A DISPLACEMENT CONTROL AND UPLIFT RESTRAINT DEVICE FOR BASE ISOLATED STRUCTURES

by

JAMES M. KELLY
MICHAEL C. GRIFFITH
IAN D. AIKEN

Report to the National Science Foundation

COLLEGE OF ENGINEERING
UNIVERSITY OF CALIFORNIA • Berkeley, California

See back of report for up to date listing of EERC reports.

DISCLAIMER

Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation or the Earthquake Engineering Research Center, University of California, Berkeley.
A displacement control and uplift restraint device for base isolated structures is described. The device acts to limit the displacement of the bearings and can also be used to take uplift tension forces if necessary.

The device was tested in earthquake simulator tests of a nine-story, 1/4-scale steel frame model, at the Earthquake Simulator Laboratory of the Earthquake Engineering Research Center, University of California at Berkeley. The model was isolated using eight multilayer elastomeric bearings, four of which were located at the corners of the model and contained the displacement control devices.

The system was subjected to a large number of simulated earthquakes. In some tests the design acted to control the displacements and in others where uplift forces at the corners were generated the devices simultaneously limited the displacements and carried the uplift forces.

The test results show that the action of the devices is smooth and that there is no sudden jerk when one comes into action. The devices can perform as a fail-safe system for base isolated buildings: in this role they would be designed to act only when the ground motion is greater than that for which the base isolation system has been designed.
A DISPLACEMENT CONTROL AND
UPLIFT RESTRAINT DEVICE
FOR BASE ISOLATED STRUCTURES

by

James M. Kelly
Michael C. Griffith
Ian D. Aiken

A report on research sponsored by
the National Science Foundation
(Grant ECE-8414036)

Report No. UCB/EERC-87/03
Earthquake Engineering Research Center
University of California
Berkeley, California
April 1987
ABSTRACT

A displacement control device that can be installed within multilayer elastomeric base isolation bearings is described. The device acts to limit the displacement of the bearings and can also be used to take uplift tension forces if necessary.

The device was tested in earthquake simulator tests of a nine-story, 1/4-scale steel frame model, conducted at the Earthquake Simulator Laboratory of the Earthquake Engineering Research Center, University of California, Berkeley. The model was isolated using eight multilayer elastomeric bearings, four of which were located at the corners of the model and contained the displacement control devices.

The system was subjected to a large number of simulated earthquakes. In some tests the design acted to control the displacements and in others where uplift forces at the corners were generated the devices simultaneously limited the displacements and carried the uplift forces.

The test results show that the action of the devices is smooth and that there is no sudden jerk when one comes into action. The devices can perform as a fail-safe system for base isolated buildings: in this role they would be designed to act only when the ground motion is greater than that for which the base isolation system has been designed.
ACKNOWLEDGMENTS

The research reported herein was supported by the National Science Foundation under Grant No. ECE-8414036, and was conducted at the Earthquake Engineering Research Center of the University of California at Berkeley. Views expressed herein are those of the authors and not necessarily those of the sponsor.

The staff of the Earthquake Engineering Research Center, especially Messrs. D. Clyde, I. Van Asten, Drs. J. S. Dimsdale, C. M. Uang and Beverley Bolt provided invaluable assistance and advice over the course of the experimentation.
# TABLE OF CONTENTS

ABSTRACT .................................................................................................................. i
ACKNOWLEDGMENTS ................................................................................................. ii
TABLE OF CONTENTS ................................................................................................. iii
LIST OF TABLES ........................................................................................................... iv
LIST OF FIGURES ....................................................................................................... v
1. INTRODUCTION ..................................................................................................... 1
2. PROPERTIES OF THE TEST STRUCTURE .......................................................... 4
3. ISOLATION SYSTEM ............................................................................................... 6
4. DEVICE FOR UPLIFT RESTRAINT AND DISPLACEMENT CONTROL ............ 8
5. TEST PROGRAM .................................................................................................... 11
6. TEST RESULTS .................................................................................................... 13
7. CONCLUSIONS ................................................................................................... 18
REFERENCES ........................................................................................................... 19
APPENDIX A ............................................................................................................... 20
TABLES ..................................................................................................................... 25
FIGURES ...................................................................................................................... 29
### LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Earthquake Signals Used in Testing Program</td>
<td>26</td>
</tr>
<tr>
<td>5.2</td>
<td>Similitude Scale Factors for Prototype Responses</td>
<td>26</td>
</tr>
<tr>
<td>5.3</td>
<td>Maximum Model Responses on Bearings without Displacement Control Device</td>
<td>27</td>
</tr>
<tr>
<td>5.4</td>
<td>Maximum Model Responses on Bearings with Displacement Control Device</td>
<td>28</td>
</tr>
</tbody>
</table>
# LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Nine Story Steel Test Frame</td>
<td>30</td>
</tr>
<tr>
<td>2.2 Force Transducer and Bearing</td>
<td>31</td>
</tr>
<tr>
<td>3.1 Lead Plug Bearing Details</td>
<td>32</td>
</tr>
<tr>
<td>3.2 Bearing Modified to Accept Displacement Control Device</td>
<td>33</td>
</tr>
<tr>
<td>3.3 Displacement Control Device</td>
<td>34</td>
</tr>
<tr>
<td>4.1 Bearing Shear Test Apparatus</td>
<td>35</td>
</tr>
<tr>
<td>4.2 Shear Force vs. Displacement for Restrained Bearing Subjected to Sinusoidal Loading</td>
<td>36</td>
</tr>
<tr>
<td>4.3 Restrainer Bearing Force Diagram</td>
<td>37</td>
</tr>
<tr>
<td>4.4 Experimental and Predicted Force-Displacement Curves for Restrained Bearing</td>
<td>38</td>
</tr>
<tr>
<td>5.1 Normalized Earthquake Table Accelerations</td>
<td>39</td>
</tr>
<tr>
<td>5.2 FFTs of Earthquake Table Accelerations</td>
<td>41</td>
</tr>
<tr>
<td>6.1 Maximum Roof Acceleration vs. Maximum Table Acceleration for Free-to-Uplift Model</td>
<td>42</td>
</tr>
<tr>
<td>6.2 Bearing Horizontal Displacement and Column Vertical Displacement During the El Centro-0.842g Test (Free-to-Uplift Condition)</td>
<td>44</td>
</tr>
<tr>
<td>6.3 Vertical Accelerations in Free-to-Uplift Model During the El Centro-0.842g Test</td>
<td>45</td>
</tr>
<tr>
<td>6.4 Shear and Axial Force Behavior of Bearings in Free-to-Uplift Condition During the El Centro-0.842g Test</td>
<td>46</td>
</tr>
<tr>
<td>6.5 Maximum Story Acceleration Profiles for Free-to-Uplift Model</td>
<td>47</td>
</tr>
<tr>
<td>6.6 Peak Base Shear Ratio vs. Peak Shake Table Acceleration for Free-to-Uplift Model</td>
<td>48</td>
</tr>
<tr>
<td>6.7 Bearing Horizontal Displacement and Column Vertical Displacement During the El Centro-0.832g Test (Uplift-Restrained Condition)</td>
<td>49</td>
</tr>
<tr>
<td>6.8 Maximum Story Acceleration Profiles for the Uplift-Restrained Model</td>
<td>50</td>
</tr>
<tr>
<td>6.9 Profiles of Peak Story Accelerations for the Free-to-Uplift and Uplift-Restrained Isolation Conditions</td>
<td>51</td>
</tr>
</tbody>
</table>
6.10 Vertical Accelerations in Uplift-Restrained Model During the El Centro-0.832g Test ................................................. 52
6.11 Shear and Axial Force Behavior of Bearings in Uplift-Restrained Condition During the El Centro-0.832g Test ................................................. 53
6.12 FFTs of Roof Acceleration Time Histories for Free-to-Uplift and Uplift-Restrained Models ................................................. 54
1. INTRODUCTION

