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ABSTRACT

A new method for the solution of problems involving random media is proposed. The
medium property is represented by a stochastic process. The method makes use of an orthogonal
expansion of the process with a finite set of random variables and leads to a formulation compatible
with the finite element method. The usefulness of the method, in terms of accuracy and efficiency,
is exemplified by considering a cantilever beam with random rigidity.
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SECTION 1

INTRODUCTION

The reliability of many engineering structures in the presence of uncertainty has been a crucial
factor in their analysis and design. Primary and secondary systems related to structures such as
nuclear power containments, space vehicles, and offshore platforms may be quite sensitive to small
imperfections of pertinent design variables. Several of these variables are inherently random and
can be most appropriately modeled as random processes. They may include quantities such as
modulus of elasticity, poisson ratio, shear strength, ocean wave height, and a variety of other physi­
cal and mathematical parameters (Vanmarcke, 1977; Burnside, 1985). Clearly, the complexity of
these modern structures requires the use of versatile numerical algorithms, such as the finite ele­
ment method, to obtain accurate mathematical approximations to their physical behavior. Thus, a
challenging task to the analyst is to accurately account for the randomness in a given problem while
using some proven numerical algorithm. The result from such an analysis can be in the form of sta­
tistical quantities describing the response.

A number of researchers have attempted to solve problems with random media introducing
assumptions of various degrees of severity. Collins and Thompson ( 1969 ) treated the eigenvalue
problem for random systems using first order perturbation. Hart and Collins ( 1970) dealt with ran­
domness in finite element modeling, using again .first order perturbation. Nakagiri and Hisada (
1982 ) initiated a series of investigations related to perturbation analysis in stochastic finite ele­
ments and concluded that the second order perturbation is impractical due to the scale of the
requisite computational effort. The first order perturbation, however, gives rather crude approxima­
tions to the solutions. Therefore, it is of limited value. In all the approaches mentioned above, the
medium randomness is accounted for by means of random variables. Shinozuka and various co­
workers investigated probabilistic models for spatial distribution of material properties ( 1987). He
used simulation methods ( Shinozuka and Lenoe, 1976 ) and the Neuman expansion method (
Yamazaki, Shinozuka and Dasgupta, 1986 ) to obtain the statistical properties of the response.
Also, Shinozuka ( 1987) obtained analytical solutions for a class of statically determined structural
members. The Neumann expansion was also used by Adomian ( 1984 ) and by Benaroya and
Rehak (1987).

The present paper suggests a new method for solving problems involving random media. The
random process describing the medium is expanded in an orthogonal decomposition (Loeve, 1977 )
which is then incorporated in a finite element formulation of the problem. The method is appealing
in that simulation is not required for the solution, and only the average stiffness matrix needs to be
inverted. Further, since the orthogonal decomposition is derived from the spectral theorem for
positive definite operators ( Mercer, 1909 ), it possesses some desirable convergence properties.
Finally, the computational efficiency and the accuracy of its results for a wide range of problems
may -be the basis of a substantial improvement over available rpethods.
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In the next section, the orthogonal decomposition for a one-parameter random process is
derived. Next, a finite element formulation that incorporates the expansion is developed. Finally,
a numerical example is discussed, and pertinent results are compared with those obtained from a
Monte-Carlo simulation of the problem.

1-2



SECTION 2

ORTHOGONAL EXPANSION

Let Sex) denote a random process, a function of the position x defined over the domain L. Let

Sex) denote the expected value of Sex) over all possible realizations of the process, and C(x,~)

denote its covariance function associated with locations x and~. By definition, the covariance

function is bounded, symmetric, and positive definite. Thus, it has the spectral decomposition

00

C(x,~)= L An <1>n(x) <1>n(~) .
n=O

(1)

(2)

where An and <1>n are the eigenvalue and the eigenvector of the covariance kernel, respectively. That

is, they are the solution to the integral equation

f C(x,~) <1>n(x) d~ = ~ <1>n(x) .
L

Due to the symmetry and the positive-definiteness of the covariance kernel ( Loeve, 1977 ), its

eigenfunctions form a complete set and they are orthogonal satisfying the equation

f <1>n(x) <1>m(x) dx = Onm '
L

where onm is the Kronecker delta. The process Sex) can be written as
-

Sex) = Sex) + ~S(x) ,

(3)

