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ABSTRACT

For practical application of structural control system, various
important factors should be considered, including the system time delay,
uncertainty in structural identification, truncation of small control
forces, etc. A sensitivity study is conducted to investigate the effects of
these factors on the control system of structures. The influence of system
time delay, estimation errors for structural parameters and elimination of
small control forces on the efficiency of the contrel system depends upon
the particular control algorithm used. Four contrel algorithms practical
for applications to earthquake-excited structures have been studied. These
include the Riccati closed-loop control algorithm and three instantaneous
optimal control algorithms recently proposed. The methodologies for the
sensitivity analysis are presented. Both the active tendon control system
and the active mass damper have been considered. Numerical examples are
worked out to demonstrate the criticality and tolerance of these factors for

practical implementation of active control systems,
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I. INTRODUGTTON

The use of protective systems, such as passive or active devices, to
improve the reliability and safety of structures subjected to severe
environmmental loads, such as strong earthquakes, wind turbulences, etc. has
received increasing attention recently. One potentlally promising
protective system is the active control device [e.g., Refs. 1-24] 1In this
regard, considerable research efforts have been made for active control of
seismic-excited building structures both theoretically and experimentally
[e.g., 1-24]. In particular, new optimal control algorithms practical for
applications to earthquake-excited structures have been proposed [17-18] and
verified experimentally [4, 5]. Most studies in active control of civil
engineering structures, however, are based on ideal control environments in
the sense that the structural system can be identified precisely and the
system time delay is negligible.

Even under well-controlled laboratory environments, the experimental
results differ from those computed theoretically, and the experimental
control efficiency is lower than the theoretical one {4, 5]. This can be
attributed to several factors, such as system time delay, uncertainty in
structural identification, software and hardware control devices, etc. For
practical implementation of active control systems to full-scale structures,
such important problems as system time delay, identification of structural
parameters, etc., should be studied [24]. The investigation of these
problems can be made theoretically by conducting a sensitivity study to
determine theilr criticality and tolerance for the design of a contreol
system.

The knowledge of a structural model and its parameters, such as
stiffnesses, damping coefficients, and natural frequencies, should be given

in the design of a control system. These parameters should be obtained via



a set of measurements for an as built structure. In practice, however,
these parameters are estimated and their estimations involve errors and
uncertainties. Thus, the efficiency of a control system depends on how
closely these estimated parameter values approximate the actual ones. Like-
wise, the structural characteristics are affected by the service
environments and they may change with service time. Any change in
structural parameters may cause a change in controlled gquantities. Thus,
the uncertainties involved in the estimation of structural parameters may
result in an adverse effect on the efficiency of the active control system.

Time delay exists within the control system, because of the following
operations: (i) taking measurements of the response vector and/or the
earthquake base accelerations and processing them, (ii) computing the
required active control forces, (iii) generating signals to activate control
devices, and (iv) generating the required magnitude of control force (i.e.,
the reaction time for the controller). Whether system time delay is
detrimental to the control system and to what extent a time delay is
tolerable for a particular control algorithm should be examined.
Preliminary investigations in this regard have been made in Ref. 1.

When a structure is exposed to an earthquake, the time history of the
active control force contains many cycles of small amplitudes. Because of
limitations of actuators, it may be desirable to eliminate those control
forces with magnitude smaller than a certain value. The effect of
truncating small control forces on the structural response and the
efficiency of the control system should be investigated.

The objective of this report is to investigate the effect of (i)
uncertainty in structural identification, (ii) system time delay, and (iii)
truncation of small control forces, on the efficiency of the active control

system. A sensitivity study 1s conducted to study the effect and

1-2



criticality of these factors on the controel system with respect to various
control algorithms. Four control algorithms that have been demonstrated to
be feasible and practical for earthquake-excited structures are investigated
herein. These include the Riccatl closed-loop control algorithm and three
instantaneous optimal control algorithms recently proposed {17-18]. The
methodology for the sensitivity analysis associated with each control
algorithm is presented. Both the active tendon control system and the
active mass damper have been considered. Numerical examples are worked out
te demonstrate the tolerance of a control system for system time delay,

estimation error for structural parameters, and truncation of small control

forces.






II. CONTROL ALGORITHMS IN IDEAI. ENVIRONMENTS

The method of analysis for investigating the influence of various
factors described above on the control system varies with respect to the
particular control algorithm used. Hence, the following control algorithms
practical for applications to seismic-excited structures will be
investigated separately. These include the Riccati closed-loop control
algorithm and three instantaneous optimal control algorithms proposed
recently [17-18].

For simplicity, consider a shear beam type building structure
implemented by an active tendon control system as shown in Fig. 1. The
structure is idealized by an n degrees of freedom system and subjected to a
one-dimensional earthquake ground acceleration ﬁo(t). The matrix equation

of motion can be expressed as [e.g., 17-19]
Z (t) =4 2(e) + B UK + W X(0) (2.1)

with the initial condition Z(0) = 0. 1In Eq. (2.1), Z(t) = 2n state vector,
U(t) = r dimensional control vector, A = (2nx2n) system matrix, B = (2nxr)
matrix specifying the location of active controllers, and El is an
appropriate 2n vector [see Ref, 17 for these matrices]. In what follows, an
under bar denotes a vector or matrix and a prime denotes the transpose of a
vector or matrix.

Let § be a (2nx2n) diagonal matrix consisting of complex eigenvalues Bj
(3 =1, 2,..., 2n) of matrix A, and T be a (2nx2n) modal matrix consisting
of the corresponding eigenvectors of A. Then, the solution of the equation
of motion, Egq. (2.1), can be obtained numerically as [17]

At

Z(t) = T D(t-At) + Tl [g Uce) + Hl ')io(t)] (2.2
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Fig. 1: Structural Model of a Multi-Story Building with
Active Control System; (a) Active Tendon Control
System; (b) Active Mass Damper



in which At is the integration step,

Mll>
rr

p(t-at) ~ ofAF 7l {g(t-m:) + [g U(t-AL) + Wy 'xo(t-At)]} (2.3)
: . AL
is a vector containing all elements evaluated at t-At, and e~ is a (2nx2n)
diagonal matrix with the jth diagonal element being exp[GjAt].
A time dependent performance index J(t) has been proposed recently by

Yang, et al for optimizing the control system [17-19]
J(t) = Z°(t) Q Z(t) + U'(t) R U(L) : (2.4)

in which Q is a (2nx2n) positive semi-definite weighting matrix, and R is a
{(rxr) positive definite weighting matrix. The three instantaneous optimal
control algorithms to be investigated later are obtained by minimizing Eq.
(2.4) subjected to the constraint of the equations of motion, Eq. (2.2),
[17-18].

On the other hand, the classical performance index J is defined as the
integral of J(t) over the time duration tf longer than that of the earth-

quake excitation, i.e.,
t
s-JF o ae (2.5)
0

As mentioned previously, the sensitivity of the control system with
respect to various factors described above depends on the individual control
algorithm. Further, the method of sensitivity analysis differs for each
control algorithm. To facilitate the derivation of the solutions for each

control algorithm in different environments, the four control algorithms in



ideal control environments, i.e., witheout system time delay, structural
uncertainty, and truncation of control forces, will be summarized in the

following., For detail derivations, the reader is referred to Refs. 17-18.

2.1 Riccati Glosed-lLoop Contrel: When the classical performance index J

defined above, Eq. (2.5), is minimized subjected to the equation of motion,
Eq. (2.1), and the external excitation.ko(t} is disregarded, the so-called
Riccati closed-loop control has been derived [Ref. 17-18]. For Riccati
closed-loop control in ideal environments, the contrel vector H(t) is

regulated by the measured response state veetor Z(t),
1
u(e) = 5 R ™ B" P Z(t) {(2.6)

in which P is a (2nx2n) Riccati matrix computed from the following matrix
Riccati equation
1

PBR "B P+A"P+2Q=0 (2.7

BN =

£a-
Although the Riccati matrix is time dependent, it has been shown in Refs.
17-18 that the constant Riccati matrix is an excellent approximation for

earthquake excitations. The response state vector Z(t) is computed

numerically from the equation of motion

Z(t) = A z(o) + BUE) + W X (0) (2.8)

A block diagram for the Riccati closed-loop control algorithm is displayed

in Fig. 2.
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2.2. Instantaneous Optimal Closed-Loop Contrel: The so-called
instantaneous optimal closed-loop control algorithm is obtained by
minimizing the time dependent performance index J(t), Eq. (2.4), subjected
to the constraint of the equations of motion, Eq. (2.2), and assuming that
the control vector g(t) is regulated by the measured response state Vvector
[17-18]. For such a control algorithm, the control vector U(t) is related

to the feedback state vector g(t) as

u(t) = G Z(t) (2.9)
in which the gain matrix G is given by

G = -(At/2) RN B’ Q (2.10)

The response state vector Z(t) 1s computed numerically using the following

discretized equation of motion

Z(t) = T D(t-At) + (At/2) [ B U(t) + W, X (¢) ] (2.11)

where D(t-At) is the vector dencting the system's boundary conditions at
time t-At given by Eq. (2.3). A block diagram deseribing such a control

algorithm is shown in Fig. 3.