Base isolation is becoming a widely accepted seismic design strategy for low-rise, stiff buildings in highly seismic regions. It has been used and has been proposed for new buildings of up to five stories and as a seismic rehabilitation technique for existing buildings of up to seven stories. It is especially well suited to stiff structures since the degree of attenuation produced by the isolation system depends on the difference between the period of the building when isolated and its period as a fixed base structure. If the isolation period is 2.0 seconds and the fixed base period is 0.5 second a reduction in base shear force of 75% to 80% is possible. An isolation period of around 3 seconds is the longest period that can be achieved by practical systems that utilize elastomeric isolation bearings; and thus it has generally been accepted that isolation may not be possible for medium-rise buildings, since the necessary spread of period between the fixed-base structure and the isolated structure cannot not be achieved. Nevertheless, many medium-rise buildings can be quite stiff and isolation could still be effective in reducing the seismic base shear.

It has generally been accepted that elastomeric isolators should not be expected to take tension. A medium-rise building (10-15 stories), even when isolated, could generate an overturning moment that would cause uplift on some isolators. If a method could be devised to enable the elastomeric isolators to sustain tension then the technique could be extended to a building with a larger number of stories than has so far been contemplated, provided that the superstructure of the building is sufficiently stiff to have a fixed base period not longer than 1 second. The tension that would have to be sustained by the isolators would, of course, be transmitted to the foundation but this tension would be an order of magnitude less than that which would have to be carried by the foundation if the building were conventionally designed, since the overturning moment for the isolated building would be significantly less than that for the comparable conventional building. In a conventional design the overturning moment is
concentrated at the core and the foundation elements under the core need to sustain high tension forces. In an isolated building the tension is widely distributed over bearings which cover the entire plan area.

Some tension capacity in the isolation bearings would be advantageous for both low-rise and medium-rise buildings for another reason. The base isolation approach, although a very old concept, is still relatively recent in implementation and there is still resistance among engineers to its use. While it is recognized that designing a structure by code will produce a building able to withstand a moderate earthquake with little damage, it is believed that such a code designed building will survive a very large earthquake, e.g. Richter magnitude 8, with damage and possibly very severe damage, but will not collapse. The presence of member ductility and design redundancy will enable the structure to survive. In a base isolated structure, on the other hand, this ductility and redundancy do not appear to be present. It is easy to design an isolation system for a code specified design earthquake, but the performance of the isolation system if the earthquake is very much larger than the design earthquake is not clear. The isolation system seems to be the only line of defense and if this fails collapse seems to be inevitable. This shortcoming is continually raised and has led to the abandonment of promising designs using base isolation. For these reasons, a fail-safe system which would come into play when the earthquake intensity at the site exceeds that for which the building was designed is needed to eliminate this uncertainty.

Fail-safe systems to be used with isolation systems have of course been designed. In some, the building comes against a stop when the design displacement or some factor times the design displacement is exceeded [1]. Another approach is to have sliding surfaces, separated by a small clearance, which come into contact beyond a specified horizontal displacement so that the vertical load is transferred from the bearings to the sliding surfaces reducing the chance of collapse and increasing damping through friction [2]. Both of these have obvious disadvantages among which is cost. What is needed is a
simple low-cost modification to the isolation system that would control the displace­ments if the earthquake intensity became too great.

In this report we will describe such a system and show that it is effective and prac­tical. The system fits within a standard elastomeric bearing requiring no modification of the foundation or surrounding retaining wall. Its effectiveness has been demonstrated by tests on the earthquake simulator at the Earthquake Engineering Research Center (EERC) of the University of California at Berkeley. It has been used in an isolation sys­tem tested under a tall steel-frame model which, under moderate earthquake loading, generated uplift forces on the bearings.

The tests demonstrated that the displacement control device plays the role of a fail-safe system for low-rise buildings by smoothly limiting the maximum displacement under any level of earthquake. It will also act as a tension restraining device for tall base-isolated structures by taking the uplift forces generated by any earthquake loading that would produce uplift in unmodified bearings.

It is felt that this device will allow the profession to proceed with the design of base-isolated structures with confidence that a low-cost effective structural system will not collapse if the design earthquake is exceeded. Thus, since the base-isolated structure will be able to survive moderate earthquakes with no damage and with elastic response, the structural design for seismic loading will be greatly simplified and a better perform­ing structure will result.
2. PROPERTIES OF THE TEST STRUCTURE

The shaking table experiments were carried out on a nine-story three-bay welded steel frame model (Figure 2.1). The lowest story of the model was 4 feet high and the others were 3 feet high. The top of the model was almost 29 feet above the top of the isolation bearings and the width of the model was 18 feet. The aspect ratio was large enough that the model would experience uplift in the corner columns with moderate accelerations in the structure.

The model was not specifically designed for this test series but was adapted from that of a previous series of uplift tests [3]. The model represents a section in the weak direction of a typical steel-frame building at approximately 1/4-scale. The additional mass necessary for similitude requirements was provided by concrete blocks at each floor level. The total weight of the structure and the concrete blocks was 122 kips. The two rows of columns were bolted to stiff wide flange sections (W8x31) which ran the length of the base of the model, and with cross beams these represented the base mat of a prototype structure. The base isolators were placed between these W8x31 beams and the shaking table.

The test structure was instrumented with accelerometers, linear potentiometers, and direct current displacement transducers to enable accurate time history records of the responses of the model to be recorded for subsequent analysis. Each bearing was supported by a force transducer [4], from which time series records of the forces acting on the bearing were collected (Figure 2.2). The shear force at the base of the model structure was calculated for all excitations using the data acquired from these force transducers, and then compared with the base shear obtained by summing the inertial story shears. The correlation of these values was within about 10%.

The first two natural frequencies of the fixed base model structure (attached rigidly to the shaking table) were 2.8 Hz and 9.0 Hz. These were determined by taking fast Fourier transforms (FFTs) of the ninth floor horizontal acceleration time history when
the model was subjected to a free-vibration pull-back test. In a similar fashion the first three natural frequencies of the base-isolated model were found to be 1.11 Hz, 6.09 Hz, and 13 Hz.

