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ABSTRACT

In order to study the nonlinear behavior of reinforced concrete frame-wall .

structures at damageability and ultimate limit states, an analytical method based on

mathematical programming techniques ·has been developed. Since the actual

response of a frame-wall structure in the inelastic range is generally dominated by

the rocking of the shear wall and a three-dimensional mechanism of motion, the

analytical method developed here is designed to evaluate the three-dimensional

response of structures.

The analytical method presented here also incorporates a finite element

model of the shear wall that is capable of simulating some of the physical

characteristics of the wall. This model is based on the distributed material

properties of reinforcing bars and concrete, and is capable of predicting the crack

pattern and the failure mode of the wall.

In order to illustrate the application of this analytical method, a series of

nonlinear static analyses are conducted on a liS-scale model of a 7-story reinforced

concrete frame-wall structure. This model has been tested dynamically at the

University of California, Berkeley, and a full-scale prototype of this structure was

tested pseudo-dynamically at Tsukuba, Japan.

The results of the nonlinear static analyses of this structure are found to be

ill good agreement with the envelope of experimental dynamic response of the

structure. But the predicted crack pattern and mode of failure of the wall are not

similar to that of the liS-scale model. Instead they are representative of the crack

pattern and the type of failure observed in the full-scale model (which was tested

pseudo-dynamically).
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1 INTRODUCTION

1.1 Introductory Remarks

In 1977, the U.S.-Japan cooperative research program was organized

primarily to investigate and improve the seismically resistant design practices of

some typical building structures. Among the structures considered in this program

were a reinforced concrete frame-wall structure, concentrically and eccentrically

braced steel frames, and some masonry and timber structures.

During the first phase of this project the seismic response of the reinforced

concrete frame-wall structure was studied in depth. The primary objective was to

recognize the actual structural behavior and to develop analytical models that

predict the observed behavior of the frame-wall structural system.

The investigation of the behavior of the reinforced concrete frame-wall

structure was based on the results of tests performed on a full-scale model and

several reduced-scale models of a 7-story reinforced concrete frame-wall structure.

In particular, a 115-scale model of this structure was designed and tested at the

University of California, Berkeley. The interpretation of the behavior of this model

to different earthquake motions has been documented in references 1, 2, and 3. The

basic conclusion from these studies was that the response of the model in the

inelastic range was dominated by the rocking of the main shear wall which induced

a three dimensional mechanism of motion. As a result, in the analytical studies

following the testing of the model, an attempt was made to use special modeling

techniques to incorporate the three dimensional behavior of the structure into a

simplified two dimensional mathematical model. However, because of the

limitations and shortcomings of this simple model in predicting the response of the

frame-wall structure, in this report, new analytical techniques have been adopted in

this report to efficiently conduct a three-dimensional analysis of reinforced concrete
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frame-wall structures.

1.2 Background

Recent development in the field of engineering plasticity (by mathematical

programming) has led to the development of very efficient techniques for solving

limit analysis [4] and elastoplastic analysis of structures [5]. Since these techniques

can be applied to the analysis of any type of structure, an attempt will be made here

to utilize these mathematical programming techniques to solve the three-dimensional

inelastic analysis of reinforced conc:rete frame-wall structures.

1.3 Objectives and Scope

The primary objective of the studies reported herein was to develop

analytical techniques suitable for nonlinear static analysis of reinforced concrete

frame-wall structures.

Since the behavior of the test structure observed during the experimental

testing program indicates that the response of the model in the inelastic range is

dominated by the rocking of the main shear wall and a three dimensional

mechanism of motion, the analytical techniques developed here are designed to

evaluate the three dimensional response of the structure.

Besides inducing a three-dimensional mechanism of motion, the shear wall

exhibits other aspects of nonlinear behavior such as nonlinear shear deformation and

nonlinear variation in flexural and shear stiffnesses, which can not be modeled

directly by a beam-column element. Therefore, an important objective of these

studies has been to develop an analytical model that is capable of simulating some

of the physical characteristics of the shear wall.

The ultimate goal of these studies is to provide an efficient and reliable

analytical technique such that the: three dimensional analysis of the structure is
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economically feasible. The analytical methods selected for the analysis are based

on mathematical programming techniques, primarily because theses methods are

considerably faster than most classical nonlinear analysis methods.

J.4 Organization and Layout of the Report

This report is divided into seven chapters. In the second chapter, the

analytical method for the inelastic analysis of structures is briefly described with

reference to a beam element, and the mechanical models of some typical elements

are presented. In order to fully explain the analytical formulation and show its

relation to mathematical programming, in the third chapter of this report, the

elastoplastic constitutive laws are introduced along with the compatibility and

equilibrium relations. In the final formulation, the nonlinear response of the

structure is presented in a mathematical form known as the linear complementarity

problem. Chapter four contains the description of the elastoplastic behavior of a

selected_ group of frame elements and finite elements. The treatment of the finite

size of the joints and the connection of frame elements to finite elements are

presented there as well. In chapter five, the solution to the linear complementarity

problem of chapter three is presented with reference to an algorithm that clearly

outlines the steps involved in an elastoplastic analysis problem. In chapter six, an

analytical model of a 7-story reinforced concrete frame-wall structure is introduced,

and the results of a series of nonlinear static analyses performed on this model are

compared with the envelope of the experimental response. The evaluation of the

success of this model in predicting the response of the structure is delayed until

chapter seven, where the results of the studies and the conclusions drawn from those

studies are summarized.
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1.5 Notation

Matrix notation is adopted throughout this report to present the analytical

formulations. Bold face letters denote matrices and column-vectors, normal letters

represent scalar quantities, and a sUlPerposed "t" means "transpose of'.
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2. ANALYTICAL METHOD

In this chapter, an analytical method for the inelastic analysis of structures is

presented. This method works on an event-to-event basis where an increment of

load is added until the next plastic hinge forms. Unlike most nonlinear analysis

methods, the stiffness matrix of the structure is not updated at the end of each step.

Instead, a pattern of self-equilibrating stress distribution, which represents the

redistribution of stresses imposed by the plastic hinge, is computed. This method

has the capability to detect a collapse mechanism and to determine the displacement

and the strength of the structure at incipient collapse.

For the analytical model of the structure, both frame and finite elements are

used. The frame elements considered here include truss elements, beam elements,

and both uniaxial and biaxial beam-column elements. The discussion of finite

elements, however, will be confined to plane stress elements that are suitable for the

analysis of reinforced concrete shear walls.

Frame elements are elastic throughout their length. Inelastic deformations

are assumed to be concentrated at the ends of members (see Fig. 2.1). For finite

elements, the state of stress and strain is computed at integration points and inelastic

deformation can be induced at anyone of these points (i.e., partial yielding of

elements is allowed).

The following sections describe' briefly the fundamentals of the nonlinear

analysis and the main features of the elements used in the analysis. The analytical

formulation of the nonlinear analysis and the elastoplastic behavior of the elements

is presented in the next two chapters.

2.1 Method of Analysis

It is convenient to illustrate the method of analysis with reference to the

structure shown in Fig. 2.2. An analytical model of this structure consists of two



6

beam elements and four critical s~~ctions. The beam elements are assumed to be

linear elastic-perfectly plastic with an elastic flexural stiffness of EI, and a plastic

moment capacity of Mp . Given that the structure is subjected to a uniform load of

sW (where s is the applied load factor), an elastoplastic analysis of this structure

will be conducted to determine the response of the structure up to the collapse limit

state.

The first step involved in formulating the elastoplastic analysis of this

problem is to carry out a linear elastic analysis of the structure. The moments,

Mt = [ M1, ... ,M4 ], at the critjlcal sections must then be compared with the

plastic moment capacity of each section. The smallest ratio of plastic moment

Mpi
capacity to elastic moment, min Sj = M. (where i = 1, ... ,4 refers to the critical

I

sections), determines the elastic limit load factor of the structure.

12 Mp
For the structure in Fig. 2.2, the elastic limit (Selastic limit = WL 2 ) is

reached when the critical sections I and 4 attain their plastic moment capacity (see

Fig. 2.3). We shall adopt the ternlinology plastic hinge to identify plastic rotation

(or deformation) at a critical sectioJl1.

After the formation of thes~: two plastic hinges (at critical sections I and 4),

the stiffness matrix of the entire structure changes. Therefore, to continue the

elastoplastic analysis, we must either update the stiffness matrix of the structure or

consider the original structure to resist the plastic rotation in exactly the same way

that it resists the external loads.

In order to illustrate the second procedure, it is necessary to compute a

pattern of self-equilibrating internal stresses that resists a unit plastic rotation at

critical sections 1 and 4 (see Fig. 2.4(c». This pattern of moment distribution is

obtained by applying a unit rotation at critical sections I and 4 and restraining
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displacement at all other critical sections (as shown in Fig. 2.4(a». Maintaining

zero displacement at critical sections 2 and 3 introduces a set of external forces at

these nodes. In order to eliminate these forces, we apply the external forces to the

original structure (Le., the one with no plastic hinges and no restraint at any critical

section, Fig. 2.4(b», and subtract the resulting internal stresses from the one shown

in Fig. 2.4(a). Now, the internal moment distribution of Fig. 2.4(c) only resists the

unit rotations introduced at the plastic hinges (Le., it is self-equilibrating).

The overall behavior of the structure can be formulated as follows: Prior to

the formation of plastic hinges, the structure resists the applied external forces.

Therefore, the moment distribution is a multiple of the elastic moment distribution:

M = Me/astic S

where s =load factor, S ~ Se/astic limit

(2.1)

Subsequent to the formation of plastic hinges, the original structure supports

new increments of applied external forces plus increments of plastic deformation

that accumulate at the plastic hinges. Therefore, the change in moment distribution

can be expressed as

.1M =Me/astic .1s + M Se/f -equilibrating .18

where .1s = change in the applied load factor

.18 = change in the plastic deformation.

(2.2)

Now, the analysis can be continued by determining the location of the next

plastic hinge. This can be accomplished by solving Equation (2.2) for the minimum

value of .1s that will drive one of the remaining critical sections to its plastic

moment capacity.

Prior to solving Equation (2.2), we must evaluate the left hand side of the

equation (the change in moment distribution, AM). Consider the moment
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distribution at the elastic limit Me~astic limit = [-Mp O.5Mp O.5Mp -Mp ]

(see Fig. 2.3). If we locate the state of stress at every cross section on the force-

deformation curves of Fig. 2.5, we can measure the extra resistance that each

section can tolerate before its plastic moment capacity is reached. Since the vector

~Mt = [0 O.5Mp O.5Mp 0] represents the maximum allowable change in

cross-sectional moment, we can use it on the left hand side of Equation (2.2):

1 2 2 EJ
0 ---WL

12 L

O.5Mp
_1_ WL2 2 EJ
24 L

~ ~s + ~e (2.3)

O.5Mp
_1_WL2 2 EJ
24 L

0 1 2 2 EJ-·-WL
12 L

Equation (2.3) can be reduct:d to the following set of independent relations:

1 2 2 EJ
0 ---WL

12 L
~ ~s + ~e (2.4)

O.5Mp
_1_WL 2 2 EJ
24 L

The inequality in Equation (2.4) actually applies to the critical sections that

have not reached their plastic moment capacity. Since the first relation represents

the balance of forces at the active plastic hinges 1 and 4, it must be satisfied as the

equality t:

1 2 EI
0= ---WL ~s + 2-. ~e

12 L

t This relation is satisfied with an inequality 'Jnly when the critical sections I and 4 are unloading. For a de­
tailed discussion of this topic. refer to Chapters 3 an,ti 5.

(2.5)
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We can solve Equation (2.5) for 118:

1 WL 3

118 =---l1s
24 EI

and eliminate 118 from the remaining relation in (2.4):

(2.6)

(2.7)

Mp
An increase of l1s = 4-- in the applied load factor will induce plastic

WL 2

hinges at critical sections 2 and 3. It is clear from Fig. 2.6 and the following

internal moment distribution that a collapse mechanism has formed in the structure:

-M 0 -Mp p

O.5Mp O.5Mp Mp

M = Melastic limit + 11M = O.5Mp
+ = Mp

(2.8)
O.5Mp

-M -Mp p
0

But rather than screening the moment distribution to detect the collapse mechanism,

we can continue the analysis by solving for the self-equilibrating internal stresses

that resist rotation at the new plastic hinges (critical sections 2 and 3) [see Fig.

2.7(c)]:

t [ EIM self -equilibrating = L

Equation (2.2) can now be updated as follows:

EI
L

EI

L ~] (2.9)

(2.10)

where M
S1

and M
S2

represent the self~equilibrating stresses that resist plastic

rotations at sections 1 and 4 and sections 2 and 3, respectively. Substituting the

actual values for the internal stress vectors in Equation (2.10), we obtain:



10

__1_
WL2 2 El El

-
12 L L

_1_ WL2 2 El El-
24 L L

~M = ~s + ~81+ ~82 (2.11)
_1_ WL2 2 El EI

-
24 L L

__1_ WL2 2 El El
-

12 L L

It is obvious that Equation (2.11) dOt~S not have a unique solution because the self-

equilibrating moments are not independent. At this stage, the structure may undergo

some plastic deformation (~81 = 1 , ~82 = -2) even though there may be no

increase in the applied load (i.e. i~S = 0). This is the criterion that actually

determines the collapse mechanism.

In this example, it is clearly illustrated how the elastop1astic analysis can be

carried out without updating the stiffness matrix of the structure. The primary

advantage of this method compared to classical methods is that rather than updating

and inverting the stiffness matrix (a process which basically requires N 2M

numerical operations, where Nand M denote the number of degrees of freedom and

the band width of the structure stiffness matrix, respectively), a pattern of self-

equilibrating stresses that resist the plastic deformation is computed (this process

requires NM numerical operations)., A complete analytical formulation of this

method will be presented in chapter 3. In the next section, the mechanical model of

some typical elements will be briefly described.

2.2 Types of Elements

The analytical model of the structure consists of two kinds of elements:

frame elements and finite elements.

Frame elements are typically used to model prismatic one-dimensional
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members. A structure made of prismatic members is usually discretized into a

number of elements connected by nodes. A node must be provided at the

intersection of two or more members or at the critical section of the span. A

mechanical model of a frame element is shown in Fig. 2.1. It consists of an elastic

member with plastic deformation concentrated at its two far ends. Plastic hinges at

the ends of members can provide for any type of plastic deformation: e.g., axial,

flexural, torsional, or any combination of these.

