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Abstract (Limit: 200 words} AN 31ternate modal decomposition method for dynamic analysis of non-
classically damped structural systems is presented. The resulting decoupled equations
contain only real parameters. Hence, the solution can be obtained in the real field.
Several procedures are outlined to solve these equations for both deterministic and
nonstationary random ground excitations. Prior work has shown that the effect of
nonclassical damping may be significant for the response of Tight equipment attached
to a structure. Therefore, the proposed solution technique is applied to find the
response of a light equipment that is attached to a multi-degree-of-freedom structure.

Numerical results obtained from deterministic and nonstationary random vibration analy-
ses indicate that the effect of nonclassical damping on the response of tuned equipment
is significant only when the mass ratio and damping ratio of the equipment are small.
Under this circumstance, the approximate classically damped solution, i.e., the solu-
tion obtained using the undamped modal matrix and disregarding the off-diagonal terms
of the resulting damping matrix, is usually unconservative.

For detuned equipment, neglecting the effect of nonclassical damping generally results
in 2n equipment response that is close to the exact results, However, for certain
equipment detuned at high frequency, neglecting nonclassical damping results in con-
servative equipment resporses,
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ABSTRACT

An slcternate modal decomposition method for dynamic analysis of
nonclassically damped structural systems is presented. The resulting
decoupled equations contain only real parameters. Hence, the solution can
be obtained in the real field. Several procedures are outlined to solve
these equarions for both deterministic and nonstationary random ground
excitations. Prior work has shown that the effect of nonclassical damping
may be significant for the response of light equipment attached to a
structure. Therefore, the proposed solution technique is applied to find
the response of a light equipment that is attached to a multi-degree-of-
freedom structure.

Numerical results obtained from deterministic and nonstationary random
vibration analyses indicate that the effect of nonclassical damping on the
response of tuned equipment {s significn¢ only when the mass ratio and
damping ratio of the equipment are small. Under this circumstance, the
approximate classically damped solution, i.e., the solution obtained using
the undamped modal matrix and disregarding the off-diagonal terms of the
resulting damping matrix, is usually uncenservative.

For detunsd squipment, neglacting the sffect of nonclassical damping
generally results in an equipment response that is close to the exact
results. However, for certain equipmenr detuned at high frequency, ne-

glecting nonclassical damping results in conservative equipment responses.
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SECTION 1
INTRODUCTION

In selsmic analysis of linear multi-degree-of-freedom viscously damped
structures, it is quite common to assume that the damping matrix is of the
classical (proportional) form (i.e., the form specified by Caughey and
0'Kelly [1]). This assumption enables one to decouple the equations of
motion by using the undamped eigenvectors of the system. After the
equations are decoupled, the response guantities of interest can be obtained
by either the response spectrum approach or numerical integration of the
decoupled equations [2]. Soluction of each decocupled equation represents the
contribution of a parcticular mode of vibration of the structure to the total
response. Furthermore, the response in most situations can be approximated
by contributions from only a few dominant mcdes.

In general, however, real structures are not classically damped.
Therefore, the damping matrix can not be diagonalized by the eigenvectors of
the undamped system. Under this circumstance, one can use a step by step
integration procedure to evaluate the respounse of structures. This,
howaver, may involve numerical difficulties unless the time steps are
sufficiently small, In general, the use of this procedure can be justified
vhen the structure i{s behaving nonlinearly,

One may stiil decouple the equations of motion of a nonclassically
damped structural system using the eigenvectors of the damped syscem.
However, for such structures, the damped eigenvectors are complex valued.
This procedurs, first propossd by Foss [4) and Traill-Nash [1l], decouples
the equations of motion of an n degree-of-freedom nonclassically damped
syaten {nto a set of 2n first order equations. These decoupled equations

contain complex parameters. Recently, Singh and Ghafory-Ashtiany [10]



developed a step by step numerical integration algorithm to solve these
decoupled complex valued equations. Ilgusa, Der Kiureghlian, and Sackman (6],
used random vibration approach to obtain statistical moments of the response
of nonclassically damped system subjected to stationary white noise
excitations. Veletsos and Ventura [l2] made a review of the dynamic
properties of nonclassically damped structures, and compared the exact
solutions of such systems with those computed using the undamped eigen
vectors and disregarding the off-diagonal terms of the resulting damping
matrix under deterministic excications.

In this paper an alternate modal decomposition approach employing
canonical transformation Ls presentad. The resulting decoupled equations
involve only real parameters, thus avoiding computations to be carried out
in the complex field. Several procedures are ocutlined to solve these
squations for both deterministic and nanstationary random ground exci-
tations. Prior work (6] has shown that the effact of nonclassical damping
may be significant for the response of light equipment attached to a
structure, The proposed canonical modal analysis tachnique is employed to
carry out a parametric study for the effect of nonclassical damping on che
response of a secondary system that is attached to a primsry structure.
Numerical results indicate that for tuned light equipments, neglecting
nonclassical damping cen result in a significantly unconservative squipment
rasponse.

Finally, the sffect of nonclassical damping on the response of primary
system is studied. An sight story shear beam type structure is considerasd
and the distribution of the damping is varied so that a variasty of

nonclassically dapped systems can be studied,
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SECTION 2
BACKGROUND
The response of an n degree-of-freedom structure subjected to a ground
excitation, 'ig, can be obtained by selving the following differential equa-

tions cf motion

=
13
+
a
Ie
+
R
15<
'
[
1=
"
"
\»

in which M, C, and K denote the (nxn) mass, damping, and stiffness matrices
of the structure, respectively, and X is an n vector denoting the displace-
ments of the structure relative to the moving base. The wvector r is a
unit vector, r - [1,1,...,1]'. A super dot (-) represents differentiation
with respect to time and an under bar (~) denotes a vector or a matrix. In
Eq. (1), the argument of time, t, for X and is have been omitted for simpli-
city.

Caughey and O0'Kelly (l] showed that if the damping matrix statisfies
the i{dentity C 5-1 K=K g'l C, the eigenvectors of the undamped system can
be used to transform the equations of motion, Egq. (1), into a set of n
decoupled squations. The system with damping matrix sactisfying cthis
condition is said to be classically damped. However, the eigenvectors of
the undamped system will no longer diagonalize the damping matrix that is
not of the classical form.

