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1. Introduction

One of the most dramatic aspects of the earthquake effects in Mexico
City in the earthquake of September 19, 1985 was the enormous differences
in intensities of shaking and associated building damage in different parts
of the city. In the south-west part of the city ground motions were moder-
ate and building damage was minor. However in the north-west part of the
city, catastrophic damages occurred and a record of the earthquake motions
near the southern end of this heavy damage area showed a very high inten-
sity of shaking. Similar patterns of building damage intensities have been
observed in previous earthquakes and the differences attributed to the d4if-
ferences in soil conditions in different parts of the city. In the 1985
earthquake these differences seem to be somewhat more accentuated than in
other earthquakes in the past 40 years, and the availability of recordings
of ground motions in different parts of the city makes it possible to
explore, in greater detail than heretofore, the relationships between soil
conditions and intensities of shaking.

It is the purpose of this report to describe the soil conditions in
Mexico City, present the results of special studies made since the earth-
quake to explore in detail the soil conditions at the sites of strong-
motion recording stations and at other sites of interest in and near the
city, and to present the results of some analytical studies of the extent
to which the observed differences in shaking intensities can be predicted
using simple analyses of ground response incorporating measured properties
of the shear wave velccities of the soils.

The study is part of cocperative investigation of these and other

aspects of ground response in the Mexico City earthquake of September 19,






1985 being undertaken by investigators at the National University of Mexico

and the University of California, Berkeley.

Soil Conditions in Mexico City

The soil conditions in Mexico City have been the subject of many
investigations in the past 50 years and before the earthquake of
September 19, 1985 they were already reasonably well-established. The
city is located on the edge of an old lake bed; thus while the western
part of the city is underlain by rock and hard soil deposits, the eastern
part of the city is located on soft clay deposits filling the former lake
bed. An east-west profile showing this variation in soil conditions (after
Zeevaert, 1872) is shown in Fig. 1-1. Between the hard formations in the
west and the deep clay deposits in the east, there is a "transition zone'
where the soils have generally stiff characteristics but may also involve
some limited depths of soft clay.

In the lake bed area, the soft clay deposits which have shear wave
velocities ranging from about 40 to 90 m/sec, are underlain by very stiff
and hard formations (the hard layer) with shear wave velocities of the
order of 500 m/sec or greater; thus there is a very marked change in wave
velocity at this boundary and this facilitates considerably the analyses of
wave propagation effects in the Mexico City clays. Contours showing the
approximate depths of soils (mostly involving a surface layer of sand fill
and an underlying deep layer of soft clay with interbedded layers of sand
and silt) which overly the hard layer are shown in Fig. 1-2 (modified after
Resendiz et al., 1970).

It is important to recognize that the clay beds extend considerably to

the north and south of the main part of Mexico City. The city itself is
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located on the edge of the former Texcoco Lake which extends about 35 kms
to the north. This lake was separated by a ridge of hills across the
southern part of the city, from a second lake, the Xochimilco-Chalco Lake
as shown in Fig. 1-3. Both of the lake beds are now essentially filled
with clay deposits, but the clays have somewhat different characteristics,
the Xochimilco-Chaleco Lake clays being somewhat stiffer and stronger than
the Texcoco Lake clays.

Damage surveys show that virtually all the structures which collapsed
or suffered major damage in the earthquake of September 19, 1985 lie within
the zone bounded by the chain-dot 1line in ¥ig. 1-2. The soil depth con-
tours in Fig. 1-2 indicate that within this zone, the depth to the hard
layer typically ranges from about 26 to 44 meters. On the shallow soil
deposits to the west and south, and on the deeper clay deposits to the east
and north, damage was relatively minor. Surveys show that the major damage
in the heavy damage area occurred to structures with story heights ranging

from about 6 to 18 stories.
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2. Ground Motions in the Sept. 19, 1985 Earthquake

Strong motion records of the earthquake of Sept. 19, 1985 were

obtained at a number of sites in and around Mexico City including:

1.

Three sites located on the rock and stiff soil area at the
University of Mexico (UNAM).

One site on the rock and stiff soil area at Tacubaya (T).

One site located on the transition zone at Viveros (V).

One site (the SCT Building site) on the clay deposits near the
southern boundary of the heavy damage area; the depth of soils
overlying the hard formations at this site is about 37 m.
Acceleration response spectra for the two components of motion at
this site are shown in Fig. 2-1.

Two sites about 0.5 km apart on the deeper clay deposits in the
Central Market area; at one site (CAF) the soil depth was about
45 m and at the other site (CAO) the soil depth was about 56 m.
Acceleration response spectra for the motions recorded at each of
these sites are shown in Figs. 2-2 and 2-3.

Two sites about 3 kms apart to the south of the city on the clay
deposits formed in the Xochimilco-Chalco Lake. At one of these
sites (TLD) the depth of soil was about 65 m and at the other site
(TLB) the depth to the hard layer was about 105 m. Acceleration
response spectra for the motions recorded at these sites are shown
in Figs. 2-4 and 2-5.

Two sites on the Texcoco Lake clay deposits to the north or east

of Mexico City, designated TXC and TXL in Fig. 1-3. No detailed
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information is available concerning the soil conditions at these

sites.

The locations of all these recording sites are shown in Figs. 1-2 and 1-3.

The records of the earthquake motions obtained at the various sites

indicate that:

1.

