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ABSTRACT

Five nominally identical quarter-scale reinforced concrete
columns were constructed and tested using multiaxial cyclic
loading histories. The columns were detailed to satisfy
requirements of current North American bﬁilding codes for
reinforced concrete structures in regions of high seismic risk.
The columns were loaded as cantilevers attached to stiff
foundation blocks. The primary variable was the load history.
Load histories included (1) uniaxial cyclic lateral loads with
constant axial load, (2) biaxial cyclic lateral loads with
constant axial load, and (3) biaxial cyclic lateral 1loads with

cyclicly-varying axial loads.

Measured responses indicate that inelastic deformations in
these tests were due primarily to effects of flexure and
reinforcement slip from the foundation blocks. Visible damage,
stiffness, and resistance were markedly affected by the 1load
history. Existing procedures for computing stiffness and
strength under biaxial loading correlated reasonably well with

the measured behavior.

This report documents the experiments and measured data, and

presents comparisons between measured and calculated responses.
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CHAPTER 1

INTRODUCTION

1.1 General

Conventional seismic design of reinforced concrete buildings
is carried out considering one direction of seismic loading at a
time. Usually, the analysis model assumes elastic behavior and
monotonically applied loads. However, during an actual severe
earthquake, a building is loaded simultaneously along both axes
and may be subject to inelastic deformations with many 1load
reversals. Thus, the capacity of colunns in the building to
absorb and dissipate energy during multi-axial loading becomes an

important factor in the design of the structure.

In conventional design practice, a column 1is designed

explicitly for an ultimate flexural moment, M, shear, V and

ur
axial load, P,. The required ductility of a column is assured
implicitly by establishing an upper and lower limit on the
longitudinal reinforcement ratio and by requiring a minimum
amount and spacing of transverse reinforcing. Adequacy of the
current design method in providing the required strength and
ductility under uniaxial loading reversals has been demonstrated
in previous experimental studies [7]. Although behavior of
columns under biaxial lcading has been studied previously [5],

adequacy of the design method for columns subjected to multi-

axial loadings has not been fully investigated.



1.2 Scope

To further investigate behavior under multi-axial cyclic
loading, an experimental study was carried out in which five one-
quarter scale reinforced concrete columns were subjected to
inelastic load histories with reversals. The columns were
nominally identical, and satisfied major requirements of current
codes for design of lateral locad resisting columns in regions of
high seismic risk [8]. Concrete had compressive strength of

approximately 5000 psi. Reinforcement was typical of Grade 60.

The longitudinal reinforcement ratio was 0.0226. Average axial
load was approximately 0.0Gf'cAg, in which f', = concrete
compressive strength at time of test and Ag = grose area of

column cross section.

The columns were tested as cantilevers projecting from stiff
foundation blocks. Cyclic lateral load histories were either
uniaxial along a principal axis of the column, uniaxial along a
skewed axis of the column, or a "cloverleaf" biaxial loading.
Axial loads were either constant or varied as a function of the

lateral load history.

The experiments and measured data are described in later
sections of this report. Existing analysis methods are used to
compute expected behaviors of the columns, including stiffness,
rebar slip effects, monotonic loading curves, and strength under

biaxial loading. Computed and measured responses are compared.



1.3 Relevance of Experiment to Current Research

In addition to the importance (as described above) of
studying biaxial loading effects in general, it is noted that the
columns described in this report are nominally identical to
first-story columns of a six-story shake-table model tested in
the Earthquake Simulator Laboratory at the Earthquake Engineering
Research Center of the Berkeley campus ([3]. The shake-table
model was subjected to "biaxial" excitations on the earthquake
simulator. Column data presented in this report will supplement

the study of the shake-table model.



CHAPTER 2

DESCRIPTION OF THE EXPERIMENT
2,1 TEST SPECIMENS

The columns are approximately one-quarter scale models of
columns considered representative of those occurring in modern,
moderately-tall, ductile concrete frames located in regions of
high seismic risk. The columns had the configuration depicted in

Fig. 2.1.

Each column was a 21.5 in. long cantilever, having gross
cross section of 5 in. by 6.5 in. Longitudinal reinforcement
compriséd #3 deformed bars at each corner, two #2 deformed bars
(0.049 in.? cross section) along each long face, and cne #2 bar
deformed bar along each short face (Fig. 2.1). The longitudinal
reinforcement ratio, defined as the ratio between total
longitudinal steel area and gross column cross-sectional area,
was 0.0226. All longitudinal bars were anchored with 90-degree
hooks embedded 7-in. into a 13 =-in. by 1l4-in. by 18-in.
reinforced concrete footing. Plain, gage No. 9 wire (0.0123 in.?
cross section) was used as transverse reinforcement in the
columns. Starting from the top of footing, tie spacing was 1 in.
for the first nine inches followed by ties at 1.5 in. on centers.
According to prevailing codes [1], the first tie spacing above
the top of footing should have been 0.5 in. rather than 1 in.
Apart from this deviation, the columns satisfy current code
requirements for columns in ductile moment resisting frames

located in regions of high seismic risk [8].



The test specimens will be designated as specimens 1 through
5, corresponding to chronology of the individual test dates. As
described in Sections 2.2 and 2.5, the designation also indicates
variations in concrete materials and test load histories. A

chronology of. construction and testing is in Table 2.1.

2.2 Materials

The test specimens were cast in a horizontal position in two
batches, specimens 1 through 3 in the first batch, and 4 and 5 in
the second. Photographs o©of the reinforcing cages and forms

before and after casting are in Fig. 2.2 and 2.3, respectively.