The 0.901 second period of the base-isolated 1/4-scale structure corresponds to a 1.8 second period for the prototype structure. This is a realistic value for a base-isolated structure, the practical upper limit being about 2 to 3 seconds. Although the period shift was not as great as is usually desired (an increase of 3 to 4 times is common), it was shown that the isolation with this shift in period still provided significant reductions in base shear and story accelerations from the fixed base design values.
3. ISOLATION SYSTEM

The isolation system consisted of eight natural rubber bearings of multilaminate construction with a bearing located under each column of the steel frame. The natural rubber compound used in these bearings is designated EDS 39 [5] by the Malaysian Rubber Producers Research Association (MRPRA). It is a high strength lightly filled rubber which has a shear modulus of approximately 100 psi at 50% shear strain. It is relatively low in damping; the equivalent viscous damping ratio at 50% shear strain is in the range of 5% to 7%.

The bearings (Figure 3.1) are 6 inches square in plan and have six layers of 3/8-inch thick rubber, 5 reinforcing shims of 1/8-inch thickness and 1 inch thick top and bottom end plates. They also have central holes of 1.25 inches diameter. The bearings are designed with four dowel holes top and bottom to provide shear connections between the isolation system and the structure. When the uplift restrainers were not in place the dowel holes contained 3/4-inch long pins. In this configuration the frame was free to uplift and no tension was generated in the rubber.

Each bearing provided a stiffness of 1.6 kips/inch at 50% shear strain (or 1.125 inches displacement) which provided an isolation frequency for the model of 1.01 Hz. This frequency was too low to generate uplift forces at the corner columns for this model since the isolation system did not permit enough transmission of acceleration to the model to generate tension in the corner columns. In order to increase the likelihood of uplift, lead plugs were inserted in the central holes of the four bearings under the center columns. Lead yields at a stress of approximately 1500 ksi which corresponded to 1.8 kips shear load in a lead plug, and at 50% shear strain the effective contribution of each lead plug to the stiffness was 1.6 kips/inch. With the four bearings filled with lead the isolation frequency at 50% shear strain rose to 1.24 Hz. The increased stiffness and the tendency of the lead plugs to generate response in the higher modes made uplift more probable with moderate table inputs.
A device that provides uplift restraint and displacement control was inserted in each of the four corner bearings (Figure 3.2). This displacement control device is shown in Figure 3.3. It consists of two high-strength bolts contained in a cylindrical sleeve that allows a certain amount of free movement of the bolts. The devices have hemispherical ends held in hemispherical recesses which were machined into the 1 inch thick top and bottom plates of the bearings. When the bearing is not displaced the bolt heads are together in the center of the sleeve and when the bearing is displaced through a preselected distance the device becomes taut. Since uplift occurs at maximum displacements the device will also resist the uplift forces in addition to acting as a displacement control device. A further modification necessary to enable the bearing to resist uplift is that the four dowel holes in each end plate be threaded and the bearing firmly connected to the foundation (in this case the load cell under the bearing) and to the superstructure. If displacement control only is needed it is unnecessary to bolt the bearings to the foundation and the superstructure and dowels can be retained to transfer shear loads. It should be noted that the lead plugs in the center four bearings were used in these tests only for the purpose of producing uplift at the corners at moderate levels of earthquake input. They are not an essential component of the isolation system.
4. DEVICE FOR UPLIFT RESTRAINT AND DISPLACEMENT CONTROL

The device used in the test series to provide both uplift restraint and displacement control, described in the previous chapter, used two bolts within a cylindrical sleeve. The bolts can move a certain distance (which can be adjusted) within the cylindrical sleeve, but when the bearing has displaced horizontally through this distance the bolt heads are constrained by the ends of the sleeve. At this displacement the horizontal stiffness of the bearing is greatly increased. While this results in a sudden increase in stiffness there is not a sudden stop because, although the restraint device is now inextensible, the bearing can continue to deform horizontally by deforming vertically at the same time. Thus, the horizontal stiffness which is normally low becomes comparable with the much higher vertical stiffness.

Tests were performed on individual bearings in a testing device (Figure 4.1) which applied a constant axial load to the bearings while forcing them through several cycles of constant amplitude sinusoidal displacement. Force versus displacement curves were obtained from these tests at several different displacement amplitudes (Figure 4.2). Possibly because of friction between the device and the surface of the hole in the bearing, the transition from the stiffness at low shear strain to the combined stiffness of the bearing and the restrainer device at high shear strains was smooth. This smooth transition in stiffness at the initial operating displacement ($u_d$) of the device had the effect of minimal excitation of higher structural frequencies and led to a far better structural response than might have been expected if the stiffness had been sharply bilinear.

A linear elastic analysis of the response of the bearing with the device was carried out taking into account the vertical and horizontal stiffnesses of the natural rubber bearing, the displaced geometry of the bearing, and assuming small strains in the steel restrainer (Figure 4.3) and a constant axial dead load ($W$) on the bearing. With these assumptions the following relationship for force versus displacement of the uplift
restrainer bearing was obtained. The derivation is given in Appendix A.

\[ F_x = k_h u_x \]

for \( u_x \leq u_d \) \hspace{1cm} (4.1)

and

\[ F_x = k_h u_d + \left[ k_h + \frac{k_v u_d^2}{h^2 + \frac{k_v}{k_d} L^2} \right] e_x \]

for \( u_x \geq u_d \) \hspace{1cm} (4.2)

with

\[ u_d = \left[ L^2 - h^2 \right]^{\frac{1}{2}} \]

and

\[ u_x = u_d + e_x ; \]

(4.3) \hspace{1cm} (4.4)

where

\( F_x = \) shear force applied to the bearing

\( W = \) axial dead load on the bearing

\( P = \) axial force in displacement control device

\( k_h, k_v = \) horizontal \& vertical bearing stiffnesses, respectively

\( k_d = \) axial stiffness of restrainer device

\( u_x = \) total horizontal bearing displacement

\( u_d = \) horizontal bearing displacement when \( P = 0^+ \)
\[ e_y = u_y - u_d \]

\[ u_y = \text{vertical displacement of bearing due to } P \]

\[ \delta_y = \text{decrease in bearing height due to } W \]

\[ h = H - \text{thickness of end plates} - \delta_y \]

\[ L = \text{length of restrainer when device begins to act} \]

\[ u_L = \text{increase in length of restrainer due to } P \]

The experimentally obtained force-displacement curves for the restrained bearing and the curve predicted by the equations above are given in Figure 4.4.
5. TEST PROGRAM

The model was subjected to eight different earthquake signals on the shaking table. The earthquake characteristics ranged from predominantly low frequency ground motion (Mexico City and Bucharest) to predominantly high frequency ground motion (San Francisco). The earthquake test signals used were digitized records based on the earthquake ground motion data recorded at the sites listed below [6-9].

(1) Imperial Valley Earthquake (El Centro) of May 18, 1940 — S00E component, peak ground acceleration (PGA) = 0.35g

(2) Kern County Earthquake (Taft Lincoln School Tunnel) of July 21, 1952 — S69E component, PGA = 0.18g

(3) San Francisco Earthquake (Golden Gate Park) of March 22, 1957 — S80E component, PGA = 0.10g

(4) Parkfield Earthquake (Cholame, Shandon, Calif. Array No. 2) of June 27, 1966 — N65E component, PGA = 0.49g

(5) San Fernando Earthquake (Pacoima Dam) of February 9, 1971 — S14W component, PGA = 1.08g

(6) Bucharest Earthquake (Building Research Institute) of March 7, 1977 — EW component, PGA = 0.21g

(7) Miyagi-Ken-Oki Earthquake (Tohoku University) of June 12, 1978 — S00E component, PGA = 0.24g

(8) Mexico City Earthquake (Mexico City Station SCT) of September 19, 1985 — S60E component, PGA = 0.20g

The records were time-scaled (compressed) by a factor of two to satisfy similitude requirements for the 1/4-scale model.

