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SUMMARY

The method of spectral representation for uni-variate, one—dimensional,
stationary stochastic processes and multi-dimensional, uni-variate (as well as
multi-dimensional, multi-variate) homogeneous stochastic fields has been re-
viewed, particularly from the viewpoint of digitally generating their sample
functions. This method of representation has then been extended to the cases
of uni-variate, one-dimensional, nonstationary stochastic processes and multi-
dimensional, uni-variate nonhomogeneous stochastic fields, again emphasizing
sample function generation. Also, a fundamental theory of evolutionary sto—
chastic waves is developed and a technique for digitally generating samples of
such waves is introduced as a further extension of the spectral representation
method. This is done primarily for the purpose of developing an analytical
model of seismic waves that can account for their stochastic characteristics
in the time and space domain. From this model, the corresponding sample seis-—
mic waves can be digitally generated. The efficacy of this new technique is
demonstrated with the aid of a numerical example in which a sample of a spa-
tially two~dimensional stochastic wave consistent with the Lotung, Taiwan

dense array data is digitally generated.

KEYWORDS

Simulation; ground motion; spectral representation; stochastic pro-
cess; stochastic field; stochastic wave; stationarity; nonstationarity;
homogeneity; nonhomogeneity; power specrum; evolutionary power spectrum;

autocorrelation function.
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1. INTRODUCTION

A number of stochastic models for the digital generation of artificial
ground acceleration have been proposed and successfully applied to a variety
of structural problems arising from seismic events. Referring only to repre-

sentative earlier work in this area, the following papers are cited: those by

1 4 5

' Cornellz, Housner and Jennings3, Shinozuka and Sato™, Amin and Ang~,

6 7 and Lin8. Later on, Shinozuka and his

Tajimi
Iyengar and Iyengar”, Ruiz and Penzien
associates introduced in a series of papers 9-14 the spectral representation
method, which can be easily implemented for the digital simulation of ground
accelerations or displacements. The papers by Shinozuka and his associates
clearly recognized the multi-variate and multi-dimensional nature of ground
motion. The most recent development in this field is the use of Auto—-Regres—
sive Moving-Average (ARMA) models which have been studied by Shinozuka and his

20-22 4ng Kozin and Nakajima23.

associates15°19, Spanos and his associates
A common limitation of all the above models is that ground motion is
treated as a stochastic process when its time variability is examined, or as a
stochastic field when its spatial variability is considered. 1In the former
case, the space variables are frozen, while in the latter case, time is fro-
zen. In order to have the analysis reflect the obvious nature of ground mo-
tion arising from a propagating seismic wave, a stochastic wave model with
evolutionary power has been developed here and an efficient technique for
digitally generating samples of such a stochastic wave is introduced as an ex~
tension of the spectral representation method primarily developed by Shinozuka
and his associates. Such a model is useful for the seismic response analysis

of such large-scale structures extending over a wide spatial area as water

transmission and gas distribution systems and large-span bridges.






2, SIMULATION OF SEISMIC GROUND MOTION USING STATIONARY PROCESS AND
HOMOGENEOUS FIELD MODELS

2.1 Simulation of 1D-1V Stationary Stochastic Processes Using Spectral
Representat ion

Considerable progress has been made in stochastic modeling of ground mo—
tion and in generating the corresponding sample functions for the purpose of
nonlinear and/or parametric seismic response analyses. However, a large num—
ber of these analyses are still performed under the assumption that seismic
ground motion consists of a single horizontal component. In this respect, the
digital simulation of 1D-1V (one-dimensional and uni-variate) stationary sto-

chastic processes using spectral representation14

remains of critical impor-
tance in the seismic response analysis of structures.

Let f3(t) be a 1D-1V stationary stochastic process with mean zero and

auto—correlation function R (t). Then
fofo
E[fy(t)] =0 (1)
E[fq(t+D)E(t) ] = Re ¢ (1) (2)
070
where E[e] indicates the expectation. It is well known that R.f £ (t) and the
0-0
power spectral density function Sf £ (w) of the process fg(t) are related
070
through the Weiner-kKhintchine transform pair:
1 -iwT
S (w) == [ R. - (1)e “'dz (3)
£4f0 2n 2, fof
R, . (1) = S. . (0)el¥T4y (4)
fofo ~= fofo

It follows immediately from Eg. 2 that Rf £ (t) is an even function of 1, and

0°0
consequently the power spectral density Sf £ (w) is also an even function of
00
w in accordance with Eq. 3. Also, it can be shown that Sf £ (w) » 0.

00 .
It will be shown that the stochastic process fp(t) can be simulated by



the following series, as N » =,

N
£(t) = /2 Z /?Sf .

. . . . 5
. ) O(wJ)Aw cos(wjt + ¢J) (5)

J

where

wj = jAw i=1,2,...,N (6)
An upper bound of the frequency

w, = NAw (7)

is implicit in Eq. 5 where ®, represents an upper cut-off frequency beyond
which Sfofo(w) may be assumed to be zero for either mathematical or physical
reasons. In Eg. 5, ¢j are independent random phase angles uniformly distri-
buted over the range (0,2n). Note that the simulated process is asymptoti-
cally Gaussian as N becomes large due to the central limit theorem.

It will be shown now that the expected value and auto-correlation func-
tion of the simulated process f(t) are identical to the corresponding targets,

E[fo(t)] = 0 and R (1), respectively. First, utilizing the assumption that

£ofo

the random phase angles are independent, the expected value E[f(t)] becomes:

LIRSV forte,) + 1 ]
E[f(t)] = /25 (0.0 * cos{w.t+6.) « T [p. (¢,)d¢.
e Yo 521 fofo 3 3773 i=1 @i i i
(8)
where Pg (¢) is the density function of 3, and hence:
i
1 0 < < 2
o b < em
p¢1(¢i) =< (9)
0 otherwise




The N-fold integral appearing in Eq. 8 can be written as follows:

" N-fold
f sesese -J:m Cos(wjt + de) I=Il [p@i(¢i)d¢i]

1

N -] [ ]
= 1 {[ pg (6,30} | cns(wjt + ¢j)p@_(¢j)d¢j

i=l -= 1 = J

i#j
= f2Tz L (w.t + ¢.)do. = 1. [sin{w.t + )]2“ =0 (10)
=/, 5 COS wj ¢j ¢j = 5 'sS1in wj ¢j 0o =

