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ABSTRACT

'l'he optimal design of structures subjected to seismic excitations and

equipped with active control systems including active tendons, active mass

damper and a combination of the two is presented. Optimal and non-optimal

control algorithms are employed for implementation of the structural

control. The structural optimization is formulated in terms of construction

rnaterials or structural weight with various constraints of displacements and

control forces. A control energy performance index is also minimized to

find optimal weighting matrices that yield the least optimal control forces

satisfying the constraints.

A critical-mode control algorithm is derived based on the instantaneous

closed-loop technique. The spillover effect is studied theoretically and

numerically. The algorithm is then used to establish optimal locations for

a limited number of active tendon controllers. Three approaches of using

the modal shapes, the performance index of control energy, and the

performance index of response are studied for determining the optimal

locations.
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SECTION 1

INTRODUCTION

Because of recent advances in electronics, engineers and scientists are on

the threshold of a new era in structural analysis and design. Most of their

research efforts are based on the development of sophisticated computer

programs for the analysis of complex structures. Currently, when these

programs are used to design structures, the relative stiffnesses of a

structure's constituent members must be assumed. If the preliminary

sLiffnesses are misjudged, repeated analyses, regardless of a program's

sophistication, will usually not yield an _improved design. The programs

that are presently used are actually based on coventional designs, and their

application in reality is an art rather than a science.

The optimum design concept has been recognized as being more rational and

reliable than those that require the conventional trial and error process

[refs. 3, 26, 31]. It is because for a given set of constraints, such as

allowable stresses, displacements, drifts, frequencies, upper and lower

bounds of member sizes, and given seismic loads, such as equivalent forces

in the code provisions, spectra, or time-histories, the stiffnesses of

members are automatically selected through the mathematical logic

(structural synthesis) written in the computer program. Consequently, the

strengths of the constitutent members are uniformly distributed, and the

rigidity of every component can uniquely satisfy the demands of the external

loads and the code requirements, such as displacements and drifts. By using

an optimum design computer program, one can conduct a project schedule at a

high speed and thus increase the benefit because of the time that is saved.

An optimum design program can also be used for parametric studies to

identify which structural system is more economical and serviceable than the

other and assess the principles of various building code provisions as to

whether they are as logical as they are intended to be [refs. 4, 10, 16].

structural control implies that performance and serviceability of a

structure are controlled so that they remain within prescribed limits during

the application of environmental loads. structural control is achieved by
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SECTION 2

S'L'RUC'l'URAL OP'I'IMIZATION

USING NON-OPTIMAL CONTROL

2.1 structural System

The structural model chosen for the present study is an N-story shear

building equipped with a number of active tendons (AT), and an active mass

damper (AMD), as shown in Figure 2--1. The assumptions made to simplify the

analysis are: 1) the mass of each floor is concentrated at the floor level,

2) linear elasticity is provided by massless columns between neighboring

floors, 3) the structural response is described by the displacement and

lateral force in each story, 4) AT controllers are installed between two

neighboring floors either above or below the jth floor, 5) an AT controller

is regulated by two sensors placed on t.he floors above and below it, 6) an

AMD is placed on the t.op floor, and 7) an accelerat.ion sensor is placed at.

the top floor t.o regulat.e the AMD cont.roller.

2.2 Formulation of Non-Optimal Closed-Loop Algorithm

The procedure for analysis follows the transfer matrix approach in the

frequency-domain instead of the classical modal approach. The transfer

matrix approach determines the structural response directly without having

to calculate the natural frequencies and modes. This results in

considerable simplification of the calculations. The transfer matrix

approach was early studied by Yang [ref. 32]. Two features are different in

the derivations presented herein. First, each floor of the structure does

not have to be identical to the others. This is required for the structural

optimization algorithm to be implemented. Secondly, the present derivation

includes a combined active tendon-mass damper system. It will be shown in

the numerical examples that the combined system resulted in improved

performance of the control system.

The earthquake ground acceleration is modelled as a stochastic process and a

random vibration analysis is carried out to determine the stochastic

response. It is assumed that the statistics are time-invariant, or

2-1



grn(W) AMD controller gain

kcj k. + gt(w)
J

gt(w) AT controller gain

The controller gains g (w) and gt «(.I)) are functions of thenormalizedm
feedback and loop gains for the AT T and E

t
, and for the AMD T

d
and Ed't

respectively. Note that Eq. (2 ) is valid for floors 1 to (N-1), and it can

be written recursively to transfer the response of the mth floor to that of

the (m-1)th floor. Applying the boundary conditions at the top floor and

base of the building one can solve Eqs. (2-4) to determine the displacement

force Y.,
J

and solution

response X., the shear
J

Detailed derivation

6] .

and

of

the AMD and AT control forces.