Plots of the real time earthquake ground motions normalized to 1.0g peak acceleration and their FFTs are given in Figures 5.1 and 5.2, respectively. These FFT plots
indicate the wide range of earthquake characteristics represented by this group of earthquakes. The time-scaled Mexico City signal has its energy content concentrated almost entirely in the region of 0.5 Hz; the time-scaled Bucharest signal has a significant amount of low frequency energy which gradually decreases to near zero at a frequency of about 5 Hz; El Centro has most of its energy between 1 Hz and 3 Hz; Miyagi has most of its energy around 1 Hz; Parkfield, 0.5 Hz to 3 Hz; Pacoima Dam, 1 Hz to 4 Hz; San Francisco has a peak near 4 Hz and another at about 7 Hz; and Taft has a wide range of frequency (0.5 Hz to 5 Hz) over which there is a significant amount of input energy.

The earthquake signals used in the testing program and the nomenclature used throughout the rest of this report are given in Table 5.1 and a list of the scale factors necessary for converting the experimental results for the 1/4-scale model to values for a prototype structure is given in Table 5.2. Table 5.3 lists the input signals used in the testing program and the maximum model responses to the input signals for the tests on the model in the free-to-uplift condition. Table 5.4 lists the maximum responses of the model when it was restrained against uplift.
6. TEST RESULTS

Each of the earthquake test signals was used to excite the model at various levels of input magnitude. It was thought that uplift could be achieved with moderate levels of input and so the test signals chosen for extensive tests at or near uplift were the Bucharest, Mexico City, and El Centro signals. The dominant frequency content of these time-scaled signals ranged from about 1.0 Hz for the Mexico City signal to about 4 Hz for El Centro.

Maximum model acceleration was plotted against maximum table acceleration for the three signals (Figure 6.1). These plots indicate that the structure acceleration required to cause corner column uplift was about 0.44g. This result depends on the vertical distribution of acceleration in the structure but for the range of frequency associated with the test signals the distribution was essentially uniform. The bearing displacement associated with the 0.44g acceleration required for uplift was about 2.2 inches. This information was used to estimate the amount of free horizontal bearing displacement to allow before the displacement control device should begin to carry any load.

Free-to-Uplift Model

Each earthquake input signal was run at increasing peak table acceleration until the model lifted off the unrestrained corner bearings. Time histories of bearing horizontal displacement and column vertical displacement (Figure 6.2) showed that significant column uplift occurred (0.75 inch) during the El Centro-0.842g test. The results for the 1/4-scale model implied 3 inches of column uplift of the corner columns in the prototype structure. The Mexico City-0.217g test caused 0.47 inch column uplift and the Bucharest-0.348g test caused 0.61 inch column uplift. It should also be noted from Figure 6.2 that the column uplift occurred at the time of peak horizontal displacement.
In view of the large vertical accelerations generated in the structure when the structure dropped back to its foundation, column uplift was undesirable. The vertical accelerations which occurred in the model when the structure was subjected to the El Centro motion (0.75 inch uplift) are shown in Figure 6.3. The peaks in vertical acceleration response could be eliminated by preventing column uplift and then any structural response sensitive to vertical accelerations would be improved.

The effect of uplift on the force-displacement relationships of the bearings is shown in Figure 6.4. Although the bearings dissipated little energy axially during the uplift motion they did continue to dissipate energy in shear. The column uplift distorted the shapes of both the shear and axial hysteresis loops. The effect of column uplift on the axial hysteresis loop is clear — the vertical displacement of the column base increased from about 0.1 inch to about 0.75 inch without any change in the axial load on the bearing. Column axial load appears to have more of an effect on the shear hysteresis loop when it comes back into contact with the bearing than when it lifts off the bearing. Keeping in mind the fact that positive horizontal displacement corresponds to tensile axial load on the bearing, the shear hysteresis loop appears to become unstable at the time of maximum compressive load (15 kips due to overturning plus the bearing dead load of 8 kips). This was probably due to the combination of a decrease in the thickness of the rubber layers and a sudden drop in shear stiffness because of the sudden increase in axial load on the bearing. This phenomenon would probably only be observed in cases where the axial loads approach the buckling load. Nevertheless, this behavior is clearly undesirable since any sudden drop in the stiffness of the isolation system could result in significantly larger bearing displacements.

By studying the acceleration profiles (Figure 6.5) for each earthquake at different values of peak acceleration it is seen that the effectiveness of the isolation system depended greatly on the earthquake frequency content. For an earthquake with the major part of its frequency content concentrated near the resonant frequency of the
isolated structure the effectiveness of the isolation system was limited — for example, the Mexico City and Bucharest earthquakes, for which input accelerations were actually amplified in the structure by the isolation system. The San Francisco test signal showed that the isolation system provided significant reductions in structural accelerations for earthquake motions with the dominant portion of their frequency content well removed from the frequency of the isolated structure. The effect of column uplift on the story acceleration profile was demonstrated by the sequence of tests with the Bucharest, Mexico City, and El Centro signals. For the other test signals the acceleration profiles decrease in magnitude with increased table acceleration. This was probably due to the nonlinear stiffness of the bearings. As the bearing displacement increased with table intensity, the effective stiffness decreased. Thus, the frequency of the isolated structure decreased and shifted away from the dominant excitation frequencies for the Miyagi-Ken-Oki, Pacoima Dam, Parkfield, San Francisco, and Taft earthquake signals.

Although significant column uplift occurred during the largest magnitude tests using the three test signals the bearing shear connection did not uncouple as happened during previous tests performed on a base-isolated reinforced concrete structure [10]. Recognizing the importance of preventing uncoupling of the bearings during extreme uplift events, longer dowels were designed for this test series to overcome the problem. A dowel length of 0.75 inch was used, and this proved to be sufficient to prevent uncoupling.

The plots of peak base shear ratio versus maximum table acceleration (Figure 6.6) indicate that the rate of increase in base shear decreases with increasing shaking table acceleration for the El Centro signal. For the Mexico City tests, however, the base shear ratio increased dramatically around 0.18g. This was due to the fact that the decrease in the bearing stiffness helped to bring the isolation frequency into resonance with the Mexico City signal. This was possible since the isolation frequency at small shear strains was higher than the dominant frequency content of the Mexico signal.
This same effect, but to a lesser extent, was also observed during the sequence of Bucharest earthquake tests. The El Centro sequence of tests was nearly linear, except for the largest magnitude test (0.842g peak table acceleration) when significant column uplift occurred. The value of 34.3%W (maximum base shear as a percentage of the total structure weight) for the free-to-uplift model subjected to the El Centro signal with a peak table acceleration of 0.842g contrasts with 20%W for the structure when fixed at its base and subjected to the El Centro input signal having a 0.110g peak table acceleration. Thus, the isolated structure was shown to respond elastically to the El Centro signal having a peak table acceleration 7.65 times larger than that of the fixed base test and yet the peak base shear increased only 70%.