Details of the materials are given in the following tables
and figures: Concrete mix proportions {Table 2.2), concrete and
steel mechanical properties (Tables 2.3 through 2.5), and stress-
strain curves (Fig. 2.4 and 2.5). It is noted that mechanical
properties of the longitudinal reinforcement were characteristic
of those usually obtained for Grade 60 reinforcement, with mean
vield stresses ranging from 60 to 73 ksi. Mean concrete
compressive strengths were approximately 5300 psi for specimens 1

through 3, and 4600 psi for specimens 4 and 5 at time of testing.
2.3 Loading Apparatus

The columns were tested in a horizontal position with the
‘weak direction (short column cross-sectional dimension) parallel
to the laboratory floor as shown in Fig. 2.6 and 2.7. The
footing block was shimmed and prestressed to a massive reinforced

concrete block before testing. Two 40~kip hydraulic actuators



(for lateral loads) and a hydraulic jack (for axial ioad) were
then attached to the "free" end of the column through a
specially-fabricated universal joint. The joint allowed forces
to be applied at the column end with negligible rotational

restraint.

The hydfaulic pressure for the actuators and jack was
provided by three portable Haskel hydraulic punps. The punps
were controlled manually, with applied loads varied to follow

approximately the prescribed displacement or force higtories.
2.4 Instrumentation and Data Acquisition

Instrumentation measured lateral column displacements,
column 1loads, deformations of the c¢olumn hear the base, and
strain of longitudinal reinforcement. The instrument locations
are shown schematically in Fig. 2.6, with a photograph of the

test setup in Fig. 2.7.

Displacements of the column were measured near the free end
of the column using LVDTs (linear vwvoltage displacement
transducers). The LVDTs were mounted to a stiff reference frame
attached to the footing blocks, so that recorded displacements
are relative to the footing. Thus, any movement of the footing
blocks during testing does not influence the recorded

displacements.

Deformations of the column hear the base were measured with
clip gages attached between the top of the foundation block and

an aluminum yoke that was fixed to the column concrete a distance



of 5 in. from the top of the foundation block. Three clip gages
were used, one at each of three corners of the yoke. Average
rotations about each axis along this length were calculated by
dividing the differences in relative displacements by the
distance between clip gages. It is noted tﬁat these rotations
include both the rotations due to slippage of the longitudinal
reinforcement in the footing and the flexural curvature in the

lower 5 in. of the column.

The hydraulic actuators and jack were mounted to strain-
gaged load cells that were calibrated to obtain the applied
column load. Column base moments (at the top of footing) were
computed as the sum of (1) the primary moment due to lateral load
and (2) the secondary moment due to the axial load acting through
lateral deflections. The primary moment was calculated as the
product between lateral lcad and loading height. The secondary
moment (P-delta moment) was calculated according to the procedure
ocutlined in Fig. 2.8. As noted in the equation given in that
figure, the P-delta moment includes both the effect of the axial
load acting through lateral displacement of the column and the
effect of the horizontal component of the "axial" load acting

through column height.

Weldable strain gages having 1-in. gage length were
installed on two longitudinal bars located along a diagonal of
the column cross section (Fig. 2.1 and 2.6). The gages were

centered 0.5 in. from the face of the footing block.

Signals from all electronic instruments were scanned at



discrete intervals using a low-speed scanner box. The signals
were stored digitally on a computer disk. In addition, signals
from displacement and load gages were recorded in analeg form on
X-Y¥Y and X-Y¥-Y' plotters. The test program was controlled

manually by monitoring the plotted signals.

All specimens were whitewashed to make cracks in the
concrete more visible. Cracks were marked when the peak
displacement in each direction of a given cycle was reached.

Maximum crack width was also recorded at this time.
2.5 Test Procedure

The footing block of a specimen was shimmed and then
prestressed to a massive concrete block prior to testing.
Instrumentation was then installed and zero values set, followed
by attachment of the loading jack and actuators. Testing began
within an hour of setting zero values for the instruments and
attaching the jack and actuators. The load history was different
for the different test specimens. The target 1load/deformation
histories for the specimens are shown 1in Fig. 2.9. Brief
descriptions of the load history of each specimen follow.
SPECIMEN 1: Uniaxial lateral loading about the weak axis, with
constant axial load of 10 kips

SPECIMEN 2: Biaxial lateral loading with column tip
displacements along an axis at 45 degrees relative
to the principal axes of the column cross section,
with constant axial locad of 10 kips.

SPECIMEN 3: Biaxial lateral loading with column tip

displacements following a "ecloverleaf" pattern,
with constant axial locad of 10 kips.



SPECIMEN 4: Biaxial lateral loading with column tip
displacements along an axis at 45 degrees relative
to the principal axes of the column cross section,
with axial load varying from 0.5 to 20 kips.

SPECIMEN 5: Biaxial lateral locading with column tip
displacements following a "cloverleaf" pattern, with
axial load varying from 0.5 to 20 kips.

The axial loads for specimens 4 and 5 varied with the tip
displacement in the weak direction. For a given displacement
cycle, the axial load varied approximately linearly from 10 kips
at zero displacement to 20 kips at the maximum positive
displacement for that cycle. For loading in the negative
direction, the axial load varied approximately linearly from 10

kips at zero displacement to 0.5 kips at the most negative

displacement for that cycle.

In the early stages of loading before reinforcement yielded,
loading was controlled by the applied lateral 1load. For all
specimens, the first cycles were at €forces corresponding
approximately to first cracking, followed by lecading to
approximately 40% of yielding, followed by loading approximately
to initial yielding of reinforcement, as determined for specimen
1. After reinforcement yielded, loading was controlled by the

magnitude of the measured tip displacement.