Eqs. 2-4 are available in [refs. 5,

The structural response and active control statistics are stationary random

processes with zero mean. The power spectral density of the jth floor

displacement response is given by

!+
epX (w)

g
(5 )

where:

II Xj II 2= magnitude of the displacement response

The mean square response at the jth floor, 0 2 ., is
XJ

~X (w)dw
9

(6)

Similar relations can be written for the shear forces, AT control forces,

and the AMD control force.

2.3 Optimization for Non-Optimal Algorithm

From previous studies by Cheng and his associates for deterministic and

nondeterministic structural systems [refs. 4, 6, 11, 14, 16], it is known
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The quantity axj can be obtained from the response statistics of Eq. (6) .

The quantities a
ti

, and ad can be obtained from similar equations. The

implementation of standard deviation expressed in the constraints is in the

sense that for a given maximum displacement and a probability of not

exceeding that value, the standard deviation of the displacement can be

obtained. A Gaussian probability distribution is assumed. The numerical

procedure for the solution of the optimization problem of Eqs. (7) through

(13), follows a penalty function formulation.

2.4 Numerical Examples

2.4.1 Example 1: Two-Story Building

The optimization procedure is applied to a two-story building shown in

Figure 2-2 for earthquake excitation. The objective is to find the minimum

structural weight that satisfies the imposed constraints. The design

variables are the floor stiffnesses, and the normalized loop and feedback

gains. Three case studies are made. In Case A, the structure is equipped

as k t = 0.05 k
j

.

40 kips/in (7000

with two active tendons whose stiffness kt is allowed to vary according to

the variation of the jth floor stiffness, k., in the optimization procedure
]

In Case B, the stiffness of the tendons is fixed at kt
kN/m). In Case C, an active mass damper is included in

addition to the two tendons. The earthquake excitation used is that of Eq.

(1), of the Kanai-Tajimi spectral density function, with the following

parameters: w 18.85 rad/sec, ~ = 0.65, and S2 4.65xl0- 4m2/sec 3 /rad.
g g

The structural properties for all three cases are: m
1

= m
2

= 2 kip-sec 2/in

(350 Mg), c 1 = c 2 = 1.6 kip-sec/in (280 Mg/sec), and e = 25 degrees, where

6 angle between the tendon and the grider. The active mass damper

parameters for Case Care: md = 0.04 kip-sec 2/in (7 Mg), kd = 6.11 kip/in

(1070 kN/m), Cd = 0.10 kip-sec/in (17.5 Mg/sec), and kmd = 25 kip/in (4378

kN/m), where k _ = proportionality constant for active mass damper. Themd
constraints for all three cases are: 0Xl max = 0.035 in (0.89 mm), 0X2 max =

0.070 in (1. 78 rmn), aU max = 0t2 max = 10 kips (44.48 kN), 'r max = E max

10. Additional constraints are imposed for Case C as "Cd ~ 6, and Ed ~ 6.
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weight. Comparing the three control configurations, we note from Figures 2­

10 and 2-11 that the combined system of Case 4, gives the least weight. The

optimum stiffness distribution for all four cases is shown in Figure 2-12.

The values of the normalized loop and feedback gains for Case 4 are given in

Figure 2-13. It is observed that Ttl reaches upper bound, Tt2 is close to

the upper bound, but Td is low. Similar results are obtained for Et1 , Et2 ,

and Ed' The power spectral densities of the response for the four optimal

cases were calculated; the spectral density of the eighth floor relative

displacement and the spectral density of the base shear force are shown in

Figures 2-14 and 2-15, respectively. From these figures it is obvious that

the no-control case is the worst case. Cases 3 and 4 control the response

effectively; Case 4, however has the least weight and it reduces the higher

modes better than Case 3. Case 2 reduces the higher modes best, but of the

three control cases has the most weight.
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Thus the optimal control forces are computed from the rneasured base

acceleration X (t) and previous information at (t-~t), keeping the real-time
9

on-line computational effort minimal.

