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STRENGTH EVALUATION OF COARSE-GRAINED SOILS 

By Farhat H. Siddiqi,l Raymond B. Seed,2 Clarence K. Chan,3 

H. Bolton Seed4 and Robert M. Pyke5 

INTRODUCTION 

\Due to the need for large quantities of fill materials which are used 

in the construction of large earth and rock-fill dams, increasing numbers 

of dams are now being built utilizing very coarse-grained materials, in-

eluding gravel-boulder mixtures. The large size of the particles often 

causes problems in the determination of the strength parameters for these 

materials. Manyp~;:t~JcJ_e,s,ize,sfor .. coarse-grained fills are too large to 

be tested with conventional laboratory equipment.:' In order to determine 

the relevant properties of the prototype (total) materials, laboratory 

specimens have to be prepared with a maximum particle size which is con-

siderably smaller than the maximum field particle size. ' 

The maximum grain size that can be tested in the laboratory is deter-

mined by the maximum size of the soil specimen that can be accommodated in 

a given triaxial testing apparatus. The term "oversize," therefore, is 

often used to refer to the constraint imposed on a strength testing program 

for a given material due to the availability of only a limited size of soil 

testing equipment. 

TQere are at least three procedures commonly used to overcome the 

problem of "oversize" particles. These procedures include: (1) removing 

lCiv. Engr., Pacific Gas and Electric Co., Dept. of Engrg. Research, 
San Ramon, CA. 

2Asst. Prof. of Civil Engrg., University of California, Berkeley, CA. 
3Res . Engr., Dept. of Civil Engrg., University of California, Berkeley, CA. 
4prof. of Civil Engrg., University of California, Berkeley, CA. 
SConsulting Engineer, San Ramon, CA. 
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all oversized particles and preparing the test specimen from the remaining 

material; (2) replacing all oversized particles with an equal dry weight of 

relatively large particles which fall within the maximum allowable grain 

size limit; and (3) fabricating a new soil specimen with a grain size dis­

tribution parallel to that of the prototype material. Which of the methods 

should be chosen for a given prototype material depends on the state of the 

oversize particles. While in some prototype materials there may be 

particle to particle contact within the oversize particles, in others the 

quantity of the oversize grains may be so small that they have almost no 

contact with each other. In such a state, these oversized grains are 

described as "floating" in the finer soil matrix. 

In addition to the selection of a suitable grain size distribution 

for the soil used in the laboratory tests, the proper choice of soil den­

sity is also necessary for the correct prediction of the strength proper­

ties of the prototype material. The laboratory specimen can be prepared 

either at the same dry density as the soil matrix of the prototype 

material, at a dry density which corresponds to the same relative density 

as that of the overall prototype material, or at some other condition. The 

optimal criteria for the selection of grain size distribution and density 

may also be different for the determination of the static and the cyclic 

strength parameters. 

cclmproper modeling of the laboratory test specimens could lead to 

erroneous estimates of both static strength and cyclic loading resistance 

of the prototype material. Whereas errors on the safe side could lead to 

significant increases in. cost of constructing large dams, errors on the 

unsafe side could lead to undesirable or potentially unsafe performance. 

It is, therefore, essential that estimates of the strength behavior of 
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earth dam fill material be made as accurately as possible. The ftS'n'Ow'ing 
\. .' 

I 

investigation\was conducted towards this objective. 

BACKGROUND AND REVIEW OF LITERA'rllRk 

Cyclic Strength Evaluation 

The last two decades have seen great progress towards the evaluation 

of soil response to seismic loading conditions. With the development of 

the cyclic triaxial test, the era of the quantitative analysis of seismic-

ally induced liquefaction or cyclic mobility began. Analytical procedures 

were developed for evaluating the seismic response of soil deposits and the 

stability of earth dams. These analytical procedures were used as a guide 

to understanding and explaining soil behavior during past earthquakes. 

From these early beginnings, knowledge of soil liquefaction potential and 

cyclic mobility expanded rapidly. Extensive reviews of many of these 

developments have been presented by Seed (1976, 1979a, 1979b), Yoshimi 

et ale (1977), Finn (1981) and the Committee on Earthquake Engineering of 

the NRC (1985). Most investigations related to soil behavior under cyclic 

loading conditions, however, have been performed on sandy soils. Test data 

for gravelly soils, on the other hand, are very limited. This is probably 

due to two reasons: (1) gravelly soils have generally performed much 

better than sands during past earthquakes, and (2) most soil laboratories 

are not equipped with the large-scale apparatus required for testing 

gravelly soils. Thus, the only available data for cyclic load tests on 

gravelly soils seems to be that presented by Lee and Fitton (1969), 

Wong et ale (1974), Banerjee et ale (1979) and Ishihara (1985). Lee and 

Fitton tested 2.8-inch diameter soil specimens containing gravel up to 3/4-

inch in size in cyclic loading triaxial tests. They found that for a given 
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confining pressure and relative density, the stress required to cause a 

pore pressure ratio of 100 percent in gravelly soils was almost twice that 

required to cause the same condition in fine sands under undrained cyclic 

loading conditions. Later investigations by Wong et al. (1974), however, 

showed that due to the small sample size of the test specimens (2.8-inch 

diameter) compared with the particle size of the soil investigated (up to 

3/4 inch), and system compliance problems, their findings were, at the 

best, inconclusive. 

Wong, Seed, and Chan (1974) reported that the cyclic stresses 

required to cause a given strain in gravelly soils were apparently somewhat 

higher than those needed to cause a similar strain in sandy soils. It was 

explained, however, that the difference could have been due entirely or in 

part to membrane penetration effects. The materials tested by Wong et ~l. 

(1974) were uniformly graded and, therefore, these tests also were affected 

to a significant degree by membrane compliance causing the cyclic stresses 

required to produce different strain amplitudes to be erroneous. The test 

results were considered to be somewhat more reliable than those presented 

by Lee and Fitton (1969) however because, by using a sample diameter of 

12 inches with a maximum particle size of 1.5 inches, a ratio between the 

specimen diameter and the maximum grain size of approximately 8:1 (recom­

mended for uniformly graded soils) was maintained. 

