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ABSTRACT

Relative simplicity with reasonable reliability is emphasized as the prerequisite of
a R C shear wall model to be incorporated in a practical nonlinear analysis of a R C
multistory structural system containing shear walls. Attention is focused on a wall
model recently proposed by Japanese researchers. This model, based on a macroscopic
approach, idealizes the generic wall member as three vertical line elements with
infinitely rigid beams at the top and bottom floor levels. The two outside elements are
truss elements to represent the axial stiffness of the boundary columns; the central
element is a one-component model constituted by horizontal, vertical and rotational
springs to represent, respectively, the shear stiffness of the wall, the vertical axial
stiffness and the flexural stiffness of the central panel.

Modifications of the above wall model are proposed and developed in the studies
reported herein. The main modification is aimed to improve the simulation of the
hysteretic behavior of the axial elements adopted by the Japanese researchers. These
axial elements are replaced by new elements which simulate more closely the hysteretic
behavior of a R C column member under axial load reversals.

In order to check the effectiveness and reliability of the modified wall model a
numerical investigation is carried out by calibrating the results against measured
behaviour of a series of R C structural walls that have been tested at the University of
California at Berkeley.

The modified wall model proves to be effective and suitable to be incorporated in
a practical nonlinear analysis of R C multistory structural systems. Even though an
apparently satisfactory correlation of the measured and analytical responses is found,
under high shear stresses the correct prediction of the flexural and shear displacement
components of the total displacement is very difficult and very sensitive to the choice of
many of the parameters involved in the modified wall model.

Some recommendations are advanced in order to improve further the analytical

wall model.
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CHAPTER 1

INTRODUCTION

1.1 General

The use of Reinforced Concrete (R C) shear walls in multistory buildings is very
effective in providing resistance and stiffness against lateral loads induced by wind
and/or earthquake. Well-designed R C coupled walls and frame-wall structural systems
are particularly effective during severe earthquake ground motions when a congiderable
amount of the energy input has to be dissipated by reversed inelastic deformations.

Extensive research, both analytical and experimental [1-39], has been carried out
in order to clarify, and then to simulate, the hysteretic behavior of isolated and coupled
R C walls, as well as of R C frame-wall structural systems. Recent research has
improved the understanding of the inelastic behavior of such structures significantly.
These advances have provided helpful information for the development of suitable
analytical models.

An analytical model should be capable of closely describing both the hysteretic
behavior of each structural member and the interaction of connected members.
Nevertheless, the analytical model should be relatively simple so that the analysis can
be performed with reasonable computational effort. This last requirement is particularly
important when multistory structural systems have to be analyzed. In these cases,
models derived from a macroscopic approach prove to be more effective than detailed
mechanical models. In fact, the former models require relatively limited storage and,

most important, significantly lower computational effort.



Although suitable analytical models have been proposed for realistic and practical
prediction of the hysteretic behavior of R C beam members, many uncertainties about
the formulation of a reliable model for the practical analysis of R C structural walls
persist. Therefore, while there has been a marked improvement in the analysis of R C
frame structures in the last two decades, the analysis of R C frame-wall structural
systems has not comparably improved.

Many important features of the hysteretic behavior observed during experiments
on a full-scale seven-story building have been incorporated in the Three-Verti-
cal-Line-Element Model, recently proposed by Kabeyasawa et al. [27] to simulate the
inelastic response of R C structural walls. Even though there is good correlation
between the observed and computed responses for the overall structure, further
improvements in the wall model are believed possible.

In this report attention is focused on the modeling of R C structural walls and, in
particular, on the aforementioned model which is shown to be reasonably reliable and
suitable for incorporation in a practical nonlinear analysis of multistory structural

systems.

1.2 Objectives and Scope of the Report

The main objectives of the work described in this report are as follows:

(1) to discuss features and limitations of previously proposed R C shear wall models
and to select a relatively simple and reasonably reliable wall model, that can be
efficiently incorporated in a practical nonlinear analysis of R C multistory structural
systems that use R C shear Walls;

(2) to check the effectiveness and reliability of the selected wall model in light of the

measured behavior of isolated R C structural walls;



(3) to evaluate the sensitivity of the response of the selected wall model to the

characteristic parameters involved in the analysis;

(4) to make suggestions that would improve the reliability of the selected wall model.

In Chapter 2 a general review of R C wall models available in the literature is

given, discussing their features and limitations.

In Chapter 3 attention is focused on the Three-Vertical-Line-Element Model. An
analytical model idealizing the hysteretic behavior of a R C column member under axial
load reversals is proposed and incorporated in the aforesaid wall model.

In Chapter 4 the features of the nonlinear analysis adopted and the computer

program coded on the basis of this method are discussed.

Results of a numerical investigation and a parametric study, referring to a group of
isolated R C structural walls tested by Vallenas et al. [4] at the University of California

at Berkeley, are presented and discussed in Chapter 5.

Lastly, in Chapter 6 the conclusions of the present work and recommendations for

future research are given.



CHAPTER 2

GENERAL REVIEW OF RC WALL MODELS

2.1 Introduction

Many analytical models have been proposed to predict the nonlinear response of
R C structural walls. However, they can be classified into two broad groups :
(1) detailed models derived using mechanics of solids (microscopic approach);
(2) simplified models to predict a specific overall behavior (macroscopic approach).
Models derived from a microscopic approach are based on a detailed interpreta-
tion of the local behavior. Even though the microscopic approach is desirable, its
implementation involves many difficulties due both to the lack of completely reliable
basic models and the complexities involved in a detailed solution, Although, the Finite
Element Method offers a powerful analytical tool to perform the numerical analysis
{40], the computation is generally very time-consuming and requires a large storage:
thus, in practice the microscopic approach is restricted to the analysis of structural
systems less complex than multistory frame-wall structural systems, such as a single

wall or an assemblage of two coupled walls.

On the other hand, models based on a macroscopic approach attempt to describe
the overall behavior by means of a simplified idealization. The main advantages of
these models consist in the relatively limited storage and, above all, in the significantly

less computational effort than that required by detailed analytical models. However,



models deriving from a macroscopic approach have several limitations, the main one
being that usually the analytical results are valid only for the conditions on which the

derivation of the model is based.

An alternative to the two above-mentioned approaches would be their combina-
tion. For instance, simplified models could be used to idealize structural members
whose inelastic deformations are expected to be predominant; or, a preliminary analysis
by a microscopic approach could provide helpful information about the structural

idealization to be adopted in selecting a suitable simplified model.

In any case the model which is adopted, regardless of the approach from which it
has been derived, should describe and predict the different components of inelastic
deformation: flexural and shear deformations, as well as fixed end rotation caused by
bond slippage of the tensile reinforcement embedded in the foundation. Moreover, the
model should be capable of simulating the observed deformation patterns due to
different failure modes: flexural, sliding shear or splitting-crushing of the web at the
base of the wall.

It should be noted that to have an efficient wall system the web splitting-crushing
mode of failure should be avoided or delayed sufficiently so that it will not control the
behavior of the system. Although this mode of failure can be simulated when a
microscopic approach is followed, its simulation becomes very difficult by models
based on a macroscopic approach. In spite of this limitation, in the following emphasis
will be placed on simplified models derived from a macroscopic approach, because they
are relatively simple and, therefore, suitable for efficient incorporation in a nonlinear
analysis of multistory structural systems in which splitting-crushing of the web is

avoided or delayed enough not to be the controlling mode of failure.



2.2 Models Derived from a Macroscopic Approach

2.2.1 Equivalent Beam Model (EBM)

One current modeling technique for a frame-wall system considers the generic
shear wall member replaced at its centroidal axis by a line element and connected by
rigid links to the frame beams; the fixed-end rotation at any connection interface with
the frame beams can be taken into account by introducing a nonlinear rotational spring
whose mechanical properties can be defined on the basis of bar slippage due to bond
deterioration.

Computer programs based on a one-component model are generally used [41-42].
This model consists of a flexural elastic member with a nonlinear rotational spring at
“each end. The inelastic moment-rotation relationship of each spring is determined by
assurming a given location of the contraflexure point, e.g. that one based on the initial
elastic stage. This is an advantage, because the inelastic end rotation depends only on
the bending moment at the end and any moment-rotation hysteresis model can be
adopted for the spring. However, this feature of the model is also a weakness, because
the actual moment distribution and the propagation of inelasticity along the beam are
disregarded.

In order to account for the variation of location of the confraflexure point, Otani
[43] introduced some medifications to the model. But when the contraflexure point
moves suddenly a numerical problem arises because of the sign change of the member
end moments. To overcome this difficulty and to simulate the propagation of
inelasticity adequately, the wall element can be discretized into a suitable number of
short segments [36-39]; or different models [44-45], more sophisticated than a
one-component model, can be adopted in order to account for the spread of the inelastic

deformations in the critical regions . These models, however, and in particular the



further subdivision when a one-component model is adopted require such large storage
and computational effort as to make the analysis of multistory structural systems
unfeasible.

To account for the inelastic shear deformation effects in a coupled wall system,
Takayanagi et al. [37] introduced additional plastic hinges at the ends of each line
element representing a wall member. Although the computed and measured responses
matched very well, it is important to observe that the sliding deformation mode of the
wall cannot be represented.