Instantaneous Closed-Loop

The control forces are regulated by the feedback response state-vector

{z (t)} alone, i. e. the only measurements required are those. of the response

at time t. There is a definite advantage of this algorithm for the case of

wind excitation which is difficult to measure for application with the open­

loop algorithm. The optimal control in this case is derived as

{u"'(t)} (20)

Note that another advantage of the instantaneous closed-loop algorithm is

that it is insensitive to estimation errors in the stiffness, mass or

damping of the structure since [R], [E] and [Q] are known.

Instantaneous Open-closed-loop

'This algorithm requires the measurement of the ground excitation and the

response. The optimal control {u*(t)} is to be of the form

{u*(t)} = [S1]{z(t)} + {S2(t)} (21)

where [S1] is a constant gain matrix, and {S2(t)} a vector containing the

measured excitation upto and including time t.

It can be shown that [S1] and {S2(t)} are given by

[81 J (22)

{S2(t)} [81]{[TJ{A(t-~t)} + {C}X (t)(~t)}
9 2

(23)

The derivations for the active mass damper control system shown in Figure 3­

1(b) are similar to those for the active tendon, and are not given here.
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u
d

max allowable AMD control force

Based on a rational stiffness distribution, an optimum structure will be

obtained in accordance with the allowable level of the control forces.

3.3 Control Energy Minimization

Numerical simulations show that when the elements of the response weighting

matrix [Q] are large the response is reduced, but at the expense of large

control forces. When the elements of the control weighting matrix [R] are

large the control forces are small, however the displacement response is not

reduced appreciably.

Physical limitations of the actuator impose an upper bound on the maximum

control force magnitude that can be achieved. Considerations of power limit

the control energy available. Various objectives and constraints can be met

by judicious selection of the elements of the weighting matrices.

Physically the weighting matrices affect the gain matrix for the system and

they are implemented in terms of the amplifier gains that produce the

control forces.

A rational procedure is developed herein in order to obtain the optimal

weighting matrix [R]. The elements of matrix [Q], and the structural

stiffnesses are kept constant. The control energy is chosen as the

objective function to be minimized. The constraints are the same as those

used in the structural optimization. 'l'he optimization problem is as

follows: Find the elements R(i,i) of the weighting matrix [R] assumed

diagonal, that will minimize the control energy defined as

JE
t

~ fof{U(t)}T[R]{U(t)} dt (28)

subject to constraints on the allowable floor relative displacements and

allowable control forces of Eqs. (24-27). The objective here is to obtain

the optimum weighting matrices that will reduce the control forces, while

the response still remains within the constraint limitations. In this

3-5



no-control case, it is evident that for the rest of the time history, the

reduction is much greater. The maximum relative velocity and maximum

accelera.tion of the eighth floor have been respectively reduced by 55% and

70% as compared to the no-control case.

From Figure 3-5, the eighth floor relative displacement has been reduced by

using the active mass damper system by about 80% as compared to the no­

control case. The maximum relative velocity and acceleration of the eighth

floor have both been reduced by 85% as compared to the no-control cases.

~'he damper control force is about one third of the allowable at its maximum

value. This is the reason why the active mass damper system does not reduce

the response as much as the active tendon system. However, the active mass

damper performance could be irr~roved by adjusting the elements of the

weighting matrices, so as to yield a large control force.

3.4.2 Example 4: Optimum structure Using Closed-Loop Control

The instantaneous optimal closed-loop control algorithm is used in this

example to illustrate the benefits of combining structural optimization with

active control. An eight-story shear building is considered. The

structural properties are: m, = 2 kip - sec 2 /in (350 Mg), j = 1, ... ,8, and
J '

1% critical damping in all the modes. The earthquake excitation used is the

N-S component of the EI-Centro earthquake of May 18, 1940. The structure is

equipped with eight active tendons, one on each floor. The weighting

matrices [Q] and [R], are assumed diagonal with the values R(i,i) = 0.06, i

= 1, ... ,8 and Q(l,l) = 1500,1 = 1, ... ,16. The choice of these matrices at

this stage is arbitrary, and they are fixed at this values during the

structural optimization.