Finite elements are generally used to model continuum problems. Here, the

discussion of finite elements is confined to plane stress elements that are suitable for

the analysis of reinforced concrete plate elements. The major concern in modeling

these elements is in the treatment of cracking. Two basically different approaches

are used to model the development of cracks [6]. Cracks can be treated either as

discrete individual cracks between concrete elements or as distributed cracks within

the element.

In the discrete method, a crack is formed by detaching elements at their

boundaries as shown in Fig. 2.8 . This method offers the advantages that the

displacement at a crack can be calculated and effects such as aggregate interlock

and dowel action can be accounted for by providing link elements between the

concrete elements and the reinforcing bars. However, this model is quite

complicated and one of its major drawbacks is that additional degrees of freedom

must be introduced each time a crack forms.

In the distributed crack model, the element is generally divided into a

number of layers as shown in Fig. 2.9. Each layer is in a state of plane stress and

may have different material properties corresponding to the material it represents.

The reinforcement is generally modeled as anisotropic layers in which the material

properties are assumed to be smeared or distributed over the whole element. The

concrete is modeled as an isotropic material under biaxial stresses. In this method,
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cracking is treated as a phenomenon similar to plastic deformation and the full bond

between the reinforcement and the concrete is enforced through compatibility at the

nodes.

Because of the complications involved in using discrete crack modeling, the

distributed crack model is adopted to represent the reinforced concrete element. In

this model, cracking progresses from one integration point to the next similar to the

yielding of an element. This method has the advantage of permitting the use of the

same structural nodal-point topology throughout the entire nonlinear solution. But it

does not provide a measure of crack width to be used in simulating the effect of

aggregate interlock and dowel action.
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3. FUNDAMENTALS OF ELASTOPLASTIC ANALYSIS

In this chapter, the nonlinear analysis of the structure is formulated with

reference to two different material behavior: reversible nonlinear behavior

(holonomic behavior), and irreversible nonlinear behavior (nonholonomic behavior).

In particular, holonomic behavior implies that the analysis is independent of the

loading history, whereas nonholonomic behavior implies that the analysis is

dependent on the loading history.

The analytical formulations of these problems are derived assuming the

associated flow rule, the piecewise-linearized yield condition, and the small-

displacement theory. In the final formulation, both problems are cast as a Linear

Complementarity problem or an equivalent Quadratic Programming problem. Full

details of the material presented here may be found in references 7, 8, 9, and 10.

3.1 Constitutive Laws for Holonomic Behavior

We will introduce the inelastic constitutive law with reference to a beam

cross section where the behavior is characterized by a single force component

(moment) and a single deformation component (curvature). Later in the chapter, we

will describe the general constitutive laws for a multi-component force-deformation

relationship.

3.1.1 Constitutive Laws for a Single Stress Component

It will be convenient first to consider the elastic-perfectly plastic moment-

curvature relationship of Fig. 3.1. The plastic moment capacity of section i will be

denoted by Rt and R j- and the elastic stiffness by k; . The feasible stress region is

described by the inequality:

-R·- < M· < R·+,- 1- ,
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Another way of expressing the same relation is to introduce two yield functions,

(3.2)

defined as follows:

(3.3a)

(3.3b)

where 4>/ = 0 (or 4>i- = 0) indicates that the positive (or the negative) yield mode

has been activated. To measure the intensity of the activation of the yield surfaces,

two plastic multipliers are introduced:

':1 ,,+ >_ 0 ':I - > 0
'" , "'i - (3.4)

The plastic elongation (en can now be expressed in terms of the plastic multipliers

eP = A'+ - A'-I I I (3.5)

It is obvious that a plastic multiplier has a positive value (Ai> 0) only if the

particular yield mode is activated (4)/ =0), and it must be zero (At =0) when the

element is in the elastic range {4>t < 0). This relationship between the plastic

multiplier (A) and the plastic function (4)) expresses the holonomic (reversible)

hypothe~is and can be condensed as follows:

n..+ A;+- = 0 n..- A'- = 0
'1'1 I ''I'I I (3.6)

We can also describe the e~lastic range of the moment-curvature relationship

by the following relation:

M· = k· e~ or e~ = k:-1M·II I I I I (3.7)
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where k j and O{ represent the elastic stiffness and the elastic curvature.

In order to express relations (3.2) to (3.7) in a condensed form, the following

four vectors are introduced:

_[4'+] _[A+] _ [R+]4'i - 4' - , Aj - A- , Ri - . R- (3.8)

The first three vectors correspond to the yield function, the plastic multiplier,

and the plastic resistance vector. The last vector represents the outward unit normal

to the yield planes.

Finally, equations (3.2) to (3.7) may be expressed as follows:

n.·=n~M·-R·'t'l I I I

n.~ A' = 0't'l I oP = n· A'I I I

O· = Of! + oPI I I

Ai 2: 0

O~ = k·-1M·
I I I

(3.9a,b,c)

(3.9d,e,f)

(3.9g)

N~w, let us consider the behavior of section i when the moment-curvature

relationship has been approximated by elastic-linear work-hardening behavior as

shown in Fig. 3.2. If we introduce a hardening parameter, H, for each yield mode

such that HtAt measures the extra resistance sustained as a result of activation of

yield mode 1, the yield functions will read:

4't = M - Rt- HtAt $ 0

4't = M - Rt - HtAt $ 0 (3.10)

The hardening parameters, Ht , Hi, and HI can be determined from the strain

hardening stiffnesses, kt, ki, and k1 and the elastic stiffness ko:

1 1 1--=---
ko
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Jl 1 1
(3.11)=---

Hi ki kt
1 1 1--=--

Hi ki ko

The derivation of equations (3.11) is given in Appendix A. All the other

equations (3.9b,c,d,e,f,g) for the perfectly plastic case still hold. However, the

vectors defined in equation (3.8) must reflect the three yield modes:

eJ>t At Rt

[JI]CPi = CPt A'= Ai , Ri = Rt , n~=, I

cpi Ai Ri

With the aid of the hardening matrilx, Hi>

(3.12)

Hi =:

Hi 0 0

o Ht 0

o 0 Hi

(3.13)

the constitutive relations for the linear hardening case can be expressed as follows:

CPi = n~ Mi - Hi Ai - Ri ' CPi ~ 0 , Ai ~ 0

"'~ '1. _ 0 np =n.'1. n~ = k:-1M.'1', 11., - , V, ,11." V, , ,
6· = 6~ + 6P, , ,

3.1.2 Constitutive Laws for Two Stress Components

(3.14)

Let us now consider the beam-column cross section i where the moment-

axial load (M - P) relationship has been defined by the polygon of Fig. 3.3. The

orthogonal distances from the origin to the yield surfaces (sides of the polygon)

measure the plastic capacity of the yield modes:
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(3.15)

The outward unit normal to each surface is defined in terms of the two

components oriented along the moment and axial load axis:

n. = [n tt nr n~ n~ nr nr]
I nP nP nP nP nP nP

I 234 S 6

(3.16)

Let S~ = [M j , Pj ] denote the stress resultant vector where Mj and P j are

the bending moment and the axial force active at cross section i; then, we can

express the yield function q, for the perfectly plastic case as follows:

(3.17)

The total strain vector, S:, = [ OJ , OJ ] , representing the total curvature OJ

and axial extension OJ corresponding to Mj and Pj can be expressed as the sum of

the elastic and plastic strain:

(3.18)

where the elastic strain is derived from the stress vector, Sj:

(3.19)

and the plastic strain is determined from the normality rule:

(3.20)

The components of vector A:' = [ Al ' A2 ' A3 ' A4 , AS ' A6 ] measure the

intensity of activation of each yield mode. Since the stress point can only lie either

on a particular yield mode or at the intersection of two yield modes, there can be at

most two nonzero components of the plastic multiplier (for example, if AI > 0 and
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Finally, we include the holonomy hypothesis, that for each yield surface, at

least one of the two variables Aj or 4> j must be zero; either the yield mode j is not

activated (<p j < 0 and Aj = 0) OJ there exists plastic strain due to its activation

(A j > 0 and 4>J = 0)

4> j A j = 0

for all yield surfaces j =1,2,3,4,5,6.

(3.21)

We can also introduce the vector 4>i = [ 4>1 ' 4>2 ' 4>3 ' 4>4 ' 4>5 ' 4>6] and write

equation (3.21) in a more compact form:

n.~ A' = 0..", I (3.22)

Putting equations (3.17) through (3.21) together, we have the constitutive

laws for the perfectly plastic case:

tPi ="~ Si '- Ri ' 4>i SO, Ai ~ 0

4>~ Aj = 0 , Pi = "jAi ' ej = kj 1Si

si = ei + Pi

(3.23)

Comparing equations (3.9) to (3.23), it is obvious that the constitutive laws

for the single stress component and the two stress components are identical except

for dimensions of the vectors and matrices which must be consistent with the

number of yield planes and the number of stress resultant components. Therefore,

there is no need to reformulate the constitutive laws for the multi-stress component;

equation (3.23) derived for the two-stress component applies to the multi-stress

component as well.

It only remains to include the linear work-hardening behavior in the

constitutive laws of equation (3.23). Linear hardening implies that the yield
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surfaces translate (not rotate) through the space domain.

Two different linear hardening models [9] are shown in Fig. 3.4. In one

case, the activation of yield surface j will only increase the magnitude of the plastic

capacity, Rj , by HjAj and the remaining yield modes are not affected. Here, the

hardening matrix, Hi, is diagonal:

Hi 0 0 0 0 0

0 H2 0 0 0 0

0 0 H3 0 0 0
H i = 0 0 0 H4 0 0 (3.24)

0 0 0 0 Hs 0

0 0 0 0 0 H6

In the second case, the activation of yield surface j will change the plastic

capacity of all other yield modes as well. This can be represented by including off­

diagonal terms in the hardening matrix. In general, a positive hardening coefficient

indicates an outward translation of the yield mode and a negative hardening

coefficient indicates an inward translation of the yield mode.

It should only be emphasized that for all cases of linear hardening, the

plastic potential function can be expressed as follows:

A. = n~ S· - H 'A' - R· < 0'1'1 1 1 1 I 1 - (3.25)

Therefore, the constitutive laws for the elastic-linear hardening behavior for

cross section i may be described by:

tP; = n~ S; - H;A; - Ri ' tPi ~ 0 , Ai ~ 0

tP~Ai=O , pi=niAi (3.26)
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3.2 Constitutive Laws for Nonhohmomic Beha,'ior

In this section, the constitutive laws for the material behavior that

demonstrate irreversible plastic deformations are formulated. The laws governing

the nonholonomic behavior will be derived with reference to the elastic-linear

hardening behavior of the beam cross section i (Fig. 3.5).

When the stress point p is on a particular yield mode j (tP) = 0), a small

increase in applied loads will either increase the activation intensity by .1Aj ~ 0

such that the stress point remains on the yield mode j, i.e. .1tPj = 0, or the yield

surface j is unloaded in which case .1tPj < 0 and .1Aj = O. In other words, the

nonholonomy hypothesis requires that:

.1t1l . .1A· = 0'l'J J

and tPj .1Aj =0

(3.27)

(3.28)

The second relationship is required to show that the stress point must be on

the particular yield mode (tPj =0) in order to increase the activation intensity

(.1A) > 0). The first relation simply states that once a yield surface has been

activated, it is possible either to iI1lcrease the activation intensity (.1A) > 0, in which

case .1tPj =0) or to unload the yield mode (.1tPj < 0, in which case .1Aj =0).

If we consider the holonomic relation for the plastic function tP

til. =n~ S· - H 'A' - R· < 0'1'1 1 1 1 1 1 -

the corresponding difference relationship becomes

(3.29)

(3.30)

The vector of plastic resistances R i does not appear in this relation because it is

constant. Similarly, the difference: counterpart of the remaining relations (3.26) can
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be written as follows:

~e· = k:-l~S·
I I I

~Sj = ~Pj + ~ej

(3.31)

(3.32)

(3.33)

Now, the constitutive laws for the nonholonomic behavior can be expressed

as follows:

~tP~ ~Aj = 0 , tP~ ~Aj = 0 (3.34)

It is important to emphasize that the nonholonomic constitutive laws are only

essential for the active yield modes. For the remaining (inactive) yield modes, the

holonomy hypothesis applies (when a yield surface is inactive, the stress point lies

in the elastic range of that yield mode and the elastic behavior is generally assumed

to be reversible.).

So far, the constitutive laws that govern the elastoplastic behavior of a cross

section have been discussed. In the following section, the constitutive laws along

with the equilibrium and compatibility relations that govern the behavior of a frame

element are formulated, and these relations are also extended over all elements to

describe the behavior of the entire structure.

3.3 HolQnornic Analysis

The plastic behavior of a frame element e is assumed to be confined to its

end sections i and k (Fig. 3.6(a». For a general frame element, the state of stress

at the ends of the member is defined in terms of the twelve components of the stress

resultant shown in Fig. 3.6(b). However, if the element is in equilibrium, only six

of the twelve components will be independent. These independent stress
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components which ensure equilibrium along the length of the member are called the

natural stress resultant. The natural plastic deformation of Fig. 3.6(c) is similarly

derived from the plastic deformation of Fig. 3.6(b) by excluding the rigid body

motion of the element.

In the previous sections, the constitutive laws were expressed as a function

of the active stress resultant (and active deformation) at a cross section. If we relate

the active stress resultant (and deformation) at element end sections to the natural

stress resultant (and deformation), we can express the constitutive laws of the

element in terms of its natural Stfl;~SS resultant (and deformation). This is essential

because the compatibility and equilibrium conditions are generally expressed in

terms of natural quantities.

Consider the planar beam-c:olumn element of Fig. 3.6(d). The active stress

resultant Sf = [ S~ , Sf ] are related to the natural stress resultant Qf = [ Ql ' Q3 '

Qs ] by the following relation:

s = [~: ] = =

1 0 0
o 1 0

1 0 0
o 0 1

(3.35)

For the biaxial beam-column element of Fig. 3.6(e), a similar relation can be

written as follows:

Sl 1 0 0 0 o 0 Ql
S2 0 0 1 0 o 0 Q2
S3 0 0 0 1 o 0 Q3

S= .- 1 0 0 0 o 0 Q4
(3.36)

S4
Ss o 0 0 0 1 0 Qs

S6 o 0 0 0 o 1 Q6

Any combination of active stress resultant, e.g. axial load + shear as in Fig.

