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ABSTRACT

A critical review of classical optimal control algorithms is made

with respect to the specific application of structural control

under seismic loads. Wi th the earthquake ground acceleration

being the major source of continuous external disturbances, the

Riccati closed-loop control does not satisfy the optimal

condition. New optimal control algorithms are proposed herein,

including the instantaneous optimal open-loop control,

instantaneous optimal closed-loop control and instantaneous

optimal closed-open-loop control. These new control algorithms

are aimed at developing feasible control algorithms that can

easily be implemented, for applications to seismic-excited

structures. Numerical examples are worked out to demonstrate the

control efficiency of the proposed control algorithms.
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SECTION 1

INTRODUCTION

Because of the potential pay-offs either in minimizing the

catastrophic failure or in increasing the structural safety,

intensive research efforts have been made for the possible

application of active control systems to available civil

engineering structures. In this regard, a large body of

literature has been available [ref. 1-69]. It has been predicted

that the next generation of buildings will be much taller and

flexible. For these super-tall buildings to function safely

under hostile environments, such as strong earthquakes or wind

gusts, control systems, either passive or active, may conceivably

become an integral part of the building.

It is remarkable to notice that there is a lack of experimental

work or laboratory verifications of the analytical results for

the active control of seismic-excited structures. Clearly,

realistic experiments are needed to evaluate the feasibility and.

implementability of active control devices in practice. The

critical importance of experimental studies in structural control

has been emphasized by Yao and Soong [61]. Likewise, the

experimental research efforts will reveal various aspects in

which further analytical/numerical studies are needed.

An experimental program for the active control of model buildings

subjected to earthquake excitations has been conducted at the

State University of New York (SUNY) at Buffalo since 1984 with

the participation of the George Washington University. During

the course of such a collaborative experimental research, ·it was

found that the active control laws available in the literature

are quite limited for practical implications of structural

control under earthquake excitations. In fact, the control of

earthquake-excited structures presents a unique problem of its.

own in the area of active control. The main objective of this
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report is to develop and propose new optimal control laws

suitable for application to seismic-excited building structures.

A critical review of classical optimal control theories for

applications to earthquake engineering problems is made. It is

shown that the Riccati matrix represents the optimal closed-loop

control only in the absence of continuous external excitations.

In earthquake applications where the ground acceleration is the

major source of continuous disturbances, the Riccati matrix does

not satisfy the condition for optimal closed-loop control. It is

shown -that the optimal open-loop control and the optimal

closed-open-Ioop control are superior to the closed-loop control

using the Riccati matrix. Unfortunately, these two classical

optimal control algorithms are not applicable to

earthquake-excited structures. This is because for these optimal

control algorithms to be applicable the entire earthquake ground

acceleration history should be known a priori.

Although the entire earthquake base excitation history to the

building is not known a priori, it can be measured real-time

on-line by installing sensors on the basement floor. In other

words, at any time t, the earthquake record is available up to

that time instant t. such measured information is used to

develop new control laws. The objective function used for

establishing new control laws is the time dependent performance

index expressed in terms of quadratic functions. Since the time

dependent performance index is minimized at every time instant,

these newly developed optimal control algorithms are referred to

as the instantaneous optimal control laws, including the

instantaneous optimal closed-loop control, instantaneous optimal

open-loop control and instantaneous optimal closed-open-Ioop

control. Numerical examples are worked out to demonstrate the

efficiency of these new control laws. Likewise, experimental

verifications for these control laws have been conducted at SUNY,

Buffalo [Ref. 47].
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SECTION 2
CRITICAL REVIEW OF CLASSICAL OPTIMAL CONTROL

THEORIES FOR EARTHQUAKE-EXCITED STRUCTURES

In this chapter, various optimal control algorithms will be

critically reviewed from the standpoint of applications to

earthquake engineering problems. From such a review it will

become apparent that there is a need to develop new optimal

control algorithms suitable for controlling earthquake-excited

structures.

For simplicity, consider a one-dimensional building structure

implemented by an active tendon control system as shown in Fig.

2.1. The structure is idealized by an n degrees of freedom

system and subjected to a one-dimensional earthquake ground

acceleration Xo(t). The matrix equation of motion can be

expressed as

(2.1)

with the initial condition Z (0) = O. In Eq. (2.1), ~(t) = 2n

state vector, U(t) = r dimensional control vector, A = 2nx2n

matrix, ~ = a (2nxr) matrix specifying the locations of active

controllers, and ~1 is an appropriate 2n vector [see Appendix A

for these matrices]. In what follows, a prime denotes the

transpose of a vector or matrix.

The standard quadratic performance index J is given in the

following

t
J =of f[~'(t) 9 ~(t) + U'(t) R U(t)]dt

2-1
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in which 9 is a (2nx2n) positive semi-definite matrix, ~ is a

(rxr) positive definite matrix, and t f is a duration defined to

be longer than that of the earthquake.

To minimize the performance index J subjected to the constraint

given by Eq. ( 2.1), the necessary conditions can· be shown as

follows [e.g., Ref. 70 and Appendix B).

A(t) = A' A(t) - 2 9 ~(t) ( 2 • 3 )

U(t) = - jR-1 B' A(t)- - ( 2 • 4 )

(or

the

using Eqs~ (2.1),

tha t the control

vector A(t) .

in which A(t) is a 2n vector representing the costate variables

Lagrangian multipliers). The optimal control vector ~ (t) ,

costate vector A(t), and the state vector Z(t) can be solved- .

(2.3), and (2.4). It follows from.Eq. (2.4)

vector U (t) is proportional to the costate

For the general case in which the control vector U (t) (or the

costate vector A(t» is regulated by the response state vector

and the external excitation, one has

A(t) = P(t) Z(t) + ~(t) ( 2 • 5 )

where the first term on the right-hand side indicates the

closed-loop control and the second term represents the open-loop

control.

The unknown matrix P(t) and vector q(t) can be determined by- -
substituting Eq. (2.5) into Eqs. (2.1), (2.3) and (2.4) leading

to the following expression
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[P(t) + .P(t) A -

t~(t) B ~-l ~' P(t) + A' ~(t) + 29] Z(t)

+ ~(t) - [t~(t) ~ ~-l B' - A'] ~(t)

( 2 • 6 )

2.1 Optimal Closed-Loop Control

For the special case in which the control force is regulated by

the response state vector alone, i.e.,~(t) = 0 in Eq. (2.5), one

has

A(t) = P(t) Z(t)

Then Eq. (2.6) reduces. to

[P(t) + P(t) A - t~(t) B R- 1 B' P(t) + A' P(t)

( 2 . 7 )

( 2 . 8 )

When the earthquake ground, acceleration ~O(t) is zero, Eq. (~.8)

becomes

[P(t) + ~(t) ~ - t~(t) B R- 1 B' P(t) +

A' P(t) + 2Q] = 0 ( 2 • 9 )

Equation (2.9) is the classical matrix Riccati equation and P(t)

is the Riccati matrix.
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Strictly speaking, the Riccati matrix P(t) obtained from Eq.

(2.9) does not correspond to the optimal closed-loop control for

the earthquake-excited building structure, because it is obtained

by setting the grourid acceleration Xo(t) to zero. Hence, the

optimal closed-loop control is achieved by the Riccati matrix

only if the earthquake excitation is either zero or a white noise

random process [e.g., Refs. 50, 70]. It is mentioned that the

Riccati matrix, Eq. (2.9), depends exclusively on the structural

characteristics and the weighting matrices 9 and~. For building

structures, extensive experience indicates that the Riccati

matrix P(t) remains constant (i.e., each element of P(t) remains

constan.t) over the entire duration of earthquake excitation and

it drops rapidly to zero near t f . In other words, P(t)

establishes a stationary state in a very short period of time

starting from t f backwards. Typical elements of P (t) for an

eight story building are shown in Fig. 2.2. As a result, the

effectiveness of the control system is not affected, when the

Riccati matrix is approximated by a constant matrix, i.e., ~(t) =.
~ or ~ (t) = 0, as long as t f is longer than the earthquake

duration. Consequently, for building structures under earthquake

excitations, the constant Riccati matrix P can be used, and Eq.

(2.9) becomes a matrix algebraic equation

P A - ~~ ~ ~-l B' P + AI P + 2Q = 0 (2.10)

It is emphasized that, in general, the optimal closed-loop

control requires the measurements of the full state vector ~(t),

.i.e., 2n sensors are needed. Such a complete measurement may not

be possible for complex buildings.

2.2 Optimal Closed-Open-Loop Control

When the control vector U(t) is expressed in the form of Eq.

(2.4) and (2.5), the control law is referred to as the optimal
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closed-open-loop control. In this case the control vector is

determined by the measured state vector and the earthquake ground

acceleration. The Riccati matrix P and the vector q(t) are

obtained from Eq. (2.6) as follows:

P A - ~ ~ ~ ~-1 B' P + A' P + 29 = 0 (2.11)

( 2 . 12 )

in which the time dependent Riccati

approximated by a constant matrix P,

validity of such an approximation has

extensive numerical results [Ref. 58]

matrix P(t) has been

i.e., P(t) = P. The

been substantiated by

Unlike the Ricatti closed-loop control, in which the gain of the

control vector is obtained independent of (or disregard with) the

earthquake excitation, the optimal closed-open-loop control given

by Eqs. (2.11) and (2.12) utilizes the information of earthquake

excitations. Hence, it should be superior to the Riccati

closed-loop control.