Dense gravel specimens tested by Banerjee et al. (1979) exhibited 

many similarities in behavior to dense sand specimens under cyclic loading 

conditions, but the shape of the pore water pressure ratio versus the cycle 

ratio curve for the medium to very dense gravel was very different than 

that for sand. Unlike many sands, the rate of pore water pressure increase 

was very rapid during the first few load cycles for the Oroville gravel 
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tested by Banerjee et al. (1979), followed by a very slow rate of increase 

thereafter. This rapid initial pore pressure generaiton followed by slow 

pore pressure generation at later cycles of loading may have resulted from 

the strongly dilatant behavior of this dense gravel as well as from 

membrane compliance effects. Banerjee et al. (1979) also found that: 

1. The method of sample preparation had relatively little influence 

on the cyclic loading resistance of dense, well graded Oroville 

gravel compared to that for sand. At higher confining pressures, 

the influence was further reduced. 

2. The dense Oroville gravel exhibited a significant increase in 

resistance to cyclic loading when kept under sustained pressure 

for a relatively short period of 10 weeks. 

3. The effect of membrane penetration into the peripheral voids of 

the dense Oroville gravel on cyclic stress ratio was found to 

have a significant effect on the test data. It was concluded 

that the stress ratios required to cause a pore water pressure 

ratio of 100 percent should be uniformly reduced by approximately 

10 percent to allow for the membrane penetration effects. 

Ishihara (1985) reported" tests on sand-gravel mixtures showing that 

the presence of more than 307. of gravel sizes may increase the liquefaction 

resistance of such mixtures. However the results were inconclusive because 

of variations in relative densities as well as gravel contents in the 

samples tested. 

Thus, the limited data available indicate many similarities but some 

significant differences in the cyclic behavior of gravelly and sandy soils. 

In general, the test data indicate that under cyclic loading conditions, 

soil specimens containing gravels are somewhat more resistant to the 



6 

development of high pore-water pressure than specimens containing sandy 

soils and considerably more resistant to the development of large axial 

strains. However, the experimentally observed differences in cyclic 

resistance of gravelly and sandy soils could be primarily due to membrane 

compliance effects. If due allowance is made for membrane compliance 

effects on the reported results of laboratory tests, it could be concluded 

that under truly undrained conditions the gravelly soils are no more 

resistant to undrained cyclic loading than sandy soils. Martin, Finn, and 

Seed (1978) demonstrated this conclusion by correcting tests conducted by 

Lee and Fitton (1969) on 2.8-inch diameter samples and those performed by 

Wong et al. (1974) on 12-inch-diameter specimens, to allow for membrane 

penetration effects. When the data were corrected in this way the results 

(shown in Fig. 1) suggest that the differences in cyclic loading resistance 

with grain size and specimen diameter observed in the laboratory test 

results could be mainly due to membrane compliance effects. 

Most of the tests reported above (Lee and Fitton, 1969; Wong et al., 

1974) were performed on uniformly graded soils. No suggestions were made 

by these investigators regarding the problems of handling the oversized 

particles in coarse grained soils or well-graded soils containing coarse 

particles. 

Static Strength Evaluation 

During the mid-1950's, the need for static stability analysis of 

rock-fill dams was recognized and methods to determine the strength and 

deformation characteristics of rock-fill materials were investigated. 

Zeller and Wullimann (1957) were among the first to propose a method for 

estimating the field properties of rock-fill material from laboratory 
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tests. The coarse fractions from the rock-fill material to be used in the 

shell zone of Goscheonalp Dam in Switzerland were removed to obtain a 

series of materials for testing in the laboratory. Triaxial tests were 

then performed on each of these materials to establish a relationship 

between the strength and porosity for each material. Specimen diameters of 

8 to 50 em were used for these tests. By cross-plotting, a series of 

curves of strength versus maximum grain size for different porosities were 

obtained. Estimates of the shear strength of the field gradation were then 

made by extrapolation. 

Another method for estimating the shear strength of coarse shell 

material from laboratory tests performed on small size specimens was 

proposed by Lowe (1964) during the construction of Shihmen Dam in Taiwan. 

Whereas the maximum particle size to be used in the shell of the dam was 

12 inches, laboratory triaxial shear tests were conducted on specimens 

6 inches in diameter and prepared from a modeled material having a grain­

size distribution curve parallel to that of the prototype material 

(Fig. 2). It was assumed that, " .•• in models of coarse fractions where the 

only difference between prototype and model samples is the difference in 

the size of particles, the model samples should closely duplicate the 

behavior of the prototype in shear." There are some inherent problems with 

the concept of using parallel gradation. Since the surface roughness of 

the particles affects the angle of internal friction (Vallerga et al., 

1957), the surface roughness of the particles in the prototype material 

should also be properly modeled. The crushing of particles is also known 

to have an influence on the observed angle of internal friction (Marsal, 

1967). Therefore, the effect of the crushability of particles on the angle 

of internal friction should also be taken into account in the modeling 
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process. Finally in some cases, the adoption of a parallel gradation 

introduces an undesirably high fraction of fines. 

10 

Marachi et al. (1969) investigated the possibility of predicting the 

angle of internal friction of actual rock-fill material from the results of 

tests performed on modeled small sized specimens. They used the modeling 

criteria proposed by Lowe (1964) in which laboratory specimens are prepared 

with a grain size distribution parallel to that of the field material. 

Tests were performed on a variety of types of rockfill. For comparison 

purposes, these authors tested large-scale rock-fill specimens (36-inch 

diameter), intermediate size specimens (12-inch diameter), and small 

conventional sized specimens (2.8-inch diameter), all with parallel 

particle size distributions and the same material. The grain size curves 

of the Oroville Dam material tested are shown in Fig. 3. The results of 

drained triaxial compression tests indicated that the angle of internal 

friction of the samples containing large sized particles (up to 6 inches in 

maximum dimension) in the 36-inch-diameter specimens was 3 to 4 degrees 

lower than that of the small-scale samples of 2.8-inch diameter, regardless 

of the confining pressure or material type. It was also noted that the 

volume changes during drained triaxial compression tests were least 

compressive for the small (2.8-inch diameter) specimens for all the 

materials tested. 

