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CHAPTER 1 - INFRODUCTION

1.1 Introduction

Engineering design is the process of deriving the description of an artifact from a set of specifications.
Typically, these specifications will include the artifact’s functional requirements and a description of its
environment, as well as guidelines on aesthetics, and the ease with which it must be built and maintained.
Even though preliminary design specifications may be limited to a few key parameters, this is often enough
information for experienced designers to generate design alternatives, and decide on solution strategies for
eliminating alternatives. The process of verifying the design artifact’s behavior in its intended environment is
called simulation. For the results of simulations to be of use, not only must a designer have an understanding
of what constitutes desirable behavior within the environment, but also the insight to modify intelligently the
initial properties of the artifact to improve behavior. A good design is not always easy to derive because

some of the preliminary designs may perform inadequately, no matter how they are changed.

The motivation for designers to use computers in such a design process becomes significant when 1t is
believed that the design process as a whole will be speeded up. Computers are more likely to be employed
when they can be used to address practical problems, produce results that are useful, and are easy to use.
Improved efficiency may simply be due to the designer being relieved from repetitive design tasks, but it
could also be due to a graphical display of the artifact’s behavior, or perhaps a mechanism for presenting
information in a manner that enables the designer to easily identify and compare the attributes of design
alternatives. 'The difficultics in providing computational assistance in design are largely duc fo the diversity
of areas that need to be integrated before the variety of cognitive skills required for design arc properly
represented, During the synthesis ( brainstorming ) stages of design, for example, computational assistance in
the form of heuristics or rules of thumb seems appropriate because it mimics a designers often adhoc
approach to generating design alternatives. Approximate analysis procedures seem appropriate for prelim-
inary design unless the project represents a significant diversion from experience. In the latter stages of
design, however, complex simulations are often required before the designer has enough information to confi-

dently tradeoff attributes among design goals, while simultaneously ensuring that the final design
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specifications are adhered to. Problems of the latter type lend themselves to a step-by-step solution pro-

cedure.

Because no single person or group is likely to have the time or personnel to tackle this problem in its
entirety, contributions to the development of design procedures and computer software are incremental.
Changing attitudes play an important role in the focus of each contribution. For example, our perspective of
what constitutes a reasonable amount of computation is rapidly changing as more powerful hardware becomes
available. Objections to design methods currently perceived as being computationally intensive will no longer
be relevant by the time most of the required developments have been completed. During the early 1970’s it
was commonly believed that development of computer-aided design tools would allow complete automation of
the design process. The notion of a black-box approach to design being sufficient is clearly conveyed by the
partial quotation "methodology of amtomated or hands-off design, where the algorithm replaces insight{16].”
Because these designers failed to perceive the needs or advantages of an interactive computing environment,
it is not surprising that their design programs provided fittle feedback. Some veterans of the design commun-
ity probably wondered how the designer was expected to accept full responsibility for a design when he or she
wasn’t even expected to be part of the process!! And apart from the fact that a rigorous implementation of
this type has yet to be produced, there is little doubt the issues of professional negligence have duampened
some early cnthusiasm. Frustrations of a similar nature are more recently reported by Bobrow et al.{14] in
their critical review of knowledge engineering and expert systems, and the failure of some developments to
live up to their early claims. This does not mean that knowledge-based expert systems will play a lesser role
in the future, however. It is just that our expectations of automated design are being modified. Currently, a
realistic requirement is that a designer and computer should be complementary as they work together to com-

plete a design.

1.2 Motivation for this Research Program

At Berkeley, there has been a substantial effort to develop algorithms, formulate design methodologies,
and design computer software that will help engineers achieve rational designs that are consistent with

adopted design philosophies. The structural engineering cornpone;it of this inter-disciplinary effort has
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concentrated on the design of dynamically loaded structures, in particular, the design of earthquake-resistant

stee] structures.

This design problem is complicated by the large uncertainty in predicting the spatial and temporal
nature of future seismic cvents. Further uncertainties are introduced due to the limited ability of analytical
models to properly describe the nonlinear response of structures under severe earthquake excitations. Conse-
quently, designers have difficulty in making quantitative decisions regarding the adequacy of a design, and in
choosing rationally among different design alternatives. The decision making process is further complicated

by the fact that performance criteria are usually multi-tiered and related to notions of acceptable risk.

For example, the Structural Engineers’ Association of California[48] recommends a three-tiered seismic
design criterion for buildings that must perform satisfactorily during earthquake loadings. In addition to car-
rying gravity loads, structures should resist minor earthquakes without any damage, and have sufficient
strength to assure protection against structural damage from moderate ground shakings. In the event of an
unusually severe carthquake, extensive structural damage without collapse is accepted. These criteria have
become the accepted design philosophy for conventional building structures. In order to make the design pro-
cess tractable, most current design codes[3,53] approach the design problem indirectly by means of load and
resistance factors, simplified “equivalent loads” and simplified analyses. Conventional structures are deemed
to satisfy these criteria if they satisfy the basic strength and drift limitations, and if prescribed detailing

requirements are followed.

Nonetheless, the relationship of the accepted design method to the accepted design philosophy is tenu-
ous. While design analyses give the implication that the structure will respond clastically to the design load-
ings, the accepted design criteria rely on extensive inelastic deformations to absorb energy under severe earth-
quake excitations. The situations where this incompatibility is likely to cause designers difficulty include the
design of complex or irregular systems, those employing new materials or design detailing, or situations where
considerations of economics or post-earthquake functionality necessitate enhanced performance criterta.
Designers with little experience in cases such as these may find it difficult to assess the quatity of a final
design and identify the changes necessary to improve the performance of a structure. Indeed, problems of

this type are becoming more prevalent because structural systems requiring special performance criteria are
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coming into vogue. The required behavior of base isolated[S) and friction braced frames]7,47] under severe
lateral loads, for example, is more stringent than for conventional structures under the accepted design philo-
sophy.

Consequently, the specific goals of this research program are to employ advanced numerical analysis
proccdufes, optimization theory, reliability theory, and techniques from computer science to develop design
methodologies and computer software that help designers achieve structural designs that are consistent with

specified performance criteria.

1.3 Summary of Past Work

The thrust of the work during the early stages of this research was to produce a computer-aided design
environment called DELIGHT.STRUCT}12]. This environment requires the seismic design problem to be
recast into a series of mathematical statements that capture its objectives and constraints. Linear and non-
linear time history analyses are used to evaluate the design objectives and constraints for each limit state.
Early applications of DELIGHT.STRUCT were restricted to the deterministic design of moment-resistant|13]
and friction-braced steel structures[7]. It is known, however, that the spatial variation in acceleration
waveforms can be significant even for a single event measured over a localized region[15]. 'When one also
considers that peak values of structural response are known to be sensitive to the details of an incoming
ground motion[50], it immediately becomes apparent that although these early designs based on a single
earthquake input were optimal for the chosen ground motion, a designer had no assurance of their ability to

perform satisfactorily for other ground motions.

In an effort to mitigate these deficiences, a design methodology that includes linear and nonlinear time
history analyses, and reliability-based ideas within the design process itself has been proposed[6,8]. The
scatter in structural response outputs due to earthquake loads is explicitly accounted for by generating a fam-
ily of ground motion records for each limit state considered, and performing dynamic analyses for each input
motion. Interpretation of the statistics of relevant frame response quantities is facilitated by assuming that
the significant frame response variations and uncertainties arising in design may be assigned to two groups:

(a) a range for frame response values over which its ability to carry loads or deform without failure becomes
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significantly Jess certain and (b) a range of frame response levels whose probability of being exceeded is
believed to bound the most desirable level of reliability. The adequacy of a design is ascertained by simply
comparing the expected actions at the prescribed reliability level to the ability of the structure to carry these
actions without failure. To facilitate this comparison a single design entity called designer dissatisfaction that

quantifies the results is defined.

0 for [ LOW_resp - GOOD | < 0 : otherwise
Dfconst; ) = (D
LOW _resp — GQOOD

(LOW_resp — HIGH _resp) + (BAD — GOOD)

In Eq. 1, const; is the i™ constraint. The GOOD and BAD frame response levels bound the frame’s ability
to perform. The GOOD value corresponds to a dependable Ievel of system performance, while the BAD
level of structural response represents a threshold at which undesirable performance is almost assured if
exceeded. LOW_resp and HIGH resp are structural response levels corresponding to the HIGH and LOW
fractiles of probability of being exceeded. The former represents the lowest level of reliability the designer is
prepared to accept when the limit state is actived, while the latter represents a level of safety which the

designer considers to border on conservative safety against failure for the limit state.

Dissatisfaction is not a boolean variable simply describing whether or not a constraint is satisfied, but a
function whose value depends on the magnitude of a constraint violation. It is zero for a conservative design,
becomes slightly nonzero { ie, within the interval [0,1] ) as the design becomes more economical, and
increases above 1 as the design becomes increasingly unconservative., It increases monotonically with increas-
ing frame response scatter. Ideally, a maximum dissatisfaction among all of the performance attributes of
about 0.5 should be aimed at since this is roughly half way between a design that is too conservative, and one

that is believed to be unreliable.

The DELIGHT.STRUCT software has been modified significantly to accommodate the new methodol-
ogy. Moreover, because an effective structure balances the attributes of cost, performance and reliability in
some optimal way, algorithms{45] permitting multiple design criteria to be simultaneously assessed have been

added to DELIGHT.STRUCT. Results of a prototype implementation to the design of moment-resistant
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frames is reported in reference [9]. A comprehensive study of the behavior and optimization of concentri-
cally braced frame systems is about to concdude. The results of these studies are contained in a doctoral

thesis[36] to be completed in August 1987, and two papers|34,35].

1.4 Objectives and Scope of this Report

Now that considerable success has been achieved with the development of the design methodology and
its prototype implementation, the immediate development is being directed towards improving the software
implementation, and the quality of interaction and communication between the user and the computing
environment. Our experience with DELIGHT .STRUCT indicates that the design process cannot be regarded
as a black-box operation without designer involvement][6). Success is most likely when the problem and solu-
tion are graphically described, and when the designer is provided with the tools to both help understand how
different parts of the structure would likely behave, and interact with the design process and modify engineer-
ing specifications. Furthermore, it should enable the engineer to explicitly set special performance criteria for
unique structures and assist the designer in making decisions based on likely structural performance versus
design criteria and expected costs,

A caurent limitation of the DELIGHT.STRUCT software is that it is strongly tied to the statistical
limit states design methodology. Not all designers care to use these formal optimization procedures. More-
over, DELIGHT.STRUCT only provides assistance at the final stages of design after a structural system has
been selected and the initial member sizes have been determined. No mechanisms currently exist for consid-
ering alternative structural systems, applying approximate analyses, and for each mechanism concisely sum-
manzing the kKey response values that control the design. I such an environment were developed, then better

‘informed designers would be in position to make judgements with confidence that might otherwise be unob-
tainable.

The purpose of the report is to describe progress on the development of a new computer-aided design
package called CSTRUCT for the analysis and design of earthquake resistant stee] frames. Its implementa-
tion is for 32-bit enginecring workstations with bit-mapped high resolution graphics capable of operating

under Ultrix, and the X-Window System[23]. Software development issues such as the user interface,
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management of data, and the choice of a computer language(s) is covered in Chapter 2. Chapter 3 intro-
duces the basic features of CSTRUCT, and the various styles of user interaction provided. As the problem
description cvolves in Chapters 4 and 5, the frame and optimization attributes are identified, and employed
by the user in the ensuing design process. Chapter 6 shows how the command language and the graphical
tools are used to identify attributes of the optimization problem, critical frame actions, frame displacements
under different loadings, and to determine the overall adequacy of a design. A summary of software imple-

mentation, and suggested directions for continued software development are listed in Chapter 7.
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CHAPTER 2 - ISSUES OF SOFTWARE IMPLEMENTATION

2.1 Introduction

No factors are currently having a greater impact on our view of computer-aided design than rapid
advances in computer hardware, the introduction of advanced color display workstations to the marketplace,
and a significant drop in the price/performance ratio of engineering workstations. The emerging features of
this technology are substantial mass storage of data, high processing speed for computationally intensive appli-
cations, high resolution bitmapped graphics, interactive computation, and networking that allows data to be
shared among multiple users. When these workstations were first introduced a significant gap existed
between the capabilities of the workstation hardware and the demands of most application programs. Since
then, however, the development of window systems such as X has mitigated this problem by providing
designers with the tools to build application programs around the capabilities of the workstation hardware. X
not only manages the visual appearance of the screen layout and the mechanical interaction of the user with
the mouse and keyboard input devices, but supports the concurrent display of multiple applications on the
screen, allowing a user to freely switch between applications. It also provides for both low-level and high-level

interfaces such as line drawing and menus.

Now it is possible to develop design programs that provide more than a mere increase in computational
specd, with the possible elimination errors due to the automation of some tedious and repetitive tasks.
Improved insight into the behavior of the structure with use of high resolution graphics is achievable.
Further, with the use of multiple windows mechanisms and advanced procedures for managing the design
data, the most pertinent items of design information can be collected, and displayed to the user in a manner
that most conveniently summarizes results or trends in behavior. The implementation of such a system, how-
ever, is unlikely to be successful unless the users needs are clearly defined, and the requirements of a data
management system to support these needs are examined beforehand.” Of course, an appropriate computer

language(s) must also be selected. Each of these aspects is now discussed in detail.



2.2 Language Considerations

The frame and optimization pre and post processors of the current version of DELIGHT.STRUCT are
written in RATTLE[44], with the design evaluations being performed in Fortran using the nonlinear struc-
tural analysis package called ANSR[41]. RATTLE is an interpretive language! that is based on the Rat-
for|32] language, and employs CHike control structures. It was developed with the intention of being easy o
use and providing support for incremental program development. Although this goal was achieved, programs
written in RATTLE run very slowly. More recently the need to continue developing programs in RATTLE
has been reduced due to the release of symbolic debuggers such as db{38], and the wide use/acceptance of

UNIX utilities such as make[21] for controfling the processes of program compilation.

The pre/postprocessors of this environment are written in the C programming language. It is selected
because its execution speed in significantly greater than the RATTLE language, and its data structures allow
for considerable flexibility in the manipulation and organization of design data. C may be combined with
other languages such as Fortran?. This means that the ANSR simulation package[41] ( or comparable FOR-
TRAN codes ) can be retained to calculate the structural response, with the storage of response values han-
dled by the C data structures. Moreover, C easily interfaces with the low-level graphics facilities provided in
X, as well as higher level general purpose toolkits such as Sx[46] for building and managing the layout and
selection of subwindows, pull-down menus, titlebars, scrollbars and notifiers. Another important reason for
selecting C, in this application at least, is its ability to communicate with parser generators such as
YACC[29]. Parser generators provide mechanisms for associating meaning to components of a grammar in
such a way that interpretation and evaluation can take place. The details of how YACC works are not
trivial, and no attempt is made to explain them here. Instead, the interested developer is referred to Chapter

8 of Kernighan[33] and Aho et al.[1] for discussions on YACC and how to use it.

! According to Bill Nyef44] RATTLE is an acronym for "RATfor Terminal Language Environment.”
3 Under Unix 4.2 and Ultrix, anyway.



-10 -

2.3 Data Management

Even though data management during the 1960's was little more than a box of punched cards, this was
sufficient for the solution of many problems. As designers attempted to apply these techniques to the solu-
tion of problems with much larger volumes of data, however, the inadequacies of this approach became less
tolerable. 4Difficu1ties of a similar nature in the business community provided a strong motivation for the
development of formal mechanisms for manipulating and storing data. As a result, a significant volume of
literature now exists on data models and database managers[20,27,30,50,52], together with guidelines on the
best selection of data model ( relational, hierarchal, or network ) for different problem structures, the rates at
which data must be updated, and variations of anticipated queries[20]. Yet, database implementations based
on a purely relational, network or hierarchal models have had only limited success in engineering. One rea-
son for this is that data models customized to maximize performance in engineering applications can be very
different from anything developed in the business arena. Sreekaanta et al.[52], for example, report on the
development a data model to handle the storage and manipulation of sparse matrices in the solution of finite
element and structural optimization problems. It appears that the needs or uses of such an organization of
data with the business domain had not even been perceived. Moreover, because the derivation of an artifact
is an evolutionary process of design versions and sequences of incrementally changed designs, the form and
layout of data in engineering design tends to be more dynamic than for business applications. A computa-
tional environment that explicitly handles data for various versions of design is currently under develop-
ment{30], and is expected to offer significant improvements in the way in which engineering data is managed.

