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ABSTRACT

The reliability of two methods of structural identification is
assessed employing noise-contaminated data.

The statistical propérties of the results of the transfer
function approach and those of the modal minimization technicue are
compared, at different levels of noise, with the exact values of the
modal parameters being estimated. Comparison indicates that the medal
minimization is a far superior technique for structural parameter

estimation using Iinear models.
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1. INTRODUCTION

Models of engineering structures are not complete without the '
prescription of the values of all parameters involved. For linear
models, two techniques, the transfer functicon approach ( TFA ) and the
modal minimization technicue ( MMT ), provide a means for determining
empirical values of these structural parameters directly from the
earthquake response of real structures. These values of the parameters
can be used to check the accuracy of the values given by methods used
in design. They can alsc be used to provide typical values for
parameters, such as damping, which are difficult to determine during
the design process.

The most widely applied method is the traditional frequency-
domain transfer function approach ( TFA ) where an attempt is made to
estimate modal parameters, mainly the natural frequencies of the lower
modes, from properties of the dominant peaks in the transfer function.
A number of studies [1,2,3,4,5] have estimated the transfer function
from the ratio of the Fourier transforms of the complete time
histories of the measured base and response accelerations, although a
few have used successive time segments in a moving-window approach to
attenpt to trace the apparent change in thé natural frequencies due to
nonlinear behavior [6,7]. These approaches suffer from several
difficulties which produce results of questicnable reliability. The
fundamental difficulty is that estimation of nonparametric models,
such as the transfer function, requires long time windows to achieve
statistical reliability. Even when the complete acceleraticn

histories are used, the transfer function approach may allow only the



fundamental translational frequencies of a building to be estimated
with confidence, The darping estimates are especially questionable.
Damping is inherently difficult to estimate accurately with any
method, but the problem is accentuated because of the ill-conditioned
nature of the calculation of the transfer function from a ratio where
the denominator often approaches zero, and because only a few data
points are finally used to estimate the damping.

In response to dissatisfaction with the performances of the TFA
and other methods for system identification of linear dynamic
systems, such as the equation-error method and optimal filter
method, output-error techniques were developed to identify linear
models from strong-motion records ([8,9]. The periods, dampings and
effective participation factors of the dominant modes in the reponse
are estimated by least-squares minimization of the output-error, which
is the difference between either the time histories of the model and
recorded responses or their PFourier transforms. The model response is
computed using the recorded base accelerations as input. The two
methods give effectively the same estimates because of Parseval's
identity relating square-integrals in the time and frequency domains.
Cne of the advantages of the output-error methods, of which the MMT is
a special case, is that they can substantially reduce the effects of
modal interference by simultaneously esﬁimating the parameters of the
lower modes. They can also enhance reliability by simultaneously
estimating the modal parameters from the measured response at all
locations in a building, if more than one iocation was instrumented.
Another advantagé is that they can be used to study how well linear

models can approximate the strong-motion response of structures since



they provide those values of the parameters of the model which best
match the recorded motions. If the match is not satisfactory, then it
must be the mathematical form of the model which is at fault and not
pocr values for the parameters.

Actual results cobtained from both the TFA and an output-error
method equivalent to the one studied here are presented in Table 1.
Estimates for the periods are generally close but those for the
damping factors differ substantially. This fact raises the éuestion
of the reliability of each method.” The purpose of this study is to
cbtain a petter idea about the reliability of the two techniques; in
particular, when effects such as noise in the discretized data are
taken into account .

The procedure which has been followed in order to study the
reliapility of the methods is numerical in nature. First, a model is
synthesized, i.e., the mechanical model along with all the parameters
are defined from the outset so complete knowledge of the properties of
the structure is available. Second, the response at some degree of
freedom of the structure is calculated numerical ly using the
excitation signal which has been provided together with an appropriate
numerical integration scheme. Third, a disturbance is artificially
introduced into the input and output signals. In the present study,
white noise is superimposed on the respective signals. Fourth, the
two techniques are applied to the noise-corrupted signals and the
parameters are estimated. Lastly, comparison between the estimates
obtained from the techniques and the values used to construct the
model provides information about the accuracy and reliability of both
techniques,

This procedure is Qerformed on a statistical meaningful test



Direc-  Tj(sec) T, (sec) o 61;3)9 fg%)