Motions recorded at the University sites and at Tacubaya on the
rock and hard soil deposits had generally similar characteristics
with peak ground accelerations of the order of 0.04 g, peak spec-
tral accelerations (5% damping) of about 0.11 g, and a predominant
period of about 2 seconds.

There was a major amplification of the motions by the soft clay
deposits underlying the SCT and Central Market sites. At the SCT
site, where the soil conditions are more closely comparable to
those in the heavy damage area to the north, the peak ground
acceleration was about 0.17 g and the peak spectral acceleration
for 57 damping was about 1.0 g at a period of about 2 seconds.
There were significant differences in the ground motions recorded
at the SCT building site and at the Central Market sites, with the
Central Market sites showing lower peak accelerations and maximum
spectral amplifications at higher periods than at the SCT site.
Thus at the CAQ site, where the depth of soil was about 56 m, the
peak ground acceleration was about 0.09 g, and the peak spectral
acceleration (5% damping) was about 0.35 g at a period of about

3.5 seconds.

A comparison of representative average spectra for the SCT Building site,

the Central Market site (CAO) and for sites in the rock and stiff soil

zones is shown in Fig. 2-6. It is readily apparent from this comparison
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why damage was negligible in the rock and stiff soil zones but very severe
in the central part of the city underlain by clay layers with depths rang-
ing between about 30 to 45 m.

It is interesting to note that one day after the main shock, the city
was subjected to a major aftershock of Magnitude 7.5. Ground motions were
recorded at some of the same stations in the aftershock; the motions were
somewhat lower in intensity during the aftershock, as evidenced by the com-
parison between the response spectra for main shock and aftershock motions
at the CAO site shown in Fig. 2-7. It is noteworthy that the forms of the
response spectra at this site were remarkably similar for the two events,
although the spectral peaks occurred at slightly loﬁer periods in the
aftershock, suggesting that the strains induced during the September 19
event were high enough to produce some small non-linear effects in the

ground response (Romo and Seed, 1986).
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3. Ground Motions on Rock and Hard Soil at UNAM

Of particular interest in studying the effects of local soil condi-
tions on the ground motions throughout the city are the characteristics of
the motions recorded on the rock and hard soil formations at the 3 stations
located at the National University of Mexico. A shear wave velocity pro-
file for one site in this area is shown in Fig. 3-1. At this site there is
a layer of fractured lava about 12 m deep overlying soft rock with a shear
wave velocity ranging from 450 to 600 m/sec at depths between 12 and 21 m.
However the depth of the lava cover varies and outcrops of soft rock are
readily apparent in the area. It is believed that the conditions in this
area are thus reasonably representative of the "hard layer" which underlies
the clay deposits throughout Mexico City.

In all, six horizontal components of motion were obtained at the three
recording stations at UNAM. The response spectra for these six components
are shown in Fig. 3-2. While the motions show some variations, they have
some general characteristics in common, most showing spectral peaks at
pericds of the order of 0.9 second and about 2 seconds. The mean spectral
shape for the six records is shown in Fig. 3-3, together with the upper and
lower bounds of the spectral values determined from the six records. The
mean value can presumably be considered to provide a good general charac-
terization of the motions developed on the hard layer in the University
area and at any similar outcropping of the hard layer in the Mexico City
area.

For ground response analysis purposes it is necessary to select a
ground motion record which can be considered representative of the motions

on the hard foundation. Fig. 3-4 shows a comparison of the average
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response spectra for the six UNAM records with the response spectrum for
one of the components (N-S) of the motion recorded at the CUMV site at
UNAM. It may be seen that this NS component has spectral characteristics
very close to the average for all components and thus provides a reasonable
representation of the average motions on the hard-rock formation in the
Mexico City area.

This record has a peak ground acceleration of 0,038 g and it has spec-
tral peaks at about 0.9 seconds and 2.1 seconds. The full acceleration and

velocity time histories of the motion are shown in Fig. 3-5.
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4, Detailed Studies of Soil Conditions at Recording Stations

The characteristics of the Mexico City clay and other soils at the
recording stations in and arcund Mexico City were determined using a vari-
ety of techniques including:

1. Boring and sampling procedures.

2. Measurements of penetration resistance using CPT procedures.

3. Laboratory tests (resonant column and cyclic triaxial tests) on

good quality undisturbed samples.

4., Evaluation of average shear wave velocities of the soils from the
earthquake records for each station. For this purpose the clay at
any given site was considered to be uniform with depth and the
average stiffness was determined from the natural frequency of the
site evaluated directly from the Fourier spectrum of the recorded
metions. It was recognized that this procedure would not normally
be available for other sites but it was considered to provide
probably the best estimate of average shear wave velocities of the
soils of any of the techniques available.

5. Direct measurements in boreholes of the shear wave velocity pro-
file of the soil deposits using down-hole techniques and P-S sus-
pension leogging techniques.

These studies led to the following determinations of the soil conditions at

the various sites.

(1) SCT Site
The subsoil conditions at the SCT site consist of a compact 4 m thick
layer of mixed sand, silt and clay, followed by a 27 m thick clay layer

with interbedded seams of silty sand, volcanic glass, fly ash, sands and
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silts; the water content in the clayey materials ranges from about 100% to
450% and the undrained shear strength varies from 0.25 to 0.8 kg/cmz.
Underlying this layer there is a very compact, lightly cemented 3 m thick
stratum of sandy silt, followed by a 4 m thick layer of very stiff clay
overlying the so-called hard layer; the hard layer consists of deep
deposits of a very hard and stiff layer (more than 100 SPT blows/ft) of
cemented silty sand which is usually considered as the base of the soil
profile.