The main limitation of modeling R C structural walls by adopting any equivalent
beam model lies in the assumption that rotations occur around points belonging to the
centroidal axis of the wall. With this assumption important features of the behavior of
R C frame-wall structural systems (i.e., migration of the neutral axis of the wall
cross-section, rocking of the wall, etc.) are disregarded and their consequent effects
(i.e., outriggering interaction with the frame surrounding the wall, etc.) are not

accounted for adequately.

2.2.2 Equivalent Truss Model (ETM)

Another modeling technique represents the wall as an equivalent truss system.
Unlike the beam model, this model accounts for the stress redistribution caused by the
diagonal cracks. However, difficulties arise in defining both the geometry and the
mechanical properties of the equivalent truss system. For example, on the basis of
experimental test results, Hiraishi [29] introduced a non-prismatic truss member whose
cross-sectional area was determined taking into account the stress along the height of
the boundary column under tension.

Further difficulties are due to changes in the structural topology which depends on
crack propagation during the loading history. Helpful information in regards to this can
be provided by a preliminary finite element solution, but the analysis is then much more

time-consuming [4].



2.2.3 Three-Vertical-Line-Element Model (TVLEM)

Recently, after experiments on a full-scale model of a seven-story R C building,
Kabeyasawa et al. developed a mathematical model for R C structural walls {27]. A
good correlation of the observed and computed responses was found. The wall model,
although relatively simple, incorporates the main features of the experimentally
observed behavior (i.e., migration of the neutral axis of the wall cross-section, rocking
of the wall, etc.), which the equivalent beam model fails to describe, as mentioned in
Section 2.2.1.

For this reason the TVLEM can be considered to be one of the most suitable
models among the R C wall models available in the literature for incorporation in a
practical nonlinear analysis of multistory structural systems. In the next Chapters
attention will be focused on this type of model and some proposals made for improving
the original model.

It is worth mentioning that the TVLEM can be generalized as a Multi-Verti-
cal-Line-Element Model. An approach of this kind was followed by Charmey [22], who
adopted a multi-axial-spring-in-parallel model (LINKS Model) to describe the flexural
inelastic behavior of the base of a structural R C wall, part of a 1/5-scale test frame-wall

structure.



CHAPTER 3

SELECTED WALL MODEL ;
THREE-VERTICAL-LINE-ELEMENT MODEL

3.1 General Description of the Model

The model shown in Fig. 3.1a was formulated by Kabeyasawa et al. [27] to
idealize a generic wall member as three vertical line elements with infinitely rigid
beams at the top and bottom floor levels: two outside truss elements represented the
axial stiffness of the boundary columns, while the central element was a one-component
model with vertical, horizontal and rotational springs concentrated at the base.
However, a finite rigid element of length ch could be placed between the spring
assembly and the lower rigid beam. * The wall model was intended to simulate the

deformation of the wall member under a uniform distribution of curvature.

* The value of the dimensionless parameter ¢ could be chosen in such a way that ch
represents the height of the center of relative rotation between top and bottom levels
(Fig. 3.1b). With a suitable choice of the ¢ value it is possible to define an effective
relationship between the relative flexural displacement Av, . and the relative rotation
Ad ( Av,, . = (c-1) h Ap ). A suitable value of ¢ can be sclected as based on the
expected curvature distribution along the inter-story height h (0 < ¢ < 1, if the curvature
sign does not change along the inter-story height).



The model is capable of describing flexural and shear deformations, while the
deformation due to the fixed end rotation is not accounted for. Flexural and sliding
shear modes of failure can be described, while, as already mentioned in Section 2.1 for
all the models based on a macroscopic approach, the web splitting-crushing mode of
failure is not simulated.

The hysteresis models and stiffness properties (illustrated in Sections 3.2 and 3.3,
respectively) adopted by Kabeyasawa et al. to simulate the hysteretic behavior of the
model elements were based on the experience coming from experimental tests. Many of
the assumptions contained in Sections 3.2 and 3.3 are empirical and sometimes even
seem arbitrary. Nonetheless many of these assumptions, unless differently specified, are
kept in the studies reported herein in order to check the reliability of the model. A
parametric study is presented in Chapter 5 to emphasize the sensitivity of the wall

model to different values of the characteristic parameters affecting the model response.

3.2 Hysteresis Models

3.2.1 Axial-Stiffness Hysteresis Model (ASHM)

The behavior of a R C column under axial load reversals is very complex. The
simplified model shown in Fig. 3.2 was proposed in Reference 27 and tentatively used
to describe the axial force-deformation relationship of the three vertical line elements of
Fig. 3.1a.

The skeleton curve was defined by assuming the axial stiffness as constant in
compression. When the net axial load changed its sign from compression to tension, the
stiffness was reduced to 90% of the initial compressive elastic stiffness in order to

account for some stiffness degradation due to cracking and bond deterioration. After
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tensile yielding - supposed to occur when longitudinal reinforcement yielded under the
net tensile load - the stiffness was reduced to 0.1% of the initial elastic stiffness in order
to represent some strain hardening.

Before reaching the point Y = (D, F) corresponding to tensile yielding, the
response point followed the usual bilinear hysteresis rules between the two points Y and
Y’ =D, -F).

Once tensile yielding occurred, then the response point followed the bilinear

hysteresis rules between Y’ and the point M = (D, F_) corresponding to the maximum

tensile strength F_ previously attained. The unloading stiffness K, was assumed to be
K,=X, (D,/D,)" 3.1)

in which

D, = tensile yielding point deformation;

D_ = maximum deformation amplitude greater than D "

o = unloading stiffness degradation parameter, which was assumed equal to 0.9. *

* It should be noted that the choice of the o value is very important in order to obtain a
realistic unloading path. In fact, the greater is the tensile ductility factor i, = D /D, the
smaller is the unloading stiffness K, which, according to Eq. (3.1), could attain the limit
value K, = K, (1, @) indicated in Fig. 3.3a. In other words, for each value of p_ a limit
value o, can be defined for the parameter o such that, if o> o (o <o, ) then
K <K, (K >K,). However, the unloading path defined by the condition K, <K, , that
is K, < K, is unrealistic because during an unloading phase subsequent to a tensile
yielding the response of the R C column strongly depends on the steel behavior, which
does not match a path of this type.

It can be shown that

O, = log {[2K /K, + (u- DK/ K/ IK/K + 1} /logp? , p>1
Some curves representing o, versus W, for different values of the ratio K, / K, are
plotted in Fig. 3.3b. All these curves, which prove to be practically insensitive to the
value of the ratio K| / K, refer to the value 0.001 assumed for this ratio in Reference 27.
It is worth noting that, by referring to the curve corresponding to the values assumed in
Reference 27 for oo , K, / K, and K, / K  (0.90, 0.90 and 0.001, respectively), the
unloading stiffness K_attains the limit value for g = 1.165 ; in order to have K, > K
for any realistic choice of the i, value, then o < 0.687.

211 -



Furthermore, additional rules were applied between Y’ and M. During a loading
phase in tension, when the response point reached the point M, then the response point
moved on the branch of the skeleton curve in tension corresponding to the tensile
hardening stiffness K,, in this way renewing the point M. Moreover, during an
unloading phase from M the response point reached the point (D, , F_ - F) and then
moved toward the compressive characteristic point Y’; however, the point Y’ was not
reached because the response point moved toward the point Y" = (2D, -2F) from
the stiffness hardening point P = (D, F,) corresponding to the deformation

D =D, +B(D,-D,) (3.2)
in which
D_= deformation at the point corresponding to the change of the unloading stiffness;

B = parameter for stiffness hardening point, which was assumed equal to 0.2.

3.2.2 Origin-Oriented Hysteresis Model (OOHM)

An Origin-Oriented Hysteresis Model, which dissipates small hysteresis energy,
was used for both the rotational and horizontal springs at the base of the central vertical
element (Fig. 3.4). A trilinear skeleton curve was used for both these springs. The
response point moved along a line connecting the origin and the previous maximum
response point in each direction. Once the response point reached the previous
maximuin point, the response point followed the skeleton curve renewing the maximum
response point.

It should be noted that, because of the choice of the OOHM, the shear stiffness
degradation was taken without accounting for the cracking effects due to the presence
of both the actual axial force and the bending moment. As pointed out later in the
discussion of the numerical investigation (Chapter 5), there are discrepancies between
the measured and predicted shear behaviors for the test walls considered in this work,

whereas in Reference 27 the predicted response of the overall structure correlated very

-12-



well with the observed one. These different results arise because in the latter case the
inelastic behavior of the tested structure was essentially flexural, while the shear
stiffness remained practically elastic.

Although in the studies reported herein attention is focused on the ASHM, the
above-mentioned discrepancies require that the use of the OOHM to represent the

stiffness properties of the horizontal spring be revised.

3.3 Stiffness Properties of the Model Elements

3.3.1 Truss Elements

The axial stiffness properties of the two outside truss elements {represented by the
stiffnesses K, and K, in Fig. 3.1a) were defined as for an independent column by
referring to the area of the boundary columns. As previously said, the hysteretic

behavior was simulated by using the ASHM.

3.3.2 Central Element Springs

(a) Vertical Spring

The axial stiffness properties of the central element (represented by the stiffness
K, in Fig. 3.1a) were determined by referring to the area of the central panel bounded
by the inner faces of the two boundary columns. The same rules adopted for the truss
elements were used to describe the hysteretic behavior of the vertical spring belonging

to the central element.

(b) Horizontal Spring

The shear resistance of the wall was provided by the horizontal spring in the

central element.