Uplift-Restrained Model

After the tests on the free-to-uplift structure were completed the corner bearings were replaced by bearings containing the uplift restrainer device. The model was then subjected to the same set of earthquake ground motions. The horizontal and vertical displacements which occurred at the corners of the structure (Figure 6.7) confirm that the restrainer device not only prevented the uplift seen previously but also essentially limited the relative horizontal displacement of the structure to the free displacement of the restrainer device. It is important to note (Figure 6.2) that uplift only occurred at times of peak lateral bearing displacement. This was always the case.

The peak story acceleration profiles were plotted for the tests on the uplift-restrained structure (Figure 6.8). For the shaking table inputs which did not cause the restrainer device to go into tension the profiles are similar in shape to the free-to-uplift profiles. The acceleration profiles for the Bucharest, Mexico City, and El Centro tests, which had peak table accelerations similar to those in the tests on the free-to-uplift model where uplift occurred, are different. The magnitude of the peak roof acceleration
when the displacement control device was activated was larger; almost double for the El Centro signal, 60% higher for the Mexico signal, and about 20% higher for the Bucharest signal.

The profiles for the test structure isolated with and without the displacement control device are compared in Figure 6.9 for the El Centro input. This plot illustrates the increase in story acceleration, and consequently base shear, due to the action of the restrainer device.

The restrainers also reduced the magnitude of the vertical acceleration response (Figure 6.10) from that seen in the free-to-uplift test (Figure 6.3) by a factor of about 3. The effect of the restrainer on the shape of the axial and shear force hysteresis loops for the restrained bearings is seen in Figure 6.11. Both hysteresis loops are now stable and the shear loop reflects the bilinear stiffness properties due to the displacement control device.

To investigate the effect of the restrainer device on the higher modes of the structure the FFTs of the roof acceleration time histories were plotted for the Bucharest, Mexico City and El Centro tests on the free-to-uplift and restrained structure in Figure 6.12. There appears to be only a slight difference in the higher mode responses because of the device. At the lower magnitudes of input, when the device did not go into tension, there was no difference in the response of the structure.
7. CONCLUSIONS

Although earthquake simulator tests have been performed previously to evaluate base isolation systems, these studies were all performed on short stiff structures. Base isolation has not been proposed for taller buildings because of the obvious problems of column uplift and longer structure period.

The displacement control device described here successfully restrains columns from uplift during earthquake motions having magnitudes which previously caused column uplift in the unrestrained nine-story steel frame model. The device was installed within the hollow core of a multilayer elastomeric bearing and was placed under each corner column of the base isolated structure. The interior columns were supported by the same bearings without the displacement control device. The devices were set to allow only 2.25 inches of free horizontal displacement before they were fully extended, thereby limiting further horizontal displacement because of the increased stiffness of the system. The vertical component of force in the device served to restrain the column against uplift.

For earthquake tests during which the device extended fully, the maximum story accelerations were about double those for similar input signal magnitudes where the device had not been installed. The higher frequency responses of the structure were not increased at the times when the device was fully extended because of the smooth transition in the horizontal bearing stiffness.

While column uplift was the primary concern in the isolation tests on the nine-story steel frame, the uplift restrainer devices could clearly also be used for horizontal displacement control. The devices would act in this capacity as a fail-safe mechanism, and would be designed to come into effect only when the bearing displacement exceeded the maximum allowable displacement or the design displacement.
REFERENCES


A. MECHANICAL CONTROL DEVICE IN BEARING

The following analysis establishes a relation between shear force and horizontal displace­ment for a bearing containing the uplift restrainer device. The theory assumes linear elastic material behavior and is based on the following variables (Fig. A.1),

\[ H = \text{total height of bearing} \]

\[ B = \text{width of bearing} \]

\[ L = \text{length of restrainer device when } P = 0^+ \]

\[ P = \text{axial force in the restrainer device} \]

\[ F_x = \text{shear force applied to the bearing} \]

\[ W = \text{axial dead load on bearing} \]

\[ k_v = \text{vertical bearing stiffness} \]

\[ k_h = \text{horizontal bearing stiffness} \]

\[ k_d = \text{axial stiffness of restrainer device} \]

\[ u_x = \text{horizontal displacement of bearing} \]

\[ u_y = \text{vertical displacement of bearing due to } P \]

\[ u_d = \text{horizontal displacement of bearing when } P = 0^+ \]
\( u_L = \) axial displacement of restrainer device

\( \delta_y = \) decrease in height of bearing due to \( W \)

\[
h = H - ( \text{thickness of top and bottom plates} + \delta_y )
\]

Based on the kinematics of the restrainer device, the following relationships can be written:

\[
\sin \theta = \frac{h - u_y}{L + u_L}, \quad \cos \theta = \frac{u_x}{L + u_L} \quad \text{and} \quad \frac{(L + u_L)^2}{(h - u_y)^2} = u_x^2 + (h - u_y)^2 ; \quad (A.1)
\]

and, from equilibrium,

\[
F_x = k_h u_x + P \cos \theta \quad (A.3)
\]

\[
F_y = P \sin \theta = k_x u_y \quad (A.4)
\]

\[
P = k_d u_L. \quad (A.5)
\]

Expanding equation (A.2) and assuming \( u_L \ll L \) and \( u_y \ll h \) yields
\[ L^2 + 2Lu_x = u_x^2 + h^2 - 2hu_y \quad (A.6) \]

from which

\[ u_x = \frac{u_x^2 + h^2 - L^2}{2h} - \frac{L}{h} u_y \quad (A.7) \]

Substituting for \( u_y \) using equation A.5 gives

\[ u_y = \frac{u_x^2 + h^2 - L^2}{2h} - \frac{L}{h} \frac{P}{k_d} \quad (A.8) \]

and eliminating \( u_y \) from equation A.4,

\[ P \sin \theta = k_v u_x = k_v \left[ \frac{u_x^2 + h^2 - L^2}{2h} \right] - \frac{L}{h} \frac{k_v}{k_d} P \quad (A.9) \]

Therefore,

\[ P \left[ \sin \theta + \frac{L}{h} \frac{k_v}{k_d} \right] = k_v \left[ \frac{u_x^2 + h^2 - L^2}{2h} \right] \]

and

\[ P = \frac{k_v (u_x^2 + h^2 - L^2)}{2h \left( \sin \theta + \frac{L}{h} \frac{k_v}{k_d} \right)} \quad (A.9) \]

Equation A.9 can be substituted into equation A.3 to give

\[ F_x = k_h u_x + \frac{k_v (u_x^2 + h^2 - L^2)}{2h \left( \sin \theta + \frac{k_v}{k_d} \frac{L}{h} \right)} \cos \theta \quad (A.10) \]