Unfortunately, the optimal closed-open-loop control is not

achievable for the earthquake excitation. This is because ~(t)

in Eq. (2.12) should be solved backwards from the terminal time

t f , indicating that the entire earthquake history XO(t) should be

known a priori. Although the earthquake excitation Xo(t) is

measurable, it is not known a priori.

The optimal closed-open-loop control is feasible only if Eq.

(2.12) can- be solved forwards starting from t = O. However, the

solution for ~(t) is always numerically unstable when solving

forwards from t = 0, because the real parts of the eigenvalues
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are positive. For instance, given the entire

excitation history ~o(t) a priori, q(t) and q(O) can be solved

backwards starting from t f . Then, using the ~(O) obtained

previously, it is difficult to reproduce ~(t) by solving Eq.

(2.12) forwards because the resulting numerical solution for q(t)

is divergent [see Ref. 58 for detailed discussions].

2.3 Optimal Open-Loop Control

For the open-loop control, the control vector depends only on the

earthquake excitation, i.e., independent of the response state

vector ~(t). Thus, Eq. (2.5) becomes

A(t) = q(t)

and Eq. (2.6) reduces to

~(t) = -~' ~(t) - 29 ~(t) . ,

( 2.13 )

(2.14)

which is identical to Eq. (2.3). Substitution of Eqs. (2.4) and

(2.13) into Eq. (2.1) leads to the following expression

Z(t) = A Z(t) ­

Z(O) = 0 (2.15)

The state vector ~ (t) and the vector ~(t) can be solved using

Eqs. (2.14) and (2.15). Again, the optimal open-loop control

cannot be implemented because ~(t) should be solved backwards

f rom the terminal time t f , and the earthquake exci tation Xo(t)
should be known a priori.
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2.4 Simulation of Earthquake Ground Acceleration Xo(t)

The earthquake ground acceleration, Xo(t), is modeled as a

uniformly modulated non-stationary random process;

( 2 . 16 )

in which, ~(t) is a deterministic non-negative envelope function

and X(t) is a stationary random process with zero mean and a

power spectral density ~XX(W). A commonly used spectral density

~·",(w) for the stationary process X(t) is considered,XX

(2.17)

in which Sg , wg and S are parameters depending on the intensity

and the characteristics of the earthquake in a particular

geological location.

Various types of envelope function ~ (t) have been used in the

literature. A particular envelope function given in the

following will be used

0 t < 0

(t/t
1

)2 0 < t ~ t 1
~(t) = (2.18 )1 t 1 ~ t ~ t 2

exp[-c(t-t2 )] t > t 2

where t 1 , t 2 and c are parameters which should be selected

appropriately to reflect the shape and duration of the earthquake

ground acceleration.
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Physically, ~(t) describes the amplitude modulation whereas the

spectral density <pxx(w) specifies the frequency content of the

earthquake ground acceleration Xo(t). Furthermore, since the

ground acceleration has a zero mean, the mean values of the

response vector and the active control force are all zero.

The non-stationary earthquake ground acceleration Xo(t) given by

Eq. (2.16) can be simulated conveniently using the Fast Fourier

Transform (FFT) technique as follows [Refs. 41, 58, 71]:

(2.19 )

in which ~(t) is the deterministic non-negative envelope function

given by Eq. (2.18), <pxx(w) is the power spectral density of X(t)

given by Eq. (2.17), and ~k (k=1,2, ... ,M) are statistically

independent and identically distributed random variables with the

uniform distribution in [O,2n,], i.e.,

for 0 < x < 2n

elsewhere

where f~ (x) is the probability density function of the random

k

variable ~k (k=1,2, ... M). In Eq. (2.19) the one-sided spectral

densi ty 2<Pxx (w) for w > 0 is evaluated at an equally spaced

interval !:::.w with wk = k6w > 0, and Re { } represents the real

part of the quantity in the bracket. In applying the FFT

technique to Eq. (2.19), the earthquake ground acceleration XO(t)

is also evaluated at equally spaced discrete points Xo(t j ) with

t. = j!:::.t, j=1,2, ... M. The total number of sample points M must
]

be an integer power of 2 based on FFT algorithm.
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2.5 Numerical Example

In order to compare the control efficiency for each control law,

described above, it is assumed that the earthquake sample

functions are known a priori. While such. a hypothetical

si tuation does not exist, the results will provide information

regarding the effectiveness of the Riccati closed-loop control.

An eight-story building in which every story unit is identically

constructed is considered for illustrative purpose. The

structural properties of each story are: m = floor mass = 345.6

tons; k = elastic stiffness of each story unit = 3.404 x 10 5KN/m;

and c = internal damping coefficient of each story unit = 2,937

tons/sec that corresponds to a 2% damping for the first

vibrational mode of the entire building. The external damping is

assumed to be zero. The computed natural frequencies are 5.79,

17.18, 27.98, 37.82, 46.38, 53.36, 58.53, and 61.69 rad/sec. The

parameter values associated with the earthquake ground

acceleration model are as follows: t 1 = 3 sec, t 2 = 13 sec, c =
-1 2 -4

0.26 sec Sg = 0.65, wg = 18.85 rad/sec, and S = 4.5x10

m2/sec 2 .

Active tendon controllers are installed in every story unit and

the angle of inclination of the tendons with respect to the floor

is 25°, see Fig. 2.1. Thus, the control force vector from the

controllers is U(t)/cos 25°. In the present situation, the

dimensions of the weighting matrices 9 and Rare (16x16) and

(8x8), respectively. For simplicity, both 9 and R matrices are

chosen to be diagonal matrices with elements Q11 = Q22 = ... -
* 5Q88 = Q = 10 , Q99 = ... = Q16 16 = 0, and R11 = R22 = ... = R88* -4 '= R = 10 .

With the structure and weighting matrices given above, elements

of Riccati matrix P have been computed and some elements are
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presented in Fig. 2.2. It is observed that these elements remain

constant until reaching the terminal time t f = 30 sec. In other

words, the elements of Riccati matrix establish stationary values

in a short period of time from t f .

A sample function of the earthquake ground acceleration Xo(t) has

been simulated and shown in Fig. 2.3. With such an earthquake

input, the structural response vector Z(t) has been computed.

The results for the relative displacement of the top floor and

the base shear force without active control are displayed in

Figs. 2.4(a) and 2.5(a), respectively. The corresponding results

obtained using the optimal open-loop and optimal closed-open-Ioop

control algorithms are presented, respectively, in Figs. 2.4 and

2.5 as (b) and (c). Under these two control algorithms, the

required active control force from the controller installed in

the lowest story unit, referred to as the first controller, are

shown in Figs. 2.6(a) and 2.6(b). With the Riccati closed-loop

control, the results are displayed in Figs. 2.4 (e), 2.5 (e) and

2.6(c). Furthermore, the sub-optimal closed-loop control

algorithm suggested in Refs. 39-41 has also been applied and the

results are depicted in Figs. 2.4(d), 2.5(d) and 2.6(d).

The following observations are made based on Figs. 2.4-2.6.

(i) With the application of active control systems, the

building response quantities are reduced

significantly~

(ii) Under both the optimal open-loop control and

optimal closed-open-Ioop control,

the corresponding building responses and the

required active control force are identical.

This has been expected because both optimal

control algorithms minimize the same

objective function J.

(iii) The control efficiency associated with the
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optimal open-loop and closed-open-Ioop

control algorithms is better than that of the

Riccati closed-loop control. In other words,

the Riccati closed-loop control results

in higher response levels and larger

active control forces.

(iv) The control efficiency for the Riccati

closed-loop control is slightly better than

that of the sub-optimal closed-loop control.

When the earthquake ground acceleration XO(t) is considered as a

non-stationary random process with zero mean, the building

response quanti ties and the required active control forces are

all non-stationary random processes with zero mean. Then, the

usual spectral analysis of random vibration can be used to

determine the statistics of the building response as presented in

Appendix B. The time-dependent standard deviation (or root mean

square) of the top floor relative displacement, base shear force,

and required active control force from the first controller are

presented in Figs. 2.7(a), (b), and (c), respectively, when the

optimal closed-open-Ioop control algorithm is employed. In these

figures, the solid curve represents the response quantities

without active control. The dotted curve and dash-dotted curve

denote the results using active control system in which all

elements of the weighting matrix R are equal to 10- 3 and 10 -4,

respectively. The corresponding results based on different

control algorithms are presented in Figs. 2.8-2.10.