For the nonclassically damped system, the approach proposed by Foss
[4] and Traill-Nash [li] can be used. In this approach, the n second-order

equations of motion are converted into 2n first-order equations as follows:

1

1 ¥+ByY-p (2)
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in which él and § are (2nx2n) symmetric matrices and P is a 2n vector

defined sas
QIE -!lQ 9
él- M C + E_ O K ’ g- ulv{O- (3)
= - -k
and Y is a 2n vector, referred to as the state vector,

(4)

14

1
et
M. I
e

Tha eigenvalue problem of Eq. (2), |A Ay + B| = 0, can be expressed as

follows

XJ 51 fj +B fj -0 (5)

in which AJ and tj are the jth sigenvalus and sigenvector, respectivaly.
From the definition of thea state vector Y given by Eq. (4), the jth

eigenvector, , has the following form
8 1 g

A
1 ¥
!J -q..... (6)
%)
in which tj repressnts the displ icement siganvector. Since matrices 51 and
B do not commute, i.e., A B » B A/, the resulting elgenvalues and eigenvec-

tors are complex valusd [3], Furthermore, if the system is underdamped, the

2-2



eigenvalues and eigenvectors are n pairs of complex conjugate. The jth pair

of sigenvalues can be written as

2

dage1,2g 7 7 Sgey Ly Ve ey Ly, e
2 1/2
in which i = IT;. ij - uj (l-fJ ) and wj is different from the frequency

of the corresponding undamped system. The above notations was first
introduced by Singh [9].
The response state vector Y can be expressed as a linear combinatien

of the eigenvectors
Y=-42 (8)

where ¢ = [él' $a.- 0 f2n] 1s a (2nx2n) complex modal matrix. Substituting
Eq. (8) inte Eq. (2) and premultiplying it by the inverse of the ¢ marrix,

2-1, one obtains a set of 2n decoupled @differential equations

g -2, + Q

IR §=1,2,..., 2n (9)

-r
in which Qj is the jth element of the Q vector where Q - ¢'1 {.,‘}.
3 12 o

The solutions of Eqs. (9) together with the transformation of Egq. (8)
yield the response stare vector Y(t) of the structural sysctem. Note that

Eq. (9) involves complex coefficients and the solutions for 2 j=1, 2,

1 (
...) are complex. The solution for the state vector Y, however, is real.
In order to avoid the numerical solution for the complex differsntial

squations, we propose the following alternate approach [13]. In this

2-3



approach, the only complex calculations are the determination of the

eigenvalues and eigenvectors.



SECTION 3
CANONICAL MODAL ARALYSIS
The equations of motion for the state vector, Eq. (2), are rewritten

as follows:

Irde
1
1>
"~
+
1=
L]

(10)
where

o ek >
A= 1 0 ;o W= o 1D

The eigenvalues and eigenvectors of matrix A are identical to those of
Eq. (5), denotad by AJ and fj' for § =1, 2,.... 2n. Fuither the jth pair

of eigenvectors can be expressed as

£29-1 72 * 1Y (12)
£2j = 53 -1 EJ + Jj=1,2,..., n

in wvhich gj and EJ are 2n real vectors

The {2nx2n) real matrix T constructed in the following

I - [_.'10 Elu 52! 22“004_‘_jl Ejf"" -en' En] (13)
will transform the matrix A into a canonical form A (8], {.e.,

A=Tlar (14)
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in which Ill is the inverse of the T matrix and

<1 0
A
A= =2, (15)
. .
-n
where
C39 O
Ay = ., 3=1,2,...,n (16)
“py Ry

Let the transformation of the state vector be

Y-Tu an

Substituting Eq. (17) into Eq. (10) and premultiplying it by ths inverse of

the T matrix, I'l.ona obtains

1T
[ ]
>
e
+
tm
L]

(18)

in which A is given by Eq. (15) and

-¥
F~ -5'1 {;} (19)

Equation (18) consists of n pairs of dacoupled squations. Each pailr
of aquations rsprasents ons vibrational mode, and it is uncoupled with other

pairs. However, the two equations in each pair are coupled. The
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transformaction given in Eq. (17) is referred to as the canonical
transformation [13, 14]). All the parameters in Egq. (18) are real.
The jth pair of ccoupled equations in Eq. (18}, corresponding teo the

jth vibrational mode, is given as follows:

”2j~l - -$ij V2j-1 + “’Dj VZJ + F

¥ {20a)

V2j - -ij V?j-l - fjwj y2j + F ¥ {(20b)

21 Tg

in which sz_land F2 are the 2j-1th and the 2jth elements of the F vector,

]
respectively. Solutions of Eqs. (20) rogether with the transformation of
Eq. (17) yield the response state vector Y(t) of the structural system.

The advantage of the formulation given above is that the computations
for the solutions are all in the real field. The modal decomposition
approach described above is referred to as the canonical modal
decomposition.

Equation {(20) can be solved easily using either impulse respanse
function approach or frequency response function approach to be described
later. Likewise, it can further be decoupled, if one wishes to obtain one
equation in terms of each unknown, although this procedure is unnecessary.
The decoupled differential equations are second order, and the pair

corresponding to mode j is

. . 2 .
"2‘1-1 + 2€Juj y2j-1 + wj "2_1-1 - (€jwj P2j-1 + ij sz) xs

% (21a)

+F2J_1 g

2

TTad

voy = (E40y Fapy -wpy Fpy ) ses + Fyy %y (21b)

iizj + 2£Ju>j ;21 + wy

3-3



The solutions of the above decoupled equations represent the response of the
jth mode. However, from the computationsal standpoint, Eq. (20) appears to
be more advantageous than Eq. (21).

The canonical transformation given by Eq. (17) is applied to Eq. (10)
in which the A matrix is , in general, nonsymmetric. Since the equation of
motion given by Eq. (2) is identical to Eq. (10), the gsame canonical
transformation can be applied to Eq. (2) to arrive at the modal decomposi-
tion equations given by Eqs. (18) and (20). As such, some orthogonality
conditions can be used advantageously, since él and B matrices are symme-
triec. Detail derivations for the canonical transformattion of Eg. (2) are

presented in the Appendix.

By virtue of the canoniclal transformation presented in the Appendix,

elements of the F vector in Egqs. (19) and (20) can be expressed as follows

_[lag 8y apcap) + a4 b)GYIR

F (22a)

2j-1 . 2 . 2
(!J A 2_1) + (EJ A, !J)
P [(a &) byCah) - a) Ay 2 (BPTR 290
24 = (a! A a)2+(b'A 1)2 (220
=y -1~ ~J-1=

in which a prime indicates the transpose of a vector or matrix.
3.1 Reduction to Classically Damped Structures

If the structural system is classically damped, then the displacement
part of the eigenvector is real, i.s., !J in Eq. (6) is real. The velocity
part of the eigenvector, '\J tj' is simply ths eigenvalue, AJ, multiplied
by the displacement part of the aigenvector !j (see Eq. 6). Hence, !j and

EJ can be expressed as

-4



- ¢, 2
541 % Gk 5
a, = |...o.... . -
=} ® ~J fa}
=3 Y
in which !J is the lower half of Ej vector representing the displacement ei-
genvector. Thus, for classically damped systems, ¢, is simply the jth

~J

eigenvector of the undanped system.