-13-



The value of the stiffness of the horizontal spring (K, in Fig. 3.1a) in the initial
elastic range represents the shear stiffness of the wall in this range, which was defined
as

K,=GA,/xh (3.3a)
in which
G = elastic shear modulus;
A, = area of the shear wall section (Fig. 3.5);
% = shape factor for shear deformation;

h = inter-story height.

The shape factor ) was calculated by the following formula proposed by Tomii and
Osaki [24]:

% = 3(1+w[1-vx(1-v)] / 4[1-u(1-v)] (3.3b)
in which u and v are the geometrical parameters shown in Fig. 3.5.

The shear cracking was assumed to occur at a shear force

V. =0438f"12 A, (f.’ in MPa) (3.4)
The ultimate shear resisting capacity was calculated by the empirical formula

proposed by Hirosawa [25]:

V. =[0.0679 po3 (£’+17.6) /(M /V L +0.12)» + 0.845(f_, p,)* + 0.15,1b,_j
(f’and £, in MPa) (3.5)
where
p, = effective tensile reinforcement ratio as a percentage = 100 A,/ b_ (L - a/2);
A_= area of longitudinal reinforcement in tension-side boundary column;
M / V L = shear-span-to-depth ratio;
p,, = effective horizontal wall reinforcement ratio=A__/b_s;
b, = average width of wall section;

s = spacing of horizontal wall reinforcement;

-14 -



G, = average stress over entire wall cross-section area;
i=(/18)L - a/2);

L, a = geometrical parameters (Fig. 3.5).

In Reference 27 the ratio ¢, of the stiffness after shear cracking to the initial elastic

stiffness K, was determined by the empirical formula:

o =014+046p,f,./1’ (3.6)

The stiffness after shear yielding was taken to be 0.1% of the initial elastic

stiffness K in order to account for some strain hardening.

(c) Rotational Spring

The stiffness properties of the rotational spring (represented by the stiffness K, in
Fig. 3.1a) were defined by referring to the wall area bounded by the inner faces of the
two boundary columns. Even though it is not completely clear how these properties
were defined, it seems that the displacement compatibility of the central panel with the
boundary columns was disregarded.

For the purpose of computing the wall rotation, the bending moment was assumed
to distribute uniformly along the story height with an amplitude equal to the moment at
the critical section of the wall.

Cracking would occur when the extreme fiber strain under the gravity load and
overturning moment became zero in its way to be a tensile strain. The yielding moment
was calculated as the moment about the centroid of the wall section caused by the
yielding of all vertical reinforcement, including also the gravity loading effect. The
stiffness after yielding was taken to be 0.1% of the initial elastic stiffness, assuming in
this way some strain hardening.

It should be noted that the assumption of these stiffness properties regardless of
the displacement compatibility results in a wrong evaluation of the flexural and axial
contributions of the central panel to the response of the entire wall. This is emphasized

in Figs. 3.6a and 3.6b, in which, respectively, the flexural moment around the central

~15-



axis and the axial force, both versus curvature, are shown for the entire wall and its
parts (boundary columns and central panel). All the curves refer to the section of a
framed wall tested by Vallenas et al. [4] (Specimen 3), which was subjected to a
constant axial force N, = 868 kN.

The analytical curves were obtained using the computer program UNCOLA [46].
In Fig. 3.6a the curve obtained for the central panel assumed isolated is shown together
with the curve corresponding to the entire wall as well as the curves obtained for the
boundary columns and the same central panel by satisfying the condition of displaceme-
nt compatibility. These last two curves were obtained on the basis of the same strain
profile associated with each of the values of the curvature that were considered by
analyzing the entire wall cross-section. The same procedure was used to calculate the
contributions of axial force which correspond to the boundary columns (N,) and central
panel {N,) according to the condition of displacement compatibility (Fig. 3.6b).

As shown in Fig. 3.6a, the flexural contribution of the central panel results in a
more marked softening effect when the condition of displacement compatibility is
satisfied. Under this last condition a decompression effect is observed for the central
panel, whereas it is subjected to a constant compression force if supposed isolated, that
is if the displacement compatibility with the boundary columns is disregarded (Fig.
3.6b).

In view of these results, the assumptions made by Kabeyasawa et al. about the
stiffness properties of the rotational spring seem questionable. In fact, in Reference 27
the OOHM described in Section 3.2.2 was adopted also for the rotational spring, thus
accounting for some strain hardening, and the axial force in the central panel was
assumed constant.

In order to overcome the above-mentioned limitations, in the following all the
properties of the rotational spring, unless differently specified, will be defined by a
moment-curvature analysis based on the displacement compatibility. The moment-cur-

vature relationship (M-y) so derived is idealized as a trilinear curve. As a consequence,

-16-



the skeleton curve of the rotational spring is also idealized as trilinear and the
moment-rotation (M-¢) relationship under cyclic loading is simulated by the OOHM
already presented in Section 3.2.2. As an example, in Fig. 3.7 the idealization of the
moment-curvature relationship is shown with reference to the central panel of Specimen
3, whose flexural response based on the condition of displacement compatibility has

been previously shown in Fig. 3.6a (see also APPENDIX A).

3.4 Proposed Axial-Stiffness Hysteresis Model

The behavior of a R C column under axial load reversals is not clearly understood.
Kabeyasawa et al. developed and tentatively used the ASHM described in Section 3.2.1,
the properties of which were defined by empirical laws and some assumptions based on
results from experimental tests.

In order to have a better understanding of the hysteretic behavior of the column
and reduce the empirical assumptions, the model shown in Fig. 3.8a is proposed and
incorporated in the selected wall model. The column member is idealized as two axial
elements in series: one element (i.e., element 1) is a one-component model to represent
as a whole the axial stiffness of the column segments in which the bond is still active,
while the other element (i.e., element 2) is a two-component model to represent the
axial stiffness of the remaining segments of steel and cracked concrete (i.e., components
(S) and (C), respectively) for which the bond has almost completely deteriorated.

The proposed model is capable of idealizing the main features of the actual
hysteretic behavior of the materials and their interaction: yielding, hardening and the
Bauschinger effect for the steel, cracking of the concrete and onset of contact stresses
during the closure of cracks, degradation of the bond between concrete and steel and so
on. Adequate constitutive laws should be used to idealize the actual behavior of the
steel and concrete, particularly the variation of the contact stress during the closure of

cracks. Moreover, a suitable law should be used for the dimensionless bond-degradation
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parameter A, which also defines the lengths of the two elements constituting the model
in order to simulate the tension-stiffening effect. Even though refined results can
- generally be attained by very sophisticated assumptions, above all it is desirable to
simplify the mathematical model to limit the cost of the numerical analysis.

To carry out a first check of the accuracy that can be achieved by the proposed
ASHM, very simple assumptions are made here which preserve, however, the essential
features of the above-mentioned observed phenomena. In particular, the constitutive
laws for the model components shown in Fig. 3.8a are simply taken to be as follows:
linearly elastic for the overall element 1; bilinear with the hardening slope depending on
the value r assumed for the steel-hardening ratio, and linearly elastic in compression
neglecting the tensile strength capacity of the concrete, respectively, for the components
S and C constituting the element 2.

According to the simplified assumptions just mentioned, the axial force-deforma-
tion relationship for the column member is of the kind shown in Fig. 3.8b, in which
typical states of the model (i.e., steel yielding in tension and compression, as well as
closure of the cracks) can be easily recognized on the basis of the idealized constitutive
laws. The stiffnesses in compression K_, in tension K| and after tensile yielding K, can

be expressed by the following equations, respectively:

K =(E A +EA)/h (3.72)
K.=1/{(1-Mh/(E A +EA) + *h/(E A)} (3.7b)
K,=1/{(1-\)h/(E,A,+E A) + Ah/(rE A)) (3.7¢)

in which r is the steel hardening ratio and the same value E_has been assumed for the
concrete modulus in compression and in tension,

From Eqgs. (3.7), once the value of the model stiffness in compression K_ is fixed,
the values of both the stiffness in tension K, and the stiffness after tensile yielding K|

can be adjusted by assuming for A and r suitable values to simulate the observed
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hysteretic behavior, In the following, even though this is questionable, the values of K|
and K, will be selected according to the corresponding values adopted by Kabeyasawa
et al. (K, = 0.90 K_; K, = 0.001 K) in order to check the reliability of the wall model.
However, in order to check the sensitivity of the response of the wall model to different
choices of these parameters a parametric study was conducted and the results are
presented in Chapter 5.