More recently, Donaghe and Torrey (1979) of the U.S. Army Waterways 

Experiment Station in Vicksburg, Mississippi studied the effects of 

scalping and replacement of oversized particles on the undrained strength 

parameters of earth-rock mixtures. Based on the results of consolidated 

undrained triaxial compression tests performed on test specimens compacted 



U.
 S

. 
S

ta
nd

ar
d 

S
ie

ve
 

S
iz

e
s 

#
2

0
0

 
10

0 
5

0
 

3
0

 
16

 
8 

4 
3/

8"
 3

/4
&

 
1.

5"
 

3"
 

6"
 

10
0 

• 
i
i
i
 

I 
I 

i 
Ii

 
Ii

 
I 

I
I
I
 
i
i
i
 

> 
I 

.a
 

8
0

 
'"

-
Q

) c .- u-
6

0
 

-c Q
) 

4
0

 
u '"

-
Q

) 

a..
 

2
0

 

0
' 

-
-
,
 

I
I
 

0
.0

0
5

 
0.

01
 

0.
05

 
0.

1 
0.

5 
1.

0 
5 

P
a

rt
i c

le
 

S
iz

e 
(i

n
ch

e
s)

 

Fi
g.

 
3 

GR
AI

N 
SI

ZE
 D

IS
TR

IB
UT

IO
N 

CU
RV

ES
 

FO
R 

M
OD

EL
LE

D 
OR

OV
IL

LE
 D

AM
 M

AT
ER

IA
L 

(A
ft

er
 M

ar
ac

hi
 

e
t 

a
l.

, 
19

69
) 

.....
. 

.....
. 



to a degree of compaction of 95 percent (based on the Standard AASHTO 

Compaction Test), Donaghe and Torrey concluded that: 

12 

1. The earth-rock mixtures developed large pore-water pressures dur­

ing undrained loading. Consequently, angles of internal friction 

based on total stresses for these materials may be as low as 11 

degrees (for test specimens compacted to 95 percent of the stan­

dard effort maximum density). 

2. The results of the tests performed on minus U.S. Standard No. 4 

sieve fractions of the earth-rock mixtures were in a reasonably 

good agreement with the results of full-scale tests performed on 

the total material in terms of angles of internal friction based 

on total stresses. 

3. The scalping and replacement procedures provided conservative 

strength parameters for earth-rock mixtures based on effective 

stresses. 

4. The test results showed no trend indicating that .the angle of 

internal friction based on either total or effective stresses de­

creases with increasing confining pressures over the test confin­

ing pressure range of 60 to 200 psi. 

5. The undrained strengths in the large-scale tests performed on the 

earth-rock mixtures (total material) were considerably larger 

than the undrained strengths of the minus U.S. Standard No. 4 

sieve fractions, particularly at low strains, though this may 

have been due largely to membrane compliance effects. 

The studies performed by Marachi et al. (1969) and Donaghe and Torrey 

(1979) were a significant step towards understanding the drained and un­

drained strength behavior of earth-rock mixtures. No conclusions, however, 
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were derived regarding the selection of the grain size distribution and 

density of the modeled specimens with small sized particles which would 

predict the drained and undrained strength behavior of the earth-rock mix­

tures with large sized particles. The same is true for studies performed 

at the Corps of Engineers, South Pacific Division in San Francisco, 

California. Based on the results of tests conducted on 6- and 12-inch­

diameter specimens with maximum particle sizes of 1.5 and 3 inches (Leslie, 

1963), the findings with respect to the effects of grain size distribution 

and the effect of removing oversize particles were largely inconclusive. 

COMPOSITION OF COARSE-GRAINED SOILS WITH FLOATING LARGE PARTICLES 

In many cases the composition of a coarse-grained soil is such .that 

the over-size particles are in fact floating in a matrix of finer particles 

as shown in Fig. 4, and under these conditions it is to be expected that 

the behavior of the soil as a whole will be controlled by the properties of 

the matrix. It is never-the-Iess important to understand in some detail 

the nature of the matrix in order to evaluate correctly the properties of 

the overall soil. A schematic representation of the arrangement of a 

series of large particles in a matrix of smaller particles is shown in 

Fig. 5 and it should be noted that the relatively large flat surfaces of 

the large particles leads to the formation of a series of relatively large 

void spaces where the smaller particles are in contact with the very large 

particles. These spaces results from the fact that the contact surface 

with the large particles does not provide the same smaller curvature as 

exists where smaller particles are in contact with other smaller particles. 

Thus each large particle can be considered to introduce into the soil 

a layer of extra large voids or increased volume of void space that is 
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Fig. 4 SCHEMATIC COMPOSITION OF COARSE-GRAINED SOIL WITH LARGER 
PARTICLES FLOATING IN A MATRIX OF FINER-GRAINED SOIL 
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present only because of the presence of the interfaces between small and 

large particles. If the large particles were removed from the soil, this 

associated void space would also be removed automatically and it should 

therefore be considered separately from the remainder of the void space. 

In the following discussion the void space associated with the surface of 

the large particles will be designated Vvalp (volume of voids associated 

with large particles). It should also be noted that for the conditions 

shown in Fig. 5, the contact surface between the large particles and the 

smaller particles of the matrix has certain special characteristics, in 

that relative shear deformation is possible without any significant volume 

change; in effect the smaller particles move freely over a large relatively 

flat surface and there is little or no tendency for volume change during 

such movement. Thus the voids associated with the large particles make no 

contribution to either volumetric compression, which would affect pore 

pressure build-up during cyclic loading, or to dilation, which would affect 

the effective strength of the soil during static shear. 

It is not unreasonable to hypothesize therefore that: 

1. The voids associated with the surface of the floating large 

particles, Vvalp ' make no contribution to volume change under any 

type of loading and thus they do not affect the pore-pressures 

which would be generated by undrained cyclic loading. These pore 

pressures will thus be due only to the properties of the main 

body of the matrix in the zone removed from the surfaces of the 

large particles. 