For these reasons, an existing database manager is not used in the version of the program. Rather, an
effort is made to organize the information into data models appropriate to the problem currently at hand,
with the expcctation that revisions to the management of data will be required in future versions of
CSTRUCT. Appendix 1 summarizes some of the data models used in this development; namely, data struc-
tures used for the frame definition, frame geometry attributes, frame response storage, and frame perfor-

mance assessment,
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2.4 User Interface

One factor that played a minor role in determining the success of application programs prior to the
advent of interactive computing environments was the quality of communication between a user and
machine. For many years the important issues were program features, portability, graphics, and whether or
not a computer was really needed to get the job done in the first place. But with interactive computing
environments becoming indispensable for the solution of much mere difficult design problems, there is grow-
ing evidence to suggest that ease of use is at least as important as functionality[24,25,28] in determining the
likely success of an application program. Now it is simply unrealistic to develop new styles of design without
also ensuring the users are familiar with its features, and know how to use them3. Developers should ack-
nowledge the wide variety of user backgrounds by customizing the design environment to the changing skills
and requirements of users as they acquire experience with the new design style. A novice must be convinced
that the details of the design method will be easy to learn, while experienced designers are simultaneously
made to feel that their capabilities are not limited by the tools in the interface. Currently, the most practical
way of dealing with these variations is to develop tools that allow tasks to be completed via a number of
interaction styles. Foley and Van Dam[22] point out that user-computer dialogues such as menus and
prompts are popular with novice uscrs because the computer takes the initiative in guiding the user through
the intricacies of specifying input. Conversely, dialogues in which the user has control and invokes one of
many alternatives, typically without being presented with an explicit set of alternatives are called user-
initiated dialogues and are suitable for experienced users. Menus are appropriate for experienced users if the
menus can be presented very quickly, and without affecting the visual continuity and sense of place within
the interaction display. The main limitations of menu interaction are that the scope of operations is often

restricted, and the definition of problem attributes can be very slow.

Most of the recent developments in structural analysis and design have menu based user interfaces ( see
references[39,40] for the work from Cornell ) or simply rely on text editors to prepare input data files, and

graphics for displaying analysis results ( see reference [55] for SAP80 ). Although some of these

* Nowhere are the pitfalls of this observation more evident than with DELIGHT, and the amount of user
knowledge required to select solution procedures from its library of algotithms.
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develdpments claim to support design, in actuality they do little more than analysis with some checking of
design constraints. Generally speaking there is no notion of satisfying behavior for a number of limit states,
adjusting the modeling assumptions for consistency with expected behavior, catering for special performance

requirements, or incorporating methods for automatically updating the design.

The development goal of CSTRUCT is to provide designers with a computational environment for the
analysis and design of earthquake resistant steel frames. Its user interface must provide mechanisms for: (a)
describing the design problem, (b} the querying of information about the design, (¢) setting special perfor-
mance criteria for unique structures, and (d) interpreting design performance and behavior, and comparing
the attributes of alternative designs. Since these tasks are somewhat diverse, an interface that supports multi-
ple styles of user interaction with graphics is considered essential, Accordingly, the CSTRUCT user interface
employs both the mouse and keyboard as input devices, and tools from the Sx[46] window library. Sx is a
collection of routines that supplement the X window system with pull-down menus, scroll bars and notifiers.
Sx also provides a framework for building and managing window-based application programs. This frame-
work consists of an evenr dispatcher for dealing with the interactions between a window and the application
program, a packer for managing the layout of subwindows, and a selecrion manager for providing a consistent

interface with information that the user has selected.

Although the X window manager supports overlapping windows, a fixed window layout is assumed for
CSTRUCT, with the Sx packer maintaining a consistent layout when the windows are resized or moved. The
two main components of this layout ( see Figure 3.1 ) are a graphics window and a scrolling text window.
Associated with each window is a title bar and a menu bar. Because the design process consists of many
stages the manner in which some commands affect the design problem will inevitably depend on the context
of the task at hand, while other wsiliry commands have the same post-command action, irrespective of the
design task being considered. The adopted style of development for this project is to put frequently used uril-
ity commands in the menu bar. Thus a user can execute these commands by selecting the appropriate menu
item of give a keyboard command with an equivalent post-command action. A second use of the menu bar
is to control a series of popup windows or forms containing information about the design. For instance, this

could be a subset of the AISC tables, a summary of scaled earthquakes in the ground motion library, or
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information on some aspect of the frame performance. If information needs to be selected from a table for
the design then this should be passed back to the program. The final user interface issue considered here is
the type of communication between the user and machine employed for the design problem description.
Unlike control system problems ( for an example, see DELIGHT .MIMO[56} ), the behavior and design of
structural engineering applications strongly depends on the geometry of the design artifact. One possibility is
to specify the structural gcometry using a mouse. However, this approach tends to be slow, and some graph-
ics windows may not have sufficient magnification to ensure adequate precision. Consequently, a keyboard
style of interaction is used for this job. This. style of interaction is generally faster than using a mouse, and

precision may be specified up to the word capacity of the machine.
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CHAPTER 3 - CSTRUCT for BEGINNERS

3.1 Introduction

This chapter introduces the user to the CSTRUCT environment, and the various styles of user interac-
tion it supports. As outlined in Chapters 1 and 2, CSTRUCTs functional purpose is to provide engineers
with analysis tools for the design of earthquake-resistant steel frames. Not only must CSTRUCT permit
engineers to evaluate designs in manner that is consistent with expected behavior, but it should also be flexi-
ble enough so that designers can employ approximate analysis procedures with factored loads if desired. The
selection of an appropriate modeling procedure is a decision left to the designer. By default, frame perfor-
mance is evaluated in a manner that is consistent with the accepred design philosophy. The analyses used for

each limit state are:

(a) Limit state 1 is for static analysis. This limit state is appropriate for frames loaded with gravity loads
plus statically applied point loads.
(b) Limit state 2 is for linear time history analysis. Behavior of the frame loaded with gravity loads plus

moderately scaled ground motions would be appropriate for this limit state.

(c) Limit state 3 is for nonlinear time history analysis. Modeling assumptions of this type may be required
to capture the inelastic response of frames loaded with gravity loads plus ground motions scaled to

severe intensity.

If a designer wishes to model ground accelerations with a pseudo-static lateral load, and introduce load and
resistance factors, then a limit state 1 modeling assutnption would be appropriate. Otherwise, limit states 2

or 3 modeling assumptions with unfactored dead and live loads would be used.
A working knowledge of UNIX is assumed; in all the scripts that follow, % is the unix prompt and
commands that should be typed from the screen are shown in boldface. Relevant features of the the X-

Window system are explained, however,
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3.2 Starting CSTRUCT
To start CSTRUCT simply give the command

% CSTRUCT

from anywhere the within the unix shell. If the wser is not in the CSTRUCT working directory (
..JCSTRUCT/work.d ), then the user is automatically moved to the working directory before initialization of
the program parameters begins. The most important tasks completed at this stage are: (a) setting default
frame simulation parameters, (b) building a table of material properties and AISC]2] section sizes, and (c)
reading and storing families of ground motions. When this is complete the default screen layout for

CSTRUCT is mapped to the screen, as shown in Figure 3.1.

clear colors plot AISC SECTIONS

quit clear help colors
STRUCT >3 1

FIG. 3.1 : Window Layout for CSTRUCT

The two main components of this arrangement are a graphics window for the presentation of results, and a

text window ( with a vertical scrollbar ) for keyboard input and the echoing of output. Finally, the STRUCT
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>> prompt appears indicating that CSTRUCT is ready to accept commands. An important feature of
CSTRUCT s its support for multiple and mixed styles of user interaction. To select a menu item simply
move the cursor the the appropriate menu item and depress one of the mouse buttons. If a pulldown menu is
selected then a further set of options will be displayed. Otherwisc a menu option is selected directly. Each
window has been programmed to respond to window events appropriate to the context of its function or pur-
pose. For instance, the text window responds to keyboard events when the cursor is inside the text window.
In particular, the key control-H deletes or erases a character, control-U the whole line, and control-W the last
word. Hitting the return key indicates that the input line is complete and that it should now be interpreted (
parsed ). The contents of the text window may be scrolled by moving the mouse to the scrollbar buttoning
for the required level of scrolling. When the return key is hit, then the window contents are redrawn in their

original state.

3.3 Evaluation of Arithmetic Expressions

Perhaps the simplest use of CSTRUCT is as a calculator. The command syntax to print the results of

arithmetic expressions is
STRUCT >> <verb> <expr>

where the <> parentheses indicate that the command is essential. The command sequence

STRUCT >> print 3/4

STRUCT print >> . 0.75
STRUCT print >> (3 + 4)°2.3
STRUCT _print >> 87.85
STRUCT >>

demonstrates its use. The token print is matched by the list of available verbs listed above, and <expr>> is
the numerical result of an arithmetic expression, evaluated according to the hierarchy of operators shown in

Table 3.1.

A further point to note is that the command print is pushed onto the command stack after it is received, and
correctly matched with available keywords in the grammar. The program is now in a print state. The results
of further numerical expressions may be printed without retyping the command print. To exit the print state,

type either a null return command as shown above, or move directly to a new program state beginning with
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Precedence Name Description
1 - Unaryminus
2 ) Exponentiation
- '3 * Muitiplication
3 / Division
4 + Addition
4 - Subtraction

Table[3.1] : Operators for Arithmetic Expressions

the command sequence <verb> <noun> ..... examples of this capability are shown later in the report.

3.4 Operations on Lists of Numbers

Using the <<cxpr> format described above, lists of numbers ( referred to as <<numlist> ) may now be

constructed from one of the rules

<numlist> : <expr>
<expr> to <expr>
<expr> to <expr> by <expr>
<exXpr> at <expr>
<expr> at <expr> from <expr>

where the symbol | separates altcrnative rules in the grammar. The words to, by, and, and from are called
token names and are actually typed at the keyboard. The simplest applications of this rule occur for a list

built from a single <\numlist> entity. For example, the commands

STRUCT => print 2 to 6

STRUCT _print >> 2 3 4 5 8
STRUCT_print >> 2 to 3*4/2 by (4/2)
STRUCT_print >> 2

demonstrate use of the first two rules; they allow the user to break a desired numerical range into intcrvals.
The third and fourth rules are used for specifying coordinate offsets where the default offset is 0, unless oth-
erwise specified. Numerical lists may be joined with the and and except operators, enabling the union and
difference of numerical lists to be evaluated. Both operators are identified as the expression is parsed from
left to right; when an and operator is encountered a flag is set indicating that numerical lists following should

be added to the numerical list already built. Conversely, the except operator indicates that items in the
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following argument list should be removed from the numerical list already built, if they exist. For the pur-

poses of completeness, the extended rules currently in the grammar are shown

<numlist> ; <expr>
<expr> to <expr>
<expr> to <expr> by <expr>
<expr> at <expr>
<expr> at <expr> from <expr>
<numlist> , <expr>
<numlist> and <pumlist>
<numlist> except <numlist>

The comma ( , ) introduced into the grammar serves the purpose of separating terms in the grammar. So,

for example, the following argument lists are admissible:

STRUCE >>

STRUCT >> print 2 to 6 and 3.5

STRUCT _print >> 2 3 3.5 4 5 6
STRUCT_print >> 2 to 5 and 3.5, 1.2 ‘

STRUCT print >> 1.2 2 3 3.5 4 5
STRUCT _print >> 2 to 12 except 3 to 5 by 2 and 46, 42

STRUCT _print => 2 4 6 7 8 9
STRUCT_print >> 10 11 12 42 46

STRUCT _print >>

STRUCT >>

3.5 An Overview of the Command Language

A comprehensive and interactive command interpreter based on SDMS[37], the SQL{17] database
query format, and the UNIX tool YAC(J29] is used to control the design and optimization processes. The
tesults of several researchers may be used as a guideline in setting up the command interpreter. Simplicity is
desirable since previous work has shown that for two systems that are functionally equivalent, the one with
the simpler syntax produced fewer errors, and was more quickly learned[49]. Foley and Van Dam{22] note,
however, that a considerable variety of grammars is possible even for simple commands. A syntax of the

form

<verb> <noun> [adjective] [option] [scope]

is assumed where the [] parentheses signify an optional feature of the command language. The <verb> and
<noun>> tokens symbolically represent an acrion that should be applied to an objecr. An [adjective] has the
the purpose of indicating how the operation is to be executed, while an [option] provides additional informa-

tion on the intended range of the post-command action. For example, the command
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STRUCT >> print dcenst

indicates that design constraints should be printed after the command line is completely read. It is simply

extended to:

STRUCT >> print dconst all

if all design constraints at limit states 1 to 3 are to be printed. Unfortunately, this level of precision is often
inadequate for design purposes. What the designer really needs is the ability to specify exactly the load con-
ditions and regions within the frame that the post-command action is to be applied. The SQL{17] approach

to solving a query of this type is to express it as

SELECT #name FROM #location
WHERE #conditions

]

where items having #name within #location will be selected only if #conditions are satisfied. A [scope]
option is appended to the grammar, allowing the user to further qualify the range of the command. Res-
tricted scope may be in terms of (2} a portion of the frame geometry, (b) a subset of the limit state loadings,
(c) implied context associated with numerical lists given in the command line, or (d) applied ground motion
records.  To cover the range of these divisions the [scope] part of the syntax is subdivided further into [list-

group], [region] and [conditions] satisfying the rules:

[scope] : {listgrp] [region]
| [region] [conditions]

The first rule is used during the frame definition, and is discussed further in the following section. Substitut-
ing the second rule of [scope] into the grammar gives

<verb> <noun> [adjective] [option] [region] [conditions]
A region is specified by typing the literal character @ followed by a list of commands restricting the range of
the post-command action. The expression

STRUCT >> print dconst all @ limst 1

has the effect of printing all the design constraints at limit state 1, while the command
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STRUCT >> print dconst @ elmt 2 t¢ 4 limst 1

restricts the range of design constraints of interest to elements 2,3 and 4 for Limit state 1 alone. It is also

worth noting that the command

STRUCT >> print dconst @ limst 1 elmt 2 te 4

is also accepted by the grammar, and results is the same post-command action. There are many instances
where a designer may only be interested in identifying those design constraints that are close to controlling
the design. As a first cut, the designer could search for all design constraints having non-zero dissatisfaction.
The [conditions] part of the grammar permits restriction of the post-command action to those entities satisfy-
ing an inequality(ies); it is specified by typing the character | followed by a list of inequality expressions that

must be satisfied. For example

STRUCT >> print dconst all @ limst I | dissat 1= 0

prints only those design constraints for the gravity loads alone limit state having non-zero dissatisfaction. The
operators ==, >=, <=, and != may be used in the evaluation of conditional statements. Multiple condi-
tional statements may be appended to the command by using the and and or operators, as previously
described. A list of design constraints having dissatisfactions within the interval [0,0.5] at limit state 1 can be

obtained with

STRUCT >> print dconst all @ limst 1 | dissat > 0 and dissat < 0.5

3.6 Combined Graphics-Command Language Interaction

Facilities also exist for combined graphics-command language interaction. The principal mechanism is
a rubber banding procedure that defines a rectangular region in the graphics viewpoft, builds lists of elements
and nodes located within the region, and then carrys out a post-command action for these list as they apply to
the current program state. Depressing the mouse button for the first time within the graphics window defines
one coordinates of one vertex of a rectangle. The instantaneous coordinates of the repositioned mouse
defines the coordinates of the diagonal vertex. The final region 1s designated by moving the mouse until the

temporary box covers the required region, and then depressing the mouse button for a second time. Lists of
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frame elements and nodes within the region are then built and the post-command action carried out using

these lists. For example, a user could type the command

STRUCT >> print dconst @ limst 1 and 3

if he or she wanted to print design constraints for limit states 1 and 3, but didn’t want to specify in the com-
mand line the exact geometric Jocations the command is to apply. Now the rubber-banding procedure may be
successively applied to different parts of the frame geometry, and all design constraints located within the

banded region will be printed to the screen.

