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SUMHARY 

The method of spectral representation for uni-variate, one-dimensional, 

stationary stochastic processes and multi-dimensional, uni-variate (as well as 

mtilti-dimensional, multi-variate) homogeneous stochastic fields has been re

viewed, particularly from the viewpoint of digitally generating their sample 

functions. This method of representation has then been extended to the cases 

of uni-variate, one-dimensional, nonstationary stochastic processes and multi

dimensional, uni-variate nonhomogeneous stochastic fields, again emphasizing 

sample function generation. Also, a fundamental theory of evolutionary sto

chastic waves is developed and a technique for digitally generating samples of 

such waves is introduced as a further extension of the spectral representation 

method. This is done primarily for the purpose of developing an analytical 

model of seismic waves that can account for their stochastic characteristics 

in the time and space domain. From this model, the corresponding sample seis

mic waves can be digitally generated. The efficacy of this new technique is 

demonstrated with the aid of a numerical example in which a sample of a spa

tially two-dimensional stochastic wave consistent with the Lotung, Taiwan 

dense array data is digitally generated. 

KEYVDRDS 

Simulation; ground motion; spectral representation; stochastic pro

cess; stochastic field; stochastic wave; stationarity; nonstationarity; 

homogeneity; nonhomogeneity; power specrum; evolutionary power spectrum; 

autocorrelation function. 
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1. INTROOOCTION 

A number of stochastic models for the digital generation of artificial 

ground acceleration have been proposed and successfully applied to a variety 

of structural problems arising from seismic events. Referring only to repre

sentative earlier work in this area, the following papers are cited: those by 

Tajimi l , Cornel12, Housner and Jennings3, Shinozuka and Sato4, Amin and AngS, 

Iyengar and Iyengar6, Ruiz and Penzien7 and Lin8• Later on, Shinozuka and his 

associates introduced in a series of papers 9-14 the spectral representation 

method, which can be easily implemented for the digital simulation of ground 

accelerations or displacements. The papers by Shinozuka and his associates 

clearly recognized the multi-variate and multi-dimensional nature of ground 

motion. The most recent development in this field is the use of Auto-Regres

sive Moving-Average (ARMA) models which have been studied by Shinozuka and his 

associateslS- 19 , Spanos and his associates20- 22 and Kozin and Nakajirna23 • 

A common limitation of all the above models is that ground motion is 

treated as a stochastic process when its time variability is examined, or as a 

stochastic field when its spatial variability is considered. In the former 

case, the space variables are frozen, while in the latter case, time is fro

zen. In order to have the analysis reflect the obvious nature of ground mo

tion arising from a propagating seismic wave, a stochastic wave model with 

evolutionary power has been developed here and an efficient technique for 

digitally generating samples of such a stochastic wave is introduced as an ex

tension of the spectral representation method primarily developed by Shinozuka 

and his associates. Such a model is useful for the seismic response analysis 

of such large-scale structures extending over a wide spatial area as water 

transmission and gas distribution systems and large-span bridges. 
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2. SIMULATION OF SEISMIC GROUND MOTION USING STATIONARY PROCESS AND 
HOMOGENEOUS FIELD MODELS 

2.1 Simulation of ID-IV Stationa Stochastic Processes Usin S ctral 
presentatIOn 

Considerable progress has been made in stochastic modeling of ground mo-

tion and in generating the corresponding sample functions for the purpose of 

nonlinear and/or parametric seismic response analyses. However, a large num-

ber of these analyses are still performed under the assumption that seismic 

ground motion consists of a single horizontal component. In this respect, the 

digital simulation of ID-IV (one-dimensional and uni-variate) stationary sto

chastic processes using spectral representationl4 remains of critical impor-

tance in the seismic response analysis of structures. 

Let fO(t) be a ID-IV stationary stochastic process with mean zero and 

auto-correlation function Rf f (~). Then 
a a 

E[fo(t) ] = a (1) 

E[fO(t+~)fO(t) ] = Rf f (~) (2) 
o 0 

where E[e] indicates the expectation. It is well known that Rf f (~) and the 
o 0 

power spectral density function Sf f (w) of the process fO(t) are related 
o 0 

through the Weiner-Khintchine transform pair: 

CD • 

1 J -lW~ Sf f (w) = 7it Rf f (~)e d~ 
o 0 -CD 0 0 

CD • 

J lw~ = Sf f (w)e dw 
-co 0 0 

(3) 

(4) 

It follows immediately from Eg. 2 that Rf f (~) is an even function of ~, and 
o 0 

consequently the power spectral density Sf f (w) is also an even function of 
o 0 

w in accordance with Eq. 3. Also, it can be shown that Sf f (w) ;> O. 
o 0 

It will be shown that the stochastic process fO(t) can be simulated by 
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the following series, as N ~ 00. 

where 

N 
f(t) = 12 I 12Sf f (W.)6w • cos(w.t + ¢.) 

j=l 0 0 J J J 

w. = j6W 
J 

An upper round of the frequency 

w = N6w 
u 

j=1,2, ••• ,N 

is implicit in Eq. 5 where w represents an upper cut-off frequency beyond 
u 

(5) 

(6) 

(7) 

which Sf f (w) may be assumed to be zero for either mathematical or physical 
o 0 

reasons. In Eq. 5, ¢. are independent random phase angles uniformly distri
J 

buted over the range (O,2n). Note that the simulated process is asymptoti-

cally Gaussian as N becomes large due to the central limit theorem. 