2. In a soil with a dilatant matrix under static loading, the fact 

that some surfaces exist within the soil mass where shear 

deformations can take place without dilation will provide a 
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series of zones of weaknesses and it is likely that failure 

surfaces will be attracted to these nondilatant zones of contact 

between larger particles and the soil matrix. 

In effect, then, the void ratio of the matrix can be considered to involve 

two zones--a near field zone close to the large particles where the void 

space will involve the presence of Vvalp ' and a far-field zone where the 

presence of the void spaces associated with the large particles have no 

effect. Under cyclic loading conditions the pore pressure generation 

characteristics of the entire soil mass are likely to be dominated by the 

condition of the far-field matrix alone, but under static loading 

conditions the contact surfaces between large and smaller particles will 

play a significant role in determining the shear resistance of the entire 

soil. 

These considerations have important implications in determining the 

behavior of soils containing floating large particles under both static 

and cyclic loading conditions. In order to express these effects quanti­

tatively it is convenient to consider the entire soil mass illustrated in 

Fig. 4 to consist of four components: 

1. The volume of solids represented by the finer particles 

comprising the matrix, designed Vsm ' 

2. The volume of solids represented by the large particles, desig­

nated Vslp ' 

3. The volume of voids between the particles forming the main 

portion of the matrix, Vvm ' 

and 4. The volume of extra void space associated with the relatively 

flat contact surface between the larger particles and the finer 

particles constituting the matrix, Vvalp ' 
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Thus the composition can be depicted schematically as shown in Fig. 6(a). 

If the weight and volume of the large particles are subtracted from this 

composition, the remaining volume of soil (which comprises the matrix) will 

consist of Vsm' Vvm and VValp • The average void ratio of the matrix in the 

soil sample when the large particles are removed in this way, which might 

be termed theoretical scalping, is 

e 
ma 

If, for the same volume of solids in the matrix, the same particles were 

placed in their densest and loosest conditions, the relative volumes of 

solids and voids would be as shown in Figs. 6(b) and 6(c) and the relative 

density of the matrix in the soil sample would be expressed by the ratio 

D 
rm 

Drm 

~x - ~a 
= ~ax E1nin 

(V) - (V + V l) = vm max vm va p 
(V) - (V ) . vm max vm ml.n 

= ~ (in Fig. 6). 
B 

In fact, however, if the large particles are removed, then the volume 

of voids associated with the large particles, Vvlp ' is also removed and the 

volume of voids in the main part of the matrix becomes Vvm ' Thus the 

relative density of the main part of the matrix, if the extra void space 

associated with the presence of the large particles is not included, 

becomes: 
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(V) - V 
D VOl max VOl 

rm = ~--~----~--~ 
(V) - (V ) 

VOl max VOl mm 

= A (in Fig. 6). 
B 

This ratio describes the relative density of the main portion of the 

matrix, i.e., the far-field matrix. For some soils the difference between 

the ratios C/B and AlB may be very large. Both terms describe a property 

of the matrix and it is necessary to decide which one, if either, defines a 

relative density which controls any given behavioral property of the 

matrix. 

It is interesting to note that if maximum and minimum density tests 

were performed on the total soil sample, the large particles would be pre-

sent in the soil and the volumes of voids determined in such tests for the 

matrix alone would be increased by an amount closely equal to Vvalp ' as 

depicted in Fig. 7. In this case the relative density of the whole soil 

sample, Drs' would be 

[(Vvm)max + Vvalp ] - [Vvm + Vvalp ] 

Drs = --------------------------------------------------------~ 
[(Vvrn)max + Vvalp ] - [(Vvrn)min + Vvalp"] 

= 
AI 
BI 

where AI and BI are shown in Fig. 7. It is interesting to note that the 

ratio: 

A I A 
B' B 
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and thus the relative density of the original soil sample is numerically 

equal to the relative density of the matrix if the voids associated with 

the large particles are excluded from the matrix composition, i.e. the far­

field matrix. 

It is also interesting to note that if tests are made to determine 

the composition of the sample in its natural state and at its maximum and 

minimum void ratios, and then the weight and volume of large particles is 

theoretically removed from each of the compositions so determined to 

establish the average composition of the matrix for the soil in its natural 

state, maximum density, and minimum density, the relative density of the 

matrix determined in this way would also be equal to the ratio of A'/B' or 

A/B; thus it would be equal to the relative density of the far-field matrix 

and not the average relative density of the matrix. 

Thus the relative density of the matrix, excluding the effects of the 

voids associated with the presence of the large particles, Vvalp ' can be 

determined in different ways and found to be equal to the relative density 

of the original sample of soil. 

Investigation of Matrix Properties for a Soil 

The significance of the results discussed above depends of course, on 

the magnitude of the term Vvalp in the various formulas presented. Clearly 

the value of this term will vary significantly from one soil to another, 

but the possible effects and significance of this term can be illustrated 

by its evaluation for a problem involving the composition of a deposit of 

streambed alluvium which had a maximum particle size of the order of 50 mm 

(2 inches). As much as 40% by weight was coarser than 10 mm (3/8 inch), 

the largest particle size which could reasonably be included in the 61 mm 
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(2.4 inch) diameter laboratory test specimens--the largest samples which 

could be tested with the testing equipment available for the project. 

However inspection of test trenches that had been dug in the field showed 

that the plus 3/8" size particles appeared to be dispersed or floating in a 

matrix of the minus 3/8" material. This observation was also confirmed by 

analytical studies of the grain-size distribution of the soil. Thus the 

composite soil in the field had the schematic structure shown in Fig. 4.' 

For such a sample of composite soil, containing large particles of 

soil floating in a matrix of finer grained soil, it is reasonable to expect 

that failure will occur in the matrix and that failure planes will not pass 

through the larger-size particles. Thus it might well be expected that the 

strength of the sample will be controlled by the matrix, and that it could 

be measured by testing a sample composed of matrix material alone at, say, 

the average void ratio of the matrix. 

In the case of the stream-bed alluvium, therefore, in-situ dry densi-

ties of the alluvium were measured by the sand.cone method in accordance 

with ASTM Test D1556. It was found that the in-situ dry density of the 

soil as a whole was 126.0 pcf. Maximum and minimum density tests were also 

performed on the soil as a whole with the following results: 

Maximum dry density of soil (ASTM D 2049) = 134.9 pcf. 