3.7 Utility Commands

Utility commands are available at all program states, will not change the context of the current program

state, and have the form

STRUCT =>> <utility> [STRING]

where STRING is an alphanumeric string. Examples of their use are given throughout Chapter 4.

3.8 The CSTRUCT Helper Facility

CSTRUCT has a very simple helper facility to assist users with the syntax of commands, to provide a
detailed selection of example commands, and to show the valies of global CSTRUCT variables. The syntax

for the helper is
STRUCT >> help [option]
where the available [options] are syntax, example, all, and variable. FExamples of their use are given in

Chapter 4. Alternatively, advice on the syntax of commands may be activated by selecting the appropriate

menu item.
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3.9 Setting Graphics Windows

By default, the dimensions of the graphics window coordinates are taken to equal the number of pixels
inside the window when the program is started up, or the window is resized. To see what window coordi-

nates are currently being used, simply type

STRUCT >> print window

INFO >> ... window coordinates ...
INFO >> ... MINX WINDOW = 0.0 : MINY WINDON = 0.0
INFO >> ... MAXX WINDOW = 573.0 : MAXY WINDOW = 573.0

STRUCT _print_window >>

Similarly, the viewport coordinates may be examined with the command print viewport. The window coor-

dinates may now be interactively adjusted with a command of the form

STRUCT >> MAXX_WINDOW
STRUCT >> MAXY_WINDOW

4000
3000

I

This feature is of most use when the desired window coordinates exceed the default window coordinates at
the initial stages of the problem definition. Alternatively, a user can move to the set window program state {

or set viewport program state ) and use the rubber banding procedure described in Section 3.6.

3.10 Text Labels

Graphs may be labeled with character strings by using the utility command text. For instance, the the

label this is a test

STRUCT >> text
What is the string : this is a test
STRUCT >>

is specified in response to the prompt. The user is then prompted for the appropriate graphics region before
the label is drawn, The utility command clear cleans graphics screen. This may be typed at the Keyboard, or

buttoned in the graphics menu bar.
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3.11 Accommodating Errors

Users will inevitably attempt to carry out actions that are not recognized by the computer system.
Ideally, computer systems should be tolerant to such mistakes, gracefully recovering the user from such
mishaps, before providing help and feedback so that the user can easily get the task completed on the next

attermnpt.

Perhaps the most frequent user error will be typing mistakes in long command lines. As already men-
tioned YACC parses the command line from left to right, looking ahead as far as necessary to uniqucly
match the expression with the specified rules. After the rule is identified, the parser takes action on the most
recently read tokens, before returning to process the remainder of the command line. The strategy for inter-
preting command lines in CSTRUCT is to accept ali tokens that satisfy the command syntax. If the token
moves CSTRUCT into a new command state, then this is done before the remainder of the command line is

parsed. For example, in the command script

STRUCT >>
STRUCT >> add node z 0 to 500 by 100 y 0 teo 400 by 8C
ERRCOR_add_node >> ... "z" : command not found

STRUCT _add_node >>

CSTRUCT is moved into the add node state before the unrecognized z token is encountered. The
remainder of the command line is ignored, and a error message is given to highlight the unidentified token

to the user. The user might now use the help example command to gbtain examples of correct commands,

3.12 Redirection of Qutput

A series of utility commands is available for the redirection and/or echoing of command line input,

and program output to a file. The command sequence

STRUCT >> echo stuff

INFO >> Created file "stuff"
STRUCT >>
STRUCT >> # this line is a comment statement
STRUCT >>
STRUCT >> echoend

INFO >> Echo output is is file "stuff"
STRUCT >>
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first creates a file called "stuff”. All subsequent output and command line input is echoed to the screen and
to the file "stuff.” The process is terminated with the command echoend. Table [3.3] summarizes the com-

mands available for input/output redirection.

Command Effect
echo echo both input and output to the stated file
echo_output echo output only to the stated file
echo_onto append echo output and input to the stated file
echoend end redirection of output

Tablef3.31 : Redirection of Input/Output

3.13 Batch Mode Operation

It is possible to run a complete process in batch mode by creating a file containing an equivalent

sequence of interactive commands. For example, the inputfile could contain

echo output_file_name

#
# Design evaluation of test problem AMY : 10th Feb. 1987

#

load AMY

write ansr @ limst 1 to 3

run ansr @ limst 1 to 3

# [a] Design Constraints with non-zero dissatisfaction
print dconst all @ limst 1 to 3 | dissat != 0.0

#

#i [b} Complete summary of design constraint dissatisfactions
#

print dconst all @ limst 1 to 3

#

# [c¢] Complete summary of frame actions

#

print action all @ limst 1 to 3
echoend

The UNIX shell is redirected to take the file instructions ( rather than the screen ) with the command

% CSTRUCT < inputfile &

The ampersand & tells the terminal to put the job into the background and immediately take more com-

mands from the screen. Variations on this command are
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% ( sleep 2000 ; CSTRUCT < inputfile ) &
and
% CSTRUCT < inputfile > /dev/null &

In the former example, the semicolon acts as a command terminator, and parentheses group the entire com-
mand. The background process starts, but immediately sleeps for 2000 seconds before activating CSTRUCT
in batchmode. In the second example, unnecessary screen output is avoided by redirecting it to device null

with the command /dev/null. The user can now logout and go home,

3.14 Leaving CSTRUCT

The utility commands exit and quit are used to leave CSTRUCT. The former writes the contents of
the current problem to data files ( sec Section 4.16 ) before leaving CSTRUCT, whereas quit leaves

CSTRUCT directly.



=26 -

CHAPTER 4 - FRAME PREPROCESSOR

4.1 Introduction

The frame preprocessor is a computational tool for the description of 2-dimensional steel frames that
must perform satisfactorily for loading conditions of the accepred design philosophy. Specifications are given
for: (a) the frame geometry, (b) the dead and live gravity loads for each limit state, {c) earthquake loads for
each limit state, (d) initial section sizes and material properties, () boundary conditions, and (f) the master-
slave degrees of freedom for modeling each limit state. The user must begin by defining the frame geometry.
Beyond this point, however, tasks (b)-(e) may be completed in any order.

Units of force and length are kips, and inches, respectively. ‘A (x,y,r) coordinate system is assumed,
where the x and y describe the horizontal and vertical coordinates respectively, and r an anticlockwise rota-

tion about an axis pointing into the x-y plane. A 3 bay 5 story frame is now described as an example.

4.2 Description of the Frame Geometry

The frame geometry description can be divided into a three step procedure. First, a grid of nodal
points is defined in the (x,y) coordinate space. Frame elements are then attached to the nodal grid. Finally,
the frame deséription is the cleaned; all nodes not attached to any elements are removed from the list of
nodes, and attribute lists of frame elements and nodes belonging to each of the frame story levels, floors, bays

and column lines are built. Each of these stages is now outlined in detail.

The command syntax for the frame definition is

<verb> <noun> [adjective] [listgrp] [region]

where the [listgrp] option of the grammar assumes a form

[listgrp] : idl <numlist> id2 <aumlist> ...

The tokens idl and id2 and so on are identifiers used to provide context to the following numerical lists. A
grid of nodal coordinates may be specified with commands of the form

STRUCT >> add node [adjective] [listgrp]
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For example, the command sequence

STRUCT >>

STRUCT >> add node
INFO_add_node >>
INFO_add_node >>

STRUCT_add_node >>

x 0 toe 100 by 100 and 250, 350 y 5 at 80
No of nodes generated =
Total no of nodes = 24

moves CSTRUCT into the add nede state before generating 24 nodal coordinates. The literal characters x
and y are designated as identifier tokens for numerical lists describing the nodal coordinate positions along
the x and y axes, and the post command output indicates the number of nodes added with the most recent

command, as well as the total number of nodes defined.

42 522 23 429
17
o o8 o1 20
13
o 014 015 015

n13.

FIG. 4.1 : Grid of Nodal Coordinates

The nodal coordinates may be checked with the command

STRUCT >

STRICT >> print coord @node 1 to 21 by 4
INFO >> Node no
INFO >> ====c=zssosss=smssoososssssss ==
INFO >> 1 0.00 0.00
INFQ >> 5 0.00 30.00
INFO >> 9 0.00 160.00
INFO >> 13 0.60 240.00
INFOQ >> 17 0.00 320.00
INFO >> 21 0.00 400.00

STRUCT _print_coord >>

Other possibilities may be obtained by typing help example from the print coord command state.



4.3 Drawing and Labeling the Nodal Grid

The syntax for drawing and labeling the nodes is

STRUCT >> draw node [option] [region]

and

STRUCT >>
STRUCT >> label node [option] [region]

respectively, For example, the command sequence

STRUCT >>

STRUCT >> draw neode

STRUCT _draw_node >> all
STRUCT_draw_node >> label node all
STRUCT _label _node >>

STRUCT_label >>

draws and labels the nodal grid shown in Figure 4.1. A point to note is that although default colors are
assigrled to the nodes, elements, design constraints and so on when CSTRUCT is started up, colors may be
set explicitly by first moving to the desired program state ( eg; draw node ) and then selecting the appropri-
ate color menu item. Individual nodes may be labeled with either the label node @ node <pumlist> com-
mand, or by moving into the label node program state, and using the rubber-banding procedure ( outlined in
Section 3.6 ) to define a list of appropriate nodes. Similarly, labeled nodes may be erased by following the

command sequence erase node [option] [region].

4.4 Description of Element Layout

Three types of elements are currently supported. By default horizontal elements are assumed to be
girders, vertical elements columns and diagonal elements braces. An element grid is now superimposed on
the nodal grid using either the command syntax

STRUCT >> add elmt [adjective] [region]

or

STRUCT > add elmt [listgrp]
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For example, the command script

STRUCT >> add elmt

STRUCT_add_elmt >> series @ node 5 to 8§
STRUCT _add_elmt_series >> @ node 9 to 12
STRUCT_add_elmi_series >> @ node 13 to 15
STRUCT add_elmt_series >> @ node 17 to 19
STRUCT _add_elmt_series >> @ node 21 to 23

STRUCT _add_elmt_series >> @ node 1 to 21 by 4

STRUCT _add_elmt_series >> @ node 2 to 22 by 4

STRUCT _add_elmt_series >> @ node 3 to 23 by 4

STRUCT_ add_elmt_series >> @ node 4 to 12 by 4

STRUCT _add_elmt >>

STRUCT _add >>
a2l 22 23 °24
17 18 19 20
b3 14 15 16
g 10 11 12
5 6 7 8
J,i &2 43 44

FIG. 4.2 ; Frame Element Layout for the Example Problem

generates the element layout shown in Figure 4.2. When the adjective series is used, the i and j ends of the
elements are connected to nodes assuming that the i end of the element belongs to the node having the lower
numnerical value and the j end of the element to the node having the greater numerical value. Alternatively,
the command sequence:

STRUCT >> add elmt
STRUCT _add_eimt >>
STRUCT_add_elmt >>
STRUCT_add_elmt >>
STRUCT _add_elmt >>
STRUCT_add >>

to 3§ 2 to 4
te 7 j 6 to 8
te 12 j 3 to §
to 9 by 4 j 1 to 9 by 4

— e - s
L ~RY

might be used to generate an identical element layout, but with the i and j ends of the elements inter-

changed. Moreover, it is conceivable that someone might try to add elements by typing
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STRUCT >>> add elmt x 2 to 4 y 1 to 3
STRUCT_add_elmt >>

However, no action is taken in this case because numerical lists associated with the x and y coordinates have

no meaning in the context of adding elements.

4.5 Geometry Attributes and Context

When the user is finished describing the desired layout of nodes and element connectivities, the com-

mand

STRUCT >> clean [option]

may be given to condense the available information. If no option is invoked, then executing the clean com-

mand only removes all nodes not connected to frame elements. However, if the all option is given as in

STRUCT >> c¢lean all

INFO >>

INFO > ...
INFO >> ...
INFO == ...
INFO == ...

build
build
buiid
build
build

(X,Y,Z) axes list
floor level list
cotumn line list
bay contents list
story level list

then all elements marked as being deleted are permanently removed from the element list, and all nodes not

connected to any element are deleted from the nodal list. Nodal connectivity lists associated with the waii-

form loads, nodal point loads, master-slave degrees of freedom, boundary conditions, or section sizes are also

updated. Finally, the overall frame dimensions as calculated and stored.

Lists of frame elements and nodes attributes belonging to each story level, floor level, column line, and

bay are then built. Elements and nodes may now be referred to by their number, or with respect to their

geometric location in the frame. The primary advantage of this feature is that the user does not have to

adjust his perception of a problem after the elements have been renumbered because of a minor modification

of the frame geometry, or perhaps due to a renumbering of the elements to reduce the bandwidth in the stiff-

ness matrix. Instead for printing the nodal coordinates at floor 1 with

STRUCT >> print coord @ node 5 to 9

one could achieve the same effect with
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STRUCT > print coord @ floor 1

As a final note, the grammar also allows one to further restrict the range of frame geometry of interest by

combining orthogonal frame attributes. The command

STRUCT >> print coord @ node 5 to 6

has the same effect as

STRUCT >> print ceord @ floor 1 bay 1

19 i1 20 21
17 [22
16 9 17 18
16 21
13 7 14 115
15 bo
9 4 10 Floor 2 11
14 Story 2 19
k= 1 ] Floor 1 7
13 Story 1 18
81 Bay 1 42 Bay 2 3
Coline 1 Coline 2

12

FIG. 4.3 : Cleaned Frame Geometry with Attributes

Of course, if it is decided that frame elements should be added or deleted at a later date, then these element

lists must be rebuilt.

4.6 Plotting the Frame

If the command clean all has already been given, the graphics window coordinates may be set so that

the complete frame will just fit inside the specified graphics viewport by giving the command

STRUCT >> set window auteo
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Otherwise the window coordinates may need to be set explicitly, as already demonstrated in Chapter 3. From
this point on nodes and elements are drawn with commands of the form

STRUCT >> draw <noun> [option] [region]

Currently, the most general command available is draw frame, which has the effect of drawing all the frame
nodes and clements. A more specific command such as

STRUCT >> draw elmt @ floor 1 and 2

might be given if only a portion of the frame geometry is currently of vinterest.

4,7 Labeling the Frame Elements
The syntax for labeling the frame elements is

STRUCT >> label <noun> [option] [region]

where all is a permissible option. The help facility may be used to obtain a list of other relevant commands.