The constraints used in this case (Case 1) are: xl max = 0.72 in (.018 m),

x
2

max = 1.44 in (.037 m), x
3

max = 2.16 in (0.55 m), x
4

max 2.88 in

(.073 m), x5 max 3.60 in (.091 m), x6 max = 4.32 in (.110 m), x7 max =
5.04 in (.128 m), Xs max = 5.76 in (.146 m), u

i
max = 300 kips (133 kN), i =

1, ... ,8, and k min = 400 kips/in (70040 kN/m). The optimization cycles for

the structural weight are shown in Figure 3-6. The optimum stiffness

distribution at the final interation is shown in Figure 3-7. The optimum

3-7
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TABLE 3-1 CONTROL ENERGY MINIMIZATION RESULTS

Maxima of Control Forces ( kip )
( 1 kip = 4.45 kN )

Iteration Floor Number
Number

1 2 3 4 5 6 7 8

1 289 271 285 280 273 252 177 92
5 250 258 211 216 202 162 89 57

Weighting Variables R(i,i) x 10- 3

Iteration Floor Number
Number

1 2 3 4 5 6 7 8

1 .070 .070 .070 .070 .070 .070 .070 .070
5 .110 .076 .100 .095 .109 .169 .274 .240
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SEC'l'ION 4

CRITICAl,-MODE CONTROL

The optimal critical-mode control algorithm is likely to be as effective as

the optimal global control, since the response of tall buildings under

earthquake excitations is usually dominated by a few lowest modes. The

critical-mode control is also superior to the global control, as far as the

amount of on-line computations is concerned. For global control of a

structure wit.h N degrees of freedom, the instantaneous closed-loop algorithm

requires the solution of 2N differential equations. However if only m

critical modes are controlled where (m<N), only 2m differential equations

have to be solved. The critical-mode control algorithm is developed herein

in order to reduce the amount of computation, and is also used to study the

optimal locations of controllers.

4.1 Critical-Mode Control Formulation

The formulation is developed using the instantaneous closed-loop algorithm

of Section 301 for the active tendon system. The state-equation, Eq. (15),

can be transformed into the modal 'domain as follows

{z(t)} [T]{t/J(t.)} (29)

in which ['1'] is given by

where:

{M.} = real part of jth eigenvector
:J

{Y
j

} = imaginary part of jth eigenvector

Substituting Eq. (29) in Eq. (15) yields

(30)

[T]{t/J(t)} [A)[T]{t/J(t)} + [B]{u(t)} + {C}X (t). 9 (31)

Premultiplying Eq. (31) by ['1']-1 yields the modal state-equation

4-1



substituting the partitioned modal state-vector {W(t)}

(37)

in Eq. (36), and ignoring terms that involve the residual modes the

critical-mode performance index is

J (t)
c

(38)

in which [Q] is a 2m x 2m matrix obtained form partitioning the following
c

matrix product

T l[QJ c
[T] [Q][T] = [Q]

rc
(39)

'l'he critical-mode optimal control problem is stated as: Find the optimal

control {uk(t)}, that minimizes the critical-mode performance index J (t) of. c

Eq. (J8) and satisfies the state-equation for the critical modes, Eq. (34).

The critical-mode closed-loop optimal control is found [ref. 16], as

{u*(t)} [K] {\jJ(t)}
c c

(40)

Note that the optimal control is given as a function of the modal state-

However the displacement and velocity sensors

vector. Specifically, only the critical modes {\jJ(t)} are of interest.
c

measure the actual state-

vector {z(t)}. The modal states can be estimated using modal filters, as

pointed out by Meirovi tch and Baruh [ref. 2:1. -J The modal f ilters produce

estimates of modal states from distributed measurements of the actual

states. For simulation purposes we assume here that the modal state-vector

can be recovered from the actual state-vector {z(t)} by using the inverse of

Eq. (29) in the form

) {~(t)}c1 -1.
~{\jJ(t)}rj = [TJ {Z[t)}

4-3
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A comparison of the global instantaneous closed-loop algorithm and the