Building tion R.3R.9 R.3R.9

1900 Avenue of N44E 4.27 4.37 1.42 1.45 5.2 4.4 2. 5.2
the Stars S46E 4,26 4.24 1.41 1.47 6.5 2.2 2. 5.5
KB Valley Center SO9W 3,34 3,30 1,17 1.15 11.3 8.8 6. 8.2
15910 ventura Blvd., S18E 3,27 3.05 1,11 1.11 8.9 6.3 6. 7.6
Sheraton-Universal NOOW 2.13 1.98 0.66 0.55 4.9 7.3 5. 8.3
3838 lLankershim Ave. N90OW 2.27 2.24 03.72 0.67 4.1 6.2 8.4 11.6
Bank of California N11E 2.38 1.74 0.67 0.49 10.4 12.9 6.0 8.3
15250 Ventura Blvd. N7SW 2.94 1.88 0.98 0.58 9.0 5.8 8.0 5.1
Holiday Inn NI9OW 1.26 1.20 0.60 -- 16.4 17.3 13.0 --
8244 Orion Blvd. NOOW 1,49 1.42 0.49 0.30 9.7 19.2 9.2 26.0
Holiday Inn S52wW 1.17 1.17 — - 8.8 5.0 =-— -
1640 S. Marengo Ave., N38W 1,03 1.06 — == 9.0 17.8 == —=

Table 1. Results of two studies [3,9] applying strong-motion
identification to records from the 1971 San Fernando
earthquake. ( After Ref. 10 )



sample. The mean of the samples and the standard deviation from the
mean value provide a good basis for comparing the results obtained

from both techniques.



2. PROCEDURE

The study of the accuracy of the two techniques is performed by a
series of numerical tests on synthetic data. An experiment on a real
structure presents problems concerning, among cothers, the large amount
of time needed to perform the experiments, the economic resources, and
the inaccuracy of the measuring devices, There is also uncertainty in
what the correct values of the parameters should be. These and other
difficulties can be avoided by using a more analytical approach.

Numerical analyses present the advantage that all the information
concerning the structure is well defined since the models of the
system and the associated parameters are stipulated from the outset.
Numerical errors, such as roundoff, do not present a problem in this
study since their magnitudes are much smaller than those of the errors

arising from other sources.

2,1. Model _o_f. the structure

 The structure that was modeled in this study was a ten story
building. Since the nature of the excitation was predetermined to be
of the form of horizontal ground accelerations, it was acceptable to
choose a shear building as the model. The shear building is
characterizedby colums which offer only lateral flexibility through
bending. Viscous damping is assumed to act on the structure in the
lateral direction, too. Fiqure 1 shows the mechanical model for
this type of structure, |

The stiffness, damping and mass matrices for the structure can be
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Figure 1. Damped linear chain model ( shear

structure ) with N degrees of freedom.



easily calculated because of the idealizations mentioned apove. The
system of equations governing the ( lateral ) motion of the system can

then be written as

M¥ + CY + KY = =MX (1)

ey -

where Y is the response vector associated with the degrees of
freedom of the structure, M is the mass matrix, C is the damping
matrix, K is the stiffness matrix, and X is the ground motion. The
dots indicate time differentiation. By employing the modal
decomposition method the equations are reduced to a system of
independent ordinary differential equations [1l]. Each differential
equation corresponds to a vibrating mode of the structure and takes
the form of the governing equation of a single degree of freedom
oscillator. The forcing function for each equation is associated with
the ground accelerations but not to the solution of the other modal
equations, i.e., there is no coupling among the equations.

The parameters of each mode ( e.g., natural frequency } are
calculated readily given the stiffness, damping and mass matrices.
Conversely, given the set of all modal parameters and the mass matrix,
it is possible to construct the stiffness and damping matrices [8].
Thése modal parameters will be taken as the independent set of
parametérs in the equations. The aim of tﬁe study was to determine
the values of these parameters using the two techniques and to compare
them with the exact values cbtained directly from the stiffness,
damping and mass matrices. In the following, the set of modal

parameters will be denoted by the vector a:

a= {(w,&,pi;iz1, 2, ..., N}



Natural Damping Participation

Mode # Period (Freguency) Factor Factor
{sec) (Hz)
1 1.0 1.0 0.05 1.2673
2 0.3358 2.978 0.05 -G.4068
3 0.2045 4.890 0.05 0.2259
4 0.1495 6.689 0.05. -0.1429
5 0.1199 8.340 0.05 0.0934
6 0.1019 9.814 0.05 -0.0601
7 0.0904 11.06 0.05 0.0366
8 0.0829 12.06 0.05 -0.0199
9 0.0782 12.79 0.05 0.0087
10 0.0756 13.23 .05 -0.0021

Table 2. Values of the parameters describing the vibration modes
of a ten degree-of-freedom shear building.



where N is the number of medes, and for the ith mode, i is
the natural frequency , &i is the damping factor and Pi  is the
participation factor.