It has therefore been shown that:

E[f(t)] =0 (11)

Second, the auto-correlation function of the simulated process f(t) is cal-

culated as follows:

Rff(r) = E[f(t+1)E(t)]

® ® N N
=) NRR 27V /E
~—0 -co i=1 j =] 00

(wi)Aw /28f (wJ.)Au) .

ofo

N
cos [wi(t+r) + ¢i} * cos [wjt + ¢j] . REl [p@x(¢£)d¢x] (12)

The following double integral is needed in the derivation of the expression of

Rff(T):
I: {: oos[mi(t+r) + ¢i] . cos[wjt + ¢j] . p@i(¢i) . p@j(¢j)d¢id¢j =
=.% 1: {: [cos{(mi+wj)t ot oo+ ¢j} +
+ cos{(wi-wj)t + ot ot ¢i-¢j}] * Dy (0;) pé'(¢j)d¢id¢j (13)

1 J



The expression for the double integral appearing in Eg. 13 is equal to zero

when i # j. It is different from zero only when i = j;

o«

/ oos[wi(t+r) + ¢i] . oas[wit + ¢i] . p@i(¢i)d¢i =

-0

o]

Im [Oos(Zwit + w; T + 2¢i) + oos(wir)] . péi(¢i)d¢i =

N s

N} i~

. cos(wit) (14)

Using Egs. 13 and 14, Eg. 12 eventually yields the following expression for

Rff(r):

N .

Ree(7) = EIE(t+0)E(E)] = E 25; ¢ (w;)bw + cos(w;7) (15)
: i=1 070

If, in Eg. 15, the limit is taken as N » =, while keeping w, = NAw constant

and remembering that S (w) = 0 for 'w' > W, it follows that

fOfO
Lo ] [+ o] i
Reg(t) = 2 IO sfofo(u» cos(wt)dw = L, sf0f0<w>e YT Gw (16)

Then, by virtue of Eq. 4:
Re-(1) =R (1) (17)

ff fof0
It has therefore been shown that the expected value and autocorrelation func-
tion of the simulated process are the same with the target ones, i.e., E[f(t)]

= E[f5(t)] = 0 and Rff(T) = Rf £ (t).

00
At this juncture, it must be noted that the simulated process given by

Eq. 5 is ergodic, at least to the second moment, regardless of the size of



N 14, This makes the method directly applicable to time-domain analysis in

which the ensemble average can be evaluated in terms of the temporal average.
Finally, it should be pointed out that the computer cost of the digital gen-
eration of sample functions of process f£(t) can be dramatically reduced by ap—

plying the FFT (Fast Fourier Transform) technique to Eqg. 5 13,

2.2 Simulation of nD-1V Homogeneous Stochastic Fields Using
Spectral Representation

The simulation of 1D-1V stationary stochastic processes using spectral
representation, which was presented in the previous section, can be extended
in a straightforward fashion to the simulation of nD-1V (n-dimensional and

14

uni-variate) homogeneous stochastic fields™™ in the following way.

Consider an nD-1V homogeneous stochastic field fO(Xl’XZ""’Xn) = foQi)

with mean zero:
Elf,(x)] = 0 (18)
The autocorrelation function of fo(fi) is defined by

Reofo 2 Blfg(x,)Ep(xg) ] (19)

where X, and X, are position vectors in an n-dimensional space and £ is the

separation vector. For a homogeneous field, Rf £ (£) is symmetric with res-
00
pect to the separation vector E and therefore:
R (8) =R (- &) (20)
fofo =" fofp =

For some nD-1V homogeneous fields, the following equation is valid:

R (8) =R (I, &) (21)
fofg = fofg £

where I, is an nxn diagonal matrix whose diagonal components are either 1 or



- 1. Hence, Eq. 20 is a special case of Eq. 21 in which the diagonal members
of I, are all equal to - 1. When Eq. 21 is valid, the stochastic field is re-
ferred to as a "quadrant field."24 Assuming that an n-fold Fourier transform

of R

e £ (§) exists, the spectral density function of fo(g) is defined as:

0-0

£.f (x

S €) = —t n] R. . (E) eTEE g (22)
0°0 (2n)" =

Re . (8) =] sfofo(_k_) 18 g (23)

The preceding two equations represent the n-dimensional version of the Wiener—
Khintchine transform pair, where k = [Kl Ko eees Kn]T is the wave number

vector and x<E is the inner product of k and §, and, for simplicity:

[ (az =) WWRY [ (agar, e az (24)
[ )dk = f n7Eeld J )dKldKZ cos dKn (25)

It can be easily shown that:

S (k) =8 (- )
fofo =  fofo -~

(26)

and that the spectral density function is real. In addition, the following

equation is obtained under the condition of Eq. 21:

S (k) =S (I, «) (27)
fofo - fofo -

(k) is identical at a ocorres-

This equation indicates that the value of Sf £ (k
0-0



ponding point in each quadrant (x = I + k), hence the name "quadrant field."

Finally, it can be shown that the autocorrelation function Rf £ (&) is
0-0
non-negative definite and has a non-negative n-dimensional Fourier transform,

i.e.:

S. . (x) >0 (28)
£ofo =

Based on these properties of S £ QE), the n—dimensional homogeneous stochas-

f
0-0
tic field fo(z) can be simulated by a stochastic field f(x) in the following

fashion: consider an nD-1V homogeneous field fo(i) with mean zero and spec-—

tral density function S £ (x) which is of insignificant magnitude outside the

£ofo

region defined by:

<k < {29)

K K

=u ~u
_ T . _ o

where k = [Klu o Knu] with «, > 0 (i=1,2,...,n). Derote the inter

val vector by:

“1lu “2u “nu

(AK'l AK2 s AKn) = (‘N—- T=—— S0 T) (30)

and then construct the simulated field f(x) by the following series, as N,

NoreoosNy » @ simultaneously:

’ Nl N2 Nn
f(%(_) = /2 z z sees ,
kl=1 k2=1 kn=l Il=l,Ii=il

i’—'2,3,...,l”1

1/2
{2Sf0fo(IlKlk1'12K2k2"""InKnk )AKlAKz...AKn] x
n



IlI2oo‘.I

n
x cos(Ilklklxl + I2K2k2X2 toeeee # Tk X O ) (31)
n i™2 n
IlI2°'°I
where ¢k K kn = independent random phase angles uniformly distributed be-
12'.. n

tween 0 and 2%, and

K i=1,2,...,n. (32)

= kiAKi, ki =1,2,...,N

ik, ir
i

The simulated field f(g) is asymptotically Gaussian as NyNoreoeof)Ny > @ si-

multaneously again due to the central limit theorem. Note that a set of I,

Iy, «eeer I, indicates one of the 2" guadrants of the wave number k space.