2.3 Instantaneous QOptimal Open-loop Control: Based on the instantaneous

optimal open-loop control algorithm, the contrel vecter U(t) is computed on-
line, real-time, using the sensed base acceleration, ﬁo(t), at time t as

fellows [17-18]
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u(e) = L 6(t) (2.12)
in which

L- [ (at/2)% 8 QB + R ]_1 (2.13)

G(t) = -(at/2) B’ Q T D(t-at) - (at/2)” B’ Q W, ¥, (t) (2.14)

where D(t-At) is defined by Eq. (2.3). The response state vector g(t) is

given by

Z(t) = T D(t-At) + (At/2) B L G(t) + (At/2) Wy X () (2.15)

A block diagram for the instantaneous optimal open-loop control

algorithm in ideal enviromments iIs displayed in Fig. 4.

2.4 Instantaneous Optimal Closed-Open-loop Control: For the instantaneous

optimal closed-open-loop control algorithm, the control vector U(t) 1is
regulated by both the measured base acceleration, Xo(t), and the feedback

state vector, Z(t), as follows [17-18]
-1 ~
ue) = ae/ar bz + g | (2.16)
in which z is a (2nx2n) constant gain matrix representing the closed-loop

portion of the control force, and §(t) is a 2n vector denoting the open-loop

portion of the control force,
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g(t) = A [g D(t-At) + (At/2)Wy X (t) ] (2.17)

. (At)2 -1 -1

{\_=-[ 5 QBR B’+I] Q (2.18)
The response state vector Z(t) 1s calculated numerically as

Z(t) = T D(t-At) + (At/2) { Ult) + El ko(t) ] {(2.19)

—

A block diagram describing the instantaneous optimal cloged-open-loop

control algorithm in ideal environments is shown in Fig. 5.
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ITI. STRUCTURAL CONTROL WiTH SYSTEM UNCERTAINTY

When the structural parameters, such as stiffnesses, natural
frequencies, damping ratios, etc., involve uncertainties, the response state
vector Z(t) and the control vector U(t) deviate from the solutions derived
above in ideal enviromments. The solutions for Z(t) and U(t) for a control
system with estimation errors in structural parameters will be derived in
this section.

The system matrix A represents the structural characteristics and the
elements of matrix A are functions of structural parameters, including
masses, stiffnesses, and dampings. 1In reality, structural (system)
parameters can not be identified precisely and they involve considerable
statistical variabilities. As a result, the actual A matrix is unknown.
Let é* be the best estimate of the system matrix A. Of course, é* deviates
from A and the extent of deviation with respect to the degradation of the

control efficiency will be studied.

8

3.1 Riccati Closed-loop Control: With the estimated system matrix A , the
*

estimated Riccati matrix, denoted by P, is computed from Eq. (2.7) in which

%
A replaced by A, i.e.,

ted
e
1
B =
1o
Ho]
1
o
|
4+
1P
17
+
3
¥
I
o

(3.1

%
The control vector U(t) is computed using P and the measured state

vector Z(t) as,

U(t) = - TRTB R Z(0) (3.2)



The equations of motion for the entire structural system is obtained by

substituting Eq. (3.2) inte Eq. (2.1) as follows

Z(t) = B z(t) + W, X (¢) (3.3)
in which g is a (2n x 2n) matrix given by

BR B P (3.4)

=1
I

1>
'

Y

Thus, the state vector Z(t) can be computed numerically using Eq. (3.3)

as follows

Z(t) = T R @'1 [g(t-m) + (at/2) W, '}io(t-At)] + (at/2) Wy ')io(t) (3.5)

in which exp(EAt) is a (2nx2n) diasgonal matrix with the jth diagonal element
being exp(yjAt), where Ej is the jth eigenvalue of A. 1In Eq. (3.5), T is
the modal matrix consisting of eigenvectors of § matrix.

A block diagram for simulating the entire control process with

uncertainties in structural parameters is displayed in Fig. 6,

3.2 Instantaneous Optimal €losed-Loop Control: For the instantaneous

optimal closed-loop control algorithm, the control vector is related to the
feedback state vector Z(t) through a gain matrix G, Eq. (2.9). The gain
matrix G given by Eq. (2.10) is, however, not a function of the system
matrix A. Hence, both the control vector U(t) and the gain matrix G are not
functions of structural parameters. Therefore, instantaneous optimal

closed-loop control is independent of the uncertaintieg involved in
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determining structural parameters, such as stiffnesses, dampings, natural
frequencies, etc. In other words, whether the structural parameters are

estimated accurately or not the control efficiency is not affected.

3.3 Instantancous Optimal Open-Loop Control: Based on the instantaneous

optimal open-loop control algorithm without system uncertainty, the control
vector U(t) is computed from the sensed ground acceleration, Xo(t), at time
t and the calculated vector D(t-At), see Egs. (2.12)-(2.14) and Eq. (2.3).
The vector D(t-At) is a function of the state vector Z(t-At), where Z(t-At)
is estimated rather than measured for the open-loop control algorithm.
Further, the response state vector Z(t) is estimated numerically from Eq.
(2.15) rather than being measured.

When the structural parameters Invelve uncertainties, the estimated
system matrix é*, rather than the true matrix A, is used for computing the
state vectors, g*(t-At) and g*(t), as well as vectors 2*(t-At) and E*(t).

Thus, the estimated equation of motion is given as follows

25 =~ A" 2 v B U U X0 5 Z70) = 0 (3.6)

Let gw be a (2nx2n) diagonal matrix consisting of complex eigenvalues
x * %
Gj (3 =1, 2,..., 2n) of matrix A, and T be a (2nx2n) modal matrix
consisting of eigenvectors of éx. Then, the solution of Eq. (3.6), can be

obtained numerically as

25y = 17 DV (t-Ar) + (aty2) [ B UM + W, 3&0] (3.7)

in which



D*(e-at) — s Tt {g*(t-At) + (At/z)[g U (£-at)
+ W Xo(t-At)]} (3.8)
and the estimated control vector g*(t) applied to the structure is
u(e) = L ¢' (o) (3.10)
where L is given by Eq. (2.13) and
¢*(t) = -(at/2) B @ TV D¥(e-at) - (ar/)? B QW Xo(6) (3.11)

Thus, the control vector Q*(t) and the estimated response state vector
g*(t) can be computed numerically from Eqs. (3.7)-(3.11). A block diagram
for such a control operation is shown on the left hand side of Fig. 7.

Note that the estimated control vector g*(t) is actually applied to the
structure, whereas the estimated state vector, g*(t), that is computed for
the purpose of estimating the control vector g*(t), is not the actual
response state vector. The actual response state vector Z(t), can be
synthesized using the actual system matrix A as well as the control vector

gx(t) that is applied to the structure as follows:

2ty = A z(e) + BU(t) + W, % (0) ; 2(0) = O (3.12)

fi
1

or

Z(t) = T D(t-At) + (At/2) [ B U (e) + W, ¥y (6) } (3.13)
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where

D(e-at) = eZAF 77l {g(c-At) + (AL/2) [§ U0 + W io(t-At)]} (3.14)

It should be mentioned that the system matrix A is unknown. However,
for the purpose of investigating the effect of uncertainty in structural
identification, the actual response state vector Z(t) is synthesized using
the A matrix. A block diagram for the synthesis of the actual response

state vector Z(t) is shown on the right hand side of Fig. 7.

3.4 Instantaneous Optimal Closed-Open-Loop Control: For instantaneous

optimal closed-open-loop control without gystem uncertainty, the control
vector U(t) is regulated by the respeonse state vector Z(t) and the measured
earthquake base acceleration given by Eqs. (2.16)-(2.18).

With system uncertainties, the best estimate, é*, for the system matrix
A should be used in computing the control vector U(t). Thus, the estimated

%
control vector to be applied to the structure, U (t), is given by
% -1 - e
v*e - aemrt e 7 2o ¢ 5] (3.15)
%
in which the response state vector Z(t) is measured. In Eq. (3.15), g (t)
is a 2n vector representing the contribution from open-loop control, which
%
is computed based on the estimated system matrices A and its modal matrix

g () = & [g* DY (t-at) + (At/2) W, ko(t)] (3.16)

- *
in which A is given by Eq. (2.18) and D (t-At) is estimated as follows



*
D¥(t-at) = of AT [7¥7} {g(t-At) + (At/2)[§ " (t-At)
+ glxo(t-At)]} (3.17)

The actual response state vector Z(t) that is measured during the
control operation can be synthesized using the true system matrix A as well

as the control wvector g*(t) computed above, i.e.,

Z(t) = & z(t) + B UT(r) + W, K (©) (3.18)
and the numerical solution of Eq. (3.18) can be written as

Z(t) = T D(t-At) + (At/2) [ B g*(t) + W X0 ] (3.19)

in which D{t-At) is synthesized again using the true system matrix A, i.e.,

D(c-at) — eZAt

T {g(t-At) + (at/2) [g Ut (e-at) + W) io(t-At)]} (3.20)
The computational procedures for determining g*(t) and for synthesizing
Z(t) are summarized in the following. First, g(t) is computed by
substituting Eq. (3.15) into Eq. (3.19). Second, Q*(t) is obtained by
substituting the computed Z(t) obtained above into Eq. (3.15). A block
diagram for the synthesis of the entire control operation is presented in

Fig. 8, when the system identification inveolves uncertainties.
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IV. STRUCTURAL CONTROL WITH SYSTEM TIME DELAY

Four control algorithms without system time delay have been summarized
in Section II. With a system time delay, the response state vector Z(t) and
the control vector U(t) will deviate from those given in Section II. The
solution for Z(t) and U(t) using each control algorithm with a system time
delay will be derived in the following.