The shear building model consisted of ten floors, i.e., ten
degrees of freedom, plus a ground level where the excitation was
applied. The exact values of the modal parameters of the structure
which are to be estimated are shown in Table 2. These values were

computed from expressions given and derived in the appendix.

2.2. Generation of the excitation signal

The excitation of the building model correspended to that typical
of earthquakes, since the aim was to compare these technicues for
applications to strbng-motion records from structures.

The generation of artificial earthguake acceleration signals has
been an active area of research during the last two decades [12]. The
approach followed here is simple and yet presents a number of
important: features characteristic of real earthquake ground
acceleration signals.

The steps followed to generate the ground motion signal are shown
schematically in Figure 2, The first step of the procedure was to
generate a "white-noise" signal, i.e., a discrete signal
independently distributed in time with a given Gaussian distribution
( zero mean, unit variance ) at each time step. This signal was then
miltiplied by an envelope function which had similar temporal

characteristics to those found in real earthquake acceleration signals

10
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( power-law growth at first, fol lowed by constant magnitude and then
exponential decay in the tail ), At this point the signal had the
correct temporal characteristics but the frequency content was much
too uniform. Real earthquake signals present several spectral
characteristics, some of which were incorporated in the synthetic
signals generated here., For example, near the d.c. level ( i.e., 0 Hz )
the amplitude rises approximately as the square of the frequency, while
at high frequencies the amplitude decays with frequency.

Filtering procedures can be used to modulate the frequency
content of an existing signal. The approach fcllowed here
corresponded to filtering the signal with a single deéree of freedom
oscillator. The modulated white-noise signal was treated as the input
ground acceleration and the relative velocity of the oscillator was
taken to be the cutput signal, The velocity spectrum takes the
correct value of zero at 0 Hz and at high frequencies it decays with
frequency. This spectrum, however, does not rise as the square of the
frequency near the dic. level ( only the relative acceleration
response does ). Still, it gives a more realistic frequency content
for artificial earthquake signals than that given by the displacement
or acceleration of the oscillator. The transfer function of the
velocity filter and the resulting signal are shown in Figures 24 and
2e, respectively. Other techniques could have been employed to
modulate the frequency spectrum of the signals but the single-degree-
of-freedom approach is simple and yet computationally efficient.

The procedure just mentioned was performed on each new signal.

In order to lessen ahy possible bias towards either technique, the
parameters governing the time envelope and the single deqree of

freedom filter were generaited with a random routine. The value of the



Parameter Mean value Standard deviation

t1 3.0 sec 0.5 sec
Time .

tz 5.0 sec 0.5 sec
Envelope

n1 1.5 0.5
Function

n, 0.15 0.05
SDOF w 2.5 Hz 0.5 Hz
Filter ¢ 0.70 0. 10

Table 3. Typical values of the parameters used to generate
earthquake ground motion signals.

14



parameter in question was always assumed to be Gaussian distributed
with a prescribed mean and variance. Typical values of these are
shown in Table 3. Figure 3 shows one such earthquake ground
acceleration record and its Fourier transform. Comparison with a real
acceleration signal is fzvorable as can be seen in Figure 4.

The noise signals applied to the input and output signarls were
also constructed as modulated white noise { zero mean, unit variance ).
Since the tests involved different amounts of noise added to the
input and output signals, a measure of the size of the signals was
needed. The root-mean-square ( r.m.s. ) value of the signals was used
for this purpose. An r.ms. value for the the earthquake signal was
prescribed and the corresponding value was determined for the response
signal. The ratic between the r.ms., of the noise signal and that for
the earthquake or response signals provides an indicaticon of the
amount of noise present in the noise~-corrupted signals.. Various
noise~to~signal r.m.s. ratios were employed to study the influence of
noise in the reliability of the methods.

Typical signals generated in this study consisted of 2048
acceleration points at a time interval of .02 seconds representing
40,96 seconds of motion. This time interval corresponds to a Nyquist
frequency of 25 Hz. Strong motion signals of past earthquakes show
very small amplitudes at frequencies over 15 Hz.

2.3. Calculation of the structural response

The respcnse of the system to the excitation signal was
calculated using the modal decomposition method. The integration of

the equations of motion in the modal domain was performed using the

15
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a) Time domain. b) Frequency domain.
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Nigam—-Jennings algorithm [13].

The Nigam-Jennings algorithm is particularly useful for
earthquake‘ excitations since it calculates the exact solution to the
governing differential equations for each modal single-degree of
freedom problem. This solution is exact given that linear
interpolation between ground acceleration points is a valid
assumption. The motion at any degree of freedom of the structure can
then be calculated from the solution of the modal equations and the
knowledge of the mode shapes of the structure. Figure 5 presents the
response of the tenth degree of freedom ( xroof response ) of the
structure to typical earthquake ground acceleratién signals ( those

shown previously in Figures 3 and 4 ).