Two complete cycles were carried out at each level of
loading (Fig. 2.9). The tip displacement was increased
progressively until lateral displacement reached 0.96 in. (5.3%
of specimen height measured from top of footing). After reaching
the maximum displacement for each cycle, the hydraulic equipment

was not manually adjusted for the period of time (approximately



ten minutes) that damage was observed and recorded. Some drop in

hydraulic pressure typically was observed during this time.
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CHAPTER 3

EXPERIMENTAL RESULTS
3.1 Summary of Data

Observed damage is summarized in photographs and crack
diagrams in Fig. 3.1 and 3.2, respectively. Measured load
histories are presented in Fig. 3.3 through Fig. 3.7 (in these
figures, one unit of "time" is defined to pass whenever data
readings are taken). Lateral load versus lateral displacement
along each principal axis is presented in Fig. 3.8 through Fig.
3.12. Similarly, relations between base moment (corrected to
account for second-order effects) and base‘rotation along the
lower five inches of the column are presented in Fig. 3.13
through Fig. 3.17. Reinforcement strain gage readings are
plotted versus time in Fig. 3.18 through Fig. 3.22. A summary of

selected experimental results is in Table 3.1.
3.2 Visible Damage

Several observations are made regarding crack patterns,
and apparent failure modes (Fig. 3.1 and 3.2).
(1) Primary cracks were generally perpendicular to the
longitudinal axis of the columns, and were apparently due to
flexural effects.
(2) As the load increased to yield in either direction, minor
diagonal tension cracks were observed. For specimen 1, the
diagonal cracks formed only on the two faces parallel to the
direction of lateral load. For the other specimens, the diagonal

cracks formed on all faces. Although flexural cracks

11



predominated, the diagonal tension cracks indicate that shear was
a contributing factor in behavior of the test specimens.

(3) Cracks generally closed when the loading fell below
approximately the load that first caused cracking. This is
probably attributable to the presence of axial load on the
column.

(4) Between column end displacements of 0.32 in. and 0.64 in.,
and thereafter, development of new cracks slowed. As larger
displacements were applied in this range of loading, crack width
in existing cracks became larger.

(5) The widest crack in all specimens was at the intersection
between the column and the footing block, indicating the
occurrence of slip of longitudinal bars from the footing.
However, the width of these c¢racks could net be determined
because the crack grew partially below the footing surface,

(6) For specimens 2 through 5, spalling of concrete cover
initiated at the corners of the column near the footing during
displacement cycles of 0.32 in. or 0.64 in. Specimen 1 did not
begin spalling until the displacement cycle to 0.96 in.

(7) For specimens 2 through 5, total spalling of concrete cover
near the corners occurred for displacements in the range between
0.64 in. 0.96 in. In specimens 2 and 4, only two diagonal
cornefs spalled, whereas in specimens 3 and 5, all four corners
spalled and small portiqns of cover adjacént to diagonal tension

cracks showed minor spalling.

(8) The primary failure mode of all specimens was by flexure.

As gaged by the amount and distribution of diagonal cracks, shear

12



also played a minor role in the failure of specimens 3 and 5.
Examination of the specimens revealed that longitudinal

reinforcement did not buckle.
3.3 Lateral Load-Displacement Relations

Relations between lateral load and displacement are plotted
in Fig. 3.8 through 3.12. lLateral 1locads reported in those
figures are readings obtained directly from load cells in the
lateral~load actuators, without a correction for the 1lateral
component of the force in the axial load jack. Lateral
displacements were determined directly from readings of LVDTs
(Fig. 2.6), and reflect displacement of the cclumn tip relative
to a rigid reference frame mounted to the footing block. Twist
of the column end about the column longitudinal axis could be
determined from the available LVDT readings, and was observed to

be negligible.

Based on the envelope of load-displacement responses in Fig.
3.8 through 3.12, three distinctly different ranges of stiffness
can be observed, the first corresponding roughly to loading
before flexural cracking, the second corresponding to the range
between cracking and yield of longitudinal bars, and the third
after yield. After the column longitudinal bars had yielded, and
for displacement cycles that did not significantly exceed prior
'displacement maxima, a reduction in both stiffness and resistance
were noticeable. When subjected to increased displacements,

resistance was mostly regained.

13



Hysteretic responses for specimens 1, 2, and 4 are similar
to those commonly observed for reinforced concrete elements
subjected to axial loads and not having significant shear or
anchorage deterioration [7]. Hysteretic relations for specimens
3 and 5 show loads "relaxing" for lateral displacements near the
maximum and near zero, without significant change 1in
displacement. The relaxation is attributed to the nature of the
biaxial loading history, as follows. As shown in Fig. 2.9, drift
was first imposed in one direction while ideally fixing
displacement in the transverse direction, and then the axes of
loading were switched. The relaxation shown in Fig. 3.10 and
3.12 is concurrent with commencement of loading in the
perpendicular direction. Section 4.5 of this report discusses

this phenomencn further,
3.4 Base Moment-Base Rotation Relations

Measured relations between base moment and base rotation are
in Fig. 3.13 through 3.17. As noted in Section 2.4 and
illustrated in Fig. 2.8, base moment includes second-order
effects of the axial load acting through lateral displacements.
Base rotations are the total rotation of the column cross-section
at 5 in. from the top of the footing relative to the top of the
footing (Section 2,4 and Fig. 2.6). Thus, the reported rotations
include effects both of column flexure and reinforcement slip

from the footing.

In general, the shape of the moment-rotation relation for

each specimen (Fig. 32.13 through 3.17) appears similar to the

14



corresponding lateral load-displacement relation (Fig. 3.8
through 3.12). The similarity supports a hypothesis that
flexural and bond slip deformations in the "plastic-hinge" region
of the column were the predominant actions contributing to
overall specimen deformation, Section 4.4 of this report

examines the contribution quantitatively.
3.5 Strain Histories

Strain histories (Fig. 3.18 through 3.22) indicate that
corner longitudinal bars experienced greater inelastic
compression and tension strains in specimens subjected to the
biaxial cloverleaf lateral loading than in the single specimen
(specimen 1) subjected to uniaxial lateral 1loading. The high
strain in the corner portion of the column is consistent with the
observed damage (Fig. 3.1 and 3.2). The observation that the
longitudinal bars did not buckle, despite having undergone many
cycles of high inelastic compression and tension, ‘supports a
conclusion that current detailing procedures are effective in
controlling buckling of reinforcement., The strains developed in
the columns loaded along an axis skewed to the principal axes
{specimens 2 and 4) were less than in>the other specimens because
the gaged bars were located (by oversight) on the diagonal axis

of the column transverse to the diagonal of lateral loading.