Let 7 be the time delay for the contrel vector U(t). In other words,
the control vector U(t-r) is applied to the structural system at time t,

such that the equation of motion becomes
2(t) = A Z(t) + B U(t-1) + Wy Xy () (4.1)

4.1 Riccati Closed-Loop Control: For Riccati closed-loop control, the gain

matrix, denoted by G, is constant, i.e.,

UE) = G Z(8) = -3 R B'E 2(t) (6.2)
in which G = - (1/2) 3—1 B’ P, Hence, the equation of motion is given by
Z(t) = A 2(t) + B G Z(t-7) + ¥, X (t) (4.3)

Eq. (4#.3) can be integrated step-by-step with an integration inteval At if
the response state vector, g(t—r), at t-7 is known. For simplicity, the

integration step size At is chosen to be equal to the time delay r, i.e., At
= 7. Thus, the numerical solution for Eq. (4.3) can be expressed similar to

Eqs. (2.2) and (2.3) as



Z(t)y = T eQT I'l {Z(t-f) + (r/2) [g G Z(t-2r) + Hl Xo(t-r)}}
+ (r/2) [g G Z(t-m) + ¥, io(t)] (4.4)
The response state vector, Z(t), for a control system with a time delay r
can be computed step-by-step using Eq. (4.4). A block diagram for such

computations is shown in Fig, 9,

4.2 Instantaneous Optimal Closed-Loop Control: For instantaneous optimal

closed-loop control, the gain matrix, denoted by §, is constant, i.e.,
U(t) = 8 Z(t) (4.3)
in which
§ - -(At/2) R°I B’ @ (4.6)

For a time delay r, the equation of motion is given by Eq. (4.1), where
U(t-7) is obtained from Eq. (4.5) with t being replaced by t-r. If the
numerical integration step At is chosen to be equal to the time delay r for
simplicity, then the response state vector Z(t) for a control system with a
time delay r can be computed numerically similar to Eq. (4.4) as follows

dr

z(t) - 1 &7 171 { Z(t-1) + (1/2) [ B § Z(t-2r) + Wy X (t-1) ] }

+ (7/2) [ B S Z(t-7) + ¥y Xy(o) J (4.7)
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Eq. (4.7) is similar to Eq. (4.4) as expected, becatuse both control
algorithms described above are closed-loop control. A block diagram for the
instantaneous optimal closed-loop control algorithm with a time delay 7 is

shown in Fig. 10,

4.3 Instantaneous Optimal Open-Loop Control: Based on the instantaneous

optimal open-loop control algorithm the control vector U(t) 1s computed from
the sensed ground acceleration, Xo(t), at time t, and the calculated vector
D(t-At), Eg. (2.12), at t-At. Unlike closed-loop control, the response
state vector Z(t) is not measured in open-loop control operation. Instead,
Z(t) is estimated without considering system time delay. This 1s because,
in reality, the magnitude of time delay is unknown.

With a system time delay 7, let the estimated response state vector be
denoted by Z*(t)’ and the corresponding estimated quantity at the previous
time step t-At be denoted by Q*(t-At). Of course g*(t) and 2*(t-At) are
different from the actual Z(t) and D(t-At). In actual operation, the con-
trol vector, denoted by g*(t), is computed from g*(t) and B*(t-At), whereas

- * -
the estimated response state vector Z (t) is computed as

Z°(t) = T D' (t-at) + (At/2) [g U(e) + Wy ¥ (0 } (4.8)

The block diagram shown on the left hand side of Fig. 11 illustrates the
operation described above at t-At,

For simplicity of computation, the integration time step At is chosen
to be identical to the time delay r, i.e., At = 7. Because of time delay,

* . . .
the control vector at t-r, U (t-7), is applied to the structure at time t,
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and the actual response state vector Z(t) can be synthesized as shown on the
right hand side of the block diagrams depicted in Fig. 11.
*
The estimated control vector U (t-7), that is applied to the structure

at time t, is given by [see Fig. 11]
*
U'(t-r) = LG (t-7) (4.9)
in which L is given by Eg. (2.13) and
% * 2 .-
G (t-7) = -(At/2) B’ Q T D (t-2r) - (&t/2)7 B' Q Hl Xo(t-r) (4.10)

where

D¥(t-27) = 27 771 {g*(t-Zr) + (1/2) [g Ut (t-27) + Wy Xo(t-zf)]} (4.11)

involves quantities estimated at t-2r or t-Z2At, The response state vector

*
Z (t-At) estimated at t-At or t-7 1s computed by substituting Eq. (4.9) inte

Eg. (4.8) with At = 1

* .
g*(t-r) =TD (t-2r) + (r/2) B L g*(t—r) + (r/2) Wl Xo(t~r) (4.12)
The estimated control vector g*(t‘f) with a time delay 7 is actually

applied to the structure at time t. The actual response of the structure

can be synthesized numerically using the equation of motion, Eq. (4.1) as

Z(t) = T D(t-7) + (1/2) B U (t-r) + (r/2) W, Ks(t) (4.13)



where

D(t-r) = &7 171 {g(t-r) + (r/2) [g ut(e-2n) + W ’xo(t-r)]} (4.14)

A step-by-step numerical computation with the step size At = 7 can be

carried out to determine the actual response state vector Z(t). A block
*

diagram showing the computer estimation of the control vector U (t-7) and

the synthesis of the actual system behavior is displayed in Fig. 11.

4.4 Instantaneous Optimal Closed-Open-Loop Contreol: For instantaneous

optimal closed-open-loop control without system time delay, the control
vector U(t) is regulated by the response state vector Z(t) and the measured
earthquake base acceleration as shown in Eqs. (2.16)-(2.19). The response
state vector Z.(t) and the earthquake ground acceleration ')io(t) are measured
from which the contreol vector ‘g(t) is computed. This is different from
open-loop control in which the response state vector Z(t) and the control
vector U(t) are estimated. As a result, the problem of time delay for the
closed-open-loop control is, in general, expected to be less serious than
the open-loop control.

With a time delay r, the control vector U(t-7) is actually applied to
the structure at time t. <Choosing the integration interval At to be equal

to 7, 1.e., At = 7, the response vector is computed as
Z(t) = T D(t-7) + (r/2) [g U(e-r) + W) 'XO(t)] (4.15)

in which the control vector U(t-r) at t-r is given by



]

U(t-7)

where

[]

1>

é(t~7)

Z(t-71)

HE |

D(t-27) = &7

A step-by-step numerical computation
step size r for the determination of Z{(t)
entire operation of the control systen

closed-open-loop control algorithm with a

12.

(At/4) 5'1 B’ [5 Z(t-7) + ¢ (t-r)] (4.16)

[g D(e-27) + (AL/2) Wy io(t-r)] (6.17)

D(t-27) + (r/2) [g U(e-2r) + W) ko(t-r)] (4.18)

7t {g(t-zf) + (r/2) [g U(t-3r) + W, Ko(t-zf)}} (4.19)

can be carried out easily with a
and U(t). A block diagram for the
using the instantaneous optimal

system time delay is shown in Fig.
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V. TRUNCATION OF SMALIL CONTROL FORCES

Under earthquake excitations, the time history of active contrel forces
involve many cycles of small amplitude. Because of limitations of
actuators, it may be degirable to eliminate all cycles of control forces
with amplitudes smaller than a certain value, thus simplifying the control
operation. When small control forces are truncated, not only the behavior
of the structure under control will be different, but also the control
forces will deviate from the results presented in section II. In this
section, the response state vector Z(t) and the required control vector g(t)
will be derived, when control forces smaller than a certain value are

eliminated.

5.1 Riccati Glosed-Loop Control: Based on Riccati closed-loop control, the

response state vector Z(t) is measured and the control vector U(t) is

computed from Z(t), i.e.,

U(t) = ¢ Z(t) (5.1)
in which

G--FRTB R (5.2)

let € be a preselected value such that any control force smaller than e
will be truncated, i.e., will be set to be zero. This is equivalent to pass
the control vector U(t) through a filter, such that any element of U(t)
becomes zerc if it is smaller than e, and it is unaffected if larger than e,

*
Then, the resulting control vector from the filter, denoted by U (t), is



applied to the structure. The process is repeated for every time instant ¢
throughout the entire episode of the earthquake.

For the analytical/numerical investigation, the entire operations
described above can be simulated to determine the response state vector Z(t)
and the control vector g*(t). A block diagram for such a simulation the
entire control operation is shown in Fig. 13,

The response state vector Z(t) is obtained from the equations of

meotion,
Z(o) =AzZ(t) +BU () + W K (0) (5.3)

*
in which U (t) is the truncated control vector actually applied to the

structure,

*
UT(e) - § U(e) (5.4)
where U(t) is the untruncated control vector computed from the response
vector Z(t) given by Egs. (5.1) and (5.2), and é is a nonlinear operator
indicating the truncation effect.