Based on the natural period of the site, the average shear wave veloc-
ity of the clay layer was determined to be about 75 m/sec leading to a
determination of the soil profile for the site as shown in Fig. 4-1.

The results of direct measurements of the shear wave velocities of the
various soil layers are shown in Fig. 4-2, and an interpreted representa-
tive shear wave velocity profile, based on these results is shown in Fig.
4-3. It may be seen that the measured shear wave velocities in the clay
are somewhat lower than the average value determined from the natural

period of the site for the motions recorded in the 1985 earthquake,

(2) CAO Site
The subsoil conditions at the CAO site consist of a layer of silty

sand 5 m deep followed by a 37 m thick layer of clay with interbedded seams
of silty sand, fly ash, volcanic glass and silts; the water content in the
clayey soils varies from about 150 to 500 percent, and the undrained shear
strength from about 0.2 to 0.6 kg/cmz. Underneath this clay layer are a
series of intercalated strata of sandy silts and silty clays about 10 m in
thickness, followed by a 4 m thick layer of stiff clay which overlies the

deep hard deposits.
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Based on the natural period of the site, the average shear wave veloc-
ity of the clay was estimated to be about 60 m/sec, leading to a determina-
tion of a representative soil profile as shown in Fig. 4-1,

The results of direct measuremsnts of the shear wave velocities of the
various soil layers are shown in Fig. 4-4, and an interpreted representa-
tive shear wave velocity profile, based on these results, is shown in Fig.

4-3.

(3) CAF Site

The CAF site is located about 0.8 km south of the CAO site. The upper
15 m of the soil profiles at the two sites are very similar but the clay
layer at the CAF site seems to be slightly stiffer and about 11 m less in
thickness. Thus the hard layer is encountered at a depth of about 45 m at
the CAF site.

Based on the natural period of the site, the average shear wave veloc-
ity of the clay was estimated to be about 64 m/sec and the soil profile to
have the general characteristics shown in Fig. 4-1.

The results of direct shear wave velocity measurements at the site us-
ing downhole techniques and P-S logging techniques are shown in Fig. 4-5,
and an interpreted representative shear wave velocity profile based on

these results is shown in Fig. 4-3.

(4) TLB Site

The soil conditions at the TLB site consist of a layer of sand fill
about 5 m thick underlain by a thick layer of clay, containing seams of
sand and silt, which extends to a depth of about 105 m, where the hard

layer is encountered.
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The results of direct measurements of the shear wave velocities of the
various soil layers using P-S logging techniques are shown in Fig. 4-6, and
an interpreted representative soil profile, based on these results, is

shown in Fig. 4-7.

(5) TLD Site

The soil conditions at the TLD site are generally similar to those at
the TLB site but the depth of the clay layer is substantially smaller. The
hard layer in this case is reached at a depth of about 65 m.

The results of direct measurements of the shear wave velocities of the
soil deposits are shown in Fig. 4-8, and an interpreted representative soil

profile, based on these results, is shown in Fig. 4-7.
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5. Dynamic Properties of Mexico City Clay

The dynamic properties of Mexico City clay have been the subject of
several studies, notably by Leon, Jaime and Rabago (1974) and again by Romo
and Jaime as part of an on-going investigation following the earthquake of
September 19, 1985.

The results of both of these studies provide generally similar results
of the form shown in Fig. 5-1. Compared with other clays Mexico City clay
shows only a small reduction in shear modulus over a large range of
strains, the shear modulus reducing by only about 107 even at strains as
high as 0.15%Z. At strains above this level, however, there is a marked
reduction in shear modulus.

Similarly the damping ratio of Mexico City clay is relatively low at
strains up to about 0.157 and shows marked increases at strain levels above

this value.
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6. Relationship Between Soil Conditions and Ground Motion Records

The establishment of soil profiles, both in terms of soil types and
shear wave velocities at six of the major recording stations in Mexico City
(UNAM, SCT, CAF, CAO, TLB and TLD) makes it possible to prepare plots show-
ing the relationship between ground motion characteristics and local soil
conditions at these sites. Thus Figs. 6-1 to 6-6 present plots showing in
the upper part of the figure the average response spectrum for the motions
recorded at each of the six sites and in the lower part of each figure a
shear wave velocity profile for the soil conditions at the site.

it is very clear that the UNAM site is very different from the other
sites but for the remaining five sites it is necessary to examine the soil
profiles in detail to be able to determine the changes in depth and stiff-
ness of the soils which led to the marked variations in ground surface
motions at the five sites. This is particularly well-illustrated by a com-
parison of the soil conditions underlying the SCT and CAF sites, which are
shown together in Fig. 6-7. From an engineering pcint of view these sites
might be considered to be very similar with regard to the depths and stiff-
nesses of the underlying soils, but as shown in the upper part of the fig-
ure, the minor differences in soil conditions were apparently sufficient to
cause significant differences in the response spectra of the ground surface
motions.

It was to permit the development of procedures for anticipating these
differences that ground response analyses were performed for the five sites
underlain by clay soils. The results of these analyses are described in

the following sections of this report.
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7. Analytical Studies of Ground Motions in Mexico City Based on

Soil Properties Determined from Earthquake Records

Because of the fact that the heavy damage zone in Mexico City is
located in the area of the lake-bed deposits mainly to the north of the SCT
Building site, it is desirable to develop procedures for evaluating the
characteristics of the earthquake ground motions in those parts of the city
where no records were obtained but which are never-the-less of major inter-
est for damage evaluation purposes. To this end it is first necessary to
demonstrate that any analysis procedure which may be used for this purpose
is capable of predicting the main characteristics of the motions at those
sites where recordings were made. Analyses of ground response using wave
propagation procedures seem to provide the most logical choice of a suit-
able method for these purposes.