Minimum dry density of soil (ASTM D 2049) = 111.8 pcf. 

From this data it may readily be determined that the relative density of 

the in-situ deposit is. about 647.. 

The entire material that was obtained from each test hole was then 

separated on a 3/8" screen and the weight of the plus 3/8" material was 

determined. Knowing the specific gravity of this material, its volume 
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could be computed and subtracted from the total volume of the test hole; 

thus the dry density of the minus 3/8" material could be computed. It was 

found that this material had a dry density of 106 pcf. It may be noted 

that this measure of the dry density of the minus 3/8" material presumes 

that it includes all the voids in the total sample--as would be expected if 

the plus 3/8" particles were floating in the minus 3/8" matrix material. 

In accordance with the preceding concepts, therefore, a testing pro-

gram was initiated to determine the strength characteristics of samples of 

the minus 3/8 matrix at a dry density of 106 pcf. At the outset of this 

program, for the sake of completeness, it was also decided to determine the 

maximum and minimum densities of the minus 3/8" fraction of the soil. 

These tests led to the following results: 

Maximum dry density of matrix (ASTM D 2049) = 123 pcf. 

Minimum dry density of matrix (ASTM D 2049) = 106 pcf. 

Since the in-situ dry density of the matrix (the minus 3/8" fraction of the 

natural deposit) was measured to be 106 pcf, this would indicate that it 

had a relative density of 0 percent in the ground. Thus the measured 

properties of this soil were as follows: 

Relative density of entire soil ::: 64 percent. 

Relative density of matrix of soil::: 0 percent. 

If indeed the matrix does control the strength, then the cyclic loading 

resistance or the residual strength of the matrix (and therefore of the 

soil) at a relative density of 0 percent would apparently be negligible. 

On the other hand, it is not likely that the strength of a soil having a 

relative density of 60 percent is negligible. In fact it would be expected 
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to be large because at this relative density the soil as a whole would be 

expected to be dilatant under monotonic loading. 

These computations lead to an interesting dilemma in our 

understanding of the behavior of such soils. The compositional studies 

described above led to the following conflicting conclusions: 

1. The undrained strength of the soil as a whole is controlled by 

the characteristics of the matrix since' the larger particles are 

floating in the matrix. The matrix has a very low relative den­

sity, it is compressive, and it has a very low undrained 

strength. Therefore the soil as a whole must have a very low 

undrained strength. 

2. The relative density of the soil as a whole is about 64 percent. 

At this relative density the soil is dilatant and it has a very 

considerable undrained strength. 

One might opt for one or the other of these conclusions on some other 

basis--for example that the soil appeared to be very stable, that alluvial 

deposits are hardly ever found to have a relative density less than 30 per­

cent, or that the material involved in this case had existed for many years 

during which time it had been subjected to numerous earthquake shocks--an 

effect which would inevitably lead to some degree of densification. Thus 

the possibility of the matrix having zero percent relative density is non­

existent and there must be something wrong with the test data leading to 

this conclusion. Yet in fact a careful check on all the test data showed 

no errors in the results obtained. The problem apparently lies not in the 

accuracy of the data but in the interpretation of the results. 

In an attempt to throw some light on this subject a more detailed 

series of studies was initiated to explore the maximum and minimum 
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densities which would develop in the minus 3/8 in. fraction of the soil if 

it were compacted using the standard ASTM Test D 2049 in the presence of 

various proportions of plus 3/8 in. material. The plus 3/8 in. material 

added for this purpose ranged in size between 3/8 in. and 1-1/2 in. and the 

dry densities of the various soil compositions determined in this test 

program are shown in Fig. 8. Also shown in Fig. 8 are the theoretical 

values of maximum and minimum density which would be computed by replacing 

various proportions of the minus 3/8 in. material with solid particles (as 

floating particles) and assuming that this replacement does not alter the 

packing of the minus 3/8 in. material from its condition when tested alone. 

It is apparent from a comparison of the test results and the theoretical 

values computed as discussed above that in tbe presence of over-size or 

plus 3/8 in. particles, the ability of the minus 3/8 in. fraction to 

compact under the influence of the ASTM D 2049 compactive effort is 

considerably reduced, particularly for mixtures containing over 15 percent 

of particles larger than 3/8 in. size. 

From the test data shown in Fig. 8 for the entire soil, it is a rela­

tively simple matter to compute the densities of the minus 3/8 in. fraction 

in the different soil mixtures corresponding to the measured values of 

maximum and minimum dry density shown in Fig. 8. These results are shown 

in Fig. 9. It may be seen that if the dry density of the minus 3/8 in. 

fraction of the in-situ deposit (106 1b/cu ft.) is compared with the 

maximum and minimum densities of the minus 3/8 in. fraction tested alone, a 

situation in which Vva1p = 0, its relative density is O. This is the 

average relative density of the matrix. However, when it is compared with 

the maximum and minimum dry densities of the minus 3/8 in. fraction 

compacted by the ASTM D 2049 test in the presence of 40 percent of plus 
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3/8 in. particles (as was the case for the in-situ deposit) its relative 

density is about 60 percent. In effect, this is the relative density of 

the far-field matrix since the effects of Vvalp have been eliminated in the 

testing and data interpretation process (because Vvalp has approximately 

the same values and thus the same influence on the maximum, minimum and in-

situ density determinations). 

This example provides a clear illustration of the possible effects of 

the quantity Vvalp on the interpretation of test data for soils containing 

floating large particles and of the need to consider carefully the effects 

of oversize material on the properties of soils whose strength characteris-

tics are clearly controlled by a matrix of finer-grained material. The 

particular soil discussed above seems to be an extreme case since other 

soils do not show such large effects of Vvalp . However studies by other 

investigators have led to a similar general conclusion and it is 

particularly clearly illustrated by the case study described above. 

Undrained tests on samples of matrix material at its in-situ dry density of 

106 pcf would have shown it to have a very low strength. Yet the in-situ 

deposit, whose strength was apparently controlled by this same matrix at 

this density, was clearly a stable material by all conventional criteria. 