From Figs. 2.7-2.10, the maximum root mean squares (or the

maximum standard deviations) of (i) the top floor relative

displacement, a m(Y8 ) = maxi a(Y 8 ,t), (ii) the based shear force,

am(kY1 ) = maxi a(kY1,t) and (iii) the active control force,

a m(u1 ), from the first controller, are summarized in Table 2.1

for different control algorithms. In Table 2.1, the maximum

response quantities, am(Ya) and am(kY1 ), have been normalized
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*with respect to the corresponding uncontrolled ones, a (Y8) and
* m

am (kY1 ), respectively.

It is observed from Figs. 2.7-2.10 and Table 2.1 that the Riccati

closed-loop control is definitely inferior to both the optimal

closed-open-loop control and optimal open-loop control. The

sub-optimal closed-loop control is as efficient as the Riccati

closed-loop control. As expected, the structural response

quantities reduce and the required active control forces increase

as the elements of the weighting matrix R decreases.
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TABLE 2-1 Maximum Root Mean Square of)Non-Stationary Structural
Response Quantities and Control Force; For a-Story
Building; Global Control

]
'*CONTROL LAW R O"m(Y8 ) O"m(KY1 ) O"m(U1 )

0"~(Y8) O"~ (KY1) KN

Optimal Open-Loop 10- 4 0.164 0.163 95
Control .10-3 0.363 0.363 49

Optimal Closed-Open- 10- 4 0.164 0.162 95
Loop Control 10- 3 0.363 0.362 49

Riccati Closed-Loop 10-4 0.309 0.313 170
Control 10-3 0.558 0.557 75

Control

Parameters

Sub-Optimal Closed- e:=10,1;=10 0.313 0.372 181
Loop Control e:=10,1;=3 0.519 0.528 88
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(b)

(a)

FIGURE 2-1 Structural Model of a Multi-Story Building With Active Control
System; (a) Active Tendon System, (b) Story Unit.
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SECTION 3

DEVELOPMENT OF NEW OPTIMAL

CONTROL ALGORITHMS FOR APPLICATIONS

TO EARTHQUAKE ENGINEERING PROBLEMS

It is obvious from the previous chapter that under seismic loads,

the Riccati closed-loop control law does not satisfy the optimal

condition, whereas the optimal open-loop control and optimal

closed-open-Ioop control algorithms are not applicable, because

the earthquake ground motion is not known a priori. While the

earthquake ground motion is not known a priori, the base

excitation of the building can be measured real-time on-line by

installing sensors on the basement floor. In other words, at any

particular time t, the base excitation record is available up to

that time instant t. Such important information will be utilized

in the development of new optimal control algorithms in this

chapter.

The reason why it is not feasible to apply the classical optimal

open-loop or closed-open-Ioop control algorithm to

earthquake-exci ted structures stems from the definition of the

performance index J. The performance index J given by Eq. (2.2)

is the integral of quadratic functions over the time interval

(a, t f ) . In order to minimize the quantity J defined over the

time interval (a,t f ), the input excitation in that time interval

should be known a priori. Consequently, new optimal control

algorithms will be established using the time dependent

performance index J(t) as follows

J(t) = Z' (t) 9 ~(t) + U' (t) R U(t) (3.1)

The implication of minimizing Eq. (3.1) is that the performance

index J(t) is minimized at every time instant t for all a < t <
t f . Hence, the optimal control law thus obtained is referred to

as the instantaneous optimal control law.
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3.1 Development of Instantaneous Optimal Control Algorithms

The system of equations of motion given in Eq. (2.1) can be

decoupled through the following transformation:

Z(t) = 'E ~1(t) ( 3 • 2 )

in which T is a (2nx2n) modal matrix consisting of eigenvectors

of A.

Substituting Eq. (3.2) into Eq. (2.1), one obtains the decoupled

equations of motion as follows:

( 3 • 3 )

in which e is a (2nx2n) diagonal matrix consisting of complex

eigenvalues e. (j=1,2, ... ,2n) of matrix A and
-J

The solution of Eq. (3.3) can be written as

( 3 .4)

~1(t) = ( 3 .5)

where exp[~(t-~)] is a (2nx2n) diagonal matrix with the jth

diagonal element being exp[ej(t-~)].

The solution for the response vector given by Eq. (3.5) can be

obtained as follows

exp[e(t-~)]F(~)d~- -
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= 86t
e- ~1(t-6t)

t
+ J exp[8(t-~)]F(~)d~

t-6t - -
( 3 .6)

86t[e- F(t-6t) + F(t)]

86t .in which e- 1S a diagonal matrix with the jth diagonal element

being eXP [8 j 6t].

substitution of Eg. (3.6) into Eg. (3.2) leads to the following

expression for the state vector

+ 6t T[e~6t F(t-6t) + F(t)]
2

~t T[e~6t F(t-6t) + F(t)] ( 3. 7 )

in which ~(t) is given by Eg. (3.4) and F(t-6t) is obtained from

Eg. (3.4) by replacing t by t-6t. Substituting Eg. (3.4) into

Eg. (3.7), one obtains

Z(t) = T D(t-6t) + ~t [B U(t) + ~lXO(t)]
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in which

~(t-~t) = e~~t~-I{~(t_~t) +

~t [B U(t-~t) + ~IXO(t-~t)]}

is a vector containing all elements at t-~t.

(3.9)

To minimize the performance index J(t) given by Eq. (3.1)

subjected to the constraint in Eq. (3.8), the Hamiltonian H is

obtained in a similar manner as shown in Appendix B as follows

H = ~'(t)g ~(t) + U'(t) R U(t) + A'{Z(t) -

T D(t-~t) - ~t [B U(t) + ~lXO(t)]} (3.10)

where A is the costate vector or the Lagrangian multiplier

vector.

The necessary conditions for minimizing the performance index

J(t) subjected to the constraint of the equations of motion are

obtained in a similar manner as that shown in Appendix B.

aH
az = 0

aH
au = 0

aH
dA = 0 ( 3 . 11)

2 R U(t)

Upon substituting Eq. (3.10) into Eq. (3.11), one obtains

2 9 ~(t) + A(t) = 0

t.t B' A(t) = 0
2

Z(t) = T D(t-~t) +

3-4
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( 3 . 14)

3.2 Instantaneous Optimal Open-Loop Control

The main advantage of the open-loop control for

earthquake-excited structures lies in the fact that sensors are

needed on the basement floor only. Since the measurement of the

building response quantities are not necessary, the control

system is simplified tremendously.

From Eq. (3.13), the control vector ~(t) is linearly proportional

to the costate vector A(t) . Let the control vector U(t) be

regulated by the earthquake excitation alone, i.e.,

A(t) = ~(t)

Then, Eqs. (3.12)-(3.14) become

2 9 Z(t) + ~(t) = a

2 R U(t) flt B' q(t) a2 =

Z(t) = T D(t-flt)-

+
6t [B U(t) + ~lXO(t)]2

( 3 . 15)

( 3 • 16 )

(3.17)

(3.18)

The unknown vectors ~(t), ~(t), and ~(t) can be solved from Eqs.

(3.16)-(3.18) as follows. The vector Z(t) is eliminated by

substituting Eq. (3.18) into Eg. (3.16) yielding
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2 9 {'E !?(t-tlt) + ~t [B U(t)

+ ~(t) = 0 (3.19)

Premultiplying Eq. (3.19) by tlt B' and adding to Eq. (3.17), one

obtains the control vector U(t)2i~ the following

in which

U(t) = L G(t)

G(t) = - tlt B'Q T D(t-tlt) -
- 2 - - - -

(tlt/2)2 B' 9 ~1XO(t)

(3.20)

(3.21)

(3.22)

where D(t-tlt) is a vector consisting of all elements defined at

(t-tlt), see Eq. (3.9).

It is observed from Eqs. (3.20)-(3.22) that the control vector..
U(t) at time t is regulated by the earthquake excitation XO(t) ~t

time t and !?(t-tlt), that consists of earthquake excitation Xo
(t-tlt), the control vector U(t-tlt) and the response vector

Z(t-6t) all at t-6t, see Eq. (3.9). The response state vector

Z(t) under the instantaneous optimal open-loop control is

obtained by substituting Eq. (3.20) into Eq. (3.18),

Z(t) = T D(t-6t)

( 3.23)
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3.3 Instantaneous Optimal Closed-Loop Control

Let the control vector U(t) (or the costate vector A(t)) be

regulated by the feedback response state vector Z(t) alone, i.e.,

A{t) = II Z{t)

Then, substitution of Eq. (3.24) into Eq. (3.12) yields

(2 Q + 1\) Z{t) = 0

(3.24)

(3.25)

from which the unknown matrix 1\ is obtained, for Z{t) 1 0, as

closed-loop control is obtained by

Eq. (3.24) and then into Eq. (3.13)

fI. = -2 Q

The control vector U(t) under

(3.26)

the instantaneous optimal

substituting Eq. (3.26) into

as follows

U(t) tit= -2 (3.27)

The response state vector ~ (t) under the optimal closed-loop

control is determined from Eq. (3.14) with the aid of Eq. (3.27)

as follows

~(t) = [! + (tit/2)2~ ~-1~'9]-1[~ ~(t-tit)
tit ..