2.4. Transfer function technique

The transfer function technique assumes that the structural
behavior is linear. This enables the analyst to interpret the
structure as a iinear filter, i.e., a linear system that modifies the
frequency content of the input signal.

The transfer function Hlw) of the structure { or a filter ) is

defined by the relation
Y = H{w X({w) (2)

where Yy and X4 are the ( complex ) Fourier transforms of the
recorded roof acceleration and base motion signals of the system,
respectivel?, and @ is the frequency. The initial conditions are
assumed to be zero. The amplitude of the complex-valued function Hiw)

will peak close to the natural frequencies if the damping is small.

18
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The half-power frequency band-width of the function at the value ,/2/2
of the maximum value is proportional to the amount of damping present
in the mode [11]. The height of the amplitude of the transfer
function at the natural frequency is proportional to the value of the
participation factor for the mode in guestion.

The absolute value of a typical transfer function for a multiple-
degree-~of~freedom structure is shown in Figure 6. The inset shows
the transfer function for a single-deéree—of-freedom oscillator with
the corresponding modal parameters. The parameters can be determined
from the relative heights and widths of the peak only if the damping
is small ( narrow peaks ). These quantities are more difficult to
calculate when there are more than one mode since there is a linear
superposition of signals, each coming from a different vibrating mode.
If the rescnant peaks are narrow enough in order that there is little
interference among the modes so that the structural parameters can be
determined in a similar way as in the inset of Piqure 6, then it is
possible to obtain the parameters of interest directly from the plot
of Hiw) versus w.

Even though the function Hlw) is complex, only the amplitude of
it is useful for determining any structural parameters. The phase
information is difficult to utilize since the noise introduces a
chaotic-type of phase behavior. Thus the expected phase charge of n
radians through resonance does not show up clearly. The addition of
noise to the input and output sigqnals also causes errors in the
empirically determined transfer function. The actual transfer

function is given by the relation

20
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Y (e}
Hw = -——- {3)
X (w)

but the empirically determined transfer function Hiw), is given by

~ Yi{w) + Nylw)
Hw = (4)
X{w) + Ny (w)

where Nyl and N, are the Fourier transforms of two independent
noise signals. The amplitude of typical estimated transfer functions
corresponding to various noise levels is shown in Figure 7.
Comparison between the real transfer functions shown in Figures 8a
and 8b, and the ones in Figure 7 indicate that 40 % and 60 % noise
levels appear to be representative of real situations ( there is the
possibility that the "noise" present in the rea_l signals is partly due
to modelling errors as well as measursment errors ). The procedure
followed to estimate the parameters in these high-noise cases involved
an cperator drawing a curve through the points in such a way that a
smooth curve is obtained. It is often possible to distinguish
resonant peaks from spurious peaks since noise in long records
produces spikes of very narrow widths.

It is important to mention that for the tests done, the operator
knew the exact results, Thus, for data containing large noise levels,
the results are probably biased in favor of the TFA. If the transfer
function of a structure were to be determined from just one record
( at noise levels similar to 40%, say, as indicated above ), it is
probable that poorer estimates would be obtained for the properties of
the rescnant peaks.

The Fourier transforms were carried out in discrete form using

22
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Hall's FFT algorithm [14]. Typical spectra for the signals ranged

from 0 to 25 Hz.

2.5. Modal minimization technique

This technique is based on the concept of minimizing the error
between the actual response and the response predicted by the model
for a given set of parameters. In an idealized noise-free situation,
the minimum error would be zero implying that the actual and predicted
responses agreed exactly. In this case, the modal parameters used to
obtain the predicted response must be the correct values { see ref, 8
for a discussicn of uniqueness of parameter estimates ). In
practice, however, the minimum error will not be zero because of the
presence of noise ( inducing errors in the estimates of the modal
parameters ) or because of model error. The approach requires a
useful definition of "error" and an efficient algorithm to vary the
values of the parameters in such a way that the minimum value of the
error is obtained without excessive computation.

The definition of error used in the automated procedure employed

in this study (8] is given by
tr 2
3@ = [ [ Ry(®) ~ Ry(tx:a) 12 at (5)
i

where R,(t) and Rp(t,z;g_) are the actual and predicted responses

of the structure in the time interval from t; to ty , respectively.
The predicted respcnse RP is computed from the model with modal
parameters a using the excitation signal X(t). The words "response”

and "excitation" denote the time history of any of the mechanical

26



quantities whose observations are available when studying the
structure, e.q., accelerations, displacements, stresses, etc. In the
present study the response corresponds to the roof acceleration and
the excitation to the base acceleration. The integration of the error
was performed utilizing Simpson's rule on all discrete data points
R,(ty) and R, (ty,X:a) in the time interval from t; to t¢ .