Such analyses for the sites in Mexico City are made possible by:

1. The existence of information such as that presented in the preced-
ing pages which provides detailed information concerning the soil
conditions above the hard layer at the recording stations.

2. The availability of information, such as that shown in Fig., 5-1,
concerning the dynamic properties of the clay and other generally
applicable information for the sandy formations in the soil
deposits.

3. The fact that the clay deposits in Mexico City are very thin com-
pared with their lateral extent so that in most cases, the dynamic
response of the deposit at any given site can be evaluated using

one-dimensional wave propagation theory.
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4. The fact that previous studies (Herrera and Rosenblueth, 1965;
Seed and Idriss, 1969) have shown that one-dimensional ground
response analyses using vertical wave propagation, as illustrated
in Fig.7-1, can provide values of ground surface motions in good
agreement with values recorded in previous earthquakes, and that
most of the amplification of motions takes place in the soil
deposits overlying the hard layer.

5. The availability of the records at UNAM to provide good general
information on the characteristics of the motions developed on the
hard layer in the 1985 earthquakes.

Thus, assuming that the motions developed on the hard formations are
reasonably represented by the N-S component of the record obtained at the
CUMV station at UNAM (see Fig. 3-4) and that for preliminary analysis pur-
poses the soil properties at the recording stations are reasonably well-
represented by the wave velocities deduced from the abserved natural fre-
quencies of the various sites (see Fig. 4-1), it is possible to make analy-
ses of the ground motions likely to develop at the ground surface in areas
underlain by clay deposits using one-dimensicnal wave propagation theory,
as incorporated in computer programs such as SHAKE (Schnabel et al., 1972).
Because of the low intensity of the motions developed in the hard layer in
the 1985 earthquake, the response does not involve any large non-linear
effects and thus equivalent linear methods are likely to be sufficiently
accurate for the conditions involved.

On this basis, analyses were made for the following conditions:
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Shear Wave Unit Weight
Site Depth Velocity of Clay Soil Profile of Soil
SCT 38 m 75 m/sec As shown in Fig. 4-1 1.2 t/m3
CAF 45 m 64 m/sec As shown in Fig. 4-1 1.2 t/m3
CAG 56 m 60 m/sec As shown in Fig. 4-1 1.2 t/m3

Using these characteristics, in conjunction with the strain-dependent val-
ues of soil properties shown in Fig. 5-1, and an iterative procedure to
determine strain compatible properties for use in equivalent linear analy-
ses, computations of the ground surface motions were made for the SCT, CAF
and CAO sites.

The results of these studies are shown in Figs. 7-2, 7-3, and 7-4,
where the acceleration response spectra for the computed motions are com-
pared with the average spectra for the recorded motions. It may be seen
that there is a very good degree of agreement between the spectra for the
computed and recorded motions, indicating that the analytical procedures
and the soil characteristics determined from earthquake records provide a

good basis for predicting motions for the Mexico City environment (Romo and

Seed, 1986).
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8. Analytical Studies of Ground Motions in Mexico City Based on

Measured Values of Shear Wave Velocity of Soils

In the preceding section of this report, analyses of ground motions in
Mexico City were based on values of shear wave velocity for the clay
deposits estimated from the frequency characteristics of the earthquake
ground motion records. Thus there is good reason to expect that such
values, incorporated in a reasonable method of analyses, would provide good
evaluations of ground response effects at the various sites of interest.

In other conditions, such records of ground motions from which soil
properties can be determined may not be available and it is therefore nec-
essary to determine the shear wave velocities of different soil layers by
direct measurement. There are a number of in-situ techniques available for
accomplishing this including cross-hole measurements, downhole measure-
ments, up-hole measurements, P-5 suspension logging, etc. and in some cases
representative values of shear wave velocity can be determined by labora-
tory tests on good-quality undisturbed samples.

It is generally recognized, however, that in-situ tests provide the
most reliable results because they are not significantly influenced by sam-
ple disturbance and, in the present study, direct measurements of shear
wave velocities were made at four sites (SCT, CAF, CAO, and TLD) using
downhole shear wave velocity measurements and P-S suspension logging meth-
ods (Ohya et al., 1986). At a fifth site (TLB) shear wave velocities were
determined by P-S wave logging only. The results of these tests have
already been presented in Section 4 of this report.

It will be noted that there are some differences between the values

measured at each site by the two measurement techniques used in this study
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and that the direct measurements indicate somewhat lower values for shear
wave velocities in Mexico City clay than the average values determined from
the ground motion records. There are a number of technical reasons why
some small errors may exist in the direct measurement of shear wave veloci-
ties:

1. For the P-S suspension logging method, the sides of the bore holes
were not cased and irregularities in the sides of the holes would
tend to lower the measured values below the time values.

2. Although casing was used in the downhole velocity measurements the
sensing device may not have been tight against the walls of the
hole, thus leading to a lowering of apparent wave velocity values.

3. In some cases the values of shear wave velocity measured in the
field tests were lower than the values determined by resonant col-
umn tests on undisturbed samples. Since even extremely small
levels of sample disturbance can cause major reductions in shear
moduli and shear wave velocities for clay soils, this result is
difficult to understand unless the field values were too low for
some reason.