4.8 Dead and Live Gravity Loads

The syntax for specifying uniform gravity loads is

STRUCT >> add uload [listgrp] [region]

where the identifiers for the [listgrp] option are dead and live, and [region] may be described by geometric,
limit state ( limst ) and loadcase ( lcase ) descriptors. Currently, snow and wind loadings are not considered.
For example, the command sequence

STRUCT >> add uload
STRUCT_add_uload >> dead 0.2 @ floor 1 to §

INFO_add_uload > limst 1 : 2 load cases 12 uniform loads added
INFO_add_uload >> limst 2 : 3 load cases 12 uniform loads added
INFO add_uload >> limst 3 : 3 load cases 12 uniform loads added
STRUCT _add_uload >> live 0.04 @ floor 1 te 5 limst 2 and 3
INFO add_uload >> limst 2 : 3 load cases 12 uniform loads added
INFO_add_uload >> limst 3 : 3 load cases : 12 uniform loads added
STRUCT add_uload >> live 0.04 @ floor 1 to 5 limst 1 lcase 1
INFQ_add_uload > limst 2 : 3 load cases 12 uniform loads added
STRUCT_add_uload >> live 0.10 @ floor 1 to 5 bay 2 limst 1 lcase 2
INFO _add_uload > limst 1 1 foad cases : S5 uniform loads added
STRUCT_add_ulocad >=>

STRUCT _add >>
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adds dead loads of 0.2 kips/in on all floors for limit states 1 to 3, and uniform live loads on all floors of 0.04
kipsiin for limit states 2 and 3. Limit state 1 has two load cases, and limit states 2 and 3, three load cases (
see Section 6.2 for a description of how to set the number of load cases for each limit state ). Two patterns
of live load are defined for the gravity loads alone limit state, however, including zero live loads on all floors
for load case 3. Similarly, the syntax for specifying point V]oads is nodal point loads can be added with com-
mands of the type

STRUCT >> add pload [listgrp] [region]

As an example, lines of horizontally oriented point loads along the coline 1 nodal list could be specified with

the command series

STRUCT >>
STRUCT >> add plead fx 2.3 @ coline 1 limst 1 lcase 1

INFO_add_pload >> limst 1 : 1 load cases : 6 point loads added
STRICT add_pload >> fx -2.3 @ coline 1 limst 1 lcase 2

INFO_add_pload > limst 1 : 1 load cases : 6 point loads added

STRUCT _add_pload >>

Point loads in the y-direction and rotational moments in the z-direction may be specified the identifiers fy

and rz, respectively. To check that the loads have in fact been added, simply type the command

STRUCT >>

STRUCT >> print uload @ floor 1 limst 1 lcase 1 and 2
INFO >> Limst Elmt Lcase dead live
INFQ >> Ne No No (kips/in) (kips/in)
INFO >>
INFQ >> 1 1 1 0.20 0.04
INFO >> 1 1 2 0.20 0.04
INFO >> 1 2 1 0.20 0.10
INFQ >> I 2 2 0.20 0.04
INFO >> 1 3 1 0.20 0.04
INFO >> 1 3 2 0.20 0.04

STRUCT _print_uload >>

Currently, CSTRUCT does not have a delete uload command. Unwanted uniform loads and point loads can

be removed by simply setting their numerical values to zero. The parameters SCALEUL and SCALEPL in

the command seript

STRUCT >>

STRUCT >> draw uload

STRUCT draw_uload >> help variable

INFO_draw_uload >> SCALEUL = 50.00

STRUCT _draw_uload >> all @ limst 1
STRUCT _draw_uload >

STRUCT _draw >> pload

STRUCT _draw_pload >> help variable
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FIG. 4.4 : UniformGravity Loads, Point Loads and Boundary Cenditions

INFO_draw_pload >> SCALEPL 50.00

STRUCT _draw_pload >> SCALEPL = 10
STRUCT _draw_pload >> all @ limst 1

are the scale factors for drawing the uniform and point loads in terms of the window coordinates. The
adopted convention is to draw the scaled dead loads closest to the element center line, with the live loads on
top. Their current values many be printed with the help variable command. The magnitude of the point
loads may now be printed with the command

STRUCT >>
STRUCT _draw_pload >>
STRUCT draw >> print pload @ coline 1 limst 1 lcase 1 and 2

INFO >> Limst Node Lcase X Y
INFO >> No No No (kips) (kips)
INFO >>

INFO >> 1 1 1 2.30 06.00
INFO >> 1 1 2 -2.30 0.00
INFO >> 1 5 1 2.30 0.00
INFQ >> 1 5 2 -2.30 0.00
INFO => 1 9 1 2.30 0.00
INFO > 1 9 2 -2.30 0.00
INFO >> 1 13 1 2.30 0.00
INFO >> 1 13 2 -2.30 0.00
INFO >> 1 16 1 2.30 0.00
INFO >> 1 16 2 -2.30 0.00
INFO >> 1 19 1 2.30 0.00
INFO >> 1 19 2 -2.30 0.00
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STRUCT print_pload >>
STRUCT _print >>
STRUCT >>

An important point to keep in mind when specifying the uniform loads is that full dead plus live loads are
used for assessing frame performance under gravity loads alone. However, for the severe and moderate

lateral load limit states, the mass matrix used in the dynamic analyses on dead loads only.

4.9 Material Properties
A limited number of material properties are read from the file ../data.d/material.h when CSTRUCT is
started. Table 4.2 shows the section properties currently available. The symbols E, S, p, o, and o, are

abbreviations for for Youngs Modulus, the strain hardening ratio, Poissons ratio, the tensile yield stress, and

compressive yield stress.

NAME E S | n | o (kipinin) | o, (kipfin/in)
STEEI1 | 29000.0 | 0.01 | 0.3 36.0 36.0
STEEI2 | 29000.0 | 0.02 | 0.3 55.0 55.0
STEEL3 | 29000.0 | 0.02 | 0.3 36.0 00.0
STEEIA4 { 29000.0 | 0.02 | 0.3 55.0 00.0

Table [4.2] : Material Properties

4,10 Frame Element Sizes

Typically the design process will involve an iterative followed by possible refinement of the element
sizes either to make the design feasible, or improve cost. The cycle time of this process may be shortened if
the designer is provided with computational tools to: (a) obtain information on section sizes that have proper-
ties close to what the designer feels will be appropriate, and (D) easily assign frame element sizes and material
properties.

The list of available materials is discussed in Section 4.9. A subset of the AIS(J2] section sizes are
read from the file ../data.d/section.h when CSTRUCT is started. Designer’s have the choice of using either
available AISC section sizes, or parametrically defined sections for wide flange steel sections[54]. The details

of using parametric defined sections in an optimization formulation are left till Chapter 5. The goal of this
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section is to concentrate on the specification of AISC sections. The command sequence

STRUCT >> print section
STRUCT_print_section >> help example
INFO >> print section table
INFO >> print section
INFO >> print section Ixx >= 200
INFO >> print section Ixx >= 200 and area < 35
INFO >> print section @ floor 1 | area < 30

shows how the help example utility is used to obtain a list of relevant commands and options at the print sec-
tion command state. Now, the [qualifiers] part of the language is used to select a restricted range of sections.

A list of section sizes satisfying 400 in* < Ixx < 600 in* can be obtained by simply typing

STRUCT =>>

STRUCT >> print section table | Ixx < 600 and Ixx > 400
INFO >>
INFO >> NAVE  AREA DEPTH Ixx Iy WEIGHT
INFO >>  (char) (in) (in) {in) (in¥ (ib/f1t)
INFO 55 - ccccmm i m e i e e e -

INFO >>  WI18x35 10.3 0
INFO >>  W16x45 13.3 8 0
INFO >>  W16x40 11.8 9 0
INFO >>  WLlé6x36 10.6 . . .5 0
INFO >>  W14x53 15.6 13.92 541.0 57.7 53.0
INFC >>  Wid4x48 14.1 4 g
INFO >>  Wl14x43 12.6 2 0
INFO >>  WI12x58 17.0 . .0 0
INFO > -cemvrmic e e e e s e e e e e e cs i e e mmc e s e e m e m =

STRUCT print_section_table >>

STRUCT _print_section >>

The qualifiers that may be used for printing sections are Ixx, Iyy, area and depth. Consequently, an expres-

sion of the type print section table | Ixx < 600 and area > 10 is also allowed.

4,11 Specifying Element Sizes and Material Properties

The syntax for specifying element sizes and material properties is

STRUCT >> add section [listgrp] [region]

where material and type are identifiers for the material properties and sections, respectively. The command
sequence

STRUCT >> add section

STRUCT_add_section >> material STEEL1 @ elmt 1 to 29
STRUCT _add_section >> type WI6x36 @ floor 1 to §
STRUCT _add_section >> type W16x45 @ coline 1 to 4
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shows how the materiat STEEL] ( see Table 4.2 ) is allocated to all the frame elements, and appropriate
AISC section types to the columns and girders. Notice that the materials and sections are referred to by
name. The sections allocated to each element may now be labelled with the command label section all, as

shown in Figure 4.5. Of course, the mouse may also be used to define the a rectangular region for labelling

sections.
W16x36 W16x36
k645 116x45 )1 6x45
WiGx36 Wiex36
L16x45 Wi6x45 W1Ex45
W16x36 ¥16x36
116x45 i16x%45 }16x45
W16x36 W16x36 W16x36
M16x45 lu16x4a5 /16545 l16x45
W16x36 WiEX36 WiEx36
i16x45 M16x45 i16x45 16545
fL [ a o

FIG. 4.5 ; Labeled Frame Sections

Should a section need to be modified, then detailed description of the current frame sections may be printed
by issuing a command of the form

STRUCT print_section_table >>
STRUCT _print_section >> @ elmt 13 and 14

INFO >> Elmt Material Section Inertia Area
INFO >> No Name Name (in**4) (in**2)
INFQ >> ====

INFO >> 13 STEELI  Wi6x45 586.00 13.30
INFO > 14 STEEL1  Wi6x45 586.00 13.30
STRUCT print_section >>

Alternatively, current section sizes may be labeled with the label section command.
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4.12 Boundary Conditions

Frame nodes may be free or fixed in their translational and rotational degrees of freedom. The syntax
for specifying boundary conditions is

STRUCT >> add bcond [listgrp] [region]

For example, the command

STRUCT >> add bcond dx dy rz @ node 1 to 4 limst 1 to 3

fixes the [ rz | rotational and | dx dy] translational degrees of freedom at nodes 1 to 4 for limit state loadings
1 to 3. By default, nodal degrees of freedom are assumed to be free unless otherwise specified. Moreover, if
the range of applicable limit state loadings is not explicitly specified, then a complete range of limit states { 1

to 3 ] and load cases is assumed. The boundary conditions at limit states 1 and 2 might now be checked with

the command

STRUCT >>

STRUCT >> print bcond @ nede 1 to 5§ Iimst 1 and 2
INFO >> Limst Node X Y R
INFO >> No No fixity fixity fixity
INFO >> == =
INFO >> 1 1 FIXED FIXED FIXED
INFO >> 1 2 FIXED FIXED FIXED
INFCG >> 1 3 FIXED FIXED FIXED
INFO >> 1 4 FIXED FIXED FIXED
INFO >> 1 5 NOTFIXED NOTFIXED  NOTFIXED
INFO >> 2 1 FIXED FIXED FIXED
INFO >> 2 2 FIXED FIXED FIXED
INFO >> 2 3 FIXED FIXED FIXED
INFO >> 2 4 FIXED FIXED FIXED
INFQ >> 2 5 NOTFIXED NOTFIXFD NOTFIXED

STRUCT print_bcond >>
STRUCT _print >>

Finally, the command label beond [option] [region] may be used to obtain a graphical representation of
applied boundary conditions. For instance, the full fixity boundary conditions applied to column lines 1 to 4

for the gravity loads alone limit state are shown in Figure 4.4.

4.13 Master-Slave Degrees of Freedom

The syntax to specify master-slave degrees of freedom is

STRUCT >> add const [option] [listgrp] [region]
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Perhaps the best way to demonstrate the range of possible commands is via the help example command,
namely:

STRUCT _add_const >> help example

EXAMPL >> add const auto

EXAMPL, >> add const auto @ limst 1 and 3

EXAMPI, >> add const master 10 slave 11 to 15

EXAMPL, >> add const master 10 slave 11 to 15 @ limst 1

In these examples master and slave are the identifiers for specifying a master node and a list of slave node

numbers. The commands print const and label const may be used to verify that the command has had the
desired action.

The auto option has the effect of assigning default master-slave degrees of freedom to each limit state.
For the gravity loads alone limit state, each node is assumed to have 2 translational and 1 rotational degree of
freedom. However, for the moderate and severe lateral load limit state loadings, axial deformations in the
columns are ignored, and the translational degrees of freedom are slaved at each floor level. Hence, assum-
ing that the column bases are fully fixed for all limit state loadings, then the example problem is modeled
with 51 degrees of freedom for the gravity loads alone limit state, and 22 degrees of freedom for the

moderate and severe lateral load limit states.

4.14 Ground Motions

Because statistically-based limit state design methods base performance on the statistics of structural
responise due to an ensemble of scaled ground motion records, their success to a large extent depends on the
designer’s ability to scale ground motioqs to moderate and severe lateral load intensities. Ideally, each record
should be scaled to cause equivalent structural damage potential. Characteristics of ground motion that have
been suggested as suitable parameters include peak ground acceleration, RMS acceleration, Arias Intensity
and Spectral Intensity. Unfortunately none of these is entirely adequate, and extensions|19] to the work dis-

cussed in {18,42] are currently underway to mitigate this problem.
The designer should be provided with the tools to graphically compare records before and after scaling,
Facilities have been developed to plot the time variation of shaking, acceleration response spectra, and Arias

Intensity. They provide a graphical means of comparing the relative magnitudes of loadings for each limit
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state, and their consequences in terms of frame response quantities controlling the design.

During the startup procedure of CSTRUCT families of ground motions are read from the ascii data files
./gmrecords.d/recordl, ../gmrecords.d/record2 and so on. A typical ground motion header file looks like

**r GROUND ACCELERATION RECORD ***

the maximum allowable number of data points in a record is 999
units for the accelerations are inches per seconds squared
1940 EL CENTRO S0CE RECORD
number of data points = 500
time increment in seconds = 0.02
peak acceleration for this record in inches per seconds squared = 133.81
severe quake acceleration in g’s = (0.360
moderate quake acceleration in g’s = 0.108
format for the following accelerations is (8£10.2)
-31.60 -17.70 -1.48 13.3¢6 3¢.10 45.02 62.10
94.15 106.63 118.72 125.17 133.72 110.25 90.69

The user should edit the datafile before the problem definition begins to ensure desirable scaling to moderate
and severe ground motion intensities. Recommended procedures for scaling ground motions can be found in

references [6] and [31].

After CSTRUCT has been started it is inconvenient to leave the program just to examine the properties
and compare ground motions by editing the appropriate file. Instead a summary of ground motion properties
may be obtained by selecting the ground motions menu item, and displaying a ground motions form. Typi-
cally, this form will look like:

3 : E i
§ 1940 Ei Centro S
NN AR IS

?1’ 1940 ELl Centro S90W
;‘vmmmmm
t 1924 El Centro SQOU
N A NI N VST

i 1934 El Centro SO0k
Ris i i S B e

§ 1979 £l Centro NSOE
g e s e

| Peak ficceleratiol 3 in‘sec/sec

Scch =

Limit states 1,2, and 3 correspond to the unscaled records, records scaled to moderate lateral load intensity,
and severe lateral loads respectively. As the user moves the mouse from window to window, the properties of
the current ( possibly scaled ) ground motion are shown in the summary box at the bottom of the ground

motions form. Although peak ground acceleration of the scaled record and the scaling factor are the only



-41 -

ground motion indices shown in the information box, it is relatively straight forward to add further indices of
ground motions at a later date. Buttoning on the menu items switches the items from no to yes status and
vise versa. The accept and reject buttons are used to exit the form: accept causes the appropriate items to be

plotted and reject leaves the form with no action resulting.

4.15 Plotting Ground Motions, Ground Motion Spectra

Ground motions may be plotted may be indicated by filling in the pop-up table shown above, or by giv-
ing a keyboard comumand of the form

STRUCT >> draw accn [adjective] [region]

For example, the command sequence:

STRUCT >> print viewport

INFO >> ... Viewport Coordinates ...
INFO > ... MINK_VIEWPORT = 0.000 : MINY_VIBAPORT = 6.000
INFO =>> ... MAXX_VIEWPORT = 1.000 : MAXY_VIBEANPORT = 1.000
STRUCT print_view >> MAXX_VIEWPORT = 0.9
STRUCT _print_view >> MAXY_VIEWPORT = 0.8
STRUCT print_view >> MINY_VIEWPORT = 0.2

STRUCT_print_view >> draw accn @ record 1
STRUCT _draw_accn >> text

Type in the text string : EL CENIRO 1940 NS COMPONENT
STRUCT _draw_accn >>

might be followed to define a suitable viewport size before producing and labelling the plot of a 10 second
segment extracted from the 1940 El Centro ground motion ( see Figure 4.6 ). Similarly, acceleration
response spectra of multiple ground motion records scaled to moderate and severe lateral loading may be
graphically compared by selecting the appropriate menu item and filling out the pop-up table. Results of the
command draw accn spectra @ record 1 to 4 are shown in Figure 4.7. By default, the unscaled records
spectra and Arias Intensities are automatically drawn for limit states not equal to 2 or 3. As a final note,
equivalent plots of Arias Intensity may be obtained by substituting the adjective spectra with the command

arias,
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FIG. 4.7 : Acceleration Response Spectra
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4.16 Save and Restore Capabilities

A useful feature of CSTRUCT is the ability to assign identities to problems. The syntax for this utility
command is

STRUCT >> start NAME

where NAME is an alphanumeric string of the problem name. For instance, the current problem could be
called AMY by simply typing start AMY. Should the user omit to specify the expected name, he or she will
be prompted for an adequate name as demonstrated in the script

STRUCT >> start
Who is the problem 77 : AMY
STRUCT >>

If the user wishes to end an interactive session, The current state of the problem AMY may be written to

binary datafiles by typing
STRUCT >> save AMY

INFC >> writing <AMY. frame>
INFO =>> ... writing <AMY.nodes>
INFO >> ... writing <AMY.elmts>
INFO >> ... writing <AMY.nodeloads>
INFG >> ... writing <AMY.elmtloads>
INFO >> ... writing <AMY.bconds>
INFO >> ... writing <AMY.resp>
INFO >> ... writing <AMY.opt>

INFO >> ... writing <AMY.dparam>
INFO >> ... writing <AMY.bconst>
INFO >> ... writing <AMY.dobjec>
INFO >> ... writing <AMY.dconst>

In fact, a problem may be saved at any point after the frame nodes and elements have been cleaned ( see
Section 4.5 ). This allows the construction of bay, story, floor and columm line lists to be successfully built.

