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ABSTRACT

A displacement control device that can be installed within multilayer elastomeric

base isolation bearings is described. The device acts to limit the displacement of the

bearings and can also be used to take uplift tension forces if necessary.

The device was tested in earthquake simulator tests of a nine-story, 1/4-scale steel

frame model, conducted at the Earthquake Simulator Laboratory of the Earthquake

Engineering Research Center, University of California, Berkeley. The model was iso-

lated using eight multilayer elastomeric bearings, four of which were located at the

corners of the model and contained the displacement control devices.

The system was subjected to a large number of simulated earthquakes. In some

tests the design acted to control the displacements and in others where uplift forces at

the corners were generated the devices simultaneously limited the displacements and

carried the uplift forces.

The test results show that the action of the devices is smooth and that there is no

sudden jerk when one comes into action. The devices can perform as a fail-safe system

for base isolated buildings: in this role they would be designed to act only when the

ground motion is greater than that for which the base isolation system has been

designed.
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1. INTRODUCTION

Base isolation is becoming a widely accepted seismic design strategy for low-rise,

stiff buildings in highly seismic regions. It has been used and has been proposed for new

buildings of up to five stories and as a seismic rehabilitation technique for existing build

ings of up to seven stories. It is especially well suited to stiff structures since the degree

of attenuation produced by the isolation system depends on the difference between the

period of the building when isolated and its period as a fixed base structure. If the iso

lation period is 2.0 seconds and the fixed base period is 0.5 second a reduction in base

shear force of 75% to 80% is possible. An isolation period of around 3 seconds is the

longest period that can be achieved by practical systems that utilize elastomeric isola

tion bearings; and thus it has generally been accepted that isolation may not be possible

for medium-rise buildings, since the necessary spread of period between the fixed-base

structure and the isolated structure cannot not be achieved. Nevertheless, many

medium-rise buildings can be quite stiff and isolation could still be effective in reducing

the seismic base shear.

It has generally been accepted that elastomeric isolators should not be expected to

take tension. A medium-rise building (10-15 stories), even when isolated, could generate

an overturning moment that would cause uplift on some isolators. If a method could be

devised to enable the elastomeric isolators to sustain tension then the technique could be

extended to a building with a larger number of stories than has so far been contem

plated, provided that the superstructure of the building is sufficiently stiff to have a

fixed base period not longer than 1 second. The tension that would have to be sus

tained by the isolators would, of course, be transmitted to the foundation but this ten

sion would be an order of magnitude less than that which would have to be carried by

the foundation if the building were conventionally designed, since the overturning

moment for the isolated building would be significantly less than that for the compar

able conventional building. In a conventional design the overturning moment is
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concentrated at the core and the foundation elements under the core need to sustain

high tension forces. In an isolated building the tension is widely distributed over bear

ings which cover the entire plan area.

Some tension capacity in the isolation bearings would be advantageous for both

low-rise and medium-rise buildings for another reason. The base isolation approach,

although a very old concept, is still relatively recent in implementation and there is still

resistance among engineers to its use. While it is recognized that designing a structure

by code will produce a building able to withstand a moderate earthquake with little

damage, it is believed that such a code designed building will survive a very large earth

quake, e.g. Richter magnitude 8, with damage and possibly very severe damage, but will

not collapse. The presence of member ductility and design redundancy will enable the

structure to survive. In a base isolated structure, on the other hand, this ductility and

redundancy do not appear to be present., It is easy to design an isolation system for a

code specified design earthquake, but the performance of the isolation system if the

earthquake is very much larger than the design earthquake is not clear. The isolation

system seems to be the only line of defense and if this fails collapse seems to be inevit

able. This shortcoming is continually raised and has led to the abandonment of promis

ing designs using base isolation. For these reasons, a fail-safe system which would come

into play when the earthquake intensity at the site exceeds that for which the building

was designed is needed to eliminate this uncertainty.

Fail-safe systems to be used with isolation systems have of course been designed.

In some, the building comes against a stop when the design displacement or some factor

times the design displacement is exceeded [1]. Another approach is to have sliding sur

faces, separated by a small clearance, which come into contact beyond a specified hor

izontal displacement so that the vertical load is transferred from the bearings to the

sliding surfaces reducing the chance of collapse and increasing damping through friction

[2). Both of these have obvious disadvantages among which is cost. What is needed is a
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simple low-cost modification to the isolation system that would control the displace

ments if the earthquake intensity became too great.