Because of these possible errors in the measured values of shear wave
velocity it was considered desirable to allow for these uncertainties by
allowing some variations in the soil property data used in the analytical
studies of ground response. At the same time it was recognized that errors
might also result from the use of a single ground motion record to repre-
sent the hard-layer motions in Mexico City. It is apparent from the data
shown in Fig. 3-3 for motions recorded at the three UNAM sites that some
deviations may occur from the average spectrum, no matter how closely a

single earthquake record may represent this motion.
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Accordingly in making the ground response analyses for the five clay
sites in Mexico City it was considered desirable to consider the probabil-
ity of errors both in the input motions and in the soil properties used in
the analyses by adopting the following probabilistic procedure:

1. Using the best representative hard-layer record (i.e. the N-S com-
ponent of the motions recorded at the CUMV site at UNAM) as the
mean value for ground motion characteristics and then considering
cther motions which might deviate from this mean value by differ-
ences in amplitude of +20% or by differences in predominant period
of +107.

2. Using the interpreted shear wave velocity profiles shown in Figs.
4-3 and 4-7 as mean values and then considering that actual shear
wave velocities might deviate from these values by +10Z. This is
a rather small allowance for possible errors. It could well be
argued that since any errors in field shear wave velocity measure-
ments are likely to lead to values which are too low, it would be
more appropriate to vary the soil properties by amounts ranging
from 0 to +20% or more, but the value adopted was +107 never-the-
less,

Allowing for these variations from the mean values of intensity and predom-
inant period in the hard-layer motions and from the representative mean
values of shear wave velocity in the soil profiles requires the conduct of
27 separate analyses using the ground response analysis program SHAKE.
Although the time required is not excessive, it may be desirable in the
future to write a probabilistic version of the SHAKE program or use some
other similar program such as PLUSH (Romo et al., 1980) which can consider

such variations in analysis parameters more expeditiously.
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The results of probabilistic analyses of the ground surface motions at

the five recording stations located on clay deposits in Mexico City (SCT,

CAF, CAO, TLB and TLD)} are presented in Figures 8-1 to 8-20. For each site

plots are presented to show:

1.

4.

The soil profile used for the analyses of ground response together

with the upper and lower bounds of the spectra for the computed

motions and the average spectrum for all the computed motions at

the site.

A comparison of the upper and lower bounds of the spectra for the

computed motions for the site and the average spectrum for the

motions recorded at that site.

A comparison for each site of the average spectrum for the com-

puted motions and the average spectrum for the motions recorded at

that site,

A comparison of the 75-percentile response spectrum for the com-

puted motions at each site and the average spectrum for the

motions recorded at that site.

Thus such results are shown:

(a)
(b)
(c)
(d)
(e)

For the SCT site

For the CATF site

For the CAQ site

For the TLD site

For the TLB site

in

in

in

in

in

Figures
Figures
Figures
Figures

Figures

It may be seen that the spectral

8-1 to 8-4.
8-5 to 8-8.
8-9 to 8-12.
8-13 to 8-16.
8-17 to 8-20.

characteristics of the ground motions

determined by the analytical studies are in reasonably good agreement with

the average spectra for the recorded moticns at most of the recording sta-

tions.

To evaluate the degree of agreement, assessments were made of
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1. Whether the average spectrum for the recorded motions falls within
the upper and lower bounds of those for the computed motions
{bearing in mind that the ranges of parameters incorporated in the
analyses were quite small, e.g. V., = +107Z, etc.).
2. The degree of agreement between the average spectra for the
recorded and computed motions.
and 3. The degree of agreement between the average spectrum for the
recorded motions and the 75 percentile spectrum for the computed
motions. This compariscon was made in recognition of the fact that
the measured values of shear wave velocities are probably lower
than the true values and the use of these values tends to lead to
unreasonably low values of computed motions for the Mexico City
sites. Allowance for this bias in the data could be made either
by making the analyses using values of shear wave velocity which
vary by -0 and +20% from the measured values or alternatively,
allowing variations of +10Z from the measured values and then
adopting a higher than 50 percentile value of the computed motion
spectrum for predictive purposes. The latter option was used in
this case and the spectral level selected was the 75 percentile
value for each site.
The comparative results for each of the five sites included in the study
are summarized in Table 8-1. On balance it may be concluded that in most
cases the average spectra for the recorded motions lie within the bounds of
those corresponding to the computed motions and that the agreement between
the average spectra for the recorded motions and the 75 percentile spectra
for the computed motions ranges from Fair to Very Good, with the overall

assessment being rated as Good.
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Table 8-1

Site SCT CAF CAO TLD TLB
Average recorded spectrum Mainly
within upper and lower Yes Yes up to Mainly Mainly
bounds of computed spectra T = 3.5 sec
Degree of agreement between Fairly Fairly Fair Fair Fair
average recorded and Good Good
average computed spectra
Degree of agreement between Very Very Fairly Fair Good
average recorded spectrum and Good Good Good

75-percentile computed spectrum
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It would appear from these results that if allowance is made for pos-
sible deviations from the best average deterministic study results and
ground response problems are considered on a probabilistic basis, they can
provide very useful data for assessing the influence of local soil condi-
tions on the general form of the earthquake motions likely to develop at
sites underlain by clays, similar to the conditions existing in the old
lake-bed area of Mexico City.