A previously defined problem, say for example BERT, can now be loaded with the command

STRUCT >>

STRUCT >> load BERT-
INFO >> including file <BERT.frame>
INFO >> ... including file <BERT.nodes>
INFO >> ... including file <BERT.elmts>
INFO >> ... including file <BERT.nodeloads>
INFO >> ... including file <BERT.elmtloads>
INFO >> ... including file <BERT.bconds>
INFO >> ... including file <BERT.resp>
INFO >> ... including file <BERT.opt>
INFO >> ... including file <BERT.dparam>
INFO >> ... including file <BERT.bconst>

ERROR >> ... can't open file <BERT.bconst>
INFO >> ... including file <BERT.dparam>

ERRCR >> ... can’t open [ile <BERT.dparam>
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INFO >> ... including file <BERT.dconst>
ERROR >> ... can’t open file <BERT.dconst>
INFO >> ... build (X,Y,Z) axes list
INFO >> ... build floor level list
INFO >> ... build column line list
INFO >> ... build bay contents list
INFO >> ... build story level list

In the above example the datafiles for the box constraints, design parameters, and design constraints have not

yet been defined, and are therefore not read.
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CHAPTER 5 - DESCRIPTION OF THE OPTIMIZATION PROBLEM

5.1 Introduction

A key step in this design process is the writing of the design problem in a mimimax optimization for-
mat. The basic ingredients in a formulation of this type are: (a) a set of quantifiable objectives, (b) a set of
welt defined constraints, and (c) a process for obtaining tradeoff information among objectives. Constituents
(a) and (b) define the scope of most optimization problems. Component (¢} contains a decision rule that
enables the best compromise to be made among multiple criteria. A semi-infinite nonlinear programming

problem of the form:

min [ max wicost;(x) 1 i = 1,2.L | (2
x i

subject o gi(x) =0: j =12.M
and  frnr) =<0\t ¢ € [T,,T.]: k=12.N

and Xmm =X = Xm = 1,2..P

is assumed. In Eq. 2, w; is the weighting cocfficient for the i goal of L objective functions, g;(x) the j*
entity of M conventional constraints, and £, (x,) the k* member of N functional inequality constraints. The
parameters 7, and 7, bound the range of the independent parameter . Box constraints limit the range of

permissible values on each of the P design variables.

Design alternatives may be defined by decision variables, or simply as a list of alternatives. Designers
should keep in mind that in this formulation the purpose of the design parameters is to describe those aspects
of a structure that may be modified in order to get an improved design. The design constraints serve the pur-
pose of discouraging the design parameters from taking values that are impractical, and from moving into a
region that has an unacceptably high level of risk of unsatisfactory frame performance. Measures of economy
and structural performance at the global level are quantified by the design objectives; these mathematical
statements are generally a function of the design variables, and should provide the motivation and direction

for moving towards a better design.
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5.2 An Overview of the Design/Optimizaticn Process.

Because the design constraints and design objectives serve different functions in this formulation, each

has its requirements for evaluation. The step-by-step procedure for constraint evaluation is:

(1

@
€

@
)

(6}

Specify the [ GOOD,BAD | and | HIGH,LLOW | pairs for each constraint. Each constraint is given
either a HARD or SOFT attribute. HARD constraints are ones that must be fully satisfied ( perhaps
to satisfy a physical law that cannot be violated ), and once satisfied must remain satisfied, and not par-
take in tradeoffs among constraints and objectives. SOFT constraints are those in which a moderate
constraint violation is tolerable, and can be traded off against other SOFT constraints and performance

attributes.
Simulate the frame response for the appropriate limit state(s).

Identify the appropriate frame response quantities. Calculate the mean and standard deviation of the
response quantities and plot a histogram of the results. An important point to note is that a time-
history analysis is required for each ground motion input before the functional constraints can be
evaluated. ‘The histogram of peak frame response quantities is constructed by taking just the peak
value from each of the time-history response(s).

Assume a probability distribution type and calculate its parameters from the data provided.

Calculate the characteristic values on frame response [ HIGH_ resp , LOW._resp ] corresponding to the

HIGH and LOW exceedance probabilities specified at step (1).

Substitute into Eq. 1 ( sce Chapter 1 ) to get the designer dissatisfaction.

Similarly, the calculation procedure for the design objectives is:

Y
)
3)
)

Identify the design objectives refevant to the problem at hand.
Specify GOOD and BAD values for each design objective.
Simulate the frame response for the appropriate limit state(s).

Identify the relevant frame response parameters and calculate the appropriate statistics of frame perfor-

marice.,
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(5) Substifute frame performance response quantities into Eq. 3

O for [ actual_resp - GOOD | < 0 : otherwise
D(response _value} = (3)
response_value — GOOD

BAD — GOOD

where response_value is the characteristic response quantity for the design objective. An {mportant
distinction between the constraints and objectives is that frame response values corresponding to the
HIGH and LOW fractiles of reliability are not required for the design objectives. It is the job of the
constraints to ensure that the reliability of a design is adequate. Once the design is feasible, then only
GOOD and BAD design objective values are needed to provide a general direction for change to an

improved design.

A convenient way of managing the overall design problem is to divide it into components, and view the
design process as the solution to a sequence of sub-problems. From the discussion in Chapter 1, it is evident
that design evaluations are required at each stage of the design process, with the post-evaluation action
depending not only on the calculated design performance, but the current state of the design process itself.
The general solution strategy used in the most recent work ( ie; see references {6,8,9,10] and [36] ) has been
to regard the design problem as a 3 phase process. First, priority is given to satisfying all of the HARD
design constraints. The design goal in phase 2 of the design procedure is to find a design having the minimax
dissatisfaction among all of the SOFT design constraints and design objectives, while simultancously ensuring
that the HARD design constraints remain satisfied. A final third phase of the design process may be entered
if all of the constraints are completely satistied ( ie; better than their GOOD values ); further improvement in

the design objectives is sought without causing a constraint violation.

During the initial stages of simulation the designer’s goal is to tune the { GOOD,BAD ] and |
HIGH,LOW ] preference pair settings until the relative design objective and frame constraint performances
are correctly represented by a hierarchy of ranked dissatisfactions. For this task to be completed in an
expedient manner, a designer should have a good idea of what constitutes adequate reliability and constraint
performance before the design process begins. Code recommendations and technical papers, together with

experience, can be used to this end. Ascertaining GOOD and BAD values for the design objectives can be
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more difficult because they tend to be less well defined, often assuming values that are strongly related to a
structure’s size and configuration. Moreover, because designer perception is is subjective, several conceptual
revisions of what constitutes adequate performance may occur before a satisfactory hierarchy of dissatisfac-
tions is obtained. Only then can an algorithm ( or trial and error design procedure ) be expected to produce

a sequence of improved designs which also have lower dissatisfactions.

5.3 Design Parameters

Frame members may be subject to design or fixed. During the preliminary stages of design, allocating
frame elements to a désign parameter group and designating members as “to be designed” versus "already
sized and not to be designed further” is subjective, as is the selection of the best design parameter arrange-
ment or layout. As the design process continues { and perhaps construction starts for fast-track projects ),
certain frame elements become fixed; only a subset of the frame elements are left to size. ‘This means that
the specification of design parameters must be flexible. A designer should be provided with the ability to
consider several parameter layouts, as well as the ability to designate regions of the frame with fixed AISC
section sizes, while examining the sensitivity of overall frame performance to perturbations in the frame ele-

ment sizes remaining to be fixed.

The frame elements are each modeled by a single section property parameter. Moment of inertia is the
primary section property parameter used for the beam and column elements, and cross-sectional area for truss
elements. Element properties of secondary importance such as radius of gyration and element depth are
obtained from empirical relations derived by Walker[54] for economy wide flange steel sections. Default
values for the empirical section relationships are read from the file ../data.d/assume_elmt ( see Table 5.1 )
during the CSTRUCT startup procedure. A further point to note is that when empirical relations are

employed, the material properties also default to those shown in Table 5.1.

*** ASSWWVED MATERIAL VALUES AND SECTION RELATIONSHIPS ***
BEAMS AND COLUMN ELEMENTS.
Youngs modulus for steel = 29000.0

Yield stress for steel = 36.0
Strain hardening ratio for steel = 0.05



For columns:
moment yield coordinate fraction = 1.0
axial yield coordinate fraction = 0.15
radius of gyration = 0.39 * depth "* 1.04
for inertia <= 429.0

depth = 1.47 * inertia ** 0.368
otherwise
depth = 10.5 * inertia ** 0.0436

For girders:
steel poisson ratio = 0.3
radius of gyration = 0.52 * depth ** (.92
depth = 2.66 * inertia ** 0.287

For braces:
Youngs modulus for bracing = 29000.
Yield stress for bracing = 30.
Brace strain hardening ratio = 0.02
inertia = 0.169 ™ area ** 3.0

Table 5.1 : Default Wide Flange Section Relations

5.3.1 Specifying the Design Parameters

The design parameters are specified in a two-step process. First, a design parameter name is associated
with thosc frame elements subject to design. Element sizes are then assigned to the design parameters by

name. The syntax for completing the first step is

STRUCT >> set dparam NAME [region]

where NAME is an alphanumeric name for the design parameter selected from the series x1, x2, x3 ... onto
x20, and [region} a portion of the frame geometry. Element sizes can now be assigned to the design parame-

ters with
STRUCT >> NAME = <expr>
In fact, these steps can be combined into

STRUCT >> set dparam NAME = <expr> [region]

as demonstrated by the script

STRUCT >>

STRUCT >> add dparam x1 @ story 3 to 5 coline 1 to 3
STRUCT _add_dparam >> x2 = 300 @ floor 3 to 5
STRUCT_add_dparam >>

STRUCT _add >> x1 = 4090
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to assign names and values to the design parameter layout shown in Figure 5.1. The syutax for labeling the
design parameters is

STRUCT >> label dparam [option] [region]

x2 x2
x1 1 3
x2 x2
1 1 b1
4 x2 x2
. <! &
4 nd nd nd
nd 2] nd nd
y nd nd rd |
nd o nd nd
& Jb J: j:

FIG. 5.1 : Design Parameter Layout

Information on the design parameters may be printed in two forms. The current value of a design parameter

at a specific frame element can be obtained with the command
STRUCT => print dparam [option] [region]
For example, the command

STRUCT >> print dparam @ story 5

INFO >> Elmt No Name Value
0 J>
INFQO => 11 x1 400.000
INFO > - 12 x1 400.000
INFO => 17 x1 400.000
INFO > 22 x2 300.000
INFQO >> 27 x2 300.000

STRUCT _print_dparam >>

prints the design parameters at story 5, together with their associated section sizes. Frame elements with no
design status ( ie labeled nd in Fig 5.1. ) are represented as missing entries when the design parameters are

printed. It may also be convenmient to know the list of frame elements corresponding to each design
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parameter. The comrmand

STRUCT >> print dvector

INFO >> ... build design vector list

INFQ >> X[] : Name :; Lead : Followers

INFO 55 --cmmemmmm e c e e e e e o -

INFO > X[ 1] : x2 7 : 8 9 10 11 12

INFO >> X[ 2] : x1 : 15 : 16 17 20 21 22 25 26
INFO > 27

STRUCT print_dvector >>

has the effect of building an ordered list of the frame elements associated with each item in design vector,
before printing the lists. The first element in each list is called the léading design parameter, while the

remaining elements are called followers.

5.4 Design Objectives

Our previous rescarch efforts indicate that: (a) multiple design objectives are required to adequately
describe structural performance, and (b) the most appropriate design objectives depend on the type of struc-
tural system being designed. Since the specification and description of objectives is still an active research
problem, discussion in this section is limited to a summary of the ideas motivating the design objectives used

in the most recent work{6,36].

Volume of Structural Elements: Utilizing minimum volume as a design objective reflects a typical design
philosophy. Although volume is correlated to material cost, a modest material saving may be of lesser impor-
tance than other possible objective functions when considering the structure’s lifetime performance and cost.

Nonetheless, minimum volume is often used as the starting point for optimization inasmuch as it reflects the

minimum initial material cost of the structure.
Stery Drifts: Drift control generally ensures structural integrity and the control of non-structural damage.

Energy Based Design: Although it is possible to design a structure to resist severe lateral earthquake loads
elastically, economic factors usually dictate that it is more feasible to design a system having the largest
energy dissipation capacity that is consistent with tolerable deformations[4]. A structure frame should survive

these motions with reasonable predictability, which usually implies that a frame should reach full plastic
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yielding before the maximum lateral frame displacements are reached. An essential ingredient in this type of
formulation is the energy balance equation; it reduces a conglomerate of complex mechanical information dis-

tributed in both space and time into a time-dependent scalar equation of the form:

W=E +D+E, +E (4)

where E; = ldnetic energy
D = damped energy at the element level
E, = Elastic energy
E; = Inelastic or dissipated energy

W = total input energy ( or work done ) by externally applied loads

During an earthquake energy is fed into the base of the structure. It is important to know how the energy is
distributed among the terms in the energy balance equation, and how each term is related to the physical
characteristics of structural behavior. Input energy is the scalar product of the base shear force { plus all
external loads ) moving through an incremental displacement at each timestep integrated over time. This
quantity is a function of the structure’s properties, including its mass, damping, and stiffness. With respect
© to structural behavior, input energy generally decreases and becomes less sensitive to ground motion fre-
quency content for structures that have a low yield level. Structures with high yield values primarily dissipate
energy through element damping, whereas structures with low yield values dissipate energy through inelastic
cycling. The contribution of the elastic and kinetic energy terms are usually of secondary importance in the
balance equation.

A qualitati.ve design objective is needed that seeks a structure which not only satisfies the constraints,
but performs well under severe lateral loads. For ductile structures, safely minimizing input energy and max-
imizing the percentage of energy dissipated through inclastic internal energy results in good overall perfor-
mance because the structure attracts smaller quantities of energy, and distributes it to as many elements as

possible without violating constraints. In other words, optimizing the dual criteria:

minimize W (5)
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J .. | E
an MAXIFZE W

over the duration of the earthquake is required. Specifying design objectives for structures of limited ductil-
ity ( conventionally braced frames or masonry structures ) or those containing passive energy dissipating dev-
ices ( base-isolated structures and friction-braced frames ) is a more difficult problem. For braced frames,
limited ductility is due to the inability of the structural system to develop the required displacements for
energy dissipation without a Jocalized member failure or a rapid deterioration in element strength. The limit
ductility of masonry structures is simply due to the brittle nature of the construction material. Consequently,
design objectives that encourage maximum hysteretic energy dissipation are inappropriate, as are design

objectives which ensure a completely elastic response even for a maximum credible ground motion input.

While it is generally agreed that structural systems containing passive energy dissipating devices should
have performance requirements that are more stringent than the accepted design philosophy, the engineering
research community is still undecided how much more stringent these requirements should be. Pall and
Marsh[47], for example, design the main structural systems of friction-braced frames to remain completely
elastic during severe ground motions. Some researchers contend that while improved performance is assured,
this philosophy is too conservative. They argue that it is possible to design safe structures that are more
cconomical even if limited inelastic deformations in the main structural elements are permitted. Issues of a
similar nature also exist for the design of base-isolated structures, and required behavior of the superstructure
during severe lateral loads. The interested reader is directed to Section 4.5.3 of reference [6] for a more

complete discussion on design objectives, their purpose and implementation.