The elements F2j—1 and sz glven by Eq. (22) can be simplified as fol-

lows [see the Appendix]

F2j-1 =0 (24a)
2 M«
__ =3 =k

Fa3 8 M 8y wpy (24b)

Finally, the simplified form of Eqs. (2la-b) become

¢ Mr
. . 2 R
R T o I TR S T T T S T N (252)
&' Mr fw, P Mr
o . 2 - -.j-..-. ooo_J!-.j--_.
I b It I B TR T T R T N

Substicuting Eq. (23) into Eq. (13), and then into Eq. (17), cone
obtains the displacement response vector X, that is the lower half of Y

vector as follows

X-9 (26)



in which ¢ is a (nxn) modal matrix of the undamped system and U is an n

vector with ¥25-1 as the jth element, representing the generalized coordi-

nate of the undamped system, i.e.,

¢ - [91’ 22,..., Qn] y U= [vl, SYRRRE ij-I""' V2n-1]' (27)

The solution for the displacement vector X given by Eqs. (26) and (27)
along with Eq. (25a) is simply the solution one would have obtained from the
modal analysis of a classically damped system. It can also be shown that
the solution of the velocity response g also reduces to that of the classi-
cally damped system using Eqs. (25a) and (25b).

In the following sactions different approuaches that can be used to

sclve Eqs. (20a-b) for both deterministic and nen-stacionary stochastic

ground excitations are described.
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SECTION &
DETERMINISTIC RESPONSE TO SPECIFIC EXCITATION
4.1 Direct Nuserical Integration
Given the record of ground excitation, Eqs. (20a-b) can be numerically
integrated and the response state vector Y(t) can be obtained by using the

cransformation of Eq. (17). Again, all the parameters in these equations

are real,

4.2 Impulse Response Punction

One can obtain the impulse response vector h,6 (t) for mode j, gj(t) -

["23-1' "2_1]" dus to the ground acceleration ‘x‘:s(:) = f(t), where §(t) is

the Dirac delta function. The jth modal impulse response vector is given by

-£,.u,t -t
(e Juj cos ij j-1 + (e ij sin ijt) sz

J 'fjujt

t) F2

"€yt
-{e sin wDJt) FZJ-I + (e

cos w,,t) F

Dj 2j

and the response vector, ZJ(t)' corresponding to mode j at time t is

t
!j(t) - l hvj(t-r) xs(r)dr (29)

Again Eq. (29) can bs integrated numerically and the resporse state vactor

Y(t) can be obtained through the transformacion of Eq. (17).
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4.3 Frequency Reoponse Function

Let EU (w) be the complex frequency response vector for mode j due to

i
ground acceleratlion, is -a iwt. Then, Ey {w) can be obtained easily from
Eqs. (20a-b) as follows
193 F23.1 * @py Foy + 1w Foy g
-w o+ 21 ijjw + w§
H (w) = 1 b 30)
-.yj
§j9y Foy - wpy Fay.q + Lw Foy
t _”2 + 21 fjwju + wi )

Note that the vectors Eu (w) and h, (t) are related chrough the Fourier

transform pair, i.e.,

b ©@-Ffh @M e g @ ©E e o

]

If gJ(w) denotes the Fourier transform of the response vector of mode },
5j(t)‘ then
vylw) = Euj(w) X (w) (32)

in which ig(u) is the Fourfisr transform of the ground acceleration, is(t).

Finally, the jth modal response vector in the time domain ¢an be cbtained as

follows
[ 4 «
vy = = [y o Bta - g I!,j(u) k) o ¥t (a3)
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the above calculation can be carried out sfficiently using the Fast Fourier

transform (FFT) algoritha.



SECTION 5
STOCHASTIC RESPONSE TO RANDOM EXCITATION

The canonical modal decomposition method presented above can be used
conveniently to obtain the response of a nonclassically damped system to a
nonstationary random ground acceleration {14, 15]. The expressions for mean
squares of the response state vector, ¥(t), will be derived in the
following.

Often, the earthquake ground excitatiom, ig(c), can be modeled as a

uniformly modulated nonstationary random process with zero mean
*s(t) = a(t) X5(t) {34)

in which a«(t) = a deterministic non-negative modulating or envelope funcrion
and ﬁo(t) is a stationary random process with zero mean and a power spectral

density, ¢...(w). A commonly used functional form for the spectral density

i
is
14667 (o) 2

S
1 - (u/wg>2]2 .o 552 (u/wg)2

by (@) - [ (35)

in which 68' w_, and 5§ are parameters depending on the intensity and the

8
characteristics of the earthquake at a particular geological locatiom.
Various types of the envelope funccrion a(t) have been suggested in the
literature to introduce ths nonstationarity of the ground accelerationm into
Eq. (34). One possible form of a(t) is: a(t) = (l:/tl)2 for 0 st < tl'
a(t) = 1 for Ty Stsc,, and a(t) = exp {-ﬁ(t-tz)] for t > t,. HNote that
£ t2 and 8 can ba selected to reflect the shape and duration of thes earth-

quake ground acceleration. When a(t) = 1, it follows from Eq. (34) that the

5+1



ground acceleration is a stationary randem process. The stationary
assumption is reasonable when the duration of the strong shaking of the
earthquake ground motion is much longer than the natural period of the
structure.

Since the ground acceleration is(t) is a zero mean random process, the
mean value of all the response quantities are zero as well. Let Ey(t) be

the impulse response vector of v(t), {.e., hv(t) - [h;l(t),b'yz(t),

}3;“(:)]' . Then, the response state vector Y(t) is given by
t
Y(t) = J T Qv(r) ig(t-r) dr (36)
4]

The covariance matrix l_ti(t,t) of the response state vector, Y(t), is

obtained from Eq. (36) as

o T
Ky(E,t) = E[ J T h,(r)) R (c-r))dry I

1_'_1;(12) T* ig(t-rz)dfz]
0 0

Trt
- I J T h(r)) alt-r)) Reg (r1-7,) hi(r,) T’ a(t-r,) drydr, (37)
00

in which Eq. (34) has been used, and Rﬁi(t) is the autocorrelation function
of the stationary random ©process KO(C), which is related to the spectral

density ‘ii(“) through the Wiensr-Khinchin’s re.ation

1l dwlir,-r,)
Rﬁ(fl-fz) = on I‘Oﬁi(w) o = 1 2 dw (38)
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Substituring Eq. (38) into Eq. (37), one obtaina

‘¥
Ky(e,z) = I Mo(t,w) My (t,0) ¢yo(w)de (39)
in which a star denotes the complex conjugate and

fwr

t
EY(t,w) - I T Ev(r) a{t-r) e ~ dr (40)
0

The variance vector ng(t) of Y(t), which is equal to the mean square
response vector of Y(r), consists of the diagonal elements of EY(t,t) and it

can be axpressed as follows

a2ty - L | gyt | dgle) a (1)

in which | gy(t,u) !2 ‘ii(”) is the evolutionary power spectral density cf

the stats vector, Y(t), and l gY(t.u) |2 is & vector in which its elements

ars the squares of the absolute value of the corresponding elements of
Ey(t~”) given by Eq. (40).