INVESTIGATION OF STRENGTH CHARACTERISTICS OF 
SOILS CONTAINING FLOATING LARGE PARTICLES 

The above example seems to provide confirmation of the concept of 

n~ar field and far-field matrix conditions on a compositional basis but it 

does not provide direct confirmation of the associated concepts that: 

1. Relative movement in shear between large particles and smaller 

particles will not produce any significant tendency for volume 



30 

change and thus it is to be expected that the pore pressures gen­

erated in a soil containing floating large particles will be 

controlled primarily by the relative density of the far-field 

matrix, other factors such as fabric, etc. being the same. This 

relative density will be the same as that of the original total 

soil. 

2. If the matrix is dilative, then under static loading conditions 

the surface of greatest weakness will probably be one passing 

through some parts of the matrix and then along the surfaces of 

large particles since no dilation (leading to increased strength) 

would be able to develop along these zones. 

To explore these concepts, therefore, tests were performed on two 

distinctly different types of gravelly soils, one from Lake Valley Dam, a 

rockfill dam located in the Sierra Nevada mountains, approximately 50 miles 

northwest of Lake Tahoe, and the other from Oroville Dam in northern 

California. For both materials, tests were performed first on prototype 

material with 2-inch maximum size particles using 12-inch diameter samples. 

The gradations were such that the particles greater than 1/2-inch in size 

were floating in the minus 1/2-inch matrix material. 

Having thus established the properties of the prototype material, the 

matrix material (the minus 1/2-inch size particles) was separated out and 

tested at the same relative density as the prototype material to permit a 

comparison of the cyclic loading resistance of the prototype and matrix 

materials. 

Static load tests were also performed on prototype and matrix materi­

als to compare the relative densities at which these materials had the same 

undrained strengths. 
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The results of these ~ests are presented in the following sections of 

this report. 

Materials Tested 

The gravel material from Lake Valley Dam was obtained from the same 

general location as the borrow area used during the buttressing operations 

of the dam. The material as obtained from the field was comprised of 

gravel, sand, and small amounts of silt and some cobbles. The gravel 

particles were rounded to subrounded with specific gravities ranging from a 

low of 2.70 for particles larger than 2-inch size to a high value of 2.76 

for particles smaller than l/2-inch size. The minus No. 4 sieve material 

had an unusually high specific gravity of 2.92. 

Since laboratory cyclic testing of the fill material as obtained 

directly from the field was not feasible with the equipment available, the 

gravel material with a maximum particle size of 2 inches was designated as 

the prototype material for this study. The cyclic triaxial testing equip­

ment available was capable of testing l2-inch diameter specimens. There­

fore, with the maximum particle size of 2 inches, a satisfactory ratio of 

specimen diameter to maximum particle size of 6 to 1 could be maintained. 

The smaller scale cyclic triaxial tests were performed on 2.8-inch 

diameter specimens. To maintain the specimen diameter to maximum particle 

size ratio of at least 6 to 1, the 1/2 inch sieve size was selected as the 

maximum particle size for the matrix material; this material was obtained 

simply by scalping the oversized (1/2-inch to 2-inch) material, in accor­

dance with the concepts previously discussed. The grain size distributions 

of the assumed prototype and matrix materials are presented in Fig. 10. 
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Table 1 summarizes some important physical characteristics of the Lake 

Valley Dam material chosen for this study. 
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The gravel material from Oroville Dam consisting of cobbles, gravel, 

and sand left by earlier gold dredging operations was obtained from the 

same general location as the borrow area utilized for the construction of 

th~ dam. The gravel size particles were rounded to subrounded with rock 

particles being mostly amphibolite. Additional physical characteristics of 

the Oroville Dam gravel used in this study are presented in Table 2. The 

maximum particle size limitations for the assumed prototype and matrix 

materials which were applied to the Lake Valley gravel were also applied to 

Oroville gravel. The grain size distribution curves for the prototype 

(total) material and the modeled or matrix material specimens of Oroville 

gravel are presented in Fig. 11. 

Test Programs 

A. Cyclic Load Tests 

Three series of cyclic load tests were performed in this study, as 

described below: 

Series 1 

a. 12-inch-diameter specimens of Lake Valley gravel with 2-inch 

maximum particle size were tested at 60 percent relative density. 

b. 2.8-inch-diameter specimens of Lake Valley matrix material with 

1/2-inch-maximum size were tested at 60 percent relative density. 

Series 2 

a. 12-inch-diameter specimens of Lake Valley gravel with 2-inch 

maximum particle size were tested at 40 percent relative density. 



Table 1 

Physical Characteristics of Gravel Material from Lake Valley Dam 

A. Assumed Prototype. 2-inch Maximum Particle Size Material 

1. Type of material: river gravel, rounded to subrounded 

2. Unified soil classification: 

3. Mean grain diameter (DSO)(mm): 

4. Uniformity coefficient (Cu): 

5. Coefficient of curvature (Cc ): 

6. Specific gravity: 
Minus No. 4 sieve 
No. 4 sieve to 1/2-inch maximum size 
1/2-inch to 2-inch maximum size 
Average 

GW-GM 

3.8 

62.5 

1.0 

2.92 
2.76 
2.74 
2.81 

7. Plasticity index: Minus No. 40 material is nonplastic 
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8. Maximum and minimum dry 
testing procedures: 

densities as obtained from the ASTM D-2049 

9. 

10. 

Maximum dry density 
Minimum dry density 

Void ratio: 
~ax 
~in 

Moisture-density relationship 
testing procedures: 

Maximum dry density 
Optimum water content 

11. Gradation: 

U.S. Standard Sieve Size 

2-inch 
1-1/2-inch 
3/4-inch 
3/8-inch 

No. 4 

139 pcf 
114pcf 

0.538 
0.261 

as obtained from the ASTM D-1557-78 

137 pcf 
9.17. 

Percent Passing 

100.0 
93.4 
79.3 
65.5 
53.1 
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Table 1 - contd. 