3.6(f), can be related to the corresponding natural stress component:
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1 0 0
81

0
1 1

82
- --

[~:]
L L

S= = 1 0 0 (3.37 )
83
84

1 1
0 - --

L L

We can generalize the above relations by introducing the static

transformation matrix, 8:

S=BQ (3.38)

Similarly, the corresponding kinematic relation between the active

deformations, s, and the na.tural deformation, q, can be expressed as follows:

- 8'q - s (3.39)

Now, if we have the yield condition for frame element e in terms of the

active stress resultant Sf = [ S~ , S~ ] at the end sections i and k:

(3.40)

We can replace the active stress resultant by expression (3.38) and obtain the

yield condition in terms of the natural stress resultant:

(3.41)

The plastic flow rule for frame element e can also be expressed in terms of

the active plastic deformation P~ = [ Ps/ ' Ps/] at the end sections i and k:

(3.42)
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Using relation (3.39), we <:an obtain the plastic flow rule in terms of the

natural plastic deformation Pq :

(3.43)

Equations (3.41) and (3.43) can be written in a compact form if we set Beine = Ne:

(3.44)

(3.45)

Finally, the constitutive laws for an elastic-linear hardening behavior of frame

element e can be expressed as:

q,e = Ne'Qe_ Ht'Ae _ Rt' , q,t' S; 0 , At' ~ 0

q,elAe =0 , pe = NeA..e

et' =kt'--l Qt' , qt' =et' + pt'

(3.46)

For a structure composed of m elements, the constitutive laws for the

(unassembled) structure can be obtained by extending equations (3.46) over all

elements:

q, =N'Q - H ,1.- R , q, S; 0 , A ~ 0

q,1 A. = 0 , p = N A

e =k- 1 Q , q =e + p

(3.47a,b,c)

(3.47d,e)

(3.47f,g)

where the vectors Q, q, e, p, q" A, and R contain the corresponding vectors for the

m individual frame elements in a particular order, and N, H, and k are the block-

diagonal matrices of the element matrices Nt', He, and kt'.

The global displacement vector, U, and the corresponding external load

vector, F, identified at the nodal degrees of freedom for the assembled structure are

now introduced. The natural dl~formation vector, qt', for frame element e is

geometrically related to the global displacement vector, U, through the compatibility
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(3.48)

Equation (3.48) can be extended over all elements of the structure to obtain

the compatibility condition for the assembled structure:

q=Cu (3.49)

where the matrix C is the block-column matrix of the compatibility matrix, C e
, for

the m individual elements.

Similarly, the equilibrium conditions for the assembled structure can also be

stated as follows:

(3.50)

Equations (3.47), (3.49), and (3.50) fully govern the elastoplastic holonomic

behavior of the structure. If we ignore equations (3.47a) through (3.47e), the

remaining equations express the linear elastic behavior of the structure when it is

subjected to an external force F and an initial strain p.

e = k-1 Q

q=e+p

q=Cu

CIQ = F

(3.47f)

(3.47g)

(3.49)

(3.50)

Replacing the vector Q in the equilibrium relations (3.50) with equation

(3.47f) and using equation (3.47g) to eliminate elastic deformation, we obtain:

Clk e = F

Clk ( q - p ) =F

(3.51)

(3.52)

The compatibility relation (3.49) can also be used to eliminate the element

deformation vector, q:
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(3.53)

Now, we can solve equation (3.53,) for the global displacement, u, in terms of the

plastic deformation, p, and the external load, F:

U :: K- 1 ( F+e/k p ) (3.54)

where K =elk e is the assembled structure stiffness matrix. The element

deformation, q, and the element stresses, Q, can also be determined as follows:

q = e u =e K- 1 F + e K-1 elk p

e = q - p = C K-1 F + e K- 1 elk p - p

Q = k e = k e K-1 F + k e K-1 elk p - k P

(3.55)

(3.56)

(3.57)

It is obvious that the element stresses are composed of two components: one that

resists the external forces,

(3.58)

and a second component that resists the plastic deformation:

(3.59)

where Z = k e K-1 elk - k is the matrix of plastic influence coefficients. Note

that the second component is self-equilibrating; this can be easily verified by writing

the equilibrium relation (3.50) for each component of the stress vector separately:

e/Qel = elk e K-1 F = F

e/Qs = ell, e K-1 elk p - e/kp = 0

(3.60)

(3.61)

The global displacement vector, Ill, and the element deformation vector, q, can be

decomposed into components as well:

u = K-1 F + K-1 elk p = uel+ uP

q = e K-1 F + e K-1 elk p _ p + P = qel+ qep+ qP
.. f '--- ' "--"

(3.62)

(3.63)
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Let us now introduce the yield condition (3.47a) and the plastic flow rule

(3.47e) along with the following equation for the element stresses:

Q = Qel+Qs =Qel+zp

4> = N'Q - H A. - R

p=NA.

(3.64)

(3.47a)

(3.47e)

If we replace p in equation (3.64) with equation (3.47e) and substitute equation

(3.64) for the stress vector, Q, in (3.47a), we obtain:

The yield condition (3.65) together with equations (3.47b) through (3.47d)

fully govern the nonlinear holonornic response of the structure:

[

4> = ( N'Qel_ R ) - A A.

4>50 , A~O

4>' A. =0

where A = H - N'Z N

(3.65)

(3.47b,c)

(3.47d)

This relation set in the unknown vectors tP and A is known in operations

research as the Linear Complementarity Problem (L.C.P.).

The matrix A is symmetric positive-semidefinite if H is also symmetric

positive-semidefinite. This is true because Z is negative-semidefinite (refer to

Appendix B).

When matrix A is symmetric positive-semidefinite, the above L.C.P. can be

transformed through the Kuhn-Tucker Theorem to the following dual Quadratic

Programming (Q.P.) problems [10]:

[

max '),} ( N'Qel_ R ) - Ih ).} A A.

subject to A. ~ 0

[

min ~A'AA.

subject to A A. - ( N'Qel - R ) ~ 0

(3.66)

(3.67)
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This property of matrix A ensures that a solution exists for the above L.C.P.

problem.

When matrix H is of a general form, a solution may be obtained from the

following (possibly non-convex) Quadratic Programming problem [9]:

[

min A..' A A - ( N/Qel - R ) A

subject to A A- ( N' Qd - R ) ~ 0 and A~ 0

(3.68)

In this case, a solution exists only if the Q.P. problem has an optimal value of zero.

3A Nonholonomic Anal)'sis

The nonholonomic .analysis is treated in the same manner as the holonomic

analysis. The constitutive laws for the unassembled structure are obtained by

extending the nonholonomic laws over all elements that have active yield modes:

.6.q, =N'.6.Q - H.6.A , q, + .6.q, S; 0 , .6.A ~ 0

.6.q,'L~A = 0 , q,'.6.A = 0

dp = N.6.A , .6.e =k-l.6.Q , .6.q =.6.e + .6.p

(3.69)

The compatibility and equilibrium relations for the assembled structure become:

.6.q =C .6.u

C'.6.Q = .6.F

(3.70)

(3.71)

Now, the corresponding L.C.P. can be obtained by presenting the above

relation in terms of the variables Aq, and dA:

[

dql = N'dQ el - A dA

q, + .6.q, ;S; 0 , .6.A ~ 0

.6.q,' I~}., =0 , q,'.6.A =0

(3.72)

Assuming that the matrix A = H - N'Z N is symmetric positive-semidefinite, then
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the dual Quadratic Programming formulation becomes:

[

max L\A/NtL\Qel- ~ L\AtA L\A

subject to AA ~ 0

[

min Y2 L\AtA L\A

subject to A AA - NtL\Qel ~ 0

(3.73)

(3.74)

This concludes the analytical description of the elastoplastic analysis. In

chapter 4; the elastoplastic behavior of both frame and finite elements will be

discussed; and in chapter 5, the above equations are solved using linear and

quadratic programming techniques.
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4. STRUCTURAL ELEMENTS

The analytical model of a structure is always described with the aid of a

number of elements. In this chapter, the elastoplastic behavior of both the frame

elements and the finite elements are discussed.

The frame elements can be of any type. All that is needed to model the

elements is the elastic properties and yield conditions that govern the behavior of

end sections. Some typical framl~ elements are considered in this chapter. These

include: truss elements, beam elements, and both uniaxial and biaxial beam column

elements.

For finite elements, a selt of constitutive laws similar to that of frame

elements is established. Finite elements can be used to model a variety of structural

components. In this chapter, we consider planar elements in general plane stress

state in order to model reinforced concrete shear walls.

Two different types of element connection are discussed here as well. The

first type is used to model joints between frame elements and the second type is

used to join frame elements to finite elements.

4.1 Frame Elements

Frame elements are grouped according to the type of stress component active

at a cross section. Here, we will discuss two typical single stress component

elements: the truss element (axial force, P), and the beam element (bending moment,

M); a two stress component element: the beam-column element (bending moment +

axial force); and a three stress component element: the biaxial beam-column element

(bending moments about the element y and z axes + axial force). This list can be

expanded to include other single ~md multi-stress component elements in the future.
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4.1.1 Truss Elements

Truss elements are only capable of transmitting axial forces. Therefore, the

elastic force-deformation relationship is expressed as

EA
Q =-q

L
(4.1)

where q is the axial extension; Q is the corresponding axial force; E is the elastic

(Young's) modulus; A is the element cross-sectional area; and L is the element

length.

The yield criterion for the truss element is expressed in terms of a

multilinear force-deformation relationship as shown in Fig. 4.1. Since there is no

limit on the number of linear hardening branches, different tension and compression

axial stiffnesses can be easily modeled (see Fig. 4.1). Similarly, the tension and

compression yield surfaces can be of different magnitude, and any hardening rule

which results in a symmetric positive semi-definite hardening matrix can be

considered.

4.1.2 Beam Elements

Beam elements are only capable of resisting flexural (and shear) deformation.

Considering the member end moments to be Q; and Qk and the corresponding

flexural deformation to be q; and qk, the elastic force-deformation relation becomes

(
Qi] 2EI [2(2+f3) <-1+(3)] (q;]
Qk =: L(l + 2/3) (-1 + /3) 2(2 + /3) qk

(4.2)

6EI
where I is the moment of inertia and /3 = L 2A 'G is a parameter that measures the

flexural shear deformation. Note that shear deformation is included only when the

shear area (A') and the shear modulus (G) are specified; otherwise, the element is
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assumed to be infinitely stiff with respect to shear deformations.

The yield conditions for the beam element are expressed in terms of the

plastic behavior of its end sectielns i and k (refer to section 3.3). The plastic

resistance vector and the hardening properties specified for each section are totally

independent of one another.

(3.40)

It is interesting to note 1that due to the general form of the hardening

parameters, it is easy to model some of the response characteristics of beam

elements. For example, the pinching phenomenon (see Fig. 4.2) observed at the end

section of a reinforced concrete heam element during a cyclic loading program, can

be easily modeled by considering the following yield surfaces and hardening

parameters:

Mt Ho 0 0 -Ho 0 0

M+ 0 HI 0 0 0 0
I

M{ 0 0 Hz 0 0 0
R;= Hi = -Ho 0 0 Ho 0 0 (4.3)

Mo
M l

0 0 0 0 H 3 0

0 0 0 0 0 H 4Mi

The two yield surfaces Mt and Mo (in Fig. 4.2) are provided to model the pinching

phenomenon. When the first positive yield surface (characterized by the yield limit

Mt) is activated (At ~ 0), the negative yield limit (Mo) decreases by Ho At, and

similarly when the first negativ,e yield surface (Mo) is activated (Ai ~ 0), the
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positive yield limit (Mt) decreases by Ho Ao.

The remaining yield surfaces (characterized by the yield limit M (, M i, and

M i" , M 2-) are provided to model the workhardening behavior of the element during

positive and negative loading stages. It is interesting to note that the hardening

parameters HI and H 3 turn out to be negative quantities, simply because the

stiffness of the second positive and negative yield surfaces (ki and ki) are larger in

magnitude than the stiffness of the first yield surfaces (k{ and ki") hence

HI = [_1 __1]-1 ;5; 0
ki k{

and H
3

= [_1 __1 ] -1 ;5; O.

ki ki"
This might create

some problem because then the positive definiteness of matrix A = H - Nt Z N

might be jeopardized. In order to circumvent this problem, for the second set of

yield surfaces, the activation intensity (Ai, Ai) will be measured in the opposite

sense (see Fig. 4.2). This mathematical trick can be provided only for the single

stress component elements on the non-interactive yield surfaces.

4.1.3 Beam-Column Elements

The uniaxial and biaxial beam-column elements resist axial, flexural, and

shear deformation. In the elastic range, the force-deformation relationships

(between the force vector Q and the deformation vector q are respectively

EA
0 0-

[g: ]
L

[::]= 0
4E/(2 + 13) 2£/(-1 + 13)

(4.4)
L(1 + 213) L(1 + 213)

2E/(-1 + 13) 4E/(2 + 13)
0

L(1 + 213) L(l + 213)
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EA
0 0 0 0-

L

4Elz 2EI.

Ql
0 L Yz 0 L~z 0

ql
Q3 4Ely 2Ely q3
Q4 = 0 0 LYY 0 L~y q4 (4.5)

Q5
2EI. 4Elz

q5
Q6 0 __" 1= 0

L Yz 0 q6
L '"='z

0 0
2Ely

0
4Ely

L~y LYY

where Yz =
2 + {3z

, ~z =
-1 + f3z

1 + 2{3z 1 + 2f3z

similarly
2 + f3y

~y =
-1 + f3y

Yy = 1 + 2f3y
,

1 + 2f3y

In the plastic range, the axial and flexural (or shear) deformations interact

according to the normality rule (i.e., the normal components to the yield surface

determine the ratio of axial to flexural plastic deformation).

In order to illustrate the elastoplastic behavior of the reinforced concrete

column elements, some typical moment-axial force interaction diagrams are

illustrated in Fig. 4.3. Generally the reinforced concrete coluI1Ul elements have

limited ductility, but if they are designed properly (with small axial and shear forces

and with proper confinement) tht~ behavior of the member can be modeled by an

elastic-workhardening moment-axial load relationship. In order to model the yield

planes it is only necessary to discretize the interaction diagrams into a finite number

of piecewise linearized yield pla.nes. This is illustrated in Fig. 4.3 for both the

uniaxial and biaxial interaction diagrams.

4.2 Finite Elements

In this section, the force-defprmation relationships for the plane stress
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elements are discussed. These elements are generally used for the analysis of two-

dimensional continuum problems. Since we are primarily interested in developing

models for the analysis of reinforced concrete shear walls, the elements developed

here are intended for idealization of reinforced concrete components: the concrete

and the reinforcing bars.