The algorithm employed to vary the parameters in the automated
procedure corresponded to a variation of the steepest descent
method [8].

27



3. RESULTS AND DISCUSSION

The results will be shown in the form of graphs of estimated
parameter values plotted against noise level. In each graph seven
different curves are plotted. The noise-to-~signal ratios emploved to
construct the curves vére 0%, 20%, 40% and 60%. Three dashed curves
correspond to the results obtained from the modal minimization
technique and three dotted curves correspond to the results obtained
from the transfer function approach . The solid line corresponds to
the exact solution for the parameter under consideration,

For both sets of three curves, the middle curve represents the
mean- values obtained from a series of ten runs while the two outer
curves correspond to the values of the mean plus and minus twice the
standard deviation, respectively. In this way an idea of the
distribution of ﬁhe values for each level of noise is cbtained, The

accuracy of these for the MMT is discussed in section 3.4.

3.1. Periods of oscillation

The periods corresponding to the first three modes were estimated
using the two techniques. Figures 9a, b.and ¢ present the values for
modes 1, 2 and 3, respectively.

A number of features are evident from these graphs. First, the
results from both techniques are fairly accurate at all noise levels,
the standard deviation growing roughly linearly with noise., It is
clear, however, that 'the MMT is a much more reliable technique for

determining the pericds of oscillation of the modes. The mean-value
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curves for the MMT results fall close to the exact-value line and the
mean-plus-two-standard-deviation curves remain close to the mean~-value
curve. The results suggest that the larger the mode number, the
better the performance of the MMT relaﬁm to the TFA.

The mean~value curves for the TFA results are reasonably close to
the exact values for the first two modes, but not for the third mode.
With no noise, there is a bias in the results for the TFA since the
mean-value curves start at a value different from the exact value.
One possible reason for this behavior is the fact that the transfer
function signals considered were discrete versions of the true
transfer function. These discretizations introduced errors since the
true peaks in the continuous function were not necessarily identified
by the algorithm designed for this purpose. These errors are shown
schematically in Figqure 10.

There is another possible contribution to this bias. The half-
power method assumes that for low levels of damping the natural
frequency wp differs negligibly from the frequency wp at which
the transfer function peaks. Analytically, this is written as

wn
V1 - 282

At 5 % damping, say, wp is approximately 1.0025 wn which implies

Wy ;wp =

that the natural frequency w, differs by 0.25 % , approximately,
from the "peak" frequency wp . The bias in the graphs show that wp ,
as calculated by the TFA, is in error by -0.9%, -1.% and 2.3 % in
modes 1, 2 and 3, respectively. Thus it is possible that this
approximation contributed significantly to the error, particularly for

the first mode results.
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Figure 10. Introduction of errors into the TFA
results from the discretization procedure.
A and ZEP are the approximate resonant

amplitude and frequency. Ap and wp are

the exact values.



Bias in the results of the MMT, if any, may be due to the fact
that the algorithm is an iterative one and the sclution may not have
converged to the exact value. Improvement can be guaranteed if a
smaller tolerance level of convergence is assigned. Computational
time, however, may increase dramatically if the convergence levels are

reduced to the same order as the numerical roundoff error.

3.2, Damping factors

Figures 1la, b and ¢ show the curves for the variations of the
values of the damping factors with noise level,

Again, the results show that the MMT gives much more reliable
estimates than the TFA. Also, the results from the TFA show erratic
behavior. The mean-value curves do not seem to follow any consistent
pattern and their values are far off from the exact value. This is
more pronounced at larger values of noise, as expected. There is a
bias at the zero noise level as for the periods. This may be due to
the fact that the peaks were not calculated accurately and when
calculating ./2/2 of the peak amplitude, a level toc low on the
resonant peak is obtained. This then means that the half-power
bandwidth is too large when determining the damping factor. Besides
this source of error, there is also interaction among the modes. The
peaks of the transfer function can be skewed to either side depending
on where the interacting mode is located in the frequency domain
relative to the natural frequency being considered, This is also a
reason for bias in the periods. Figure 12 shows schematically this

influence.
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Figure 12. Modal interference produces bias in the estimates
of the resonant frequencies and amplitudes. Curve
(a) is the sum of the modal curve (b) in question
plus the decaying curve {c) of the interfering mode,
including the effects of phase. ’Ap and ESP are the

approximate resonant amplitude and frequency. A

and w are the exact values.
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The mean-plus-two-standard-deviations curves for the TFA show

erratic behavior, too. The standard deviation values should only. be
used as an indication of the scatter of the results. In Figure 1lla
the curves for the fundamental mode seem to indicate the existence of
negative values of the damping factor in the noise level region above‘
40 %, but the numerical results ( and physical requirements )
constrain the values to be in the positive range. Actually, this
implies that the distribution of the values cannot be taken to be
Gaussian. Due to the lack of information of the type of distribution
and to the lack of a large sample of data, care must be taken in
interpreting the mean~plus-two-standard-deviations curves when their
values are well away from the mean value.