(4)

where ~S(x) as defined by equation (4) denotes a process with zero mean and covariance function

C(x,~). The process ~S(x) can be expanded in terms of <1>n as

00

~S(x) = L bn --.[A;; <1>n(x) ,
n=O

(5)

where bn is a random coefficient independent of x. In order to determine bn, multiply both sides of

equation (4) by ~S(~) and take the expectation on both sides. Then,

C(x,~) = E [ ~S(x) ~S(~) ] (6)

= i: i: E [ bn bm] ~An Am <1>n(x) <1>m(~) ,
n=O m=O

where E[.] denotes the operator of mathematical expectation. Multiplying equation (6) by <1>k(~)'

integrating over the domain L, and making use of the orthogonality of { <1>n } yield

f C(x,~) <1>k(~) d~ = Ak <1>k(x)
L

= i: E [ bn bk] ~An Ak <1>n(x).
n=O

2-1
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Again, multiplying equation (7) by <l>I(x) and integrating gives

Ak f <!>Ie (x) <1>1 (x) dx = ~ E [ bn bk ] ~"-n Ak 8nl •
L n=O

Then, using equation (3) leads to

Ak~ =~Ak Al E [ bk b1] •

Equation (9) can be rearranged to give

Thus, the random process S(x) can be written as

S(x) = S(x) + ~ bn~ <l>n(x) ,
n=O

where

(8)

(9)

(10)

(11)

(12)

and "-n, <l>n satisfy equation (2). The series in equation (11) is known to converge in the mean

square. Further, if S(x) is a gaussian process, the series can be shown to also converge almost
surely (Loeve, 1977). Truncating the series in equation (11) at the rth term gives

_ r

S(x) = S(x) + It bn~ <l>n(x) .
n=O

(13)

Note that the above expansion is optimal in the Fourier expansion sense. That is, it minimizes
the mean squared approximation error resulting from truncating the series at a finite number of
terms. Further, equation (13) is an expression for the projection of the random process S(x), viewed
as a curve in a Hilbert space, onto an r dimensional subspace. The expansion is used extensively in
the field of pattern recognition and image processing as an efficient tool to store random processes
( Devijver and Kittler, 1982). Of special interest in earthquake engineering, is the potential of the
expansion in generating realizations of multidimensional and nonstationary random processes asso­
ciated with earthquakes such as ground motion and material variability. Note that since the random
process S(x) is defined over a finite domain, it is not ergodic. This fact does not affect the solvabil­
ity of the class of problems being investigated herein; it eliminates an assumption necessary to
other approaches.

In the special case where the random process S(x) possesses a rational spectrum, the integral
eigenvalue problem can be replaced by an equivalent differential equation which is more tractable
mathematically (Van Trees, 1968).
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(14)

SECTION 3

EXAMPLES OF KERNEL EXPANSION

As an example of the orthogonal expansion discussed above, two quite common covariance
kernels are discussed in this section.

3.1 Exponential Covariance

Consider the covariance kernel defined by the equation

C(x,~) = crl e-clx~1 ,

where O's denotes the standard deviation of the random process under consideration. Clearly,

C(x,~) can be made rapidly attenuating versus Ix-~ I by selecting a suitable value of the parameter

c. This kernel is related to a 1st order markovian process (Vanmarcke, 1983) and is used exten­
sively in geophysics and in earthquake engineering. Realizations of this process are considered on

the interval [-a,+a]. The eigenfunctions and eigenvalues of the covariance function given by equa­
tion (14) are the solutions to the following integral equation

+a

0'; f e-clx-~I <I>(~) d~ = A<I>(x) .
-a

Equation (15) can be written as

x a

a; f e-c(x-~) <I>(~) dS + a; f eC(x-~) <I>(S) d~ = A<I>(x) .
-a x

Differentiating equation (16) with respect to x and rearranging gives

x +a

A <1>'(x) = -c 0'; f e-c(x-~) <I>(~) d~ + C O's2 f eC(x-~) <I>(~) dS .
-a x

Differentiating once more with respect to x, the following equation is obtained

A<I>"cx) = (-2 c 0'; + c2 A) <I>(x) .