It is important to note that, even though the primary skeleton curve is the same for
both axial-stiffness hysteresis models shown in Figs. 3.2 and 3.8b, the hysteretic
behavior under cyclic loading is generally different. The ASHM in Fig. 3.2 contains
more rules than the simplified hysteresis model in Fig. 3.8b. Notwithstanding, the
model proposed here, besides being easily recognizable, is capable of many improve-
ments (i.e., more-refined constitutive laws for the model components based on the
observed hysteretic behavior of the materials, suitable laws to idealize the contact
effects due to the closure of cracks, calibration of the bond-degradation parameter A
according to experimentally observed tension-stiffening effects on the basis of a

suitable law for describing the degradation of the steel-concrete bond, etc.).
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CHAPTER 4

METHOD OF ANALYSIS

4.1 Wall Discretization and Elastic Stiffness Matrix

The wall is discretized as a set of wall members, one for each story. The generic
wall member is idealized by the wall model described in Chapter 3, modified by the
inclusion of the proposed ASHM,

The elastic stiffness matrix K, [6x6] of the generic wall member is formulated
with reference to the six displacement/load components at the center of the top and
bottom rigid beams (Fig. 3.1a). By assuming in general a finite rigid element of length
ch placed between the spring assembly of the central element and the lower rigid beam
(Fig. 3.1b), the matrix K, is defined by the following equation in terms of elastic

energy:

12uTK u, = 1/2 {(K+K+K,) (w_-w_ )+ [K°+(K1+K2) 244) (b- ¢, 2+
+4 (K{Kl) (Wm- Wm_l) (¢m' ¢m-1) + KH [Vm- vm.1+ (1—c)h¢m+ Chq)m.l]?'} (41)

where u, = {v_w_o_v_,w_ .0 .]7 is the displacement vector of the generic wall
member (Fig. 3.1a). The matrix K_so formulated is shown in Fig. 4.1.

The elastic stiffness matrix K, [3n x 3n] of the wall is hence obtained as an
assemblage of the stiffness contributions of the n wall members in which the wall has

been discretized.
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4.2 Equilibrium Equations and Iterative Solution Process

The analytical response of the wall is evaluated by an incremental step-by-step
procedure. At each step of the analysis, once the initial conditions and the increment of
the load vector p [3n x 1] are known, the state of strain and stress at the step end is
obtained by the initial stress-like iterative procedure shown in Fig. 4.2.

On the basis of a trial displacement vector u,® {3n x 1] for the discretized wall at
the end of the step, the stress state in the generic spring constituting the wall element
can be calculated. This can be accomplished in an explicit way for the horizontal and
rotational springs, while an iterative procedure is generally needed for the truss
elements and central vertical spring, for which the hysteretic behavior is described by
the proposed two-element-in series model described in Section 3.4.

This iterative procedure is needed in order to satisfy the following incremental

equations, which express displacement compatibility and equilibrium, respectively:

AD = AD, + AD, (4.22)

AF, (AD) = AF,(AD)) = AF (4.2b)

where the subscripts 1 and 2 refer, respectively, to the two elements in series
constituting the axial model. However, the iterative procedure, which is described in
detail in Fig. 4.3, is not necessary before cracking occurs (A=0) or if the stiffening
effect is negligible (A=1).

Finally, once the stress state of each spring is known, the vector sfu®] [3n x 1],
which represents the structural reaction corresponding to the trial displacement vector at
the end of the step, can be calculated. In order to find the displacement vector u, such
that the corresponding vector s[u,] satisfies the equilibrium equations, the following

iterative scheme is used:
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r® = s[u®] - p, (4.3a)

n®h = u1® -Hrw (4,3b)

where the index k refers to the generic iteration loop and H is a suitable iteration matrix,
The iterative process is stopped when an appropriate measure of the residual vector r®
becomes less than a prefixed tolerance.

As shown in Reference 47, the convergence of the iterative process (4.3) is
ensured under very broad hypotheses on the mechanical behavior of the structure if the

iteration matrix is taken as

H={1-DK,+{K])* , 0<{<05 (4.3)

where K, is 2 maximizing stiffness matrix (e.g., the elastic stiffness matrix K, if the
behavior is elastic-perfectly plastic) and K, a generic tangent stiffness matrix of the
discretized structure.

The procedure just described has been coded as a computer program for the
nonlinear analysis of R C structural walls. The flow chart of this computer program,
which is organized by subroutines (INPUT, LOADS, ASSEM, SOLVE , STRUCT,
OUTPUT) to perform different operations, is shown in Fig. 4.4.
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CHAPTER 5

NUMERICAL STUDIES

5.1 General

In order to check the effectiveness and the reliability of the R C wall model
obtained by incorporating in the wall model presented in Reference 27 the ASHM
proposed in this report (Section 3.4), a numerical investigation was carried out using the
computer program presented in Section 4.2. Parametric studies were also performed to
evaluate the sensitivity of the response of such a wall model to the characteristic
parameters involved in the analysis. For these purposes isolated R C structural walls
previously tested at the Earthquake Engineering Research Center of the University of
California at Berkeley provided the experimental results and are referred to as the test
structures.

After a description of these test structures and their modeling, the analytical
results obtained for the wall model will be compared with the experimental ones.

Lastly, the results of the parametric study will be presented.

5.2 Description of the Test Structures

The four 1/3-scale test specimens, previously tested at the University of California
at Berkeley by Vallenas et al. [4], were intended to idealize the three lower stories of

both a framed wall (Specimens 3 and 4, Fig, 5.1a) and rectangular wall (Specimens 5
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and 6, Fig. 5.1b) designed, respectively, for the ten-story and seven-story prototype
buildings shown in Figs. 5.2a and 5.2b, respectively. These buildings were designed in
such a way that earthquake ground motions could induce high shear stresses of the same
magnitude in both kinds of wall.

Detailed wall cross-sections and loading patterns of the specimens are shown in
Figs. 5.3 and 5.4, respectively. As it can be observed in Fig. 5.4, the axial force and
moment-to-shear ratio (M/V) were assumed constant for each of the specimens.
Specimens 3 and 5 were subjected to a monotonic loading, while Specimens 4 and 6

were subjected to a cyclic loading.

5.3 Modeling of the Test Structures

The test walls were modeled by idealizing each wall story as the wall member
model in Fig. 3.la. The structural models so obtained are shown in Fig. 5.5a for
Specimens 3 and 4, and in Fig. 5.5b for Specimens 5 and 6. The stiffness properties of
the model elements were based on the mechanical properties of the materials reported
for the test walls at the time of testing in Reference 4 and are summarized in Table 5.1
and Table 5.2, respectively, for Specimen 3 (4) and Specimen 5 (6). Typical constitutive
curves of the steel and concrete (unconfined and confined) are shown in Fig. 5.6a and
Fig. 5.6b, respectively. Details of the stiffness properties of the model elements are

shown in APPENDIX A for Specimen 3 (4) and in APPENDIX B for Specimen 5 (6).
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5.4 Comparison of Experimental and Analytical Curves

5.4.1 Monotonic Loading (Specimens 3 and 5)

Experimental and computed responses are shown in Figs. 5.7 and 5.8, respective-
ly, for the framed wall (Specimen 3) and rectangular wall (Specimen 5) subjected to
monotonic loading.

With reference to Figs. 5.7a and 5.8a, it should be noted that the analytical model
does not account for the fixed end deformation caused by slippage of the longitudinal
reinforcement along its embedment in the foundation. Even though this kind of

deformation (9, ) contributed only a minor portion to the total displacement &, at

fixed end

the third floor (as reported in Reference 4), it has been subtracted from the total

displacement (8, = 6, - d =8, pwa ¥ O, ... ) 10 make the experimental and

3 fixed end
analytical curves shown in Figs 5.7a and 5.8a comparable.

The correlation of experimental and analytical curves is apparently good for plots
of base shear V versus the net top displacement 8,” (Figs. 5.7a and 5.8a) as well as

versus the flexural displacement 3, , , (Figs. 5.7b and 5.8b) or the shear displacement

3 flexur.
O, oo (Figs. 5.7c and 5.8c) at the third floor. However, it must be noted that, because of
the flattening of these curves near the maximum strength, it is very difficult to correlate
the flexural and shear displacement components of the analytical model and the
corresponding measured ones. A parametric study, the results of which are presented in
Section 5.5, pointed out that the values of these displacement components given by the
analytical model proved to be very sensitive to the choice of several parameters (e.g.,
bond degradation parameter A, steel hardening ratio r, yield shear V, assumed for the
horizontal spring, etc.). Therefore, caution is recommended in assuming the computed
displacement components as a correct prediction of the measured displacement

components, particularly when high shear stresses are expected, as was the case for the

test walls considered in these studies.
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5.4.2 Cyclic Loading (Specimens 4 and 6)

In Fig. 5.9 analytical and experimental results for both the flexural and shear
displacement components of the framed wall under cyclic loading (Specimen 4) are
separately shown. The analytical results have been obtained as follows: for any value of
+ 08
cycles of the loading program adopted for Specimen 4 (i.e., LP 0, 46,48, 58, 60, 70, 72,

the measured net top displacement (3,” = & » e ) drawn in the characteristic

3 Roxural
82, 84), it is assumed that the analytical model will give the same value of this
displacement and therefore the base shear required to produce this value is computed.

Analogous results for the rectangular wall under cyclic loading (Specimen 6 ; LP
0, 149, 180, 255, 280, 372, 392, 532, 560) are shown in Fig. 5.10.

While for Specimen 4 (Fig. 5.9) the ahalytical model underestimates the shear
deformations (and overestimates the flexural ones) in comparison with the measured
ones, a better prediction of the two displacement components is observed in Fig. 5.10
for Specimen 6. However, as already said, such prediction depends on the choice of
several parameters. For instance, for Specimen 4, a good prediction of both the shear
and flexural displacement components is obtained by simply assuming fof K, a suitable
value greater than the adopted value (0.001 K).

In particular, the results shown in Fig, 5.10, besides showing the inadequacy of the
OOHM to idealize the measured hysteretic shear behavior accurately, show a satisfacto-
ry correlation for the measured and analytical responses due to flexural deformations. It
should be noted that the flexural response idealized by the wall model essentially
depends on the assumptions adopted for the proposed ASHM.