In this report we will describe such a system and show that it is effective and prac

tical. The system fits within a standard elastomeric bearing requiring no modification of

the foundation or surrounding retaining wall. Its effectiveness has been demonstrated

by tests on the earthquake simulator at the Earthquake Engineering Research Center

(EERC) of the University of California at Berkeley. It has been used in an isolation sys

tem tested under a tall steel-frame model which, under moderate earthquake loading,

generated uplift forces on the bearings.

The tests demonstrated that the displacement control device plays the role of a

fail-safe system for low-rise buildings by smoothly limiting the maximum displacement

under any level of earthquake. It will also act as a tension restraining device for tall

base-isolated structures by taking the uplift forces generated by any earthquake loading

that would produce uplift in unmodified bearings.

It is felt that this device will allow the profession to proceed with the design of

base-isolated structures with confidence that a low-cost effective structural system will

not collapse if the design earthquake is exceeded. Thus, since the base-isolated structure

will be able to survive moderate earthquakes with no damage and with elastic response,

the structural design for seismic loading will be greatly simplified and a better perform

ing structure will result.
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2. PROPERTIES OF THE TEST STRUCTURE

The shaking table experiments were carried out on a nine-story three-bay welded

steel frame model (Figure 2.1). The lowest story of the model was 4 feet high and the

others were 3 feet high. The top of the model was almost 29 feet above the top of the

isolation bearings and the width of the model was 18 feet. The aspect ratio was large

enough that the model would experience uplift in the corner columns with moderate

accelerations in the structure.

The model was not specifically designed for this test series but was adapted from

that of a previous series of uplift tests [3]. The model represents a section in the weak

direction of a typical steel-frame building at approximately 1/4-scale. The additional

mass necessary for similitude requirements was provided by concrete blocks at each floor

level. The total weight of the structure and the concrete blocks was 122 kips. The two

rows of columns were bolted to stiff wide flange sections (W8x31) which ran the length

of the base of the model, and with cross beams these represented the base mat of a pro

totype structure. The base isolators were placed between these W8x31 beams and the

shaking table.

The test structure was instrumented with accelerometers, linear potentiometers,

and direct current displacement transducers to enable accurate time history records of

the responses of the model to be recorded for subsequent analysis. Each bearing was

supported by a force transducer [4], from which time series records of the forces acting

on the bearing were collected (Figure 2.2). The shear force at the base of the model

structure was calculated for all excitations using the data acquired from these force

transducers, and then compared with the base shear obtained by summing the inertial

story shears. The correlation of these values was within about 10%.

The first two natural frequencies of the fixed base model structure (attached rigidly

to the shaking table) were 2.8 Hz and 9.0 Hz. These were determined by taking fast

Fourier transforms (FFTs) of the ninth floor horizontal acceleration time history when



- 5 -

the model was subjected to a free-vibration pull-back test. In a similar fashion the first

three natural frequencies of the base-isolated model were found to be 1.11 Hz, 6.09 Hz,

and 13 Hz.

The 0.901 second period of the base-isolated l/4-scale structure corresponds to a

1.8 second period for the prototype structure. This is a realistic value for a base

isolated structure, the practical upper limit being about 2 to 3 seconds. Although the

period shift was not as great as is usually desired (an increase of 3 to 4 times is com

mon), it was shown that the isolation with this shift in period still provided significant

reductions in base shear and story accelerations from the fixed base design values.
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3. ISOLATION SYSTEM

The isolation system consisted of eight natural rubber bearings of multilaminate

construction with a bearing located under each column of the steel frame. The natural

rubber compound used in these bearings is designated EDS 39 [5] by the Malaysian

Rubber Producers Research Association (MRPRA). It is a high strength lightly filled

rubber which has a shear modulus of approximately 100 psi at 50% shear strain. It is

relatively low in damping; the equivalent viscous damping ratio at 50% shear strain is in

the range of 5% to 7%.