It will be shown now that the expected value and auto-correlation func-

tion of the simulated process f(t) are identical to the corresponding targets, 

E[fo(t)] = 0 and Rf f (~), respectively. First, utilizing the assumption that 
o 0 

the random phase angles are independent, the expected value E[f(t)] becomes: 

00 N-fold (X) N N 
E [f(t)] = ~ J •••••• J Y 12Sf f (W.)6W • cos(w.t+¢.)· IT [p~. (¢i)d¢i] 

-00 -00 j=l 0 0 J J J i=l 1 

(8) 

where Pq,. (.) is the density function of tI>. and hence: 
1 

1 

1 
o " ¢. .. 2n Tn 1 

PtI>. (¢i) = (9) 
1 

0 otherwise 
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The N-fold integral appearing in Eg. 8 can be written as follows: 

N 00 00 

= II {f Pq, (<I>. )d<l>.} J cos(w.t + <1>. )Pq, (<I>. )d<l>. 
i=l -00 i I I -00 J J j J J 
i:f:j 

2n: 1 1 2 
J ( ) [ . ( ,l,J' ) ] On: -- 0 = 0 "tit cos Wjt + <l>j d<P j = 2i. _sIn Wjt + 'I' (10) 

It has therefore been shown that: 

E[f(t)] = 0 ( 11) 

Second, the auto-correlation function of the simulated process f(t) is cal-

culated as follows: 

N 
cos [w.(t+~) + <P.] • cos [w.t + <p.]. II [p~ (<I>o)d<l>o] 

I I J J ,R,=l ~~ ~ ~ 
(12) 

The following double integral is needed in the derivation of the expression of 

00 00 

J J cos[w. (t+~) + <1>.] • cos[w.t + <1>.] • Pel> (<p.) • Pq, (<p. )d<l>.d<l>. = 
-00-00 I I J J i I j J I J 

1
0000 

='2 J J [cos{(w.+w.)t + w ... + <p. + <I>.} + 
-00 -00 I J I I J 

+ cos{(w.-w.)t + w.'t + <I>.-<I>.}] • p~ (t!>i) • Pel> (<I>.)dt!>.d<l>. (13) 
I J I I J i j J I J 
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The expression for the double integral appearing in Eq. 13 is equal to zero 

when i * j. It is different from zero only when i = ji 

00 

J ros[w.(t+'t) + ¢.] • ros[w.t + ¢.] • Pm (¢.)d¢. = 
1 1 1 l'±'. 1 1 

~ 1 

1 00 

= -2 J [ros(2w.t + W.'t + 2¢.) + ros(w.'t)] • Pm (¢. )d¢. = 
1 1 1 1 ",. 1 1 

-00 1 

(14) 

Using Eqs. 13 and 14, Eq. 12 eventually yields the following expression for 

N 
= t 2S (w )6W • cos(w.'t) 

10 ff i 1 
i=l 0 0 

(15) 

If, in Eg. 15, the limit is taken as N ~ 00, while keeping w = N6w ronstant 
u 

and remembering that Sf f (w) = 0 for I wi ~ wu' it follows that 
o 0 

00 00. 

J J lW't 
= 2 Sf f (w) cos(w't)dw = Sf f (w)e dw 

o 0 0 -00 0 0 
(16) 

Then, by virtue of Eq. 4: 

(17) 

It has therefore been shown that the expected value and autororrelation func-

tion of the simulated process are the same with the target ones, i.e., E[f(t)] 

= E[fO(t)] = 0 and Rff('t) = Rf f ('t). 
o 0 

At this juncture, it must be noted that the simulated process given by 

Eq. 5 is ergodic, at least to the serond moment, regardless of the size of 
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N 14. This makes the method directly applicable to time-domain analysis in 

which the ensemble average can be evaluated in terms of the temporal average. 

Finally, it should be pointed out that the computer cost of the digital gen-

eration of sample functions of process f(t) can be dramatically reduced by ap

plying the FFT (Fast Fourier Transform) technique to Eq. 5 13. 

2.2 Simulation of nD-lV Homogeneous Stochastic Fields Using 
_Spectral Representation 

The simulation of lD-lV stationary stochastic processes using spectral 

representation, which was presented in the previous section, can be extended 

in a straightforward fashion to the simulation of nD-lV (n-dimensional and 

uni-variate) homogeneous stochastic fields 14 in the following way. 

Consider an nD-lV homogeneous stochastic field f O(xl ,x2, ••• ,xn ) = fO(~) 

with mean zero: 

(18) 

The autocorrelation function of fO(~) is defined by 

(19) 

where x and x are position vectors in an n-dimensional space and _E is the -r -s 

separation vector. For a homogeneous field, Rf f (~) is symmetric with res
o 0 

pect to the separation vector ~ and therefore: 

(20) 

For some nD-lV homogeneous fields, the following equation is valid: 

(21) 

where I± is an nxn diagonal matrix whose diagonal components are either 1 or 
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- 1. Hence, Eg. 20 is a special case of Eg. 21 in which the diagonal members 

of I± are all equal to - 1. When Eg. 21 is valid, the stochastic field is re

ferred to as a "quadrant field. ,,24 AssLnTIing that an n-fold Fourier transform 

of Rf f (.£) exists, the spectral density function of fO(x) is defined as: 
o 0 

co 
1 J -ik·~ Sf f '-~) = -- Rf f <.~) e - - dI o 0 (2n)n -co 0 0 

and its inverse transform is given by: 

co 

J iK·t Rf f (~) = Sf f (K) e -- dK o 0 - -co 0 0 

(22) 

(23) 

The preceding two equations represent the n-dimensional version of the Wiener-

Khintchine transform pair, where ~ = [Kl K2 K JT is the wave nLnTIber 
n 

vector and ~:s. is the inner product of ~ and I, and, for simplicity: 

J (24) 
-co 

CD 

J
co n-fold Jco 

)dK = •••••• ()dKl dK2 ••• dKn (25) J 
-CD -co 

It can be easily shown that: 

Sf f (K) = Sf f (- K) (26) 
00- 00-

and that the spectral density function is real. In addition, the'following 

equation is obtained under the condition of Eg. 21: 

(27) 

This equation indicates that the value of Sf f (K) is identical at a corres-
00-
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ponding point in each quadrant (~= I± ~), hence the name "quadrant field." 