Because S(k) = S(~ k), we need to cover only on-1 quadrants, half of the total

21, for simulation purposes. Thus I, is always chosen to be unity (I = 1).

This also implies that (i) there are 22071 gors of NyNj...N, random phase

angles in the expression for f(x) given by Eq. 31 and (ii) twice the spectral

density function always appears in the same equation.

If the stochastic field is guadrant, then Sfofo(IIKlkl, 12K2k2, ceves InKnkn)
in Eq. 31 can be replaced by SfOfO(Klkll K2k2, cevey Knkn). Also, if the sto-
chastic field has a non—zero spectral density only over a pair of quadrants in
the wave number domain for which Se ¢ (k) = S¢ ¢ (= k), then the stochastic

0°0 070
field is referred to as "uni-quadrant" and Eq. 31 can be written as:

N N N 1
5y e Vs, ) 2
f(i) = /5 ‘ / se e f 2s K r K. 7y esee;p K Ax Ak ooooAK x
k=l ko=l k=1 Eofg 1" "2k, nk, 1772 n

XOos(Klk Xp t Ky Xt eeen F oy X F O (33)

1 2 n l 2....kn
For example, a 2D-1V stochastic field is uni-quadrant if the spectral density
is non=-zero only over the first quadrant (and therefore over the third quad-

rant).



Referring to 2D-1V homogeneous stochastic fields, Eg. 31 can be written
explicitly as

1

2
(k Koy AR, AK ] x
0fo lkl’ 2k2 172

1 N
{{2s,

N
f(x) =72 )
k1

=1 k2'=1
1
(1) _ 2

x COS("lklxl TRt ¢klk2) * [2Sf0f0('<1k1’ szz)AKlA"z] X

x, + 842 ) (34)

cos(ky Xq = «
lkl 1 2k2 1%2

Furthermore, if the stochastic field is quadrant,

N N2 1

1
2
f(x) =2 Y Yy [2s (kqp rKop )BkoAK,]S x
k1=1 k=1 fof0 lk1 2k2 172

(1) (2)
x {cos(ky, X + ko X, + ) + cos(ky, Xq = ko X, + 1} (35)
1k *1 * K2k 2 ¢klk2 1k "1 T F2k,*2 ‘*’klkz

(1) 1,1 (2) 1,-1
= ¢ and ¢ = ¢
klk2 klk2 klk2 klk2
to be used. Finally, if the field is uni—quadrant over the first quadrant:

where ¢ if the notation introduced in Eg. 31 is

NN L
: 2
f(x) = 2 3 Yy o [2s (kyp rKqp JAKLAK, ]S x
k1=l k2=1 fOfO lk1 2k2 172
x COS(Klk Xq Ky Xy F O ) (36)

1 2 172

In a way similar to the one used for the 1D-1V processes, it can be shown that

the expected value and autocorrelation function of the simulated field are the

same with the target ones, i.e., E[f(x)] = E[fo(k)] =0 and R..(E) =R (2).
- — ff'= fofo-

14

Also, the nD-1V simulated field is ergodic™™, at least to the second moment,

and the computational cost for the digital generation of sample functions of



the stochastic field f(x) can be dramatically reduced by applying the FFT
technique to the appropriate trigonometric series expression13.

2.3 Simulation of nD-mV Homogeneous Stochastic Fields Using Spectral
Representation

The simulation of nD-mV (n—dimensional and m—variate) homogeneous stochas-
tic fieldsl4, unlike the case of nD-1V fields, cannot be achieved by straight-
forward generalization of the 1D-1V case, as shown below.

Consider a set of m homogeneous Gaussian n-dimensional stochastic fields

fg(ﬁ) (3=1,2,...,m) with mean zero:
0 =
E[fj (x)] =0 (37)

and with cross—spectral density matrix §O (x) defined by:

0
Sll(_ns) 812(5) cesccacas Slm(E)

0 0
S5, (k) S55(k) cesecsses S, (k)
§0(£) - 21'= 22 2m (38)

00 0000000000000 000000000000000s00000000

0 0
Sml(_K_) sz(g) cresescns Sm(_K_)

b -

where Sgk( k) is the n-dimensional Wiener-Khintchine transform of the cross-
correlation function R(j)k(_‘c;) (j#k) or the auto-correlation function
0 -

Due to the assumption of homogeneity:
0 =0 ,_
the following expression can be obtained:
(k) = 8. (x) (40)
k kj =

where the super bar indicates the complex conjugate. The matrix §O(5) is



therefore Hermitian. It can be shown that §P(ﬁ) is also non-negative definite.
Suppose now one can find a matrix H(x) which possesses an n—dimensional

Fourier transform and satisfies the equation:

0

s%(x) = (OB,

(41)

where §0(5) is the specified target cross-spectral density matrix and T indi-
cates the transpose. Then, fg(g) (3=1,2,...,m) can be simulated by fj(g) given

below.

m X
£5(x) = kzl I hy (xB)m (2)aE (42)

where hjk(g) is the n~dimensional Fourier transform of ij(g):

«©

hy® =/ ij‘5>e'if'5 dk (43)

In Eq. 42, nk(g) are independent n—dimensional Gaussian white noises such that:
Elny(xp)m(x) ] = 8(x; = x,)84, (44)
with:
6(§l-§2) = é(xll-le)é(xlz-xzz) cees 6(xln—x2n) (45)

where &(¢) and 6ij are the delta function and Kronecker's delta, respective-
ly. Since nk(g) are Gaussian, fj(g) are also Gaussian. It can be easily
verified that fj(g) (j=1,2,...,m), as simulated by Eq. 42, satisfies Egs. 37
and 41 and thus simulates fg(g) up to the second moments. Hence, if fg(g) is
Gaussian, fj(g) is identical with f?(g).