The results of the TFA exhibit another characteristic which was
not expected. The standard deviation values decreased at some higher
noise levels in the signals. This feature can be seen in the
narrowing of the "standard deviation" curves ( see, for example, noise
levels 20 and 40 % for mcde 1, noise levels 40 and 60 % for mode 3 ).
One possibility that explains this behavior is that the operator is
able to discern noise when the latter presénts itself as narrow peaks,
but the results may be biased when noise appears in other forms. This
implies that the number of samples is not large enough to obtain a
statistically significant distribution for the TFA values at each
noise level { even though the nunber of sanples was large enocugh for
the MMT, which gives much smaller standard deviations).

The results from the MMT are more cémsistent than those from the
TFA in that the mean-value curve does not show large discrepancies
with respect to the exact-value line. The "standard deviation" curves

also show more consistent behavior: the separation of the curves
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increases proportionately to the noise level. What is not fully
understood is the fact that the reliability of the results improves as
the mode number is increased. Normally, this would not be expected.

since the higher the mode, the poorer the signal-to-noise level.

3.3. Participation factors

The values cbtained for the roof participation factors are shown
in Figures 13a, b and c.

The curves from the TFA are, again, somewhat erratic, especially
in the second and third modes. The mean-value curve in all graphs is
biased away from the exact-value line. The trend is more visible as
the mode number inCreases. The "standard deviation” curves spread out
considerably as the noise level increases, except for the third mode
from the 40% to the 60 % noise level, where the standard deviation
curves contract. The results show that the TFA is very unrél iable since
the scatter is large and, in modes 2 and 3, the exact-value line falls
outside the region bounded by the "standard deviation™ curves.

The results from the MMT are more reliable than those from the
TFA but still do not predict the values accurately. In mode 1 the
mean~value curve veers away from the exact-value line and the mean-
plus-two-standard-deviations curve indicates that the scatter is
small, so the results will consistently predict values smaller in
magnitude than the exact. The results for modes 2 and 3 also indicate
a bias in the MMT results, but it is smaller than for mode 1. The
bias in the results can be introduced since the error functicnal J(a)

is sensitive to the ratio of the damping factor to the participation
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factor but not to their independent values (8].

3.4 gtatistical validity of the MMT results

The statistical validity of the MMT results was evaluated by
comparing the results obtained from samples with increasing sizes.
The values of the modal parameters for the ten story shear building
were estimated for the following sanple sizes: 2, 5, 10, 15, 20, 25,
30, 40, 50, 60, 80 and 100. The input and cutput record signals were
corrupted with a fixed 20% noise-level ( i.e., 20% noise-to-signal
r.m.s. ratio ).

The variation of the statistical parameters with sample size are
shown 'in Figures 14a, b and ¢, 1In these figures, three solid lines
are drawn and correspond to the mean and the mean plus and minus
twice the standard deviation, respectively. Comparison between the
values for a sample-size of ten with those belonging to larger sample
sizes indicates that the results shown in previous sections are

statistically meaningful.
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4. CONCLUSIONS

The comparison of the numerical results for a sample of ten tests
show that the MMT ( modal minimization technique ) is a much more
accurate and reliable technique than the TFA ( transfer function
approach ) for estimating the values of the periods, damping factors
and participation factors of the first few modes of vibration of an
engineering structure. In these tests, the periods were estimated most
accurately while the damping and participation factors showed larger
scatter.

The better performance of the MMT can be attributed to a number of
factors. First, the MMT makes use of all the information in the data
whereas the TFA concentrates on data in the neighborhood of peak and
half-power points. Second, the reliability of the TFA is worsened
because of the discrete nature of the computed transfer function.
Third, the TFA becomes unreliable when modal interference is strong
while the MMT is relatively insensitive to it. Finally, the MMT
imposes a parametric model from the outset whereas the TFA imposes it
only after the empirical transfei‘ function has been determined, so
there are more physical contraints in extracting the model from the

noise=contaminated data in the MMT.
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APPENDIX A

DERIVATION OF THE MODAL PARAMETERS OF A SHEAR BUILDING MODEL

The eguations of motion are given by equation (1), i.e.,
MY + C¥ + KY = =-MX . ( AL )

Because of the nature of the relative motion Y, the base acceleration

X can be written as Xi where i is the vector with N components
1= 01,1,1,...,113. (22 )

Due to the properties of the shear building models, the matrices M, C

and K take the following forms:

M = ml
C = ¢l ( A3 )
K = kU

where I is the identity matrix and U is a symmetric matrix of the form

2100 ... ]
1 2100 ...