The nonstationary mean square response given by Eq. (4l) can be
computed easily as follows. Firstly, the impulse response vector hv(t) can
either be computed dirsccly from Eq. (28) or indirectly from tha frequance
response vector gv(u) given by Eq. (30) using the FFT technique. Secondly,
the vector §Y(t'°) is evaluaced from Eq. (40) using the FFT techniqus again.
Finally, the time dapsndent root mean squares response, gY(t). iz obtained by

numarically integrating Eq. (41) and taking tha aquare root.
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SECTION 6
NUMERICAL EXAMPLES

The canonical modal analysis preseunted in this paper will be used to
study the response behavior of nonclassically damped structural systems
subjected to earthquake-type excitations. Emphasis will be placed on the
response behavior of primary-secondary structural system, Parametric
studies will be conducted for the response of secondary system, such as a
light equipment attached to a structure. In particular, under what condi-
tion the nonclassical damping may be significant. Frequencly, it may be
assumed that the structure and equipment are classically damped individ-
ually. However, because of different damping characteristics of the
equipment and the structure, the combined equipment-structure system
generally is not classically damped,

Igusa, Der Kiureghian, and Sackman [6] considered a single-dsgree-of-
freedom equipment attached to a single-degree-of-freedom structure and
subjected to a stationary white noise ground excitation. They showed that
at tuning (when frequancies of the squipment and structure coincide} the
effect of nonclassical damping on the response of light equipment becomes
significant. Here we Iinvestigate the sffect of nonclassical damping on
somevhat couplex equipment-structure systems axcited by an earthquake ground
accelsration. Young and Lin [16] and Holung, Cai and Lin (5] conducrted
extensive parametric studies for the frequency raasponse function of the
primary-secondary structural system. Here we examine the response of the
equipment-structure system to both deterministic and nonstationary
stochastic ground excitations.

Of particular interest is the case in which the primary structure
itself is usnclassically damped. Hence, the second class of problems

studied herein deals with the effect of nonclassical damping on the
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structure itself. An eight story shear beam type building is considered and
the distribution of the damping within the structure is slightly varled to
study the effect of nonclassical damping on che response.

All the example problems studied are subjected to either a simulated
sample ground motion or the ground motion that is modeled as a nonstationary
random process described in Egqs. (31-32). The parameters that define the
envelope function, a(t), and the spectral density, ¢.,.[,*(w), of the earch-
quake model are: t:1 = 3gec., c2 = 13 gec., 8 = 0.26, ug - 3.0 Hz, ‘fg - (.65
and §2=74.7x107% mz/sec?/rad. A sample function of the earthquake ground
acceleration is simulated and shown in Fig. 1.

The first equipment-structure example consists of a two-degree-of
freedom shear beam type structurs with a single-degree-of-freedon light
equipment attached to it as showm in Fig. 2(a). This primary structure is
classically damped If cl/kl - c2/k2 and the combined equipment-structure
system is classically damped if cl/kl - 4:2/1:2 - c:./l«:° in which the subscript
8 rafars to the eguipment. The nass and stiffness of each story unit of
the primary structure are: lll-nz-n-SO tons; kl—kz-k-19,379 kN/m. The na-
tural frequencies of the primary structure ere 2.5 and 6.5 Hz, respectively.
Parametric studiey will be carried out by verying tha distribution of the
damping of the primary structurs and ths equipment damping.

Let the values of 2% and ey be squal to 123.4 kN/m/sec., so that chs
primary structurs is classically danpad with the first modal damping ratio
of approximataly 58. Given a nass ratio, the damping ratio of the squipment
is varied and the response of the equipment, {.s., displacement relative to
the attachmant point, is svaluatsd by the exact method presented in this
papsr. The results are compared against these obtained uaing the
approximate classically damped approach. Ths approximate classically damped

approach is to dscouple the sscond order squations of motion using
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eigenvectors of the undamped system and disregard the off diagonal terms of

tha &' C ¢ matrix, where ¢ is the (nxn) modal matrix of the undamped primary
-secondary system, Eq. (27).

Let the equipment frequency, W be tuned to the fundamental frequency
of the primary system, i.e., we = 2.5 Hz. The response of the equipment to
the simulated deterministic ground acceleration shown in Fig. 1 is presented
in Fig. 3 for different values of equipment damping racio, ee' and mass
ratio, 4. The mass ratio, 7y, of the equipment is the ratio of the equ.ip-
ment mass to first modal mass of the primary scructure that is equal to 30
tons. In Fig. 3, the ordinate is the maximum response of the equipment
relative to the attachment point in 30 seconds of earthquake episode, and
the abscissa, 5, is the ratio of the equipment damping ratio, fe, to the
unique damping ratic of the equipment, fec’ that would make the combined
equipment-structure system classically damped. For the classically damped
shear beam type primary system of Fig. 2(a), the damping ratic of the equip-
ment, eac' that results in & classically damped primary-secondary system
can be obtained using the Caughey-0’'Kelly fdentirty, fec - (we/Z)(ci/ki), in
which i refers to any of the degrees of freedom of the primary system.
Likewisa, when the primary system is classically damped, €ec is equal to the
jth modal damping ratio of the primary structure if the equipment is tuned
to the jth mode of the primary structure. Hence in the present exanmple, eec
is equal to the first modal damping ratio of the primary structure which is
5%,

Fig. 3 presents the results for three different values of the
equipmen: mass ratio, y. From this figure it is clear that the equipment
response increases as its damping ratio E' decreases. The results based on

the approximate classically damped approach start to deviate from the exact
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solution only when fe < Eec. The deviation increases as the equipment dam-
ping ratlic or the mass ratio decreases. Further, the solutions obtained
using the approximate classically damped approach in the region fe < see are
nonconservative. In other words, the effect of nonclassiral damping becomes
signiffecant only when the equipmen~ damping ratio, Ee' is smaller than éec
that results In a classical damping for the combined equipment-structure
system. It is also evident that the smaller the mass ratioc or the quipment
damping, the more pronounced is the effect of neglecting the off-diagonal
terms of the &' C ¥ matrix.

Figures 4{a}, (b) and (¢) show the effect of nonclassical damping on
the response of the equipment that is not tuned to any of the frequencies of
the primary structure. The equipment frequency wg is chosen to be the
average of the firsrt two frequencies of the primary structure, {.e., W, -
(w1+w2)/2 = 4.5 Hz. From these figures, it is clear that for detuned equip-
ment attached to the two-story primary structure of Fig. 2(a), the effect of
nenclassical damping may be ignored without csusing any problea. Likewise,
the maximum equipment response is not sensitive to the mass ratio.