The nonlinear truncation operator 6 can be represented by a (rxr)

diagonal matrix with the diagonal elements given as follows

§.. =1 if U (L) > e

I
=

1f U (t) < e (5.5)

in which Ui(t) is the ith element of U(t).

*
The response vector Z(t) and the control vector U (t) applied to the
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structure can be solved using the system of equations in Egs. (5.1)-(5.5).
However, the system of equations is nonlinear because the operator § is
nonlinear. As a result, the following iterative procedures are used to
determine the state vector Z(t) and the control vector g*(t).

(i) The response state vector Z(t) is computed from Eq. (5.3) by use of
the untruncated control vector g(t), i.e., H*(t) = U{t). In other worxds,
U*(t) in Eq. (5.3) is replaced by G Z(t), Eq. (5.1),

(ii) U(t) is computed from Z(t) obtained in step (i) using Eq. (5.1,

(1ii) U (t) is obtained from U(t) using Bqs. (5.4)-(5.5), and

(iv) The response state vector Z(t) is computed from Eq. (5.3) using
U"(t) obtained in step (iif).

The iterative procedure is repeated until both vectors Z(t) and 'g*(t)
converge. In general, Z(t) and g*(t) converge rapidly and few cycles of
iteration are sufficient. Such an interative procedure is repeated for

%
every time instant t to obtain the time histories of Z(t) and U (t).

5.2 Instantaneous Cptimal Closed-Loop Control: The control operation using

the instantaneous optimal closed-loop control algorithm is essentially
identical to that of the Riccati closed-loop control, except that the gain
matrix, §, is different, i.e.,

UCe) = § Z(t) (5.6)

where

S = -(At/2) R™T B’ Q (5.7



In simulating the entire control operation using the instantaneous optimal
closed-loop control algorithm, the following equation for computing Z(t) is

employed, Eq. (2.2),
Z(t) = T D(t-At) + (At/2) [ B UT(e) + Wy Xo(t) } (5.8)

in which U (t) is given by Eqs. (5.4) and (5.5), and

p(t-at) - ofAF 171 {g(t-At) + (At/2) [g Ut (t-at) + Wy XO(t-At)]} (5.9)

Thus, instead of Egq. (5.3), Egs. {(5.8) and (5.9) are used in
conjunction with Eqs. (5.4)-(5.7) for iteration and simulation. Again, the
iterative procedure converges very rapidly. A block diagram for simulating
the response state vector Z(t) and the control vector g*(t) is shown in Fig.

14,

5.3 Instantaneous timal en-Loop Control: TFor instantaneous optimal
open-loop control, the operation for the truncation of small control forces
is identical to that described previously. The difference between the
present control algorithm and the closed-loop control algorithm is that the
response state vector Z(t) is computed rather than measured. Because of
such a difference, the iterative procedure is not necessary in simulating
the resgponse state vector Z(t) and the control vector g*(t). The following
equations can be used directly to compute g*(t) and Z(t) at each time
instant t.

U(t) = (t) (5.10)

-
Lp]
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G(t) = -(At/2) B’ Q T D(t-at) - (at/2)> B’ Q u; ¥, (6) (5.11)

D(t-ar) — ef8F 771 {g(t-At) + (at/2) [g Ut (e-at) + Wy Xo(t-At)}} (5.12)
*

v (e) = § uee) (5.13)

Z(t) = T D(t-AL) + (AL/2) [§ U + W io(t)] (5.14)

A block diagram for simulating the control operation is shown in Fig.

15.

5.4 Instantaneous Optimal Closed-Open-loop Control: By use of the

instantaneous optimal closed-open-loop control algorithm, the response state
vector Z,(t) is measured, whereas the control vector E*(t) depends on the
measured Z(t). In other words, both Z(t) and g*(t) are coupled in the simu-
lation process. Hence, the iterative procedure described previously is
needed. The equations used for the simulation of Z(t) and LI*(t) are given

in the following

Z(t) — T D(t-At) + (At/2) [g Ut + W, Ko<t)] (5.15)
*
v (e) = 5 uee) (5.16)
-1 - -
ue) = ae/e) 1 p [ E 20+ Geo ] (5.17)
q(t) = & [ T D(t-8t) + (At/2) Wy Xy(t) } (5.18)
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D(t-at) = ofAF

Tl {g(t-At) + (At/2) [g Ut (t-ae) + U, Xo(t-At)]} (5.19)
The iterative procedures for determining g(t) and g*(t) are described in the
following

(i) The initial solutions for Z{t) and U(t) are obtained by setting
g*(t) = U(t) and using Eqs. (5.15) and (5.17)

(ii) With U(t) determined in (i), g*(t) is computed from Eq. (5.16)

(iii) Z(t) is obtained from Eq. (5.15) using g*(t) determined in (ii)
and

(iv) U(t) is computed from Z(t) using Eq. (5.17).

The iterative procedure is repeated until Z(t) and g*(t) converge.
Again, numerical results indicate that Z(t) and Q*(t) converge rapidly. A

block diagram for such a simulation procedure is shown in Fig. 16.
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VI. NUMERICAT. EXAMPLES

To demonstrate the sensitivity and criticality of the active control
system with respect to the variant from ideal control environments,
extensive numerical examples are worked out in this section. In particular,
two configurations of the active control system will be considered,
including the active tendon control system and active mass damper. A
simulated earthquake ground acceleration shown in Fig. 17 is considered as
the input excitation.

An eight-story building in which every story unit is identically
constructed is considered for illustrative purposes. The structural
properties of each story are: m = floor mass = 345.6 tons; k = elastic
stiffness = 3.404 x 105 KN/m; and ¢ = internal damping coefficient = 2,937
tons/sec. that corresponds to a 2% damping for the first vibrational mode of
the entire building. The external damping 1s assumed to be zerc. The
computed natural frequencies are 5.79, 17,18, 27,98, 37.82, 46.38, 53.36,
58.53, and 61.69 rad/sec.

Without control system, the top floor relative displacement with
respect to the ground and the base shear force of the building are shown in

Fig 18.

6.1 Ideal Control Environments: Two examples, one with an active tendon
control system and another with an active mass damper, will be illustrated
in the following under ideal control environments. Ideal control
environments refer to the control situation without system time delay and
free of estimation errors for structural parameters. The structural
response quantities and required active control forces under ideal control
environments will be presented in this subsection. These will serve as

bases for comparing the corresponding results when control environments



deviate from ideal omnes, including system time delay, uncertainty in
structural identification, and truncation of small control forces.
Example 1: Active Tendon Control System

Suppose four active tendon controllers are installed in the lowest four
story units and the angle of inclination of the tendons with respect to the
flooxr is 25°. The dimension of the weighting matrices Q and R are (16x16)

and (4x4), respectively. For Riccati closed-loop control, both Q and R

matrices are chosen to be diagonal matrices with elements Qii = Q* =1.3x
5 . . - - -
107 (for i =1, 2, ...8), ij=0 (for j = 9, 10,...16), and Ri1 ~ R22 = R33 =
-4
Ry = 10 .

With the application of instantaneous optimal control algorithms, the
weighting matrix R is identical to the one given above. However, the

(16x16) weighting matrix Q will be partitioned more efficiently as follows

(6.1)

in which 921 and 922 are (8x8) matrices and a is a constant, Note that 911
and 912 do not contribute to the active control force and, hence, they are
chosen to be zero [17, 18]. The choice of g21 and 922 requires some consid-
erations as discussed in Ref. 17. For simplicity, 921 and Q,, are chosen to
be equal, i.e., ng = 922 = g*. The elements of g*, denoted by Q*(i,j), are
given in the following; Q*(i,j) = j for i £ & and Q*(i,j) =0 for i > 4.
For a 68% reduction of the building response, a value of 5,000 is used for
.

The time histories of (i) the top floor relative displacement to the

ground, (ii) the base shear force, and (iii) the control force from the



lowest controller, are shown in Fig. 19, when the Riccati closed-loop
control algorithm is used.

Under ideal control environments, it has been shown in Refs. 17-18 that
the control efficiencies for three instantaneous optimal control algorithms
are identical. In other words, the resulting structural response quantities
and required active control forces for these three control algorithms are
identical. The time histories of the response quantities and the required
active control force from the lowest controller are shown in Fig. 20, when
one of the instantaneous optimal control algorithms is used.  The maximum
values of the time histories shown in Figs. 18 to 20 are tabulated in Table
1.

Example 2: Active Mass Damper

The game example as the previous one is considered except that, instead
of the active tendon control system an active mass damper is installed on
the top floor of the building as shown in Fig. 1(b). The properties of the
active mass damper are my = mass of the damper = 29.63 tons, Cq = damping of
the damper = 25 tons/sec., kd = stiffness of the damper = 957.2 KN/m. Note
that the mass my is 2% of the generalized mass associated with the first
vibrational mode, the frequency of the damper is 98% of the first natural
frequency of the building, and the damping coefficient of the damper is
approximately 7.3%. 1In the present situation, the weighting matrix R
consists of only one element, i.e., R = R, whereas the dimension of Q matrix
is (18x18).