This need to consider possible deviations from measured properties is
especially important in view of the sensitivity of the analytical results
of ground response analyses to small changes in scil conditions, either in
depth of soil or in stiffness of soil, under conditions such as those
existing in Mexico City. This has already been illustrated in Section 6,
where the small differences in soil conditions between the SCT and the CAF
sites were shown to be associated with a very significant change in the
response spectra of the motions recorded at these sites. It is alsc appatr-
ent from the very large differences in upper and lower bounds for the spec-
tra for the computed motions, shown in Figs. 8-1, 8-5, 8-9, 8-13, and 8-17,
resulting from comparatively small variations in either soil properties or
the level of base excitation used in the analyses.

It can be further illustrated by the analytical results determined for
the SCT site. Fig. 8-21 shows the soil profile interpreted from the
results of the shear wave velocity measurements at the SCT site, together
with a modified profile in which the shear wave velocity of the clay, in
the depth range from 10 to 20 m below the ground surface, was considered to
be reduced by 15 m/sec below the original interpreted values. This change
in velocity profile is well within the accuracy of interpretation of the

shear wave velocity data. The upper part of Fig. 8-21 shows the response
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spectra for the computed motions at the ground surface for the two pro-
files, using the same excitation in the hard layer for both analyses. It
may be seen that this very small change in shear wave velocity over a very
limited depth leads to a very significant change in the spectra for the
computed motions at the ground surface.

Thus both observationally and analytically, small changes in soil
characteristics, at least in Mexico City, can have a major effect on the
characteristics of the ground surface motions, making it very difficuit to
anticipate the precise character of the motions likely to develop at any
given site and emphasizing (a) that even "good" agreement between observed
and computed motion characteristics is a significant achievement in ground
motion prediction in the Mexico City environment; and (b) the importance of
considering the possible effects of errors or variations in soil properties
or base motion characteristics, through the use of probabilistic studies,
in any attempt to study site effects in areas of such high sensitivity.

Despite these difficulties, however, ground response analyses can help
significantly to anticipate the effects of local soil conditions on ground
surface motions. This is well-illustrated by a comparison of the response
spectra shown in Figs. 8-22 and 8-23. Fig. 8-22 shows the average response
spectra for the motions recorded at four very different sites: UNAM, SCT,
CAF and CAO. Fig. 8-23 shows the 75-percentile spectra for the computed
motions at the same sites, based on the measured shear wave velocities of
the soils and assuming that the UNAM motion was developed at an outcropping
of the hard layer. There is considerable similarity in these two sets of
results indicating the potential usefulness of ground response analyses in
anticipating the nature of earthquake motions. Tor further comparison Fig.

8-24 shows the spectra for the same four sites based on ground response
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analyses incorporating soil properties determined from earthquake records
(Figs. 7-2 to 7-4). These analytical results are in even better accord
with the spectra for the recorded motions indicating that whereever possi-
ble, it is desirable to refine direct measurements of shear wave velocities

with data that may be obtained from actual earthquake records.
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9. Use of Scaled Records of OQutcrop Motions in Analyses

of Ground Response

In the analyses of ground response in Mexico City described in previ-
ous sections of this report, motions at the SCT, CAF, CAO, TLD and TLB
sites were computed on the basis of the known motions in the hard layer at
the UNAM sites. In many cases where estimates of site effects are
required, however, the specific details of the hard layer or rock outcrop
motions will not be known and the motion can be described only in general
terms, say by specific values of such parameters as peak ground accelera-
tion, peak ground velocity, predominant period of motions, general form of
response spectrum and duration of shaking. However in order to make a
deterministic analysis of ground response a complete time-history of hard
layer or rock outcrop motions is required.

In such cases the only means available to obtain the required time
history of hard layer or rock motions are

1. To generate a totally artificial earthquake motion having the gen-

eral characteristics required;
or 2. To take some existing record of earthquake motions and modify it,
by appropriate scaling of either or both the acceleration and time
scales to make it conform to the prescribed characteristics.
Both procedures are used, but perhaps the scaling procedure is used more
frequently since it is easier to accomplish and the results will necessar-
ily have the jrregularities associated with a real earthquake record, since
they are derived from a real earthquake record.
In order to investigate how the use of this procedure might affect the

results of ground motion studies for a city such as Mexice City, analyses
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were made to determine the ground motions which might be expected at the
SCT site using a scaled accelerogram from the available set or records from
past events. Desirably such a record would be generated by a magnitude 8
earthquake, would be recorded on rock or hard soil at a distance of about
300 kms from the source, would have predominant periods of about 0.9 and
2.0 seconds and would have a peak ground acceleration of about 0.038 g.

Not surprisingly, such a record does not exist and it is necessary to
select some record which comes reasonably close to the desired requirements
and then scale the record to meet the requirements more closely.