The reinforcing steels are considered to be anisotropic material, capable of

resisting uniaxial stresses along the length of the bar. The uncracked concrete is

modeled as isotropic homogeneous material, and cracking is conceived as a

phenomenon like plastic deformation. Therefore, the elastoplastic constitutive laws

can be used to model both the concrete and the reinforcing bars.

4.2.1 Stress-Strain Relationship for Isotropic Plane Stress Elements

Plane stress elements are only capable of transmitting in~plane stresses.

These elements are characterized by the following stress and strain resultant vectors:

Qt = [Gxx Gyy 'Cxy] (4.8)

The elastic stress-strain relationship is generally expressed in terms of a 3 x 3

stiffness matrix D:

Q=Dq (4.9)

For an isotropic homogeneous material obeying Hooke's law, the stiffness matrix

takes the following form

1 v 0

D=
E

1 0
1 - v2

V

I-v
0 0 --

2

(4.10)



36

where v is Poisson's ratio and E is the elastic modulus.

In here, plane stress elements are used to model concrete section. Since

concrete is assumed to behave like an elastoplastic material, a set of yield criteria is

defined for this material. In reference 11, Chen and Chen have developed a model

for the initial and failure yield sUlfaces of concrete sections. This model (shown in

Fig. 4.4) was established on the: basis of biaxial experimental data on concrete

specimens. Basically two different yield surfaces were proposed for the concrete: in

the compression-compression region

(4.11)

and in the tension-tension or tension-compression region:

(4.12)

In equation (4.11) and (4.12), /1 and J2 refer to the first invariant of the stress

tensor and to the second invariant of the deviatoric stress tensor, respectively:

/} = Gxx + Gyy + Gzz

[ (Gxx - Gyy )2 + (cryy - Gzz )2 + (Gzz - Gxx )2 ] 2 2 2+ 1'xy + 1'yz + 1'zx

(4.13)

The parameters Ao and 1'0 are material constants and have different values in the

compression-compression and tension-tension (or tension-compression) region.

Thus, for the compression-compmssion region

[;~r=

-2 -2
Ibe - Ie

21be - Ie

lelbe(21c -lbe)

3(21be - Ie)

(4.14)

(4.15)

and for tension-compression or te:nsion-tension region
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- -
Ao Ic - It-
f; 2

[;:r Ic It
---

6

(4.16)

(4.17)

where I C' I bc' It refer to the uniaxial and biaxial compressive strength and uniaxial

tensile strength of concrete at the corresponding yield surfaces (see Fig. 4.4), and

the bar denotes that the parameters have been normalized with respect to the

uniaxial compressive strength of the concrete (fL\

These yield surfaces are illustrated in the plane of principal stresses (0'1> 0'2)

in Fig 4.4, and in general stress space (O'xx' O'yy' 1'xy) in Fig. 4.5. The yield surfaces

adopted for the concrete sections are based on a piecewise linearized approximation

to this model.

4.2.2 Stress-Strain Relationship for Reinforcing Bars

In this section, the elastoplastic behavior of the reinforcing bars embedded in

the concrete is defined. The reinforcing bars are generally subjected to uniaxial

loading along the length of the bar. Therefore, the elastic stress-strain relationship

in the x'-y' coordinate system (where x' is oriented along the length of the bar) is:

(4.18)

To model the reinforcing bars as plane stress elements, it is necessary to

transform the stress-strain relation of Eqn. (4.18) into the element (x-y) coordinate

system (see Fig. 4.6). This is accomplished by writing Cauchy's formula for the

,
strain component Ex

Ex = [cose [

E E ]• xx xy cose 1
sme] Eyx Eyy [ sine J
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cosO sino] [:;]
2Exy

(4.19)

and transforming the stress component G; to the x-y coordinate system:

[
Gxx GXY

] [ COSO] , [
Gyx Gyy = sinO Gx cosO

Now the stress-strain relationship of Eqn. (4.18) becomes:

sino]

(4.20)

[
GU] _
Gyy -

Gxy

sinO COSO] [:;]
2Exy

. [GU]
d~ =E [

cos40 cos20 sin20

cos20 sin20 sin40

cos30 sinO cosO sin30

Q=Dq

cos30 sinO

cosO sin30

cos20 sin20
[

Exx ]
Eyy

2E.lY

(4.21)

(4.9)

The yield conditions for the reinforcing bars are generally expressed in terms

of the uniaxial stress-strain relationship (Fig. 4.7). Therefore, to establish the yield

conditi0!1 in terms of the active stress resultant vector Q = [G.1:.\: Gyy GXY ] • we

must write Cauchy's formula for the stress component G;:

Now the yield condition ±G~ ~ cry or ±G; ~ Gy + H A.. becomes:

(4.22)
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39

ep = ±N/Q - R ~ 0

ep = ±N/Q - R - H A. ~ 0

(4.23)

Furthermore, the plastic strain component E~. t can be used as a measure of intensity
p

of activation of the yield surface if the following relationship between the plastic

strain vector p = [E;u Eyy 2E..ty] and the plastic strain component Exp IS
considered:

(4.24)

p=NA.

Finally, the hardening coefficients, H, are readily determined from the uniaxial

stress-strain relationships of Fig. 4.7.

4.2.3 Force-Deformation Relationship for Plane Stress Elements

So far, we have established the internal stress-strain relationship for the plane

stress elements. The element stiffness matrix k, which relates the nodal

displacement vector u to the nodal force vector F, can now be obtained by writing

the strain-displacement relationship (kinematic condition),

E = B u

and applying the principle of virtual work (equilibrium condition):

F = JBID B dv u
v

or F = k u

t To be precise, the absolute value of £; is a mea.~ure of the activation intensity A.
p

(4.25)

(4.26)

(4.27)
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Here, k = JBtO B dv is the element stiffness matrix.
v

The above formulation of the finite element stiffness matrix applies to every

type or shape of element. Since we are primarily interested in solving elastoplastic

problems of reinforced concrete shear walls, the rest of this section is devoted to a

description of the type of element and the shape functions that would be suitable for

the analysis of the shear walls.

Figure 4.8 illustrates the cubic rectangular elements used for the analysis of

the shear walls. These elements provide a useful model of the shear wall because

they satisfy beam theory exactly. The internal displacements for this element are

approximated by the products of cubic polynomials in two coordinates

(4.28)

where H is the displacement pattern generated at node /1 (l and 1 identify the

location of the node), and G is a cubic Lagrange polynomial.

The element stiffness matrix k = JWO B dv is evaluated exactly by
v

numerical integration provided that there is a minimum of four sampling points in

each coordinate. This follows from the fact that the strain-displacement

compatibility matrix 8 consists of partial derivatives of H. Therefore, the order of

the polynomials in the integrand BtO B can be as high as six in each coordinate.

According to the Gauss quadrature principle, n sampling points provide an exact

answer for polynomials of order S; 2n - 1.

4.3 Element Connection

Two different types of element connections are discussed in this section.

The first type is used to model the finite size of the joint between frame elements

and the second type is used to join frame elements to finite elements.

It must be pointed out that these element connections are not provided to
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model any type of inelastic behavior; their main purpose is to maintain equilibrium

and compatibility at some special connections. If it is desirable to model inelastic

deformation (like slippage due to bond deterioration) at the face of the joint, a

separate element (with some elastoplastic properties) must be provided adjacent to

the joint. A detailed discussion of element modeling is given in chapter 6. The

following discussion is confined to the equilibrium and compatibility requirement at

particular connections.

Since frame members are assumed to span between the faces of the supports,

we need joint elements to connect the members. The joint elements are in general

parallelogram prisms (see Fig. 4.9), but they can have zero thickness along anyone

of their axes. To include these elements in the analysis of the structure, the

following compatibility and equilibrium relations are set up.

The compatibility relation can be easily formulated if the element end

displacements ui are determined as a function of the nodal displacement at the joint

center Uj

e
U

Xi
1 0 0 0 ~z -~y U

Xi
ue

Yi 0 1 0 -~z 0 ~x uy;
ue 0 0 1 ~y -~x 0 uZ;Zj

= 0 0 0 1 0 0 e\:.
(4.29)

ee "
Xi

0 0 0 0 1 0 ey;
Oe

Yi 0 0 0 0 0 1 ez;

0;
~i

u~ = C·u·I I I
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and the equilibrium condition takes the following form:

Fe
Fx; 1 0 0 0 0 0

Xi

Fe
FYi 0 1 0 0 0 0 Y;

Fz; 0 0 I 0 0 0 Fe
Zj

(4.30)
Mx. = 0 -~z ~y 1 0 0, M;.
MYi ~z 0 -~x 0 I 0 I

Mz; -~y ~x 0 0 0 1
Me

Yi

Me
z,

F· = C~ PI I I

If these relations are expressed for nodes i and j of every frame element, then the

finite size of the joints are included in the analysis of the structure.

In section 4.2, the plane stress elements for the modeling of reinforced

concrete shear walls have been considered. In order to incorporate the shear walls

as part of the frame-wall structural system, a joint element between the beam

element and the plane stress elemt:~nt has to be designed.

Figure 4.10 shows that the displacement degrees of freedom at the end of a

beam element consist of two displacements and a rotation, whereas the displacement

degrees of freedom for a plane stress element consist of only two displacements. In

order to transfer the moment and rotation of the beam element to the finite element,

a rigid link that spans two consecutive nodes of the plane stress element is

introduced. Now the compatibility relation between the finite element degrees of

freedom and the beam element degrees of freedom becomes

I 0 -ad

I 0 (l-a)d

o 1 0
o I 0

(4.31)
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and the equilibrium condition takes the following form:

1 0
o 1

(l-a)d 0 !] (4.32)

Note that the parameter d measures the width of the rigid link.
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5. COMPUTER ANALYSIS

In this chapter, the solution to the elastoplastic problems of chapter 3 is

discussed in terms of mathematical programming techniques. Both the holonomic

(reversible) and the nonholonomic (irreversible) response of the structure are

addressed, but the primary emphasis is on the nonholonornic (i.e., path dependent)

response. For these classes of problems, any general nonlinear loading path may be

considered as long as it can be approximated by a finite number of proportional

loading stages (see Fig. 5.1).

5.1 Mathematical Programming; Methods

The elastoplastic analyses formulated in chapter 3 can be solved by the

restricted basis linear programming method. This method was originally developed

in reference 12 for solving quadratic programming problems and was proposed for

solving structural mechanics problems in references 9 and 13. In a recent study [5],

this method has been implementl~d for the computer analysis of structures. Here,

the method is applied to the nonlinear analysis of structures.

In chapter 3, it was noted that when the material properties are assumed to

be reversible, the response of the structure for a given load pattern F can be

obtained from the following linear complementarity problem:

find q, , A.

such that q, =Nt Qel - A A. - R

q,~O , A.~O

q,' A. =0

(5.1)

where Q£>l =k C K- 1 F represents the elastic stresses that resist the applied load

factor F .

If rather than solving fOlr a given load condition, F, the relation (5.1) is

reinstated to calculate the maximum load factor smax at the time of collapse of the
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structure (i.e. when the applied loads are smax F), then the following equation is

obtained:

max S

such that q, = N' Qel s - A A - R

q,50 , A~O

q,' A = 0

(5.2)

Generally, the solution to this problem can be obtained from the linear

programming problem:

max s

subject to q, = Nt Qel s - A A - R

q,~0 , A~O
(5.3)

provided that the linear complementarity rule q,' A =0 is satisfied by the restricted

basis rule that the two corresponding variables q, and A can not both be nonzero

quantities at the same time.

Similarly, if the nonholonomic response of the structure (i.e. assuming

irreversible material properties) is considered, the incremental elastoplastic problem

takes the following form:

max ti.s

subject to ti.q, = Nt Qel ti.s - A ti.A

q, + ti.q, ~ 0 , ti.A ~ 0

q,' ti.A = 0 , ti.q,t ti.A = 0

(5.4a)

(5.4b,c)

(5.4d,e)

This problem can be cast as a linear programming proolem if active yield modes

(with q,j = 0) are only considered during each increment of loading, and the

nonlinear constraint ti.q,t ti.A = 0 is satisfied by the restricted basis rule that "two

corresponding variables ti.q, and ti.A can not be in the basis as nonzero quantities at

the same time".
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5.2 Analytical Procedure

The analysis procedure will be described with reference to the nonholonomic

behavior of structures. Consider a structure subjected to a sequence of proportional

loading stages (see Fig. 5.1). Dw~ing each stage of loading equation (5.4) is solved

for an increment of loading (~s) necessary to activate the next plastic hinge.

The first step in solving equation (5.4) is to partition the relation

~q, = NI Qel ~s - A ~A into active (a) and inactive (i) yield modes:

(5.5)

In equation (5.5), the components of ~Ai corresponding to the inactive yield modes

have been set to zero to comply with the constraint q,1 ~A = O.

Now the entire elastoplastic analysis can be divided into a restricted basis

linear programming problem for the active yield modes:

find ~q,a ' ~Aa

subject to ~q,a =N~ Qel ~s - Aaa ~Aa

~q,a ~ 0 , ~Aa ~ 0

+ rlestricted basis rule ~q,~ ~Aa =0

and another linear programming problem for the inactive yield modes:

max ~s

subJ'ect to L~n.· = N~ Qel ~s - A· ~A < 0'1'1 1 la a -

(5.6)

(5.7)

In equation (5.6), there is one more unknown (~s) than the number of equations,
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hence the variable As can be factored out of all the constraints:

find y , x

where

subject to y = N~ Qel - Aaa x

y~O, x~O

+ restricted basis rule yt x = 0

AtPa = y!is and AAa = x !is

(5.8)

Generally, the procedure consists of solving for the active quantities x and }'

from equation (5.8) and substituting for the plastic multiplier vector AAa = x !is in

equation (5.7) to determine the applied load factor As.

The algorithm in Fig 5.2 t illustrates the steps involved in the solution of the

L.P. problems (5.8) and (5.7). Basically, the solution to problem (5.8) takes one of

the following forms:

(1) When the Hessian matrix Aaa is positive definite, it is originally assumed that all

active yield surfaces remain active, i.e. y is assumed to be zero and all components

of x (the plastic deformation rates) are assumed to increase with the increase in the

applied load:

(5.9)

If the components of x are not all positive, then some of the yield surfaces are

unloading. To determine the yield surfaces that are unloading, the following linear

complementarity problem is solved:

find x , y

subject to Y - Nt Qel - A x- a aa

y~O ,x~O

yt X =0

(5.10)

t This algorithm has been adopted from a procedure in reference S.
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The technique required to solve the linear complementarity problem is discussed in

section 5.3.1.