15



CHAPTER 4

DISCUSSION OF TEST RESULTS
4.1 Introductory Remarks

Data present in Chapter 3 are analyzed and discussed in this
chapter, Computed responses are presented and compared with
measured responses. Sources of deformation in the columns are
analyzed. A summary of the effects of load history on behavior

concludes the chapter.
4.2 Computed Monotonic Behavior

Responses of the columns to monotonically-increasing loads
were computed for comparison with measured responses. Included
in the computed responses are uniaxial and biaxial moment-
curvature relations, biaxial momenﬁ-axial load interaction
diagrams, shear strengths, bar slip relations, and uniaxial load-
deflection relations. These are described in the following

subsections.
{a) Moment-Curvature Relations

Moment~-curvature relations were computed for monotonic
loading using conventional assumptions that plane sections remain
plane (including perfect bonding between steel and concrete),

stresses are related directly to strain, and relations of statics

are valid. A computer program was written to facilitate
computation‘of the relations. The computational scheme is as
follows:

(1) The cross section is subdivided into a grid of small

16



rectangular elements (fiber approach [15]). A material property
is assigned to each of these small elements. Additional elements
on the cross section are defined for the reinforcement.

(2) A strain field is imposed on the cross section, defined by a
maximum concrete strain, depth of neutral axis, and inclination
of neutral axis. The strain at the center of each element
(fiber) of the cross section is computed from geometry
considerations.

(3) Given the strain at the center of each element, stress at
the center of each element is determined from a predefined
stress-strain relation. An average force in each element is
defined as the product between the stress at the center of the
element and cross-sectional area of the element.

(4) Axial load and moment about each axis are determined by
summing effects of averages forces acting on each element of the
cross section. A correction is made for concrete displaced by
reinforcement. Axial load is defined to be acting at the
geometric centroid of the gross concrete cross section. Moments

are defined relative to that centroid.

For the columns in this study, unconfined and confined
concretes wvere defined using properties measured from test
cylinders, and analytical relations defined by Scott and Park
[137]. The assumed curves are plotted in Fig. 4.1. Assumed

stress-strain relations for reinforcement are in Fig. 4.2.

Computed moment-curvature relations, for the range of axial

loads experienced during the experiments, are in Fig. 4.3. The
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relations indicate that strength and ductility are affected by
the level of axial load and the orientation of loading. However,
as would be expected for well-confined concrete columns with
axial 1loads below the balanced point, the columns exhibit

"adequate" ductility for all plotted axial loads.
(b) Biaxial Moment-Axial Load Interaction Diagrams

Interaction diagrams were constructed using the same
computer program described in Section 4.2(a). Families of
uniaxial interaction diagrams are plotted in Fig. 4.4 for various
assumed maximum concrete compressive strains. Biaxial moment
interaction diagrams for various assumed maximum concrete
compressive strains and for various axial loads are plotted in

Fig. 4.5.
{c) Shear Strength

To check if shear could limit the strength of the columns,
shear strengths were computed using the beam shear strength
equations of the ACI Building Code [1]. Accordingly, a concrete

shear strength of V, = 2/f', bd = 2./ 4900 (5)(5.8) = 4.1 kips is

computed parallel the long cross-sectional dimension, and V, = 2
V4500 (6.5)(4.3) = 3.9 kips is computed parallel the short
dimension. Using a limiting steel yield stress of 60 ksi,
strength of steel in the long direction is Vv, = Avad/s =

(0.0369) (60) (5.8)/1 = 12.8 kips, and in the short direction is
(0.0492) (60) (4.3)/1 = 12,7 kip. Adding the steel and concrete
strengths in each direction, the total nominal shear strengths

are 16.9 kips and 16.6 kips in the long and short directions,
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respectively. With a moment arm of 21.5 in. used in the
experiments, the base moments corresponding to shear failure are
363 kip-in. and 357 Xkip-in. in the long and short directions,
respectively. These strengths are approximately double the
computed flexural strengths (Fig. 4.5). Thus, shear failures are

not anticipated.

(d) Bar Slip Relations

The presence of "wide" cracks at the base of the columns
suggests that slip of longitudinal reinforcement may have
contributed significantly to deformations o©of the columns. To
estimate the contribution, slip of reinforcement from the
footings was calculated assuming a uniform bond stress acting
over the stressed lead-in length of the reinforcement anchorages.
For No. 3 deformed bars, anchored in confined concrete similar to
that occurring in the footings, and subjected to monotonic
tension loading, an average uniform bond stress of 1300 psi was
estimated to be effective [6]. For this bond-stress model, the
length, 1, of rebar required to develcp the tension T in the

loaded end of the bar is given by Eg. 4.1.

T
1= ----- ® 8 8 9 5 5 % ¢ T 8 P P R R T S E P T P TS TGRS P EE GO PO IEBEOEEEESE (4.1)
UpdpT
in which uj,, = average uniform bond stress and dj, = nominal bar

diameter. The elongation, D, of the bar over the length 1 is

given by Eq. 4.2.

D= ---------- EE I A N A N I A A B N N O N I R S RN I I BRI I B R R B LR I A (4.2)
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in which A, = cross-sectional area of the bar and E; = Young's

modulus for the bar.

Values for 1 and D are tabulated in Table 4.1 for different

values of the steel stress, £ and with T in Eq. 4.1 and 4.2

s
taken equal to the product between f, and A,. Even when stressed
 to yield (approximately 70 ksi in Table 4.1), the length 1 does
not exceed the available lead-in length for the bars in the
footing (Fig. 2.1). Thus, deformations along the bent portion of
the hook and beyond need not be considered according to the

analytical model. Accordingly, total slip of the bar from the

footing is equal to the value of D.

Displacement at the end of the column due to bar slip is
computed as the product between column height and rotation due to
bar slip. Rotation due to bar slip is computed as the ratio
between bar slip, D, and the distance between the bar and the
neutral axis for bending. The distances are taken egual to 3.1
in. and 4.1 in. for bending about the weak and strong axes,
for

respectively. Computed column end displacements, D, and D

b4 Yy’
bending about the weak and strong axes, respectively, are

tabulated in Table 4.1.