The bearings (Figure 3.1) are 6 inches square in plan and have six layers of 3/8-inch

thick rubber, 5 reinforcing shims of 1/8-inch thickness and 1 inch thick top and bottom

end plates. They also have central holes of 1.25 inches diameter. The bearings are

designed with four dowel holes top and bottom to provide shear connections between

the isolation system and the structure. When the uplift restrainers were not in place

the dowel holes contained 3/4-inch long pins. In this configuration the frame was free

to uplift and no tension was generated in the rubber.

Each bearing provided a stiffness of 1.6 kips/inch at 50% shear strain (or 1.125

inches displacement) which provided an isolation frequency for the model of 1.01 Hz.

This frequency was too low to generate uplift forces at the corner columns for this

model since the isolation system did not permit enough transmission of acceleration to

the model to generate tension in the corner columns. In order to increase the likelihood

of uplift, lead plugs were inserted in the central holes of the four bearings under the

center columns. Lead yields at a stress of approximately 1500 ksi which corresponded to

1.8 kips shear load in a lead plug, and at 50% shear strain the effective contribution of

each lead plug to the stiffness was 1.6 kips/inch. With the four bearings filled with lead

the isolation frequency at 50% shear strain rose to 1.24 Hz. The increased stiffness and

the tendency of the lead plugs to generate response in the higher modes made uplift

more probable with moderate table inputs.
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A device that provides uplift restraint and displacement control was inserted in

each of the four corner bearings (Figure 3.2). This displacement control device is shown

in. Figure 3.3. It consists of two high-strength bolts contained in a cylindrical sleeve

that allows a certain amount of free movement of the bolts. The devices have hemis

pherical ends held in hemispherical recesses which were machined into the 1 inch thick

top and bottom plates of the bearings. When the bearing is not displaced the bolt

heads are together in the center of the sleeve and when the bearing is displaced through

a preselected distance the device becomes taut. Since uplift occurs at maximum dis

placements the device will also resist the uplift forces in addition to acting as a displace

ment control device. A further modification necessary to enable the bearing to resist

uplift is that the four dowel holes in each end plate be threaded and the bearing firmly

connected to the foundation (in this case the load cell under the bearing) and to the

superstructure. If displacement control only is needed it is unnecessary to bolt the bear

ings to the foundation and the superstructure and dowels can be retained to transfer

shear loads. It should be noted that the lead plugs in the center four bearings were used

in these tests only for the purpose of producing uplift at the corners at moderate levels

of earthquake input. They are not an essential component of the isolation system.
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4. DEVICE FOR UPLIFT RESTRAINT AND DISPLACEMENT

CONTROL

The device used in the test series to provide both uplift restraint and displacement

control, described in the previous chapter, used two bolts within a cylindrical sleeve.

The bolts can move a certain distance (which can be adjusted) within the cylindrical

sleeve, but when the bearing has displaced horizontally through this distance the bolt

heads are constrained by the ends of the sleeve. At this displacement the horizontal

stiffness of the bearing is greatly increased. While this results in a sudden increase in

stiffness there is not a sudden stop because, although the restraint device is now inexten

sible, the bearing can continue to deform horizontally by deforming vertically at the

same time. Thus, the horizontal stiffness which is normally low becomes comparable

with the much higher vertical stiffness.

Tests were performed on individual bearings in a testing device (Figure 4.1) which

applied a constant axial load to the bearings while forcing them through several cycles

of constant amplitude sinusoidal displacement. Force versus displacement curves were

obtained from these tests at several different displacement amplitudes (Figure 4.2). Pos

sibly because of friction between the device and the surface of the hole in the bearing,

the transition from the stiffness at low shear strain to the combined stiffness of the bear

ing and the restrainer device at high shear strains was smooth. This smooth transition

in stiffness at the initial operating displacement (Ud) of the device had the effect of

minimal excitation of higher structural frequencies and led to a far better structural

response than might have been expected if the stiffness had been sharply bilinear.