(2) When the Hessian matrix A oo is positive semi-definite, the structure may

undergo some plastic deformation even though there may be no increase in the

applied loads (i.e. equation (5.8) has a nontrivial solution x corresponding to

!:is = 0):

Aoo x = 0 (5.11 )

In that case, x defines the motion of the collapse mechanism provided that its

components are all positive. Otherwise, a pseudomechanism (x *0) that does not

ensure energy dissipation at all critical sections is obtained.

If the last yield surface activated at the end of the previous step (I-I) is

denoted by k, then the matrix A oo can be partitioned as follows:

(5.12)

and x can be obtained from:

(5.13)

(5.14)

(5.15)

If the components of this vector are not all positive, then the linear complementarity

problem of (5.10) will be solved to determine the yield surfaces that unload (i.e.

y < 0). If these yield modes arc:~ removed from the set of active yield modes, the



49

matrix A aa will be restored to a positive definite matrix.

As discussed before, equation (5.6) or (5.8) only provides the deformation

rate x (i.e. ilAa = x As). In order to determine the increase in the applied load

factor (ils), equation (5.7) must be solved:

max As

subject to ilcpj = N~ Qel ils - A ja x ils :::; 0

where ilcpj =CPJ - CPJ-1

(5.7)

If it is assumed that at the end of every step (I), a new yield surface (denoted by k)

is activated, then:

and

cpf =0

ilcpjk =- CPf-1

(5.16)

(5.17)

Therefore, equation (5.7) can be restated as follows

ils = minover all j ( -CPJ -1 )

N~Qel_A· X
I la

(5.18)

where i = inactive yield surfaces.

5.3 Computer Program

The general flow diagram for the complete analysis of the structure is shown

in Fig. 5.3. Basically, the information required for the analysis consists of the

geometry of the structure and the elastoplastic properties of the materials.

In order to begin the analysis, the program first generates the (assembled)

elastic stiffness matrix of the structure (K) and then conducts an elastic analysis for

the first pattern of applied load F. The resulting displacement (b = K-1 F) and
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elastic stresses (Qel =k C K- 1 F + QFEMA t) are computed assuming an applied

load factor of unity (s = 1).

In order to determine the load factor at which the first plastic hinge is formed

(i.e. elastic limit load factor selastic limit), equation (5.3) is solved for the case that the

plastic deformation vector A vanishes:

max s

subject to 4> =Nt Qel s - R ~ 0 (5.19)

Similar to the solution of equatiolll (5.7), the solution of equation (5.19) is obtained

when the first yield surface (denoted by k) is activated (i.e. 4>k = 0):

therefore, (5.20)

Elastic limit is considered to be the first step of loading, at the end of this

step, the plastic potential vector 4> is updated:

4> = Nt Qel Selastic limit - R ~ 0 (5.21)

After the formation of the first plastic hinge, the program evaluates the self-

equilibrating stresses that resist a unit of plastic deformation (p~ = Ne Aa ) at the

first active yield mode (Aa = 1):

(5.22)

Here, e refers to the element that contains the active yield mode.

The elastoplastic analysis is now conducted using the plastic coefficient

t FEMA refers to Fixed End Member Action.
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vector a = He - Nt QS in the expression (5.4):

max !1s

~~e~ro !1",=NtQd!1s-a!1~

'" + !14> ~ 0 , !1Aa ~ 0

4>~ !1Ao =0 , !14>~ !1Aa =0

(5.23)

As mentioned in section 5.2, the solution to equation (5.23) is obtained by

separating the active and inactive yield modes and solving the linear programming

problems (5.8) and (5.7) according to the procedure outlined in Fig. 5.2.

Once the plastic deformation rate x (and/or the unloading stress rate y) is

evaluated, the step size necessary to activate the next plastic hinge is determined.

Then the program updates the plastic potential function (4)]), the plastic multipliers

(A]), and the applied load factor (s/) as follows:

where

4>] = 4>]-1 + !1q,]

A] =A]_1 + !1A]

s] = sI-1 + !1s

!14>] = [~~~] = [ -_.:_-- ]!1S
!14>; A. x _ N~ Qel

la I

(5.24)

If the maximum specified applied load factor (s~ax) has been reached, the

program starts analyzing the structure for the next proportional loading stage.

Generally, the program stops when a collapse mechanism has been reached or when

the computed load factor s] exceeds the input load factor smax for the last loading

stage.

The elastoplastic response of th~ structure may be found in terms of the total
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stresses and total displacements;

&qP =N &A..

&Qs =Z &qP

&uP =K-1 e k &qP

Q1 =Ql-1 + &Qs + Qel &s

Ul =Ul-1 + &UP + Uel &s

(5.25)

But it is worth noting that the only variables that are essential for solving the

elastoplastic problem are the plastic multipliers and the plastic potentials.

For the most part this program involves simple matrix manipulation. There

are, however, two particular fe,uures in the program that require some special

techniques. These are (1) updating the inverse of the Hessian matrix Aaa , and (2)

solving the linear complementarity problem of equation (5.10). These will be the

topics of discussion in the next two sections.

5.3.1 Linear Complementarity IProblem

As mentioned earlier, if the plastic deformation rate x computed from

equations (5.9) or (5.15) have negative components, the linear complementarity

problem of (5.10) has to be solved in order to determine the stress points that

unload:

find x • y

subject: to Y= Nt Qel - A xa aa

Y~O. x~o

),1 X = 0

(5.10)

Unloading stress points axe characterized by a decrease in the stress level

below the yield limit (Le. y < 0). Therefore, it is necessary to partition the vectors
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x and y to separate the unloading yield modes:

[
xlOading]

X = --- ~ 0
o

(5.26)

Generally, the analysis can be started by assuming that the negative

components of x correspond to the unloading yield modes. Furthermore, x is

assumed to consist of the positive components already computed (in equations (5.9)

[

Xposirive ]
or (5.15» x = -0-

satisfy the relation (5.10): .

plus a vector jj = [ -~-] that might be required to

x=x+p

[Y":~~ing] = N~ Q,/ - Aaa [-~- ] - A~ [ -:- ]

The procedure to solve equation (5.27) is summarized as follows:

(1) solve the first set of equations for p,

(2) for p * 0 compute x =x + p,

(a) if x is still positive, solve for y from the second set of equations.

(5.27)

(b) otherwise, calculate the (maximum) coefficient a (a:S; 1) such that

x = x + a p ~ O. Under this condition, another component of x will become

zero. This implies that another yield surface might be unloading. Therefore, it

is necessary to rearrange the components of x and )' to include the new

unloading yield surface, and reinitiate the problem from step 1.

(3) for p = 0, solve for y from the second set of equations,

(a) if y :s; 0, then the solution is found;

(b) otherwise, the largest positive component of y is removed from the set of
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unloading yield modes, and the problem is reinitiated from step 1.

The method presented herc~ is called the active set method. For a detailed

discussion of this method read refc~rences 14 and 15.

5.3.2 llpdating the Inverse of the Hessian Matrix Aaa

It is obvious from the flow diagram of Fig. 5.2, that the solution to the

elastoplastic problem (in particular, equations (5.8» requires the inverse of the

Hessian matrix Aaa to be computed. However, after each step of the analysis, the

size of this matrix changes to reflect the current number of active yield surfaces.

For example, when a new yield surface is activated, a new row and column are

added to this matrix, and when a stress point unloads from an active yield surface,

the row and column corresponding to the unloading yield surface are deleted. In

either case, since the Hessian matrix Aaa is positive definite, the inverse of A aa can

be easily updated.

Consider the case when a new yield surface is activated and the inverse of

Al is to be computed from (AI_I)-I:

A -I ­
I - (5.28)

If the relation AI -1 AI = I is enforced, the inverse of matrix AI can be easily

determined and in the process the determinant of matrix AI is computed:

d IA I 1 I A -1et I = -d = 0kk - ak I-I ak
kk

(5.29)
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Similarly, if A1_ 1- 1 is to be computed from A/-I, the last expression in

equation (5.29) can be rearranged as follows:

(5.30)

The inverse of [ I - 3k dk ] (i.e. the identity matrix modified by a first rank matrix

3k di ) is simply:

(5.31)

therefore, (5.32)
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6. APPLICATION OF THE ELASTOPLASTIC ANALYSIS PROGRAM TO A

REINFORCED CONCRETE FRAME-WALL STRUCTURE

In this chapter, the nonlinear static analysis program developed in the

previous chapters is used to analyze a reinforced concrete frame-wall structure

studied under the U.S.-Japan cooperative research program. Since the primary

concern of this chapter is to cormlate the experimental and analytical responses of

the structure, it is necessary to bc:~gin with a description of the test structure and a

summary of the experimental tc:~sting program. A mathematical model of the

structure is then introduced with a complete description of the analytical models

used for the individual elements of the structure. In the final sections of this

chapter, the results of the nonlinear static analysis are presented followed by a

general discussion regarding thle degree of correlation obtained between the

experimental and analytical responses of the structure.

6.1 Description of the Test Structure

The structure considered here is a 1/5-scale replica of the full-scale seven­

story reinforced concrete frame-wall structure. The plan and elevation of the model

are shown in Figs. 6.1-6.3 . The structure consists of a moment resisting space

frame with a centrally-located shear wall. In the orthogonal direction, there are four

end-walls that are provided to eliminate the possibility of dominant torsional modes.

Since this model is designed to be an exact replica of the full-scale structure, a

complete floor system consisting of reinforced concrete slabs with beams and

girders spanning the distance between the columns is also provided.

6.2 An Overview of the Experimental Testing Program and the

Experimental Response of tine Model

The main objective of the experimental testing program [1,2,3] was to
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evaluate the response of the test structure to earthquake ground motion of increasing

intensity. Altogether, the structure was subjected to three series of simulated

earthquake ground motions. The first series consisted of low-level excitation. The

primary objective of this series was to test the response of the instrumentation and

to evaluate the response of the model under low-level excitation. During this period

of testing the serviceability limit state was exceeded, but the response of the model

was still considered to be linear elastic.

The second series was intended to test the performance of the structure under

damageability and ultimate limit states. During this series, the model was subjected

to earthquake ground motion of increasing intensity until the flexural capacity of the

first-story shear wall was exhausted. Since the principal reinforcements at the base

of the shear wall were either fractured or yielded far beyond the yield strength of

the material, the dominant mode of failure was identified as flexural failure. But the

evaluation of the experimental data at the time of failure revealed that a shear

failure in the web of the wall was also imminent.

The third series of tests was conducted to observe the behavior of the wall

after repair and retrofitting. During these experiments, the model was subjected to

several extreme excitations which resulted in another flexural failure at the base of

the wall.

At every level of excitation, the response of the structure was dominated by

the behavior of the shear wall. In the elastic range, the wall acted as a huge vertical

cantilever beam that restrained the lateral displacement of the frame. Once the

shear wall yielded at the base, the neutral axis of the wall moved toward the

compression boundary element and the wall started to rock at its corner. This

behavior of the wall led to a three dimensional mechanism of motion which

involved an out-of-plane behavior of the floor diaphragm where all the longitudinal

and the transverse girders framing into the wall deformed and restrained the motion
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of the wall (see Fig. 6.4).

Besides the three dimensional response of the structure, the shear wall

introduced other nonlinear behavilor as identified in reference 3: (l) the nonlinear

shear deformation of the wall; (2) the fixed end rotation at the base of the wall; and

(3) variation in flexural and shear stiffness of the wall.

These response characteristics are not commonly included in mathematical

models of this type of structure. However, since they represent the dominant

response of the structure at the damageability and ultimate limit states, an attempt is

made here to include these in the analytical studies.

In the remaining part of this chapter, an analytical model of the structure is

introduced and a series of nonlint~ar static analyses are conducted with the primary

objective of predicting both the local and the global responses of the structure at

damageability and ultimate limit states.

6.3 Development of the Model for Nonlinear Static Analysis

The analytical model developed in this section is designed to predict the

response of the structure at damageability and ultimate limit states. Because the

structure is subjected to several low to moderate levels of excitation, before it is

finally tested at its ultimate limit state, the modeling of individual elements is based

on the assumption that all members are cracked.

Since the frame-wall structure of Fig. 6.5 has a plane of symmetry that

passes through the main shear wall, it is only necessary to analyze half of the

structure. The mathematical modlel of this structure is shown in Fig. 6.6. Both the

gravity loading and the lateral loading on the structure are symmetrical with respect

to the plane of symmetry. Therefore, the boundary conditions on this plane are such

that only in-plane deformations are permitted.

In the mathematical modeling, the strength and stiffness properties of all
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elements are modeled directly from the properties of the corresponding members of

the structure. For those elements that lie on the plane of symmetry, the strength and

the stiffness of each element represent half the properties of the corresponding

members. Such an analysis accounts for only half the strength of the structure.

Therefore, the strength of the analytical model has been doubled to correspond to

that of the total structure.

The analytical model shown in Fig. 6.6 consists of both the frame elements

and the finite elements. Only the main shear wall is modeled by finite elements; the

remaining members are all modeled by frame elements. This model is restricted to

only one lateral degree of freedom per floor level, simply because the floor system

has been idealized as a rigid diaphragm. In the subsequent sections, the detailed

analytical model of the individual members will be discussed.

6.3.1 Modeling of the Shear Wall

As mentioned earlier, the most important response characteristics of the shear

wall have been identified [3] as: (1) rocking of the shear wall, (2) nonlinear shear

deformation of the wall, (3) variation in flexural and shear stiffness of the wall, and

(4) fixed end rotation at the base of the wall.

Since these response characteristics can not be modeled directly by a simple

beam-column element, the most logical approach to take for modeling the shear wall

is to use finite element methods. The particular advantage of this method is that it

relies on the internal stresses of the element to compute the strength and stiffness of

the member.

In order to model the shear wall with finite elements, the reinforced concrete

section is considered to be a composite section. Basically, the concrete and the

reinforcing bars are modeled separately by plane stress elements, and the full bond

between the two elements is enforced through compatibility at the nodes. Figure
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6.7 illustrates the cubic rectangular finite elements used for the analysis of the wall.