(d) cCalculated Monotonic Load-Displacement Relations

Relations between load and displacement at the column end
were computed by numerically integrating calculated curvatures
over height and adding calculated displacements due to bar slip

from the foundation (Table 4.1). The relations are plotted in
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Fig. 4.6. It is noted that the computed displacement due to bar
slip effects 1is approximately 10 to 20 percent of the total

computed displacement before yield.
4.3 Comparison Between Computed and Measured Quantities
(a) Failure Mode

According to computed responses, each specimen is
anticipated to fail in flexure after developing deformations well
in excess of yield. The measured results support this
expectation. Cracks were primarily flexural (Fig. 3.1 and 3.2).
Longitudinal reinforcement showed strain histories consistent
with inelastic flexural response (Fig. 3.18 through 3.22). Load-
deformation relations (Fig. 3.8 through 3.12) are characteristic
of flexural response, and shear distortions were at no time
visible during testing. At the final load stages, concrete cover
spalled near the base only, with patterns of spalling consistent

with expected compression forces from flexural effects.

Shear, although apparently resulting in some inclined cracks
(Fig. 3.1 and 3.2), did not appear to be a prime contributor.
Slip of reinforcement from the footing, although contributing to

deformations, did not limit the strength.
(b) 8trength

Figure 4.7 compares measured biaxial base moment histories
(corrected for second-order effects) and computed biaxial moment
envelopes. The computed envelopes were obtained using the

computer program described in Section 4.2(a), with maximum
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concrete compression strain of 0.01. For specimens 4 and 5, for
which axial load during testing varied between 0.5 and 20 kips
compression, three computed biaxial moment envelopes are shown,

one each for axial compression of 0.0 Kip, 10 kips, and 20 kips.

The data in Fig. 4.7 indicate that measured biaxial moment
strengths compare well with computed strengths. In general,
measured moment strengths exceed computed values. Although no
detailed analysis of the overstrengths will be presented in this
report, it is possible to attribute the overstrength to a
combination of several effects. For one, mneasured compressionh
strains in reinforcement exceeded the value of 0,01 assumed for
concrete in the analysis. As shown in Fig. 4.4, flexural
strengths are higher for the range of axial 1loads under
consideration if larger compression strains are assumed. In
addition, Bauschinger effects due to inelastic load reversals
generally result in higher reinforcement stresses for a given
strain than recognized in the scheme used to calculate mnember
strengths under monotonic loading. Reinforcement is also likely
to reach higher stresses in the columns than in coupon tension
tests because the smaller length under maximum tension in a
column is not 1likely to contain a weak "link" that limits
strength in a coupon tension test. Column strength is also
increased due to increases in concrete strength and maximum
strain capacity that result from high strain gradients and
confinement of concrete by the large footing block at the column

base. All of these effects are likely to increase the column
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strength to values exceeding calculated strength.
(c) Load-Displacement Relations

Measured and calculated load-displacement relations are
compared in Fig. 3.9 through 3.12, with calculated relations
shown by broken curves. The calculated relations are identical
to those described in Section 4.2(d) and Fig. 4.6, and include
effects of reinforcement slip from the footings as described in
Section 4.2(d). For columns loaded biaxially, computed relations
'are shown for lateral load assumed to be uniaxial and parallel to
‘the direction for which the response is shown, and for lateral
loads resulting in displacement response at 45 degrees to the

direction being shown.

Calculated responses assuming uniaxial load for specimen 1
or biaxial load for the remaining four specimens compare well
with measured responseé, suggesting that existing analytical
models are adequate for this purpose. For the biaxially-loaded
columns, it 1is apparent by comparison with computed uniaxial
load-displacement relations that the biaxial loading results in
reduced effective moment resistance along the principal axes of

the coclumn.
4.4 Source of Deformation at Final lLoading Stage

The appearance of the columns following testing (Fig. 3.1)

suggests that the majority of column tip displacement was due to
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inelastic rotations occurring at the base of the columns. In
support of this observation, column tip displacements about both
principal axes due to rotations measured by clip gages at the
base of the column were computed for comparison with measured
displacements. For this purpose, the rotation measured over a
five-in. gage length by the c¢clip gages was assumed to be
concentrated at the center of the five-in. length as shown at the
top of Fig. 4.8. Computed displacements due to base rotations
are compared with actual measured maximum displacements at the
bottom of Fig. 4.8. According to this calculation, base
rotations aloﬁg the bottom five in. of the column contributed

between 82 and 92 percent of the total maximum tip displacement.

A conventional design practice [11] is to assume that all
inelastic action is attributable to uniform flexural curvature
within a plastic hinge region at the end of an element. For the
columns of this study, a plastic hinge length equal to
approximately five in. is appropriate. Hence, rotations inferred
from the clip-gage readings at the base of the column are

effectively the equivalent plastic hinge rotations.

If the measured base rotations are assumed to be
attributable to uniform flexural curvature over the plastic hinge
length, then for specimen 1, for example, the computed curvature
is equal to (0.06 rad)/{(5 in.) = 0.012 rad/in. In addition, if
the distance from the neutral axis to the tension reinforcement

is taken equal to the distance between extreme layers of
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longitudinal reinforcement, that is, 3.0 in., then the expected
strain in longitudinal reinforcement is equal to (0.012
rad/in.) (3 in.) = 0.036 in./in. Actual maximum measured strain
for specimen 1 was 0.029 in./in. Thus, the method for estimating

strain produces fairly good estimates of maximum expected strain.