The observations made from Figs. 3 and 4 above hold for a SDOF
equipment attached to a two-story shear beam type primary structure. The
second example consists of an eighr-degree-of-freedom shear beam type
primary structure with a single-degres-of-freedom equipmenc attached to the
seventh story unit as shown in Fig. 2(b). The mass and stiffness of each
story unit of the primary structure are: m = my=...= B =W 345.6 tons
and kl-kz - . .-ka-k-S.a'xlOS kN/m, The undamped natural frequencies of the
primary structure are Wy 0.92, wy = 2.73, Wy = 4.45, w, = 6.02, Gy = 7.38,
wg = 8.49, wy = 9.32, wg = 9.82 Hz and the first modal mass is 345.6 tons.
Let the values of €1 through cg be equal to 2,937 kN/m/sec, such cthat the

primary structure is classically dampad with the first modal damping ratio



of approximately 2.5 ¢. In this example the equipment frequency, w,, is

tuned to the third natural frequency of the primary structure, f.e., w_ =

e
4.65 Hz. This results in the value of o of approximately 12%. Again, the

simulated earthquake ground acceleration shown in Fig. 1 ir used as the
input excitation.

Figure 5 shows the response of the equipment for various values of
equipment damping ratio, £_, and mass ratio, 7. Similar to the results for
the two-degree-of-freedor primary system, the effect of nonclassical damping
is generally significant only when the equipment mass ratio is small and its
damping ratic is smaller than Eec' However, the results scem to indicate
that for certain tuned equipment structure systems, ignoring the nonclas-
sical damping may indeed result in conservative equipment response, see Fig.
5(¢)

Figure 6(a) shows the effect of nonclassical damping on the response
of a detuned equipment attached to the eight story primary structure of Fig.
2(b)}. The frequency of the equipment is set to be equal to the average of
the first and seccnd frequency of the primary structure, i.e., w, -(m1+w2)/2
= 1.83 Hz, which results {n a value of eac of approximately 5%, Fig. 6(b)
shows the effect of nonclassical damping for the same equipment-structure
system axcept that the frequancy of the equipment is now set to be equal to
the average of the second and third frequency of the primary system. This
results in an equipment frequency of 3.6 Hz and a fgc value of approxi-
mately 9.78%. From these figures it is clear that the eaffect of nonclassical
damping iz insignificant at all.

However, as the frequency of the detuned equipment increasea, the
situation may be different. Figure 6(c) presents the equipment response
vhen tha equipment frequency is equal to the average of the fourth and fifth

frequencies of the primary structure, i e., w, = (94+w5)/2 - 6.70 Hz. Note
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that for this equipment-structure system, the value of {ec is approximately
18%. Vhen the equipment frequency is ser to be equal to the average of the
seventh and eighth frequencies of the primary structure, i.e., w = (w7+w8)/2
= 9,57 Hz, the effect of nonclassical damping is shown in Flg. £(d).
Figure 6(e) presents the same results as those of Fig. 6(c) except that the
mass ratio of the equipment 1s now increased by a factor of hundred.

Figures 6(c) through 6(e) indicate that the effect of nonclassical
damping becomes significant for detuned equipments when (i) the frequency of
the detuned equipment is high, and (il) the equipment damping ratio is
small. Under this circumstance the approximate classically damped procedure
results in a higher equipment response than the exact solution. This
phenomenon can be explained in the following. The spacing between natural
frequencies of the primary system reduces in the high frequency range. In
other words, higher natrual frequencies tend to be closely spaced as
evidenced by the primary structure considered herein. When the equipment
has a high frequency, although datuned, it wi{ll interact with its
neighboring structural frequencies due to its clcsenass to them. Because of
such modal coupling and interaction, the equipment response tends to
decrease as observed also in Ref. 5. Such a trend becomes stronger as the
damping of the primary system increases. Hence, the observation made above
holds for high fraquency equipment. However, at such & high frequency, the
damping of tha primary structurs iz also pretty high, and it is questionable
whether the viscous damping assumption is still valid for the primary
structure.

Suppose ths danping of sach story unit of tha primary structurs {s
reduced by a factor of five. This results in a value of L five times
smaller. When the equipment £{s detuned at a frequency of w, = (wa+w5)/2,

the response of the squipment is displayed in Fig. 6(f). This figurs
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presents the same results as those of Fig. 6{(c) except that the damping of
the primary structure is now five times smaller. From this figure, the
effect of nonclassical damping for this primary-secondary system is not
nearly as significant as that of Fig. 6(c). As a result, damping of the
primary structure also plays an important role for the response of high
frequency equipment. In other words, the modal coupling and interaction
increases not only as the equipment frequency increases, but also as the
structural damping increases. Therefore, it is reasonable to infer thac
for detuned equipment at high frequency, the approximate classically damped
procedure results in significantly higher ¢quipment response than the exact
procedure, if the modal damping of the primary structure adjacent to the
equipment node 1is high and the damping of the equipment is smaller than Eec'

When the primary system is nonclassically damped, the response of the
secondary system to the simulated ground motion in Fig. 1 will be investi-
gated. Again, consider the equiment-siructure system of Fig. 2(a), in which
values of €y and ¢y are selected such that the primary structure itself is
nonclassically dampad. Two different damping distriburions for the primary
strucure are considered. 1In the first case, all damping of the primary
structure of Fig. 2(a) is placed in the first story unit; with the resulrs
c1-246.8 kN/m/sec and cz-0.0. In the second case, all damping of the struc-
ture is placed in the second story unit, leading to the results cl-0.0 and
c2-2a5.8 kN/m/sec. The damping ratio of the equipment is varied and che re-
sponse behavior of the squipment will be examined. It has been demonstrated
above that ignoring the effect of nonclassical damping results in unconser-
vative responses for tuned equipmant with small mass ratio v and small
damping ratio, E.. Equipment with such characteristics will be conaidered

in the following.
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Figures 7 and 8 show the maximum response in 30 seconds of the time
history for an equipment that is attached to a nonclassically damped primary
structure described above. The equipment frequency, We is tuned to the un-
damped fundamental frequency of the primary structure. In these figures,
the ordinate 1s the maximum displacement of the equipment relative to the
attachment point and the abscissa, o' = £ /{_ ., is the ratio of the damping
ratio of the equipment to the approximate eec’ denoted by E;c, as described
in the following.

For tuned equipment attached to classically damped primary structures,
the damping ratio Eec of the equipment which results in a classically damped
primary-secondary system is the same as the modal damping ratio of the
primary structure in which the equipment is tuned to. However, when the
primary structure is nonclassically damped, one can obtain an approximate
value for fec, denoted by f;c, by treating the primary system as veing
an equivalent classically damped system. An equivalent classically danped
primary system is obtained from the original primary system by neglecting
the off-diagonal terms of the § T & matrix, where T is the damping matrix of
the primary structure and § is the modal matrix of cthe undamped primary
structure. Thus, the jth equivalent classical modal damping ratios of the
primary structure, denoted by Ej , is obtained by dividing the diagnonal
terms of the & T & matrix by twice the corresponding jth undamped modal fre-
quency. Finally, E;c can be obtained from the aquivalent classical modal
damping ratios of the primary structure (see Ref. [1]). For the two
nonclassically damped primary-secondary structuras considared above, the
approximate first modal damping ratios are fi - E;c - 7% (c1-2c. cz-O) and
(i - (;c - 2.8% (cl-O, c2-2c), raspectively. Recall that for this primary

structure, distributing the damping equally between the two-story units
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results in a classically damped structure with the first modal damping ratio
of approximately 5%, i.e., Ei - Eec - 5%,