Assuming that \( u_x \ll L \) and \( u_y \ll h \), the expressions for \( \sin \theta \) and \( \cos \theta \) reduce to

\[ \sin \theta \approx \frac{h}{L} \quad \text{and} \quad \cos \theta \approx \frac{u_x}{L} \quad (A.11) \]

so that, from equation A.10,
\[ F_x = k_h u_x + \frac{k_v \left( u_x^2 + h^2 - L^2 \right)}{2 h \left( \frac{h}{L} + \frac{L}{h} \frac{k_v}{k_d} \right)} \frac{u_x}{L} \]

\[ = k_h u_x + \frac{k_v \left( u_x^2 + h^2 - L^2 \right)}{2 h^2 \left( 1 + \frac{L^2}{h^2} \frac{k_v}{k_d} \right)} u_x . \quad (A.12) \]

Now, defining \( u_x = u_d + e_x \) and noting that \( u_d^2 = L^2 - h^2 \), equation A.12 gives

\[ F_x = k_h (u_d + e_x) + \left[ \frac{k_v \left( u_d^2 + 2 u_d e_x + e_x^2 + h^2 - L^2 \right)}{2 h^2 \left( 1 + \frac{L^2}{h^2} \frac{k_v}{k_d} \right)} \right] (u_d + e_x) \]

\[ = k_h u_d + \left[ k_h + \frac{k_v u_d^2}{h^2 + L^2 \frac{k_v}{k_d}} \right] e_x + O(e_x^2) \text{ terms} . \quad (A.13) \]

Thus, to the first order,

\[ F_x = k_h u_d + \left[ k_h + \frac{k_v u_d^2}{h^2 + L^2 \frac{k_v}{k_d}} \right] e_x , \quad (A.14) \]

when \( u_x \geq u_d \).
When $u_x \leq u_d$, the expression for $F_x$ is simply

$$F_x = k_h u_x$$  \hspace{1cm} (A.15) 

since the restrainer device carries no axial load ($P$) at these displacements.
<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>EARTHQUAKE</th>
<th>DATE</th>
<th>PGA (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ec1,ec2</td>
<td>Imperial Valley, Calif. El Centro Site</td>
<td>May 18, 1940 S00E</td>
<td>0.35</td>
</tr>
<tr>
<td>taft1,taft2</td>
<td>Kern County, Calif. Taft Lincoln School Tunnel</td>
<td>July 21, 1952 S09E</td>
<td>0.18</td>
</tr>
<tr>
<td>sf1,sf2</td>
<td>San Francisco, Calif. Golden Gate Park</td>
<td>March 22, 1957 S80E</td>
<td>0.10</td>
</tr>
<tr>
<td>park1,park2</td>
<td>Parkfield, Calif. Cholame, Shandon, CA array #2</td>
<td>June 27, 1966 N65E</td>
<td>0.49</td>
</tr>
<tr>
<td>pac1,pac2</td>
<td>San Fernando, Calif. Pacoima Dam Site</td>
<td>February 9, 1971 S14W</td>
<td>1.08</td>
</tr>
<tr>
<td>miyagi</td>
<td>Miyagi-Ken-Oki Tohoku University</td>
<td>June 12th, 1978 S00E</td>
<td>0.24</td>
</tr>
<tr>
<td>buc1</td>
<td>Bucharest Building Research Inst.</td>
<td>March 7th, 1977 EW</td>
<td>0.21</td>
</tr>
<tr>
<td>mex2m,sct</td>
<td>Mexico City SCT Site</td>
<td>September 19, 1985 S00E</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Table 5.1 Earthquake Signals Used in Testing Program

Note: If the symbol for the earthquake includes a suffix of "1" then no additional filtering was applied to the signal. A suffix of "2" means that the real-time signal was high-pass filtered at 0.1 Hz. For example, "ec1" is unfiltered, "ec2" was high-pass filtered.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>1/4-SCALE MODEL/PROTOTYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>L</td>
</tr>
<tr>
<td>Time</td>
<td>√L</td>
</tr>
<tr>
<td>Mass</td>
<td>L^2</td>
</tr>
<tr>
<td>Displacement</td>
<td>L</td>
</tr>
<tr>
<td>Acceleration</td>
<td>1</td>
</tr>
<tr>
<td>Stress</td>
<td>1</td>
</tr>
<tr>
<td>Strain</td>
<td>1</td>
</tr>
<tr>
<td>Force</td>
<td>L^2</td>
</tr>
<tr>
<td>Area</td>
<td>L^2</td>
</tr>
</tbody>
</table>