U = 012100 ...
o012 1900 ...
L -

The values m, ¢ and k are defined schematically in Figure 1. This
matrix U can be decomposed into U = 21 + W, where W is

the matrix of off-diagonal ones shown in the matrix above,
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Al. Eigenfrequencies and eigenvectors

The eigenfrequencies and eigenvectors are found by considering

the homogeneous problem

M

o

+ KY = 0. (24 )

The damping matrix would have normally changed the eigensolution but
for shear buildings the modeshapes for the damped and undanped
problems are identical since the damping matrix C satisfies the
equation cMlg = gxMlcg, (a-1l.

A form of the solution ¥ = f£ sin{wt+8} is introduced into
Equation A4. 1In the last expression, f is the modeshape, w is the
frequency, t is time and 9 is the phase. Equation A4 then becomes

-w2ME + KE = 0 ( A5 )

and after substituting in for M and K

Uf = uf ( A6 )

w? (m/k) > 0, since M and K are positive definite.

where u
After introducing the expression for U in Equation A6, the following

expression is obtained

WE = (2-p) £ ( A7)
= AE.

From Equation A7 the following difference equation is cbtained:

£,

l"l + f‘ = Af‘

l+l l iE[IIanonpN} (A8)
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It is required that fO =0 and fm1 = fN . Assuming a form for 7
such as
fi = sin(ai) , { A9 )

and after introducing it intc Equation A8, leads to the relation

sinfa(i=-1)] + sinfa(i+1)]

A sin(ai)

2 sin{ai} cos(a) . ( ALO0 )

It must.be the case that A = 2 cos(a) . Also, since fne1 = By
sinfa(N+1)] = sin{al}

This implies that ‘'a’ must satisfy the relation
a@+l) = (~1)JaN + 3 jell, 2, ...}

or, equivalently,

i
a = —_ . ( A1l )
1+ N[1-(~1)9]

If j is even then sin{ai) = 0 and thus £ = 0. If j is odd then

the expression above simplifies to

a: = . ( A12 )

The final expressicn for A is

29-1

A = 2 cos( 7) (Al3)

2N+1

and that for a)'j is
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w5 = 2Vk/m sin{ —— - ., { A1)
2N+1 2
It is clear that given the values for k and m, it is possible to
generate the frequencies for all modes. For the tests performed in
this study, the value of w4y was arbitrarily set to 2# rad s-} This
defines the value for the ratic V k/m and so the values of all other
frequencies are readily computed as shown in Table 2. The

eigenvectors corresponding to these eigenfrequencies are given by

2j=-1
Sin( e i7) { A15 )
2N+1

]

where i represents the degree-of-freedom and j the mode.

A2. Modal participation factors

The participation factors and the effective participation
factors are calculated from the inhomogeneous equaticn of motion.
The first step is to construct the nonsingular modeshape matrix F in

the fol lowing way:

F = (£, £2, ..., 8 | ( A16 )
The solution Y can then be written as

Y(t)y = F yit)

where y(t) is a vector of time varying coefficients. Substituting
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for Y in Equation Al and premultiplying by FT gives
FFMFy + FTCFy + FLKFy = = FIM¥ ( AL7 )

The effective mass, damping and stiffness matrices are defined by the

the following expressions:

- T

M, = FTMF

Co = FICF ( A18 )
. T

K, = FTKF .

Because of the nature of M and making use of Lagrange's trigonometric

identities to sclve for the product FL F, M. can be rewritten as

= T
Me—mFF

=1/4 (2N+1) m I . { 319 )
Premultiplying Equation Al7 by Me"l leads to
y + MTPcoy + MRy = -k A20
L e ‘el e Te X Xp { )

where the vector p contains the participation factors. The vector p

is given by

p = MIrTMi

4

FT i ‘ ( A21 )
(2N+1)

which, in components, takes the form
1 cos m((2-1)/(4N+2)] = cos 7 {(2]j-1)/2]

py = . (A22)
N+1/2 sin # [(2]-1)/ (4N+2)]

The effective participation factors are defined as
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p; (3 = Fij © ( A23 )

where the index i refers to the degree-of-freedom and j refers to
the mode. For a ten degree-of-freedom shear building, the effective
participation factors associated with the tenth degree-of-freedom