To find the matrix H(k) in an efficient way, we assume that H(k) is a

2-11



lower triangular matrix:

— b
Hll(-K-) 0 0 coee 0
H (_K:) H (E) 2800000000000 0
H(k) = 21 22 (46)
Hml(-K'.) Hmz(E) es0s0c e Hm(.K'_)
By substituting the above into Eg. 41, solutions are obtained10 as:
Hkk(K) k=1,2,...,m (47)
where D (k) is the k-th principal minor of SO(K) with Dy being defined as
k\E 2 2 0
unity, and
SO<%’§’....,§_i’}j<> k l 2
_ rlrecse K=l Slylyecs,m
Hap () = Hyy () 5. (e 5=k+1,...0m (48)
where
0 1 2 KRR k—l j — 0 0 0
S <1:2:....fk-1:ﬂ>‘ s% Sl e Slk-1 Sl
0 0 0 Q
521 S22 eees 52,x-1 S2k
® 0 B 00 60 6 0 005008 O OB SL LN N LN E NSO NSO E NSO (49)
0 0 0 0
Sk-1,1 Sk-1,2  eeeer Sk-1,k-1  Sk-1,k
0 0 0 0
Sjl Sj2 LI I ) Sj’k_l Sjk

is the determinant of a submatrix obtained by deleting all the elements except
the (1,2,0..,k=1,j)=th row and (1,2,...,k-1,k)=th colum of §0(5). It is
noted that the above decomposition is valid only when the matrix‘§o(5) is Her-
mitian and positive definite as can be seen from Eq. 47.

Because the cross-spectral density matrix §0(5) is known to be only non-



negative definite, special consideration is needed in those cases where §0(5)
has a zero principal minori4.

Once H(k) is computed using Egs. 47 and 48, instead of passing a white
noise vector through filters, the field iji) can be simulated in a more effi-

cient way by the following series, as Ny,Ny,...,N, » = simultaneously and un-

der the assumption that the stochastic field possesses quadrant symmetry:

. N. N N
Py ey
f-(x) =2 /, ese ) i . K K reee K 4
3= el 2)=1 2,71 2 =1 1,10 =1 OO 12,7722, ni,

, i
i=2,3,v..n

. /AKlAnzo--AKn . COS[IlKlR Xp + Ipkgg Xy + oo InKnlnxn +

1 2
I I I.OI
172 n
+ 8. (K PK seeerK ) + ¢ ] (50)
Jjm lll 222 nln mlllz...ln
where:
K K L
1 2u
(AK‘l AK2 XX AKn] = (.{;]—.E .N__ ceee -IEI-IIB) (51)
1 2 n
KiRi = xiAKi ; L= 1,2,...,Ni : i=1,2,.4.¢n (52)
( —l Im Hjm(lel,szz'... IKn,Qn)
0. (K, 1Kn, 7eeesK_ . ) = tan (53)
jm 121 212 nln Re Hjm[K12 Kog reeer¥ng ]
1 2 n
1112...In
¢mx 1 g = independent random phase angles uniformly distributed between 0O
172°°**"n
and 2n. The simulated field fj(z) is asymptotically Gaussian as Ny,Np,...,N,

+ = gsimultaneously, again due to the central limit theorem.
Finally, it can be shown again that the expected value and autocorrela-
tion function of the simulated field (using Eq. 50) are the same as the target

ones, i.e., EIf;(x)] = E[f(j)(_)i)] = 0 and Ry (&) = R;.’k(_g_) ; 30k=1,2,...m. Al-
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14 at least to the

so, it can be shown that the simulated field is ergodic
second moment. Here again, the computational effort for the digital genera-
tion of sample functions of the stochastic field fj(z) can be substantially

reduced by applying the FFT technique to Eg. 50.



3. SIMULATION OF SEISMIC GROUND MOTION USING NON-STATIONARY PROCESS AND
NON-HOMOGENEOUS FIELD MODELS

3.1 Simulation of 1D-1V Nonstationary Stochastic Processes Using
Spectral Representation

A more realistic simulation of seismic ground motion can be made by con-
sidering nonstationary stochastic processes or nonhomogeneous stochastic
fields. From the engineering point of view, it is highly desirable that such
non-stationary and non-homogeneous models permit physical interpretation of
their spectral contents as closely as possible to, or as a straightforward
extension of, the power spectra associated with stationary stochastic pro-
cesses or homogeneous stochastic fields. Among the various attempts to define
such non-stationary and non-homogeneous spectra, it is the "evolutionary spec-

trum" developed by Priestley25’26

that appears to offer the most palatable
transition from the power spectra associated with stationary and homogeneous
stochastic processes and fields to those associated with non-stationary and
non-homogeneous stochastic processes and fields. This is the reason why evo-
lutionary power will be used exclusively in the following.

A brief description of a 1D-1V nonstationary stochastic process yg(t)
with evolutionary power is given below to introduce certain notions appearing

in the theory of evolutionary power.

If a stochastic process (stationary or non-stationary) can be represented

o]

yo(t) = | Alt,ue®

dz (w) (54)

where A(t,w) is a modulating function and dZ(w) represents an orthogonal in-

crement, the process yp(t) is said to be oscillatory. Note that the physical



notion of frequency has been preserved by including the complex exponential,
and that if A(t,w) is constant, yg(t) is a stationary process. The mean

square of the oscillatory process is found to be:

Elyd(0)] = [ |A(t,0)]2 dF(w) (55)

-

where dF(w) = E[dZ(w)]2. By introducing the evolutionary spectrum in the

form:
aF(t,0) = |Alt,0)|2 dF(w) (56)

the non—-stationary spectral contents are defined. Equation 56 may be written

as:
£2(t,0)dw = |A(t,0)| 2£(w)dw (57)

if f(w) exists such that dF(w) = f(w)dw, where dFO(t,w) = fo(t,w)dw. In this
case, it can also be shown that an oscillatory process yg(t) of the form of
Eqg. 54 has the following auto-correlation function.