Table 5.2 Similitude Scale Factors for Prototype Responses
<table>
<thead>
<tr>
<th>FILE NO.</th>
<th>RUN</th>
<th>SPAN</th>
<th>PK. TABLE ACCEL. (g)</th>
<th>PK. MODEL ACCEL. (g)</th>
<th>REL. BEARING DISPL. (in.)</th>
<th>UPLIFT (Y/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>860707.01</td>
<td>√4 ec2</td>
<td>150</td>
<td>.296</td>
<td>.258</td>
<td>.806</td>
<td>N</td>
</tr>
<tr>
<td>860707.02</td>
<td>√4 miyagi</td>
<td>200</td>
<td>.174</td>
<td>.220</td>
<td>.930</td>
<td>N</td>
</tr>
<tr>
<td>860707.03</td>
<td>√4 taft2</td>
<td>220</td>
<td>.428</td>
<td>.334</td>
<td>1.048</td>
<td>N</td>
</tr>
<tr>
<td>860707.04</td>
<td>√4 pac2</td>
<td>220</td>
<td>.338</td>
<td>.290</td>
<td>1.252</td>
<td>N</td>
</tr>
<tr>
<td>860707.05</td>
<td>√4 park2</td>
<td>220</td>
<td>.243</td>
<td>.226</td>
<td>1.105</td>
<td>N</td>
</tr>
<tr>
<td>860707.06</td>
<td>√4 sf2</td>
<td>230</td>
<td>1.411</td>
<td>.467</td>
<td>1.183</td>
<td>N</td>
</tr>
<tr>
<td>860707.07</td>
<td>√4 bure1</td>
<td>300</td>
<td>.199</td>
<td>.242</td>
<td>1.348</td>
<td>N</td>
</tr>
<tr>
<td>860707.08</td>
<td>√4 mex2m</td>
<td>150</td>
<td>.173</td>
<td>.231</td>
<td>1.317</td>
<td>N</td>
</tr>
<tr>
<td>860707.09</td>
<td>√4 mex2m</td>
<td>200</td>
<td>.191</td>
<td>.325</td>
<td>2.337</td>
<td>N</td>
</tr>
<tr>
<td>860707.10</td>
<td>√4 bure1</td>
<td>275</td>
<td>.251</td>
<td>.323</td>
<td>2.207</td>
<td>N</td>
</tr>
<tr>
<td>860707.11</td>
<td>√4 sf2</td>
<td>300</td>
<td>1.500</td>
<td>.488</td>
<td>1.519</td>
<td>N</td>
</tr>
<tr>
<td>860707.12</td>
<td>√4 park2</td>
<td>350</td>
<td>.425</td>
<td>.337</td>
<td>1.942</td>
<td>N</td>
</tr>
<tr>
<td>860707.13</td>
<td>√4 pac2</td>
<td>350</td>
<td>.562</td>
<td>.463</td>
<td>1.985</td>
<td>N</td>
</tr>
<tr>
<td>860707.14</td>
<td>√4 taft2</td>
<td>400</td>
<td>.848</td>
<td>.407</td>
<td>2.259</td>
<td>N</td>
</tr>
<tr>
<td>860707.15</td>
<td>√4 miyagi</td>
<td>400</td>
<td>.310</td>
<td>.343</td>
<td>2.404</td>
<td>N</td>
</tr>
<tr>
<td>860707.16</td>
<td>√4 ec2</td>
<td>300</td>
<td>.633</td>
<td>.463</td>
<td>2.797</td>
<td>Y</td>
</tr>
<tr>
<td>860707.17</td>
<td>√4 ec2</td>
<td>150</td>
<td>.338</td>
<td>.202</td>
<td>.991</td>
<td>N</td>
</tr>
<tr>
<td>860708.03</td>
<td>√4 ec2</td>
<td>150</td>
<td>.313</td>
<td>.244</td>
<td>.904</td>
<td>N</td>
</tr>
<tr>
<td>860708.04</td>
<td>√4 ec2</td>
<td>225</td>
<td>.460</td>
<td>.288</td>
<td>1.712</td>
<td>N</td>
</tr>
<tr>
<td>860708.05</td>
<td>√4 ec2</td>
<td>300</td>
<td>.604</td>
<td>.453</td>
<td>2.648</td>
<td>Y</td>
</tr>
<tr>
<td>860708.06</td>
<td>√4 ec2</td>
<td>400</td>
<td>.842</td>
<td>.607</td>
<td>3.784</td>
<td>Y</td>
</tr>
<tr>
<td>860708.07</td>
<td>√4 ec2</td>
<td>150</td>
<td>.328</td>
<td>.205</td>
<td>1.014</td>
<td>N</td>
</tr>
<tr>
<td>860709.01</td>
<td>√4 bure1</td>
<td>275</td>
<td>.241</td>
<td>.293</td>
<td>1.825</td>
<td>N</td>
</tr>
<tr>
<td>860709.02</td>
<td>√4 bure1</td>
<td>350</td>
<td>.296</td>
<td>.444</td>
<td>2.729</td>
<td>Y</td>
</tr>
<tr>
<td>860709.03</td>
<td>√4 bure1</td>
<td>400</td>
<td>.343</td>
<td>.537</td>
<td>3.259</td>
<td>Y</td>
</tr>
<tr>
<td>860709.04</td>
<td>√4 mex2m</td>
<td>175</td>
<td>.146</td>
<td>.254</td>
<td>1.898</td>
<td>N</td>
</tr>
<tr>
<td>860709.05</td>
<td>√4 mex2m</td>
<td>250</td>
<td>.194</td>
<td>.425</td>
<td>3.063</td>
<td>N</td>
</tr>
<tr>
<td>860709.06</td>
<td>√4 mex2m</td>
<td>275</td>
<td>.219</td>
<td>.586</td>
<td>3.372</td>
<td>Y</td>
</tr>
<tr>
<td>860709.07</td>
<td>√4 mex2m</td>
<td>350</td>
<td>.217</td>
<td>.520</td>
<td>3.416</td>
<td>Y</td>
</tr>
<tr>
<td>860709.08</td>
<td>√4 bure1</td>
<td>400</td>
<td>.348</td>
<td>.767</td>
<td>3.723</td>
<td>Y</td>
</tr>
<tr>
<td>860709.09</td>
<td>√4 ec2</td>
<td>375</td>
<td>.723</td>
<td>.579</td>
<td>3.603</td>
<td>Y</td>
</tr>
<tr>
<td>860709.10</td>
<td>√4 ec2</td>
<td>150</td>
<td>.353</td>
<td>.213</td>
<td>1.054</td>
<td>N</td>
</tr>
</tbody>
</table>

Table 5.3 Maximum Model Responses on Bearings without Displacement Control Device
<table>
<thead>
<tr>
<th>FILE NO.</th>
<th>RUN</th>
<th>SPAN</th>
<th>PK. TABLE ACCEL. (g)</th>
<th>PK. MODEL ACCEL. (g)</th>
<th>REL. BEARING DISPL. (in.)</th>
<th>UPLIFT (Y/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>860711.03</td>
<td>\sqrt{4} ec2</td>
<td>150</td>
<td>.336</td>
<td>.279</td>
<td>.637</td>
<td>N</td>
</tr>
<tr>
<td>860711.04</td>
<td>\sqrt{4} ec2</td>
<td>225</td>
<td>.487</td>
<td>.341</td>
<td>1.150</td>
<td>N</td>
</tr>
<tr>
<td>860711.05</td>
<td>\sqrt{4} ec2</td>
<td>225</td>
<td>.420</td>
<td>.372</td>
<td>1.313</td>
<td>N</td>
</tr>
<tr>
<td>860711.06</td>
<td>\sqrt{4} ec2</td>
<td>300</td>
<td>.627</td>
<td>.503</td>
<td>1.930</td>
<td>N</td>
</tr>
<tr>
<td>860711.07</td>
<td>\sqrt{4} ec2</td>
<td>350</td>
<td>.726</td>
<td>.727</td>
<td>2.451</td>
<td>N</td>
</tr>
<tr>
<td>860711.08</td>
<td>\sqrt{4} ec2</td>
<td>400</td>
<td>.832</td>
<td>.851</td>
<td>2.958</td>
<td>N</td>
</tr>
<tr>
<td>860711.09</td>
<td>\sqrt{4} bulc</td>
<td>400</td>
<td>.351</td>
<td>.620</td>
<td>2.854</td>
<td>N</td>
</tr>
<tr>
<td>860711.10</td>
<td>\sqrt{4} set</td>
<td>275</td>
<td>.168</td>
<td>1.524</td>
<td>3.635</td>
<td>N</td>
</tr>
</tbody>
</table>

Table 5.4 Maximum Model Responses on Bearings with Displacement Control Device
FIGURES
FIGURE 2.1 NINE STORY STEEL TEST FRAME
FIGURE 2.2 FORCE TRANSDUCER AND BEARING
5/8" dia. dowel holes, top and bottom plates only

1 1/4" dia.

1" end plates
3/8" rubber layer x6
1/8" shim x5

1/8" side cover

FIGURE 3.1 LEAD PLUG BEARING DETAILS
FIGURE 3.2 BEARING MODIFIED TO ACCEPT DISPLACEMENT CONTROL DEVICE
1/4" (grade 6) bolts, head turned to 0.670" dia.