Finally, it can be shown that the autocorrelation function Rf f (~) is 
o 0 

non-negative definite and has a non-negative n-dimensional Fourier transform, 

i.e. : 

(28) 

Based on these properties of Sf f (K), the n-dimensional homogeneous stochas-
o O-

tic field fO(~) can be simulated by a stochastic field f(~) in the following 

fashion: consider an nD-lV homogeneous field fO(~) with mean zero and spec

tral density function Sf f (~) which is of insignificant magnitude outside the 
o 0 

region defined by: 

where !u = [Klu K2u 

val vector by: 

•••• 

••• 

(29) 

K JT with K. > 0 (i=1,2, ••• ,n). nu lU 
Denote the inter-

K _nu) • ••• N . (30) 
n 

and then construct the simulated field f(~) by the following series, as Nl , 

N2, ••• ,Nn ~ m simultaneously: 

N 
n 

f(x) 
-r 

.•.. L 
k =1 

n 

I 
Il=l,Ii=±1 
i=2,3, ••• ,n 
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• • •• + (31) 

where 
1112 ••• 1 

$ n = independent random phase angles uniformly distributed be-
k1k2···kn 

tween o and 21t, and 

i = 1,2, ••• ,n. (32) 

The simulated field f(x) is asymptotically Gaussian as N1,N2, •••• ,Nn + m si

multaneously again due to the central limit theorem. Note that a set of II' 

12, •••• , In indicates one of the 2n quadrants of the wave number! space. 

Because S(!) = S(- !), we need to cover only 2n- l quadrants, half of the total 

2n, for simulation purposes. Thus II is always chosen to be unity (II = 1). 

This also implies that (i) there are 22n-l sets of Nl N2 ••• Nn random phase 

angles in the expression for f(x) given by Eq. 31 and (ii) twice the spectral 

density function always appears in the same equation. 

If the stochastic field is quadrant, then SfofO(IlKlkl' 12K2k2 , •••• , InKnkn) 

in Eq. 31 can be replaced by Sf f (Klk ' K2k ' •••• , Knk ). Also, if the sto-
001 2 n 

chastic field has a non-zero spectral density only over a pair of quadrants in 

the wave number domain for which Sf f (!) = Sf f (- !), then the stochastic 
o 0 0 0 

field is referred to as "uni-quadrant" and Eq. 31 can be written as: 

N 
n 

1. 
k =1 

n 

.... , 

•••• + Knk xn + $k k k ) 
n 1 2···· n 

(33) 

For example, a 2D-IV stochastic field is uni-~uadrant if the spectral density 

is non-zero only over the first quadrant (and therefore over the third quad-

rant) • 
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Referring to 2D-1V homogeneous stochastic fields, Eg. 31 can be written 

explicitly as 

1 

x cos(K1k Xl + K2k x2 + ~k(l~ ) + [28f f (K1k ,-K2k )~K1~K2]2 x 
1 212 001 2 

Furthermore, if the stochastic field is quadrant, 

N1 N2 
f(~) = 12 I J 

k1 =1 k2=1 

{ ( (1) ) ( (2) )} 
x cos K1k Xl + K2k x2 + ~ k + cos k1k Xl - K2k x2 + ~ k 

1 212 1 212 

(34) 

(35) 

(1) 1 1 (2) 1 -1 where ~ = ~' and ~ = ~' if the notation introduced in Eg. 31 is 
k1k2 k1k2 k1k2 k1k2 

to be used. Finally, if the field is uni-quadrant over the first quadrant: 

N1 N2 
f(x) = 12 L 2. 

kl =1 k2=1 

(36) 

In a way similar to the one used for the ID-IV processes, it can be shown that 

the expected value and autocorrelation function of the simulated field are the 

same with the target ones, i.e., E[f(~)l = E[fOCi{)l = 0 and Rff(t) = Rf f (~). 
o 0 

Also, the nD-IV simulated field is ergodicl4 , at least to the second moment, 

and the computational cost for the digital generation of sample functions of 
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the stochastic field f(x) can be dramatically reduced by applying the FFT 

technique to the appropriate trigonometric series expression13• 

2.3 Simulation of nD-rnV Homogeneous Stochastic Fields Using Spectral 
RepresentatiQ!2, 

The simulation of nD-rnV (n-dimensional and m-variate) homogeneous stochas

tic fields14, unlike the case of nD-IV fields, cannot be achieved by straight-

forward generalization of the ID-IV case, as shown below. 

Consider a set of m homogeneous Gaussian n-dimensional stochastic fields 

o f, (x) (j=1,2, ••• ,m) with mean zero: 
J -

(37) 

and with cross-spectral density matrix ~o(~) defined by: 

(38) ....................................... 

where S~k(K) is the n-dimensional Wiener-Khintchine transform of the cross
J -

correlation function R~k(~) (j*k) or the auto-correlation function 
J -

R~k (~) (j=k). 

Due to the assumption of homogeneity: 

o 0 R'k(l;) = R-, (- ~), 
J - -kJ -

the following expression can be obtained: 

(39) 

o -0 
S 'k (K) = Sk' (K) (40) 

J - J -

where the super bar indicates the rornplex ronjugate. The matrix 20 
(!) is 
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therefore Hermitian. It can be shown that SO(~) is also non-negative definite. 