A linear elastic analysis of the response of the bearing with the device was carried

out taking into account the vertical and horizontal stiffnesses of the natural rubber

bearing, the displaced geometry of the bearing, and assuming small strains in the steel

restrainer (Figure 4.3) and a constant axial dead load (W) on the bearing. With these

assumptions the following relationship for force versus displacement of the uplift



- 9 -

restrainer bearing was obtained. The derivation is given in Appendix A.

and

with

1

Ud _ [L2 _ h2 ] 2"

and

where

F x = shear force applied to the bearing

W = axial dead load on the bearing

P = axial force in displacement control device

(4.1)

(4.2)

(4.3)

(4.4)

kh,kv = horizontal & vertical bearing stiffnesses, respectively

kd = axial stiffness of restrainer device

Ux = total horizontal bearing displacement

Ud = horizontal bearing displacement when P = 0+
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uy = vertical displacement of bearing due to P

by = decrease in bearing height due to W

h = H - thickness of end plates- by

L = length of restrainer when device begins to act

uL = increase in length of restrainer due to P .

The experimentally obtained force-displacement curves for the restrained bearing

and the curve predieted by the equations above are given in Figure 4.4.
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5. TEST PROGRAM

The model was subjected to eight different earthquake signals on the shaking table.

The earthquake characteristics ranged from predominantly low frequency ground motion

(Mexico City and Bucharest) to predominantly high frequency ground motion (San

Francisco). The earthquake test signals used were digitized records based on the earth

quake ground motion data recorded at the sites listed below [6-9].

(1) Imperial Valley Earthquake (EI Centro) of May 18, 1940 - SOOE component, peak

ground acceleration (PGA) = 0.35g

(2) Kern County Earthquake (Taft Lincoln School Tunnel) of July 21, 1952 - S69E

comporient, PGA = 0.18g

(3) San Francisco Earthquake (Golden Gate Park) of March 22, 1957 - S80E com

ponent, PGA = O.lOg

(4) Parkfield Earthquake (Cholame, Shandon, Calif. Array No.2) of June 27, 1966 

N65E component, PGA = OA9g

(5) San Fernando Earthquake (Pacoima Dam) of February 9, 1971 - S14W com

ponent, PGA = l.08g

(6) Bucharest Earthquake (Building Research Institute) of March 7, 1977 - EW com

ponent, PGA = 0.21g

(7) Miyagi-Ken-Oki Earthquake (Tohoku University) of June 12, 1978 -- SOOE com

ponent, PGA = O.24g

(8) Mexico City Earthquake (Mexico City Station SeT) of September 19, 1985 - S60E

component, PGA = O.20g

The records were time-scaled (compressed) by a factor of two to satisfy similitude

requirements for the 1/4-scale model.

Plots of the real time earthquake ground motions normalized to l.Og peak accelera

tion and their FFTs are given in Figures 5.1 and 5.2, respectively. These FFT plots
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indicate the wide range of earthquake characteristics represented by this group of earth

quakes. The time-scaled Mexico City signal has its energy content concentrated almost

entirely in the region of 0.5 Hz; the time-scaled Bucharest signal has a significant

amount of low frequency energy which gradually decreases to near zero at a frequency of

about 5 Hz; EI Centro has most of its energy between 1 Hz and 3 Hz; Miyagi has most

of its energy around 1 Hz; Parkfield, 0.5 Hz to 3 Hz; Pacoima Dam, 1 Hz to 4 Hz; San

Francisco has a peak near 4 Hz and another at about 7 Hz; and Taft has a wide range

of frequency (0.5 Hz to 5 Hz) over which there is a significant amount of input energy.

The earthquake signals used in the testing program and the nomenclature used

throughout the rest of this report are given in Table 5.1 and a list of the scale factors

necessary for converting the experimental results for the 1/4-scale model to values for a

prototype structure is given in Table 5.2. Table 5.3 lists the input signals used in the

testing program and the maximum model responses to the input signals for the tests on

the model in the free-to-uplift condition. Table 5.4 lists the maximum responses of the

model when it was restrained against uplift.
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6. TEST RESULTS

Each of the earthquake test signals was used to excite the model at various levels of

input magnitude. It was thought that uplift could be achieved with moderate levels of

input and so the test signals chosen for extensive tests at or near uplift were the

Bucharest, Mexico City, and EI Centro signals. The dominant frequency content of

these time-scaled signals ranged from about 1.0 Hz for the Mexico City signal to about 4

Hz for EI Centro.

Maximum model acceleration was plotted against maximum table acceleration for

the three signals (Figure 6.1). These plots indicate that the structure acceleration

required to cause corner column upiift was about 0.44g. This result depends on the

vertical distribution of acceleration in the structure but for the range of frequency asso

ciated with the test signals the distribution was essentially uniform. The bearing dis

placement associated with the 0.44g acceleration required for uplift was about 2.2

inches. This information was used to estimate the amount of free horizontal bearing

displacement to allow before the displacement control device should begin to carry any

load.