In the United States, the largest magnitude earthquake for which
records are available is the 1952 Kern County (California) earthquake which
has a magnitude of 7.6. Several records are available, but one of the more
distant is that obtained at a Pasadena station where the record has the
following characteristics:

Peak acceleration: 0.057 g

Predominant periods: 0.65 and 0.82 seconds
By multiplying the acceleration scale of this earthquake motion by 0.52 and
the time scale by a factor of 2.5, the characteristics are changed to:

Peak acceleration: 0.030 g

Predominant periods: 1.6 and 2.0 seconds
which meets the desired characteristics quite well. After scaling in this
way, the time-history of accelerations has the form shown in Fig. 9-1 and
the acceleration response spectrum shown in Fig. 9-2. It may be seen from
Fig. 9-2 that the acceleration response spectrum of the scaled record is in
reasonably close agreement with the average of the motions recorded at the

UNAM sites.
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Thus the scaled record of the Pasadena recording of the Kern County
earthquake was used to compute the ground surface motions at the SCT site,
using the soil profile determined by the shear wave velocity measurements
and shown in Fig. 9-3. As in the previous studies, soil properties and

hard layer outcrop motions were allowed to vary as follows

Shear wave velocities: +107%
Hard layer accelerations: +207%
Predominant period of outcrop motion: +107%

The results of the analyses are presented in Figs. 9-3 to 9-6. Fig. 9-3
shows the soil profile used in the analyses and the upper and lower bounds
of the spectra for the computed motions. The average spectrum from the 27
analyses performed is also shown in this Figure. Figure 9-4 shows the
upper and lower bound spectra for the computed motions, together with the
average spectrum for the recorded motions. In general the average spectrum
for the recorded motions falls within the range of the spectra for the com-
puted motions, albeit near the upper bound of the range.

Fig. 9-5 compares the average spectrum for the recorded motions with
the average spectrum for the computed motions at the SCT site and Fig. 9-6
compares the average spectrum for the recorded motions with the 75-
percentile spectrum for the computed motions. As in the case of the
preceding analyses described in Section 8, the 75-percentile spectrum for
the computed motions is in good agreement with the average spectrum for
the recorded motions.

Finally, Fig. 9-7 compares the 75-percentile spectra of the motions
computed for the SCT site using both the CUMV-NS component of the motions
recorded at UNAM in the 1985 earthquake and the modified Pasadena record of

the Taft earthquake as hard-layer outcrop motions. It may be seen that
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there is little difference in these spectra whether the CUMV-NS record or
the modified Pasadena record is used as the control motion for the analy-
sis.

This result would seem to demonstrate that good evaluations of soil
effects on ground response can be made even when the rock or hard layer
motions must be represented by scaled records from other earthquakes, pro-
vided the scaling results in an accelerogram which reasonably represents
both in acceleration level and frequency content, the characteristics of

the anticipated rock outcrop motions.
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10, Predictions of Ground Motions at Sites of Special Interest

The ultimate goal of the field investigations and analyses performed
in this study is the development of an ability to predict, with some level
of confidence, the nature of the ground motions which are likely to have
occurred at critical sites or in critical zones of Mexico City where major
damage occurred but where no instrumental records were obtained. Typical

examples are presented below.

CUPJ Site

One such site for example is the CUPJ site, near the location of much
of the very heavy damage and building collapses during the September 19,
1985 earthquake (see Fig. 10-1), Clearly a first step in making an evalua-
tion of the ground motions which led to the collapse of this building is a
determination of the soil conditions at this particular site. The results
of a soil exploration program showed that the scil conditions at this site
consist of a 4 m thick layer of sand, underlain by about 26 m of clay con-
taining thin seams of silt and fine sand, followed by a 9 m thick layer of
sand and stiffer clay, followed by the hard layer., The variation of mea-
sured shear wave velocities with depth is shown in Fig, 10-2, and an inter-
preted profile of the site conditions based on all of this data is shown in
Fig. 10-3.

It is immediately apparent from the results presented that this soil
profile at the CUPJ site, shown in Fig. 10-3, is very similar to that for
the SCT site. A comparison of the interpreted soil profiles is shown in
Fig. 10-4. 1In view of the very close similarity in the soil conditions it
would be reasonable to conclude by observation that the earthquake motions

at these two sites would also be closely alike.
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To confirm this observation, a series of ground response analyses were
made for the conditions at the CUPJ site following the same procedures as
those used for the SCT site. The basic profile used for analyses is that
shown in Fig. 10-3, but allowance was made for variations in soil proper-

ties and hard-layer excitation as follows

Shear wave velocities: Varied by +107%
Amplitude of hard layer motions: Varied by +20%
Predominant period of hard layer motions: Varied by +107%

The results of these analyses are shown in Figs. 10-5. Fig. 10-5 shows the
upper and lower bounds cof the spectra determined from the computed surface
motions, emphasizing again the wide range of computed motions which may
result from small changes in soil characteristics and input motions for
such soil conditions. Fig. 10-6 shows the 75-percentile spectrum for the
set of computed motions and a comparison of this spectrum with that com-
puted for the SCT site and the average of the recorded motions at the SCT
site. The similarities in these results leaves little doubt that the
motions at the CUPJ site were likely to have been very similar to those at

the SCT site in the September 19, 1985 earthquake.

Heavy Damage Area

An area of major interest in the earthquake of Sept. 19, 1985 is the
very heavy damage area shown in Fig. 1-2. It is not possible to explore in
detail the soil conditions at all building locations in this area but suf-
ficient studies have been made to indicate that the clay deposits are
generally similar to those at the SCT site but they vary considerably in

depth to the hard layer with such depths ranging from about 24 to 44 m.
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In order to explore the probable nature of the ground motions in this
large area, a series of ground response analyses were performed using the
soil properties deduced from the earthquake motions and shown in Fig. 4-1.
These properties have already been shown to lead to response spectra in
good agreement with the recorded motions at the SCT site when they are
incorporated in a ground response analyses using the UNAM average motion as
a control motion.