5.4.1 Specifying the Design Objectives
CSTRUCT currently supports three types of design objectives. The command syntax for specifying the

design objectives is

STRUCT >> add dobjec [option]
STRUCT >> add dobjec NAME [region]
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where the identifier dv is a reserved word for the frame volume, sd for the story drift, and el, 2, €3 and e4
are identifiers for the energy groups 1 to 4, respectively. The volume and story drift design objectives serve
the pufposes outlined in Section 5.4. In the latter case, the designer designates energy group number attri-
butes for selected frame elements. The basic idea in completing this procedure is to distinguish the elements
of the frame that are capable dissipating large quantities of energy from those that are less capable of dissipat-
ing excessive quantities of inelastic energy without adverse consequences to the overall integrity of a struc-
ture. Two measures of performance are used for each energy group; the first quantifies the average effective-
ness of an energy group to dissipate epergy, while the second measures the variation of encrgy dissipation

among the elements in the group. To illustrate these featurcs, the command sequence

STRUCT >

STRUCT >> add dobjec

STRUCT_add_dobjec >> dv @ elmt 1 to 29
STRUCT_add_dobjec >> sd @ coline 1 floor 1 to 5
STRUCT _add_dobjec >> el @ floor 1 and 2
STRUCT_add_dobiec >> e2 @ floor 3 te 5
STRUCT_add_dobjec >> e3 @ coline 1 to 4

STRUCT >>

declares 8 design objectives for frame performance assessment, Included are all of the frame clements in the -
volume design objective, and the column line 1 nodes in the story drift objective calculation. Finally, 3
energy groups are declared for assessing the designs ability to dissipate hysteretic energy in a desirable

manney.

Default values for the design objectives may be setup by including the auto option in the command.
Ali of the frame elements are included in the design volume calculation, all of the storys in the story drift
abjectives, and 3 energy groups are declared; one for the girders, and a second for the columns, and a third
for the braces. The interested reader is referred to Austinf6,9] for recommended parameter settings for the
design objectives. A graphical sunﬁnary of the specified design objectives may be obtained with a command

of the type
STRUCT >> label dobjec Joption] [region]

Hgure 5.2 shows a schematic of the design objectives declared when the all option is given. The crosses draw

on the nodes along column line 1 indicate which stories are included in the story drift design objective
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‘The command sequence
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9 dv e2 . dv e2
v v v
1 1 e 1
6 dv e2 dv &2
v v v
1 1 1
3 dv e2 dv e2 f
v v v
1 %1 1

dv _e2 dv_e2 dv e2
'y v v
i %1 1

dv e2 dv e2 dv e2
v v v
1 1 1
1

FIG. 5.2 : Frame Design Objectives

STRUCT =>> print dobjec [option]
INFO >> Design Objectives
INFO >> Objective Name

INFO >>
INFQ >>
INFO >>
INFO >>
INFO >>
INFO >>
INFOQ >>

demonstrates how the dissatisfactions may be printed. The design may wish to adjust the GOOD and BAD

parameter values so that the hierarchy of design objective dissatisfactions corresponds to the designers feelings

mean
var
mean
var

about the current designs performance.

5.5 Design Constraints

The design constraints are divided into two major groups; box constraints and limit state design con-

straints. Only a summary of the design constraints along with the recommended parameter settings is given

: dissat

15102.
56.

DOoOOoO

: mean value

33
54

.00
.00
.01
.00

good value
frame volume

input energy

energy 1
energy 1
energy 2
energy 2

here, since detailed discussions are already documented in references [6-11].

: bad val

20000.
500.
0.
500,
0.
500.

ue
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5.5.1 Box Constraints
Box constraints ensure that only practicable section sizes are considered for the design. Default values

for beam, column, and brace elements are read from the file ../data.d/assume_box at the startup procedure.

*** DEFAULT BOX CONSTRAINT VALUES ***

For columns:

Constraint State = ACTIVATED
Distribution Type = NORMAL
Constraint Type = SOFT

HIGH Reliability level = 0.2

ION Reliability level = 0.1
BAD , GOCOD | < inertia < | GoaD BAD |
50.0 , 100.9 ] < inertia < [ 3000.0 , 3500.0 |

Table 5.2 : Default Box Constraints Assumptions File

Table 5.2 shows the header file together with a general template for the design constraint information. The
user indicates whether the constraint is to be ACTIVATED ( vs NOTACITVATED ), the type of statistical
distribution assumed for the response ( currently, NORMAL, LOGNORMAL and TYPE] for the Extreme
Type 1 distribution are allowed ), as well as if the constraint type is HARD or SOFT. HIGH and LOW
fractiles of reliability may also be specified, but these are currently ignored in the dissatisfaction calculation
because the frame element sizes are assumed to be deterministic. Finally, pairs of GOOD and BAD parame-

" ter values are specified at the upper and lower ends of the box constraint.

55,11 Specifying the Box Constraints

Because the number of design constraints for even a small structure can easily be several hundred, it is
somewhat impractical to expect a designer to interactively designate all design constraints that need to be set.
Instead, procedures have been written to read the default constraint values for each limit state, and automati-

cally allocate memory for the storage of constraints. Executing the command

STRUCT >

STRUCT >> add bconst aunto
INFO >> ... set default box constraint values
INFO >> ... allocate box constraint storage

STRUCT _add_bconst >
STRUCT _add =>>
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STRUCT ==

for the example problem generates 29 box constraints. Now the box constraints at column line 1 may be

viewed by simply typing

STRUCT >>

STRUCT >> print bconst @ coline 1
INFO >>> Box Constraints
INFO >> Elmt : Constr Name : dissat : section size : good value : bad value
1 0 = A L R R R T I T LT I

INFO >= 13 lower box 0.0000 586.00 100.00 50.00
INEO >> 14 lower box 0.000¢ 586.00 100.00 50.00
INFO >> 15 lower box 0.0000 586.00 160.00 50.00
INFOQ >> 16 lower box 0.000¢ 586 .00 100.00 50.0¢0
INFO >> 17 lower box 0.0000 586.00 100.00 50.00
INFO >> 13 upper box 0.0000C 586.00 3000.00 3500.00
INFO >> 14 upper box 0.0000 586.00 3000.00 3500.400
INFO >> 15 upper box a.0000 586.40 3000.00 3500.00
INFO >> 16 upper box 0.0000 586.00 3000.00 3500.00
INEQ >> 17 upper box 0.0000 586.00 3000.00 3500.00

STRUCT print_beonst >>

5.5.2 Limit State Design Constraints

The limit state design constraints are used to check the adequacy of performance for each of the limit
states in the accepred design philosophy. Accordingly, constraints are checked for the gravity loads alone
limit state, gravity loads plus moderate lateral loads, and finally, gravity loads plus severe lateral earthquake

loads.

5.5.2.1 Censtraints Under Gravity Loads Alone

The following conventional constraints apply to the beams and colunmns under gravity loading alone:

[ column axial force | < Colax X Column axial force (6)

[ column end moment ] << Colgra X Column yield moment (7

[ girder end moment ] < Girgra % Girder yield moment (8)

{ girder midspan deflection under live load ] << Girdef X Girder span €)!

A convention of nomenclature introduced in equations (6) to (9) is now explained. The parameters Colar,

Colgra and so on should be interpreted as a shortened notation for the GOOD and BAD performance pair
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PARAMETER VALUE/TYPE DESCRIPTION

Good_Colax 5000 good gravity column axial force factor
Bad_Colax L6000 bad gravity column axial force factor
Good_Colgra .6000 good gravity column yield factor
Bad_Colgra 8000 bad gravity column yield factor
Good_Girgra 6000 good gravity girder yield factor
Bad_Girgra 8000 bad gravity girder yield factor
Good_Girdef 4.170e-3[ 1/240]  good girder midspan deflection
Bad_Girdef 4.570e-3[ 1/219]  bad girder midspan deflection
Good_Volmax 1.000e+35 good volume maximum
Bad_Volmax 1.200e+5 bad volume maximum

Table[5.3] : Gravity Loads Alone Constraint Parameters

settings. For example, the GOOD value of the column axial force cobstraint is simply the dependable
column axial force factor Good_Colax shown in Table[5.3} multiplied by axial force required for Euler buck-

ling of the column.

5.5.2.2 Constraints Under Combined Gravity and Moderate Earthquake Loads

Damage to frame members, windows, partitions and other architectural elements is related to relative

frame displacemenits. These are controlled by enforcing a constraint on story drifts of the form:

[ S10vY AYift | pue over e << DFift X story height (10)
Similarly, floor acceleration is used as a measure of damage to a structure’s contents, equipment, and ele-
ments attached to the floors. The form of this constraint is:

[ absolute floor acceleration ] g gver ime < Accel X acc’n of gravity 1n

A structure should also possess sufficient strength so that under moderate lateral loads structural dam-
age is minimal. Tnelastic deformations are discouraged by ensuring that the frame response satisties the fol-

lowing constraints:
[ colwmn end moments | yux sver ime < Célyla’ X column yield moments (12)

[ girder end moments | .. over dme <~ Giryld X girder yield moments (13)
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PARAMETER VALUE/TYPE DESCRIPTION

Good_Drift 4.500e-3 good max moderate story drift
Bad_Dxift 8.000e-3 bad max moderate story drift
Good_Accel 0.700 good max moderate fioor accel in gs
Bad_Accel 1.400 bad max moderate floor accel in gs
Good_Colyld 8500 good moderate column yield factor
Bad_Colyld 1.100 bad moderate column yield factor
Good_Giryld 9000 good girder yield factor

Bad_Giryld 1.100 bad girder yield factor

Table[5.4] : Moderate Lateral Loads Constraint Parameters

3.5.2.3 Constraints Under Combined Gravity and Severe Earthquake Loads

Constraints are divided into two categories reflecting frame behavior at the global level and frame
behavior at the element level. Global frame instability is generally attributed to enhanced bending moménts
due to P-delta effects when large lateral frame displacements act in conjunction with high axial forces. This
type of behavior is prohibited herein by placing an upper bound on allowable peak frame displacements. For
this development, large displacements at the top of the frame are used as an approximate measure of the pos-
sibility of collapse. The parameter Sway is defined as the maximum relative horizontal displacement at the

top of the frame divided by the frame height and the constraint is described as follows:

[ frame sway ] s over time < Sway X frame height (14)
PARAMETER VALUE/TYPE DESCRIPTION

Good_Sway 1.400e-2 [ 1.4% | good structure sway max

Bad_Sway 2.000e-2[2.0%] bad structire sway max

Good_Colduc 3.000 good column ductility

Bad_Colduc 4.000 bad column ductility

Good_Girduc 4.000 good girder ductility

Bad_Girdue 6.000 bad girder ductility

Table[5.5] : Severe Lateral Loads Constraint Parameters

Structural damage at the material level is closely related to the extent of inelastic deformations. One reversed
cycle at a high ductility range may cause damage equivalent to many cycles at a lower ductility range. A con-
straint on allowable energy dissipation is formulated by assuming that the total hysteretic energy dissipated

under an arbitrarily changing deformation history may be equated to the energy dissipated by a monotonic
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load moving through an equivalent displacement to ultimate failure. The allowable energy dissipation in the

latter mechanism is used to form the constraint, namely:

Ed<Ey Xf(}L,S) (15)

where flw,S)={w—11{1-S][2+8[u~1]]

Table[5.5] summarizes the assumed beam and column ductility factors. The conventional constraints

represented by Eq. 15 are:
Column end inelastic energy dissipation < E, X f{ Colduc, S ) (16)

Girder end inelastic energy dissipation < E, X f{ Girduc, S ) an

Currently, no checks are made on a section’s laterai and local buckling failure modes. The scatter in
frame response quantities such as cumulative energy dissipation, which are somewhat intrinsic to the frame
material, are modeled with the Gumbel Extreme Type 1 distribution[26]. Where information on a particular
statistical distribution type is not available ( ie; peak story drifts, floor accelerations, elastic bending moments,

and the maximum frame sway }, constraints are statistically described by the normal distribution.

- 5.4.3 Specifying Limit State Design Constraints

Limit state design constraints are defined at the element and nodal levels. A template for each con-
straint type is defined for the performance of each element, under each of the limit state loadings. For exam-

ple

*** DEFAULT LIMIT STATE 1 DESIGN CONSTRAINT VALUES ***

FOR THE COLUMNS:
[a] : Bending Moment Parameters
Constraint State = ACTIVATED
Distribution Type = NORMAL
Constraint Type SOFT
GOaD, BAD] element resistance
{ HIGH, LON | reliability level

[}

il
—r
oo
= o
St

[\«
DO

{b] : Axial Force

Constraint State = ACTIVATED
Distribution Type = NORMAL
Constraint Type = SOFT

[ GOD, BAD ]| element resistance

[ 0.4, 0.5 ]
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[ HIGH, LOW ] reliability level = [ 0.2 , 0.1 ]

{[c] : Axial Displacement
Constraint State = NOTACTIVATED
Distribution Type = NORMAL
Constraint Type = SOFT

[ GOOD, BAD | element resistance
[ HIGH, LOW reliability tevel

I
—_
o
e
o
= tn
—

[d] : Energy Dissipation

Constraint State NOTACTIVATED

Distribution Type = TYPE1

Constraint Type SOFT

[ GOOD, BAD | element resistance
HIGH, LOW | reliabitity level

I

itn
——
w
o
=
-
—ts

{e] : Midspan Deflection

Constraint State = NOTACTIVATED

Distribution Type = NORMAL

Constraint  Type = SOFT

{ GOOD, BAD } element resistance
HIGH, LOWV | reliability level

.003 , 0.004
.200 , 0.100

([t
——
oo

Table [5.5] : Default Limit States Constraints Assumptions File

Table 5.5 shows the templates for the column element design constraints under gravity loads alone ( ie, limit
state 1 ). Each beam-column element may be checked for: (a) bending moment at each end, (b) energy dis-
sipation at each end, (¢) axial force, (d) axial displacement, and (e} midspan deflection. Not all constraint
types are activated for each element type. In addition, varying parameter settings may apply for different
limit state loadings due to the variation in expected frame performance with each of the limit state loadings.
Similarly, at the nodal level templates are defined for the story drift and floor acceleration constraints.
Specifying a rigid boundary on acceptable level of frame risk cannot be justified, especially in the
absence of experience[6]. Experience requires hindsight; because this style of design is still being prototyped,
relatively wide difference between the HIGH and LOW exceedance probabilities have been selected for the
pilot studies[6,9,36]. Further, the same HIGH and LOW exceedance probabilities ( 209 and 10%, respec-

tively ) have been assumed for all constraint types within a single limit state. The command

STRICT >>

STRUCT >> add dconst auto
INFO >> .., set default constraint values for limit state 1
INFO >> ... allocate design constraint storage for limit state 1
INFO >> ... set default constraint values for limit state 2
INFO >> ... allocate design constraint storage for limit state 2
INFQ >> ... set default constraint values for limit state 3
INFO >> allocate design constraint storage for limit state 3

STRUCT add_dconst >>
STRUCT _add >>
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STRUCT >>

automatically sets default design constraints values ( according to the information specified in the datafiles
./data,d/assume_limstl and so on ) for each of the limit states, and allocates the required memory for the
storage of constraints. Memory is also allocated for the storage of terms in the energy balance equation calcu-

lated during the gravity loads plus severe lateral loads limit state frame response.
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FIG. 5.3 : Design Constraints for Gravity Loads Alone

Figure 5.3 shows a schematic of the default design constraints for the gravity loads alone limit state. The cir-
cles at each end of the columns and girders indicates the locations were allowable moments are checked. The
dashed line along the column axis is used to indicate which column elements are checked for allowable axial
forces, and the horizontally drawn dashed lines bélcwv the floors shows which girders are checked for midspan
girder deflections. Similarly, Figure 5.4 shows the design constraints checked under gravity loads plus a fam-
ily of ground motions scaled to moderate intensities. Bending moments are checked at the girder and
column ends, but axial forces in the columns are not; this is consistent with the modeling assumptions out-
lined in Section 4.13. Two types of constraints are checked at the nodal level. The crosses drawn over the
nodes along column line 1 indicate that the relative horizontal displacements of these nodes is used for the

story drift constraint checks. Similarly, the horizontally drawn dashed lines above the floor levels indicates
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that floor acceleration constraints are checked. A similar figure may also be drawn for constraints checked

under gravity loads plus severe lateral loads.