SuppJse naw one can find a matrix !:!(,~) which pJssesses an n-dimensional 

Fourier transform and satisfies the equation: 

(41) 

where ~o(~) is the specified target cross-spectral density matrix and T indi

cates the transpJse. Then, f~ (2f) (j=1,2, ••• ,m) can be simulated by fj (x) given 

below. 

fj(x) (42) 

where hjk(x) is the n-dimensional Fourier transform of Hjk (!): 

(43) 

In Eg. 42, ~(~) are independent n-dimensional Gaussian white noises such that: 

(44) 

with: 

(45) 

where 0(·) and 0 .. are the delta function and Kronecker's delta, respective-
1J 

lye Since ~(2f) are Gaussian, fj{x) are also Gaussian. It can be easily 

verified that f.(x) (j=1,2, ••• ,m), as simulated by Eg. 42, satisfies Egs. 37 
J -

and 41 and thus simulates f?(x) up to the second moments. Hence, if f?(x) is 
J - J -

Gaussian, f.(x) is identical with f?(x). 
J - J -

To find the matrix g(!) in an efficient way, we assume that H(!) is a 
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lower triangular matrix: 

° ° ° ............. ° !!(!£) = 

........................................ 
..... ~ .. H (K) 

rnn -

By substituting the above into Eq. 41, solutions are obtainedlO as: 

k=1,2, ••• ,m 

where Dk(!£) is the k-th principal minor of §O(!£) with DO being defined as 

unity, and 

where 

sO (1,2, •••• , k-l , j) = 
1,2, •••• ,k-l,k 

sO 1,2, •••• ,k-l,j 
1,2, •••• ,k-l,k 

..... 

k=1,2, ••• ,m 
j=k+l, ••• ,m 

............................................. 
° Sk-l,k-l 

o S. k 1 J, -

(46) 

(47) 

(48) 

(49) 

is the determinant of a submatrix obtained by deleting all the elements except 

the (1,2, ••• ,k-l,j)-th row and (1,2, ••• ,k-l,k)-th column of §O(!£). It is 

noted that the above decomposition is valid only when the matrix §O(~} is Her-

mitian and positive definite as can be seen from Eq. 47. 

Because the cross-spectral density matrix §O(!£} is known to be only non-
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negative definite, special consideration is needed in those cases where §O(~) 

has a zero principal minor14. 

Once ~(~) is computed using Egs. 47 and 48, instead of passing a white 

noise vector through filters, the field fj(x) can be simulated in a more effi

cient way by the following series, as Nl ,N2, ••• ,Nn ~ 00 simultaneously and un

der the assumption that the stochastic field possesses quadrant symmetry: 

f. (x) = 2 
J -

where: 

i 
m=l 

K. n 
IA.. 

I 

Nl N2 

Y. L 
~ =1 1 .R. =1 2 

••• 

= ~II1K. 
I I 

... 
N n 
L L IHjm(Kl~1'K2~2'···'Kn~n 

.R. =1 Il=l,I.=±l n i=2,3,: •• ,n 

K 

-~) . .. -

.R. = 1,2, ••• ,N. ; 
I 

N 
n 

i=1,2, ••• ,n 

I • 

(50) 

(51) 

(52) 

(53) 

/112.' .In 
'l' = independent random phase angles uniformly distributed between 0 
~1~2"'~n 

and 2n. The simulated field fj(~) is asymptotically Gaussian as Nl ,N2, ••• ,Nn 

~ 00 simultaneously, again due to the central limit theorem. 

Finally, it can be shown again that the expected value and autocorrela-

tion function of the 

ones, i.e., E [f. (x)] 
J -

simulated field (using Eq. 50) are 

00· 
= E[f.(x)] = 0 and R'k(~) = R'k(~) 

J- J - J-
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the same as the target 

j,k=1,2, ••• ,m. Al-



so, it can be shawn that the s~ulated field is ergodic14 at least to the 

second moment. Here again, the computational effort for the digital genera-

tion of sample functions of the stochastic field f.(x) can be substantially 
J -

reduced by applying the FFT technique to Eq. 50. 
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3. SIMULATION OF SEISMIC GROUND MOTION USING NON-STATIONARY PROCESS AND 
NON-HOMOGENEOUS FIELD MODELS 

3.1 Simulation of In-IV NonstationaEY Stochastic Processes Using 
Spectral Representation 

A more realistic simulation of seismic ground motion can be made by oon-

sidering nonstationary stochastic processes or nonhomogeneous stochastic 

fields. From the engineering point of view, it is highly desirable that such 

non-stationary and non-homogeneous models permit physical interpretation of 

their spectral contents as closely as possible to, or as a straightforward 

extension of, the power spectra associated with stationary stochastic pro-

cesses or homogeneous stochastic fields. Among the various attempts to define 

such non-stationary and non-homogeneous spectra, it is the "evolutionary spec

trum" developed by Priestley25,26 that appears to offer the most palatable 

transition from the power spectra associated with stationary and homogeneous 

stochastic processes and fields to those associated with non-stationary and 

non-homogeneous stochastic processes and fields. This is the reason why eva-

lutionary power will be used exclusively in the following. 

A brief description of a In-IV nonstationary stochastic process YO(t) 

with evolutionary power is given below to introduce certain notions appearing 

in the theory of evolutionary power. 

If a stochastic process (stationary or non-stationary) can be represented 

as: 

00 • 

YO(t) = J A(t,w)e1wt dZ(w) (54) 
-00 

where A(t,w) is a modulating function and dZ(w) represents an orthogonal in-

crement, the process YO(t) is said to be oscillatory. Note that the physical 
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notion of frequency has been preserved by including the complex exponential, 

and that if A(t,w) is constant, YO(t) is a stationary process. The mean 

square of the oscillatory process is found to be: 

E[Y8(t)] = J IA(t,w)12 dF(w) 
-00 

where dF(w) = E[dZ(w)]2. By introducing the evolutionary spectrum in the 

form: 

(55) 

the non-stationary spectral contents are defined. Equation 56 may be written 

as: 

if f(w) exists such that dF(w) = f(w)dw, where dFO(t,w) = fO(t,w)dw. In this 

case, it can also be shown that an oscillatory process YO(t) of the form of 

Eq. 54 has the following auto-correlation function. 