Free-to-Uplift Model

Each earthquake input signal was run at increasing peak table acceleration until

the model lifted off the unrestrained corner bearings. Time histories of bearing horizon

tal displacement and column vertical displacement (Figure 6.2) showed that significant

column uplift occurred (0.75 inch) during the EI Centro-O.842g test. The results for the

1/4-scale model implied 3 inches of column uplift of the corner columns in the prototype

structure. The Mexico City-O.217g test caused 0.47 inch column uplift and the

Bucharest-O.348g test caused 0.61 inch column uplift. It should also be noted from Fig

ure 6.2 that the column uplift occurred at the time of peak horizontal displacement.
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In view of the large vertical accelerations generated in the structure when the struc

ture dropped back to its foundation, column uplift was undesirable. The vertical

accelerations which occurred in the model when the structure was subjected to the El

Centro motion (0.75 inch uplift) are shown in Figure 6.3. The peaks in vertical accelera

tion response could be eliminated by preventing column uplift and then any structural

response sensitive to vertical accelerations would be improved.

The effect of uplift on the force-displacement relationships of the bearings is shown

In Figure 6.4. Although the bearings dissipated little energy axially during the uplift

motion they did continue to dissipate energy in shear. The column uplift distorted the

shapes of both the shear and axial hysteresis loops. The effect of column uplift on the

axial hysteresis loop is clear - the vertical displacement of the column base increased

from about 0.1 inch to about 0.75 inch without any change in the axial load on the

bearing. Column axial load appears to have more of an effect on the shear hysteresis

loop when it comes back into contact with the bearing than when it lifts off the bearing.

Keeping in mind the fact that positive horizontal displacement corresponds to tensile

axial load on the bearing, the shear hysteresis loop appears to become unstable at the

time of maximum compressive load (15 kips due to overturning plus the bearing dead

load of 8 kips). This was probably due to the combination of a decrease in the thick

ness of the rubber layers and a sudden drop in shear stiffness because of the sudden

increase in axial load on the bearing. This phenomenon would probably only be

observed in cases where the axial loads approach the buckling load. Nevertheless, this

behavior is clearly undesirable since any sudden drop in the stiffness of the isolation sys

tem could result in significantly larger bearing displacements.

By studying the acceleration profiles (Figure 6.5) for each earthquake at different

values of peak acceleration it is seen that the effectiveness of the isolation system

depended greatly on the earthquake frequency content. For an earthquake with the

major part of its frequency content concentrated near the resonant frequency of the
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isolated structure the effectiveness of the isolation system was limited - for example,

the Mexico City and Bucharest earthquakes, for which input accelerations were actually

amplified in the structure by the isolation system. The San Francisco test signal showed

that the isolation system provided significant reductions in structural accelerations for

earthquake motions with the dominant portion of their frequency content well removed

from the frequency of the isolated structure. The effect of column uplift on the story

acceleration profile was demonstrated by the sequence of tests with the Bucharest, Mex

ico City, and EI Centro signals. For the other test signals the acceleration profiles

decrease in magnitude with increased table acceleration. This was probably due to the

nonlinear stiffness of the bearings. As the bearing displacement increased with table

intensity, the effective stiffness decreased. Thus, the frequency of the isolated structure

decreased and shifted away from the dominant excitation frequencies for the Miyagi

Ken-Oki, Pacoima Dam, Parkfield, San Francisco, and Taft earthquake signals.

Although significant column uplift occurred during the largest magnitude tests

using the three test signals the bearing shear connection did not uncouple as happened

during previous tests performed on a base-isolated reinforced concrete structure [10].

Recognizing the importance of preventing uncoupling of the bearings during extreme

uplift events, longer dowels were designed for this test series to overcome the problem.

A dowel length of 0.75 inch was used, and this proved to be sufficient to prevent uncou

pling.

