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Chapter |

INTRODUCTION

In structural engi,neering, it is customary to use response spectra for
the design of structural members subjected to earthquake excitation.
Response spectra are generated for a range of frequency and damping.
Usually this range -is such that it is common for most structural
systems. Also, response spectra correspond to a certain intensity of
seismic excitation, which is a characteristic of the geological properties
of the place where the structure is to be located. For normal design
purposes, the maximum displacement, force and other relevant response
parameters corresponding to a given natural frequency and damping of
a structure can be obtained using the appropriate response spectrum.
The structure is then designed to endure the response characteristics
obtained in the above fashion.

It must be noted that most of the structures respond inelastically
during a seismic occurence. However, the response spectra are
generally constructed based on the assumption that the osciliator
behaves elastically. They do not account for the fact that much of the
energy is dissipated by inelastic yielding and/or hysteresis during such
response. Hence, the conventional response spectra generally
underestimate the design displacement. This explains the fact that many
times failure of important structural elements, such as columns and
beams, occurs due to the lack of provision of sufficient ductility in

them.



In light of the above observations, it is necessary to construct
response spectra which accommodate various possible inelastic behaviors
of structural elements. In this thesis, several methods capabie of
predicting the response of hysteretically behaving, single-degree-of-
freedom oscililators are studied. in general, it is not possible to obtain
the exact sol‘ution for the response due to nonlinear, hys{eretic
behavior. Time history analysis using Newmark's or Wilson's method is
always possible, but this is computationally expensive, hence unsuitable
for normal structural designs. The purpose of this work is to explore
simple methods which can be effectively used to study the response of
hysteretic structures.

Commonly, the so called inelastic spectra are generated for
specified levels of ductility. They define the magnitude of vyield
displacement required to cause the response of a desired ductility ratio.
This idea was introduced by Newmark and Hall (28). Several
investigators have since worked in this field to predict the response
due to various types of nonlinear and/or hysteretic behavior.
Significant work has been contributed by Caughey (6,7,8,9), lwan and
Gates (12,16,17,18,19), Wen and Baber (2,3,44,45), among others
(11,13,23,24,28,35,39,41). The inelastic spectra for other response
quantities are of the same nature as in the elastic spectra. The famous
tripartite grid representation of the response characteristics can be

done for inelastic oscillators, too(28,36).



It is common to use artificially generated garthquake time-histories
of ground motion due to the scarcity of the records of authentic seismic
ground motions. Typically, such records are based on the Kanai-Tajimi
formuiation. In this, the seismiclinput is assumed to be of white noise
type (containing all possible frequencies). Depending on the properties
of the underlyiné soil medium, the ground response spectra are
represented as a wide or narrow band input of appropriate spectral
density. function. Various ensembles of artificially generated ground
response spectra (earthquake time histories) were used for this thesis.
The basis for such approach along with the characteristics of these
ensembles is presented in chapter 4.

For random inputs, it is believed that acceptable solutions can be
obtained by replacing the hysteretic character of the original system by
an equivalent non-hysteretic but nonlinear system. This is done by
defining suitable stiffness and damping parameters of non-hysteretic yet
nonlinear nature. This eliminates the r;esponse dependance on its own
time-history, a characteristic of hysteretic behavior. This idea was first
introduced by Jacobsen(20) in his geometric energy approach. Since
then, several such models have been proposed and studied, each using
certain criteria to define the properties of the resulting non-hysteretic
model (4,9,12,17,22,24,29,37,39). Typically, the names of thesg
methods suggest the cr;iteria used for their formulation. In this thesis,
some such non-hysteretic models were studied. Five of these are

presented in chapter 2. Equivalent linear properties of these non-



hysteretic models were obtained using stochastic equivélent linearization
approach, based on a mean square error minimization technique. The
response of the original hysteretic oscillator is then approximated as the
one caused in the equivalent lineér oscillator. In this thesis, it is
intended to examine these methods from accuracy and expense point of
view. Also, the domains of natural frequency and ductility in which
such methods can work satisfactorily are explored.

Exact closed form solutions were developed for elasto-plastic and
bilinear, hysterstic systems. The results of such solutions were
validated by a program based on Newmark's method (27) with very small
time-step. All this formulation is presented in chapter 3. A computer
program which implements the exact solutions was also developed.
Inelastic response spectra and some other sample results were generated
using this program. These results were also used for checking the
accuracy of equivalent linear analysis approach, which is
computationally inexpensive.

Chapter 4 deals with presentation of results based on the
formulations developed in the preceding chapters. Some concluding

remarks are also presented in this chapter.