@©

R (t+t,t) = [ A(t+t,w)A(t,w)e
Yo¥o —_—

9T £ (w)dw (58)
It is of major importance to recognize that if the evolutionary power spectrum
can be expressed in the form of Eq. 57, then the autocorrelation function

Ry y (t+t,t) can be calculated using Eq. 58. This is significant since it is

00
usually the evolutionary power spectrum of an earthquake that can be estimated

or measured and not its autocorrelation function?’.
As far as the simulation procedure is concerned, the method that has been

proposed in Section 2.1 for 1D-1V stationary processes can be directly gen-



eralized to a non—-stationary process characterized by an evolutionary power
spectrumlo. Thus, if a non-stationary process yg(t) has an evolutionary power
spectrum of the form shown in Eq. 57, then the process can be simulated by the
following expression, as N » =,

N

y(t) =v2 § V2AZ(E, 0. )t (w.) 0o cos(w.t + ¢.) (59)

where wj = jAw; j=1,2,...,N. An upper bound of the frequency w, = NeAw is
again implicit in Eg. 59 and ¢j are independent random phase angles uniformly
distributed over the range (0,2n). Note that the simulated process y(t) is
asymptotically Gaussian as N becomes large due to the central limit theorem.
It can be shown that the simulated process y(t) possesses the target evolu-
tionary power spectrum as N » =,

3.2 Simulation of nD-1V Nonhomogeneous Stochastic Fields Using
Spectral Representation

The evolutionary power spectrum theory for 1D-1V nonstationary stochastic
processes, presented in the preceding section, will now be extended to nD-1V
nonhomogeneous stochastic fields below. If an nD-1V nonhomogeneous stochastic
field can be represented in the form:

@

yo®) = | AlxeXE az(x) (60)

where A(x,k) is a modulating function and dZ(k) represents an orthogonal in-
crement, then the stochastic field y,(x) is called oscillatory. The mean

square of the oscillatory field is given by:



Ely3(x)] = [ |A(x,x|? dF(x) (61)

where
dF(x) = E[dz(k)]2 (62)

By introducing the evolutionary power spectrum of the nD-1V nonhomogeneous

stochastic field in the form:
a0 (x,x) = |Alx,0)|2 GF (k) (63)

the nonhomogeneous spectral contents are defined. Equation 63 can be written

ass
£ (x,0)dx = |AGxx) |2 £(x)dx (64)

if f(x) exists such that dF(kx) = f(k)dkx, where dFo(ghg) = Fo(gjf)dg, Under
these conditions, it can be shown that an oscillatory stochastic field YOQE)
has the following autocorrelation function,

@

R (x+5,x) = | A(x+E,0)A(x,k)e 58 £(0)de (65)
Yo¥g — == Lo === ==
The stochastic field yo(§) can be simulated in the following way, as N;,Np,
e+« /N, » = simultanecusly and under the assumption that the stochastic field

is quadrant symmetric:

Ny N2 Nn
y(-)i) =/§ z E LA 4 ): z JQAYIX ,X ,...,X ,K ’K F AN K )
=1 go=1 anl I 172 n’"12,"°22 ! ni

1=l,Ii=t1 1 2

i=2,3,ooo N

1 2

. /f(nlx ’K2£2"°"Knln)AKlAK2°"AKn . cos[Illelxl + Ik Xy eee

1 2



I nooI

l 2
R ] (66)
n nn lx—zﬂ.ox
where:
K K K-
1u 2u nu
(k) Bky een Bk ) = (= 5= *** 7 (67)
1 2 n
Kili = QiAKi ; £i=l,2,...,Ni; i=1,2,444,n (68)
1 2..'1
¢2 ) Qn = independent random phase angles uniformly distributed in the
1 2...

range (O, 2n).
Referring to 2D-1V nonhomogeneous stochastic fields, Eq. 66 can be writ-

ten as (quadrant symmetry is assumed):

N N2
y(xl,xz) V2 5 ) m‘(xl,xzmu Kog ) e f(Ku rKog ]AKIAKz .
,Ql =1 12 =2 1 2 1 2
1) (2)
» {oos[ry, % +xy, %, 4 o! ] + cos[ky, X, = kg Xq + ¢ 1} (69)
lll 1 2 2 1112 121 1 212 2 1112
where ¢§1; = l 1 and ¢;2) ¢i 21 if the notation introduced in Eq. 66 is
2 sy 12 At

to be used. Note again that the simulated field y(x) is asymptotically Gaus—
sian as Ny,No,eee,N, + = simultaneously, due to the central limit theorem.
Finally, it can be shown that the simulated field y(x) possesses the target

evolutionary power spectrum as Ni/Noreoo /Ny > simultaneously.






4., SIMULATION OF SEISMIC GROUND MOTION USING STOCHASTIC WAVES

4.1 Theory of nD-1V Stochastic Waves

An even more realistic simulation of seismic ground motion can be ob~
tained by explicitly describing it as a stochastic propagating wave. For this

purpose, consider the following spatially n—dimensional stochastic wave:

vo(x*) = | Alx*e)e K E az(er) (70)
where x* = [t,xl,xz,...,xn]T is an (nt+l)—dimensional vector containing the
time variable (t) and n space variables (x's) and k* = [w,Kl,sz...,Kn]T is an
(n+l)~dimensional vector containing the frequency (w) and n wave numbers (k's).
The frequency corresponds to the time variable, while the n wave numbers cor—
respond to the n space variables.

Note again that Eq. 70 is a direct generalization of Eq. 54 into the mul-
ti-dimensional case. Therefore, A(x*,k*) is a modulating function, dz (x*)
represents an orthogonal increment and yo(i*) is an "oscillatory" stochastic
wave in the sense of Priestley's definition.