Introducing the new variable

equation (18) becomes

(15)

(16)

(17)

(18)

(19)

f(x) + oi <I>(x) = 0 -a < x < +a. (20)

To find the boundary conditions associated with the differential equation (20), equations (16) and
(17) are evaluated at x =-a and x =+a. After rearrangement, the boundary conditions are

c <I> (a) + <1>'(a) = 0
3-1
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c <I> (-a) - <1>'(-a) = 0 . (22)

Thus, the integral equation given by equation (15) is transformed into the ordinary differential
equation (20) with appended boundary conditions given by equations (21) and (22). It can be

shown that o:l > 0 is the only range for co where equation (20) admits of solutions. In this case the
solution is

<I>(x) = al cos (eo x) + a2 sin (eo x) .

Further, applying the boundary conditions, equations (21) and (22), gives

{

a1(c-eotan(coa)+a2(eo+ctan(coa) = 0

al ( c - eo tan (eoa) - a2 ( eo + c tan (eoa) = 0

(23)

(24)

Nontrivial solutions exist only if the determinant of the homogeneous system in equation
(24) is equal to zero. Setting this determinant equal to zero gives

1
c - co tan (eoa) = 0

and

co*+ctan(eo*a) = 0

(25)

The resulting eigenfunctions are

(27)

(26)

sin (2eo;a)

*2 eon
a-

cos (conx)
<l>n(x) = ~;:::=======

sin (2eona)
a+---­

2 con

* sin (co:x)
<l>n (x) = -------

The corresponding eigenvalues are

A =n (28)

and

A;=
eo *2 + c2 '

n

(29)

where con and eo: are defined by equation (25). Thus, a process S(x) with covariance function given

by equation(14) can be expanded as

S(x) = i: [bn -vr;;<I>n(x) + b:~ <l>n(x) * ] .
n=O

(30)
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3.2 Triangular Covariance

The second kernel to be considered is given by the equation

C(x,~) = al (l-d Ix-~ I) . (31)

(32)

This kernel represents the triangular covariance function. It provides for linear decrease in correla­

tion, which may be useful for applications in quality control problems. Here, as represents the

variance of the process and d is a parameter which can be used to adjust the distance Ix-~ I of null
correlation between Sex) and S(~). Consider realizations of this process on the interval [O,a]. The
eigenfunctions and eigenvalues of C(x,~) are obtained as the solution to the integral equation

a

a; f [1-e Ix-~ I ] <j)(~) d~ = A <j)(x) .
o

Differentiating equation (32) twice with respect to x, the following equivalent differential equation
is obtained

<j)"(x) + ro2 <j)(x) = 0 o<x <+a. (33)

The associated boundary conditions are given by the equations

<j)'(a) = --<1>'(0) and

<j)'(0) = <1>(0) + <p(a)
2--a
d

where

ro=~~.

(34)

(35)

(36)

The solution of equation (33) subjected to the boundary conditions described by equations (34) and
(35) is, for even n,

rona
cos(conx) + tan(T )sin(conx)

<j)n(x) = --;:================================

and, for odd n,

~
a sin(2cona)
-+----
2 4

In equation (37), con is the solution to the transcendental equation

rona 2
tan(T) = 2

ron (d-a)'

3-3
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In equation (38), ron is defined as,

1t
0) = m-

n a m= 1,3,5... (40)

Figures 3-1 and 3-2 show, for a typical value of the parameter c, plots of the exponentially
decaying covariance function and of the 4-term approximation, respectively. Figures 3-3 and 3-4
show corresponding plots for the triangular covariance function, for a typical value of the parameter
d.
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EXPONENTIAL COVARIANCE
c=1.0

EXACT

Fig. 3-1 Exact Exponential Covariance; c=1.O.
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EXPONENTIAL COVARIANCE
c=1.0

4-TERM APPROXIMATION

Fig.3-2 Approximate Exponential Covariance; c=1.0, r=4.
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TRIANGULAR COVARIANCE
d=O.5

EXACT

Fig.3-3 Exact Triangular Covariance; d=O.5.

