infinite at the inception of the expansion and
reduces rapidly thereafter. The stress components are ordered in the

same way for both predictions

v. Sl' f.
S'p 2828, .

But the prediction of S'R_is quite different between the two models

®
quantitatively. Both the values of maximum S'R and the expansion ratio
corresponding to it are different between the two models. Table 6.3

shows these values for the two model predictions along with those from

Ladanyi's calculations.
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TABLE 6.3
s'* maxi /R at S'.

g maximom r /R a R.ma:x
Strain—space
Mode1 0.1 1.005
Rate Type
Model 0.05 1.005
Ladanyi’s
Calculations 0.8 1.07

The pore pressure predictions differ quite significantly in charac-
ter ‘bftween the two models. In botk cases the pore pressures increase
monotonically with increasing ro/Ro. But the gradients of pore pressure
differ. In the case of the strain-space prediction, the gradiemt of the
pore pressure is high for low values of ro/Ro and reduces monotonically
reaching a constant positive value for the range of strains comsidered.
The prediction made by Davis and Mullenger shows that the pore pressure
begins with a zero pradient at ro/Ro =1 and then increases,
subsequently reaching a positive constant higher than that of the
strain—-space prediction,

| Ladanyi’'s calculations show a deviation from the $train~space pred—
iction, but the deviation is in the opposite directionm to that shown by
Davis and Mullenger., At large strains, which correspond to smalier
valees of ro/Ro' Ladanyi's calculations show that the pore pressure

increase is lower than that predicted by the strair—space model.
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6.4.4 Elastic Solution

- Finally, a comparison is made with an elastic soluntiom, Since
such a solution is only valid for small strains, a linear elastic model
is unsed to predict solutions for expansion retios up to 1.01, There
were two options available for elastic modeling. These were ~ using a
compressible material with volume preserving deformstion or using an
incompressible material, The former was chosen because the latter
requires that the effective pressure be specified independently. Tke

Ed

material constants E and V were taken to be 100 So and 0.3,
respec;ively.

Figure (6.11) shows the elastic solvzion elong with the strain-

* * *

space model prediction for the varigbles P, S’R and S'9 as functions of
rO/RO. For the material constants and range of expansions considered,
the two results are reasonably close. For the range of expansiorp ratios
considered the strain depends linearly on the expamsion ratic and hexnce
the elestic solutioms are linmear, Further, unlike Da?is and Mullenger
prediction, the pore pressore increases from the onset of the expansion.

The strein—space prediction shows infinite slopes at ro/Ro = 0 because

of the infinite shear modulus at the inception of loading.

6.5 SUMMARY AND CONCLUSIONS

Ir this chapter the strain—space model is applied to & problem of
an expanding cylindrical cavity. It has been seen that the effective
pressure and the effective shear stress can be obtained in closed form,

The stress components and the pore pressure can be obtained after some



174

A

. o, 40

o' 20

STBESE%E & PORE PRESSURE

~0. 40

i
e,

SUPERSCRIPT E . ELASTIC SOLUTION

_-0. 80

0. 00 10. 02 10. 04 18, 08 10.08 10.10
EXPANSION BATID ro/Ro w10

FIGURE 6.1 1 COMPARISON OF THE STRAIN-SPACE AND
LINEAR ELASTIC SOLUTIONS AT THE WALL



- 175 -

simple numerical integration, The simple mnature of the model makes
possiﬁie such 2 straightforward solution process.

The solutionms obtained from the model are compared with;

i) available experimental results,

ii) calculations made by Ladanyi directly from the results of
experiments bearing some similarity to the expanding cavity,
and

iii)} the prediction made by Davis and Mullenger using a rate type
s0il model, and

iv) tre elastic sclution,

The experiments show results with very large scatter. The scatter
is dune to several reasons. Usnally in pile experiments the loading is
performed by introducing reaction piles and these piles are about 5 to
10 diameters away from the pile under experimentation. It is clear that
this would affect the pressuore distribution around the experimental
pile. Therefore, the reliable readings are only those obtained very
close to the experimental pile,

Secondly, the measurement of stress greatly depends upon the flexi-
bility of the pressure transducers. Since soil is & soft medium, the
measuring devices_itself can easily affect the stress fields. Finally,
the measurements must be made at depths sufficiently below the free
surface of the soil so as to eliminate heaving effects and local

failure. Hence, instruments have to be placed 2 few meters below the

ground level, This is achieved by driving the instruments into the
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ground with smaller tubes, A slight inclination of these tubes will
canseiaarge errors in locetions at & few meters' depth.

In spite of all the potential sources of error in the experiment,
the solutions obtained by the simple strain-space model predict pore
pressures reasonably close to those observed from the experiments.

The second set of results used for comparison are those from
Ladanyi’s calculations. The simple strain—-space model prediction is in
good agreement with Ladanyi’'s prediction, although the material
consta?ts are somewhat different.

T;e third set of results are those from the prediction of a rate
type soil model and once agair gqualitatively reasonable agreement is
found.