critical-mode control algorithm is carried out. An eight-story shear

building is considered whose structural properties of stiffness, mass and

damping are: k
1

= 1026.3 kip/in (179700 kN/m), k
2

= 937.4 kip/in (164140

kN/rn), k
3

= 790.6 kip/in (138430 kN/m), k
4

= 684.1 kip/in (119790 kN/m), k
5

538.5 kip/in (94290 kN/m), kG = 400.0 kip/in (70040 kN/m), k
7

= 400.0

kip/in (70040 kN/m), kg = 400.0 kip/in (70040 kN/m), mj = 2 kip-sec 2 /in (350

Mg) , j = 1, ... ,8, and 3 96 critical damping in all the modes. The earthquake

excitation used is the N-S component of the EI-Centro earthquake of May 18,

1940. The structure is equipped with eight active tendons, one on each

floor. The weighting matrices [Q], and [R], are assumed diagonal with the

values R(i,i) 0.06, i 1,111,8 and Q(l,l) = 1500, 1 = 1, ... ,16. The

global algorithm considers control of all eight modes and the critical-mode

algorithm considers control of only the first and second mode. Figure 4-1

shows the eighth floor relative displacement. It can be observed that the

two·-mode control 5.s almost as effective as the global control for this

structure and excitation. The two algorithms also require control forces of

similar magnitude.

4.3.2 Example 7: Spillover Effect

The structure of Section 4.3.1 equipped with only two active tendons located

at the two bottom floors is subjected to an artificial earthquake ground

acceleration. 'rhe excitation is a combination of three sinusoids centered

around the first, second and third frequencies of the structure of 3.5

rad/sec, 9 rad/sec and 15 rad/sec respectively. These sinusoids are

weighted and scaled to reflect a peak magnitude of ground acceleration of

0.2 g and to excite the first three modes. The purpose here is to evaluate

the spillover effect. The artificial excitation, designated as Excitation

1, is given by

X (t)
g

.05 g (.2 sin 3.5 t + sin 9 t + 3 sin 15 t) (45)

The critical mode algorithm was used to control the first and second mode.

The eighth floor relative displacement is split into the modal contributions

of the first three modes, and is compared with the no-control case. Figure
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SECTION 5

OPTIMAL LOCATION OF CONTROLLERS

The objective here is to establish criteria for the optimal location of a

limited number of controllers. The critical-mode optimal control algorithm

is used to control the lowest modes of a seismic structure. It is quite

plausible that in the application of active control systems to structures,

it may be roore economical to place the controllers at a few preselected

locations. 'l'he term optimal locations reflects on the reduction of the

structural response, while using the minimum control effort. The location

of the controllers with respect to the structure is reflected in the matrix

[)'] in Eq. (14), or the state-form matrix [Bl in Eq. (15). By varying the

locations of the controllers, the entries in the aforementioned location

matrix will be changed, thus the dynamic response will be modified.

5.1 Methods for Selecting Optimal Locations

One method of selecting the optimal controller locations is to consider the

modal shapes of the structure. 'rhe modal shapes of the few lowest modes

that we select to control give useful information about the most beneficial

locations. The maxima of these modal shapes in a given mode are obviously

advantageous locations for the controllers. However the determination of

the optimal locations for a combination of modes is more of an intuitive

procedure, but nevertheless useful. Another method for the optimal

locations selection is one proposed by Martin and Soong [ref. 20]. In this

approach a performance index of control energy is minimized in the time

period of interest. This performance index is defined by the integral

t f T
J

E
= f o{u(t)} {u(t)}dt

where:

t == final timef -

(46)

The concept here is that if the choice of the controller locations is to be

optimal, the control work performed by the control system as reflected in
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for the 5th and 6th floor choice. The maxima of the control forces for the

5th and 6th floor choice is slightly greater.

For the same structure, another comparison is made between the two cases of

modal shape and performance index choices. This time the elements of the

weighting matrix [R] are allowed to be different in the two choices. The

elements of matrix [Q] are still fixed. The reason for allowing the

elements of matrix [R] to be different in the two choices is to make the

maxima of the control forces for both choices equal. In this sense a better

comparison can be carried out. The results of this comparison are shown in

Table 5-- II and Figures 5-2 through 5-4. Both the control energy and

response performance indices are less for the 5th and 6th floor choice.

Similarly the maxima of the relative displacements and accelerations for all

the floors are less for the 5th and 6th floor choice. The maxima of the

control forces are equal and the elements of matrix [R] are different as

shown in Table 5-11. A comparison of the required control forces for the

two choices indicates that they are approximately equal. The 5th and 6th

floor choice reduces the 8th floor response more effectively as can be seen

from Figures 5-2 and 5-3 for the first and second mode response.

Figure 5-4 we can observe the spillover effect on both choices.