00 • 

R (t+~,t) 
yoyo 

= J A(t+~,w)A(t,w)elW~ f(w)dw (58) 

It is of major importance to recognize that if the evolutionary power spectrum 

can be expressed in the form of Eq. 57, then the autocorrelation function 

R (t+~,t) can be calculated using Eq. 58. This is significant since it is 
yoyo 

usually the evolutionary power spectrum of an earthquake that can be estimated 

or measured and not its autocorrelation function27• 

As far as the simulation procedure is concerned, the method that has been 

proposed in Section 2.1 for In-IV stationary processes can be directly gen-
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eralized to a non-stationary process characterized by an evolutionary power 

spectrumlO • Thus, if a non-stationary process YO(t) has an evolutionary power 

spectrum of the form shown in Eq. 57, then the process can be simulated by the 

following expression, as N + 00. 

yet) 
N 

= 12 I 
j=l 

m 2 (t, w. ) f ( w. ) t.w cos ( w . t + 4>.) 
J J J J 

where w. = jt.w; j=I,2, ••• ,N. An upper bound of the frequency w = N·t.w is 
J u 

(59) 

again implicit in Eq. 59 and ¢j are independent random phase angles uniformly 

distributed over the range (0,2n). Note that the simulated process yet) is 

asymptotically Gaussian as N becomes large due to the central limit theorem. 

It can be shown that the simulated process yet) possesses the target evolu-

tionary power spectrum as N + 00. 

3.2 Simulation of nO-IV Nonhomogeneous Stochastic Fields Using 
Spectral Representation 

The evolutionary power spectrum theory for In-IV nonstationary stochastic 

processes, presented in the preceding section, will naw be extended to nD-IV 

nonhomogeneous stochastic fields below. If an nD-IV nonhomogeneous stochastic 

field can be represented in the form: 

00 . ' 

yO(.!) = J A(~,!.)el!..~ dZ(!.) (60) 
-co 

where A(x,!.) is a modulating function and dZ(!.) represents an orthogonal in

crement, then the stochastic field yO(.!) is called oscillatory. The mean 

square of the oscillatory field is given by: 
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00 

E[Y8(~)] = f IA(~,~12 dF(~) (61) 
-00 

where 

(62) 

By introducing the evolutionary power spectrum of the nD-1V nonhomogeneous 

stochastic field in the form: 

the nonhomogeneous spectral contents are defined. Equation 63 can be written 

as: 

these conditions, it can be shown that an oscillatory stochastic field yO(~) 

has the following autocorrelation function, 

R (x+e"x) 
yoyo - --

00 • ' 

= f A(X+I,!)A(~,.!~)el~·l f(~)d!:. (65) 

The stochastic field Yo(~) can be simulated in the following way, as N1,N2, 

••• ,Nn + 00 simultaneously and under the assumption that the stochastic field 

is quadrant symmetric: 

L 
I 1=1,I i =±1 

i=2,3, ••• ,n 

••• 
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••• + 

where: 

K. n 
lAo 

1 

= ~.~K. 
1 1 

K' 
••• Nnu) 

n 

~ . =1,2, ••• ,N. ; 
1 1 

i=1,2, ••• ,n 

1112 ••• 1 
~ n = independent random phase angles uniformly distributed in the 
~1~2···~n 

range (O,2n). 

(66) 

(67) 

(68) 

Referring to 2D-IV nonhomogeneous stochastic fields, Eg. 66 can be writ-

ten as (quadrant symmetry is assumed): 

where ~(l) ~= ~l,l and ~(2) = ~~,:l if the notation introduced in Eg. 66 is 
~l ~2 ~l ~ ~l ~ Al A2 

to be used. Note again that the simulated field y(~) is asymptotically Gaus-

sian as Nl,N2, ••• ,Nn + ~ simultaneously, due to the central limit theorem. 

Finally, it can be shown that ~1e simulated field y(~) possesses the target 

evolutionary power spectrum as Nl,N2, ••• ,Nn + ~ simultaneously. 
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4. SIMULATION OF SEISMIC GROUND MOTION USING STOCHASTIC WAVES 

4.1 T'neory of nD-1V Stochastic Waves 

An even more realistic simulation of seismic ground motion can be ob-

tained by explicitly describing it as a stochastic propagating wave. For this 

purpose, consider the following spatially n-dimensional stochastic wave: 

00 iK*.x* 
= J A(x*,~*)e - - dZ(~*) (70) 

-00 

where x* = [t,x1,x
2

, ••• ,xnJT is an (n+1)-dimensiona1 vector containing the 

time variable (t) and n space variables (x's) and ~* = [w,K1,K2, ••• ,KnJT is an 

(n+1)-dimensional vector containing the frequency (w) and n wave numbers (K'S). 

The frequency corresponds to the time variable, while the n wave numbers cor-

respond to the n space variables. 

Note again that Eg. 70 is a direct generalization of Eg. 54 into the mul

ti-dimensional case. Therefore, A(~*'K*) is a modulating function, dZ(~*) 

represents an orthogonal increment and YO(x*) is an "oscillatory" stochastic 

wave in the sense of Priestley's definition. 