In order to have an idea of the kind of response obtained by adopting the proposed
ASHM, the responses of the two outside truss elements and the central vertical spring,
all corresponding to the first story of the model of Specimen 6 in Fig. 5.5b, are shown in
Fig. 5.11. It is interesting to observe that, with reference to the generic cycle of loading
in Fig. 5.10 (for example, the loading cycle 1-2-1), while the response of both the

outside truss elements describes one loading cycle (for example, the loading cycle 1-2-1
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in Figs. 5.11a, b), the response point of the central vertical spring moves twice in each
of the directions of loading (as, for example, in the loading process 1, 1°, 2,2’, 1 in Fig.
5.11c). Furthermore, the initial deformation of the central vertical spring, corresponding
to a shortening, is no longer attained during the loading cycles following the tensile
yielding of the same spring. Indeed, the minimum displacement progressively attained
during these loading cycles corresponds to a growing elongation of the centroidal axis
of the wall.

In spite of the simplified assumptions adopted in these studies for the proposed
ASHM (which, as mentioned in Section 3.4, is certainly capable of improvement), the
flexural response idealized by the wall model compares satisfactorily with that obtained
by the use of more sophisticated models.

To emphasize this last assertion, in Fig. 5.12 the flexural response obtained for
Specimen 4 by adopting the wall model considered in these studies is compared with
the two curves reported in Reference 4, which were obtained experimentally and by
using the ASNR-I computer program, both with reference to a loading cycle corre-
sponding to the range + 20 mm of the flexural displacement at the third level.

Even though the simplified wall model considered in these studies provides a
description of the measured flexural response slightly less accurate than that obtained
by the detailed finite element solution (ANSR-I) reported in Reference 4, the
advantages arising from the use of the former model are obvious, particularly in terms
of computational effort. However, it should be noted that neither of the analytical
models accounts for the resistance degradation that Specimen 4 suffered because of

previous loading cycles.
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5.5 Parametric Studies

As mentioned in the previous section, for a given value of the net top displaceme-
nt as well as of the flexural or shear displacement component, there is a good
correlation betweeen the experimental and analytical values of the shear strength. On
the other hand, for a given value of shear strength close to the maximum shear strength
of the wall, the prediction by the wall model of the measured flexural and shear
displacement components has been very difficult, because of the flattening of the
experimental and analytical curves (Figs. 5.7 and 5.8).

In order to check the sensitivity of these two analytical displacement components
to different parameters involved in the analysis, a parametric study was carried out with
reference to Specimen 3.

Measured and analytical displacement components are compared in Figs. 5.13a
and 5.13b, which refer, respectively, to the third and first floor levels. The analytical
displacement components have been obtained by assuming different values of the
parameters ¢ and V. It can be observed that the analytical displacement components
corresponding to the same data on which the results discussed in Section 5.4 are based
(in particular, ¢ = 0 and V,_ = 1101 kN for all the stories) provide, in comparison with
the measured displacement components, an overestimation of the flexural displacement
and an underestimation of the shear displacement.

As shown in Fig. 5.13b, a good correlation of experimental and analytical curves
referring to the first level is obtained by simply assuming for ¢ and V suitable values
(c=0.20 and Vy = 1101 kN for all the stories). However, for these same values of ¢ and
V, the correlation of the curves corresponding to the third floor level is not satisfactory
(Fig. 5.13a).

As shown in Fig, 5.13a, a satisfactory correlation of the displacement components
at the third floor level is obtained by assuming ¢ = 0.20 and different values of V, for
each story, depending on the corresponding value of the ratio M / V L (see APPENDIX

A). However, for these new values of V, the analytical wall model overestimates the net
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displacement (8,” = 6, ... + 0, n.a ) and, particularly, the shear displacement component
at the first floor level (Fig. 5.13b). This last effect is produced by a concentration of
post-yielding shear deformations at the first story, because of the fact that the external

shear is constant along the story height (Fig. 5.4a), while the minimum value of the

yielding shear is just that corresponding to the first story (V, = 1101 kNN). On the other

hand, if the V, value is assumed the same for all the stories, as in the two cases

previously discussed, the shear deformations are uniformly distributed among the three

stories.

- The results in Fig. 5.13 discussed above give some idea of the difficulty of
predicting by the adopted wall model the shear and flexural displacement components at
each floor for a given value of the shear, when this value is close to the maximum shear
strength. At the same time they show the need for carrying out an extensive parametric
study in order to check the sensitivity of the displacement components to different
parameters.

As can be observed in Fig. 5.14, the displacement components at the first floor are
very sensitive to the choice of the parameter c. Subsequent to the yielding of the truss
element in tension, depending on the choice of ¢, the occurrence of yielding in the
central vertical spring (when ¢ =0 and ¢ =0.20) and in the horizontal spring ( when
¢ = 030 and ¢ = 0.50) gives rise to a sudden increase of the flexural or shear
displacement component, respectively. For example, for ¢ = 0 the flexural displacement
is overestimated and the shear displacement underestimated, while the opposite hap-
pens for ¢ = 0.5. This last value of ¢, because of the trapezoidal curvature distribution
along the height of the first story of Specimen 3, can be considered an upper bound for
c.

As previously shown in Fig. 3.7, if the condition of displacement compatibility
between boundary columns and central panel is satisfied, the flexural response of the
central panel results in a softening effect for large deformations, while in Reference 27

a hardening effect is simulated by the OOHM after yielding of the rotational spring. On
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the basis of a trilinear idealization of the skeleton curve of the rotational spring, the
sensitivity of the displacement components to different choices of the softening ratio p,
were studied. As shown in Fig. 5.15, the softening deformations of the rotational spring
can considerably affect the displacement components, in spite of the fact that the
flexural contribution of the central panel is relatively small in comparison with that
provided by the boundary columns (Fig, 3.6a): the larger the absolute value of p, , the
larger the flexural deformations (the smaller the shear deformations). It should be noted
that, when a negative value of p, is selected, a problem arises with the convergence of
the iterative procedure described in Section 4.2 if the corresponding tangent stiffness
matrix is not positive definite (see Reference 47). In order to avoid this problem, the
(positive) value of r selected for the axial-stiffness elements of the wall model should be
large enough to compensate the effect of the negative value of p,. For this reason all the
analytical results shown in Fig. 5.15 have been obtained by assuming the value r =
0.001, greater than the values specified in APPENDIX A for the outside truss elements
and the central vertical spring.

The sensitivity to the bond-degradation parameter A and the steel hardening ratio r,
which affect the stiffness of the two outside truss elements and the central vertical
spring was also studied.

The results obtained by assuming different values of A for the two outside truss
elements are shown in Figs. 5.16 and 5.17, which correspond, respectively, to the values
p, = 0 and p, = - (.03 of the softening ratio. All the curves have been obtained by
assuming the value r = 0.001 for the steel hardening ratio.

A comparison of the curves in Figs. 5.16 and 5.17 shows that, while for P, = 0 the
sensitivity to the A value selected for the two outside truss elements is less evident, for
p, = - 0.03 the displacement components are very sensitive even to small variations of A.
Analogous results, which are omitted for the sake of brevity, have been obtained by

assuming different values of A only for the central vertical spring.
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As shown in Fig. 5.18 for the case of p, = - 0.03, the displacement components are
very sensitive to the choice of the r value selected for the outside truss elements and the
central vertical spring. It is interesting to note that, the greater the r value, the smaller
the flexural displacement at both the third floor (Fig. 5.18a) and first floor (Fig. 5.18b),
but the greater the net displacement at the first floor (8,” = 8, ., + 9, g » Fig- 5.18b).

This last effect is due to the fact that the results shown in Fig. 5.18 have been
obtained by assuming different values of V| at each story (see APPENDIX A). As said
above with reference to Figs. 5.13, the assumption of the minimum value of V_ for the
first story of the wall model causes a concentration of post-yielding deformations at this
story. Thus, for greater values of r, while the first-floor flexural deformation decreases,
the first-floor shear deformation increases because of the greater value of the shear
which has to be developed in order to obtain by the wall model the same value of the
net top displacement at the third floor 8, attained for smaller values of r. The same
effect is observed in Figs. 5.15b, 5.16b and 5.17b, which show results based on the
same assumption about the V, value.

All the above results show the difficulty of controlling the flexural and shear
displacement components by the wall model. Further difficulties arise in selecting
suitable values of the parameters in order to obtain an accurate description of the
flexural and shear response. Because of the inadequacy of the OOHM to simulate the
shear behavior under high shear stresses, as pointed out in Section 5.4, attention is
focused on the flexural response.

The results shown in Fig. 5.19b refer to the flexural response of a wall member of
unit height under a uniform distribution of flexural moment. The results obtained from
the UNCOLA analysis, previously shown in Fig. 3.6a, by referring to the response of
the boundary columns and central panel under displacement compatibility, are com-
pared with those obtained for the truss elements and rotational spring of the modified
wall model, whose stiffness properties were based on the data reported in APPENDIX

A, except r = 0.001. In order to compare the results corresponding to the UNCOLA
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analysis with those obtained by the modified wall model for ¢ = 0, the wail model
results have been plotted assuming an abscissa scale which is twice the abscissa scale
corresponding to the UNCOLA results. In this manner the results of the UNCOLA
analysis and those obtained by the modified wall model give the same horizontal
displacement for the wall member under consideration (Fig. 5.19a).