It is noted in relation to the preceding paragraph that the
calculated strain exceeds the measured strain, even though the
measured strain is 1likely to be a maximum value whereas the
calculated strain is an average. A plausible reason for this
apparent inversion of magnitudes is that the calculation method
does not consider the effect of rebar slip from the footing
blocks. Because of slip of the reinforcement, the column base
rotation is developed by reinforcement strains over a longer
length, thereby reducing the actual required reinforcement strain

over that length.
4.5 Effect of Load History on Load-Displacement Response

As described in Chapter 2, the columns were loaded to effect
displacement histories that followed prescribed patterns (Fig.
2.8 and 3.3 through 3.7). Under uniaxial lateral loading, either
along one principal axis as for specimen 1 or along an inclined
axis as for specimens 2 and 4, the resulting hysteretic relations
'between lateral load and displacement (Fig. 3.8, 3.9, and 3.11)
show familiar patterns of slightly spindle-shaped loops. For
specimens 3 and 5, which were loaded in a cloverleaf pattern of

displacements, the hysteretic loops (Fig. 3.10 and 3.12) and
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biaxial moment interactions (Fig. 4.7c and 4.7e) follow
unfamiliar patterns. The hysteretic responses of specimens 3 and

5 are explained qualitatively in the following paragraphs.

Figure 4.9 through 4.12 present an idealized chronological
sequence of displacement paths, load-deformation loops, and
biaxial moment interaction diagrams. The diagrams are considered
representative of specimen 3, with constant axial load, and for
lateral loads inducing inelastic response. Similar diagrams can
be plotted for specimen 5, but these would be complicated
somewhat by thé simultaneous variations of axial loads during the
loading sequence. To clarify the presentation, the diagrams are

plotted successively on several sheets.

The diagram at the upper left of each sheet of Fig. 4.9
through 4.12 represents the displacement path during a selected
portion of one complete cloverleaf loading cycle. Points "a"
through "m" denoted on the displacement path occur successively.
The second pair of diagrams at the bottom of each sheet
represents the load-deformation relation along "X" and "Y' axes
of the column, with points "a" through "m" from the displacement
history designated at appropriate points. The diagram at the
upper right of each sheet represents the relation between base
moments about each axis, again with points "a" through "m"
designated at appropriate points. There is no attempt to present

the diagrams to any prescribed scale.
Figure 4.9 plots idealized responses for roughly the first
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quarter cycle (points "a" through "c'"). At first loading, the
displacement is increased in the "X" direction to point “a" (Fig.
4.9a). The load-deformation relation in the "X" direction loads
to point "a" (Fig. 4.9c), whereas no loading is noted in the "y"
direction (Fig. 4.94d). The moment interaction diagram (Fig.
4.9b) shows moment only about the "¥" axis (that is, in the "X"

direction).

As the displacement progresses to point "b" (Fig. 4.9a), the
load in the "Y" direction increases (Fig. 4.9d). As the moment
M, increases for loading in the "Y" direction, flexural strength

considerations require that the moment M developed during

yr
loading to point "a", must decrease (Fig. 4.9b). The decrease in
moment My is noted also in the load-deformation relation in the
"X" direction (Fig. 4.9c¢). In addition, the displacement in the
"X" direction increases slightly as the load in that direction
relaxes (Fig. 4.9c). The magnitude of this increase in
displacement is partly a function of the test specimen and partly
a function of the loading system used in the experiments.
Similarly, moving from point "b" to point "¢", the displacement
in the "X" direction is decreaéed, which simultaneously results

in an inelastic relaxation of load and displacement in the "y"

direction.

As the loading is continued into the second quarter cycle
(points "d" through "f" in Fig. 4.10), similar behavior occurs.

Moving from point "c¢" to point "d', the column is loaded from a
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positive "yY" displacement to an egually large negative "¥"
displacement (Fig. 4.10a). There is a simultaneous drop in load
in the "X" direction (Fig. 4.10c) as the cross section realigns
to the newly-imposed strain distribution. Moving to point "e",
displacement is applied in the positive "X" direction, as in the
first guarter cycle, with the characteristic relaxation of 1load
in the "Y" direction (Fig. 4.10d) as moments follow the biaxial
moment interaction diagram (Fig. 4.10b). A familiar pattern is

repeated in moving to point "f".

The diagrams in Fig. 4.11 and 4.12 continue the pattern
described in the preceding paragraphs. The completed idealized
hysteretic loops of Fig. 4.12 are gqualitatively similar to those
measured for specimens 3 and 5 (Fig. 3.5 and 3.7, 3.10 and 3.12,

and 4.7).

The influence of biaxial lateral loading on the 1load
displacement envelopes is illustrated by Fig. 4.13. Figure 4.13a
is an envelope relation of lateral load in the weak direction for
various loading points for specimens 1, 2, and 3, with loading
points illustrated in Fig. 4.13c. As would be expected from
well-known principles for columns under uniaxial and biaxial load
(11], specimen 2 (with loading applied approximately along a
diagonal) has less lateral-load resistance than specimen 1 (with
load along the principal axis). For specimen 3, two different
points are plotted. Points "3a" correspond to first loading to
maximum displacement in the weak ("X") direction (Fig. 4.13c).
The envelope for these points is lower than those for specimen 1,

indicating that prior biaxial loading has reduced the effective
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resistance of specimen 3. Points "3b", occurring after the
column has subsequently been loaded in the strong (“Y") direction
(Fig. 4.13c), reveal even lower resistance (Fig. 4.13a),
indicating that if transverse loads are applied while strength is
being maintained in one direction, a further reduction in load
resistance will occur. Fig. 4.13b presents similar data for the

strong ("Y") direction of 1oadihg.

The loading history also influences the loading stiffness.
Figure 4.14 plots loading paths (base moment about the "Y" axis
versus base rotation in the same direction) in the positive
loading direction for all specimens. In those figures, different
loading paths are designated with a number. The number
corresponds to a specific displacement cycle of the loading
program, so that, for example, the number "6" for all specimens
corresponds nominally to the same loading cycle "6" for all
specimens. It is concluded from the data in Fig. 4.14 that
loading stiffness in a given principal direction is reduced
significantly by biaxial 1lateral loading, the biaxial loading
either having been applied previous to or simultaneous with the

current loading.
4.6 Effect of Load History on Damage

The different load histories resulted in markedly different
‘amounts of damage in the different columns. Photographs of the
five specimens at the conclusion of testing are shown in Fig.
3.1. The photographs were taken after lcose concrete was removed

by hand. Even though the columns were each loaded with the same
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number of cycles in the weak direction, and to the same lateral
displacement, differences in visible damage are clear. The
uniaxially-loaded column, specimen 1, shows very little concrete
spalling. The columns loaded along the diagonal, specimens 2 and
4, show significantly greater damage in the corners along the
loading diagonal. Once the damage began in the corners for those
columns, it spread more readily to other parts of the colﬁmn
perimeter. The columns with cloverleaf displacement histories,
specimens 3 and 5, show the most severe damage, with major

spalling around the entire perimeter at the base of the column.