As expected, the results shown in Figs. 7 and 8 indicate that the
distribution of damping in the primary structure has a significant effect on
the response of the tuned equipment. Likewise, the effect of nonclassical
damping is significant only when the equipment damping is small. When the
damping of the equipment Ee is equal to féc, ie , np = Ee/Eéc-l, it is ob-
served from Figs, 7 and 8 that the exact equipment response and the
approximate classically damped results are almost identical. Such a
solution at Ee/E;c is denotad by (Uec)max. To examine whether £éc is a use-
ful parameter for measuring the effect of nonclassical damping, resulcs in
Figs. 7 and 8 are replotted in Fig. 9 in a different form. In this figure
the ordinate is the exact maximum equipment response, denoted by
(Ue)max. normalized by the value (Uec)max. Also plotted in Fig. 9 are the
corresponding results when the primary stucture is classically damped
(cl-cz-c). From this figure it is clear that the approximate modal demping
ratios obtained from the diagonal terms of the &' T & matrix of the primary
atructure can be used as a useful measure in determining the effect of
nonclassical damping on the response of tuned squipment even if the primary
structure is not classically damped.

A nonstationary stochastic ground acceleration with a power-spectral
density, ¢ﬁi (w), and an envelopo function, a(t), described praviously is
consldered as the I{nput excitation. The primary structure is & two-degree-
of -freedon classically damped structure shown in Fig. 2(a). Since the mean
values of earthquake ground acceleration is zero, the mean value of response
quantities ars all zerc. Therefore, the root mean square {(rms) of the
responss 1s equal to the standard deviation. The time dependent rcot mean

squars (rms) responss of an equipment tuned to the first mode, 1.e,, W =
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wy, is shown in Fig. 10 for several values of equipment damping racio. The
corresponsing results for a detuned equipment with w, = (wlmz)/z are dis-
played in Fig. 11. As eupected, the rms response increases as the equip-
ment damping reduces and the response for a tuned equipment is at least one
order of magnitude larger than that of a detuned equipment. Further, a com-
parison between Figs. 10 and 1l indicates that the root mean square response
of a tuned equipment is quire sensitive to the equipment damping Ee' vhere-
as this iz not the case for a detuned equipment.

Extensive numerical results show that the effect of nonclassical
damping on the rms response of a detuned equipment with w, = (wlmz)/Z is
insignificant. For tuned equipment with w @, the effect of monclassical
damping on the maximum rms reponse In 30 seconds is shown in Fig. 12 for
three different values of mass ratio, 7. In Fig. 12 the ordinate is the
maximum rms of the equipment response In 30 seconds of earthquake episode,
and the abscissa is n = ¢ /€, = ¢,/ 0.05 as described in the first example.
The results based on exact solution and approximate c¢lassically damped
approach are presented in the figure. Similar to the response of equipment
subjected to a simulated deterministic excitation presentad previously, the
effect of nonclassical damping for tuned equipment attached to the two story
primary structure {s pronounced only when the equipment is light and its
dampling ratio f. is smaller than €ec, fe.,n= {e/’{ec < 1. Further, the
approximate classically damped solutions are unconservative.

Next, the effect of nonclassical damping on the maximum rms response
of the equipment that is detuned at the higher frequency is investigated.
Again, considsr the eight-story primary-secondary structure of Fig. 2(b) in
which the equipment frequency is equal to the avarage of the fourth and
fifth frequencies of the primary structure, i.e., w

o = (U, +05)/2 = 6.7 Hz.

Figs. 13(a)-(b) show the maximun rms of the equipment response, and Flg.
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13(¢) shows the same results as theose of Fig. 13(a) except that the damping
of the primary structure is reduced by a factor of 5. From these figures,
it is observed that the effect of nonclassical damping is significant for
the detuned equipment, when it satisfies the following conditions
simultaneously: (1) the equipment is detuned at high frequency with a high

€ _ value, (i1) the equipment damping is small, i.e., fe/fec <1, and (ii{)

ec
the mass ratio is small. Under this circumstance, the rms response obtained
using approximate classically damp?d precedures is always higher than the
exact solution. Again, this is due to the modal coupling and interaction of
the equipment and the primary system. These conclusiaons are identical to
those obtained previcusly, when the excitation is a simulated deterministic
sample earthquake ground motion.

The intensity of earthquake ground acceleration usually consists of
three segments as shown by the envelope function a(t), Eq. (34). The
intensity builds up in the first segment (O, tl) and reachas & statlonary
magnitude in the second segment (:1. t2)‘ representing the most intense
portion of earthquakea. The response history of structures alsc consists of
three sagments and its stationary rms value in the second segment may be
obtained using the stationary random vibration analysis. The transient
responss in the first segment resulting from zero initial conditions as well
as transient esarthquake sxcitations is usually smaller than the stationary
response in the second segment. However, urder suitable conditions, such as
flight vehicles subjected to atmospheric turbulences, the transisnt response
at some point in time in the first segment may axcesd the stationary
responss in the sscond segment {?]. Such an ovarshooting phenomenon is
important in the design of structures. The cvershooting phenomenon may
occur if the excitation is applisd (or builds up) suddenly. Under ordinary

conditions whers the initial conditions for the structurs are zero and vhars
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the earthquake excitation also builds up from zero at time zero, such an
overshooting phenomenon is unlikely. For tuned equipment, however, the
displacement or acceleration response may overshoot. Parametric studies
will be made to examine the possibility of overshooting, in particular, the
rate of increase of the envelope function will be varied.

The two-degree-of-freedom primary structure with a single-degree-of
freedom equipment illustrated in the first example is considered. The
equipment i{s tuned to the first natural frequency of the primary structure,
i.e., Wy =W 2.5 Hz and the damping ratio of the equipment, is set at 5t%.
The first and second modal damping ratios of the primary structure are 2%
and 5.2%, respectlvely. The power spectral density, ‘ii(u)' of the sta-
tionary ground acceleration is identical to that described previously except
the value of @ is now at 2.5 Hz. The envelope function a(t), is given as
follows; a(t) = (t/cl)l' for 0 st < € a{t) = 1 for G <<ty and a(t) =
exp [-ﬁ(t-tz )] for t < ty This envelope function raesults in a ground
acceleration that builds up toward a stationary valus a(t) = 1 at a faster
rats then the envelope function used in the previous example. The time
dependent rms responses of the primary and secondary structure, including
the rms of the relative displacement and accelaration, are shown in Figs.
l4(a) through 14(f). From these figures and extensive results obtained from
parametric study, including vartation of envelope function, variation of
primary-gsecondary system, tuned or detuned aquipments, etc., it is observed
that the overshooting phenomenon for the displacement or accelerartion
responss does not occur for either the primary or secondary system,