The sensitivity of the flexural response of the wall model to the choice of the A
value assumed for the two outside truss elements is now studied. As shown in Fig.
5.19a, the flexural response of the central panel based on the UNCOLA analysis is well
described by adopting the trilinear idealization for the skeleton curve of the rotational
spring, whose response does not depend on the value of A . The flexural contribution of
the two outside truss elements of the wall model is almost unaffected by different
choices of A in the range of wall model rotations less than the rotation corresponding to
the yielding point of the central vertical spring. While this yielding point is practically
the same for all the curves corresponding to different values of A, the slope of these
curves after the vielding of the central vertical spring depends on the value assumed for
A.

All the curves representing the flexural response of the two outside truss elements
of the wall model give, before yielding of the truss element in tension, a good
description of the curve obtained by the UNCOLA analysis for the flexural response of
the boundary columns, although the former curves provide an overestimation of the
curve obtained by the UNCOLA analysis for larger deformations. This result can be
explained if we observe that the UNCOLA analysis is based on a fiber model of the
wall cross-section, which gives a refined description of the progressive steel yielding in
the central panel, whereas the flexural response of the two outside truss elements
exhibits sudden changes of stiffness due to the yielding of the truss element in tension
and then to the yielding of the central vertical spring. The presence of this last spring
produces strengthening and stiffening effects which are particularly important before its

yielding,
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In order to reduce these strengthening and stiffening effects and obtain a better
correlation between the results obtained by the UNCOLA analysis and the wall model,
the yielding strength of the central vertical spring was adjusted in a fictitious way (it
was reduced to the value Fy = 475 kN, against the actual value Fy = 803.088 kN
calculated in APPENDIX A). Nonetheless, this fictitious choice of Fy for the central
vertical spring results in a better correlation of the results obtained by the UNCOLA
analysis (based on displacement compatibility) and the adopted wall model also in
terms of axial forces in the boundary columns and the central panel (Fig. 5.19¢).

The results shown in Fig. 5.19 suggest that, in order to improve the description of
the flexural response by the wall model, it is desirable to modify this model in order to
have a more gradual description of the progressive steel yielding in the central panel.
For instance, the LINK Model proposed in Reference 22 pursues this objective, at least

with reference to the base of the wall.
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CHAPTER 6

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

6.1 Summary

The primary objective of the studies reported herein was to select among different
models available in literature a relatively simple and reasonably accurate wall model,
suitable for incorporation in a practical nonlinear analysis of R C multistory structural
systems that use shear walls.

For this purpose models based on a macroscopic approach are more suitable than
models based on a microscopic approach, which require a larger storage and are very
time-consuming, In Chapter 2, after discussing features and limitations of the models
available in the literature, attention is focused on the Three-Vertical-Line-Element
Model recently proposed by Kabeyasawa et al. {27]. This model was selected because,
although relatively simple, it incorporates the main features of the experimentally
observed behavior of R C structural walls (i.e., migration of the neutral axis of the wall
cross-section, rocking of the wall, etc.). The model describes flexural and shear
deformations of the wall, while the deformation produced by the fixed end rotation due
to the slippage of the longitudinal reinforcement embedded in the foundation is not
accounted for. The model can simulate flexural as well as sliding shear modes of
failure, but cannot simulate web crushing-splitting mode of failure, as is the case for all

the models based on a macroscopic approach.
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Chapter 3 gives details about the original wall model proposed by Kabeyasawa et
al. as well as about how the hysteresis models and stiffness properties of the elements
constituting this model were modified in the studies reported herein.

The axial hysteretic behavior of the elements constituting the modified wall model
is described by a two-element-in-series model, which is proposed in this report to
idealize the hysteretic behavior of a R C column member under axial load reversals.
The proposed Axial-Stiffness-Hysteresis Model takes advantage of the fact that its
mechanical properties are conceptually based on the actual hysteretic behavior of the
materials and their interaction, in such a way that the actual tension-stiffening effect can
be described. In defining the mechanical properties of the two elements in series
constituting this proposed model some simplifying assumptions are made.

Regarding the rotational and horizontal springs, which respectively describe the
flexural behavior of the central panel and the shear behavior of the wall, the
force-deformation relationship is based on an Origin-Oriented Hysteresis Model which
is the same as adopted in Reference 27.

In order to check the effectiveness and the reliability of the wall model so derived
a numerical investigation was carried out by assuming as test walls a group of R C
structural walls previously tested by Vallenas et al. [4]. For this purpose a computer
program, based on the numerical procedure described in Chapter 4, was developed.

In Chapter 5, after the description of the test walls and their modeling, the results
of the numerical investigation are presented and discussed.

Under monotonic loading the modified wall model predicts the measured shear
satisfactorily if the analytical and experimental results are compared for the same value
of the flexural or the shear displacement. If the same kind of comparison is made under
cyclic loading, the measured flexural response is still predicted with satisfactory

accuracy by the modified wall model. On the contrary, the measured shear response is
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not adequately described by the modified wall model under cyclic loading because of
the inadequacy of the Origin-Oriented Hysteresis Model to simulate the shear hys-
teretic behavior under high shear stresses.

Furthermore, as a parametric study showed, under high shear stresses the
description of the measured flexural and shear displacement components by the
modified wall model is very difficult and very sensitive to the choice of many

parameters.

6.2 Conclusions
The studies conducted herein allow the following conclusions to be drawn.

(1) The Three-Vertical-Line-Element Model proposed in Reference 27 is relatively
simple and, therefore, it can be efficiently incorporated in the analysis of complex

multistory R C structural systems that use shear walls.

(2) The Three-Vertical-Line-Element Model is capable of simulating many important
features of the experimental measured behavior (i.e., migration of the neutral axis
of the wall cross-section , rocking effect, flexural and shear modes of failure, etc.).
However, as in the case of all the models based on a macroscopic approach, the

web splitting-crushing mode of failure is not simulated.

(3) The two-element-in-series model proposed in this report in order to simulate the
hysteretic behavior of a R C column member under axial load reversals allows a
physical interpretation of this behavior, based on the actual mechanical properties

of the materials and their interaction.

(4) Under monotonic loading the modified Three-Vertical-Line-Element Model, ob-
tained after incorporating the proposed two-element-in-series model to simulate the
axial hysteretic behavior of the line elements constituting the wall model, provides

a satisfactory prediction of the measured shear if the same value of the measured
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flexural or shear deformation is assumed for this wall model. On the other hand, for
a given value of shear force near the maximum shear strength, it becomes very
difficult to predict the measured displacement accurately, because of the flattening
of the curves representing the relationship between the shear and the flexural

deformation as well as between the shear and the shear deformation,

(5) Under cyclic loading the modified Three-Vertical-Line -Element Model provides a
satisfactory simulation of the flexural hysteretic behavior if the same value of the
flexural displacement is assumed to compare analytical and experimental results.
The measured shear response, however, is not adequately described by the
modified wall model, because of the inadequacy of the Origin-Oriented-Hysteresis
Model to describe the shear hysteretic behavior for high shear stresses, as was the

case for the test walls considered in these studies,

6.3 Recommendations for Future Research

Even though the Three-Vertical-Line-Element Model proved to be effective and
reasonably accurate in simulating the hysteretic flexural behavior of the wall, further

improvements could be introduced by pursuing the following studies.

(1) A more refined description of the flexural behavior of the wall could be obtained

from one or both the following approaches:

(a) More refined (yet relatively simple) laws, based on the actual behavior of the
materials and their interaction, should be used to describe the response of the two

elements in series constituting the proposed Axial-Stiffness Hysteresis Model.

(b) The geometry of the wall model should be modified on the basis of a
multi-axial-spring-in-parallel model (like the LINKS model adopted in Reference
22) in order to gradually account for the progressive yielding of the steel in the

central panel.
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(2) Hysteresis models, more refined than the Origin-Oriented Hysteresis Model, should

be used to simulate the shear behavior of the wall when high shear stresses are

expected.

(3) Particularly under high shear stresses, the flexural and shear displacement compo-

nents of the wall should be evalnated by relating in some way the flexural and shear
responses of the wall model, which at present are independently described by the
wall model - apart from satisfying the equilibrium condition. The wall model
should also be capable of accounting for variation of shear stiffness due to changes

of the axial and/or flexural strengths.

(4) Deformations produced by the fixed end rotation due to slippage of the longitudinal

)

reinforcement embedded in the foundation should be incorporated in the wall

model.

Further efforts should be devoted to developing models based in part on a
microscopic approach, which would be capable of simulating the web splitting-cru-
shing mode of failure, but would, at the same time, be relatively simple in order to
carry out the analysis in reasonable computational time. This could be achieved by
using more detailed models for those regions of the wall for which the above mode
of failure is expected (i.e., the regions at the base of R C structural walls, which are

part of multistory frame-wall structural systems).

(6) A better calibration of the parameters affecting the response of the wall model is

needed in order to improve the prediction of the measured hysteretic behavior.
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APPENDIX A

STIFFNESS PROPERTIES OF THE ELEMENTS
CONSTITUTING THE MODEL OF SPECIMENS 3 AND 4

QOutside Truss Elements

A, (846) = 8 x 281 = 2248 mmy

A, =254 x 254 - 2248 = 62268 mm
F, = 2248 x 0.444 = 998.112 kN

E, A =211.4x 2248 =475227.2 kN
E, A =22.5 x 62268 = 1401030.0 kN

By assuming K /K_= 0.90 and K, /K_= 0.001, as well as in Reference 27, the values
of the bond-degradation parameter A and the stecl-hardening ratio r can be adjusted on
the basis of Egs. (3.7) :

A=(K/K-1)EA/EA =
=(1/0.90 - 1) 475227.2 / 1401030 = 0.0376

r=(1+E A/E A)/[1+(K/K,-1)/A]=
= (1 + 1401030/ 475227.2) / (1 + 999 / 0.0376) = 0.000148

Central Element Springs

(a) Vertical Spring

A, (#2 at 76 mm) =2 x 25 x 31.67 = 1584 mm?
A, = 1880 x 102 - 1584 = 190176 mm?