B. Modeled Samples, 1/2inch Maximum Particle Size Material 

1. Unified soil classification: SW-SM 

2. Mean grain diameter (DsO)(mm): 1.4 

3. Uniformity coefficient (Cu): 29.3 

4. Coefficient of curvature (CC): 1.07 

S. Specific gravity: 
Minus No. 4 sieve 2.92 
No.4 sieve to I/2-inch maximum size 2.76 
Average 2.84 

6. Plasticity index: Minus No. 40 material is nonplastic 

7. Maximum and minimum dry 
testing procedures: 

densities as obtained from the ASTM 0-2049 

8. 

9. 

Maximum dry density 
Minimum dry density 

Void ratio: 
«;nax 
«;nin 

Moisture-density relationship 
testing procedures: 

Maximum dry density 
Optimum water content 

10. Gradation: 

U.S. Standard Sieve Size 

lI2-inch 
3lB-inch 

No. 4 

C. Miscellaneous Information 

132 pcf 
105 pcf 

0.688 
0.343 

as obtained from the ASTM 0-1557-78 

132 pcf 
10.2% 

Percent Passing 

100.0 
91.9 
74.5 

1. Amount of oversize particles (1/2-inch to 2-inch) present in the 
assumed prototype: = 29 percent of the total (prototype) material 
based on dry weight. 

2. Minimum dry density as obtained from the ASTM 0-2049 testing 
procedure of 1/2-inch to 2-inch maximum size material: 94 pcf. 



Table 2 

Physical Characteristics of Gravel Material from Oroville Dam 

A. Assumed Prototype, 2-inch Maximum Particle Size Material 

1. Type of material: river gravel, rounded to subrounded 

2. Unified soil classification: 

3. Mean grain diameter (D50)(mm): 

4. Uniformity coefficient (Cu ): 

5. Coefficient of curvature (Cc ): 

6. Specific gravity: 
Coarse fraction (2"-3/16") 
Fine fraction (-3/16") 
Average 

7. Atterberg's Limits: 
Liquid Limit (LL)(7.) 
Plastic limit (PL)(7.) 
Plasticity index (PI)(7.) 

GW-GM 

9.53 

47.0 

3.85 

2.92 
2.78 
2.85 

15.5-17.0 
15.0-17.0 
·0.5-0.0 
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S. Maximum and minimum dry 
testing procedures: 

densities as obtained from the ASTM D-2049 

9. 

Maximum dry density 
Minimum dry density 

Void ratio: 
~ax 
~in 

10. Gradation: 

U.S. Standard Sieve Size 

2-inch 
1-I/2-inch 
3/4-inch 
1. 2-inch 
3/S-inch 

No. 4 

153.6 pcf 
125.0 pcf 

0.440 
0.165 

Percent Passing 

100.0 
92.5 
73.0 
59.0 
49.0 
31.0 
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Table 2 - contd. 

B. Modeled Samples, 1/2inch Maximum Particle Size Material 

1- Unified soil classification: GW-GM 

2. Mean grain diameter (D50)(mm): 4.0 

3. Uniformity coefficient (Cu): 38.7 

4. Coefficient of curvature (Cc ): 4.83 

5. Specific gravity: 
Coarse fraction (2"-3/16") 2.92 
Fine fraction (-3/16") 2.78 
Average 2.85 

6. Plasticity index: Minus No. 40 material is nonplastic to slightly 
plastic 

7. Maximum and minimum dry 
testing procedures: 

densities as obtained from the ASTM D-2049 

8. 

Maximum dry density 
Minimum dry density 

Void ratio: 
~ax 
~in 

10. Gradation: 

U.S. Standard Sieve Size 

l/2-inch 
3/8-inch 

No. 4 

C. Miscellaneous Information 

139.9 pcf 
107.3 pcf 

0.617 
0.240 

Percent Passing 

100.0 
83.05 
52.54 

1. Amount of oversize particles (1/2-inch to 2-inch) present in the 
assumed prototype: = 41 percent of the total (prototype) material 
based on dry weight. 

2. Minimum dry density as obtained from the ASTM D-2049 testing 
procedure of 1/2-inch to 2-inch maximum size material: 103 pcf. 
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b. 2.8-inch-diameter specimens of Lake Valley gravel matrix material 

with 1/2-inch-maximum size were tested at 40 percent relative 

density. 

Series 3 

a. 12-inch-diameter specimens of Oroville gravel with 2-inch maximum 

particle size were tested at 84 percent relative density. This 

test series was performed by Banerjee (1979). 

b. 2.8-inch-diameter specimens of Oroville gravel matrix material 

with 1/2-inch-maximum size were tested at 84 percent relative 

density. 

For each group of specimens, a series of consolidated-undrained 

cyclic triaxial tests were performed with different cyclic deviator 

stresses. Each test was continued until the sample developed at least 10 

percent double amplitude strain in 4 to 50 cycles. In each test, the 

development of pore water pressures and axial strains with increasing 

numbers of stress cycles was recorded on either a Sanborn or MFE four­

channel recorder. All the tests were performed with an initial isotropic 

effective confining pressure of 2 ksc. 

B. Static Tests 

The Lake Valley gravel, the physical characteristics of'which are 

presented in Table I, was selected for the study on static strength 

testing. An initial relative density of 55 percent was selected for the 

large-scale (12-inch diameter) specimens of the assumed prototype material 

with maximum grain size of 2-inch. The test samples were consolidated 

under a confining pressure of 2 ksc. The relative density following 

completion of primary consolidation was 58 percent. For the prototype 



relative density of 58 percent, the computed average relative density of 

the soil matrix was 44 percent. Since the relative density of the "far­

field" matrix is higher than the "average" soil matrix density, nine 

consolidated undrained triaxial compression tests with pore-pressure 

measurements were performed on 2.8-inch diameter specimens of the soil 

matrix with maximum particle size of 1/2-inch, prepared at relative 

densities after consolidation ranging from 44 to 57 percent. 

The results of these different test programs are presented below. 

A. Cyclic Tests 

40 

The results of the cyclic tests performed on 12-inch and 2.8-inch 

diameter specimens of Lake Valley and Oroville gravels are presented in 

Figs. 12 through 16 in the form of plots of stress ratio, 0dc/203c' versus 

the number of stress cycles, Nc ' required to cause a residual pore pressure 

ratio of 100 percent or different levels of double amplitude axial strain. 