Finally, the effect of nonclassical damping on the response of a
structure without any equipment is examined. An eight-story primary
structure shown i{n Fig. 2(b) is considered and the affect of the distri-

bution of damping on the response will be examined., Six different
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distributions of damping for this structure are considered. 1In all cases,
the distribution of damping among the story units are varied but the total
damping in the structure is kepr the same as the classically damped case
(i.e., €y=Cy=- - .-c8-2,937 KN/m/sec.) In case 1, the damping in each story
unit is proportional to the height of the stery, i.e., ¢y = ico. in which i
is the srory number and { = 1 is the ground level. The second case is the
opposite of the first case, i.e., the damping in each story unit is in-
versely proportional to its height, i.e., ey = (9-i)c0. In the third case,
the largest damping is placed in the fourth story unit and the damping in
other story units decreases linearly with respect to their distances from
the fourth story unit. The fourth case is similar to the third case except
that the largest damping is placed in the fifth story unit. 1In the f£ifth
case, total damping {s distributed equally among the first, third, fifth and
seventh story units., The last case 1s similar to the fifth case, except
that total damping is equally distributed among the second, fourth, sixth,
and eighth story units.

The six nonclassically damped structures are subjectred to the
simulated ground acceleration of Fig. 1. Tables 1 and 2 present the results
of floor displacements and story deformations for these structures., Also
presented in these tables are the results obtained by neglecring the off
dlagonal terms of &' C & matrix, where $ is the modal matrix of the undamped
structure. The results for the classically damped structure, i.s.,
(L.e., C =Cy=.. "°8'2'937 KN/m/sec.) are presented in Table 3. An examina-
tion of these tables indicates that ~he effect of neglecting the off-
diagonal terms of ¢'C ¢ matrix is insignificant for all the cases
considered, whers the cdistribution of danmping along the building height

varies slowly. The maximum error using the approximate solution was less

than 4% for story displacement and less than 2% for story deformation.
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Therefore, i{t may be concluded that for primary structures, the effect of
nonclassical damping may be ignored if the damping distribution within the
structure does not change drastically. Such a conclusion does not hold if
extra high dampings are added to one or two story units, such as active or

passive control devices.
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HAXINTGM FLOOR DISPLACEMENT (cm.)

TABLE 1

X, X, x3 X, X x6 Xy xa

EXACT 3.33 6.55 9.58 12.71 14.51 16.23 17.40 17.99
APPROX.

CASE 1 CLASS.
DAMPED 3.31 6.53 9.55 12.24 14.49 16§.22 17.38 17.96
EXACT 2.66 5.23 7.85 9.80 11.61 13,60 13.92 14.38
APPROX.

CASE 2 CLASS.
DAMPED 2.66 5.24 7.66 9.81 11.60 12.97 13.90 14.37
EXACT 2.90 5.72 8,34 10.65 12.59 14.09 15,10 15.61
APPROX.

CASE 3 CLASS.
DAMPED 2.89 5.70 8.32 10.64 12.58 15,07 15.08 15.58
EXACT .00 5.90 B8.62 11.03 13.03 14.58 15.63 16.16
AFPPROX.

CASE 4 CLASS.
DAMPED 2.99 5.88 8.59 11.00 13.02 14.56 15.60 16.13
EXACT 2.84 5.59 8.16 10.50 12.42 13.90 14.90 15.40
APPROX.

GASK 5 CLASS.
DAMPED 2.83 5.37 8.14 10.43 12.34 13,81 14.82 15.32
EXACT .08 6.06 8.90 11.38 13.48 15.08 16.15 15.69
APPROX.

Cast ¢ CLASS.
DaNPED 3.08 6.06 &.84 11,32 13.3% 164.98  16.06 16.57
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TABLE 2

MAXINUM FLOOR DEFORMATION (em.)

U, v, v, Uy Ue Ue U, Ug

EXACT 1.3 322 1o 2.70 2.25 1.72 1.18 0.61
APPROX.

Cast 1 CLASS.
DAMPED 3.3l 3.22 3.02 2.70 2.25 1.73 1.18 0.61
EXACT 2.66 2.58  2.62 2.16 1.80 L.39 0.85 0.49
APPROX.

c - CLASS,
DAMPED 2.66 2.58  2.42 2.15 1.7¢9 1.38 0.95 0.49
EXACT 2.90 2.81 2.83 .33 1.95 1.50 1.02 0.52
APPROX.

CASE 3 CLASS.
DAMPED 2.89 2.80 2.62 2.% 1.94 1.49 1.01 0.52
EXACT 3.00 2.91 2.72 2.42 2.01 1.55 1.06 0.56
APPROX.

CASE & CLASS.
DAMPED 2.99 2.90 2.7 2.42 2.02 1.55 1.06 0.54
EXACT 2,84 2.76 2.58 2.33 1.93 1.48 1.01 0.52
APFROK.

CASE 5 CLASS.
DAMPED 2.8) 2.7 2.%7 2.30 1.9 1.47 1.01 0.51
EXACT 3.os 2.99 2.84 2.51 2.10 1.60 1.10 0.56
APPROX.

CASE 6 CLASS.
DAMPED 3.08 2.98 2.79 2.49 2.07 1.59 1.08 0.55
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TABLE 3
8-STORY CLASSICALLY DAMPED

—3IQRY NUMBER (1) 1 2 k| 4 b] [ 7 8
MAXIMUM FLOOR
DISPLACEMENT (Kl) 2.9 5.80 8.47 10.85 12.83 14.35 15.39 15.91
(cm.)
MAXIMUM FLOOR
2.%4 2.85 2.67 2.39 1.99 1.53 1.04 0.53

DISPLACEMENT (Ui)
(cm).
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FIGURE 6
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SECTION 7
CONCLUSIONS

A modal analysis approach, referred to as the canonical modal
decomposition procedure, for seismic analysls of nonclassically damped
structural system is presented. The main advantage of this precedure is
that the resulting decoupled equations of motion contain only real
parametars. Procedures are outlined to solve the decoupled equations for
deterministic ground excitations. Also presented is a procedure to solve
these decoupled equations when the ground excitation is a nonstationary
random process.

The canonical modal decomposition procedure is used to obtain the
response of primary-secondary structural system and to perform parametric
studies for the effect of nenclassical damping on the response of both
primary and secondary structures. In parametric studies several examples
were considered under both deterministtic and nonstationary sctochastcic
ground accelerations. A single-degree-of-freedom equipment attached to a
classically damped multi-degree-of-freedow primary structure was considered.
Using the canonical modal decomposition procedures, the response of the
equipment for various equipment dampings, mass ratios, and tunning and
detuning have been calculated.