For Riccati closed-loop control, the weighting matrix Q is considered
as a dlagonal matrix with Q. = 1.3 x 10° (for i=1, 2, ..., 8), and Q5 = 0
(for § =9, 10, ..., 18). The element of R is 107>,

In applying instantanecus optimal control algorithms, R = 10-3 is used,

and the Q matrix is partitioned as shown by Eq. (6.1) in which Q,, and Q5



are (2x9) matrices, The following values are assigned to elements of these

two matricies for illustrative purposes:

o [ 335 -67. <1005 -13&. -167.5 -201. -234.5 -268. -375.6
=21 33.5 -67. -100.5 -134. -167.5 -201. -234.5 -268.  32.2
o - [ 675 135.0 202.5 270.0 338.5 405.0 472.5 540.0 32.2
~22 58 11.6 17.6 23.2 29.00 34.7 40.5 46.3 5.7

A value of 67.0 is chosen for «, Eq. (6.1), such that the top floor relative
displacement is reduced approximately by 60%

Using the Riccati closed-loop control algorithm, the building response
quantities and required active controcl forece are displayed in Fig. 21. With
the application of any one of three instantaneous optimal control
algorithms, the corresponding quantities are displayed in Fig. 22. The
maximum values of the time histories shown in Fig. 21 and 22 are tabulated
in Table 2.

Finally, it should be mentioned that the control efficiency for each of
three instantaneous optimal control algorithms is quite different when a
system time delay or an estimation error for structural parameters is

introduced. Numerical examples will be presented in the next subsections.

6.2 Structural Control With System Uncertainty: When the system identifi-

cation involves uncertainty, the actual system matrix A is unknown and the
estimated system matrix é* is used for control operation. Various degrees
of estimation error in stiffness and damping will be intreduced to
illustrate the effeet of system uncertainty on the control system. The

error in stiffness estimation for every story unit, denoted by Ak, is



represented by the percentage of the true stiffness. The corresponding
estimation error in the fundamental frequency wf,denomaiby Aw, is
expressed In terms of the percentage of wg- The estimation error in damping
coefficient for every story unit, denoted by Ac, is similarly defined. The
estimation error for the damping ratio, £, in the fitst mode 1s expressed in
terms of the percentage of £, as denoted by A£,
Example 3: Active Tendon Control System

Example 1 is reconsidered and various estimation errors for struetural
parameters are introduced. Using the Riccati closed-loop control algorithm,
rhe time histories of structural response quantities and active control
force from the first controller are presented in Figs. 23-25. 1In these
figures, *40% estimation errors in stiffness or damping have been
introduced. The maximum regponse gquantities and control force in the entire
time histories of 30 seconds are summarized in the upper part of Table 3.
The control force shown in the table is the one from the controller in the
lowest story unit. It is observed from Table 3 that in comparison with the
results under ideal contrel environments, the response quantities may
increase or decrease depending on whether the structural properties are
under or over estimated. However, as the response quantities increase, the
corresponding active control force always decreases and vice versa. This
indicates that the degradation of the control efficiency is not quite
significant. The control system is moderately sensitive to the gtiffness
estimation error (or natural frequency), whereas it 1s not sensitive the
estimation error of damping coefficient, In general, an estimation error
within 20% for stifffness and 50% for damping is quite acceptable, when the
Riccati closed-loop control algorithm is used.

With the application of the instantaneocus optimal-open-loop control

algorithm, the time histories of the structural respeonse quantities and the



active control force from the first controller for various degrees of
stiffness estimation error are shown in Figs. 26-28. The maximum response
gquantities and the maximum active control force are summarized in the upper
part of Table 4. It is observed from Table 4 that the control system is
quite sensitive to the estimation error for the stiffness as compared to the
Riccatl closed-loop control algorithm. An estimation error for stiffness
may result in a considerable degradation of the control effectiveness.
Further, it is observed from Fig. 26 that the response quantities beyond 17
seconds do mot die down as rapidly as that of the ideal system without
uncertainty. On the other hand, the control system is not sensitive to the
estimation error for damping as shown in Fig. 29-31 and Table 4.

It is concluded that the instantaneous optimal open-loop control
algorithm is quite sensitive to the system uncertainty in stiffness or
natural frequency, and the control efficiency can deteriorate considerably
if the stiffness estimation error is more than 10%. This situation may have
been expected, because in open-loop control no feedback state vector is
measured. Note that the feedback state vector reflects to some extent the
behavior of true system parameters.

Using the instantaneous optimal closed-open-loop control algorithm, the
time histories of the structural response quantities and active control
force are depicted in Figs. 32-34, 1In these figures, estimation errors of
*40% for stiffness and damping are introduced. The maximum response
quantities and active control force in 30 seconds of the time history are
summarized in the upper part of Table 5. Table 5 and Figs. 32-34 indicate
that the instantaneous optimal closed-open-loop control algorithm is

practically insensitive to system uncertainties,



Finally, it has been shown in Section III that the instantaneous
optimal closed-loop control algorithm is independent of structural
parameters or system uncertainty.

Example 4: Active Mass Damper

Example 2 is reconsidered and various estimation errors of structural
parameters are taken inteo account. With the Riccati closed-loop control
algorithm, time histories of the response quantities and control force are
shown in Figs. 353-37 for different degrees of estimation errors. The
maximum values in these time histories are summarized in the lower part of
Table 3. A comparison between the upper part and lower part of Table 3
shows that the active mass damper is less sensitive to the uncertainties (or
errors) in system ldentification. An estimation error of 40% for stiffmness
is acceptable when the Riccati closed-loop control algorithm is used.
Again, the error in damping estimation has a negligible effect on the
efficiency of the control system.

With the application of the instantaneous optimal open-loop control
algorithm, the time histories of the response quantities and active control
force are depicted in Figs. 38-43. The corresponding maximum response
quantities and control force are summarized in the lower part of Table 4.
As observed from Table 4, the control system is sensitive to the uncertainty
in stiffness estimation, in particular, when the stiffness is over-
estimated. An over-estimation of the stiffness for more than 10% will
result in a significant degradation of the contreol efficiency. Again, the
control system is not sensitive to the estimation error for damping.

With the application of instantaneocus optimal closed-open-loop contrel,
the time histories of response quantities and control force are shown in
Figs. 44-46., The corresponding maximum values are displayed in the lower

part of Table 5. It is observed from the table that the instantaneous



optimal closed-open-loop contrel algorithm is not sensitive to the

estimation errors for structural parameters.

6.3 Structural Control With System Time Belay: To demonstrate the effect
of system time delay on the control system, the same examples worked out in
Section 6,1 under ideal control environments will be considered, in which
various degrees of time delay 7 will be introduced. The system time delay,
T, is expressed in 10-3 seconds and also in percentage of the fundamental
period of the structure Tf = 1.085 sec.

Example 5: Active Tendon Control System

Example 1 will be reconsidered herein except that a time delay r is
taken into account. The solutions for the structural response quantities
and active control forces have been derived in Section V,

By use of the Riccati closed-loop control algerithm, time histories of
the response quantities and active control forces are computed for various
degrees of time delay r. Some results are displayed in Figs. 49 to 51. The
absolute maximum value within the entire time history of 30 seconds of
earthquake episode for the response and control force is considered as a
measure for the effect of system time delay. In particular, the deviation

of the absclute maximum value from that obtained without system delay. Let

YS be the maximum top floor relative displacement with respect to the ground

in the time history of 30 seconds with a system time delay, and §8 be the

corresponding quantity under ideal control environments without a time

delay. Then, the deviation, Y8 - YS' measured in terms of the percentage of

Y8, is plotted in Fig. 47(a) as a solid curve. In other words, the solid

curve represents the deviation, (Y8 - Yg)/ YS’ as a function of time delay



As observed from the figure, the deviation increases as the time delay
r increases. With a time delay 7, the maximum control force from the

controller installed in the lowest story unit is denoted by U, whereas the

corresponding maximum control force without a time delay is denoted by Ul'

The deviation of the maximum control force measured in terms of the

percentage of U ie., (U, - ﬁl)/ 61’ is plotted in Fig. 47(a) as a dashed

1’ 1
curve, Again, the deviation increases as the magnitude of time delay r
increases.

From Fig. 47{(a), two observations made in the following are
significant. (1) As the time delay r increases, the maximum response
guantities Increase whereas the required maximum control forces are always
larger than that without a system time delay. This indicates that the
control efficiency degrades monotonically with respect to the time delay 7.
(2) The absolute maximum values of response quantities increase drastically
as the time delay r is over 5% of the fundamental stryuctural period Tee In
other words, the slope of the solid curve increases rapidly for 7 > 5% Tf.

The structural response quantities and required active control forces
have been computed for various degrees of time delay r using three
instantaneous optimal control algorithms. The deviations of the absolute
maximum of the top floor relative displacement and control force are
digplayed in Figs. 47(b) and 48, when three instantanecus optimal control
algorithms are used. Further, the time histories of response quantities and
active control force are displayed in Figs. 52 to 60. Again, the two
conclusions described previously for Riccati closed-loop control hold for
instantaneous optimal control algorithms.