In addition to effects of the displacement history,
examination of the photographs in Fig. 3.1 reveals that the
columns with varying axial load, specimens 4 and 5, had more
severe damage than corresponding specimens 2 and 3, respectively,
which underwent the same lateral displacement histories with

constant axial load.

The greater extent of damage in columns with cloverleaf
loading histories (specimens 3 and 5) relative to the uniaxially-
loaded column (speciﬁen 1) is also apparent in longitudinal
reinforcement strain histories (Fig. 3.18, 3.20, and 3.22).
(Strain-history data for specimens 2 and 4 are not indicative of

the severity of loading, as the measured strains are for bars not

located in the most-severely strained corners of those columns.)

The extensive variation 1in apparent damage, despite
similarities in maximum lateral drift, is an indicator that

response levels in real structures cannot be closely approximated
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based on visible damage following an earthgquake. A biaxially
loaded column, as might be found in a real structure following an
earthquake, reveals damage significantly different from a similar

column subjected in the laboratory to uniaxial loading.
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CHAPTER 5

SUMMARY ANRD CONCLUSIONS

An experimental program was conducted to study the behavior
of reinforced concrete columns subjected to inelastic multiaxial
loads with reversals. Five nominally-identical, one-quarter
scale columns were tested in the program. The test specimens
represented columns considered typical of those occurring in
moderately tall buildings designed to satisfy current code
requirements for reinforced concrete consfruction in regions of

high seismic risk.

The columns were tested as cantilevers projecting from stiff
foundation blocks, with lateral and axial loads applied at the
end of the cantilever. The main variable in the experiments was
the load history. Three columns were tested with constant axial
locad, one with uniaxial lateral load directed along a principal
axis of the column, one with uniaxial lateral load directed along
a skew axis of the column, and one with biaxial lateral loads
resulting in a "cloverleaf" displacement pattern. Two remaining
columns were tested under varying axial loads, with lateral load
either applied uniaxially along a skewed axis or applied
biaxially to achieve a cloverleaf displacement pattern.
Experimental measurements include applied lateral loads, column
end displacements, longitudinal reinforcement strains, and column

base deformations.

This report documents the experiments and discusses observed

behavior both qualitatively and by comparison with analytically
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computed responses. Major conclusions include the following.

(1) Lateral deformations of the columns were predominated by
rotations occurring within a length equal to approximately one
column width measured from the top of the footing. These
rotations are attributed to flexural curvature over this length
and to slip of reinforcement from the footing.

(2) Based on cbserved damage, and as supported by calculations,
lateral-load strength of the columns was limited by flexural
strength.

(3) Reinforcement details, which satisfied current codes for
ductile concrete frames in regions of high seismic risk, resulted
in satisfactory behavior. Strength under load reversals was
sustained through displacements equal to approximately five
percent of column height (displacement ductility of approximately
six), and could probably have been sustained through larger
deformations had the test apparatus permitted further 1loading.
Buckling of reinforcement did not occur, despite spalling of
concrete cover and measured reinforcement compressive strains as
large as 0.04. A
(4) Biaxial lateral loading influenced observed behavior.
Visible damage (concrete cracking and crushing) was notably more
extensive in the biaxially-locaded columns. Measured strains in
reinforcement, particularly in compression, were larger than for
‘the wuniaxially-loaded columns. Measured strengths and
stiffnesses under biaxial lcading were less than under monotonic
loading. Even columns loaded uniaxially at a given stage of

testing did not reach the uniaxially-measured strengths and
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stiffnesses if those columns had been previously subjected to
transverse loading. In general, the state of damage worsened for
columns also subjected to axial load variations, even though the
maximum axial load in these experiments was less than half the
balanced axial load.

(5) Hysteretic relations under biaxial lecading were strikingly
different from those measured for uniaxial loading.

(6) Measured strengths and load-deflection envelopes could be
reproduced reasonably well using existing analytical concepts for
reinforced concrete sections subjected to monotonic loading. The
analytical correlations were better for the columns loaded
uniaxially along the principle axis or along a skew axis than for
the columns loaded in the cloverleaf pattern.

(6) For columns loaded in the cloverleaf pattern, measured base
moments were closely bounded by biaxial moment envelopes

calculated assuming monotonically applied loads.
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Table 2.1 Chronology of Experiments

1. Construction of Reinforeing Cage for Specimens 1 to 5

a.) Reinforcing Cages
b.) Attaching Strain Gages

2, Casting of Specimens 1 to 3 (2/7/86)
3. Casting of Specimens 4 and 5 (3/7/86)
4. Setup of Testing Apparatus

a.) Loading Apparatus
b.) Instrumentations

5. Testing of Specimen 1 (4/17/86)

a.) Uniaxial Lateral Loading with Constant Axial Load
6.  Testing of Specimen 2 (4/28/86)

a.) Biaxial Lateral Loading at 45 Degrees with Constant Axial Load
7. Testing of Specimen 3 (5/6/86)

a.) Biaxial "Cloverleaf” Lateral Loading with Constant Axial Load
8. Testing of Specimen 4 (5/16/86)

a.) Biaxial Lateral Loading at 45 Degrees with Varying Axial Load
9. Testing of Specimen 5 (5/30/86)

a.) Biaxial "Cloverleaf” Lateral Loading with Varying Axial Load

10. Reduction of Experimental Data and Analytical Analysis
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Table 2.2 Concrete Botch Quontities for
One Cubic Yord, Soturoated Surface-Dry