The plots of peak base shear ratio versus maximum table acceleration (Figure 6.6)

indicate that the rate of increase in base shear decreases with increasing shaking table

acceleration for the EI Centro signal. For the Mexico City tests, however, the base

shear ratio increased dramatically around 0.18g. This was due to the fact that the

decrease in the bearing stiffness helped to bring the isolation frequency into resonance

with the Mexico City signal. This was possible since the isolation frequency at small

shear strains was higher than the dominant frequency content of the Mexico signal.
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This same effect, but to a lesser extent, was also observed during the sequence of

Bucharest earthquake tests. The EI Centro sequence of tests was nearly linear, except

for the largest magnitude test (0.842g peak table acceleration) when significant column

uplift occurred. The value of 34.3%W (maximum base shear as a percentage of the

total structure weight) for the free-to-uplift model subjected to the EI Centro signal

with a peak table acceleration of 0.842g contrasts with 20%W for the structure when

fixed at its base and subjected to the EI Centro input signal having a O.HOg peak table

acceleration. Thus, the isolated structure was shown to respond elastically to the EI

Centro signal having a peak table acceleration 7.65 times larger than that of the fixed

base test and yet the peak base shear increased only 70%.

Uplift-Restrained Model

After the tests on the free-to-uplift structure were completed the corner bearings

were replaced by bearings containing the uplift restrainer device. The model was then

subjected to the same set of earthquake ground motions. The horizontal and vertical

displacements which occurred at the corners of the structure (Figure 6.7) confirm that

the restrainer device not only prevented the uplift seen previously but also essentially

limited the relative horizontal displacement of the structure to the free displacement of

the restrainer device. It is important to note (Figure 6.2) that uplift only occurred at

times of peak lateral bearing displacement. This was always the case.

The peak story acceleration profiles were plotted for the tests on the uplift

restrained structure (Figure 6.8). For the shaking table inputs which did not cause the

restrainer device to go into tension the profiles are similar in shape to the free-to-uplift

profiles. The acceleration profiles for the Bucharest, Mexico City, and EI Centro tests,

which had peak table accelerations similar to those in the tests on the free-to-uplift

model where uplift occurred, are different. The magnitude of the peak roof acceleration
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when the displacement control device was activated was larger; almost double for the EI

Centro signal, 60% higher for the Mexico signal, and about 20% higher for the

Bucharest signal.

The profiles for the test structure isolated with and without the displacement con

trol device are compared in Figure 6.9 for the EI Centro input. This plot illustrates the

increase in story acceleration, and consequently base shear, due to the action of the

restrainer device.

The restrainers also reduced the magnitude of the vertical acceleration response

(Figure 6.10) from that seen in the free-to-uplift test (Figure 6.3) by a factor of about 3.

The effect of the restrainer on the shape of the axial and shear force hysteresis loops for

the restrained bearings is seen in Figure 6.11. Both hysteresis loops are now stable and

the shear loop reflects the bilinear stiffness properties due to the displacement control

device.

To investigate the effect of the restrainer device on the higher modes of the struc

ture the FFTs of the roof acceleration time histories were plotted for the Bucharest,

Mexico City and EI Centro tests on the free-to-uplift and restrained structure in Figure

6.12. There appears to be only a slight difference in the higher mode responses because

of the device. At the lower magnitudes of input, when the device did not go into ten

sion, there was no difference in the response of the structure.
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7. CONCLUSIONS

Although earthquake simulator tests have been performed previously to evaluate

base isolation systems, these studies were all performed on short stiff structures. Base

isolation has not been proposed for taller buildings because of the obvious problems of

column uplift and longer structure period.

The displacement control device described here successfully restrains columns from

uplift during earthquake motions having magnitudes which previously caused column

uplift in the unrestrained nine-story steel frame model. The device was installed within

the hollow core of a multilayer elastomeric bearing and was placed under each corner

column of the base isolated structure. The interior columns were supported by the same

bearings without the displacement control device. The devices were set to allow only

2.25 inches of free horizontal displacement before they were fully extended, thereby lim

iting further horizontal displacement because of the increased stiffness of the system.

The vertical component of force in the device served to restrain the column against

uplift.

For earthquake tests during which the device extended fully, the maximum story

accelerations were about double those for similar input signal magnitudes where the

device had not been installed. The higher frequency responses of the structure were not

increased at the times when the device was fully extended because of the smooth transi

tion in the horizontal bearing stiffness.