F,=1584 x 0.507 = 803.088 kN

E, A, =211.0x 1584 = 334224 kN

E, A_=22.5x 190176 = 4278960 kN

A =(1/0.90 - 1) 334224 / 4278960 = 0.0087

r= (1 + 4278960 / 334224) / (1 + 999 / 0.0087) = 0.000120

(b) Horizontal Spring

A, = (2388 -254) x 102 =217668 mm?
G=E/[2(1+W)] =22.5/12 (1 +0.2)] = 9.375 kN/mm?
v =1880/2388 ; v =102/254

The shape factor, according to Eqg. (3.3b), is 3 = 1.191.

f’ =34.8 MPa
f, =507 MPa
p, = 100 x 2248 /[134.335 x (2388 - 254/2)] = 0.740127
P = 2 % 31,67 / (134,335 x 76) = 0.00620405
o, =2 x 434000 / (254*+ 1880 x 102) = 2.7058 MPa
b, =(2x 2542 + 1880 x 102) / 2388 = 134.335 mm
j="7/8 (2388 - 254/2) = 1978.375 mm
M/V L =(0.644x2134 + 3009) / 2388 = 1.835 (first floor)
M/V L =(0.644x2134 + 1828) / 2388 = 1.341 (second floor)
M/V L =(0.644x2134 + 914) /2388 =0.958 (third floor)
Therefore, the skeleton curve is defined by the following parameters:
K, =9.375x 217668 /(1.191 x 1181) = 1450.79 kN/mm (first story)
K, =9.375x 217668 / (1.191 x 914) = 1874.60 kN /mm (second and third stories)
o, =0.14 +0.46 x 0.00621 x 507/ 34.8 =0.18
V. =0.438 x 34,872 x 217668 = 562417 N = 562 kN
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The yielding shear V is assumed practically equal to the ultimate shear V,, which is
calculated according to Eq. (3.5) *:

V, =V, =1101 kN (first story)

V, =V, = 1200 kN (second story)

V, =V, =1320 kKN (third story)

(c) Rotational Spring

The stiffness properties of the rotational spring, based on displacement compatibilty
between the boundary columns and the central panel, are defined by referring to the
following parameters, which have been determined in order to idealize as a softening
trilinear curve the moment-curvature (M-y) relationship determined for the central
panel by the UNCOLA analysis [46] (Fig. 3.7):

M, = 200000 kN mm ;  Y.=15x10" rad/ mm
M, = 520000 kN mm ; W,=L15x10° rad/ mm
p,=-0.03 **

EI =M_/wy, =200000/1.5x107=1.34x10 kN mm?

Therefore, based on the deformation of the wall member under a uniform distribu-
tion of flexural moment, as well as in Reference 27, the initial elastic stiffness of the
rotational spring isin general for0 <c < 1:

K,=2(1-0)EIl /h

In particular, for ¢ = 0, as assumed in Reference 27 :

K, =2 x 1.34x10%2/ 1181 = 2.27x10° kN mm /rad (first story)

K, =2x1.34x10%2/914 = 2.93x10°* kN mm /rad  (second and third stories)

* In Ref. [27] the same V_ value which was calculated with reference to the first story
was assumed for all the stories. All the results presented in Section 5.4 are based on this
assumption, just to check the reliability of the wall model.

** In Ref. [27] the slope of the third branch was assumed as p, = p, = + 0.001. All the
results presented in Section 5.4 are based on this assumption, just to check the reliability
of the wall model.
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The ratio of the stiffness of the second and third branches of the skeleton curve of the

rotational spring to the initial elastic stiffness calculated above are, respectively,

a,= o, = (M, - M) /[y, -y)EL]=
= (520000 - 200000) / [(1.5- 0.15)10x 1.34x102]=0.17 (all stories)

p,=p,=-0.03 (p,=+0.001, after Kabeyasawa et al. {27])
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APPENDIX B

STIFFNESS PROPERTIES OF THE ELEMENTS
CONSTITUTING THE MODEL OF SPECIMENS 5 AND 6

QOutside Truss Elements

A (O#35) =9 x 198 = 1782 mm?

A =279x 114 - 1782 = 30024 mm?

F, =1782 x 0.482 = 858.924 kN

E A =216x 1782 =384912 kN

E A =22.1x30024 = 663530.4 kN

A=(1/090-1) 384912 /663530.4 = 0.0645
r=(1+663530.4/384912) /(1 + 999 /0.0645) = 0.000176

Central Element Springs

(a) Vertical Spring

A (#2at 102 mm)=2x 19 x 31.67 = 1203 mm?

A =1854x 114 - 1203 = 210153 mm?

F =1203 x 0.507 = 609.921 kN

E A, =211x1203 =253930 kN

E A, =22.1x 210153 =4644371 kN
A=(17/0.90-1)253930 /4644371 = 0.00607
r=(1+4644371/253930) /(1 + 999/ 0.00607) = 0.000117
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(b) Horizontal Spring
A, =(2412-279) x 114 = 243162 mm?

G=221/[2(1 +0.2)] =9.208 kN /mm?

u=1854/2412 ; v=114/114=1

The shape factor, according to Eq. 3.3b, is = 1.326
f’ =33.47 MPa

f, =507 MPa

p,=100x 1782 /[114 x (2412 - 279 / 2)] = 0.687858

P, =2 x31.67/(114 x 102) = 0.0054472

c,=2x%299000 /(2412 x 114) = 2.1748 MPa

b, =114 mm

j=7/8 (2412 - 279/2) = 1988.438 mm

M/V L =(0.522x2134 + 0.799x3009 + 0.104x2095 + 0.097x1181) / 2412 =
=1.595 (first floor)

M/V L =(0.522x2134 + 0.799x1828 + 0,104x914) / 2412 = 1.107 (second floor)

M/V L =(0.522x2134 + 0.799x914) / 2412 = 0.764 (third floor)

K =9.208 x 243162/ (1.326 x 1181) = 1429.77 kN /mm (first story)

K, =9.208 x 243162/ (1.326 x 914) = 1847.44 kN /mm (second and third stories)
o, =0.14 + 0.46 x 0.0054472 x 507 / 33.47 = 0.178

V. =0.438 x 33.472 x 243162 = 616166 N = 616 kN

V,=V = 918 kN  (first story)

V =V, =1018 kN (second story)

V, =V, =1134 kN {third story)

(c) Rotational Spring

M, = 127000 kN mm ; Y, =009x107 rad/ mm
M, = 590000 kN mm ; Wy, = 1.5x10¢ rad / mm
p,=-0.03
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EI =127000/0.9x107= 1.41x102 kN mm?

K,=2x1.41x102/1181 =2.39x10° kN mm/rad (first story)

K,=2x 1.41x102/ 914 =3.09x10®° kN mm/rad (second and third stories)

o, = o, = (590000 - 127000) / [(1.5 - 0.09)x10¢x 1.41x102] =023  (all stories)
p,=p,=-0.003 (p,=+0.001, after Kabeyasawa et al. [27])
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Table 5.1 - Mechanical Characteristics of Materials (Specimens 3 and 4 [4])

(a) STEEL PROPERTIES (See Fig. 5.6a)

Bar Area| E f f €y £

t] y u

Reinforcement
(mm?) | (MPa) | (MPa) | (MPa)

Longitudinal (#6) [ 281.00 (211400 444 639 10.012 |0.150
Boundary

Columns | Transverse 16.28 190000 | 440 479 === {(0.180
(gage No. 7 wire)

Central Horizontal and 31.67 1211000} 507 730 0.01 0.12
Panel Vertical (#2)

{b) CONCRETE PROPERTIES AT TIME OF TESTING (See Fig. 5.6b)

f’ (average) =(352+35.4+33.8)/3=34.8 MPa *
E, (average) = 46000 £’ 2 (psi) = 3820 f’ 2 (MPa) = 3820 x 34.82 =22500 MPa

Unconfined Concrete :
g, = 0.003
g’ =001

Confined Concrete :
k=12
g, = 0.009
£, =0.053
g, =0.065
Units :

1 psi = 6.895x102 Mpa
lin =254 mm

* This value has been calculated as an average of the values corresponding to the three
stories of Specimen 3. The same value has been adopted also for Specimen 4, because
the difference is practically negligible.