To model the reinforcing bars as plane stress elements, it is necessary to

transform the uniaxial stress-strain relation of Fig. 6.8 according to the rules set

forth in section 4.2.2. For the dastic condition, the stress-strain relation for the

horizontal reinforcing bar (with 8==0) becomes

[

<1;xx ] [I 0 0] [EXX]
<1yy = E 0 0 0 Eyy

<1xy 0 0 0 2Exy

and for the vertical reinforcing bars (with 8=90), this relation is:

[
~:] = E [~ ~ ~] [:;;]
<1xy 0 0 0 2Exy

(6.1)

(6.2)

Since these two orthogonal directions are completely independent, we can

add the two stiffnesses and consider only one plane stress element to represent both

types of reinforcement. In that case, the stress-strain relation becomes:

[
~:] =: E [~ ~ ~] [:;;]
<1xy 0 0 0 2Exy

(6.3)

Similarly, to establish the yield condition for the reinforcing bars in terms of

the active stress resultant, equation (4.23), expressed as:

(6.4)

." = ± [COS
2
8 sin

2
8 2Sin8COS8] [::] - ",i,1d - H A. ,; 0 (6.5)

takes the following form for the yield surfaces in the horizontal and vertical steel,
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respectively:

(6.6)

(6.7)

For a single finite element member to consist of both the horizontal and

vertical reinforcements, the matrix N and the vectors R and II contain the

corresponding vector for each individual yield surface. For example, if the

horizontal and vertical reinforcements each have two yield surfaces (representing a

yield in tension (+1) and a yield in compression (-1», then the matrix N and the

vectors Rand H for the finite element member become:

1 0 0 +
(1x yield

-1 0 0 (1; yield
Nt = R= (6.8a,b)0 1 0 +

0 -1 0
(1y yield

(1; yield

H+ 0 0X

H- 0 0x
H= (6.8c)

0 H+ 0Y

0 H- 0y

A final comment in regard to the finite element modeling of the

reinforcement is that the reinforcing bars are assumed to be smeared or distributed

uniformly across the section. Therefore, the strength and stiffness properties of steel

must be multiplied by the reinforcement ratio Ps (which is defined as the ratio of the
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reinforcement area to the cross-sectional area of the finite element).

Table 6.1 summarizes the properties of the horizontal and the vertical steel in

both the panel and the edge member of the shear wall. The elastic stiffness of the

steel is taken as 29000 ksi and the hardening stiffness is measured from the

idealized yield surface that approximate the work-hardening behavior of the steel.

As mentioned earlier, during the inelastic response of the structure, a

significant amount of fixed-end rotation is observed at the base of the wall. In order

to model this phenomenon, the material property for the steel layer at the base of

the wall has been chosen in such a way that the slip between the steel and the

concrete is included in the stress-strain relationship of the reinforcing bars. This is

illustrated in Fig. 6.8(b) where a stress-strain relationship has been calculated from

the bending moment and axial force at the base of the wall, and the displacement of

the reinforcing bars over a distan(;e of 6 inches above the wall-foundation interface.

This G - e relationship is used to model the behavior of reinforcing bars (over a

distance of 6 inches) at the base of the wall.

The concrete in the shear wall is modeled separately by a layer of plane

stress elements. In the elastic range, concrete is assumed to obey Hooke's Law for

isotropic homogeneous material:

E
=---2

1 -- v

1

v

o

v

I

o

o
o

I-v
2

(6.9)

In the inelastic range, yield conditions are provided to define the initiation of

cracking and crushing in the concrete. On the basis of biaxial experimental data on

concrete specimens, Chen and Chen [11] have developed a model for the initial

yield surface and the failure yield surface of concrete sections. The shape of these

yield surfaces depends on the ratio of the biaxial compressive strength to the
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uniaxial compressive strength of the concrete. This parameter depends to some

extent on the degree of confinement of the concrete. For the unconfined concrete in

the panel of the wall, the biaxial compressive strength of the concrete is not

expected to be different from the uniaxial compressive strength. Hence, the ratio of

biaxial to uniaxial strength is taken as unity. For the confined concrete in the edge

member, however, the biaxial strength is expected to be higher in magnitude than

the uniaxial strength. From experimental data on the biaxial strength of concrete

[16], this ratio has been selected as 1.2 for the confined concrete.

The general shapes of the concrete yield surfaces are given in Fig. 6.9. The

idealized yield surfaces obtained by inserting piecewise linearized yield planes in

the original curved surfaces are also shown in Fig. 6.10. These surfaces are all

normalized with respect to the uniaxial compressive strength of the concrete (f;).

In order to model a concrete section, it is possible to define two (or more)

yield surfaces; one which usually defines the initial yield surface of concrete (at 0.5

to 0.7 t;), and a second surface that defines the ultimate or crushing limit of the

concrete (at 0.9 to 1.0 t;) (see Fig. 6.11). However, since the primary concern of

this analysis is to predict the behavior of the structure at damageability and ultimate

limit states and due to the fact that the finite element modeling of the wall is

already a costly operation, only one set of yield surfaces is used to define the

ultimate strength of the concrete at 1.0 t;.
Figure 6.10 illustrates the properties of the confined and the unconfined

concrete sections. In both cases, concrete is assumed to behave like an elastic­

perfectly plastic material. The elastic stiffness of the concrete, which defines the

behavior of the concrete prior to reaching the ultimate yield surface, is picked to be

O.5EC' where Ee is the initial uncracked stiffness of the concrete. This value has

been selected based on the stress-strain relationship of a sample of concrete, taken
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from the first story wall after the dynamic testing of the structure.

6.3.2 Modeling of the Longitudinal and Transverse Girders

The longitudinal and transverse girders of the structure are modeled by beam

elements. The modeling parameters provided for these elements are based on the

moment-rotation characteristics of the girders. In order to establish these properties,

the cross-sectional behavior of the girders are determined and then the moment­

rotational response of the girder is obtained by integrating the curvature along the

length of the members.

For the cross-sectional analysis of the longitudinal girders, several moment­

curvature relationships were computed in reference 17 (and illustrated in Fig. 6.12).

The basic assumption in the cross-sectional analyses of the girders is that an

effective width of slab (denoted by bf ) is contributing to the strength and stiffness

of the girder section. Curves 1, 2, and 4 in Fig. 6.12(c) represent the moment­

curvature relationship of the gird(:r section when a uniform distribution of strain is

considered across an assumed ef1fective width of slab of 11.81, 23.62, and 39.37

inches, respectively. The third curve in Fig. 6.12(c) is obtained when a nonuniform

distribution of strain (as illustrated in Fig. 6.12(a,b» is considered across the width

of the slab (39.37 inches).

Since the actual distribution of strain across the width of the slab is expected

to be nonuniform, the third mom(mt-curvature relationship of Fig. 6.12(c) is chosen

for modeling the girders. This curve has been idealized in Fig 6.14(b) by two

curves: the first curve is provided to model the behavior of the uncracked sections,

while the second curve (shown by the dashed line) models the behavior of the

cracked sections.

Given the sectional moment-curvature relationship of Fig. 6.14, the next

phase of the analysis determines the moment-rotation characteristics of the member.
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For this particular analysis, the longitudinal girders are modeled by a number of

beam elements, as shown in Fig. 6.13. Here, consideration is given to the fact that

the girders are primarily subjected to end rotations. Therefore, the analytical model

of the girders is highly discretized over the end zones, to allow for the spread of the

inelastic deformation over the region. The parameters that define the behavior of

each segment are then selected from the idealized moment-curvature relationship of

Fig. 6.14(b).

After assigning the element properties, the member (shown in Fig. 6.14(a» is

loaded with vertical gravity load, followed by monotonically increasing end

rotations. The results of the analysis are the moment vs rotation relationships of

Fig. 6.14(c) for each end of the girder.

Given the moment-rotation relationships of Fig. 6.14(c), the longitudinal

girders will now be modeled for the global analysis of the structure. A model of

these girders must consist of at least two beam elements (as shown in Fig. 6.15(a»,

simply because there are transverse beams that frame into the middle of the

longitudinal girders. The moment-curvature relationships assigned to the elements

are shown in Fig. 6.15(b). The elastic stiffness of the elements is taken to be the

same as the cross-sectional stiffness, but the cracking and the yield moment are

selected by trial and error in order to accurately model the moment rotation

relationship of Fig. 6.14(c).

When this model is subjected to gravity loads followed by monotonically

increasing end rotation, the moment-rotation relationship of Fig. 6.15(c) is obtained.

This moment-rotation relationship fits closely the previous curve obtained for the

highly discretized girder. Therefore, the two beam element model can be used

successfully to represent the longitudinal girders in the global analysis of the

structure.

A similar study is also carried out for the transverse girders. In this case, a
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single beam element is used to represent each transverse girder. The element

properties are shown in Fig. 6.l6(b); the moment-rotation relationships generated for

the these girders when subjected to gravity loads and equal end rotations are shown

in Fig. 6.l6(c).

6.3.3 Modeling of the Columns

The columns of the structure are modeled as biaxial beam-column elements.

The modeling parameters providt~d for these elements consist of cross-sectional

stiffness and the yield strength (which is generally expressed in terms of a moment­

axial load interaction diagram).

Since the columns are presumed to have been cracked during the first series

of tests, the flexural stiffness (for each principal direction) is based on the cracked

section stiffness which is about 50 percent of the gross section stiffness. For the

axial stiffness, the gross section stiffness is taken as the elastic stiffness of the

element, simply because the colunms are rarely subjected to a net tensile force and

the average axial compressive stiffness of the columns calculated over a story height

is very close to the gross section sltiffness.

The yield surfaces specified! for a biaxial beam-column element are generally

expressed in terms of the biaxial bending vs axial load interaction diagram (see Fig.

6.17). However, a preliminary analysis of the structure indicated that the bending

moment that developed about the longitudinal axis (My) never exceeded 25 percent

of the yield moment. Hence, the only part of the analytical interaction diagram that

is pertinent to the analysis is the interaction curve of Fig. 6.18 which shows bending

moment about the lateral direction (M;;.) vs axial load. In this figure, computed

bending moment (Mz) vs axial load at first yield of steel and at maximum moment

are illustrated. On the basis of this interaction diagram, the piecewise linearized

yield surface shown in Fig. 6.18 is chosen for the analytical modeling of the
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column. This idealized yield surface deviates considerably from the actual behavior

of the section at around the balanced point. However, since the compressive axial

load in the columns remains well below the balanced point, the error in the

analytical interaction diagram can be ignored for this problem.

6.3.4 Modeling of the End Walls

The end walls are modeled by truss elements. When the structure is

subjected to lateral loads, the end walls contribute only to the axial stiffness of the

adjacent columns. Therefore, each end wall is modeled by two truss elements that

are provided parallel to the adjacent columns. Each truss element represents half

the strength and stiffness of the corresponding end wall.

The initial elastic stiffnesses of the end walls are taken as the gross section

stiffnesses, and the yield strengths of the elements in tension and compression are

taken as the tensile strength of the cracked section and the axial compressive

strength of the uncracked section, respectively.

6.4 Analytical Response to Monotonically Increasing Lateral Loads

For the global analysis of the structure, the analytical model of Fig. 6.6 is

subjected to gravity loads, followed by monotonically increasing lateral loads. The

lateral loads represent the inertial forces developed by acceleration of the floor

masses. In order to establish the upper bound, the lower bound, and the most

probable analytical strength of the model, three different distributions of horizontal

load along the height of the structure are considered (see Fig. 6.19). These include

a uniform distribution, an inverted triangular distribution, and a parabolic

distribution modeled after the pattern of inertial forces recorded at the time of

maximum response of the structure during one of the high intensity excitations.
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6.4.1 Global Analytical Response of the Model

The global analytical response of the structure when subjected to the three

different lateral load patterns is given in Figs. 6.20 through 6.23. These figures

show the roof displacement and the first story displacement vs the total base shear

and the total overturning moment. Since the three analytical curves of Figs. 6.22

and 6.23 (corresponding to the three lateral load patterns) are almost identical, the

three curves are represented by only one curve.

The inelastic response of the structure in terms of the sequence of plastic

hinge formation is also illustrated in Figs. 6.24(a,b,c). The first group of elements

to undergo plastic deformation is the longitudinal girders which reach their negative

cracking moments at their right ends; and at the same time, the base of the shear

wall begins to crack at its left e:nd (see Fig. 6.24(c». While the cracks extend

further into the left side of the shear wall, the left ends of the longitudinal girders

reach their positive cracking mom<mts.

As the yielding of the mo<ilel progresses, the longitudinal girders reach their

positive and negative yield moments. Also, the transverse girders framing into the

tension side of the wall yield at both ends (see Fig. 6.24(b». Since the yielding of

the transverse girders induces a considerable tension force in the columns of Frame

A, the second row of columns in Frame A (see Fig. 6.24(a» will eventually yield at

both ends. This phenomenon occurs at a roof displacement of about 2.0 to 2.5

inches.

Besides the cracking and the inelastic deformations observed at the base of

the wall (see Fig. 6.24(c», there are isolated cracked zones at the sixth and seventh

stories of the wall. The cracking in the sixth story is due to the reversal of the

bending moment in the wall caused by the frame-wall interaction. But the one at

the seventh story is due to local interaction between the frame and the wall (i.e., the

large negative moment in the longitudinal girder induces local cracking in the panel



69

of the wall).

6.4.2 Comparison of Experimental and Analytical Responses of the

Structure

In order to compare the analytical and the experimental responses of the

structure, envelopes of peak experimental responses of the structure are given in

Figs. 6.20 through 6.23. Since the analytical model of the structure is based on the

assumption that the structure is in an initially cracked state, the experimental

response curves shown in Figs. 6.20-6.23 correspond to tests conducted on an

initially cracked structure.

Referring to Fig. 6.20 it can be seen that the experimental response curve for

the base shear vs roof displacement is best matched with the analytical response

curve obtained for the uniform load pattern. The other two analytical response

curves (corresponding to the parabolic and triangular load distributions) match the

initial slope of the experimental curve; but at high lateral load levels, they fall

below the experimental curve. At this load level, for a given value of roof

displacement, the analytical base shears obtained for uniform, parabolic, and

triangular distributions are 101, 91, and 82 percent of the experimental value,

respectively.

Basically, the same type of behavior is observed in Fig. 6.21, where the

analytical and experimental response curves for base shear vs first story

displacement are compared.

For the overturning moment vs roof displacement of Fig. 6.22, however, the

analytical response curves obtained for the three different load distributions are

almost identical, and they all fall short of the experimental response curve at high

lateral load levels. It can be seen from Fig. 6.22, that the initial slope of the

analytical curve matches that of the experimental curve. But, at high lateral load
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levels, the two curves diverge with the analytical curve reaching up to 90 percent of

the experimental curve. A similar type of behavior is also observed in Fig. 6.23,

where the analytical and experimental response curves for overturning moment vs

first story displacement are compared.