While column uplift was the primary concern III the isolation tests on the nine

story steel frame, the uplift restrainer devices could clearly also be used for horizontal

displacement control. The devices would act in this capacity as a fail-safe mechanism,

and would be designed to come into effect only when the bearing displacement exceeded

the maximum allowable displacement or the design displacement.
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APPENDIX

A. MECHANICAL CONTROL DEVICE IN BEARING

The following analysis establishes a relation between shear force and horizontal dis

placement for a bearing containing the uplift restrainer device. The theory assumes

linear elastic material behavior and is based on the following variables (Fig. A.I),

H = total height of bearing

B = width of bearing

L = length of restrainer device when P = 0+

P = axial force in the restrainer device

Fx = shear force applied to the bearing

W = axial dead load on bearing

kv = vertical bearing stiffness

kh = horizontal bearing stiffness

kd = axial stiffness of restrainer device

Ux = horizontal displacement of bearing

uy = vertical displacement of bearing due to P

Ud = horizontal displacement of bearing when P = 0+
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UL = axial displacement of restrainer device

Oy = decrease in height of bearing due to W

h = H - ( thickness of top and bottom plates + Oy )

W

W

T.,

W

T
l-'-k...L-'-l-.L..L~'.-L-J......L...L..I.~'"

B W W+Psin ,

Figure A.I

Based on the kinematics of the restrainer device, the following relationships can be

written:

h - uy
sinO = -_....:..

L + uL

Ux
cosO = --

L + uL
and (A.l)

( )
'>') ( )')L + uL ~ = u; + h - uy - (A.2)

and, from equilibrium,

Fx = kh Ux + P cosO (A.3)

Fy = P sinO = k, uy
(AA)

(A.5)

Expanding equation A.2 and assuming uL « Land uy « h yields
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.) .) h')
L- + 2LuL = ux- + - - 2huy ,

from which

(A.B)

u/' + h2
- L2

2 h
(A.7)

Substituting for uL using equation A.S gives

L P
-h"k;' (A.B)

and eliminating uy from equation AA,

[ .) h') L')]u:-+ -- -
P sinO = k, u~ = k, x 2 h

Therefore,

and

[
L kv ]P sinO + h" k;

p-
k ( 2 h2 _ L2 )v ux +

L kv
2 h ( sinO + h" k; )

(A.9)

Equation A.9 can be substituted into equation A.3 to give

kv ( ux
2 + h2 - L2 )

kv L
2 h ( sinO + k h)

d

cosO. (A.10)

,Assuming that tlL « Land uy « h, the expressions for sinO and cosO reduce to

• 1J,....., h
smll '"" L

so that, from equation A.1O,

and
Ux

cosO ~ -' ,
L

(A.11)
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k (U 2 + h2 - L2 )v x
-------Ux •.) k
2 h2 ( 1 .!::. _v )+ ., kh- d

(A.12)

Now, defining Ux = ud + ex and noting that ul = L2 - h2, equation A.12 gives

[ kh +
k 2

] ex + 0(ex)2= kh Ud + v Ud
terms. (A.13)

kh') L') V- + --
kd

Thus, to the first order,

[ kh +
k ')

]~Fx = kh Ud + v ul
(A.14)

k
h2 + L2 _

V

kd

when Ux > Ud'
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When Ux < ud' the expression for Fx is simply

Fx = kh Ux

since the restrainer device carries no axial load (P) at these displacements.

(A.15)
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TABLES
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SYMBOL EARTHQUAKE DATE PGA (g)

ec1,ec2
1mperial Valley, Calif. May 18,1940

0.35
'·1

EI Centro Site SOOE
I

!

taft1,taft2
Kern County, Calif. July 21,1952

0.18
Taft Lincoln School Tunnel S69E

sfl,sf2
San Francisco, Calif. March 22,1957

0.10
Golden Gate Park S80E

park1,park2
Parkfield, Calif. June 27,1966

0.49
Cholame,Shandon,CA array #2 N65E

pac1,pac2
San Fernando, Calif. February 9,1971

1.08
Pacoima Darn Site S14W

miyagi
Miyagi-Ken-Oki June 12th 1978

0.24
Tohoku University SOOE

bud
Bucharest March 7th, 1977

0.21
Building Research Inst. EW

mex2m,sct
Mexico City September 19, 1985

0.20
SCT Site S60E

Table 5.1 Earthquake Signals Used in Testing Program

Note: If the symbol for the earthquake includes a suffix of "1" then no addi-

tional filtering was applied to the signal. A suffix of "2" means that the real-time

signal was high-pass filtered at 0.1 Hz. For example, "eel" is unfiltered, "ec2"

was high-pass filtered.