The mean square of the oscillatory stochastic wave is:

E[yd(x*)] = [ [AGx*,x*)|2 aF(x*) (71)

where:
dF (x*) = E[dz(x*) ]2 (72)

Now, by introducing the (n+l)—dimensional evolutionary power spectrum in the

form:



a0 (x* k%) = [Ax*,%)|2 dF (x*) (73)

the nonstationary and/or nonhomogeneous spectral contents are defined. Equa-

tion 73 can be written as:

ar (x* %) = £k )t = Al eh)| 2 £ )der (74)
if f(x*) exists such that:

dF(x*) = f(x*)dx* (75)

It can also be shown that an oscillatory stochastic wave yo(zf) of the form
appearing in Eg. 70 has the following autocorrelation function, if Eq. 75 is

valid:

g trk, K
R, (KMERXR) = [ AGHEROAGEEx¥) - e K e £(ehdet (76)
040 -

where the separation vector £* is given by:

g = [vg gy eee g T (77)

At this juncture, it should be pointed out that if the stochastic wave is sta—
tionary in terms of time and/or homogeneous in terms of certain space varia-
bles, then the modulating function A(gfhgf) has to be independent of the time
variable and/or these space variables, and also independent of the correspond-
ing elements of the x* vector.

The stochastic wave yo(gf) can be simulated in the following way as N,
Ni/Ny,eoo Ny > = simultaneously and under the assumption that the stochastic

wave is quadrant symmetric in terms of the space variables:



1 2 Nn ;

m=1 21=l £2=l ln=1 ¥l=1,Ii=i1
l~2,3,...,n

fZA[It,XI,X?‘,...,Xn,wm,Klll,K2£2,... ’KnX;) .

. /f(%n'Klll’KZXZ""'KnlnjAwAKlAK2"'AKn .

I1I2.OOIn
s coslut + Tjkqy xq + Tykyy Xy boee t L, X + 60y ] (78)
1 2 n 172 n
where:
WK Koy K.
_ru lu "2u nu
(Aw AK‘l AK2 s AKn) = (-N— *ﬁ-— =N—— cee —N——) (79)
t 1 2 n
w. = mAw ; m=1,2,...,Nt (80)
Kizi = liAKi 7 li=l’2,'¢.,Ni 7 i=l,2,...,n (81)
IlI2"'I
¢ml 1 ? = independent random phase angles uniformly distributed in the
1 2... n

range (0,27)

The simulated stochastic wave y(x*) is asymptotically Gaussian as Ny /Ny,
e+« /N, +> @ simultaneously, due to the central limit theorem. It is shown be-
low that the autocorrelation function of the simulated stochastic wave is the
same with the target autocorrelation function Ryoyo(i*ﬁé*hg*) given by Eq.
76. For this purpose, Eq. 78 is written in condensed form as (assuming uni-

guadrant symmetry for simplicity):

N
y(x*) =2 7} VAT L (B @ cos[Kz-x* + ¢2] (82)
2=1 - T T =



where N = NtN1N2"'Nn' The autocorrelation function of the simulated stochas-

tic wave is:

Ryy(?i*té*'é*) = E[Y(f.*)y(é**E*)] =

. |
E{/2 le VRIF CE (R AT« cos[ifex* + 4] »

N v
fzmzl /ﬁz‘x;+§*,£m* fiEmHAf_* . cos[5;0(§_*+_g_*) + ¢m]} =

N N
=2 ) ] /2T RIxE k5] ¢ RI(XFFEN ) ¢ Eky) ¢ E(kF) o At
2=1 m=1
« Efcos[ghex* + ¢,] » cos[kke(x*+2%) + ¢_1} (83)

The expectation appearing in Eg. 83 can be written as follows:

1
> E{cos[_vgﬁ‘_}g*"’_g;'(f_*tz_*) tog* d’m:| ¥ (84)
+

cos[k}ex*-ke (x*+E*) + ¢, — ¢ ]}

It is easy to show that the expected value shown in Eg. 84 is different from

zero only for 2=m, for which it takes the following value:

£*] (85)

% . OOS[E.;’.)E* -_'i;'(ﬁ*""_é*)] -_—% ° COS‘:E_;"

Substituting Eg. 85 into Eg. 83, the following expression is obtained for
Ry (X ")
N
kirk k) = * kY ¢ Afw*+T® kY o Flok*) o Avk o ko pk
Ryy(_)i +_§_ X ) le 2A(§ I_K_l) A(_)_(_ +_§ I_El) f(ﬁl) A_E COS[_K_k _E_ ] (86)
In the limit as N + «» and with the values of _KG fixed, the preceding equation

becomes:



-]

Ryy('-)-(-*+‘§*'5*) =2 Io A(_)E*I_'ﬁ*) . A(§*+.§*'.E*) o f(_'i*) . cos(£*°_§_*)d_o<_* (87)
Under the assumption that the integrand in Eq. 87 is an even function of x*,
Eq. 87 yields:

at Yok gk v
R (XMHERX¥) = [ Alxhe*) « AlxhEb,ch) « 5 ¢ E(chaet =

-0

=R kyppk ok 88
vy Y (88)

4,2 Application to Spatially One-Dimensional Stochastic Waves

Having presented above the general multi-dimensional theory of stochastic
waves, a specific example is examined now, considering a spatially one-—dimen-—
sional stochastic wave. In this case, x* contains the time variable t and the

space variable x, i.e.:
x*= [t x17 (89)

and therefore the x* vector is given by:

* = [w k]t (90)

Then, the evolutionary power spectrum of yg(t,x) can be written as:
£(t,x,0,k)dadk = |A(t,x,0, ) | 2 (0, ) dudk (91)

and the corresponding autocorrelation function as:

oW o

R (t,t+T,x,x+E) = f f A(t+T,x+E,w,k) * A(t,x,w,k) *
YOYO - 00
o LOTHREL £, ) dudx (92)



If the stochastic wave is stationary and non-homogeneous, its evolutionary

power spectrum becomes:
£(x,0,6)dude = |A(x,x) | 2 (0, k)duwdk (93)
and the corresponding autocorrelation function takes the form:

@

R (1T,%x,x+8) = [ [ A(x+E,k) * A(x,k) * e
Yo¥o oo

ilotheE] | f (w, k)dwdk (94)

If the stochastic wave is homogeneous and non-stationary, its evolutionary

power spectrum becomes:
£(t,00)dude = |At,w) |2 « £(w,x)dudk (95)
and the corresponding autocorrelation function takes the form:

@

R (t,t+7,8) = [ [ A(t+t,0) « Alt,w) * e
Yo¥g

lotheEl | £ ) dude (96)

Concentrating now on the homogeneous, non-stationary stochastic wave yg(t,x),
whose spectral and correlational characteristics are described by Egs. 95 and
96, assume that f(w,x) is in the following form in order to account for pos-

sible dispersion:
flw,k) = £(x) * 8w = g(k)] (97)

where 6(¢) is Dirac's delta function and g(x) is a known function of k. In
this case, the simulation of the stochastic wave is performed using the fol-

lowing expression:

N
y{t,x) = /2 ; /ZA[t,g(Kl)jzf(kQ)AK . COS[g(Kx)t + K X + ¢£] (98)
=1



It will be shown now that the autocorrelation function of the simulated sto-
chastic wave (by Eg. 98) is the same with the target autocorrelation function

given by Eg. 96.