3-7



,
'-...'

TRIANGULAR COVARIANCE
d=O.5

4-TERM APPROXIMATION

Fig. 3-4 Approximate Triangular Covariance; d=O.5, r=4.
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SECTION 4

FINITE ELEMENT FORMULATION

Let L be a domain in R, and let Sex), x E L, be a property of this domain which will be con­
sidered to be a random process with mean Sex) and covariance function C(x,S). Let the domain L
be subjected to a set of p external forces { Pi }, i=l,...,p. Following the standard energy formulation

( Zienckiewicz, 1977 ), subdivided L into m finite elements each of length Ie. The strain energy
stored in each of these elements can be represented in terms of the strain E

e and the stress ae or-the
element

(41)

where { ue} is the vector of nodal displacements, [Be(x)] is the strain-displacement matrix, and

[ De(x)J is the random matrix of material properties. It is assumed that [De(X)] can be

represented as Sex) [pe ] where [pe ]is a deterministic matrix.

Summing up the contributions from all elements, the total strain energy stored in the domain L
becomes

y =~ ye =1- ~ {ue}T f [Be(x)r [se(X)] [Be(x)] dx {ue}. (42)
=1 2 =1 Ie

Setting

(43)

and expanding Sex) as in equation (13) gives

In this equation,

[ K,.e ] = A" f. <pn(x) [Be(x)r [pe(X)] [Be(x)] dx

is the nth consistent component of the random element stiffness and,

4-1
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is the consistent mean element stiffness. Substituting equations (43-46) into equation (42), the
expression for the total strain energy becomes

The local displacements { ne
} for each element are related to the global displacements {V}

of the whole system through the II bookkeeping II transformation

{ne}= [C"] (V), (48)

where [ Ce
] is a permutation matrix. Combining equation (48) and equation (47) yields

v = ~ ±bn {U }T [Ku] {U} + ~ {U}T [K] {U},
2 n=O 2

where

is the nth consistent global random stiffness, and

(49)

(50)

is the consistent global mean stiffness.

The p external forces applied to the domain can be grouped in a vector {P} . The work per­
formed by { P } during the deformation of the domain is equal to

Q = {U }T { P } . (52)

Minimizing the total potential energy leads to

~=o. (53)

Inserting in the above equation the expressions for V and .Q from equations (49) and (52), respec­
tively, results in

[ K +i bn [K,,] ] (V) = (P) . (54)

At this stage, the boundary conditions can be imposed on each [Ku] separately. The spatial varia­

tion of the randomness has been incorporated in the deterministic [Kn ] matrices. In equation (54),

the random coefficient matrix has to be inverted to determine the response vector. That is,
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{U)~ [1+ ntbn [Kr' [K,,]r [Kr (P). (55)

The first tenn on the right hand side of equation (55) can be expanded in a Neumann series leading
to

where

( U ) ~1 [-i bn [On]r[Kr' (P), (56)

(57)

For gaussian material properties, { bn } Ionns a gaussian vector with independent, uncorrelated and

jointly gaussian random variables. An important implication of the gaussian property of { bn } can

be expressed by the equations (Loeve, 1977 )

E [b i ... b2m+d =0 (58)

E [b i ... b2m ] = L II E [ bi bd (59)

In equation (59) the summation involves (2 m)! tenns corresponding to the different ways by
(2m m! )

which 2m elements can be broken up into m pairs. This fact greatly simplifies the analysis.
Assuming gaussian material property, for simplicity, and averaging both sides of equation (56)
yields

E [U ] ~~M [ibn[Qn]r[K ]-' {P) (60)

To compute the correlation matrix of the response, multiply equation (56) by its transpose and aver­
age both sides. This procedure leads to