+ 2 ~1XO(t)]

in which I is an (2nx2n) identity matrix.
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3.4 Instantaneous Optimal Closed-Open-Loop Control

Let the control vector Tl (t) or ~ (t) be regulated by both the

feedback response state vector ~(t) and the measured earthquake

ground acceleration Xo(t), i.e.,

~(t) = ~ ~(t) + §(t) (3.29)

The control vector U(t) can be eliminated by substituting Eq.

(3.13) into Eq. (3.14),

Z(t) = T D(t-6t)

+ 6t [ 6t B R- 1B'A(t) + W_
1

X
O
(t)]

2 4 --
( 3.30)

Instead of eliminating ~(t) from Eqs. (3.12) and (3.30), the term

2 9 ~(t) in Eq. (3.12) is expressed as g[~(t) + ~(t)]. Then, the

second term of ~ (t) is replaced by that given in Eq. ( 3 . 30)

leading to the following result,

. 9 {~(t) + :!'

+ ~1XO(t) l} + A(t) = 0 (3.31)

Substituting Eq. (3.29) into Eq. (3.31) yields

{g + [(6~ )2g~ ~-1~, + f] ~} Z(t)

+ Q {'E ~(t-6t) + ~t ~1XO(t)}

+ {(6~ )2g ~ ~-1~, + f} §(t) = 0
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From Eq. ( 3 .32), one obtains, for ~ (t) '# 0 and § (t) :j:. 0, the

following equations for the solution of unknown matrix A and

vector §(t)

2
+ !]Q + [(~~) 9 ~ ~-1~, A = 0 (3.33)

Q [~ ~(t-~t) ~t .. ]
+ 2" ~1XO(t)

[ (~~
2

R- 1B' + !]+ ) 9 ~ q(t) = a (3.34)

The unknowns A and q(t) are obtained as follows

A = (3.35)

(3.36)

Thus the control vector ~(t) and the response state vector Z(t)

under the instantaneous optimal closed-open-loop control are

determined in the following:

U(t) ~t R:- 1B' [A Z(t) + §(t)] ( 3 .37 )= 2" - - -
Z(t) [I (~t ) 2

R- 1B' A]-1 {T D(t-~t)= - B8

+ (~t ) 2
R- 1B' §(t)

~t ..
(3.38)

8 B + 2" ~1XO(t)}- - -

in which A and ~(t) are given in Eqs. (3.35) and (3.36),

respectively.
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3.5 Determination of the Weighting Matrix Q
. -

For the instantaneous optimal closed-loop control, the control

force vector U(t) depends on the weighting matrix Q as follows

U(t) = -(~t/2) R- 1 B' 9 ~(t) (3.39)

in which ~(t) is a 2n state vector consisting of the displacement

response vector Y(t) and the velocity response vector ~(t), i.e.,

z' (t) = [Y' (t) Y'(t)] ( 3 . 40 )

From the equation above, the control force vector ~(t) depends on

the weighting matrices Rand g, which are prescribed (or

preassigned) rather than being obtained through some criteria.

As a result, an appropriate choice of the weighting matrices ~

and 9 requires some careful considerations, in particular the

elements of the (2n x 2n) 9 matrix. Some pertinent features for

a proper assignment of the elements of the Q matrix as well as
. -

their significance will be described in the following.

In Eq. (3.39), ~ is a (2n x r) matrix, the transpose of which can

be expressed in a partition form

B' = [0,.,. (3.41 )

where r is the total number of controllers, 2 is a (r x n)

matrix, ~ is a (n x n) diagonal mass matrix, and ~ is a (n
location matrix indicating the location of controllers

Appendix A].
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The (2n x 2n) weighting matrix Q can be partitioned into four (n

x n) submatrices as follows

9 =
[

911 : 912]------:------
921 : 922

(3.42)

Substituting Eqs. (3.40) - (3.42) into Eq. (3.39), one obtains

U(t) = - (l~t/2) R- 1 HI (m- 1 ), [921~(t)

+ 922~(t)] (3.43 )

It follows from Eq. (3.43) that the control force vector ~(t) is

independent from the (n x n) matrices 911 and 912' indicating

that 911 and 912 do not affect the control system. Hence, 911

and 912 should be assigned with zero elements in order to reduce

the performance index J(t).

Note that m is a (n x n) diagonal mass matrix and hence (~-1), is

also a diagonal matrix. Likewise, elements in the jth column of

the location matrix H are all zero if the controller is not

installed in the jth story unit. Since 921 and 922 are

premultiplied by ~,(~-1)" see Eq. (3.43), the jth row of 921

and 922 will disappear in the expression for ~(t). Consequently,

elements in the j th row of 921 and 922 should be assigned with

zero values if no controller is installed in the jth story unit.

In Eq. (3.43), 921 is multiplied by the measured displacement

vector ~(t), whereas 922 is multiplied by the measured velocity

vector ~(t). Therefore, the magnitude of the elements in each

column of the 922 matrix represents the relative importance (or

contribution to the control force) of the corresponding velocity
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sensor, and the magnitude of the elements of each column of the

921 matrix denotes the relative importance of the corresponding

displacement sensor. Hence, if one would like to reduce a

particular displacement or velocity, then elements of the

corresponding column of either 921 or 922 matrix should be

assigned with large values.

It should be mentioned that salient features associated with the

assignment of elements in the weighting matrix 9 described above

hold for all three instantaneous optimal control algorithms.

For the Riccati closed-loop control, the control force vector is

expressed as

U(t) = - (1/2) R- 1 B' P Z(t) (3.43)

A comparison between Eqs. (3.39) and (3.43) indicates that the

Riccati matrix P in the Riccati closed-loop control· plays the

same role as the weighting matrix 9 in the instantaneous optimal

closed-loop control, as far as the control force is ~oncerned.

Consequently, the following conclusions are derived from our

previous discussions of the Qmatrix

(1) The (n x n) submatrices ~11 and ~12 have no effect

whatsoever on the control force vector ~(t), where

p = (3.44)

(2) If the controller is not installed in the j th story

unit, elements in the jth row of the [~21: ~22 ] matrix do not

have contribution to the control force vector U(t), and
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(3) The magnitude of the elements in each column of the ~21

submatrix represents the relative importance of the corresponding

displacement sensor, whereas that of the ~22 submatrix indicates

the relative importance of the corresponding velocity sensor.

Unlike the instantaneous optimal closed-loop control in which

elements of the weighting matrix Q are assigned, the Riccati

matrix P is determined from the Riccati matrix equation. In

other words, P is a function of the structural characteristics,

~, the weighting matrices ~ and g, and the location matrix~. In

general, the Riccati matrix is a full matrix. However, from the

observations made above, valuable conclusions can be derived with

regard to the optimal locations for sensors and controllers in

the following.

In practical applications, tall buildings usually involve many

degrees of freedom, whereas the number of sensors and controllers

are limited. Based on economical and design considerations, the

fewer the sensors and controllers, the better. With a limited

number of sensors and controllers, the question of optimal

locations for a limited number of sensors and controllers is of

practical importance. From the previous discussions, the optimal

locations for sensors and controllers can be determined. The

results of such a study for the optimal locations of sensors and

controllers will be reported in the near future.

3.6 Numerical Examples

To demonstrate the applications of instantaneous optimal control

algorithms developed in this chapter, several configurations of

active control systems are considered in the following.

3.6.1 Example 1: Active Tendon Control System

The same eight story building in which an active tendon

controller is installed in every story unit given in Chapter II
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is considered. The earthquake ground acceleration is also

identical to that considered in Section II. With the simulated

earthquake ground acceleration shown in Fig. 2.3 as input, the

top floor relative displacement and the base shear force of the

building without the active control system are presented in Figs.

3.1(a) and 3.2(a).

required

in Figs.

closed-loop control, the weighting matrices Q

to be diagonal with elements Q.. =
11

Qii = 0 (i=9, 10, ... ,16) , and Rii =

The building response quantities and the

force from the first controller are shown

For the Riccati

R are chosen

(i=1,2, ,8),

(i=1,2, 8).

active control

3.1(b), 3.2(b), and 3.3(a).

With the instantaneous optimal control algorithms, the weighting

matrix R is identical to the one given above. However, the

(16x16) weighting matrix Q is partitioned as follows

Q = a [
0 : 0]

------:----
921: 922

( 3 • 45 )

in which 921 and 922 are (8x8) matrices and a is a constant. As

described previously, the submatrices 911 and 912 do not

contribute to the active control forces and hence they are chosen

to be zero.

For sim~licity, 921 and 922 ~re chosen to ~e equal, i.e., 921 =

922 = 9· The elements of 9 ' denoted by 9 (i,j), are chosen in

the following manner.

i for i < j
*Q (i,j) =

j for i > j
(3.46)
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*Note that guidelines for assigning values to elements 9 (i, j )

have not been established in the literature. There is no
*particular reason for the choices of Q (i,j) given by Eq. (3.46),

except to mention that it is based on experience and intuition.

For a 69% reduction of the building response, a value of 4200 is

used for Q.