Table 5.2 - Mechanical Characteristics of Materials (Specimens 5 and 6 [4])

(a) STEEL PROPERTIES (See Fig. 5.6a)

Bar Area| E, f, f, Egy £,
Reinforcement
(mm?) | (MPa) | (MPa) | (MPa)
Longitudinal (#5) { 198.00 |[216000| 482 687 0.013 | 0.148
Boundary
Columns | Transverse 16.28 190000 | 440 479 === | (.180
(gage No. 7 wire)
Central Horizontal and 31.67 {211000}) 507 730 0.01 0.12
Panel Vertical (#2)

(b) CONCRETE PROPERTIES AT TIME OF TESTING (See Fig. 5.6b)

f’ (average) = (34.5 +33.5+32.4) /3 =33.47 MPa *
E_(average) = 46000 £’ 12 (psi) = 3820 f 12 (MPa) = 3820 x 33.4712 =22100 Mpa

Unconfined Concrete :

g, =0.003
g’ =0.01

Confined Concrete :

k=1.2

g, = 0.009
£, = 0.053
g, = 0.065

Units :

1 psi = 6.895x10* MPa
1in =254 mm

stories of Specimen 5. The same value has been adopted also for Specimen 6, because
the difference is practically negligible.
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(a) Wall Member Model (b) Relationship Between Relative Flexural
Displacement and Relative Rotation
Fig. 3.1 - R C Wall Model
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“P(D,F)

Y’ (2D,,-2F) — K, =K. (D,/D,)"

ye?

D =D +B(D,-D,)

Fig. 3.2 - Axial-Stiffness Hysteresis Model Proposed by Kabeyasawa et al. [27]
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" K/K +D_/D,

Y (2D, -2F)

() Limit Value ( K, _) of the Unloading Stiffness K

L
1.5
1.0 | — K /K, =050
K /K =060
o=09 | ~ K /K =070
(Ref. [27)) | T_K./K =080
: —-K. /K =090 (Ref. [27])
; —K/K =100
0‘5—//—
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(b) Limit Value of the Unloading Degradation Parameter o
Versus Tensile Ductility Factor u, (K, / K, = 0.001)

Fig. 3.3 - Limit Values of the Unloading Stiffness K, and Degradation Parameter o for
the Axial-Stiffness Hysteresis Model in Fig. 3.2

- 60 -



=3
174
. >
DISPLACEMENT
aL
-

Fig. 3.4 - Origin-Oriented Hysteresis Model [27]

t:vb

.
T

V/////w// //////‘ b
S| |

e peu ~—4
£ ={1+u)L/2
1 L
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ANALYTICAL (UNCOLA ANALYSIS [46])

Satisfied Displacement Compatibility
Regardless of Displacement Compatibility

S | e + » o EXPERIMENTAL (VALLENAS ET AL. [4))
MOMENT 1 TIRE s pseR R EETET
(kNm) i EN WALL. . 8 !:!:f—"*'—‘:‘_; cve,
o 8 -oETT °
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1 ﬁ (Regardless of Displacement Compatibility)
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9 (Satisfied Displacement Compatibility)}
S A E
i et e, —
2 e L
L e e e —
e
T T T T v H T T T -
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(a) Flexural Moment Versus Curvature
AXIAL, &
F(‘]?IE“)CE - J_‘ Satisfied Displacement Compatibility
1500 /,—-‘”""' ]
1 /l N, (tension)
1000 J/’ } N, =N, + N, = B68 kN
1T N, (compression) N t Regardless of Displacement Compatibilit
soodrl 2 N, = constant r g sp patibility
1 N, (compression) 135 = conctant
T T T T L Y T t o
0.01 0.02 0.03 0.04
CURVATURE (rad / m)

(b) Axial Force Versus Curvature

Fig. 3.6 - Experimental and Analytical Curves for the Cross-Section of Specimen 3
(Fig. 5.3a)
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Fig. 3.7 - Idealization of the Moment-Curvature Relationship Obtained for the Central

Pane] by UNCOLA Analysis [46] under the Condition of Displacement

Compatibility (o, = 0.17 ; p,= - 0.003)

yielding in tension
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- el ke _
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h c in compression
. element 2 /
“|1 (s) (c) /’ _ Ke
ESAS§ %ECAC tT+1EAJEA
S Ive K - Ke
h T+ EcAc/EsAs
1+4 1
r

(a) Two-Element-in-Series Model

(b) Simplified Force-Deformation Relationship
(A = constant ; r = steel-hardening ratio)

Fig. 3.8 - Proposed R C Column Model in Presence of Axial Load Reversals
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K, 0 K, (1-c)h - Ky 0 K,ch
K+K+K, | (K,-K)é/2 0 -K-K-K, (K-K,))erR
K+ -K,+
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K,+
+HK,+K)&/4
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Fig. 4.1 - Elastic Stiffness Matrix of the Wall Member Model in Fig. 3.1
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k=90

\
rk=k+1

l
u,® ( u =, )
g% = QTu®

\
GE(k) - (50 + E (gEm - 80)
o®

\!
0 = Q o®
ro=s§-p,

ued=p®-Hreo, H={(1-DK_ + K]}

1ol

NEXT STEP

u = Displacement Vector

g, = Elastic Strain Vector

o, = Incremental Elastic Stress Vector
o = Elastic-Plastic Stress Vector

s = Structural Reaction Vector

Fig. 4.2 - Iterative Solution Process in the Generic Step of the Analysis
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i=0
\
yj=j+1
l
AD=AD - AD (AD,® = AD)
Aglm s Aezm
Agl(j) , A(;z(i)
AFI(:') . AFZ(:')
l
rii) = AFICJ') - A_Fz(i)

ADz(j*l)z AD2(i> -Herte | Hd=1/ (Kicn+ Klm)

> tol @

<tol

NEXT ELEMENT
PROCESS

AD = Incremental Displacement of Overall Axial-Stiffness Element

AD, , AD, = Incremental Displacement of the Two Elements in Series

Ag, , A, = Increment of Strain of the Two Elements in Series

Ao, , Ag, = Increment of Stress of the Two Elements in Series

AF, , AF, = Increment of Strength of the Two Element in Series

K, , K, = Stiffnesses of the two elements in series calculated as (i=1, 2)

K=(1L)K,+LKy, 05(<05

where K and K ; are, respectively, the compressive stiffness and the generic
tangent stiffness of the same two elements

Fig.4.3 - Iterative Solution Process Used to Calculate the State of Stress in the Truss
Elements and Vertical Axial Spring of the Wall Member Model in Fig. 3.1a
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INPUT
Geometrical & Mechanical Data

Initial Conditions: u,, £, ,0,

)
LSW =3
NSTEP =0
L

LOADS
Initial Load: p,

i
STRUCT
Structural Reaction: s [u, ]

l

ASSEM
Elastic Stiffness Assemblage: K,

[ NSTEP = NSTEP + 1 |
3

ASSEM
Tangent Stiffness Matrix: K,

!

SOLVE
Tteration Matrix Factorization:
H={(1-)K,+{K}"

~ll
STRUCT
Structural Reaction:
Slfk) =8, [ul(k)]

LSW

yd
<

OUTPUT
Current State:
NSTEP, u, p,,S,. €, G,

| LSW=LSW-4

LOAD
Updated Load : p, = p, + Ap

Loading No
Process
Completed?

l Yes

OUTPUT
Final State : €_,, €_..,0,.0» .

/
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Fig. 4.4 - Flow Chart of the
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Fig. 5.1 - Test Walls (Reference 4)
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Fig. 5.4 - Loading Patterns of the Test Walls
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""""""" ANALYTICAL (Modified Wall Model)
* * ** EXPERIMENTAL (Vallenas et al. [4])

V(kN)
1000 S
f/ b
f’ .
A
!
I
500 /¢
I J
.
; 5 = 6 + 5 (mm)
3 3ftexural 3shear
1 1 P a1 L1 | ' L1 ] " i -
50 100 150
(a) Base Shear Versus Net Top Displacement at the Third Floor
V (kN
k o e-e—® - & T
1000 | ,fr._i‘.'.“o“‘ e e
l"
)
’.
s
.
500-‘1"
»
13
g {(mm
4 53Hexural )
L L 1 { I 1 I 1 i t r
50 100

500
Ishear (mm)
I

50
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Fig. 5.7 - Analytical and Experimental Curves for the Framed Wall under Monotonic

Loading (Specimen 3)
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-------- ANALYTICAL (Modified Wall Model)
« » « « EXPERIMENTAL (Vallenas et al. [4])
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Fig. 5.8 - Analytical and Experimental Curves for the Rectangular Wall under
Monotonic Loading (Specimen 5)
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Fig. 5.9 - Analytical and Experimental Curves for the Framed Wall under Cyclic
Loading (Specimen 4)
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Fig. 5.10 - Analytical and Experimental Curves for the Rectangular Wall under Cyclic
Loading (Specimen 6)
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Fig. 5.11 - Analytical Response of the First Story Axial-Stiffness Elements of the Wall

Model in Fig. 5.5b (Specimen 6)
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Fig. 5.12 - Analytical and Experimental Curves Representing the Flexural Response of
the Framed Wall (Specimen 4)
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Fig. 5.13 - Comparison of Shear and Flexural Displacement Components Obtained for
Specimen 3 Experimentally (Ref. [4]) and Analytically, by Assuming for
the Modified Wall Model Different Values of the Parameters ¢ and V,
(Other Data as in APPENDIX A)
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Obtained Experimentally (Ref. [4]) and Analytically, by Assuming for the
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for All the Stories; Other Data as in APPENDIX A)
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Fig. 5.15 - Comparison of Shear and Flexural Displacement Components Obtained for

Specimen 3 Experimentally (Ref. [4]) and Analytically, by Assuming
Different Values of the Softening Ratio p, for the Rotational Spring of the
Modified Wall Model (Other Data as in APPENDIX A, Except r=0.001)
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