!

FIG. 5.4 : Design Constraints for Moderate Lateral Loads.

8 8

5.4.4 Adjusting the Design Constraint and Objective Parameters

Facilities exist for setting the design constraint and design objective parameters. The syntax for setting

the parameters is
STRUCT >> NAME = <expr> [region]

where NAME is a design constraint or objective name, and [region)] the geometric location in the frame, or
the load cases for which the design parameter setting is to be applied. A list of design constraint parameter

names can be obtained by first moving into the set dconst state and then issuing the help command, as in

STRUCT >> set dconst

STRUCT_set_dconst >> help
INFO >> List of variables:
INFO >> good_moment bad_moment high_moment low_moment
INFQ >> good_axial bad_axial high_axial low_axial
INFO >> good_deflect bad_deflect high deflect low_ deflect
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INFO >> good_energy bad_energy high_energy low_energy
INFO >> good_drift bad_drift  high_drift low_drift
INFO >> good_accel bad_accel high_accel low_accel

An example of how the design parameters might now be adjusted is

STRUCT >> set good_moment = 0.60 @ limst I coline 1 to 4
STRUCT _set >> bad_moment = 0.75 @ limst 1 coline 1 to 4
STRUCT _set =>> good_moment = (.90 @ limst 2 coline 1 to 4
STRUCT_set >> bad_moment = 1.00 @ limst 2 coline 1 to 4
STRUCT _set >> good_moment = 0.90 @ limst 2 floor 1 to 5§
STRUCT _set >> bad_moment = 1,10 @ limst 2 fleor 1 to 5

Now, the modified design parameter settings can be verified with the oprint dconst param command, as in

STRUCT print >> dconst
STRUCT _print_dconst >> param
STRUCT print_dconst_param >> @ eimt 13 and 14 limst 1
INFO >>
INFO >> Limit State 1 Constraint Parameter Valucs
INFO >> Elmt Node : Constraint Name : type : high : low : good : bad

INFO 5> cecmcaccmumarccacaacascneasocconencemanscamansunonooemnsannanaanx
INFO > 13 1 end moment SOFT 0.20 0.10 0.60 0.80
INFO > 5 end moment SOFT 0.20 0.10 0.60 0.80
INFO >> 14 5 end moment SOFT 0.20 0.10 0.60 0.80
INFO >> 9 end moment SOFT .20 0.10 0.60 0.80
INFO >> 13 axial SOFT 0.20 0.10 0.40 0.50

0.20 0.10 0.40 0.50

INFOQ >> 14 axial SOFT
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CHAPTER 6 - SIMULATION and DESIGN EVALUATION

6.1 Introduction

Now that the design problem has been written in a minimax optimization format, attention is focused
on simulating the structure for the required limit state loadings, and evaluating its performance. As already
outlined in Section 3.1, this implementation supports various styles of design. During the preliminary stages
of design most designers will maxinuze computational efficiency by einploying psuedo-static lateral loads, load
and resistance factors, and elastic analyses. The design problem might be further simplified by focusing on a
subset of limit state loadings. In the latter stages of design, however, linear and nonlinear time-history ana-
lyses with multiple ground motion inputs may be required before adequate estimates of structural reliability
can be obtained. The purpose of this chapter is to outline step-by-step procedure for completing a simulation.
This includes: (a) checking and adjusting the default assumptions for the simulation, (b) writing the data files
for the simulator, (c) running the simulations themselves, and (d) examining the frame performance and

behavior.

6.2 Frame Simulation Assumptions

The default frame simulation assumptions are contained in the datafile ../include.d/assume_sim. Its

current contents are shown in Table 6.1.

**% FRAVE SIMULATION ASSUMPTIONS ***
Modelling assumptions.
Number of load cases for limit state

Number of load cases for limit state
Number of load cases for limit state

Number of time steps for limit state
Number of time steps for limit state
Number of time steps for limit state

) BN = W R 2
[

—
—
[ Nwe]

NI — 12 L) B

Storage increment for limit state 1
Storage increment for limit state 2
Storage increment for limit state 3

i

Table 6.1 : Default Simulation Assumptions
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The first block of statements contains the number of load cases for each limit state. Currently, the maximum
number of load cases that can be handled is NO_LOADCASES; see Appendix 1 for more details. The
number of integration time steps for each limit state are specified in the second data field. In the most
recent work, 1101 time steps have been required to calculate an eleven second time history response.
Because the required storage for large design problems can tax the limitations of even the most recently
developed workstations, a third data field is added for the increment at which frame response quantities are
to be stored. Stored frame response quantities are useful from two perspectives. First, the time dependent
variation in responses may be employed to observe behavior, either in the form of plots, or perhaps as struc-
tural animation. Since the resolution of many graphics displays will not be fine enough to detect minute vari-
ations in beha;‘;ior, little information will be lost if only every 3rd or Sth point is stored with real precision.
By contrast, extreme response values are used to assess design performance. Because the partial derivatives of
response quantities with respect to perturbations in the design are essential ingredients for optimization ( see
Chapter 5 of reference [6] for examples ), these quantities should be stored with double precision. The stra-
tegy used in this implementation is to update the extreme values of response at the end of every time step in

the linear and nonlinear time history calculations, before deciding if the response should be saved for post-

processing purposes.

6.3 Writing the Simulation Files

The command syntax for automatically writing data files for the ANSR simulation package is
STRUCT >> write ansr [region]

where [region] is matched by a list of limit state loadings. By default, data files are written for all three limit

states unless explicitly stated. For example, in the command script

STRUCT >> write ansr @ limst 1 and 3

INFO >> allocate frame response memory for limit state 1
INFO >> ... allocate frame response memory for limit state 3
INFO >> ... allocate energy balance memory for limit state 3
INFO >> ... build design vector list

INFO >> ... checking frame data

INFO >> ... crunch limit state 1 simulation info

INFO >> .., writing <limitstatel.1l>

INFO >> ... crunch limit state 3 simulation info



- 67 -

INFO >> ... writing <limitstate3.1>
INFO >> ... writing <limitstate3.2>
INFO >> ... writing <limitstate3.3>
INFO >> ... writing <limitstate3.4>
INFO >> writing <limitstate3.5>

STRUCT _ wrlte _ansr >>

preparation of ANSR data files is restricted to limit states 1 and 3. The first task is to use the information
specified in Table 6.1 to allocate memory for the storage of the frame responses. Checks are then made to
ensure that: (a) all frame elements have been allocated frame element sizes and material properties, (b) boun-
dary conditions have been specified for each limit state, and (c) gravity loads have been specified at all floor
levels for those limit states requiring a dynamic analyses. Immediately before the data files are written for
each limit state, information described at the frame preprocessor stage is crunched into a format compatible
with the simulation; the main task is to convert the uniform gravity loads into equivalent nodal point loads

and moments for the ANSR analyses,

6.4 Frame Simulation

Simulations serve the purpose of caiculating the frame behavior in its intended environment. As with
the writing of the simulation datafiles, a performance evaluation is assumed for all limit states unless other-

wise noted. The command script

STRUCT >> run ansr @ limst 1 and 3

INFO >> set section properties

INFO >> ... limit state 1 simulation not required
INFO >> ... limit state 3 simulation

INFO >> ... eigenvalue analysis

INFO >> ... load case 1

INFO >> ... load case 2

INFO >> ... load case 3

INFO >> ... check design constraints : limit state 1
INFO >> ... check design constraints : limit state 3
INFO >> ... check box constraints

INFOG >> ... check design objectives

demonstrates the simulation features by requesting performance evaluations for limit states 1 and 3. Before
the simulations actually begin, the frame section properties are calculated for the current design parameter
vector. The current section properties are then compared to section propertiés of the most recent simulation
for each limit state considered. If the comparison is very close then the former response is assumed to be
identical to the required behavior; a new simulation is not calculated. Otherwise, each of the load cases is

simulated. For the linear and nonlinear time history analyses, the damping matrix is modeled as a linear
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combination of the mass and stiffness matrices. This Rayleigh damping matrix has the form:
[c]=a[M]+a K] (18)
where : [C ] = damping matrix
[M ] = QS Matrix

[K ] = stiffiess matrix

r2)\W1_W;)
ai = —_—
t W1+W2
0y = _zzx_]
W1+W2

w1, Wy = first and second natwral circular frequencies

N\ = percentage of critical damping in the Ist and 2nd wodes

The percentage of critical damping, A, is specified in the data file ../include.d/assume_frame. In order to
maintain constant damping values in the first and second modes the coefficients ¢, and a, are updated for
each current design at the beginning of the calculations for this limit state. First, ANSR is employed to form
the mass and stiffness matrices ( including geometric stiffness effects } for the present design. A subspace
iteration routine extracted from the program FEAP[57] is called to calculate the frame’s natural periods of
vibration corresponding to the non-zero mass degrees of freedom. After all of the limit state calculations are
complete, levels of dissatisfaction are calculated for the design objectives, box constraints, and design con-

straints.

6.5 Frame Response Actions

The command syntax for examining the frame response actions is
STRUCT >> print action [option] [region]

where the most commonly employed [option] is all, and [region] restricts the scope of the post-command

action to a subset of the limit state loadings, load cases and/or frame geometry., For example, the command
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STRUCT _print >>
STRUCT >> print action @ elmt 13 limst 2

INFG >>

INFO >> Limit State 2 Actions entity name : min value : max value
1 20 -
INFO >> elmt 13 node 1 load 1 end moment -249.6 194.7
INEQ >> load 2 end moment -101.4 43.18
INFO >> load 3 end moment -114.5 70.71
INFO >> ~ node 5 load 1 end moment -182.1 73.87
INFO >> load 2 end moment -96.95 -13.89
INFO >> load 3 end moment -105.2 1.627

STRUCT _print_action >>

prints the maximum and minimum bending moments at the end of element 13 for each of the three ground
motion inputs at limit state 2. Element axial forces are not printed in this example because the vertical

degrees of freedom for limit state 2 were eliminated ( see Section 4.13 ).

6.6 Plotting the Bending Moment Diagram

Plots of the frame bending moment diagram, and bending moments at the element level for static ana-

lyses may be drawn. The command syntax is

STRUCT >> draw bmoment [option] [region]

where all and item are appropriate [options], and [region] is a subset of load cases, limit state loadings, or the

frame geometry. For instance, in the script

STRUCT >>

STRUCT >> draw bmoment

STRUCT _draw_bmoment >> help variable
INFO_draw_bmoment >> SCALEBM = 50.00

STRUCT draw_bmoment >> all @ limst 1 lcase 1 and 2

STRUCT _draw_bmoment >>

the help variable command is used to print out the current scale factor for drawing the bending moments.
The option all is then employed to plot the frame bending moment diagrams for load cases 1 and 2 under
gravity loads alone ( see Figure 6.1 ). While this plot is useful for verifying the spatial distribution of bending
throughout a structure, and the variation of bending moments among load cases, it does not allow the magni-
tude of moments along an element fo be easily examined. This latter problem is handied by issuing a com-

mand of the type

STRUCT >> draw bmoment item [region]



FIG. 6.1 : Bending Moment Diagram
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where [region] includes the desired element number, as well as the range of limit states and Joad cases desired

for the bending moment envelope. The results of the command

STRUCT >> draw bmoment item @ elmt 1 limst 1 lcase 1| and 2

are shown in Figore 6.2.

6.7 Plotting the Shear Ferce Diagrams

Plots of frame shear forces at the global and frame element levels may be prepared by following the

command syntax

STRUCT >> draw shear {option] [region]

In all other respects the results are the same as for drawing bending moment envelope diagrams.

6.8 Frame Displacements

Summaries of extreme nodal displacements may be obtained with commands of the type

STRUCT >> print deflect [option] [region]
As an example of its implementation, the nodal displacements along column line 1 for stories 1 and 2 ( ie;
elements 13 and 14 ) for limit state 1 may be obtained by simply typing

STRUCT _print >>
STRUCT _print >> deflect @ story 1 and 2 coline I limst 1

INFO >> Limit state 1 deflection : min deflect : max deflect
INFO 5 cm s st m e e e e i e mcmmmsmmmmmcmemmmem e
INFQ >> node 1 x_coord 0.00 lcase 1 0.00000 0.00000
INFO >> lcase 2 0.006000 0.00000
INEQ >> node 1 y_coord 0.00 lcase 1 0.00000 0.006000
INFQ >> lcase 2 0.00000 0.00000
INFO >> node 5 x_coord 0.00 lcase 1 0.03354 0.03354
INFQ >> lcase 2 -0.02766 -0.02766
INFG >> node 5 y_coord 80.00 lcase 1 -0.01776 -0.01776
INFO >> lcase 2 -0.01624 -0.01624
INFQ >> node 9 x_coord 0.00 lcase 1 0.06922 0.06922
INFO > lcase 2 -0.06102 -0.06102
INFQ >> node 9 y_coord 160.00 lcase 1 -0.03256 -0.03256
INFO >> fcase 2 -0.02924 -0.02924

STRUCT _print_deflect >
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The main difference in responses between load cases 1 and 2 is due to the positive and negatively applied
lateral loads specified in Section 4.8. The second point to note about the printed output is that the maximum
and minimum nodal displacements are identical for static analyses. Clearly, this will not be the case for limit

state calculations employing time-history responses.

6.9 Plotting the Deflected Frame

The syntax for plotting the deflected frame under gravity loads plus ( possible ) static lateral loads is
STRUCT >> draw deflect [option] [region]

The complete deflected frame may be plotted by issuing the all [option]. If a portion of the deflected frame
frame is of interest, then this may be specified with the [region] part of the grammar. In addition, parame-
ters exist for scaling the frame displacements and adjusting the frame colors before plotting. For example, the

command sequence

STRUCT >>

STRUCT >> draw elmt all

STRICT _draw_elmt >>

STRUCT _draw >> node all

STRUCT _draw_node >>

STRUCT _draw >> deflect

STRUCT _draw_deflect >> help variable
STRUCT _draw_deflect >> SCALED = 100.00
STRUCT _draw_deflect >> SCALED = 400
STRUCT draw_deflect >> all

STRUCT _draw_deflect >>

STRUCT _draw >>

draws the frame nodes and elements of the undeformed frame before superimposing the deformed frame with

deflections magnified by a factor of 400 ( see Figure 6.3 ).