The building response quantities are displayed in (c), (d), and

(e) of Figs. 3.1-3.2, respectively, for the instantaneous optimal

closed-loop control, intantaneous optimal open-loop control, and

instantaneous optimal closed-op~n-loop control. The

corresponding required active control forces from the first

controller are depicted in Fig. 3.3 (b), (c) and (d). It is

observed that the building response quanti ties as well as the

required active control forces are all identical under three

instantaneous optimal control algorithms. This has been expected

because each control algorithm is derived by minimizing the same

objective function (performance index). The maximum response

quantities and the maximum control force from the first

controller are summarized in Table 3.1. It is observed from

Figs. 3.1 to 3.3 and Table 3.1 that the control efficiency is

almost identical for both the Riccati closed-loop control and the

instantaneous optimal control under this particular situation.

Suppose only 4 active tendon controllers are installed in the

lowest four story units. For the Riccati closed-loop control,

the (4x4) weighting matrix R is considered a diagonal matrix

with R11 = R22 = R33 = R44 =10-4 . The (16x16) weighting matrix 9
is again a diagonal matrix with Qii = 1.3 x 1~ for i = 1,2,3,4

and Q.. = 0 for j = 5,6,7,8. The response quanti ties and the
-JJ

required active control force from the first controller are

depicted in Figs. 3.4(b), 3.5(b), and 3.6(a).
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For the instantaneous optimal control algorithms, the same R

matrix given above is used. However, the Q matrix is subdivided

into (8x8) submatrices as given by Eq. (3.45) with 921 = 922 = 9~

The elements of 9*, denoted by Q*(i,j), is chosen as follows

* -- {J
o
·Q (i,j)

for i < 4

for i > 4
(3.47)

for i = 1,2, ... ,8 and j = 1,2, ... ,8. For a 68% reduction of the

response quantities, a value of 5,000 is chosen for a, see Eq.

(3.45). The response quantities and the required active control

force from the first controller using various instantaneous

optimal control algorithms are displayed in Figs. 3.4-3.6. The

maximum responses and the required active control force are

summarized in Table 3.2. Again the efficiency of the Riccati

closed-loop control is almost identical to that of various

instantaneous optimal control algorithms.

3.6.2 Example 2: Active Mass Damper Control System

An active mass damper control system installed on the top of the

same 8-story building is considered, see Fig. 3.7. The

properties of the active mass damper are: md = mass of the

damper = 29.63 tons, cd = damping of the damper = 25. tons/sec,

kd = stiffness of the damper = 957.2 KN/m. Note that the mass md
is 2% of the generalized mass associated with the first

vibrational mode, the frequency of the damper is 98% of the first

natural frequency of the building, and the damping ratio of the

damper is approximately 7.3%. In the present example, the
*weighting matrix ~ consists of only one element, i.e., R = R ,

whereas the dimension of the 9 matrix is (18x18).

Without the active control force,

For the passive mass damper and
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acceleration shown in Fig. 2.3 as an input, the top floor

relative displacement and the base shear force are shown in Figs.

3.8(a) and 3.9(a), respectively.

With the application of the Riccati closed-loop control, the

weighting matrix Q is considered to be a diagonal matrix with Q..
5 "": .. 11

= 1.3 x 10 (for 1=1,2, ... ,8), and Q .. = 0 (for )=9,10, ... ,18).
* _3))

The element of R matrix is R = 10 The top floor relative

displacement, the base shear force and the required active

control force are displayed in Figs. 3.8(b), 3.9(b) and 3.10(a),

respectively.

In applying various instantaneous optimal control laws, the same

R matrix is used. However, the active control force is

influenced only by the last two rows of the weighting matrix 9.
Thus, only the elements in the last two rows will be assigned

with some values, i.e.,

9 = a (3.48)

in which 921 and 922 are (2x9) matrices. For illustrative

purpose these two matrices are given in the following:

= [-33.5 -67 -100.5 -134 -167.5

-33.5 -67 -100.5 -134 -167.5

-201 -234.5 -268

-201 -234.5 -268

375.6]

32.2

= [67,5 135

5.8 11.6

202.5

17.4

270 338.5

23.2 29

405 472.5

34.7 40.5

540

46.3

32,2]

5.7

A value of 67.0 is chosen for a such that the top floor relative

displacement is reduced by approximately 60%.
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By using the weighting matrices described above and the

application of various instantaneous optimal control algorithms,

the top floor relative displacement, the base shear force and the

required active control force are depicted in Figs. 3.8, 3.9, and

3.10. The maximum values in the time histories of the response

quanti ties and the active control force wi thin 30 seconds are

summarized in Table 3.3. As expected, the three instantaneous

optimal control algorithms produce identical results. Figs.

3.8-3.10 and Table 3.3 indicate that the instantaneous optimal

control algorithms are slightly more efficient than the Riccati

closed-loop control.

It is well known that the weighting matrices should be chosen

such that R is positive definite and 9 is positive semi-definite.

However, the appropriate assignment of elements of Q and R

matrices has not been discussed in the literature, in particular

how to choose elements of Q and R matrices to achieve the maximum- -
control efficiency. This is a subject of future research.
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TABLE 3.1: Maximum Structural Responses and Control Force

For 8-Story Building With 8 Controllers

CONTROL LAW

TOP FLOOR

DISPLACEMENT

(CM)

BASE SHEAR

FORCE

(KN)

CONTROL FORCE FROM

1ST CONTROLLER

(KN)

Uncontrol 4.10 2,506 ----------

Riccati closed- 1.31 907 364

loop control

Instantaneous 1.29 894 361

optimal control
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TABLE 3.2: Maximum Structural Responses and Control Force

For 8-Story Building With 4 Controllers

CONTROL LAW

TOP FLOOR

DISPLACEMENT

(CM)

BASE SHEAR

FORCE

(KN)

CONTROL FORCE FROM

1ST CONTROLLER

(KN)

Uncontrol 4.10 2,506 ----------

Riccati closed- 1.36 853 437

loop control

Instantaneous 1.34 847 421

optimal control
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TABLE 3.3: Maximum Structural Responses and Control Force

For a-story Building With Active Mass-Damper

CONTROL LAW

TOP FLOOR

DISPLACEMENT

(CM)

BASE SHEAR

FORCE

(KN)

ACTIVE CONTROL

FORCE

(KN)

Uncontrol 4.10 2,506 ----------

Riccati closed- 1.61 1,075 250

loop control

Instantaneous 1.54 1,045 232

optimal control

3-21



(a)

2 -

-4 '--__.L..-I__.l.-..I__~I__.....I ____L'____J

(b)

Cd)

(e)

1 Ce)
o

-1

o 5 10 15 20 25 30
TIME IN SECONDS

-

1
o

-1

1

o
-1

1

o
-1

-2~

·....
z
w
~
w
U
<
..J
~en-c
w
>-
~
..J
W
c:
c:o
o
..J
U.

~

o....

FIGURE 3-1 Top Floor Relative Displacement for a 8-Story Building With 8
Tendon Controllers; (a) No Control. (b) Riccati Closed-Loop
Control, (c) Instantaneous Optimal Closed-Loop Control. (d)
Instantaneous Optimal Closed-Open Loop Control.

3-22



30

(e)

(a)

10 15 20 25
TIME IN SECONDS

3

2

1

o
-1

-2
- 3 I....-_-J-_--'I--_~__.........__ __"__ _.I

1

o
- 1 I.-_--.....__...I.-_~___'___...l..__ ___'

1,-----------------..
(c)

o
-1 ~-.........-.......I___L_._ ____IL..._.._....J..._ _J

1,.---------------
(d)

o
- 1 O"---~_ __.L._ _:.......I.__ _.1.__.....L._ ~

1r-------------~-~

o
-1 :--=--.J..--:...J--~_ ___l._ ___lo

..
w
()
a:
o
u.
a:
<
w
::t:
Cf)

w,·
Cf)

<
CD

FIGURE 3-2 Base Shear Force For a 8-Story Building With 8 Tendon
Controllers; (a) No Control, (b) Riccati Closed-Loop Control, (c)
Instantaneous Optimal Closed-Loop Control, (d), Instantaneous
Optimal Closed-Open Loop Control.

3-23'



w 500r-- (a) II (c)u
a:
0 250
LLZ
-J~

0- 0
0:"-
I-::l
Z -250
0
0

-500

(d)

5 10 15 20 25 30
TIME IN SECONDS

(b)

5 10 15 20 25 300
TIME IN SECONDS

500
w

LtJ 0
~ a: 250~ 0

LLZ
~

0-J -0..-
O:::l

-250I-
z
0
0 -500

0

FIGURE 3-3 Active Control Force From the First Controller For a a-Story
Building With a Tendon Controllers: (a) Riccati Closed-Loop
Control, (b) Instantaneous Optimal Closed-Loop Control, (c)
Instantaneous Optimal Open-Loop Control, (d) Instantaneous
Optimal Closed-Loop Control.



10 15 20 25 30
TIME IN SECONDS

(c)

(b)

(a)

(d)

(e)

I
,I

5

1
o

-1

o

1
o

-1

1

o
-1

41-
~

2 ~

~
~

0~ ~\
~ ..