The differences in the analytical and the experimental responses of the

structure can be due to either modeling errors or errors in interpretation of the

experimental data. The main source of error in the analytical modeling of the

structure is due to underestimating the strength and the stiffness of the individual

element. A possible explanation for the higher strength observed in the real model

is that during the dynamic excitatilon, the material is subjected to a maximum strain

rate of the order of 0.1 in/in/sec [3]. Material tests have indicated that such a strain

rate can increase the strength of the concrete and the reinforcing steel by about 15

and 25 percent, respectively [3].

A possible source of error in the experimental results is that even though the

structure is excited horizontally, the interaction between the shaking table and the

structure induces some vertical excitation in the structure. This vertical excitation

results in a vertical inertia load which can possibly increase the strength of the

vertical members. In particular, the bending moment and the shear strength of the

shear wall increase with an increase in the axial load. This topic will be discussed

further in the next section, where the analytical response of the shear wall is

compared with the experimental n~sponse.

6.4.3 Local Response of the Shear Wall

In this section, the analytical and the experimental responses of the shear

wall will be compared. The response of the wall in terms of the roof displacement

and the first story displacement vs the wall base shear and overturning moment are

given in Figs. 6.25 through 6.28, The three analytical curves shown in Figs. 6.25
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and 6.26 correspond to the three different load patterns applied to the structure.

Only one analytical response curve is shown for the roof displacement and the first

story displacement vs wall overturning moment curves of Figs. 6.27 and 6.28, since

the three analytical curves are almost identical.

It can be seen from Fig. 6.25 that the experimental response curve is best

matched with the analytical response curve obtained for the uniform load

distribution. The other two analytical response curves approximate the initial slope

of the experimental curve, but, at high lateral load levels, they fall below the

experimental curve. At these load levels, the analytical wall base shears obtained

for the uniform, parabolic, and triangular load distributions are 99, 90, and 78

percent of the experimental values, respectively.

A similar conclusion can be drawn for the first story displacement vs the

wall base shear of Fig. 6.26.

For the roof displacement vs the wall overturning moment of Fig. 6.27, the

analytical and the experimental response curves have the same initial slope, but, as

the yielding of the wall progresses, the two curves diverge with the analytical curve

reaching up to only 90 percent of the experimental curve at a roof displacement of

about 1.5 inches. Thereafter, the maximum moment capacity of the wall decreases

because of the rupture of the main reinforcements.

Similar behavior is observed in Figs. 6.28 and 6.29, where the analytical and

experimental response curves for the first story displacement and the fixed end

rotation at the base of the wall vs the wall overturning moment are illustrated. In

Fig. 6.29, the rupture of the wall reinforcements leads to a dramatic increase in the

fixed end rotation from 5xlO-3 to lOx 10-3 radians.

The maximum difference between the analytical and the experimental

response of the wall is seen in Fig. 6.30, where the axial force developed at the base

of the wall is plotted as a function of roof displacement. It can be seen from this
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figure that whereas the axial compressive force of the wall measured during the

dynamic testing of the structure is as high as 60 kips, the compressive force

developed in the analytical model of the wall is only 36 kips. The increase in the

wall compressive force over the gravity loads (which is only 26 kips) is primarily

due to the shear transferred to the wall from the longitudinal and transverse girders

and slabs that frame into the wall. During the uplift and rocking of the wall, the

girders framing into the wall restrain the motion of the wall and transfer a net

compression force into the wall. This phenomenon is illustrated in Fig. 6.4.

A possible explanation for the difference in the experimental and analytical

values for the wall axial force is that during the dynamic testing of the structure, the

main reinforcement in the wall ruptures. Thereafter, the tensile force in the

reinforcement is virtually eliminated and the net axial force in the wall is primarily

due to the compressive force in the concrete. In order to measure the significance

of the tensile force in the reinfor<:ement, for the analytical model of the wall, the

axial force developed at the base of the wall in the concrete and the reinforcement

layers are plotted separately in Fig. 6.31. In this figure, it is clearly illustrated that

while the compressive force in thle concrete is of the order of 55 kips, the tensile

force in the reinforcement is 19 kips resulting in a net axial force of 36 kips in the

wall. Therefore, in the analytical model of the wall, if the tensile reinforcements

had been ruptured, the axial force in the wall would have been of the order of 55

kips rather than 36 kips.

Other factors that contribute to the difference between the analytical and the

experimental responses of the sh(~ar wall are experimental error in measuring the

response of the wall and the vertical inertia force induced in the structure.

Since the test structure is designed to be statically determinate at the first

story, the internal forces in the shear wall are determined by enforcing equilibrium

at the bottom story of the structufle. In particular, the internal forces in the columns
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of the first story are detennined from the internal force transducers that are provided

in all first story columns and the internal forces in the end walls are determined by

concrete strain gages. However, these gages are only monitored during the last

series of tests and analytical techniques are developed to approximate the

contribution of end walls during the earlier tests. This leads to some uncertainties

in determining the experimental response of the wall.

Another source of discrepancy is due to the fact that when the experimental

response of the wall is computed, all the effects of vertical inertia force induced in

the structure are included in the response of the wall. In particular, the axial load in

the shear wall is measured as the difference between the gravity loads and the axial

force developed in the first story columns and end walls. Therefore, since the

vertical inertia forces are not considered as an additional external force, their entire

contribution is included in the wall axial load. The exact magnitude of the vertical

inertial load is not known because of the lack of instrumentation of the building.

But the maximum vertical acceleration on top of the shear wall has been measured

to be of the order of O.15g. This simply indicates that there is at most a 4 kip

(26[kips]xO.15) increase in the wall axial load due to vertical excitation.

6.5 Crack Pattern and Type of Failure Observed in the Shear Wall

In order to fully understand the inelastic behavior of the shear wall, the crack

pattern formed in the analytical model of the shear wall is compared with the ones

formed in the walls of the test structures (i.e. considering both the lIS-scale model

tested at Berkeley and the full-scale model tested at Tsukuba, Japan).

Figure 6.24(c) shows the sequence of crack formation developed In the

concrete layer of the shear wall. This figure clearly illustrates that because of the

assumed low tensile strength of the concrete, cracking extends all the way to the

third story of the wall, while the yielding of the reinforcing bars is primarily
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concentrated in the first story of the: walL

To compare these results with the experimental response of the structure, the

crack patterns of the 1/5- and the full-scale models at a roof displacement of 2.4

inches (1.4 percent roof drift) are shown in Fig. 6.32. It can be seen from this

figure, that while the crack patt1erns in the full-scale model consist of finely

distributed diagonal cracking in the first three stories of the wall, the cracking in the

wall of the lI5-scale model is concentrated in the first story. Other cracks observed

in the second, third, and fourth story of the wall panel of the lI5-scale model are

due to shrinkage of the concrete.

It is quite obvious that because of load reversal, similar crack patterns form

on opposite sides of the wall panel in both the 1/5- and the full-scale models. This

is in contrast to the analytical model where the applied loads are monotonically

increasing and cracks are formed only on one side of the wall. Otherwise, the crack

patterns formed in the analytical model are similar to those of the full-scale model,

but are different from the ones fomled in the 1/5-scale model.

One reason for the differences observed in the crack patterns is that the full­

scale model is tested pseudo-dynamically, with a loading process so slow in nature

that the load is almost sustained. But the 1/5-scale model is tested on the

earthquake simulator with a model time which is .J5 times faster than normal.

Consequently, for the full-scale model (and also for the analytical model, since in

both cases the loads are increased gradually) there is enough time for crack

formati()n and propagation. But that is not the case for the lI5-scale modeL

Another reason for the different crack patterns is the difference in the tensile

strengths of the concrete. For the 1/5-scale model, the original tensile strength of

the concrete is twice that of the flllll-scale model. Also, since the analytical model

of the structure is based on the ]properties of the cracked structure, the average

tensile strength of the concrete is taken as one-half of the tensile strength of the
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virgin specimen.

Besides the crack pattern formed in the wall, the type of failure sustained in

the wall has been identified for both the analytical model and the test structures. In

order to determine the type of failure in the analytical model of the wall, a set of

criteria corresponding to the failure of the concrete and the reinforcing bars .has

been specified (see Fig 6.33). In particular, for the steel layer, the stress and strain

at the tensile rupture and at the buckling compression of the reinforcing bars have

been specified, and for the concrete layer, the failure of the material in the stress t

and strain domains has been defined according to the Chen model [18].

Based on these criteria, the sequence of failure obtained in the concrete layer

is shown in Fig. 6.34. The results can be summarized as follows: First, the cracks

initiated on the tension side of the wall (1, 2) extend through the panel (3), and

then, the concrete in the panel of the wall adjacent to the compression edge member

(3*) fails due to excessive shear-compression deformation. Finally, the failure in

the wall panel extends all the way to the compression edge member (4), and the

edge member itself (4*,5) fails due to excessive compression deformation. This

type of failure is characteristic of a shear-compression failure.

The stress and strain states in the concrete layer at the time of failure are

shown in Fig. 6.35. It is interesting to note that the strain in the steel layer does not

reach the ultimate strain of the material, and hence, the reinforcements are not

ruptured.

Recall from section 6.2 that the failure in the l/5-scale model is a flexural

failure obtained from the rupture of the tensile reinforcing bars in the edge columns

whereas the failure of the full-scale model is a shear-compression failure similar to

the one obtained in the analytical model.

A possible explanation for the difference between the types of failure is that

t For the failure of the concrete in the stress domain refer to Fig. 6.10.
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in the liS-scale model, because cracking is concentrated at the base of the wall, the

principal reinforcements attain their ultimate strain. Whereas in the analytical

model and the full-scale model, because of the distribution of cracking, the tensile

reinforcements do not rupture; instead, most of the failure is concentrated in the

compression side of the wall.

6.6 Conclusions

Although exact correlation between the analytical and the experimental

responses of the structure is not obtained, the nonlinear static analysis of the

structure predicts the local strength of the shear wall with the same accuracy that it

can predict the global strength of the structure (90 percent of the experimental

response).

The mathematical model of the structure is also capable of simulating the

three dimensional response of the structure observed during the experiment. In

particular the analytical modeling of the shear wall is capable of reproducing the

behavior associated with rocking of the wall, fixed-end rotation at the base of the

wall, and inelastic shear deformation observed in the wall.
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7. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

7.1 Summary

The primary objective of the studies reported herein was to develop

analytical methods suitable for nonlinear analysis of reinforced concrete frame-wall

structures. The analytical methods presented include a finite element model of the

shear wall that is capable of simulating some of the physical characteristics of the

wall.

Since analytical methods based on mathematical programming techniques are

more efficient than classical nonlinear analytical methods, the method chosen for

elastoplastic analysis of structures is based on mathematical programming

techniques. In chapter 2, the solution strategy for this method is briefly described.

It is clearly demonstrated that this procedure is considerably faster than most

inelastic analysis programs, primarily because the introduction of a new plastic

hinge does not require the stiffness matrix of the structure to be updated. Instead,

after the introduction of every new plastic hinge, a pattern of self-equilibrating

stresses that resists the corresponding plastic deformation is computed.

Consequently, the nonlinear response of the structure can be computed from the

superposition of the self-equilibrating stresses and the elastic stresses that resist the

external loads.

In order to describe the analytical formulation and show its relation to

mathematical programming, it is necessary to establish the constitutive laws as a

function of two inherent parameters: the plastic multipliers and the plastic

potentials. This is done in chapter 3, where the constitutive laws are introduced

along with the compatibility and the equilibrium relations, and after some

manipulation, the nonlinear response of the structure is presented in a mathematical

form known as the linear complementarity problem.
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Chapter 4 contains a description of the analytical models used to describe the

nonlinear behavior of some typical members of the structure. In this chapter, the

elastoplastic behavior of a selected group of frame elements and finite elements is

presented. In particular, the discussion of finite elements is confined to the

nonlinear behavior of plane stress elements that are useful in modeling reinforced

concrete shear walls.

In chapter 5, the solution to the elastoplastic problems of chapter 3 is

presented in terms of mathematical programming techniques. The analytical

procedure is explained with the aid of an algorithm that works on an event-to-event

basis. Generally, at the end of every event a new plastic hinge is formed.

Therefore, for the next step of the analysis, a pattern of self-equilibrating stresses is

computed, and the response of tht~ structure to an increment of loading is computed

by solving a linear complementarity problem. This process involves an elastic

analysis (a forward reduction and a back substitution for computation of self­

equilibrating stresses which basically requires NM numerical operations, where N

and M denote the number of degr,ees of freedom and the band width of the structure

stiffness matrix) and a pivot transformation on the Hessian matrix A for the solution

to the linear complementarity problem of 5.6 (the number of operations in this case

is of order 11 2, where 11 denotes the number of active yield surfaces). In the event

that this process is interrupted by the unloading of one of the active yield surfaces,

then the solution to the quadratic programming problem of (5.10) (with the Hessian

matrix A) is also required.

Since one of the objective:s of the studies reported herein was to study the

three-dimensional analytical response of the reinforced concrete frame-wall

structure, a series of nonlinear static analyses are conducted and described in

chapter 6. An analytical model of the structure consisting of both frame elements

and finite elements is developed. When this model is subjected to gravity loads plus
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monotonically increasing lateral loads, the global analytical response of the structure

is found to be in good agreement with the envelope of the experimental response.

Due to the nature of the analytical model chosen for the shear wall, both the

analytical strength and the mode of failure of the wall can be predicted. In

particular, the results obtained indicate that the analytical strength of the shear wall

is 90 percent of the experimental value, and the mode of failure of the shear wall is

similar to that of the pseudo-dynamically tested structure.

7.2 Conclusions

(I) The analytical model proposed for the three-dimensional inelastic analysis of

a reinforced concrete frame-wall structure consists of frame elements for

every member of the structure except for the shear wall which is modeled by

finite elements. The primary reason for the finite element modeling of the

shear wall is to incorporate some of the nonlinear behavior of the wall such

as the nonlinear shear deformation, rocking and uplift of the wall.

(2) Applying the elastoplastic analysis computer program developed here to a

three-dimensional analytical model of a 7-story reinforced concrete frame­

wall structure (studied under the U.S.-Japan cooperative research program),

the global analytical response of the structure was found to be in good

agreement with the envelope of the experimental dynamic response of the

structure.

(3) The local response of the wall, Le. the shear and overturning moment

resistance of the wall, is also predicted with the same accuracy (90 percent

of the corresponding experimental results) as the global response of the

structure.

(4) The analytical technique developed here can also predict the crack patterns
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and the type of failure s1i1stained in the wall. However, because of the

sensitivity of the response of the wall to strain rate effects, the predicted

crack pattern and mode of failure are not similar to the one observed in the

dynamically tested structure. Instead, they appear to be a reasonable

prediction of the behavior of the wall for the pseudo-dynamically tested

structure.