The mean square of the oscillatory stochastic wave is: 

00 

(71) 

where: 

(72) 

Now, by introducing the (n+1)-dimensional evolutionary power spectrum in the 

form: 
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the nonstationary and/or nonhomogeneous spectral contents are defined. Equa-

tion 73 can be written as: 

(74) 

if f(~*) exists such that: 

(75) 

It can also be shown that an oscillatory stochastic wave YO(x*) of the form 

appearing in Eq. 70 has the following autocorrelation function, if Eq. 75 is 

valid: 

CD 

R (x*+~* ,x*) yoyo - - - (76) 

where the separation vector ~* is given by: 

~* = [~~ ~ ••• ~ JT 
- 1 2 n 

(77) 

At this juncture, it should be pointed out that if the stochastic wave is sta-

tionary in terms of time and/or homogeneous in terms of certain space varia-

bles, then the modulating function A(x*,~*) has to be independent of the time 

variable and/or these space variables, and also independent of the correspond-

ing elements of the K* vector. 

The stochastic wave YO(x*) can be sllnulated in the following way as Nt, 

Nl ,N2, ••• ,Nn + CD simultaneously and under the assumption that the stochastic 

wave is quadrant symmetric in terms of the space variables: 
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y(x*) =n 

where: 

Nt Nl 

J. y 
m=l i =1 1 

w = mllw m 

N2 

I 
i =1 2 

= ~,~KI 
1 1 

N n 
••• I I 

i =1 II =1,1. =±l n i=2,3,: •• ,n 

+ ••• + 

m=1,2, ••• ,Nt 

i. =1,2, ••• ,N. ; 
1 1 

i=1,2, ••• ,n 

1 11 2" •• I 
~ n = independent random phase angles uniformly distributed in the 
mil i 2 ···.R.n 

range (O,21t) 

(78) 

(79) 

(80) 

(81 ) 

The simulated stochastic wave y(x*) is asymptotically Gaussian as Nt,Nl' 

••• ,Nn + 00 simultaneously, due to the central limit theorem. It is shawn be

low that the autocorrelation function of the simulated stochastic wave is the 

same with the target autocorrelation function R (x*+~*,x*) given by Eq. 
YoYO - - -

76. For this pUrp':)se, Eq. 78 is written in condensed fom as (assuming uni-

quadrant symmetry for simplicity): 

N 
= ~ I (82) 

i=l 
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where N = Nt NlN2oooNno The autocorrelation function of the simulated stochas-

tic wave is: 

R (x*+~*,x*) = E[y(x*)y(x*+~*)J = yy--- ~--

N 
= E{l2 L 

~=l 

The expectation appearing in Ego 83 can be written as follows: 

(83) 

(84) 

It is easy to show that the expected value shown in Eqo 84 is different from 

zero only for ~=m, for which it takes the following value: 

Substituting Eqo 85 into Eqo 83, the following expression is obtained for 

R (x*+1;*,x*): 
yy- - -

N 

(85) 

R (x*+1;*,x*) = L 2A(X*,K*) • A(x*+1;*,K*) • f(K*) • ~K* • COS[K*·~*J (86) yy - - - - -~ - - -~ -~ -~ -~=l 

In the limit as N ~ 00 and with the values of K* fixed, the preceding equation 
-u 

becomes: 
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Under the assumption that the integrand in Eq. 87 is an even function of :5...*, 

Eg. 87 yields: 

R (x*+t:*,x*) 
yy - - - = J A("~_*, K*) • A(~*+~* '!.*) 

-0:> 

= R (x*+~*,x*) yoyo - - - (88) 

4.2 Applicati6nto SpatialJ,y one-Dimensional Stochastic Waves 

Having presented above the general multi-dimensional theory of stochastic 

waves, a specific example is examined now, considering a spatially one-dimen-

sional stochastic wave. In this case, x* contains the time variable t and the 

space variable x, i.e.: 

x* = [t xJ T 

and therefore the K* vector is given by: 

T 
K* = [w K] 

Then, the evolutionary power spectrum of YO(t,x) can be written as: 

and the corresponding autocorrelation function as: 

0:> 0:> 

• e i [W't+K~] • f (w, K )dux:1K 
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(90) 

(91) 
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If the stochastic wave is stationary and non-homogeneous, its evolutionary 

power spectrum becomes: 

(93) 

and the corresponding autocorrelation function takes the form: 

R ('t,x,x+1;) 
YOyO 

<Xl <Xl 

J J 
i [un+KF:] = A(X+t;,K) • A(X,K) • e ~. f(w,K)durlK (94) 

-CD-<Xl 

If the stochastic wave is homogeneous and non-stationary, its evolutionary 

power spectrum becomes: 

f(t,w,K)durlK = IA(t,w)12 • f(w,K)durlK (95) 

and the corresponding autocorrelation function takes the form: 

R (t,t+'t,1;) 
YoYo 

<Xl <Xl 

= J J A(t+'t,w) • A(t,w) • e i [w't+K1;] • f(w,K)durlK (96) 

Concentrating now on the homogeneous, non-stationary stochastic wave YO(t,x), 

whose spectral and correlational characteristics are described by Eqs. 95 and 

96, assume that f(w,K) is in the following form in order to account for pos-

sible dispersion: 

f(w,K) = f(K) • <5[w - g(K)] (97) 

where <5(.} is Dirac's delta function and g(K} is a known function of K. In 

this case, the simulation of the stochastic wave is performed using the fol-

lowing expression: 

N 
y(t,x} = 12 Y. 12A[t,g(K1)]2f(K1)~K. cos[g(K1}t + K1x + ~1] (98) 

1=1 
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It will be shown now that the autocorrelation function of the simulated sto-

chastic wave (by Eg. 98) is the same with the target autocorrelation function 

given by Eg. 96. 