E[UUT
] ~1to E[Ltbn[On]J[Kr (P) (p)T [Kr Ltbm[Qmrr}61l

Clearly, this equation for the correlation matrix can be greatly simplified, if equations (58) and (59)
are applicable.
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SECTION 5

NUMERICAL EXAMPLE

The formulation presented in the previous sections is quite general in that it is applicable to
any physical domain by simply using the corresponding stress-strain relations as indicated by the

matrices [Be] and [De]. Also, random loadings can be readily accommodated in the analysis as

can be seen from equations (60) and (61). The method described in the preceding sections is
exemplified by considering a one-dimensional problem. The problem involves a cantilever Euler­
Bernoulli beam subjected to a deterministic uniform transverse static load, as shown in figure 5-1.

- -

It is assumed that the bending rigidity EI of the beam, which involves the modulus of elasticity E
and the cross-sectional mass moment of inertia I, is a random process of the spatial variable x, as- -
shown in fig. 5-1. It is assumed that the process EI has a known mean value <EI> and a known
covariance function C(x,~) reflecting two beam locations, at x and~. Two models for C(x,~) are
considered. The first involves the exponential form which lends itself to the expansion defined by
equations (26) through (30). The second involves the triangular form which lends itself to the
expansion specified by the equations (37) through (40). Further, the beam under consideration is
assumed, without loss of generality, to have unit length and unit mean bending rigidity; it is sub­
jected to a unit uniform load. In implementing the preceding stochastic finite element method, the

matrix [Be(x)] must be determined. In doing this task, linear interpolation of the strains is used

over each element. The resulting equation is

(63)

where 11 represents the local coordinate over the element as shown in figure 5-1. This expression is

then substituted into equation (45) to compute the matrices [Kn
eJ. Finally, equations (60) and

(61), truncated at an appropriate number of terms, are used to calculate the mean and the standard
deviation of the response of the beam at any given nodal point.

To assess the reliability of the proposed stochastic finite element method, a Monte Carlo simu­
lation of the beam response is undertaken. Specifically, an auto-regressive (AR) digital filter of
order 20 (twenty) is used to synthesise realizations of the bending rigidity of the beam along its
span. Upon generating a bending rigidity profile of the beam, its response to the uniform load is
determined by relying on a standard numerical quadrature algorithm. This procedure is repeated
several times to produce an ensemble of beam deflections along its span. Then, statistical algo­
rithms are utilized to extract from the ensemble the mean value and the standard deviation of the
deflection at selected nodal points.

Figures 5-2 through 5-5 show the results for the standard deviation aT of the deflection of the

tip of the beam versus various values of the standard deviation aEI of the bending rigidity EI. Also

shown in these figures are the corresponding values of aT produced by a Monte Carlo study
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involving 5000 (five thousand) realizations of the bending rigidity profile of the beam. Observe the
excellent agreement between the theoretical and the simulated results as the number of terms in the
orthogonal expansion reaches four (r=4) and combined terms of order up to eight (k+I=8) are main­
tained in the Neumann expansion. The same trend is observed in the results shown in figures 5-6
through 5-9 which pertain to the triangular covariance function. For both cases, the reliability of
the proposed method is quite remarkable even for a beam with large (JEI'

To reflect the computational efficiency of the proposed method, define the time required to
solve the deterministic problem as a unit of "computing effort". Table 1 shows the computing
effort required by the proposed method for the cases shown in the plots. Examining this table, it is
seen that even for small scale problems like those described in the previous section, the proposed
method is notably more efficient than the Monte-Carlo method. Note that in few cases of interest,
analytical expressions for the eigenfunctions and eigenvalues of the covariance function, which are
involved in the expansion of the process L\S(x), are possible. In general, however, it is necessary to
numerically find the eigenvalues and eigenfunctions of the covariance matrix associated with a par­
ticular problem. Once computed, the eigenfunctions can be stored either numerically or by using
interpolation functions (Masri at al. 1982, 1986).
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Table 1 Comparison of the Computation Time Required by the Proposed Method to that
Required by the Monte Carlo Simulation Method.