1 1/2" dia. half-sphere

2 1/4"

1" dia. bar stock drilled to internal dia. of 11/16"

FIGURE 3.3 DISPLACEMENT CONTROL DEVICE
FIGURE 4.1 BEARING SHEAR TEST APPARATUS
(a) Displacement amplitude less than $u_d$ (device not activated)

(b) Displacement amplitude greater than $u_d$ (device activated)

FIGURE 4.2 SHEAR FORCE VS. DISPLACEMENT FOR RESTRAINED BEARING SUBJECTED TO SINUSOIDAL LOADING
FIGURE 4.3 RESTRAINER BEARING FORCE DIAGRAM
FIGURE 4.4 EXPERIMENTAL AND PREDICTED FORCE-DISPLACEMENT CURVES FOR RESTRAINED BEARING
FIGURE 5.1 NORMALIZED EARTHQUAKE TABLE ACCELERATIONS
FIGURE 5.1 (continued)
FIGURE 5.2 FFTS OF EARTHQUAKE TABLE ACCELERATIONS
FIGURE 5.2 (continued)
FIGURE 6.1 MAXIMUM ROOF ACCELERATION VS. MAXIMUM TABLE ACCELERATION FOR FREE-TO-UPLIFT MODEL
FIGURE 6.2 BEARING HORIZONTAL DISPLACEMENT AND COLUMN VERTICAL DISPLACEMENT DURING EL CENTRO-0.842g TEST (FREE-TO-UPLIFT CONDITION)
FIGURE 6.3 VERTICAL ACCELERATIONS IN FREE-TO-UPLIFT MODEL DURING EL CENTRO-0.842g TEST
FIGURE 6.4 SHEAR AND AXIAL FORCE BEHAVIOR OF BEARINGS IN FREE-TO-UPLIFT CONDITION DURING EL CENTRO-0.842g TEST
FIGURE 8.5 MAXIMUM STORY ACCELERATION PROFILES FOR FREE-TO-UPLIFT MODEL

Peak Roof Acceleration / Peak Table Acceleration
FIGURE 6.6 PEAK BASE SHEAR RATIO VS. PEAK TABLE ACCELERATION FOR FREE-TO-UPLIFT MODEL
FIGURE 6.7 BEARING HORIZONTAL DISPLACEMENT AND COLUMN VERTICAL DISPLACEMENT DURING EL CENTRO-0.832g TEST (UPLIFT-RESTRAINED CONDITION)
FIGURE 6.8 MAXIMUM STORY ACCELERATION PROFILES FOR THE UPLIFT-RESTRAINED MODEL
FIGURE 6.9 PROFILES OF PEAK STORY ACCELERATIONS FOR THE FREE-TO-UPLIFT AND UPLIFT-RESTRAINED ISOLATION CONDITIONS
FIGURE 6.10 VERTICAL ACCELERATIONS IN UPLIFT-RESTRAINED MODEL DURING EL CENTRO-0.832g TEST
FIGURE 6.11 SHEAR AND AXIAL FORCE BEHAVIOR OF BEARINGS IN UPLIFT-RESTRAINED CONDITION DURING EL CENTRO-0.832g TEST
FIGURE 6.12 FFTS OF ROOF ACCELERATION TIME HISTORIES FOR FREE-TO-UPLIFT AND UPLIFT-RESTRAINED MODELS
EERC reports are available from the National Information Service for Earthquake Engineering (NISEE) and from the National Technical Information Service (NTIS). Numbers in parentheses are Accession Numbers assigned by the National Technical Information Service; these are followed by a price code. Contact NTIS, 5285 Port Royal Road, Springfield Virginia, 22161 for more information. Reports without Accession Numbers were not available from NTIS at the time of printing. For a current complete list of EERC reports (from EERC 67-1) and availability information, please contact University of California, EERC, NISEE, 1301 South 46th Street, Richmond, California 94804.


UCB/EERC-80/03 "Optimum Inelastic Design of Seismic-Resistant Reinforced Concrete Frame Structures," by Zagajeski, S.W. and Bertero, V.V., January 1980, (PB80 164 635)A06.


UCB/EERC-80/05 "Shaking Table Research on Concrete Dam Models," by Niwa, A. and Clough, R.W., September 1980, (PB81 122 368)A06.


UCB/EERC-80/14 "2D Plane/Axisymmetric Solid Element (Type 3-Elastic or Elastic-Perfectly Plastic) for the ANSR-II Program," by Mondkar, D.P. and Powell, G.H., July 1980, (PB81 122 350)A03.


"3D Solid Element (Type 4-Elastic or Elastic-Perfectly-Plastic) for the ANSR-II Program," by Mondkar, D.P. and Powell, G.H., July 1980, (PB81 123 242)A03.

"Gap-Friction Element (Type 5) for the ANSR-II Program," by Oughourlian, C. and Powell, G.H., July 1980, (PB81 122 293)A03.


<table>
<thead>
<tr>
<th>Conference/Report Number</th>
<th>Title</th>
<th>Authors</th>
<th>Date</th>
<th>ISBN</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCB/EERC-82/14</td>
<td>&quot;Shaking-Table Studies of an Eccentrically X-Braced Steel Structure,&quot;</td>
<td>Yang, M.S.</td>
<td>September 1982</td>
<td>(PB83 260 778)A12</td>
</tr>
<tr>
<td>UCB/EERC-82/17</td>
<td>&quot;Effects of Concrete Types and Loading Conditions on Local Bond-Slip Relationships,&quot;</td>
<td>Cowell, A.D., Popov, E.P. and Bertero, V.V.</td>
<td>September 1982</td>
<td>(PB83 153 577)A04</td>
</tr>
<tr>
<td>UCB/EERC-82/18</td>
<td>&quot;Mechanical Behavior of Shear Wall Vertical Boundary Members: An Experimental Investigation,&quot;</td>
<td>Wagner, M.T. and Bertero, V.V.</td>
<td>October 1982</td>
<td>(PB83 159 764)A05</td>
</tr>
<tr>
<td>UCB/EERC-83/05</td>
<td>&quot;A Transducer for Measuring the Internal Forces in the Columns of a Frame-Wall Reinforced Concrete Structure,&quot;</td>
<td>Sause, R. and Bertero, V.V.</td>
<td>May 1983</td>
<td>(PB84 119 494)A06</td>
</tr>
<tr>
<td>UCB/EERC-83/06</td>
<td>&quot;Dynamic Interactions Between Floating Ice and Offshore Structures,&quot;</td>
<td>Crooteau, P.</td>
<td>May 1983</td>
<td>(PB84 119 486)A16</td>
</tr>
</tbody>
</table>


UCB/EERC-83/23 "Local Bond Stress-Slip Relationships of Deformed Bars under Generalized Excitations," by Eli­gehausen, R., Popov, E.P. and Bertero, V.V., October 1983, (PB84 192 848)A09.


UCB/EERC-84/05 "Earthquake Simulation Tests and Associated Studies of a 1/5th-scale Model of a 7-Story R/C Frame-Wall Test Structure," by Bertero, V.V., Aktan, A.E., Charney, P.A. and Sause, R., June 1984, (PB84 239 409)A09.

UCB/EERC-84/06 "R/C Structural Walls: Seismic Design for Shear," by Aktan, A.E. and Bertero, V.V., 1984.


"Earthquake Simulation Tests and Associated Studies of a 0.3-Scale Model of a Six-Story Concentrically Braced Steel Structure," by Uang, C.-M. and Bertero, V.V., December 1986, (PB87 163364/AS)A17.


"Earthquake Simulator Tests and Associated Studies of a 0.3-Scale Model of a Six-Story Eccentrically Braced Steel Structure," by Whittaker, A., Uang, C.-M. and Bertero, V.V., July 1987.