PAR~\1ETER 1/4-SCALE MODEL/PROTOTYPE

Length L 1/4

Time y![ 1/2

Mass L2 1/16

Displacement L 1/4

Acceleration 1 1/1

Stress 1 1/1

Strain 1 1/1

Force L2 1/16

Area I} 1/16

Table 5.2 Similitude Scale Factors for Prototype Responses
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FILE :\'0. Rl':\' SPAN
PK.TABLE PK. ~IODEL REL. BEARING l:PLIFT

AC'C'EL. (g) AC'C'EL. (g) DISPL. (in.) (YIN)

860iOi.Ol V4 I'd 150 .296 .258 .806 N

860i07.02 v4 miyagi 200 .174 .220 .930 N

860i07.0:~ V4 taft:! 220 .428 .334 1.048 N

860707.04 V4 pad 220 .338 .290 1.252 N

860707.05 V·I park:! 220 .243 .226 1.105 N

860707.06 V4 sf'l 230 1.411 .467 1.183 N

860707.07 V4 bud 300 .199 .242 1.348 N

860707.08 V4 nlt'x:!m 150 .173 .231 1.317 N

860707.09 V-I nlt'x2m 200 .191 .325 2.337 N

860707.10 V4 bud 275 .251 .323 2.207 N

860iOi.ll v4 sf'2 300 1.590 .488 1.519 N

860707.12 V4 park2 350 .425 .337 1.942 N

860i07.1:~ v4 pa('2 :350 .562 .463 1.985 N

860707.14 V'4 taft2 400 .848 .407 2.259 N

860707.15 V4 miyagi 400 .310 .343 2.404 N

860707.16 V4 I'd 300 .633 .463 2.797 Y

860707.17 V-t I'd 150 .338 .202 .991 N

860,;"08,O:l v41'd 150 .313 .244 .904 N

860708.04 V4 I'd 225 .460 .288 1.712 N

800708.0" V4 I'd 300 .604 .453 2.648 y

86070~.06 V-t 1'('2 400 .842 .607 3.784 y

860708.07 v"4 I'd 150 .328 .205 1.014 N

sn07U9.0 I V-l bud 275 .241 .293 1.825 N

860i09.02 v-t buel 350 .296 .444 2.729 y

860709.0a V-l bud 400 .343 .537 3.259 y

860709.04 V4 llll'x21ll 175 .146 .254 1.898 N

860709.1):) Vi ll1l'x21l1 250 .194 .425 3.063 N

8UOiOlJ.OU V I IlIPx21l1 275 .219 .586 3.372 Y

8UOiOlUJ7 J-t Il1Px2m 275 .217 .520 3.416 y

860701"1.1)8 VI buel 400 .348 .767 3.723 y

800709.09 V4 I'd 375 .723 .579 3.603 y

860i09.1O v4 pet 150 .353 .213 1.054 N

Table 5.3 Maximum Model Responses on Bearings without Displacement
Control Device
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PK.TABLE PK. ~IODEL REL. 13EARli'G l1PLlFT
FILE ~O. RUN ~P:\~

A(,(,EL. (g) AC'C'EL. (g) DISPL. (in.) (Y/N)

861)';'11.0a ,/t (>(':2 150 .336 .279 .637 ]'I;

~60i 1l.0 ~ "'4 (>('2 225 .487 .341 1.150 N

~60il 1.0i) VI I ('('2 225 .420 .372 1.313 N

8(jOi11.06 "'.J ('('2
300 .627 .503 1.930 N

8(iOill.Oi "'4 ('('2 350 .726 .727 2.451 N

~(iO;II.()!o\ "'4('('2 400 .832 .851 2.958 N

~1)071I.()9 ./4 bud 400 .351 .620 2.854 N

~(;{); ILl 0 v:·1"". 275 .168 1.524 3.635 N

Table 5.4 Maximum Model Responses on Bearings with Displacement
Control Device
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