Thus to explore the possible variation in motions throughout the heavy
damage area, a series of analyses were made using the soil profile shown in
Fig. 4-1, using the N-S component of motions recorded at the UNAM-CUMV site
as outcrop excitation, but varying the depth to the hard layer; analyses
were made for hard layer depths ranging from 25 to 45 m,

The results of these analyses are shown in Fig. 10-7. It may be seen
that because of the different depths of clay in the area, ground motions
are likely to have varied significantly in different locations, though they
are generally quite high throughout the entire zone. Based on these
results a representative average spectrum for the entire zone has been
indicated in Fig. 10-6. This average spectrum might be appropriate in
efforts to relate the overall damage in this zone to the nature of the
motions producing it and could be considered useful for such generalized
studies. For particular building locations, however, it is clear that more

site-specific motions should be used in damage evaluations.
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11. Conclusions

On the basis of the data and analyses presented in the previous sec-

tions of this report, it appears reasonable to draw the following conclu-

sions:

1.

The characteristics of earthquake ground motions varied widely in
Mexico City in the Sept. 19, 1985 earthquake with marked differences in
motions occurring
(a) in different zones of the city such as the hard and rock-like
areas, the transition zone, and the area of the old lakebed
underlain by deep clay deposits.
and (b) in the lakebed area itself where markedly different motions
were recorded at sites underlain by different depths of clay.
The characteristics of the ground motions recorded at sites underlain
by clay showed generally similar frequency characteristics in the main
shock and in the aftershock, indicating that these characteristics were
controlled mainly by the local seil conditions rather than the source
characteristics of the earthquake (see Fig. 2-7).
The records of ground motions recorded at different locations of the
city underlain by Mexico City clay show that the characteristics of the
motions were very sensitive to small changes in the shear wave veloci-
ties of the clay. Thus although the soil conditions at the SCT and CAF
sites appeared to be generally similar, the motions recorded at these
sites had quite different frequency characteristics (see Fig. 6-7).
The ground surface motions computed by ground response analyses using

the same control motion on a hard layer outcrop also indicate that a
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small change in shear wave velocity of the clay in the soil profile
will have a significant influence on the frequency characteristics of
the motions (see Fig. 8-21).

The dynamic stiffness of the clay in Mexico City can be determined by
means of borings (to establish the general soil profile) and the use of
recorded motions to determine the characteristic site period and the
average shear wave velocity of the clay in the soil profile. The use
of soil properties determined in this way in ground response analyses
in which the average recorded motions on the hard layer in the UNAM
area are used as control motions provides good predictions of the ef-
fect of local soil conditions on the characteristics of the motions
recorded at the SCT, CAO and CAF sites in Mexico City.

The characteristics of the clay at the SCT, CAO, CAF, TLB and TLD sites
have also been determined by in-situ downhole shear wave velocity mea-
surements and by P-S Suspension Logging procedures. The values of
shear wave velocity determined by these procedures are slightly lower
than the values interpreted from the frequency characteristics of the
ground motion records, probably because small errors associated with
the in-situ wave velocity measurement procedures tend to lead to some-
what lower values than the actual wave velocities.

To allow for the uncertainties in (a) the accuracy of shear wave veloc-
ity measurements and (b) the characteristics of the control motions on
the hard layer outcrop, which must be used in predicting ground
response by wave propagation theory, in cases where the results are
very sensitive to small changes in these parameters, as in Mexico City,
it is desirable to use a probabilistic approach to ground response pre-

diction. Thus in computing the effects of local soil conditions on
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ground response in Mexico City it was considered desirable to allow for

possible uncertainties in these parameters as follows:

Possible uncertainty (error) in shear wave velocity: +10Z
Possible uncertainty in hard layer motion amplitude: 1207

Possible uncertainty in predominant period of hard layer motion: +107

Using the probabilistic approach outlined above to compute the effects
of local soil conditions on ground motion characteristics, it was found
that:

(a) in most cases the average spectra for the recorded motions at
the SCT, CAQ, CAF, TLB and TLD sites in Mexico City lie
within the bounds of the spectra computed by ground response
analyses.

and (b) the agreement between the average spectra for the recorded
motions at each of the five sites located on the lake-bed
clay deposits (SCT, CAO, CAF, TLB, TLD) and the 75-percentile
spectra for motions computed by the probabilistic ground
response analyses described above, ranged from Fair to Very
Good, with the overall assessment being rated as Good (see
Table 8-1).

On the basis of the results of the ground motion studies, it would

appear that if allowance is made for possible small deviations from

the best average deterministic ground response analysis parameters,

and ground response is considered on a probabilistic basis, ground

response analyses can provide very useful data for assessing the

influence of local soil conditions on the characteristics of the

ground motions likely to develop at sites underlain by clays, similar
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to the conditions'existing in the old lake-bed area of Mexico City
where motions vary widely depending on the depth and stiffness of the
clay deposits.

Even in cases where a record of motions in a hard layer is not avail-
able, good predictions of the effects of local soil conditions on
ground motions characteristics can be made provided a hypothetical
motion or scaled earthquake record having appropriate frequency char-
acteristics is used for the control motion in ground response analyses
(see Fig. 9-7).

Because of the generally good results obtained in using ground
response analyses for the five sites at which motions and scil char-
acteristics are known in Mexico City, the same procedures can be
expected to provide a good basis for predicting motions at sites where
motions were not recorded in the September 19, 1985 earthquake. Typi-
cal examples are the CUPJ site (Fig. 10-5) and the heavy damage area
(Fig. 10-6). Also it can be expected that these procedures may pro-
vide a good basis for predicting ground motions at sites in the lake-

bed zone due to other earthquake sources and source mechanisms.
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