(5) From the analytical studies, it can be concluded that the proposed program

can be used reliably to estimate both the local and the global responses of

reinforced concrete frame-wall structures.

(6) From the point of view of numerical efficiency it must be pointed-out that

the elastoplastic analysis of the three-dimensional analytical model of the

structure, consisting of 13'96 degrees of freedom and 22734 yield surfaces,

required 2.5 cpu hours on IBM 3090 computers. This is in light of the fact,

that at ultimate limit load level, due to the extensive cracking of the shear

wall, more than 800 yield surfaces were activated.

7.3 Recommendations for Futurre Research

(1 ) The analytical methods pmsented here were designed to determine the static

nonlinear response of the structure. But as pointed out in chapter 6, some of

the response characteristics of the structure (such as the mode of failure of

the wall) are highly sensitive to the type of loading (dynamic vs static).

Therefore, the analytical methods should be extended to include dynamic

effects.

(2) Interaction between reinforcing bars and concrete (such as bond deterioration

and slippage of the reinforcing bars) plays a crucial role in the behavior of

reinforced concrete elements. In order to include these effects in the analysis
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of the structure, elements such as those developed in reference 19, should be

included in the analytical model of the structure.

(3) In the analytical techniques presented here, the hardening parameters were

restricted to positive semi-definite matrices. To extend the analytical

methods to solve any general hardening matrix (i.e., any negative hardening

including the strain-softening behavior of elements), the mathematical

programming techniques should be extended to solve nonconvex problems

[9].
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APPENDIX A

It is important to explain the difference between the hardening parameters H

and the strain hardening stiffness<~s k that are commonly used to describe a force­

deformation relationship.

Consider the force-deformation relationship of Fig. A.I . After the first yield

surface is activated, the constitutive laws can be expressed either in terms of the

strain hardening stiffness k 1:

or in terms of the hardening parameter H I and the elastic stiffness ko:

/!i.M = HI A

/!i.M = ko /!i.e

(A.I)

(A.2)

The difference between the two relations is that in the first equation the parameter

/!i.e measures both the elastic and the plastic deformations, while in the second

equation the elastic and the plastk deformations are measured separately by /!i.e and

A, respectively. Hence, the deformation quantities /!i.e, A, and /!i.e are related

through the following expressions:

/!i.e =A + /!i.e (A3)

If we substitute for /!i.e, A, and Ae from equations (AI) and (A2), equation (A.3)

takes the following form:

t.~M /!i.M /!i.M
--=--+--
kl HI ko

(AA)

Eliminating the force component /!i.M from equation (AA), leads to an expression

that relates the stiffness parameters ko and k I to the hardening parameter HI:

(A.5)
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APPENDIX B

The usual representation of the plastic influence coefficient matrix Z is

Z = k c K-1ek - k. However, this matrix takes a different form when the force

method of analysis is employed [20].

In the force method, the first step of analysis is to identify the redundancies

(or the force degrees of freedom) and apply a set of redundant forces (R) at the

selected cut sections. The behavior of the structure is then analyzed by setting up

the equilibrium relationship that transforms any redundant force vector R into the

internal stress vector Q at the critical sections:

Q=AR (B.l)

Furthermore, the relative displacement r at the cut section is generally obtained by

integrating the elastic deformation along the length of the member

r = E R (B.2)

where E is the elastic compliance matrix.

If the structure is subjected to an imposed plastic deformation p at the

critical sections, the compatibility relationship can be used to determine the direct

contribution of concentrated deformation at the critical section to the relative

displacement r at the cut section:

r = Atp (B.3)

Furthermore, the (B.2) relationship can be used to determine the contribution of any

imposed elastic deformation (provoked by the concentrated plastic deformation at

the critical sections) to the relative displacement of the cut section. Altogether, the

relative displacement at the cut section is:

r = Atp + E R = 0 (BA)
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Therefore, the redundant forces are

R =_E- 1 Alp

and the self-equilibrating moments induced by p in the critical sections are:

QS =: A R = -A E-1A /p

(B.5)

(B.6)

Comparing this relationship to ~:xpression (3.59) it is obvious that the plastic

influence coefficient matrix Z is:

(B.?)

Hence, Z is a negative definite matrix.
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Table 6.1

89

Stress and strain response characteristics for the
reinforcement in the edge member and the panel of the
shear wall.

Reinforcement
Es ESH f y fu t u Ps

(ksi) (ksi) (ksi) (ksi) (in./in.) (in2jin2)

Edge Horizontal 29000 98.9 61.6 79.2 0.18 0.0060

member Vertical 29000 94.5 62.0 78.8 0.18 0.01082

Panel of Horizontal 29000 98.9 61.6 79.2 0.18 0.00394

the wall Vertical 29000 98.9 61.6 79.2 0.18 0.00394

Reinforcement
at wall-foundation

interface

Edge Horizontal 29000 98.9 61.6 79.2 0.18 0.0060

member Vertical 12400 74.4 62.0 78.0 0.22 0.01082

Panel of Horizontal 29000 98.9 61.6 79.2 0.18 0.00394

the wall Vertical 12400 74.4 62.0 78.0 0.22 0.00394

Es = Modulus of elasticity

ESH = Strain hardening modulus

f y = Yield stress

fu = Maximum tensile stress

t u = Ultimate tensile strain

Ps = Reinforcement ratio

Preceding page blank
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(a)

• •

•

(b)

Fig. 2.1 - (a) Frame element and (b) finite element models

M

EI

---------8
[I] m

L

Fig. 2.2 - Beam example: geometry, loading, and material behavior.

Preceding page blank



92

,
SIGN CONVENTION

FOR MEMBER FORCES

Se/astic limit =

_ WL
2

]
12

Fig. 23 - Elastic moment distribution and the elastic limit load
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Fig. 2.4 ~ The pattern of self-equilibrating internal stresses that
resists rotation at critical sections 1 and 4.
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Fig. 2.5 - The state of stress at all critical section
when elastic limit is reached.

Fig. 2.6 - Deformation pnttem and moment distribution at plastic collapse.
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DEFORMATION INTERNAL FORCE EXTERNAL FORCE
PATTERN DISTRIBUTION DISTRIBUTION
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Fig. 2.7 - The pattern of self-equilibrating internal stresses that
resists rotation at critical sections' 2 and 3.



96

h

n

Sleel
reinforcement

./

Links

dowel length

Ie '" ffi
" 7 '", ' . " , ' "

\ t
'J

~ lero separatio

.... Effective...J

Concre

\. Links

Crack

'" /J
~.I.
~

~

Fig. 2.8 - Discrete crack model for reinforced concrete model.

,-J=~rl~I~I~f~ii=~l'~I~rltt~_- RE1NFORCEMENT LAYERS

,', ':':::'.:'~
",. " ~ :: •• ~ I"""""'""

, '1-
'. CONCRE:TE .: l­
. ' I-

';:", .:',:.~':',:.':"',~:,,::.:,:~

Fig. 2.9 - Distributed crack model for reinforced concrete model.
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Fig. 3.1 - Elastic-perfectly plastic moment-curvature relationship
of beam cross section i.

8

Fig. 3.2 - Elastic-linear workhardening moment-curvature relationship
of beam cross section i.
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.Fig. 3.3 - Elastic-perfectly plastic moment-axial load relationship'
of beam-column cross section i.
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Fig. 3.4 - Elastic-linear hardening moment-axial load relationship
of beam-column cross-section i.
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Fig. 3.5 - The nonholonomic elastic-linear workhardening behavior
of beam cross section i.
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(a) Frame element e
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(c) Natural stress resultant - (natural deformation)
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(d) Active stress resultant - (active deformation)
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~~~ ~~~

(e) Active sltress resultant - (active deformation)

t S.~.)
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52 (S2)

(f) Active sltress resultant - (active deformation)

Fig 3.6 - Stress resultant vector for frame elements.
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AXIAL FORCE

AXIAL EXTENSION

Fig. 4.1 - Multilinear force-deformatjon relationship for
single stress component elements.
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Fig. 4.2 ~ Modeling the pinching phenomenon for a reinforced
concrete beam element.
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Fig. 4.3 - Uniaxial and biaxial interaction diagrams.
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Fig 4.4 - Initial and failure yield surface of concrete in
the prilncipal stress plane.



105

------~"""-~~--~~.,..O:::;'-~----_I_T_lf'_--- G xx

INITIAL YIELD
SURFACE

FAILURE SURFACE

Fig. 4.5 - Initial and failure yield surfaces of concrete in
the general stress space.
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Fig. 4.6 - 'Stress components in the reinforcing bar elements.
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Fig. 4.7 - Uniaxial stress-strain relationship for the reinforcing bars.
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Fig 4.8 - CUbic rectangular plane Stress eletnenls.
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Fig. 4.9. Joint eletnent between frame eletnenls.
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Fig. 4.10 - Joint element between a beam element and a finite element.
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,..-_ ACTUAL LOADING PATH

APPROXIMATION TO
THE LOADING PATH

Fig 5. 1 - A nonlinear loading path, approximated
by several proportional loading stages.
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i =inactive yield surfaces

IUPDATE 4'1-1' A1-1 , S1-1
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[RETURN

Fig 5.2 - Flowchart for the elastoplastic analysis procedure. This flowchart has been
adopted from a procedure in reference 5.
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Fig. 5.3 - A ftowchart for the complete analysis of the structure.

t If not the first loading stage, R = -~.
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Fig. 6.5 - Three-dimensional view of the lIS-scale model
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Fig. 6.6 - Analytical model used for the nonlinear analyses
of the 1/5-scale structure
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(b) Elevation

Fig. 6.7 - Finite element modeling of the shear wall
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IDEALIZED YIELD SURFACE
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(a) Stress-strain relationship of
reinforcing steel bars
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THE ORIGINAL
STRESS-STRAIN
RELATIONSHIP
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DATA POINTS

0.10 E, STRAIN + SLIP, in/in

fu --- ~ ~----
~:--~- 7

THE STRESS-STRAIN
RELATrONSHIP

/ INCLUDING THE SLIP

AEs = 12400 ksi

I
Eu = 0.22

(b) Stress-strain relationship of the reinforcing bar
modified to include the slip between the steel
and the concrete

Fig. 6.8 - Material properties of the reinforcing steel bars
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CONFINED CONCRETE

UNCONFINED CONCRETE

Fig. 6.9 - Yield surfaces defined for confined
and unconfined concrete
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(a) Yield surfaces for unconfined concrete

Gy

/,
D.l/e

(b) Yield surfaces for confined concrete

Fig. 6.10 - Piecewise linearized yield surfaces
for confined and unconfined concrete
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Fig. 6.11 - Initial and failure yield surfaces of concrete
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(c) Moment-curvature relationship for the longitudinal
girder as based on the spread of yielding on the slab.

Fig. 6.12 • Effect of the spread of yielding through the width of
the slab on the moment-curvature relationship of the
longitudinal girders
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MOMENT DISTRIBUTION

w

Fig. 6.13 - Discretizilng girders to model the spread
of plastic: zone at the ends of girders
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(c) The moment-rotation relationship obtained for the longitudinal girders

Fig. 6.14 - Modeling of the longitudinal girders
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(c) The moment-rotation relationship obtained for the longitudinal girders

Fig. 6.15 - Modeling of the longitudinal girders for global analysis
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(c) The moment-rotation relationship obtained for the transverse girders

Fig. 6.16 - Modeling of the transverse girders
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Fig. 6.17 - Biaxial inwraction diagram for the columns of the test structure
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Fig. 6.18 - Uniaxial bending moment-axial load interaction
diagram for the columns of the test structure
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BASE SHEAR. V, kips
(IN PERCENT OF SUPER-
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Fig. 6.20 - Roof displacement vs total base shear
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Fig. 6.21 - First floor displacement vs total base shear
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Fig. 6.22 - Roof displacement vs total overturning moment
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Fig. 6.23 - First floor displacement vs total overturning moment
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Fig. 6.24(b) - Sequence of plastic hinge formation in the transverse
frames; double hiI1lges indicate that the element has
reached its cracking and yield moments.
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STEEL LAYER

(V =VERTICAL REINFORCEMENT)
( H =HORIZONTAL REINFORCEMENT)

CONCRETE LAYER

Fig. 6.24(c) - Sequence of crack formation in the concrete layer and
plastic deformation in the steel layer of the shear wall



138

SHEAR IN WALL. VB' kips
(IN PERCENT OF SUPER­
STRUCTURE WEIGHT. % W)
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_..-0---:-----
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~OOF DISPLACEMENT. 6R • in

Fig. 6.25 - Roof displacement vs wall shear
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SHEAR IN THE WALL. VB' kips
(IN PERCENT OF SUPER­
STRUCTURE WEIGHT, % W)
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Fig. 6.26 - First floor displacement vs wall shear
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SHEAR WALL OVERTURNING MOMENT, Mw' kip-in, (% WH)
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2.0
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Fig. 6.27 - Roof displacement vs shear wall overturning moment
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SHEAR WALL OVERTURNING MOMENT, Mw ' kip-in, (% WH)

- EXPERIMENTAL

ANALYSIS

2000
(11.0)

1000
(5.5)

-e-: -- ------e

0.25
(a.B5)

0.50
(1.69)

FIRST FLOOR DISPLACEMENT. 61 • in
(DRlFT INDEX. %)

Fig. 6.28 - First floor displacement vs shear wall ovenuming moment
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SHEAR WALL OVERTURNING MOMENT, Mw' kip-in, (% WH)
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Fig. 6.29 - Fixed end rotation vs shear wall overturning moment
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COMPRESSION FORCE IN THE SHEAR WALL. N. kips
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Fig. 6.30 - Roof displacement vs wall axial force
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COMPRESSION FORCE IN THE SHEAR WALL. N. kips
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Fig. 6.31 - Roof displacement vs wall axial force showing
the contribution of concrete and steel layers
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Fig. 6.32 - Crack patterns in the l/5-scale and full-scale
models after 1.4% roof drift
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f u tension =79 ksi

Eu buckling =0.03 in/in---
(a)

-Eu = 0.0035 iln/in

-Eu =0.0036 in/in
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(b)
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I
I
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Fig. 6.33 - Failure crit(~ria for the reinforcing bar and concrete
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Fig. 6.35 - The stress and sltrain state in the concrete layer at the
time of failure. The numbers I, 2, 3, 4, and 5 correspond
to the failure zone identified in Fig. 6.34.
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Fig. A.I - Force deformation relationship
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