Ryy(t,t+1,x,x+5) = E{y(t,x)y(t+T,x+E)} =

N
E{(/2 ] J/IE[E,g(k, )17 * E(x,)A * coslglr )t +xx + 6] «
2=1

N
2 ) /ZAI£+T,g(Km)J4 < Elk JA¢ »
m=1

. cos[g(xm) © (t#1) + Kk (X4E) + ¢m]} =

N N
=2 § J 2ftgle)) « Altrngle)] « AT TR T « e
=1 m=1
. E{cos[g(nx)t tokgx + ¢£] . cos[g(Km) o (t+1) + kK (XtE) + ¢m]} (99)

It can be easily shown again that the expectation appearing in Eq. 99 is dif-
ferent from zero only for f#=m. Taking this into account, Eg. 99 becomes:

N
y ZA[t,g(Kl)] . A{t+r,g(Kl)] « E(ky)k - oos[g(xl)r + Kxg] (100)
2=1
In the limit as N + » and with the value of Ky fixed, the preceding equation
can be written as:

=]

!o 2A[t,g(k)] « Alt+t,g(x)] « £(x) * coslg(k)t + kE]dk (101)

Under the assumption that the integrand in Eg. 101 is an even function of «,

Eq. 101 yields:



Ryy(trt+TleX+§) =

[

= [ Alt,g(0)] * Alt+z,g(x)] » ol [9(K)

.00

E £)de =

w

= f f Alt,w] « Alt+t,0] * e

- =0

ilwt+cE] | f(k) « 8lw = g(k)lduwdk =

o©

= [ [ A(t,w) * Alt+t,0) + e OTE) i b dadk =
=R _(t,t+7,E) = R (t,t+7,8) (102)
vy Yo¥o

4.3 Numerical Example Involving a Non-Stationary Stochastic Wave
With Two-Dimensional Spatial Nonhomogeneity

The evolutionary power spectrum of a non-stationary stochastic wave with

two—dimensional spatial nonhomogeneity, is given by:
E(trx] s0rKysky)dudi Ay = |A(Erxg w0k |2 @ £(wrigrk,)dedside,  (103)

For the numerical example considered in this section, the modulating function

A(t,xl,w,xl) is assumed to be of the form:
A(t,xl,w,Kl) = A(t,xl,u)) = B(t,w) - W(t,xl) (104)

B(t,w) describes the non—stationarity of the wave and is given by:

_ _expl= 0.25t] = expl= (0.3765+w + 0.251) o t]
B{t,0) = S5 T= 0. 9505 = expl= (0.3765°0 ¥ 0.251) + t¥] (105)

and t* indicates the time instant at which B(t,w) assumes a maximum value as a

function of t:



_ Anf0.3765+w + 0.251] -~ n[0.25] (106)

t*
0.3765«0 + 0,001

The plot of B(t,w) as a function of t and w is shown in Fig. 1, whereas

W(t,x;) describes the nonhomogeneity of the wave and is given by:

0 for X1 < Xp
X
W(t,xl) = 1;XT for Xp < Xq < xT+xL (107)
L
1 for xy > XXy,
where
Xp = Xg = UT-t (108)

The following values are used for Xpr Xp and UT appearing in Egs. 107 and 108:

x; = 1,000 m ; xg = 6,000 m ; Up = 2,000 %12-5 (109)

The plot of W(t,xy) as a function of t and x; is shown in Fig. 2. The form of

f(w,Kl,Kz) is further assumed to be:
£(wrkyrky) = £(kprky) 8w - g(Kl,Kz)] (110)

where f(Kl,Kz) is set to be:
2
o b,k b,k
1°1 272
= L] 3. * 2. —-— 2— 2
Ekyrey) =g+ bf « by« «f + exp[- (5=)2 - (5)?] (111)
The power spectrum shown in Eqg. 111 is proposed by Shinozuka and Harada28 and
based on data from the original accelerograms recorded on January 29, 1981
(Event 5) by a SMART-1 seismograph array installed at Lotung, Taiwan. The
data represent the horizontal component of the displacement time history in
the direction N13°W which is approximately the direction of the seismic source

of this earthquake and are computed at each accelerogram station from two-



component data (EW & NS). The following values are used for éYy' b1 and b2

appearing in Eqg. 111:

oyy = 0.0124 m; b, = 1131 m; b, = 3012 m (112)

1 2

The plot of f(Kl,Kz) as a function of ky and k, is shown in Fig. 3. Solely for
the purpose of numerical demonstration, function g(Kl,Kz) is assumed to be of

the form:

g(Kl,Kz) =C e VK% + K% (113)

in which the value of the phase velocity ¢ is assumed to be:
c = 2,800 m/sec (114)

Finally, the stochastic wave y(t,xj,x5) can be simulated using the following
expression and under the assumption of quadrant symmetry in terms of the space

variables X1 and x5t

N N

1 2
y(texyxy) =72 2_ X_ VALt gl skgy J1% e Blkyg vkge e
2=1 2,71 1 “*2 1 “*2
e (1)
» Beyhicy o foos[gliyy spy Je + kg Xy * kg Xy + gy ]
1 ‘%2 1 2 12
+ cos[g(k Koo JE + Kqp X7 = Koy X, + ¢(2) 1} (115)
9\¥1g, 21, 12,1 7 20,72 7 ¥q 0,
where:
Kaq - K
lu 2u
Aky = wr ; Ak, = =2 (116)
17N 2 TN,
U, = 20Ky 3 271,25 000N (117)

4-10



/Q. =1,2’o.o’N (118)

2 2

The following values are used for Ny,Nj, SH and Kzu:

<y = 8-84 x 107 rad/mi ok, = 3.32x 1073 rad/m (120)

(1) (2)
14 1129
phase angles uniformly distributed in the range (0,27%).