-2 ~

~

-4 I I

..
~z
w
~
w
U
<
~

a.
en-c
w
>-
~
~

w
a:
a:
o
o
~

LJ..

a.
o
~

FIGURE 3-4 Top Floor Relative Displacement for a 8-Story Building with 4
Tendon Controllers; (a) No Control, (b) Riccati Closed-Loop
Control, (c) Instantaneous Optimal Closed-Loop Control, (d)
Instantaneous Optimal Open-Loop Control, (e) Instantaneous
Optimal Closed-Open Loop Control.

3-25



(a)

5 10 15 20 25 30
TIME IN SECONDS

(e)

(e)

(d)

(b)

3

2

1

z 0
~ -1

C't)
0

-2~

..
w -3() 1a:
0 0u.
a: -1« 1w
J:
C/) 0
w -1C/)
<C 1
II)

0

-1
1

0

-1
0

FIGURE 3-5 Base Shear Force For a 8-Story Building With 4 Tendon
Controllers: (a) No Control, (b) RiccatiClosed-Loop Control, (c)
Instantaneous Optimal Closed-Loop Control, (d) Instantaneous
Optimal Open-Loop Control, (e) Instantaneous Optimal
Closed-Open Loop Control.

3-26



w 500I I I (a) Iu -
a:
o 250
u.z
...J~

0.. 0
a:'t"-
.... =>
z -25,0
o
u

(c)

- 5 00 · • I • I • I , I , I I I I

o 5 10 15 20 25 300 5 10 15 20 25 30
TIME IN SECONDS TIME IN SECONDS

(b)

o

, , , II I • , I-500' , , , ,

•500 I Ii (d)w
U

w a: 250
~ Oz
-..J U.

~
...J
O't"­
0:::>
I- -250z
o
u

FIGURE 3-6 Active Control Force From the First Controller For a a-Story
Building With 4 Tendon Controllers: (a) Riccati Closed-Loop
Control, (b) Instantaneous Optimal Closed-Loop Control, (c)
Instantaneous Optimal Open-Loop Control, (d) Instantaneous
Optimal Closed-Open Loop Control.



FIGURE 3-7 .Structural Model of a Multi-Story Building With an Active Mass
Damper Control System.
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SECTION 4

CONCLUSIONS

Under earthquake excitations it is demonstrated that the Riccati

closed-loop control does not satisfy the optimal condition. The

optimal closed-open-loop control and optimal open-loop control

algorithms are shown to be superior to the Riccati closed-loop

control. However, the former two control algorithms are not

feasible for applications to earthquake engineering problems

because the complete history of the earthquake ground motion is

not known a priori. Thus, only the closed-loop control

algorithms are applicable to earthquake-excited structures, such

as the Riccati matrix approach, pole assignment [e.g. 2, 17, 20],

sub-optimal control [e.g., 39-41, 56], etc. The pole assignment

method is rather cumbersome for complex building structures with

many degrees of freedom [e.g., 17]. Furthermore, it is not clear

where the poles (eigenvalues) of the structure should be

assigned, because the future earthquake excitation is not known a

priori.

Utilizing the information of the earthquake ground motions

measured by installing sensors on the basement, three new optimal

control algorithms have been proposed in this report. The new

objective function to be minimized is a time dependent

performance index expressed in terms of quadratic functions.

Since the performance index is minimized at every time instant,

the algorithms developed herein are referred to as the

instantaneous optimal control algorithms. These include the

instantaneous optimal closed-loop control, instantaneous optimal

open-loop control, and instantaneous optimal closed-open-loop

control. The control efficiencies for these three instantaneous

optimal control laws are identical under ideal operational

environments. The efficiency of the Riccati closed-loop control

algorithm is compared with that of the instantaneous optimal

control algorithms using two numerical examples; one with the
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application of the active tendon control system, and the other

with the active mass damper.

Numerical results indicate that the proposed instantaneous

optimal control laws are slightly more efficient than the Riccati

closed-loop control law. However, the newly proposed

instantaneous optimal control laws are easier to be implemented.

For instance, the gain matrix for the instantaneous optimal

closed-loop control does not require any computational effort,

and it is independent of structural characteristics and

parameters. Thus, the instantaneous optimal closed-loop control

algorithm is independent of the uncertainty in structural

identification. On the other hand, the computation of the

Riccati matrix can be very cumbersome and time consuming for a

tall building with a large number of degrees of freedom.

Likewise, since the Riccati matrix is a function of the

structural parameters, the control system is sensitive to the

structural identification that usually involves considerable

uncertainty.

The three instantaneous optimal control laws presented in this

report were developed and proposed by the authors in 1985 and

then transmitted to their co-workers at the State University of

New York at Buffalo for experimental verification. Using a

scaled structural model and simulating earthquake ground

acceleration on the shaking table, experimental verifications for

the feasibility of these three instantaneous optimal control laws

have been completed recently. The results were published in

Ref. 47. Meanwhile, these new control laws have been presented

at a conferences [Ref. 59] and other researchers have attempted

to apply them in other applications.
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APPENDIX A

EQUATIONS OF MOTION

A.l Equations Of Motion For Structures With An Active Tendon

Control System

Let Xj be the displacement of the jth floor. For an active

tendon control system in which a tendon controller can be

installed between any two adjacent floors, see Fig. (2.1), the

equation of the jth floor is given by

..
mjx j + cj(X j - Xj _1 ) - Cj+1(Xj+1-Xj)

+ k.(X.-X. 1) - k'+l(X'+l-X ,)J J J- J J J

For j=1,2, ... , n (A. 1 )

in which mj = mass of the jth floor, c j = internal damping of the

jth story unit, k j = elastic stiffness of columns/shear walls of

the jth story unit, and ~j = external damping. In Eq. (A.1), urn

is the control force from the mth controller that is installed

between the j-1 and jth floors, and um+1 is the control force

from the m + lth controller installed between the j and j+1th

floors. Furthermore, c n+1 = kn+1 = ~n+1 = o.

Let Xo be the earthquake ground displacement and y be the

relative displacement of the jth floor with respect to the

ground, i.e.,

Then Eq. (A.1) can be written in a matrix form

.1 ••

M Y + C Y + K Y = H U + F Xo + G Xo

A-1

(A. 2)

(A. 3 )



in which

Yl u l ml ~l
Y2 u 2 m2 ~2

y = U = F = G = (A. 4)

Yn ur m ~nn

M = m.
J

k l + k2 -k 0, 2

-k k 2 + k 3 -k2, , 3

-k k 3 + k 4 , -k3, 4

(A. 5 )

K = (A.G)

A-2



c =

C1+C2+~1,-c2

-c2 , c 2+ c 3+ ~2 ,

-c 3

o

-c 1 C l+c +~ 1 -cn-, n- n n-, n

-c , c +~n n n

(A.7 )

In Eq. (A.3), H is an (n x r) location matrix whose mth column

corresponds to the mth tendon controller installed between the

j -1 and j th floor, i. e., j th story unit. This matrix can be

obtained from a general (n x n) matrix ~ by eliminating those

columns that correspond to the story units without active tendon

controller.

-1, 1
-1, 1

L =

-1, 1
-1

(A. 8 )

Equation (A.3) can be expressed in terms of the 2n state vector

Z(t) as follows

Z(t) = A Z(t) + B U(t) + ~1 XO(t) + ~2 XO(t)

A-3

(A. 9)



in which

[-n [0 . I]Z = A = -=~:I-~~-=~:I-~
- -. - -

B = [~J~] ~l = ~:~-~] ~2 = [~:~-~

(A.IO)

(A.II)

A.2 Equations Of Motion For Structures With An Active Mass

Damper System

Instead of the active tendon control· system considered

previously, a tall building implemented by an active mass damper

shown in Fig. ( 3 .7) is considered. The equation of motion for

lower n-I floors is:

mjx j + cj(X j - Xj _ l ) - Cj+I(Xj+I-Xj)

+ kj(Xj-X j _1 ) - kj+l(Xj+I-Xj)

+ I3.X. = a
J J

For j=I,2, ... , n-I (A.12)

and the equations of motion for the nth floor and the mass damper

are, respectively,

(A.13)

(A.14)

A-4



in which ud = active control force, Xd = displacement of the mass

damper, and md , cd' and kd = the mass, damping and the stiffness

of the mass damper, respectively.

Let Yd be the relative displacement of the mass damper with

respect to the ground, i.e.,

The equations of motion, Eqs. A.12-A.14, can be expressed in

terms of the relative displacement in a matrix form

.. ..
M Y + C Y + K Y = H U + F Xo + G Xo (A.16)

where

YI ffi l ~I

Y2 ffi 2 ~2

Y = F = G = (A.I?)