Batch #1 (k) | Batch #2 (ko
Materials Specimens 1-3 | Specimens 4-3
Type II Cement
Permonente C1028 6l 641
Water 342 342
Fine Sond
Tidewater Blend 3235 325
Course Sand

0

Rodum Top 130 1300
Fine Grovel
Radum 3/8* Ped 1319 1315
Total 3893 3923

Taoble 2.3 Concrete Compressive Strengths

Cyclinder| Age of Cyclinder | Average
Size Concrete | Strength | Strength
(Doys? (Fsi.) (psi.?
28 2452 5169
3% 63 210 5318
Boatch #1 %%l%
28 5352 5201
63 5550 2435
28 sﬁgg‘% 4933
3 %6 70 5000 5071
Batch #2 2154{‘3
28 2220 4470
6 x 12 45 }‘6
70 4567 4559
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Toble 2.4

Concrete Spltting Tensile Strengths

6 x 12 | Age of Load Tensile Avg. Tensile
Cyclinder |{Concrete Strength Strength
ays 1s)) (psi) (psi)
67000 292
Batch #1 63 992
67100 993
60700 336
Batch #2 S0 493
20700 449
Toble 25 Reinforcement Properties
Properties||#3 Deformed | #2 Deformed!| #2 Deformed| Guage #9
Bor Bar Bar Transverse
(shipment #1)|(shipment #2)|ReInforcement
Fy (ksl) 64.9 64.4 73.1 60.0
Fu (ksi) 95.7 86.0 96,5 835
FF (ksl) 95.7 86.0 96.5 835.5
E (ks> 29000.0 29000.0 29000.0 29000.0
E_, (ksi> 1690.0 1200.0 1250.0 2500.0
ey (n/in? 0.0022 0.0022 0.0025 0.0021
esh(ln/ ind 0.0120 0.0300 0.0252 0.0025
€. (in/in> 0.1310 0.1740 0.1300 0.1000
€. (n/in) 0.1600 0.2000 0.1640 0.1200
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Table 3.1 Summary of Selected Experimental Results

Specimens

#1 #2 #3 #4 #5
YIELD
My (kip-in) 116.0 81.0 62.0
Mx 137.0 85.0
Vx (kips) 5.2 3.4 2.9
Vy 5.9 4.5
dx (inches) 0.19 0.14 0.15
dy 0.15 0.15
ULTIMATE
My (kip-in) 136.0 95.0 123.0 142.0 148.0
Mx 161.0 175.0 151.0 168.0
Vx (kips) 5.9 3.8 5.1 4.0 4.8
Vy 6.7 7.6 8.2 7.0
MAXIMUM
dx (inches) 1.12 1.01 1.01 0.99 1.01
dy 0.99 1.01 0.97 1.01
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Toble 4.1

Calculated Effect of Bar Slip

on Column End Displacements

l——D

I ] D=[SLIP/ARMI*H ; Dx, Dy
H=20 in.
H
ARMX=3.1 in. Weak Direction
| ARMy=4.1 in.  Strong Direction
sugp 3 ARM:  Denotes the Approximate
Distoance Between the
= Neutral Axis and the Bar
Where Slip is Occurring
ARM —= I-—
Steel Bond Rebar Hook Total | End Displacement
‘Stress | Stress Slip Slip Pull-out
(ks> fup Cksi (i _Cnd n.) Dx <ind I Dy <n)
70 1.30 0.0061 0 0.0061 0.040 0.030
60 1.30 0.0043 0 0.0045 0.029 0.022
S0 1.30 0,0031 0 0.0031 0.020 0.015
40 1.30 0.0020 0 0.0020 0.013 0.010
30 1.30 0.0011 0 0.0011 0.007 0.005
20 1.30 0.0005 0. 0.0005 0.003 0.002
10 1,30 0.0001 0 0.0001 0.001 0.000
0 0.00 0.00000 0 0.00000 0.000 0.000
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FIG. 2.2 Test Specimens Ready for Casting

FIG. 2.3 Testing Specimens After Casting
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FIG. 2.5 Longitudinal Steel Stress-Strain Relations

47



uorjejuawiniysu] pue snjeieddy Juipro] 9'Z 'HIJ

M3INA NOILVATI3

¥0074 l\ ﬂﬁ H

J01vVNLIVY JIMNVATAH —
ANIOr

WYY aQvYO071 WIXY
AJvr JIINVATAH

48

1133 avon IYSAYIAINN A3LYITHEY S-ATTWIDIdS
NIWID3dS
J9v8g 4179 L
A04 3IHOA WNINIWNTY
1
.5'9

1133 avon
r

o |
. IVIIdAL
0 39v9 d1712 INIOF ONILOAId

T

002
L NWNTIOJ 40 ¥3IN3D 1V 1aAT




p2nuljuo)) 9% ‘Old

M3IN d0O1
. il
. g NOILO3NIC HOY3
‘ _! NWNT02 40 ¥3INID WONS
SLT 19 10AT - 2
=) 1 s
1=
1
SR
WIDAAL
39¥9 dITD
NIWID3dS
130 avon

A0LYNLIY JINYATCAH

49



FIG. 2.7 Photographs of Experimental Setup
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FIG. 3.1 Photograph of Test Specimens at Conclusion of Testing

i;

FIG. 3.1a Photograph of Test Specimen 1 at Conclusion of Testing
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FI1G.3.1b Photograph of Test Specimen 2 at Conclusion of Testing

FIG. 3.1c  Photograph of Test Specimen 3 at Conclusion of Testing

55



FIG. 3.1d Photograph of Test Specimen 4 at Conclusion of Testing

4
L1

FIG. 3.1e  Photograph of Test Specimen 5 at Conclusion of Testing
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— |—— DISPLACEMENT DUE TO

LV.D.T, PLASTIC HINGE ROTATION
é-\ /T 1
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WEAK 0.048 0.86 0.99
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> STRONG 0.04S 0.86 1.01

FIG. 4.8 Contribution of Base Rotation to Total Column Deflection
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