It is noted again that ¢ and ¢ are two sequences of independent random
The stochastic wave is now simulated, using Eg. 115, over a 10,000 m x
10,000 m area. The simulation is performed at 12 equispaced time instants,
0.5 sec apart from each other, and shown in Fig. 4. It is clearly observed in
all twelve plots that there is relatively rapid variation along the xj-axis
(which represents the major axis of seismic wave propagation in Event 5) com—
pared to the variation along the xy,—axis. From the number of peaks (4) along
the xj-axis, the apparent wave length along this axis is estimated to be
around 2,500 m. Thus, the patterns shown in Fig. 4 indicate a dominant wave
with a wave length of approximately 2,500 m propagating in the negative x;-
direction. By dividing the distance covered by a single peak (5,500 m) by the
elapsed time (2.0 sec), the approximate speed of wave propagation along the
x1-axis is estimated to be 2,750 m/sec. This value is practically identical
to the value of 2,800 m/sec specified in Eq. 114. These wave length and phase
velocity values result in a dominant frequency of approximately 2,800/2500 =
1.12 Hz. This is also confirmed by Fig. 5 which plots the time history of the
displacement at X1 = 3,500 m and x5 = 1,000 m (point A in Fig. 4a). The ap-
parent frequency observed in this plot is 1/0.75 sec = 1.33 Hz, which is very
close to the above-mentioned dominant frequency of 1.12 Hz. The time histo-

ries at points B, C and D (also shown in Fig. 4a) are also plotted in Fig.



5. The time histories at A, B and C show the spatial variability along the
major axis of wave propagation while those at A and D along the direction
perpendicular to that. The propagating wave front is clearly seen in Fig. 4b
as well as in the first three frames of Fig. 5 (points A, B and C). The
ground is at rest in front of the wave front because of Eq. 107. Another in-
teresting feature that can be observed in Fig. 4 is the initial gradual in-
crease of the amplitude of the wave and the subsequent gradual decrease which
is an actual feature of all strong ground motions. At this point, it is
pointed out that the same procedure as the one described above for the digital
simulation of the displacement time history can be used for the digital simu-
lation of either the velocity or acceleration time history, by properly choos—
ing the corresponding evolutionary power spectra.

Finally, it is noted that the CPU time necessary to generate 21x21 points
at a specific time instant was approximately 11 minutes (on a SUN 3/180 com-

puter system).
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Fig. 4a Simulated Stochastic Wave at 12 Equispaced Time Instants (con-
figuration of simulated points).
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5. CONCLUSION

This paper presented fundamentals of the theory of multi—-dimensional and
multi-variate stochastic fields and stochastic waves. This was done primarily
from the viewpoint of applying it to the digital generation of seismic ground
motion for the purpose of seismic response analysis of lifeline systems
extending over a large spatial area. The method appears to work very well, as
exemplified by a numerical example where a propagating seismic wave idealized
as a spatially two—dimensional stochastic wave is digitally generated.

While such results are gratifying, there appear to be some issues that
still need to be resolved by future study. For example, the spectral repre-
sentation used in this paper produces mathematical models for stochastic pro-
cesses, fields and waves which are asymptotically Gaussian. However, Gaus—
sianess may not always apply to the actual ground motion data. If the data
exhibit some deviation from Gaussianess, and such deviation is expected to
substantially affect the result of the ensuing analysis, then non-Gaussian
characteristics must be introduced into the model. In this respect, a recent

29 may prove to be quite useful, because the

work by Yamazaki and Shinozuka
paper29 deals with multi-dimensional stochastic fields and introduces non-—
Gaussian characteristics still on the basis of spectral representation. An
alternative oconsists of the use of shot noise or filtered Poisson process

8 4

and Shinozuka and Sato™. More recently, Lin30

models, as demonstrated by Lin
showed how the evolutionary power spectrum can be incorporated into the fil-
tered Poisson model. However, these filtered Poisson models are limited to
one-dimensional and uni-variate cases at this time.

Another issue that requires further study is the question of how more
general dispersion characteristics can be incorporated into the model. In the

present formulation, a particular relationship is assumed for the frequency



and wave numbers. In this connection, if a number of seismic waves of specif-
ic characteristics are known to be propagating simultaneously, the spectral
representation of these models can be constructed individually and summed up
vectorially to develop a simulation of such a composite wave. Since, however,
the observed ground motion is a composite of seismic waves with various char—
acteristics, no simple relationship can really be assigned to the frequency
and wave number. It is therefore reasonable to assume that a multiplicity of
such relationships exist in reality and, indeed, the power spectral density
obtained from ground motion data involving the frequency and all pertinent
wave numbers should contain information relevant to this. It is important and
also interesting to pursue this issue. It should be noted that Scherer and
Schueller have done some interesting work in this area3l,

Another aspect of future work is the extension of the introduced simula-
tion technique to multi-variate non-stationary and/or nonhomogeneous cases of
stochastic waves. However, such a task might be particularly difficult, be-
cause the cross—correlational characteristics of such waves are usually very
complicated and no reliable data are available at this time for non-stationary
and/or nonhomogeneous multi-variate stochastic waves.

The simulation of ground motion described in this paper represents, in
essence, mathematically tractable and physically meaningful models. Indeed,
we have come a long way from the early mathematical model in which a Gaussian
white noise is passed through an appropriate filter by means of a convolution
integral to produce 1D-1V artificial ground accelerations. While some attempt
has been made in this paper to incorporate into the models the physical laws
of propagating seismic waves, further efforts should be directed to the im—

provement of these models so as to reflect the physics of seismic waves in-

cluding their source mechanism, attenuation, etc.



Finally, the following problem is currently under investigation: given
the evolutionary power spectrum of a spatially two-dimensional, nonhomogene—
ous, non-stationary stochastic wave (shown in Eg. 103), derive the corres-
ponding evolutionary power spectrum of the non-stationary stochastic process
obtained by freezing the space variables x; and x5 at a specific point. Clar-
ification of the above issue will provide further insight into the theory of

stochastic waves.
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