6.10 Plotting Terms in the Energy Balance Equation

- As outlined in Section 5.4, the energy balance equation is a useful tool for identifying the fundamental
cause and effect mechanisms of earthquake induced damage, because it reduces a complex conglomerate of
information about the structure and the ground motion(s) into a time dependent scalar equation. The com-

mand syntax for producing plots of the various terms in the energy balance equation is
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-

FIG. 6.3 : Deflected Frame

STRUCT >> draw encrgy [option] [region]
where the list of available energy options includes input, hysteretic, damped, and kinetic. For example, the

command
STRUCT >> draw energy kinetic @ record 1 and 2
wotld be used to plot the time variation of kinetic energy for the recordl and record2 ground motion inputs,

scaled to severe lateral load intensity. If an [option] is not specified, then the user is prompted for the terms
to be included in the plots. For instance, results of the script

STRUCT >> draw energy @ record 1 to 3
INFO >> Indicate energy terms to be plotted
yes/no T yes

INFO >> .. ... input energy )

INFO >> ... .damped energy yes/no ) no
INFO >> .. .kinetic energy yes/no )} : no
INFO >> hysteretic energy { yes/no ) : ne

STRUCT >>

are shown in Figure 6.4.
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6.11 Evaluating Design Performance

The adequacy of a design is ascertained by comparing the calculated actions at the [HIGH,LOW] frac-
tile of reliability to the ability of the structure to carry these loads without failure. The ability of the frame to
carry loads and deform is described by a [GOOD,BAD] performance pair, where the GOOD level of
response is a dependable value, and the BAD level of structural response a level at which undesiratle perfor-
mance is almost assured. A single design entity called designer dissatisfaction has been defined to facilitate
this comparison. The command syntax for examining the terms contributing to design constraint performance
is

STRUCT >> draw dconst [option] [region]

where {option] and [region] take there usual meanings. For example, the command script

STRUCT >>
STRUCT >> print dconst @ limst 2 elmt 13 and 14
INFO >>
INFO >> Frame Responses Values for Limit State 1 Constraints
INFO >> Elmt Node : Constr Name : dissat : high : low : good :

bad
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INFQ >> 13 1 bending moment 0.00060 211.58 241.06 2634.47 3219,
INFO >> 5 bending moment 0.0000 160.38 177.25 2634.47 3219.
INFO >> 14 S bending moment 0.0000 116.81 121.04 2634.47 3219.
INFO >> 9 bending moment 0.0000 177.06 188.73 2634 .47 3219.

prints a concise performance summary of elements 13 and 14 under moderate lateral loads. A more graphical
representation of the frame response quantities contributing to a design constraint, together with the calcu-
lated [HIGH,LOW] and [GOOD,BAD]} bandwidths of frame response may be obtained with the command

syntax:
STRUCT >> draw dconst item [region]

where a limit state loading and element number must be specified for the [region] part of the command. To

illustrate these features, the resuits of the command script

STRUCT >> # plot elastic bending moment versus time
STRUCT >> # at element 4, limit state 2
STRUCT >>
STRUCT >> draw dconst item @ elmt 4 limst 2
INFO >> Indicate design constraint entity to be plotted

INFO >> moment i end = 1 moment j end =2
INFO >> axial force = 3 axial dispi = 4
INFO >> energy disp 1 end = 5 energy disp | end = 6
INFO >> floor accel =7 story drift = 8
INFO >> deflection =9

INFO >>

INFO >> ... type in the entity no : 1

STRUCT _draw_dconst_item >>
STRUCT _draw_dconst >>
STRUCT _draw_dconst >> # plot hysteretic energy @ elmt 4
STRUCT _draw_dconst >>
STRUCT _draw_dconst >> item @ elmt 4 limst 3
INFO >> Indicate design constraint entity to be plotted

INFO >> moment i end = 1 moment j end =2
INFO >> axial force = 3 axial displ = 4
INFO >> energy disp i end = 5 energy disp j end = 6
INFO >> floor accel = 7 story drift = 8
INFO >>> deflection =9

INFQ >>

INFO >> ... type in the entity no : 5

STRUCT _ draw dconst_item >>

are shown in Figures 6.5 and 6.6. The two most important features of these figures are the time variation
and scatter among the frame response quantities, and the relative bandwidths bounded by frame responses at
the [HIGH,LOW] fractiles of reliability, and [GOOD,BAD] levels of frame response. Figure 6.5 shows the
bending moment versus time at element 4 for the elastic response of the frame due to three ground motion
inputs scaled to moderate intensity. Dissatisfaction for this constraint is zero because the frame response lev-

els at the HIGH and LOW fractiles of reliability are less than the dependable level for frame response ( ie,
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the GOOD level of frame response ). Figure 6.6 shows the distribution of hysteretic energy dissipation for
the same three ground motion inputs scaled to severe lateral load intensity. The scatter in response quantities
in this case is much larger than the input energy ( see Fgure 6.4 ) and the elastic bending moment response.
The main cause of the latter cbservation is excursions of the overall frame behavior into the inelastic range.
As a result, a significant enhancement of the mean hysteretic energy dissipation response quantities is
required before the HIGH and LOW fractiles of reliability are reached. A moderate level of dissatisfaction
for the hysteretic energy dissipation constraint is calculated because the [HIGH,LOW] and {GOOD,BAD]
bandwidths are intersecting. This case differs from Figure 6.5 in that the bandwidth between GOOD and
BAD frame responses covers a major portion of the overall response ( hysteretic energy dissipation ). This
suggests that efforts are needed to not only improve our understanding of the ground motion inputs, but also

to obtain more precise estimates of required hysteretic energy dissipation to cause failure.

Frame performance attributes controlling a design may be identified by requesting a search of all the

constraints having non-zero dissatisfaction. The command

STRUCT _print >>

STRUCT >>
STRUCT >> print dconst all @ limst 1 | dissat != 0
INFO >>
INFO >> Frame Responses for Limit State 1 Constraints
IﬁFFS >> Elmt Node : Constr Name : dissat : high : low : good : bad
I D T T T e T

INFO >> 14 5 end moment 0.2430 0.00 0.00 283.64 378.19

demonstrates this feature by requesting a search over all the frame design constraints for the gravity loads
alone limit state, printing only those constraints with nonzero dissatisfaction. Similarly, a graphical represen-

tation of the locations controlling a design may be obtained with the command format

STRUCT > draw dconst all @ limst 1 | dissat != 0
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CHAPTER 7 - CONCLUSIONS

7.1 Introduction

This report documents the ongoing development and implementation of a design methodology for the
statistical limit states design of earthquake resistant structures. While the first report|[6] in this series, and
subsequent papers [8,9,10,11,36], focused on the description and prototype testing of the methodology, the
purpose of this report has been to describe the initial stageé of the design methodologies implementation in an
engineering workstation environment. The development of computational tools for describing the design
problem, graphically interpreting structural behavior, providing assistance in the comparison of design alterna-
tives, and carrying out design optimization are all parts of the required implementation. As noted in Chapter
1, however, contributions to software projects of this type are incremental simply because no group has the
personnel or time to complete this task in its entirety. 'The material presented in Chapters 3 to 6 is charac-

teristic of this observation.

When this implementation was first started the development goal was to replicate the features of the
DELIGHT.STRUCT environment, but with a significantly more flexible graphically oriented user interface.
The contents of this report are a first step towards satisfying this objective. However, the recent interest in
CSTRUCT shown by experimentally based research groups, and persons requiring teaching aids for earth-
quake design and structural analysis, indicates a much larger population of potential users than originally anti-
cipated. In an effort to capitalize on tﬁis interest, the focus of software development has been modified to
accommodate the demands of some of these special interest groups. Now there is a need to prepare a simpli-
fied version of CSTRUCT for use in structural analysis and design classes. At the time of writing ( July-
August 1987 ) the development of CSTRUCT is at the stage where prototype versions of the environment
may be distributed to local research groups. It is the writers’ expectation that useful feedback on the perfor-
mance of CSTRUCT together with suggested enhancements will be provided in return. Therefore, the
important reasons for writing this report have been to: (a) document the features of CSTRUCT, and (b) pro-

vide its users with an explanation of the ideas motivating this research project’s long term goals.

The software development described herein has concentrated on the description of the design problem,

the graphical interpretation of results, and implementation of the user interface. Still, a significant amount of
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programming is required before the capabilities of DELIGHT.STRUCT are mimicked. Continued work is
needed for the presentation of design information in pop-up tables. In particular, the AISC tables should be
organized into a convenient format that allows the designer to select section sizes or simply browse for infor-
mation on section sizes. Ancther possibility is to build tables containing all of the design/modeling assump-
tions, and to provide users with an editor for making modifications as required. There is scope for improve-
ment in the simulation capabilities of CSTRUCT. A useful extension would be to add Newmark-Hall Spec-
traf43] to CSTRUCT for preliminary design purposes. Since the time dependent responses of the structure
are already stored, it should be a.straight forward task to animate the linear and nonlinear structural
response, A parallel extension would allow the time variation in bending moments due to dynamic loads to
be drawn. Finally, the Phase I-II-III method of feasible directions algorithm[45] needs to be added to the
environment, together with software for tuning the design constraint and objective parameters, monitoring

algorithm performance, and graphically displaying the design changes over several iterations of optimization.
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APPENDIX 1 - DATA STRUCTURES

A1 Introduction

One important strength of the C programming language is its support for the logical organization and
management of information. Arrays, trees and linked lists are all commonly employed data structures in the
development of application programs. The issues in selecting the best model for a particular task include: (a)
the ease of development, {b) the frequency at which the data is accessed, (c) the frequency at which the data
is updated, and {d) the volume of data to be stored. Studies[27] indicate that while all modéls perform well
in some aspects, no data model excels in all areas. Furthermore, memory for some data structures is more
conveniently allocated at compile-time, while in other cases it is better to allocate and free memory at run-
time. With this brief background in mind, the data structures used for the frame definition, frame geometry

attributes, frame response storage, and frame performance assessment are now discussed.

A.1 Frame Definition

Information on the frame geometry and its material properties is described with a graph-based model
that links the frame’s elements and nodes with data pointers. Arrays of data structures are used in this proto-
type implementation; this data structures is relatively easy to implement and it allows information to be

accessed very fast. For example, the script

typedef struct element {
int node{ MAX_NODES_PER_ELEMENT ] ;
int connectflag;
int deleted;

int material; [* section material type *f
int section_id; /* section identification number */
int kind; /* element kind : col,girder,disspator */
double length; /* element length *

} ELEMENT_LIST, *ELRVENT_LIST_PTR;
ELEMENT_LIST e¢lmts{ NO_ELBMENIS ];

makes a declaration for the frame element data type and then allocates memory for an atray of of length
NO_ELEMENTS containing the data structure element, Included in the declaration is space for the pointers

to a second array of structures for the frame nodal coordinates. A three-dimensional array of structures of

the form
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typedef struct element_loads {
float unif_dead_load; {* uniform dead load line */
float unif_live_load; /* uniform live load line */
} ELEMENT _LOADS, *ELEMENT_LOADS_PTR;

ELEVMENT_LOADS elmi_loads| NO_ELEMENTS ][ NO_LOADCASES ][ NO_LIMITSTATES };

is used for the storage of the frame element dead and live loads, where the parameters NO_ELEMENTS,
NO_LOADCASES, and NO_LIMITSTATES define the maximum number of frame elements, load cases for

cach limit state, and number of frame performance limit states, respectively.

A.2 Frame Gesmetry Atiributes

In Section 4.5 the advantages of building frame geometry attributes on top of the lists elements and

nodes was explained. The script

typedef struct arglist {
double number;
struct arglist *next;
} ARG LIST, *ARG _LIST_PTR;

typedef struct floor_conts {
float y_coord;
struct arglist *first_node;
struct arglist *first_element;
} FLOOR_CONTENTS, *FLOOR_CONTENTS_PTR,
STORY_CONTENTS, *STORY_CONTENTS _PIR,

FLOOR_CONTENTS_PTR floor_contents| NO_FLOORS ];
STORY_CONTENTS_PIR story_contents| NO_STORYS

H

makes declares a generic linked list data structure and a second data structure containing pointers to the first
member of the node and element linked lists belonging to the attribute. Finally, memory is allocated for the
headers to the element and nodal lists at each story and floor level. An identical declaration process applies

for the column lines and bays.

A.3 Storage of the Frame Response

Frame response storage is by far the most demanding factor on the overall requirements for program
storage. For this reason, memory for a 3-dimensional array of structures is not automatically allocated. A 2-
dimensional array spanning the maximum number ¢f frame elements ( NO_ELEMENTS ) and the number
of limit states ( NO_LIMITSTATES ) is declared instead. Within each element of the array is a 1-

dimensional array of pointers for each of the potential response quantities to be stored. A response storage
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template having the layout

typedef struct resp_attr {

int activated; /* "activated" vs "not activated” */
char *name ; /* response attribute "name" */
float *resp; /* address of the storage array

int resp_length; /* length of response storage

double max_value;
double min_value;
} RESP_ATTR, *“RESP_ATTR_PTIR;

is the first declaration for the response storage. The template includes a pointer to a character array for its
name, a pointer to an array of length resp_length for the storage of response values, as well as maximum and

minimum values of frame response. Two sets of more general frame response templates

typedef struct frame_elmt_resp {

* {a) : response flag "sfored vs not-stored” */
1nt store_moment_i_end;
int store_moment_j_end;
int store_rotation_i end;
int store_rotation_j_end;
int store_axial_force;
int store_axial_displ;
int store_energy_disp_i_end;
int store_energy_disp_j_end;
int store_energy disp_total;
/* (b) : pointer to response storage */
struct resp_attr *™moment_i_end| NO_LOADCASES |;
struct resp_attr *moment_j_end[ NO_LOADCASES 1];
struct resp_attr *rotation_i_end[ NO LOADCASES ];
struct resp_attr *rotation_j_end| NO_LOADCASES ];
struct resp_attr *axial_force[ NO_LOADCASES ];
struct resp_attr *axial_displ[ NO_LOADCASES |;
struct resp_attr *energy_disp_i_end] NO_LOADCASES
struct resp_attr *energy_disp_j_end| NO_LOADCASES
struct resp_attr *energy_disp_total[ NO_LOADCASES
} RESP_EIMI_L.IST, *RESP_EILMI_LIST_PIR;

O T —]
- u e

typedef struct frame_node_resp {
/* (a) : response flag "stored vs not-stored" */
int store_x_accel;
int store_x_veloc;
int store_x_displ;
int store_y_accel;
int store_y_veloc;
int store_y_displ;
int store_rotation;
/* (b) : pointer to response storage */
struct resp_attr “x_accel]| NO_LOADCASES ],
struct resp_attr *x_veloc NO_LOADCASES
struct resp_attr *x_displ{ NO_LOADCASES
struct resp_attr *y_accel[ NO_LOADCASES
struct resp_attr *y_veloc{ NO_LOADCASES
struct resp_attr *y_displ| NO_LOADCASES
struct resp_attr *rotation|[ NO_LOADCASES
} RESP_NODE_LIST, *RESP_NODE_LIST_PTR;

RESP_EIMI_LIST elmt_resp| NO_LIMITSTATES ][ MAX_NO_ELEMENTS |;
RESP_NODE_LIST node_resp|[ NO_LIMITSTATES ][ MAX_NO_NODES ]:

W UL M W e e
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are then declared for the storage of frame responses at the element and nodal levels respectively. The main
features of this declaration are a flag indicating whether or not each of the frame response attributes is to be
stored, and arrays of pointers of length NO_LOADCASES to the templates containing the response storage.
An important point to keep in mind is the strong connection among the modeling assumptions, the form of
output obtained, and way in which the simulation results may be used to evaluate performance. Consistency

among the modeling assumptions, expected behavior, and anticipated response must be maintained.

A4 Optimization Description/Design Constraints

Discussion in this section is limited to the data structures for the design constraints so that its length is

kept reasonable. Design constraint templates of the form

typedef struct const_attr {

char *name; /* constraint "name" */
int type; /* constraint type : HARD and SOFT ™/
int distr_type; /* statistical distribution type *f
float good_value; {* GOOD constraint value *f
float bad_value; /* BAD constraint value */
float high_value; /* HIGH exceedance probability >/
float low_value; /* TLONW exceedance probability */
float mean_resp_value; /* mean frame response value */
float std_resp_value; /* std frame response value !
float good_resp_value; /* GOOD frame response value */
float bad_resp_value; /* BAD frame response value */

float high_resp_value; /* response at HIG exceedance prob */
float low_resp_value; /* response at LOVN exceedance prob */
float dissatisfaction; /* constraint dissatisfaction ./
} CONST_ATTR, *CONST_ATTR_PIR,;

are declared in an analogous manner to the response storage. Associated with each constraint | see Equation
(1) | are designer specified GOOD and BAD values for allowable frame performance, and HIGH and LOW
levels of frame response reliability. After the limit state simulations are completed, the frame response values

corresponding specified parameter values are calculated, and stored. The levels of designer dissatisfaction fol-

low directly.

Design constraints are defined at the element and nodal levels. For example the declaration for the

storage of constraints at the element level is

typedef struct elmt_constraint { :
/* (a) : constraint flag "activated" vs "not activated” */
int act_moment_i_end;
int act_moment_j_end;



int act_axial_force;
int act_axial_displ;
int act_energy_disp_i_end;
int act_energy_disp_j_end;
int act_energy._disp_total;
int act_deflection;

f* (b)
struct
sf{ruct
struct
struct
struct
struct
struct
struct

: pointer to constraint storage */
const_attr "moment_i_end;
const_attr *moment_j_end;
const_attr *axial_force;
const_attr *axial_displ;
const_attr *energy disp_i_end;
const_attr “"energy disp._.j.end;
const_attr *energy_disp_total;
const_attr *deflection;

} CONST_ELMI_LIST, *CONST_EIMT_LIST_PTR;
CONST_ELMT_LIST elmt_const| NO_LIMITSTATES }| MAX_NO_ELBVENTS ];

where the parameters act_moment_i_end and so on, indicate which constraints are activated versus norac-

tivated. A similar declaration is made for the story drift and floor acceleration constraints stored at the nodal

level.
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