It is observed that time delay is most serious for instantaneous

optimal open-loop control. Riccati closed-loop control and instantaneous



optimal closed-loop control are legs sensitive to system time delay than
instantaneous optimal c¢losed-open-loop control. A time delay within 3% of
the fundamental natural frequency, Tf = 1,085 seconds, is

tolerable for the instantaneous optimal open-loop control algorithm, whereas
a time delay of 4.5% of T is acceptable for other control algorithms,
Beyond these limits described above, the degradation of the control
efficiency is quite significant.

The fact that open-loop control may be susceptible to system time delay
can be explained in the following. The control force is regulated by the
measured input excitation rather than the feedback state vector in the case
of open-loop control. The predominant frequency of rhe input excitation is
usually quite different from that of the structure. Theoretically, the
frequency content of the control force is expected to be close to that of
the structural response, Since the fregquency of the structural response is
contributed by the frequencies of the input excitation and the structure, a
time delay may result in a significant phase shift for the control force
with respect to the response. This 1g particularly true when the magnitude
of time delay is large.

Example 6: Active Mass Damper

Example 2 is reconsidered in which a system time delay 7 is introduced.
The deviation of the absolute maximum top floor relative displacement and
that of the absolute maximum control force are presented in Figs. 61 and 62
as functions of time delay 7. For different control algorithms, the time
histories of the structural response quantities and controel force are
displayed in Figs. 63 to 74,

From the results presented above, the effect of time delay on the

active tendon control system and active mass damper is comparable, although
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the active mass damper is slightly less sensitive. The observations made

previously hold for the active mass damper also.

6.4 Truncation of Small Control forces: The sensitivity and criticality of
truncating small control forces on the control system will be illustrated
using the following numerical examples. The truncation level ¢ is expressed
in term of KN and also in term of the percentage of maximum control force
from the first controller under ideal control environments cbtained in
Section 6.1.

Example 7: Active Tendon Control System

Example 1 will be reconsidered in which different truncation levels, ¢,
for active control forces will be made. Numerical results for the time
histories of the top floor relative displacement, the base shear force, and
the active control force from the first controller are presented in Figs. 75
to 77 when the Riccati closed-loop control algorithm is used. With the
application of three instantaneous optimal control algorithms, the
corresponding results are displayed in Figs. 78 to 86.

For the particular earthquake ground acceleration input considered, the
structural response and the active control force have a most intense segment
roughly from 3 to 17 seconds. The active control forces outside this region
are quite small. Thus, a majority of small control forces truncated are
outside this region. As such, the structural response quantities do not die
down after 17 seconds as rapidly when the small control forces are
truncated. However, the truncation effect on the maximum structural
response that occurs in the most intense segment is extremely limited as
evidenced by Figs. 75 to 86. The truncation effect may become significant
when the truncation level is high enough such that some control forces in

the most intense segment are eliminated.



The maximum structural response is of great concern, whereas the rate
of decay of the response beyond the most intense segment may not be
important. Consequently, the maximum response quantities and the maximum
control force within the time period of 30 seconds are tabulated in Tables
6-9 for different truncation levels, ¢, and different control algorithms.
The first column in the table indicates the actual truncation level ¢ in KN,
and the second column shows the truncation level expressed in terms of the
percentage of the maximum control force under ideal control environments as
given in the first row of the table. For different truncation levels, the
maximum response quantities and maximum control force are also expressed in
terms of the percentage of the corresponding quantity obtained without a
truncation, i.e., ¢ = 0,

It is observed from Tables 7 to 9 and Figs, 78 to 86 that a truncation
of all control forces smaller than 20% of the maximum control force
practically does not affect the mazximum response quantities. However, the
response quantities do not die down as rapidly as the results obtained
without a truncation of small control forces. The conclusion holds for all
control algorithms considered.

Example 8: Active Mass Damper

Example 2 is reconsidered in which different levels of truncation for
control forces have been made. The time histories of the top floor relative
displacement, the base shear force, and the control force are presented in
Figs. 87 to 98 for different contrel algorithms. The maximum response
quantities and control force are tabulated in Tables 10-13, As observed
from Figs, 87 to 98 and Tables 10 to 13, a truncation of all control forces
smaller than 20% of the maximum control force has an insignificant effect of

the active mass damper system.



Unlike the system uncertainty and time delay, the effect of truncation
of small control forces is not sensitive to different control algorithms.
Likewise, the sensitivity for active tendon control system is almost

identical to that of the active mass damper.



Table 1: Maximum Structural Responses and Control Force for an 8-Story
Building with Active Tendon Contrel System

TOP FLOOR BASE SHEAR CONTROL FORCE FROM
CONTROL LAW DISPLACEMENT FORCE FIRST CONTROLLER
(cm) (KN) (KI)
Uncontrolled 4.10 2,506 eaa---
Riccati Closed- 1.36 853 437
Loop Control
Instantaneous 1.34 847 421

Optimal Control

Table 2: Maximum Structural Responses and Control Force for an 8-Story
Building with an Active Mass Damper

TOP FLOOR BASE SHEAR CONTROL
CONTROL LAW DISPLACEMENT FORCE FORCE
{cm) (XN) {KN)
Uncontrolled 4,10 2,506  a-ia--
Riccati Closed- 1.61 1,075 250
Loop Control
Instantaneous 1.54 1,045 232

Optimal Control
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Maximum Structural Responses and Control Force for an 8-Story Building

Using Riccati Closed-Loop Control Algorithm.
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Maximum Structural Responses and Control Force for an 8-Story Building

Using Instantaneous Optimal Open-Loop Control Algorithm.

Table 4:
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Maximum Structural Responses and Control Force for an §-Story

Table 5:

Building Using Instantaneous Optimal Closed-Open-Loop Centrol

Algorithm.
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Table 6: Maximum Response Quantities and Control Force for an 8-Story Building
with Tendon Control System Using Riccati Closed-Loop Control
Algorithn.

| | I
¢ IN| TOP FLOOR | CHANGE |BASE SHEAR CONTROL| CHANGE

| | I ! I
| e | | CHANGE | |
| N | % of |DISPLACEMENT| IN % OF | FORCE | IN % OF | FORCE | IN % OF |
| KN |437KN| (CM) | 1.36 CM | (KN) | 853 KN | (KN) | 437 RN |
| | | | | | | | |
| | ] | I ! | | |
| 0 | 0.0 | 1.36 | - 853 | ----- | 437 | ----- |
| | | I I I | I |
| 50 [11.44]  1.36 | -] 844 | -1.0 | 439 | 0.4 |
I I I I I | | | I
| 75 |17.16] 1.36 | - 847 | -0.7 | 442 | 1.1

I I I I | I | I I
[ 100 [22.88] 1.37 | 0.7 | 848 | -0.6 | 444 | 1.6 |
| | | | ! | | | I




Table 7: Maximum Response Quantities and Control Force for an 8-Story Building
with Tendon Control System Using Instantaneous Optimal Closed-Loop
Control Algorithm.

i | l
| TOP FLOOR BASE SHEAR| CHANGE |CONTROL| CHANGE

| I I | | !
| € i e IN | CHANGE | | |
| IN | % OF|DISPLAGEMENT| IN % OF | FORCE | IN & OF | FORCE | IN % OF |
| KN J421KN| (CM) | 1.34 CM | (KW) | 847 KN | (KN) | 421 KN |
I | I I | | | | I
| I | | I I I I |
| 0 | 0.0 | 1.34 | ---- 847 | ----- | 421 b |
| | I | I | | I |
| 50 [11.87] 1.34 [ .- 848 | 0.1 | 421 - |
| | I | | | I I |
| 75 [17.81] 1.33 | -0.7 | 850 | 0.3 | 424 | 0.7 |
I I I I | I I I |
| 100 123.75] 1.32 | -1.5 | 853 | 0.7 | 426 | 1.1 I
| | | ] | ] | | |
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Table 8: Maximum Response Quantities and Control Force for an B-Story Building
with Tendon Control System Using Instantaneous Optimal Open-Loop
Control Algorithm.

|
HANGE |BASE SHEAR

| | I I I I I |
| ¢ | ¢ IN| TOP FLOOR | C | CHANGE |CONTROL| CHANGE |
| IN | % OF|DISPLACEMENT| IN % OF | FORCE | IN & OF | FORCE | IN % OF |
| KN |421KN| (CM) | 1.36 CM | (KN) | 847 RN | (KN) | 421 RN |
I | I I | I I | |
I | | I | I | I J
| 0 ]0.0| 1.3 | - ] 847 | ----- | 421 | ----- |
I [ I I | I I ! |
| 50 |11.87] 1.33 | -0.7 | 849 | 0.2 | 422 | 0.2 |
I I I I I | I I |
| 75 |17.81] 1.33 [ -0.7 | 852 | 0.6 | 424 | 0.7 |
I | [ [ | f I I |
| 100 |23.75] 1.33 | -0.7 | 853 | 0.7 | 426 | 1.1 |
| | 1 [ | | | | |

Table 9: Maximum Respense Quantities and Control Force for an 8-Story Building
with Tendon Control System Using Instantaneous Optimal Closed-Open-
Loop Control Algorithm.