The test data presented include all corrections (area, membrane strength, 

and system compliance). In general, for derise specimens of Oroville gravel 

(Dr = 84%) a pore pressure ratio of 100 percent was developed in the cyclic 

axial strain range of 2.75 to 3.5 percent. The corresponding strain levels 

for samples of Lake Valley gravel prepared at a relative density of 

60 percent were 3 to 5 percent. Pore water pressure generation curves were 

prepared by plotting the pore water pressure ratio developed (~ru) vs. the 

cycle ratio (N/N t ) where ru = ~u/03,i' N = the current cycle number, and 

Nt = the number of cycles to full initial liquefaction. The initial por­

tion of the pore water pressure generation curves was markedly steeper for 

test specimens of higher relative density. 
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It may be seen from the data presented in Figs. 12 to 16 that there 

was excellent agreement between the data obtained from tests on the 

prototype and matrix materials when they were tested at the same relative 

densities. Although tests were not performed to verify the results, it 

seems apparent that very different results would have been obtained if the 

cyclic loading resistance of the prototype material had been compared with 

that of the matrix tested at the average relative density of the matrix 

material in the prototype soils, even though the cyclic loading resistance 

of the prototype material is controlled completely by the matrix material. 

This result would seem to confirm the previous discussion of the need to 

consider carefully the test density for the matrix material in order to 

obtain meaningful results in test programs of this type. 

B. Static Test Results 

The results of the tests performed on 12-inch diameter specimens of 

the assumed Lake Valley gravel prototype material and 2.8-inch diameter 

specimens of the soil matrix are summarized in Table 3. The undrained 

strength, Su' of the matrix samples is plotted against the relative density 

of the matrix in Fig. 17. It may be seen that the soil matrix specimen 

with a relative density of about 51 percent (almost halfway between the 

computed average soil matrix relative density of 44 percent and the 

relative density of the total material of 58 percent), has about the same 

undrained strength as that of the total material, indicating again the need 

for careful consideration of the condition of the matrix material in 

determining the strength of prototype materials from tests on matrix 

materials. 
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Table 3 

Summary of Static Test Results on 12-in. Diameter SamEles 
of Lake Valley Gravel and 2.S-in. Diameter SamEles 

of Lake Valley Gravel Matrix Material 

Sample Relative Dry Average Average 
Test Diameter Density Density Su Su 0'3f 0'3f <P' 

.1!2.:. .!!!..:. ! Ecf ~ ~ ksc ~ Degrees 

1 12.0 58 127 5.2 1.45 39.S 

2 12.0 58 127 5.3 5.6 1.60 1.61 3S.4 

3 12.0 58 127 6.3 1.80 39.5 

1 2.8 44.* 115.4 2.9 2.9 0.92 0.92 37.7 

2 2.8 47.2 116.2. 3.9 1.20 38.3 

3 2.8 47.2 116.2 4.1 4.1 1.44 1.31 36.0 

4 2.8 47.3 116.2 4.2 1.30 3S.1 

5 2.S 4S.2 116.5 4.5 4.5 1.40 1.40 3S.1 

6 2.8 49.8 116.9 5.2 5.2 1.60 1. 60 3S.3 

7 2.8 53.6 117.5 6.8 6.S 1.S6 1.S6 40.3 

S 2.S 57.2 118.9 8.1 7.8 2.18 2.18 40.6 

9 2.S 57.2 11S.9 7.5 2.17 39.2 

*Average relative density of the soil matrix (obtained by computations based 
on mass-density relationships). 
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CONCLUSIONS 

A. Cyclic Strength Prediction 

1. It was hypothesized that in order to predict the cyclic behavior 

of a prototype (total) material with "floating" oversized grains, 

laboratory tests should be performed on the soil matrix alone at 

the same relative density as that of the total prototype 

material. Based on the test results obtained during this study 

for both Oroville and Lake Valley gravels, it was concluded that 

this hypothesis appears to be substantiated. 

2. Because of the range of the relative densities (40 to 84 percent) 

chosen for tests on two distinctly different gravelly materials, 

it was concluded that the above-mentioned hypothesis appears to 

be applicable to widely different coarse-grained cohesionless 

materials with "floating" oversized grains. 

3. The generation of pore water pressure during undrained cyclic 

loading and the deformation characteristics of the prototype and 

matrix materials prepared to the same relative density were simi­

lar in nature. This agreement was better when the results were 

compared on the basis of the stress ratio required to cause a 

pore pressure ratio of 100% than for comparisons based on the 

stress ratio required to produce higher double amplitude axial 

strains in the range of 10 percent. 

4. The maximum particle size limit of 2-inches used in this study 

was based on necessity, since with the equipment available, the 

maximum particle size which could be accommodated in a 12-inch 

diameter specimen was 2-inches. The modeling criteria, however, 



should be equally applicable to other prototype materials with 

maximum particle sizes larger than 2-inches. 

5. The errors in cyclic stress ratio required to cause 100 percent 

pore water pressure ratio or produce a given level of double 

amplitude axial strain, introduced by the membrane penetration 

effects, were significant; in this study, the correction in 

cyclic stress ratio due to membrane penetration effects was 

approximately 10 percent for both the specimens of Lake Valley 

gravel and the Oroville gravel. 

B. Static Strength. Prediction 

It was hypothesized that in order to predict the static strength 

behavior of the prototype (total) material, tests should be performed on 

the soil matrix alone (the modeled specimen) at a relative density less 

than that of the prototype material or the "far-field" soil matrix as it 

exists within the total material. 
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Based on the test results obtained in this study, it would appear 

that the test relative density for the matrix giving the same undrained 

strength as that of the prototype is about half way between the average 

relative density of the matrix in the prototype material and the relative 

density of the total prototype material. This result is consistent with 

the concepts of relative density distribution in the matrix of a soil 

containing floating oversize particles presented in this report. However 

since tests were performed on only one type of gravel (Lake Valley gravel) 

and the prototype samples were prepared at only one relative density (58 

percent), this conclusion can only be considered tentative in nature and 



should be investigated further by tests on gravels with different grada­

tions tested at different relative densities. 
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