From

A second artificial excitation, Excitation 2, is applied to the same

structure. Excitation 2 is given as

X (t)
g

.02 g (.2 sin 3.5 t + 7. sin 9 t + 3.3 sin 15 t) (48)

It excites the second mode more than the other modes. As before, the

elements of the weighting matrix [R] are different in the two choices. The

elements of matrix [Q] are fixed. The results are shown in Table 5-11. The

5th and 6th floor choice is still better than the modal choice of 4th and

8th floor. Note that the response index is less and control energy is

higher for the 5th and 6th floor choice. The simulation shows that the

response response index may be a better measurement than the control energy.

The two choices are compared, and overall the performance index choice of

5th and 6th floors is better. A note needs to be made about the modal

choice. It is interesting to note that after a modal choice has been made,
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TABLE §-I OPTIMAL CONTROLLER LOCATIONS: FIXED R(I,I) - EXCITATION 1
( 1 kip = 4.45 kN ), ( 1 in = 25.4 mm )

Locations

Control Energy

Response Index

Maximum
Displacement
Floor 1
Floor 2
Floor 3
Floor 4
Floor 5
Floor 6
Floor 7
Floor 8

4 & 8

74829

368

(in. )
1. 94
3.27
3.43
3.40
5.95
6.67
5.61
8.64

5 & 6

74132

266

(in. )
1.72
2.95
3.21
2.45
4.74
5.78
4.16
6.89

Maximum
Acceleration
Floor 1
Floor 2
Floor 3
Floor 4
Floor 5
Floor 6
Floor 7
Floor 8

Maximum
Control Forces

R(l,l)
R(2,2)

( % g ) ( % g )
90 80

146 127
134 109
55 40

148 140
189 173

59 47
179 152

( kip ) ( kip )
4th 8th 5th 6th

92 164 95 179

.15 .15

.15 .15
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TABLE 5-11] OPTIMAL CONTROLLER LOCATIONS - EXCITATION 2
( 1 kip = 4.45 kN ), ( 1 in = 25.4 mm )

Locations

Control Energy

Response Index

Maximum
Displacement

Floor 1
Floor 2
Floor 3
Floor 4
Floor 5
Floor 6
Floor 7
Floor 8

Maximum
Acceleration

Floor 1
Floor 2
Floor 3
Floor 4
Floor 5
Floor 6
Floor 7
Floor 8

Maximum
Control Forces

R(l,l)
R(2,2)

4 & 8

124996

604

(in. )
2.77
5.07
6.39
6.39
6.05
3.65
6.49
8.75

( % g )
298
149
138

55
149
189
57

180

( kip )
4th 8th
150 152

.075

.620

5-7

5 & 6

130195

480

(in. )
2.39
4.37
5.46
5.39
5.25
4.05
6.05
8.18

( % g )
80

127
110
41

138
172
47

152

( kip)
5th 6th
153 152

.30

.720
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SECTION 6

CONCLUSIONS

Active control of seismic structures can enhance their capacity to resist

earthquake excitations over a wide range of exciting frequencies.

structural optimization is a rational and reliable design concept. A

combining of structural optimization and structural control can yield an

economical, and serviceable structure and its control forces.

The non-optimal closed-loop algorithm has the advantage that no on-line

calculations are required for its implementation. For seismic structures it

was found that the corr~ination of the active mass damper and a number of

active t.endons is the most effective system since the active mass damper has

the ability to reduce the first mode response and the active tendons control.

the higher modes.

An advantage of the instantaneous closed-loop algorithm as compared to the

instantaneous open-loop and open-closed-loop, is that it is insensitive to

estimation errors in the stiffness, mass or damping of the structure. This

is because the gain matrix of the optimal control forces does not involve

any of the structural properties.

A critical-mode optimal closed-loop algorithm was developed, based on the

instantaneous closed-loop algorithm. The spillover effect was shown to be

considerable. For seismic structures the prospect of applying the critical­

mode control is very promising since the response is governed by the lowest

few modes.

Three approaches for determining the optimal locations of a limited number

of controllers have been investigated. The first approach is based on the

modal shapes of the uncontrolled structure. However these modal shapes are

changed when the control system is enforced and therefore the optimal

locations may be difficult to be determined. The second and third are based

on finding the locations of controllers that will minimize the control

energy index and response index, respectively. The later two approaches are

preferable and this can be attributed to the more rational procedure of
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