R (t,t+T,X,X+~) = E{y(t,X)y(t+T,X+~)} = 
yy 

N 
= E{12 I 12A[t,g(K~)]2. f(K~)6K • COS[g(K~)t + KXK + ~~] • 

~=l 

N 
• 12 I /2A[t+T,g(K )J2 • f(K )6K • 

m=l m m 

• cos [g (K ) • ( t + T) + K ( x+ ~) + ~ ]} = m m m 

N N 
= 2 Y >' 2Art,g(K~)] • Aft+T,g(Km) ] • If(K~) • f(Km) • 6K • 

~=l m=l 

It can be easily shown again that the expectation appearing in Eg. 99 is dif-

ferent from zero only for ~=rn. Taking this into account, Eg. 99 becomes: 

N 
I 2A[t,g(K~)] • A[t+T,g(K i )] • f(K~)6K • OOS[g(K~). + K~~] (100) 

~=l 

In the limit as N + m and with the value of K fixed, the preceding equation 
u 

can be written as: 

f 2A[t,g(K)] • A[t+T,g(K)] • f(K) • COS[g(K)T + K1;]dK 
o 

(101) 

Under the assumption that the integrand in Eg. 101 is an even function of K, 

Eg. 101 yields: 
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R (t,t+~,x,x+~) = 
yy 

ClO 

= J A[t,g(K)] • A[t+-r,g(K)] • ei[g(Kh+K~] f(K)dK = 
-ClO 

ClO ClO 

J J i[w-r+KE] 
= A[t,w]· A[t+-r,w] • e • f(K) • 6[w - g(K)]dux:1K = 

-CJO-<lO 

ClO ClO 

= J J A(t,w) • A(t+-r,w) • ei(w-r+K~) • f(K,w)dwdK = 

4.3 Numerical EXample Involving a NOn-Stationary Stochastic Wave 
with Two-Dimensional Spatial NOnhomogeneity 

(102) 

The evolutionary power spectrum of a non-stationary stochastic wave with 

two-dimensional spatial nonhomogeneity, is given by: 

For the numerical example considered in this section, the modulating function 

A(t,xl,w,Kl ) is assumed to be of the form: 

(104) 

B(t,w) describes the non-stationarity of the wave and is given by: 

B(t w) = e61 [- O.2St] - exp[- (0.376S·w + 0.251) • t] 
, exp - O.2St*] - exp[- (O.376S·w + 0.251) • t*] (105) 

and t* indicates the time instant at which B(t,w) assumes a maximum value as a 

function of t: 
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t* = ~n[0.3765·w + 0.251] - ~[0.25] 
0.376S·w + 0.001 

The plot of B(t,w) as a function of t and w is shown in Fig. 1, whereas 

W(t,Xl) describes the nonhomogeneity of the wave and is given by: 

where 

X = X - U ·t T B T 

for Xr ( xl .;; Xr+xL 

for xl > xT+xL 

(106) 

(107) 

(108) 

The following values are used for xL' xB and UT appearing in Egs. 107 and 108: 

XL = 1,000 m ; XB = 6,000 m ; UT = 2,000 .....E!sec (109) 

The plot of W(t,xl) as a function of t and xl is shown in Fig. 2. The form of 

f(w,Kl ,K2) is further assumed to be: 

(110) 

where f(Kl ,K2) is set to be: 

0'2 bl Kl b2K2 
f(K l ,K2) = ~ • by • b2 • Kf • exp[- (~)2 - (~)2J (Ill) 

The power spectrum shown in Eg. III is proposed by Shinozuka and Harada28 and 

based on data from the original accelerograrns recorded on January 29, 1981 

(Event 5) by a SMART-l seismograph array installed at Lotung, Taiwan. The 

data represent the horizontal component of the displacement time history in 

the direction N13~1 which is approximately the direction of the seismic source 

of this earthquake and are computed at each accelerograrn station from two-
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component data (EW & NS). The following values are used for 0yy' bl and b2 

appearing in Eq. 111: 

o = 0.0124 m; yy b
l 

= 1131 m; b2 = 3012 m (112) 

The plot of f(Kl ,K2) as a function of Kl and K2 is shown in Fig. 3. Solely for 

the purpose of numerical demonstration, function g(Kl ,K2) is assumed to be of 

the form: 

(1l3) 

in which the value of the phase velocity c is assumed to be: 

c = 2,800 m/sec (114) 

Finally, the stochastic wave y(t,xl,x2) can be simulated using the following 

expression and under the assumption of quadrant symmetry in terms of the space 

(115) 

where: 

(116) 

(117) 
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(118) 

The following values are used for Nl ,N2, Klu and K2u: 

(119) 

Klu = 8.84 x 10-3 rad/m; -3 K2u = 3.32 x 10 rad/m (120) 

It is noted again that ~(l) and ~(2) are two sequences of independent random 
~l~ ~1~2 

phase angles uniformly distributed in the range (0,2n). 

The stochastic wave is now simulated, using Eg. 115, over a 10,000 m x 

10,000 m area. The simulation is performed at 12 equispaced time instants, 

0.5 sec apart from each other, and shown in Fig. 4. It is clearly observed in 

all twelve plots that there is relatively rapid variation along the Xl-axis 

(which represents the major axis of seismic wave propagation in Event 5) com-

pared to the variation along the x2-axis. From the number of peaks (4) along 

the Xl-axis, the apparent wave length along this axis is estimated to be 

around 2,500 m. Thus, the patterns shown in Fig. 4 indicate a dominant wave 

with a wave length of approximately 2,500 m propagating in the negative xl

direction. By dividing the distance covered by a single peak (5,500 m) by the 

elapsed time (2.0 sec), the approximate speed of wave propagation along the 

Xl-axis is estimated to be 2,750 m/sec. This value is practically identical 

to the value of 2,800 m/sec specified in Eq. 114. These wave length and phase 

velocity values result in a dominant frequency of approximately 2,800/2500 • 

1.12 Hz. This is also confirmed by Fig. 5 which plots the time history of the 

displacement at Xl = 3,500 m and x2 = 1,000 m (point A in Fig. 4a). The ap

parent frequency observed in this plot is 1/0.75 sec = 1.33 Hz, which is very 

close to the above-mentioned dominant frequency of 1.12 Hz. The time histo-

ries at points B, C and D (also shown in Fig. 4a) are also plotted in Fig. 
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5. The time histories at A, B and C show the spatial variability along the 