| | | |
| TOP FLOOR | CHANGE |BASE SHEAR| CHANGE |CONTROL| CHANGE

I I [ | |
I € | ¢ IN I | ]
| IN | % OF|DISPLACEMENT| IN % OF | FORCE | IN % OF | FORCE | IN % OF |
| KN |421KN| (CM) | 1.34 CM | (KN) | 847 KN | (KN) | 421 KN |
I I ! | I | | | I
I | | | I I I I I
[ 0 | 0.0 ] 1.34 [ - 847 | ----- [ 421 | ----- |
I I I I | I | | I
1 50 |11.87] 1.34 | - 848 | 0.1 | 421 | ----- |
I | I l I | I I I
| 75 [17.81| 1.33 | -0.7 | 852 | 0.6 | 424 | 0.7 |
| I | [ | | I I I
| 100 [23.75] 1.33 | -0.7 | 853 | 0.7 | 426 | 1.1 |
] ] ] | | l | | |
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Table 10: Maximum Response Quantities and Control Force for an 8-Story Building
with an Active Mass Damper Using Riccati Closed-Loop Control

Algorithm.
I I | I I I | [ |
f € | € INj TOP FLOOR | CHANGE |BASE SHEAR| CHANGE |CONTROL| CHANGE |
I IN | % OF|DISPLACEMENT| IN ¢ OF | FORCE | IN % OF | FORCE | IN % OF |
| KN }250KN | (cM) | 1.61 CM | (Kr) |1,070 KN | (KN) | 250 KN |
[ I | | I I I I |
I | I I I | I I I
| 0 | 0 | 1.61 | ---- ] 1,070 | ----- | 250 | ----- |
[ I | | | | [ I I
| 50 | 20 | 1.66 | 3.1 | 1,073 | 0.2 | 249 | -C.4 |
I | I I | I | I |
| 75 | 3¢ | 1.74 [ 8.1 | 1,088 | 1.7 | 237 | -3.2 |
I | i I | | 1 I |

Table 11: Maximum Response Quantities and Controel Force for an 8- Story
Building with an Active Mass Damper Using Instantaneous Optimal
Closed-Loop Control Algorithm.

I I I I
IN| TOP FLOOR | CHANGE |BASE SHEAR} CHANGE |CONTROL

| | | I
] ¢ | e | [ | CHANGE |
| IN | % OF|DISPLACEMENT| IN % OF | FORCE | IN % OF | FORCE | IN & OF |
; KN  |232KN| (CM) | 1.54 CM | (KN)  |1,047 RN | (KN) | 232 RN |
I | I I I I I I I
| I I ‘ I | I I I I
| 0 | 0 | 1.54 | ===} 1,047 | ----- | 232 | ----- !
| I I I I I I I I
| 50 |21.55]  1.56 | 1.2 | 1,03 | -1.0 | 225 | -3.0 |
I | | I I I I |

1 75 132.32]  1.60 | 3.9 | 977 | -6.7 203 | -12.5 I
L 1 | | | ! I

I
| |

6
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Table 12:; Maximum Response quantities and Control Force for an 8-Story Building
with an Active Mass Damper Using Instantaneous Optimal Open-Loop
Control Algorithm.
| I I | I |
] € | € IN| TOP FLOOR | CHANGE |BASE SHEAR| CHANGE |CONTROL| CHANGE |
] IN | ¢ OF|DISPLACEMENT| IN % OF | FORCE | IN % OF | FORCE | IN % OF |
] KN | 232KN| (CM) [ 1.54 CM | (KN) [1,047 KN | (KN) | 232 RN |
| I I | | I | I |
I | ! I | | | I |
[ 0 i 0 | 1.54 | -] 1,047 | ----- | 232 [ ----- [
I I | | I I | I |
| 50 }21.55] 1.56 | 1.2 ] 1,035 | -1.1 | 224 [ -3.4 |
| f I I I [ I I I
| 75 132.32] 1.62 | 5.2 | 977 | -6.7 | 205 | -11.6 |
| ! | J | | | | |
Table 13: Maximum Response Quantities and Control Force for an 8-Story Building
with an Active Mass Damper Using Instantaneous Optimal Closed-Open-
Loop Control Algorithm ¢: Maximum Control Force Umax = 232 KN.
| | [ | I
| € | ¢ IN|] TOP FLOOR | CHANGE |BASE SHEAR| CHANGE |CONTROL| CHANGE |
| IN | % OF| DISPLACEMENT| IN % OF | FORCE | IN % OF | FORCE } IN % OF |
| KN |232KN| (CM) | 1.54 CM | (KN [1,047 KN | (KN) | 232 KN |
| I | | I I I I |
I I | | I | | I |
| 0 ] 0 1.54 | EEET I 1,047 | ----- | 232 [ =----- |
| | I I I I I I |
| 50 [21.55] 1.55 | 0.6 ] 1,035 | -1.1 | 224 [ -3.4 [
I I I I | | | I |
| 75 132.32} 1.61 | 4.5 | 976 | -6.8 | 204 [ -12.0
| | | | ] ] | | |
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Fig, 23 : Top Floor Relative Displacement for an 8-Story Bullding using Tendon
Centrol System and Riccati Closed-Loop Control Algorithm:{(a) No System
Uncertainty, (b) AK = 40%, (c) AK = -40%, (d) &C = 40%, (e} AC = -40%.
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Fig. 26: Top Floor Relative Displacement for an 8-5tory Building Using Tendon
Control System and Instantanecus Optimal Closed-Loop Control Algorithm

: (8) No System Uncertainty, (b) AK = 40%, (c) AK = -40%, (d) AC = 40%,
(e) AC = -40%.
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Fig, 27: Base Shear Force for an 8-Story Building Using Tendon Control System
and Instantaneous Optimal Closed-Loop Control Algorithm: (a) No System

Uncertainty, (b) AK = 40%, {c) AK = -40%, (d) aC = 40%, {e) &C = ~-40%.
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Using Tendon Control System and Instantanecus Optimal Closed-Loop
Control Algorithm: (a) No System Uncertainty, (b) aK = 40%, aK = -40%,
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Top Floor Relative Displacement for an 8-Story Building Using
Tendon Control System and Instantaneous Optimal Open-Loop Control
Algorithm: (a) No System Uncertainty, (b) AC =~ 40%, (c) AC = -40%.
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Fig. 30: Base Shear Force for an 8-Story Building Using Tendon Control
System and Instantaneous Optimal Open-Loop Control Algorithm: (a)
No System Uncertainty, (b) AC = 40%, (c) AC = -40%.
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Top Floor Relative Displacement for an 8-Story Building Using
Tendon Control System and Instantaneous Optimal Closed-Open-Loop
Control Algorithm: (a) No System Uncertainty, (b) &K = 40%, (c)
AK = -40%, (d) AC = 40%, (e) AC = -40%.
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Fig. 33: Base Shear Force for an 8-Story Building Using Tendon Control
System and Instantaneous Optimal Closed-Cpen-Loop Control
Algorithm: (a) No System Uncertainty, (b) AK = 40%, (¢) AK =
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Fig. 35: Top Floor Relative Displacement for an 8-Story Building Using
Active Mass Damper and Riccati Closed-Loop Contrel Algorithm: (a)
No System Uncertainty, (b) AK = 40%, (c) &K = -40%, (d) AC = 40%,
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Fig. 37: Active Control Force for an 8-Story Bullding Using Active Mass
Damper and Riccati Closed-Loop Control Algerithm: (a) No System
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Fig. 38: Top Floor Relative Displacement for an 8-Story Bullding Using

Activg Mass Damper and Instantaneocus Optimal Open-Laop Contrel
Algorithm: (a) No System Uncertainty, (b) sK = 20%, (c) AK ~ 10%
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Fig. 39: Base Shear Force an 8-Story Building Using Active Mass Damper and
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TOP FLOOR RELATIVE DISPLACEMENT, CM

. 49:
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Effect of Time Delay, 7, on Top Floor Relative Displacement for an
8-Story Building Using Tendon Control System and Riccati Closed-

Loop Control Algorithm: (a) r =0 (No Delay), (b) r = 45 x 10-3

sec., (¢) r = 60 x lO-3 sec.
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Fig. 50: Effect of Time Delay, r, on Base Shear Force for an 8-Story
Building Using Tendon Control System and Riccati Closed-Loop

Control Algorithm: <(a) r =0 (No Delay), (b) r = 45 x 10-3 sec.,
(¢) » = 60 x 10-3 sec.
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Effect of Time Delay, 7, on Top Floor Relative Displacement for an
8-Story Building Using Tendon Control System and Instantaneous
Optimal Clesed-Loop Control Algorithm: (a) 7 =0 (No Delay), (b) 7

- 45 % 10'3 sec., (e) 7 = 60 x 1072 sec.



BASE SHEAR FORCE, 103 KN

Fig.