Yn ffin ~n

Yd md 0
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M =

o
o

m.
J

o
o

H = 0

o
o
o

-1
1

(A.18)

K =

k 1+ k 2 , -k2

-k2 , k 2 + k 3 ,

-k3,

o

-k4
(A.19)

-kn-1, kn - 1 + k -kn, n

A-6

-kn, k +kdn ,
-kd



c =

c 1+c 2+R»1,-c 2
-c2 , c 2+ c 3+ 13 2

-c 3

o
-c 3

c 3 + c 4 + R»3, -c 4

(A.20)

-cn-1, cn-1+cn+l3n-1, -cn
-cn ,cn +R»n,

-cd

Equation (A.16) can be expressed in terms of the state vector

form as

Z(t) = A Z(t) + B U(t) + ~1 XO(t) + ~2 XO(t) (A.21)

where these matrices have the same form as those defined in

Section 1, except that ~ is a (2n+1) by (2n+1) matrix, and Z, B,

~l' and ~2 are (2n+l) vectors.
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APPENDIX 18

OPTIMIZATION OF QUADRATIC PERFORMANCE INDEX

The problem of optimal control involves the determination of an

appropriate vector, ~(t), which minimizes a performance index. A

performance index widely used in the literature is the quadratic

function as follows

t
J = JOf {~I (t) 9 ~(t) + U'(t) R ~(t)} dt (B .1)

in which Q is a (2n x 2n) matrix that should be at least positive

semi-definite, and R is a (r x r) positive definite matrix.

The differential equations of motion for the structural system is

given by

Z(t) = A Z(t) + B U(t) + ~lXO(t)

with the initial condition

Z(O) = ~O

(B. 2 )

where Z(t) is a 2n-dimensional state vector and Xo(t) is the

ground acceleration.

To minimize the performance index given by Eq. (B.l) subjected to

the constraint equations of motion represented by Eq. (B. 2) ,

these two equations are adjoined with the multiplier function

A(t)

B-1



t
J = f

o
f {[~'(t) 9 ~(t) + ~'(t) ~ ~(t)]

+ >..(t) [~~(t) + B U(t) + ~1 XO(t) - ~(t)]} dt

(B. 3)

The integrand, that is a scaler function denoted by H, is

referred to as the Hamiltonian,

Z' (t) Q Z(t) + U' (t) R U(t)- - (B. 4)

+ >.. I (t)

where >.. (t) is a 2n-dimensinal vector representing the costate

variables. Integrating by parts the last term of the right side

of Eq. (B.3), and substituting Eq. (B.4) into Eq. (B.3), one

obtains

Itf
o {H [~( t), ~ ( t), ~ ( t), Xo(t) ,t ]

+ >"'(t) ~(t)} dt

Taking the variation of J yields

B-2

(B. 5)



aH) 6Z + aH 6~Jaz au- dt (B. 6 )

The initiation condition ~(O) = ~O is a given constant state

vector and hence 6Z(0) = o. Since Eq. (B.6) should be zero for

any arbitary variations 6Z and 6U, i.e., 6J = 0, one has

and

aH
au = 0 o (B. 7)

AI = dH
az (B. 8 )

with the boundary conditions

AI(t) = 0 (B.9)
- f -

substitution of Eq. (B.4) into Eqs. (B.7) and (B.8) results in

the necessary conditions for the optimal solutions

A = -AI A - 2Q Z

u = -0.5R-1 B I A

B-3

(B.10)

(B.ll)



The system of equations given by Eqs. (B.2), (B.10), and (B.ll)

provide the optimal solutions for the control vector U(t), the

response state vector Z(t) and the costate vector A(t). It

should be noticed that the boundary conditions for Eqs. (B.2) and

(B.10) are different; the former are specified at t = 0 and the

latter are specified at t = t f . This is a two-point boundary

value problem.
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APPENDIX C

RANDOM VIBRATION OF STRUCTURES WITH AN ACTIVE CONTROL SYSTEM

With the application of the classical optimal control theory, the

necessary conditions for the optimal control of a structure are

obtained in the following.

Z(t) = A Z(t) + B ~(t) + ~1 XO(t) Z(O) = a ( C.1 )

A(t) =

U(t) =

A'A(t) - 2 9 ~(t)

(1/2) R- 1 B' A(t)

(C. 2)

(C. 3 )

in which ~(t) is the response state vector, U(t) is the control

vector, A(t) is the co-state vector and Xo(t) is the earthquake

ground acceleration. Note that Eq. (C.1) is nothing but the

equation of motion of the structure with an active control

system.

The earthquake ground acceleration can be modeled realistically

as a stochastic process. It follows from Eqs. (C. 1) to (C. 3)

that the response state vector ~(t) and the control vector ~(t)

are also stochastic processes. Hence, the random vibration

approach will be used to determine the statistical moments of the

response state vector Z(t) and the control vector U(t) in this

Appendix.

C.l Earthquake Ground Acceleration Model

The earthquake ground acceleration, xo(t), can be modeled as a

uniformly modulated nonstationary random process,

(C. 4 )
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in which ¢(t) is a deterministic non-negative envelope function,

and X(t) a stationary random process with zero mean and a power

spectral density ~xx(w). A commonly used spectral density ~XX(W)

for X(t) given in the following is considered, although several

different functional forms have been suggested in the literature,

(C. 5 )

in which Sg' wg and S are parameters depending on the intensity

and the characteristics

location. Various types

used in the literature.

of the earthquake in a particular

of envelope functions ¢ (t) have been

A particular envelope function given in

the following will be used

a t < a

(t/t
1

)2 a < t ~ t 1
¢(t) = (C.G)1 t 1 ~ t ~ t 2

exp[-c(t-t2 )] t > t 2

where t 1 , t 2 and c are parameters which should be selected

appropriately to reflect the shape and the duration of the

earthquake ground acceleration.

Physically, ¢(t) describes the amplitude modulation, whereas the

spectral density ~xx(w) specifies the frequency content of the

earthquake ground acceleration Xo(t).

C-2



C.2 Statistics Of The State Response Vector Z(t) And The Control
Vector U(t)

Since the earthquake ground acceleration Xo(t) has a zero mean,

the mean values of the state response vector ~(t) and the active

control vector U(t) are zero. The mean square values of Z(t) and
- 2 - 2

U( t) are identical to the variances a (t) and a (t),
-z -u

respectively. Let ~z(w) and ~u(w) be the frequency response

vectors of Z(t) and ~(t) due to a unit steady state ground

acceleration, i.e.,

Xo(t)
iwt= e-

Z(t) H (w) iwt
(C.7 )= e--z

U(t) H (w) iwt= e--u

and h (t) and h (t) be the impulse response vectors due to ground-z -u
acceleration Xo(t) = o(t), i.e.,

z(t) =

U(t) =

h (t)-z

h (t)
-u

(C. 8)

Then, the impulse response vectors are related to the frequency

response vectors through the Fourier transform pair

C-3



(C. 9)

(C.lO)

The state .response vector Z(t) and the control vector U(t) are- -
related to the earthquake ground acceleration Xo(t) through

Z(t) = ft h (1:) Xo (t-1:) d1: (ColI)
0 -z

U(t) = ft ~u(1:) Xo (t-1:) d-r (C.12)
0

The cross-correlation matrix, ~zz(t), of the response state

vector is by definition

R (t) = E (Z(t) Z' (t)]
-zz (Col3)

Substituting Eqo (C.4) into Eqo (CoIl) and then into Eqo (C.13),

one obtains

C-4



=

(C.14)

in which RXX(~) is the autocorrelation function of the stationary

random process X(t), i.e.,

R (~) = E [X(t) X(t+~)]

XX
(C.1S)

which is related to the corresponding power spectral density,

~xx(w), given by Eg. (C.S), through the Wiena-Khinchin's relation

R.... (~2-~1)
XX

= foo
-00

~ (w) e~w(~2-~1)

XX
dw (C.16)

Substitution of Eg. (C.16) into Eg. (C.14) yields

in which

00

=f ~z(t,w) ~ (w) ~~(t,w) dw
-00 XX

(C.17)

t
M (t,w) = f h (~) ~(t-~)-z " O-z

C-5
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Since the mean value of the response state vector is zero, the

covariance matrix is identical to the cross-correlation matrix

R (t). The variance vector of Z(t), denoted by a 2(t), is-zz --z
equal to the mean square vector, and the j th element of ;} (t) is-z
equal to the j th diagonal element of R (t) . Thus, the mean-zz
square response state vector is given by

f
oo 2

= I~z ( t, w) I cP ( w )
-00 xx dw (C.19)

2
where l~z(t,w)1 is a vector whose jth element is equal to the

square of the absolute value of the jth element of M (t,w) given-z
by Eq. ( C • 18 ) •

In a similar manner, the mean square vector of the active control

force can be obtained as

in which

a 2 (t)
-u f

oo 2
= l~u(t,w)1 cP (w)

-00 xx dw (C.20)

M (t,w)-u
-iw"t

e - (C.21)

2
and the jth element of 1M (t,w)1 is the square of the absolute-u
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and

respectively.

given in Eq. (C.21). It is
2

I~z(t,w) I ~xx(w)

Eqs . ( C. 19) and (C. 20) are

value of the jth element of M (t,w)
-u

mentioned that the quantities

I~u(t,w) 1
2 ~XX(w) in the integrand of

evolutionary spectra of ~(t) and ~(t),

The numerical computation of the non-stationary root mean square

vectors, (J (t) and (J (t), of Z(t) and U(t) can be carried out
-z -u -

very efficiently in the following manner.

h (t) are-u
vectors H (w)-z
Fast Fourier

(i) The impulse response vectors h (t) and-z
computed from the corresponding frequency response

and ~u(w) from Eqs. (C.9) and (C.10) using the

Transform (FFT) technique.