Based on both deterministric and stochastic earthquake ground motion
inputs, the following conclusions are obtained from our sensitivity srudfies
for the response of primary-secondary system, where the primary structure is
classically dampsd. (1) The effect of nonclassical damping on the equipment
response is significant when the following conditions are satisfied
sinultaneously, (i) che fraquency of the squipment is tuned to that of any
mode of tha primary structure, (ii) the mass ratio is small, and (1ii) che

damping ratio f. of the equipaent is smaller than the damping ratio E.c that
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results in a classically damped primary-secondary sysrem. Under this
circumstance, the approximate classically damped solutions, {.e., the
solutions obtained using the undamped modal matrix and disregarding the off-
diagenal terms of the resulting damping matrix, are usually unconservacive.
(2) When the equipment is detuned at low frequency, the effect of
nonclassical damping on the equipment response is negligible., Hence, the
approximate classically damped approach can be used. However, under the
following conditions, the effect of nonclassical damping on the detuned
equipment response can be significant. (i) The equipment is detuned at high
frequency, (ii) the mass ratio is small, (iii) the damping ratio of the
equipment, £ . that results in a classically damped primary-secondary
system is high, and (iv) the ratic of equipment damping ratioc Ee to éec is
smailer than unity. Under this circumstance, the approximate classically
damped sclutions for the equipment response are higher than the exact
solutions.

Also studied were small equipment-structure systems in which the
primary structure is nonclassically damped. Limited results indicate that
for such primary-secondary systems, the effect of nonclassical damping on
the equipment response can be estimated by approximating tha primary
structure a3 being classically damped. This is accomplished using the
undampad modal matrix of the primary structurs and disregarding the off-
diagonal terms of the resulting damping matrix. Then the conclusions
described above hold. Corresponding to eoc for classically damped primary
structure, a meaningful measure of equipmant damping for nonclasasically
damped primary system, dennted by €’¢c' is determined using the
approximate classically damped primary system.

With the consideration of nonstationary earthquake ground

accelaratior, extensive parametric studies indicate that the overshooting

-2



phenomenon doesn’t occur for the response of either primary or secondary
system. In other words, the stationary response is always larger than the
transient response. This may be attributed to the fact that borth the
earthquake excitation and the stractural response are zero at time zero.

An eight story structure was considered and the distriburcion of
damping in the structure was varied. Results indicdate that the effect of
nonclassical damping on the response is not significant if the damping
distribution within the structure does not change drastically.

Finally, the equipment location may be an important factor for the
behavior of the equipment response [5]. Such a problem is currently being
investigated. 1In general, the conclusions obrained herein are consistent
with those of Refs. 5 and 16 in which parametric studies for the frequency

response function of equipment responses were conducted.
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APPENDIX: CARONICAL TRANSFORMATION FOR EQUATION (2)
The equations of motion given by Eq. (2) is as follows
Y+BY=-P% (I-1)

in which A, and B are (2nx2n) symmetric matrices. The jth pair of eigen-

vectors, f2j-1 and f2j' are exprassed as

fzj-l 3 +1 EJ

(1-2)
QZJ -8 - i Ej v J=1,2, ..., n
in which 3y and Ej are 2n real vectors.
Let
Y-TIvy -3
in which T is a (2nx2n) real matrix constructed in the following
I- [!1' by. 8y Byl 8, EnJ (1-4)

Substituting Eq. (I-3) into Bq. (I-1) and premulriplying it by the
transpose of T matrix, T'. one obtains

Fy+dy=-TP% (1-5)

z

IXe
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in which I and A are of canonical form

where

represents one vibrational mode, and it is uncoupled with other pairs.

L=-T AT 6-1"B8T
T A
=1 T, 0 -l 8y 0
r - : . 4=
) r 0 a,
and éj are (2x2) matrices given by
! T Ay b ‘B ! b
2818 | % 21 Yy R | 25 22
b A I b: A, b 3 b I b! B b
SIS R R R S I I B I

(1-6)

(I-7)

(1-8)

Equation (I-5) consists of n pairs of equations in which each pair

jth pair of coupled equations in Eq. (I-5) is given as follows

by

Ej ;Zj-l +a' A b, »

a, 523_1 +

3 4 By vyt eyl

23-1

+aBb

) = =3 Y23

-..'

3

1-1- )

The

P &, (I-98)

-3 -3 231

Since él and B are symmetric, the orthogonality conditions are given

!; 51 fk -0
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mek (1-10)

m B0

Substituting Eq. (I-2) into Eq. (I-10) with m = 2j-1 and k = 2j, one cbtains

(g + L by) Ay (ay - 1Dy =0
(I-11)
(a3 + L by) B (ay - £by) =0

Hence the following orthogonality conditions are obtained from Eq. (I-1l),

55 Ay 53 - '}.’j A Ej ' Ej Ay t_’j - Ei A !j
(I-12)

ajBa = -biBb,

SN
1o
1o

'

JZ
1o
>

Eliminating ;ZJ and v 2§-1 respectively, using Eq. (I-9) and the or-
thogonality propertias of Eq. (I-12), one obtainz the following two

equations for the jth vibrational mode

;21 L+ (a} ﬁlﬁi)(!i_ B !1)2 + (Ei A, !1);‘.% B !1) "21 .
(!j A !j) + (bl & !j)
(2] A 8)(b; Ba) - (b] A 8)(a;Ba)
* (a A )2 + (bl A, a )2 yzj
ey 3 %1%y
(a A, a,)a; + (b A, a,)b]
~f =1 =1'=4 ~] =] ~§’~§ P % (1-13a)

' 2 ; 2
(aj & 2" + 2y & 2 [T F



. (bj Ay a;)(a; B ay) + (a; A 8,)(b; B ay)
v2j +

[ 2 [
(53 A EJ) + Q’.’j

3>

2
12y

(aj &) 2)0(a] Bay) - (bj A a,)(b] B by)
+ e’ a)2+('b'A l‘)2 Y23
2y 4 2 =1 =1
(a) A, b)a! - (a! A, a,)b!
35 ) 24 -; =1 =-1-] 24] P is (I-13b)
@) 8, 8% + @) &) ap

A comparison between Eqs. (20) and (I-13) leads to the following

alternate expressions for the elements of the F vector.

(AJ 1).' + (b’ ALEi)Ei
Fag1 7 N a2 + () A a)? :
21 2y =-j =1 =

(1-14)

(- b )- + (af )b'
F,, == 1 4 % P

j)

(gj 207 + ) 2

1f the structural system is classically damped, then the T matrix is
greatly simplified. For such a system, the displacement part of the
eigenvector 1s real. Since the velocity part of the sigenvector {s the

sigenvalue multiplied by the displacement part of the eiganvactor, Eq. (6),

-‘-j and éj can be expressed as:
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in which !_1 is cthe 1lower half of the 5] vector representing the displace-
ment eigenvector. Note that for classically damped structural systems, !j’
is simply the jth eigenvector of the undamped system. Hence, for a

classically damped system, the following simplifications can be made
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Furthermoras, sxpressions for 1-'21_1 and sz can be simplified using the

orthogonality condition, gj Ay !J - I_:i A Ej'

. [0 - (8] A egeq]g
24-1 2

(b &) 1))

& A b “os H| (o
- . 2 + 8 4 he " e
G 4 2y 0 M
-0, (I-17)



and

' M
- ] ~ ~ (I-18)