53:

1.5

(a)

0 -
-1.5 ' : ' - l
1.5
(b)
‘ WMWWWWWM
-1.5 L l ! | ]

1.5
(c)

© ]

0 5 10 15§ 20 25 30
TIME IN SECONDS
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Building Using Tendon Control System and Instantaneous Optimal
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Fig. 54: Effect of Time Delay, 7, on Control Force from the First
Controller for an 8-Story Building Using Tendon Control System and
Instantaneous Optimal Closed-Loop Control Algorithm: (a) r =0 (No
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Effect of Time Delay, r, on Top Floor Relative Displacement for an
8-Story Building Using Tendon Control System and Instantaneous
Optimal Open-Lloop Control Algorithm: (a) r =0 (No Delay), (b) 7 =

30 x lO'3 sec., (c) r = 45 x 10‘3 sec.
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TOP FLOOR RELATIVE DISPLACEMENT, CM
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Effect of Time Delay, 7, on Top Floor Relative Displacement for
an 8-Story Building Using an Active Mass Damper and Riccati
Closed-Loop Control Algorithm: (a) 7 = 0 (No Delay), (b) 7 =

45%107° sec., (¢) r = 60x10™° sec.
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Effect of Time Delay, r, on Base Shear Force for an 8-Story
Building Using an Active Mass Damper and Riccati Closed-Loop
Control Algorithm: (a) r =0 (No Delay), (b} r = 45x10 sec.,
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Effect of Time Delay, 7, on Control Force for an 8-Story Building
Using an Active Mass Damper and Riccati Closed-Loop Control

Algorithm: (a) r = 0 (No Delay), (b) r = 45:(10'3 sec., (¢) r =
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Effect of Time Delay, 7, on Top Floor Relative Displacement for
an 8-Story Building Using an Active Mass Damper and Instan-
taneous Optimal Closed-Loop Control Algorithm: (a) 7 = 0 (No

Delay), (b) r = 45x1073 sec., (e) r = 60x10™° sec.
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68: Effect of Time Delay, r, on Control Force for an 8-Story Building

Using an Active Mass Damper and Instantaneous Optimal Closed-
Loop Control Algorithm: (a) r = 0 (No Delay), (b) 7 = 45:‘:10-3

sec., (¢) 7 = 60:-;10'3 sec.
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Effect of Time Delay, r, on Top Floor Relative Displacement for
an 8-Story Building Using an Active Mass Damper and Instan-
taneous Optimal Open-Loop Control Algorithm: (a) r = O (No

Delay), (b) r = 45x10°° sec., (e¢) r = 60x10°° sec.
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70: Effect of Time Delay, 7, on Base Shear Force an B8-Story Building

Using an Active Mass Damper and Instantaneous Optimal Open-Loop
Control Algorithm: (a) r = O (No Delay), (b) r = 45x10°° sec.,

(¢) 7= 60x10™° sec.
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Fig. 71: Effect of Time Delay, 7, on Control Force for an 8-Story Building

Using an Active Mass Damper and Instantaneous Optimal Open-Loop

Control Algorithm: (a) r = O (No Delay), (b) r = 45x10°° sec.,

(c) 7 = 60}(10_3 sec,
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Fig. 73: Effect of Time Delay, 7, on Top Floor Relative Displacement for

an B-Story Building Using an Active Mass Damper and Instan-
taneous Optimal Closed-Open-Loop Control Algorithm: (a) 7 =0
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Fig. 75: Effect of Truncation of Small Control Forces on Top Flcor Rela-
tive Displacement for an 8-Story Building with Tendon Control
System Using Riccati Closed-Loop Control Algorithm for Different
Truncation Levels ¢: (a) No Truncation ¢ = 0, (b) ¢ = 75 KN
(17.16%), (c) ¢ = 100 KN (22.88%).
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Effect of Truncation of Small Control Forces on Control Force
from First Controller for an 8-Story Building with Tendon Control
System Using Riccati Closed-Loop Control Algorithm for Different

Truncation Levels: (a) No Truncation € = 0, (b) € = 75 KN
(17.16%), (c) € = 100 KN (22.88%),
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Fig, 78: Effect of Truncation of Small Control Forces on Top Floor Rela-
tive Displacement for an 8-Story Building with Tendon Control
System Using Instantaneous Optimal Closed-Loop Control Algorithm
for Different Truncation Levels ¢: (a) No Truncation e = 0, ()
€ = 75 KN (17.81%), (c) ¢ = 100 KN (23.85%).
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Instantaneous Optimal Closed-Loop Control Algorithm for Different
Truncation Levels ¢: (a) No Truncation e = 0, (b) ¢ = 75 KN
(17.81%), (c) € ~ 100 KN (23.75%).
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Fig. 80:

Effect of Truncation of Small Control Forces on Control Force
from First Controller for an 8-Story Building with Tendon Control
System Using Instantaneous Optimal Closed-Loop Control Algorithm
for Different Truncation Le

vels ¢: (a) No Truncation ¢ = 0, (b)
€ = 75 KN (17.81%), (c) ¢ = 100 KN (23.75%).
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Effect of Truncation of Small Control Forces on Top Floor Rela-
tive Displacement for an 8-Story Building with Tendon Control
System Using Instantaneous Optimal Open-Loop Control Algorithm
for Different Truncation Levels «: (a) No Truncation ¢ = 0, (b)
€ = 75 KN (17.81%), (c) e = 100 KN (23.75%).
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VII. GONCLUSIONS

Under seismic excitations, the effect of system uncertainty, time
delay, and truncation of small control forces on the structural control
system have been investigated. The sensitivity, criticality and teolerance
for system identification errors, time delay, and elimination of small
control forces depend on the particular control algorithm used. Four
control algorithms, which have been verified experimentally to be useful for
earthquake-excited structures [4,5], have been studied, These include the
Riccati closed-loop control algorithm, and three instantaneous optimal
control algorithms recently proposed [17-18]. The method of sensitivity
analysis for each control algorithm has been presented. Both active tendon
control system and active mass damper have been investigated. Conclusions
are summarized in the following.

(A) For uncertainty in system identification, the following conclusions
are observed.

(i) The instantaneous optimal closed-loop control algorithm is
independent of the system uncertainty. In other words, any estimation error
in structural properties, such as damping, stiffness and natural frequency,
does not affect the efficiency of the control systenm.

(ii) The instantaneous optimal closed-open-loop control algorithm is
not sensitive to system uncertainties at all, A substantial estimation
error for varlous structural parameters has an insignificant effect on the
control system.

(iii) The instantaneous optimal open-loop control algorithm is quite
sensitive to the system uncertainty in stiffness (or natrual frequency). An
estimation error over 10% for the stiffness (or 5% for the first natural
frequency) may result in a serious degradation for the control system.

However, the control algorithm is not sensitive to the damping estimation.



In other words, a large estimation error for the structural damping does not
affect the control system,

(iv) For the Riccatl closed-loop control algorithm, the uncertainty in
stiffness (or frequency) estimation has a moderate effect on the structural
response and control force; however, its effect on the control efficiency is
less prominent. A 20% estimation error for the stiffness (or 10% for the
fundamental natrual frequency) is clearly acceptable. Again, the Riccati
closed-loop control algorithm is not sensitive to the uncertainty in damping
estimation. A 40% estimation error for damping is still acceptable.

From numerous sensitivity analysis results, it can be concluded, in
general, that the control system is not sensitive at all to the statistical
uncertainty involved in determining the dampings of the structure. The
effect of damping estimation error on the control system is negligible.
This is a very important and beneficial conclusion for the application of
active control system, because the accurate identification of the damping
coefficient for a structure is rather difficult. For some control
algorithms, however, care should be taken in estimating the stiffness or
natural frequencies in order to aveoid excessive degradation of the control
system.

(B) For system time delay, the following conclusions are obtained.

The instantaneous optimal open-loop contrel algorithm is most sensitive
and critical to system time delay. It is followed by the instantaneous
optimal closed-open-loop control alpgorithm. Two closed-loop control
algorithms investigated are less sensitive to time delay because they depend
exclusively on the feedback response state vector, 1In general, open-loop
control is expected to be more critical and sensitive to system time delay.
A system time delay always results in a degradation of control efficiency in

the sense that both the response guantities and required active control
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forces are larger than the corresponding results associated with no systenm
time delay.

One important observation is that the tolerance for time delay is
rather stringent, with 3% of the fundamental structural period for the
instantaneous optimal open-loop controel algorithm, and 4.5% of the
fundamental structural period for other control algorithms, For the
structure with a fundamental period, Tf, of 1.085 seconds considered in this
report, the tolerances are 33 x 10-3 and 49 x 10_3 seconds, respectively.
The problem becomes more critical when the period of the structure 1is
shorter (or the fundamental frequency is higher). As a result, the system
time delay may be an important issue for practical implementation of active
control systems. In fact, such a conclusion has also been revealed
experimentally [4, 5]. The experimental results using a scale structural
model and excited by an earthquake record on a shaking table [4, 5] indicate
that the response quantities and control force are always larger than those
computed theoretically without a system time delay. In this regard, future
research efforts are needed to establish methodologies for compensating
system time delay, such as the preliminary study conducted in Ref. 9.

(C) For the truncation of small control forces, the following
conclusions are obtained from extensive numerical results.

i) The active control systems investigated are not sensitive to the
elimination of control forces that are smaller than 20% of the maximum
control force,

(ii) With the truncation of small control forces, the structural
response guantities do not die down as rapidly as in the case without
truncation. However, the maximum response quantities remain practically
unchanged, if the truncation level is within 20% of the maximum control

force.



{(iii) The conclusions obtained above hold for all control algorithms
studied in this report. It is expected that these conclusions will hold for
other control algorithms not investigated.

it should he emphasized that conclusions derived in this report are
restricted to seismic-excited structures. Further studies are needed for

other types of enviromnmental loads.
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