Computational Units

k+l=2 k+l=4 k+l=6 k+l=8

r*=2 1.2 1.2 3.0 13.0

r=4 1.2 3.0 36.0 737.0

MCS** 5000

(*) r = number of terms in the orthogonal expansion
(**) 5000 samples in the Monte-Carlo simulation.
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CANTILEVER BEAM

< EI >:;: 1.0

o 1----_ :>

L:;: 1.0

p= 1.0
LOCAL COORDINATES

p

~1---'---'---'---'---I---'---'---L---L-_EIl-1--L---L---I---I---L..--L..--L..--L..--L..-..l.I ~

<
L

>

CORRELATION LENGTH - EXPONENTIAL MODEL:;: 1.0

CORRELATION LENGTH - TRIANGULAR MODEL:;: 2.0

Fig. 5-1 Beam with Random Bending Rigidity under Uniform Load;
Exponential and Triangular Covariance Models.
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SECTION 6

SUMMARY

A new method is proposed for a numerical treatment of problems involving random media
The method is based on the Karhunen-Loeve orthogonal expansion of a random process. The
expansion consists of the projection of the process onto a space of orthogonal random variables.
The method is incorporated into a consistent variational finite element formulation. It can be
mechanised for computational efficiency. Further, it can be readily combined with any determinis­
tic finite element code. To apply the method to a specific problem it is first required to determine,
analytically or numerically, the eigenvalues and eigenvectors of the covariance function, which are

then used in equation (45) to compute [~e J. The indicated integrations can be performed analyt­

ically for some special cases. For arbitrary problems, however, resorting to numerical quadrature is
necessary. The elemental random stiffnesses are then assembled into the global random stiffnesses
as indicated by equation (50). The mean elemental and global matrices given in equations (46) and
(51) can be assembled using a standard finite element code. Equations (60) and (61) can be con­
veniently automated to compute the average and the covariance matrix of the response to any
desired accuracy. An application to the problem of a random cantilever beam was investigated.
The results were found to be in good agreement with a Monte-Carlo data bank simulation. Substan­
tial superiority, in terms of the requisite computational time, of the new method over the Monte
Carlo approach was noted. It is believed that the proposed method has a great potential for dealing
with problems encountered in earthquake engineering where both the excitation and the properties
of the medium can be modeled as random fields.
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SECTION 8

NOTATION

The following symbols are used in this report.

bn =orthogonal random variables.

c = reciprocal of the correlation length of the random process -exponential model-.

d =reciprocal of the correlation length of the random process -triangular model-.

Ie =length of element e.

m =number of finite element in the mesh.

p =number of external loads applied to the beam.

r =number of terms used in the orthogonal expansion.

ue = local displacement vector of element e.

[ Be (x) ] =strain-displacement matrix.

[ Ce ] =permutation matrix for element e.

[ De (x) ] =stress-strain matrix.

E =modulus of elasticity of the beam.

E[ . ] = is the mathematical expectation operator.

[ Ke ] = element stiffness matrix.

[ K ] =global stiffness matrix.

[ Kn ] =nth consistent component of the random stiffness matrix.

[ Ke ] =element mean stiffness matrix.

[ K ] = global mean stiffness matrix.

I = cross-section mass moment of inertia of the beam.

L =Domain of definition of the process.

[Qn] = [K r 1
[~].

S ( x ) =stochastic process.

S (x) =mathematical expectation of the process S.

U =global displacement vector.

ye =strain energy in element e.

y = total strain energy in the beam.

omn =Kronecker delta.
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ee = strain over element e.

11 =local coordinate over a finite element.

An = nth eigenvalue of C(x,~).

<Pn(x) =nth eigenvector of C(x,~).

ae =stress over element e.

as =standard deviation of the modulus of elasticity of the beam.

L\S ( x) = S ( x ) - S ( x ).

Q = external work on the beam.

[ . ]T =indicates matrix transposition.

[.r 1 =indicates matrix inversion.
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