( N=10 ) are given by

23-1 cos m[(2j-1)/42) - cos = [{23-1)/2]

, 1
pyo'}) = — sinm (10 )
10.5 21 sin m{(2j-1)/42]

{ A24 )

Values of these factors for the ten modes are given in Table 2 in the

report.
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Strong-Motion Earthquake Accelerograms
Digitized and Plotted Data

Uncorrected Accelerograms

Yolume I

NTIS
Report No, Bcceggion No,
EERL 70~20 B 287 847
EERL, 70-21 PB 196 823
EERL 71-20 B 204 364
EERL 71-21 FB 208 529
EERL 71-22 PB 209 749
EERL 71-23 PB 210 619
EERL 72-20 BB 211 357
EERL 72-21 PB 211 781
EERL 72-22 B 213 422
EERL 72-23 PB 213 423
EERL, 72-24 P 213 424
EERL 72-25 PB 215 639
EERL 72-26 PB 220 554
EERL 72-27 PB 223 023
EERL, 73-=20 BB 222 417
EERL 73=-21 PB 227 481/AsS
EERL 73=22 PB 232 315/AS
EERL 73-23 PB 239 585/AS
EERL 73-24 BB 241 551/AS
EERL 73-25 PB 241 943/AS
EERL 73-26 PB 242 262/AS
EERL 73-27 FB 243 483/AS
EERL 73-28 PB 243 497/2S
EERL: 73-29 PB 243 594/AS
EERL 73=30 PB 242 947/as
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Strong-Motion Earthguake Accelerograms
Digitized and Plotted Data

Corrected Accelerograms and Integrated
Ground Velocity and Displacement Curves

Yolume I
NYIS
2art Report to, 2ccession No,
A EERL, 71-50 PB 208 283
B EERL 72-50 P8 220 161
C EERL 72-51 PB 220 162
D EERL 72-52 PB 220 836
E EERL 73-50 PB 223 024
F EERL 73~51 PB 224 977/9AS
G EERL 73-52 B 229 239/AS
H EERL 74-50 PB 231 225/AS
I EERL 74-51 PB 232 316/AS
J,K EERL 74-52 PB 233 257/AS
LM EERL 74-53 B 237 174/AS
N EERL 74-54 PB 236 399/AS
o, P EERL 74-55 PB 239 586/AS
QR EERL 74-56 PB 239 587/AS
S EERL 74-57 FB 241 552/as
T EERL 75«50 PB 242 433/AS
U EERL 75-51 PB 242 949/AS
v EERL 75~52 PB 242 948/AS
W, Y EERL 75-53 PB 243 719
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Analyses of Strong-Motion Earthquake Accelerograms
Response Spectra

Yolume IIT

NTIS
Parct Report No, Accession No,

A EERT, 72-80 B 212 602

B EERL 73-80 PB 221 256

C EERL 73-81 PB 223 025

D EERL 73-82 PB 227 469/2S

E EERL, 73-83 PB 227 470/AS
F EERL 73-84 PB 227 471/AS
G EERL, 73-85 PB 231 223/2S
H EERL 74-80 PB 231 319/AS
I EERL 74-81 PB 232 326/AS
J,K,L EERL 74-82 PB 236 110/2S
M, N EERL 74-83 PB 236 400/2S
O,P EERL, 74-84 PB 238 102/AS
Q,R EERL, 74-85 PR 240 688/AS
S EERL, 74-86 PB 241 553/AS
T EERL 75-80 PB 243 698/AS
U EERL, 75-81 PB 242 950/AS
\'4 EERL, 75-82 FB 242 951/2aS
W, Y EERL 75-83 PB 243 492/AS
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Analyses of Strong-Motion Earthquake Accelercgrams
. Fourier Amplitude Spectra

Yolume IV

NTIS
Part Report No, Accession No,

A EERL 72-100 B 212 603

B EERL 73-100 PB 220 837

C EERL 73-101 PR 222 514
D EERL 73-102 PB 222 969/AS
E EERL 73-103 PR 229 240/AS
F EERL, 73-104 PB 229 241/AS
G EERL 73=105 BB 231 224/AS
H EERL 74-100 PB 232 327/AS
I EERL 74-101 B 232 328/AS
J,K,L,M EERL 74-102 PB 236 111/AS
N,0,P EERL 74-103 PB 238 447/AS
Q,R,S EERL 74-104 PB 241 554/AS
T, U EERL 75-100 PR 243 493/As
v, W, Y EERL 75-101 PB 243 494/AS
Index Volume EERL 76-02 M 260 929/AS
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