(ii) ~z(t,w) and ~u(t,w) are computed from Eqs. (C.18) and

(C.21) using the FFT technique.

(iii) The mean square vectors (J (t) and (J (t) are ,evaluated-z -u
by numerically integrating the respective evolutionary spectral

densities I~z(t,w) 1
2 ~xx(w) and I~u(t,w) f ~xx(w) and taking the

square root. These numerical integrations are very simple and

straight forward. Thus the computation of the non-stationary

root mean square values of the structural response and the

control force is nothing but repeated applications of the FFT

technique which is very efficient~

C.3 Determination Of Frequency Response Functions

It follows from the random vibration analysis presented above

that the frequency response vectors, H (w) and H (w), of Z(t) and
-z -u -

~(t) should be determined. These frequency response vectors

depend on the particular control law used. In this section, the

frequency response vectors will be determined for the classical

Riccati closed-loop control, the classical optimal open-loop

control and the classical optimal closed-open-loop control. Note

that for the latter two cases, a priori knowledge of the

earthquake ground acceleration Xo(t) is needed.
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(a) Classical Riccati Closed-Loop Control

With the Riccati closed-loop control, the control vector is

related to the measured response state vector Z(t) through the

Riccati matrix P

U(t) = - (1/2) R- 1 B' P Z(t) (C.22)

in which the time dependent Riccati matrix P(t) is approximated

by the constant Riccati matrix P.

Substitution of Eg. (C.22) into Eg. (2.1) yields

in which

Z(t) = ~1 Z(t) + ~1 Xo(t)

~1 = A - (1/2) B R- 1 B' P

Z(O) = 0 (C.23)

(C.24)

LetS1 , 8 2 , ... , 8 2n be the eigenvalues of the matrix ~l' and ~1

be the model matrix consisting of eigenvectors of ~1. Then, a

transformation

(C.25)

in Eq. (C.23) will decouple the system of equations as follows
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where

Y(t) = e Y(t) + ~~1 ~1 ~O(t) (C.26)

e = -1
~1 ~1 ~1 (C.2?)

is a diagonal matrix consisting of diagonal elements

The jth equation of Eq. (C.26) can be written as

e ..
J

= e. Y.(t) + g. Xo(t)
J J J

(C.28)

-1
in which gj is the jth element of the vector 2 = T ~1.

The frequency response function is obtained when the excitation

is a steady state sinosoidal, i.e.,

Xo(t)
iwt= e-

Z(t) H (w) iwt= e--z
(C.29)

Y( t) H (w) iwt= e--y

Yj(t) H (w) iwt'= e-y.
J
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Application of Eq. (C.29) into Eq. (C.28) leads to the solution

for H (w)
Yj

H (w) = g. / [8. + i w]
Y j J J

for j=1,2, ... (C.30)

Thus, the frequency response vectors ~z(w) and ~u(w) are obtained

as

~z(w) = 'El ~y(w)

~u(w) = - (1/2) R-
1

B' P ~z(w)

(b) Classical Optimal Open-Loop Control

} (C.31)

For the classical optimal open-loop control, the response state

vector Z(t) is not measured and

It follows from Eq. (C.2) that

2(t) = -AI get) - 2 Q Z(t)

(C.32)

(C.33)

Hence, ~(t) and ~(t) should be solved from Eqs. (C.2) and (C.33),

and then the control vector ~(t) is computed from ~(t) using Eq.

(C.3), i.e.,

C-IO



'!

U(t) = -(1/2) R- 1 B' g(t) (C.34)

In order to solve for Z(t) and g(t), Eqs. (C.2) and (C.33) are- -
written in a matrix equation as follows

(C.35)

in which ~(t) and ~2 are 4n vectors and ~2 is a (4n x 4n) matrix

R-
1

B I ]
_:i!L~l_:: ::_

-A' ,

(C.36)

Eq. (C.35) can be decoupled by the following transfomation

~(t) = :E2 y(t) (C.37)

in which ~2 is the model matrix of the matrix ~2' i.e., the jth

column of ~2 represents the jth eigenvector of ~2. Substitution

of Eq. (C. 37) into Eq. (C. 35) leads to the uncoupled equations

for V(t), Le.,

.
V(t) = y V(t) + a Xo(t)

C-11
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in which r is a diagonal matrix such that

element Yj is the jth eigenvalue of ~2 for j=l,

the j th diagonal

2, ... , 4n, i.e.,

o

y.
J

(C.39)

o

and

The jth equation of Eq. (C.38) can be written as

(C.40)

for j=l,2, ... ,4n (C.41)

where V. (t)
J

respectively.

and a. are the jth elements of V(t)
J

The frequency response functions given by

and a,

iwt= e- Z(t) = H (w)
-z

iwte-

V( t) = H (w)-v
iwt

e-

V.(t) =
-J

H (w)v.
J

iwt
e-

C-12
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can be obtained in the following manner. Substituting Eq. (C.42)

into Eq. (C.41), one obtains the frequency response function

H (w) =a. / (iw-y.)
v. J J

J

(C.43)

Then, the frequency response vector H (w) is obtained from Eq.-z
(C.42) and the frequency response vector of ~(t) is determined

from that of ~(t) and g(t), see Eqs. (C.42), and (C.34) - (C.36).

(c) Classical Optimal Closed-Open-Loop Control

For the classical optimal closed-open-loop control, both the

response state vector ~(t) and the earthquake ground acceleration

XO(t) are measured. Hence, the co-state vector A(t) is assumed

to be

~(t) = ~ ~(t) + g(t) (C.44)

in which the time dependent Riccati matrix P(t) is approximated

by the constant Riccati matrix P. Substituting Eq. (C.44) into

Eqs. (C.1) through (C.3) yields

..
q(t) = ~3 g(t) - P w XO(t) g(tf ) = 0 (C.45)

- -1

Z(t) = A Z(t) (1/2) B -1 B' q(t) +- R
-4

~1 Xo(t) Z(O) = 0 (C.46)

U(t) (1/2) -1 B' [P Z(t) + g(t)] (C.47)= - R

C-13



in which ~3 and ~4 are defined as

~3 = A' + (1/2) P B R- 1 B' (C.48)

~4 = A - (1/2) B R- 1 B' P (C.49)

Let ~1' ~2' ... , ~2n be the eigenvalues of the matrix ~3 and !3

be the modal matrix consisting of eigenvectors of ~3. Then a

transformation

q(t) = !3 Tj(t) (C.SO)

in Eq. (C.4S) will decouple the system of equations as follows

f](t) = ~ !J(t) (C.S1)

where

(C.S2)

is a diagonal matrix consisting of diagonal elements ~ ..
J

The jth equation of Eq. (C.S1) can be written as

C-14

(C.S3)



-1

in which f j is the jth element of the vector ~ = ~ 3 ~ ~1·

Let a 1 , a 2 , ... , a 2n be the eigenvalues of the matrix ~4. Then

by a transformation

Z(t) = ~4 ~(t)

One can decouple Eq. (C.46) as follows

y(t) = a Y(t) + ~ ~(t) + d XO(t)

in which n(t) is the vector obtained in Eq. (C.51) and

(C.54)

(C.55)

(C.56)

is a diagonal matrix consisting of

Matrices Sand d are given as follows

diagonal elements a ..
J

-1
S = - (1/2) ~4 B R- 1 B' T

-3
(C.5?)

(C.58)

The jth equation of Eq. (C.56) can be written as

C-15



(C.59)

where A.(t) is the jth element of the vector A(t) = s ~(t) and
J

d. is the jth element of the vector d.
J -

The frequency response function given by

XO(t)
iwt

~(t) H (w) iwt= e- = e--g

~(t) H (w) iwt
~ . (t) = H (w) iwt= e- e-

-~ -J -~ .
J (C.60)

Z(t) H (w) iwt Y( t) H (w) iwt= e- = e--z -y

Y. (t) H ( w) iwt= e-
J y.

J

can be obtained as follows. Substitution of Eg. (C.60) into Eg.

(C.53) yields

H ( w) = f. / (iw - ~.)
~j J J

(C.6l)

By substituting Eqs. (C.60) and (C.6l) into Eq. (C.59), one

obtains the frequency response function

H/\. (w) + d.
J J

(iw - a.)
J

(C.62)

in which ~.(w) is the jth element of the vector ~A(w) = S ~~(w).

J
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Thus, the frequency response vectors H (w), H (w) and H (w) are
-q -z -u

obtained as

H (w) = 'E3 H (w)
-q -n

H (w) = 'E4 H (w) (C.G3)
-z -y

H (w) (1/2) -1 B' [P H (w) +H(w)]= - R
-u -z -q

C-17
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