It is evident from the comparisons made in this <chapter that the
simple strain—space model is capable of predicting general soil
behavior. The simplicity of the model yields simple solutionms. Hence,

the strain-space model can be applied to other soil problems witk cer—

tain simplifying assumptions made to facilitate amalytic solutions.
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CHAPTER V11

SUMMARY AND CONCLUSIONS

A simple strain-space comnstitutive model is developed bherein for wet
clays, Despite the larpe number of soil constitutivg models aveilable,
the linear elastic solution is still popular im so0il practice mzinly
becanse of its simplicity. With the aim of simplicity in mind, the
model developed herein was based on & few physical characteristics of
soils rather than on fitting extensive experimental data. From the past
theories and experimental observations it was observed that the plastic
behavicer of «clays would depend npon a nondimensional quantity defiped
herein as the over compression ratio, By defining the stresses to be
functiong of strains and this over compression ratio, it has been found
that very simple function# are capable of predicting clay behavior quite
accurately. The identificatiorn and use of this key variable greatly
simplifies the formulation. Furthermore, as the model is developed in
the strain-space, the solution process is also simpler. These two
effects topgether make it possible to obtain closed form analytic solu-
tions for a wider class of problems.

The model was initielly developed for nuwndrained, monctonic,
triaxial loa&ing cases. A very simple generalizstion was used to relax
the constant volume, or the undrazined, constraint. The model that
evoived from this simple gener#lization has been verified by anelyzing
its prediction for constant pressure triaxial tests, These verifica-

tions are seen to substantiate the model.
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Eaving relaxed the undrained constraint, the model was modified to
accommodate load reversals, This was achieved by introdncing a
Bauschinger—like effect in the relationship between the normalized shear
stress and over compression raiio. First, the simplicity of the model
is not adversely affected. Secondly, the model predicts the softening
behavior commonly observed in soils under repeated cyclic loadings
(shake down phenomena).

The generalized model was once again verified. The verification
was made against two independent sets of test data and the prediction of
a few other well-accepted constitutive models. The simple =train-space
model not only gives simpler solutions but also predicts the czperimen—
tal observations more closely than other models.

Finally, the model was generalized to three—dimensional stress—
strainp states. The stress and strain tensors were defined from the
basics along the 1lines of nonlinear elasticity. The concept of
effective stresses was presented mathematically and the model was
generalized in a simple manner within the framework of these defini~
tions. The generalized model was then tested by using it to solve the
problem of an expanding cylindrical cavity. The model oprediction was
compared with two other predictions, with a linear elastic solution and
with some data obtaimed from pile tests. The prediction of the simple
model agrees qualitatively quite well with the other models. A
quantitative comparison is not possible because of insufficient data omn

the materials wused in the other predictionms. However, all the
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predictions are for normally consolidated clays. The pile test data are
also ﬁ}edicted quite well by the model.

In summary, a simple model to predict the constitutive behavior of
wet c¢lay has been developed herein., The model is sunfficiently general
to handle any loading and has been tested for walidity sagainst experi-
mental data. In order to use the model, the numerical values of three
common material constants, i, K and M are necessary. These constants
are obtained from a simple undreined or constant pressure shear test and
from a one— or two-dimensional comsolidation test., Such streightforward
derivalioa of the constants reanders the model very attractive inm solving
engineering problems,

In the strain-space formulation the pndrained problems tuyrm oumt to
be a simple case. The stress under general circumstances depends upon
the carreat void ratio, shear strain and a memory variable, ¥hen the
deformation takes place under undrained conditions, ome of the three
independent variables, namely, the void ratio, remains constant and
hence the problem is greatly simplified. Most clays have permeabilities
of the order of 10_8 cm/sec. The normal head gradieants are of order
1 m/m, thus resulting in pore fluid flow rates of the order of 10-8
em/sec. For s0il deformations that take ﬁlace at rates of & few orﬁers
of  magnitude higher' than this valuve, the deformation is well
approximated by ar undrained deformation, For this reason, the
undrained deformation assumption is quite common for tramsient solu-

tions. The final steady-state solntiom will, of course, depend mpon the

drainage oproperties and must be solved in all its gemerality. The
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problem of the pore pressure diffusion subsequeant to the initiasl expan-
sion of the c¢ylindrical cavity is corrently under investigation. The
only solution currently available { Randalph and Wroth, 1979 )for this
diffusion problem is based on linear elasticity theory.

If it is desired to improve the accuracy of the model, 2 few simple
changes may be made., However, a word of cauntion is in order here. It
is not desirable to demand high accuracies from a model until the input
constants can be determined to the same or slightly higher accuracy.
With the current state of experimental technology, it is believed that
the mo;el is sufficiently accurate a:z it is. Nevertheless, the accuracy
can be improved by taking more terms for the hardening functioms given
in equation {3.14) or for the shear sizess response¢ function given in
equation (3.26), At this stage only a single term approximation is used
in both cases.

Another place for improvement is in the load reversal formulatiom.
Some experiments indicate that the shear stress—shear straiz relation-
ships do not remegin symmetric when loading is applied in opposite direc—
tions, from an isotropically comsolidated state. Sunch a behavior can be
incorporated into the model by defiming two wvalues for the critical
state constant M. One value corresponds to tensile loading; the other
corresponds to compressive loading. In the current modsl these are
tzken Fo be equal.

The model can now be applied to sclve any problem involving wet
clays. It is only tkrough such repeated applications and the subsequent

analysis of the solutions that the advantages of this model «can be



- 181 -

establ ished. The model bhas been formulated witk simplicity in mind.
From the starting point of determining the material constants to the end
of obtaining the solation, the model has been kept as simple and zs

accurate as possible, thereby making its nsage straightforward.
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