major axis of wave propagation while those at A and D along the direction 

perpendicular to that. The propagating wave front is clearly seen in Fig. 4b 

as well as in the first three frames of Fig. 5 (points A, B and C). The 

ground is at rest in front of the wave front because of Eg. 107. Another in

teresting feature that can be observed in Fig. 4 is the initial gradual in

crease of the amplitude of the wave and the subsequent gradual decrease which 

is an actual feature of all strong ground motions. At this point, it is 

pointed out that the same procedure as the one described above for the digital 

simulation of the displacement time history can be used for the digital simu

lation of either the velocity or acceleration time history, by properly choos

ing the corresponding evolutionary power spectra. 

Finally, it is noted that the CPU time necessary to generate 2lx2l points 

at a specific time instant was approximately 11 minutes (on a SUN 3/180 com

puter system). 
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o 

6 r:ad/sec 

Fig. 1 
Function B(t,w). 
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10 sec 

Fig. 2 Fuuction 1V(t,xd· 
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o 

0.005 rad/sec 

Fig. 3 power Spectrum f(hl, h2)' 
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Fig. 4a Simulated Stochastic Wave at 12 Equispaced Time Instants (con
figuration of simulated points). 

4-16 



Fig. 4b 
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t = 2.5sec t = 3.0sec 

t = 3.5sec t = 4.0sec 

Fig. 4c Simulated Stochastic Wave at 12 Equispaced Time Instants. 
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t = 4.5sec 
t = 5.0sec 

t = 5.5sec t = 6.0sec 

Fig. 4d Simulated Stochastic Wave at 12 Equispaced Time Instants. 
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Fig. 5 Time History of Displacement at the Four Points A, B, C and D 
shown in Fig. 4a. 
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5. CONCLUSION 

This paper presented fundamentals of the theory of multi-dimensional and 

multi-variate stochastic fields and stochastic waves. This was done primarily 

from the viewpoint of applying it to the digital generation of seismic ground 

motion for the purpose of seismic response analysis of lifeline systems 

extending over a large spatial area. The method appears to work very well, as 

exemplified by a numerical example where a propagating seismic wave idealized 

as a spatially two-dimensional stochastic wave is digitally generated. 

While such results are gratifying, there appear to be some issues that 

still need to be resolved by future study. For example, the spectral repre

sentation used in this paper produces mathematical models for stochastic pro

cesses, fields and waves which are asymptotically Gaussian. However, Gaus

sianess may not always apply to the actual ground motion data. If the data 

exhibit some deviation from Gaussianess, and such deviation is expected to 

substantially affect the result of the ensuing analysis, then non-Gaussian 

characteristics must be introduced into the model. In this respect, a recent 

work by Yamazaki and Shinozuka29 may prove to be quite useful, because the 

paper29 deals with multi-dimensional stochastic fields and introduces non

Gaussian characteristics still on the basis of spectral representation. An 

alternative consists of the use of shot noise or filtered Poisson process 

models, as demonstrated by Lin8 and Shinozuka and Sato4• More recently, Lin30 

showed how the evolutionary power spectrum can be incorporated into the fil

tered Poisson model. However, these filtered Poisson models are limited to 

one-dimensional and uni-variate cases at this time. 

Another issue that requires further study is the question of how more 

general dispersion characteristics can be incorporated into the model. In the 

present formulation, a particular relationship is assumed for the frequency 
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and wave numbers. In this connection, if a number of seismic waves of specif

ic characteristics are known to be propagating simultaneously, the spectral 

representation of these models can be constructed individually and summed up 

vectorially to develop a simulation of such a composite wave. Since, however, 

the observed ground motion is a composite of seismic waves with various char

acteristics, no simple relationship can really be assigned to the frequency 

and wave number. It is therefore reasonable to assume that a multiplicity of 

such relationships exist in reality and, indeed, the power spectral density 

obtained from ground motion data involving the frequency and all pertinent 

wave numbers should contain information relevant to this. It is important and 

also interesting to pursue this issue. It should be noted that Scherer and 

Schueller have done some interesting work in this area31• 

Another aspect of future work is the extension of the introduced simula

tion technique to multi-variate non-stationary and/or nonhomogeneous cases of 

stochastic waves. However, such a task might be particularly difficult, be

cause the cross-correlational characteristics of such waves are usually very 

complicated and no reliable data are available at this time for non-stationary 

and/or nonhomogeneous multi-variate stochastic waves. 

The simUlation of ground motion described in this paper represents, in 

essence, mathematically tractable and physically meaningful models. Indeed, 

we have come a long way from the early mathematical model in which a Gaussian 

white noise is passed through an appropriate filter by means of a convolution 

integral to produce In-IV artificial ground accelerations. While some attempt 

has been made in this paper to incorporate into the models the physical laws 

of propagating seismic waves, further efforts should be directed to the im

provement of these models so as to reflect the physics of seismic waves in

cluding their source mechanism, attenuation, etc. 
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Finally, the following problem is currently under investigation: given 

the evolutionary power spectrum of a spatially two-dimensional, nonhomogene

ous, non-stationary stochastic wave (shown in Eg. 103), derive the corres

ponding evolutionary power spectrum of the non-stationary stochastic process 

obtained by freezing the space variables Xl and x2 at a specific point. Clar

ification of the above issue will provide further insight into the theory of 

stochastic waves. 
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