Chapter |l

METHODS USING EQUIVALENT LINEARIZATION
APPROACH

2.1 INTRODUCTION

As mentioned in chapter 1, time-history analysis is computationally
expensive. Thus it is’necessary to develop simple, yet reasonably
accurate methods for the prediction of seismic response of hysteretic
structures. From a design point of view, it is important to note that -we-
are interested only in the- response statistics (mean, standard deviation,
maxima, root mean square, etc). Whereas the time-history analysis
produces an elaborate response history of the structure, the equivalent
{inearization approach leads to the computation of the vital
characteristics such as those mentioned above. This justifies the use of
simple yet effective methods like the ones presented in this chapter.
Exact solution is possible in very few cases of hysteretic
behavior. In any case, such exact solutions result in expensive time-
history analysis. Nonlinear differential equations of motion can be
handled with the wuse of perturbation methods (11), equivalent
linearization schemes, etc. It h.as been found that perturbation approach
is not satisfactory for highly inelastic behavior. Some researchers have
also attempted to use the Markovian process to model the hysteretic
response (7); indeed, such response is a function of the previous

response history. Equivalent linearization approach is a well accepted



method in  this regard  and it is widely being used
(2,3,8,12,14,16,17,23,24,39,41,45,46). In this chapter, a simple
algorithm is developed for equivalent linearization of nonlinear, non-
hysteretic systems. As mentioned in chapter T, hysteretic structures
can be modeiled by .equiva[ent non-hysteretic structures. In this
chapter, some of these equivalent non-hysteretic models are presented.
The equivalent linearization scheme used in this thesis is an indirect
one, since vit is carried out on the ensuing non-hysteretic model as

opposed to carrying it out on the original hysteretic oscillator.

2.2 SYSTEMS CONSIDERED

Figure 1 shows a single-degree-of-freedom oscillator subjected to base
excitation. The response characteristics of this oscillator depend on the
stiffness and damping properties associated with the system as well as
the nature and intensity of base excitation. The damping is caused due
to viscous effects for ordinary structures under consideration. Such
damping is directly proportional to the velocity of the oscillator at any
instant and the viscous damping force acts in the direction opposite to
the direction of motion.

For the systems considered in this work, the nonlinearity in the
response is due to the hysteretic character of the force-displacement
relationship. Figure 2 represents a perfectly elastic, non-hysteretic
system. Figure 3 depicté an elasto-plastic, hysteretic behavior. A

bilinear hysteretic system is represented in figure 4. An elasto-plastic



behavior is a special case of the bilinear one in that the bilinear system
has a non-zero stiffness along paths 2 vand 4, unlike in the elasto-
plastic systems. In both these cases, the response is characterized by
paths 2 or 4 as long as the velocity does not become zero. The moment
the velocity becomes zero, the system then behaves according to the
nature characterized by path 3. Looking at figures 3 and 4, it is easy
to see when the system changes its behavior from one path to another.
Figure 5 portrays a general type of smooth hysteretic behavior. The
velocity and/or response history dependance of the behavior of such
systems may not be as simple and explicit as that in the elasto-plastic
and bilinear hysteretic systems. These types of systems were not
considered in this work. Their behavior may be modelled anaiytically
by equations proposed by Wen, Bouc and Baber (2,3,5,45,46). It
should be noted that all the systems considered in this work are of
non-deteriorating type. The basic notation used is clearly indicated in

above mentioned diagrams.

2.3 PROPOSED EQUIVALENT LINEARIZATION SCHEME

Consider the following type of equation of motion; applicable to

nonlinear, non-hysteretic systems
mx + cp(x)SE + kg (x)x = -ma(t) (2.1)

We propose an equivalent linear system described by the following

equation of motion

" ' = - 2.2)
mx + C x + KX ma(t) (



- where, Ce and Ke are the proposed equivalent linear properties of the
given nonlinear system described by equation (2.1). Such approximate
representation of the actual system introduces the followfng érror,

obtained as the difference between equations (2.1) and (2.2)

/

e = [cp(x) - ce]i + [kp(x) - Kelx (2.3}

It has been shown that the mean square error minimization technique is
at least as good as any other type (15). Hence, let us minimize the

mean square error by defining Ce and Ke as follows

3 2y] =

3 [E(e2)] = 0 (2.4)
and

e LE(e2)] = 0 (2.5)

e

Equations (2.4) and (2.5) can be rewritten as

E[2e z2€] = 0 (2.8)
e
and
de
E[ 2¢ =0
[ §EZJ (2.7)

Substituting equation (2.3) in (2.6), we get

E[{cp(x) - Ce)i + (k (x) = K )x}(-X)] =0 (2.8)

P

or



E[cp

If we assume that the response is stationary and Gaussian, then
E[(kp(x) - kgJx x] =0 (2

Hence, equation (2.9) can be rewritten as

32
o o Eleptnxe] e
& E[%2]

But
E[cp(x)iz] = E[cp(x)]E[iz] (2
Substituting equation (2.12) in (2.11), we get

(e = E[cp(x)] (2

Now, substituting equation (2.3) in (2.7}, we can write

E[{(cp(x) = C)% + (ky(x) - K )x}] = 0 2.
or
E[(cp(x) - CJx x] - E[kp(x)x2] * KE[x2] =0 (2.
Similar to equation (2.10), we have
E[(cp(x) - CJx k] =0 (2.

Substituting equation (2.16} in (2.13), we get

2
_ E[k_(x)x2]

€ E[x2] 2.

(x)%2] - CLE[X2] + E[(Kk,(x) - K )x X] =0 (2.9)

.10}

A1)

.12)

.13)

14)

15)

16)

17)



Equations (2.13) and (2.17) together define an equivalent linear system
for the type of nonlinear s\/stems described by equation (2.1},

We can further sbecialize'equations (2-.13) and (2.17) for a zero-
mean, stationary, Gaussian response. The probability density function

for such a distribution is given by

‘fx(x) = 1 EXP[-XZ/ZO‘XZ) | (2.18)

fﬁo’}?

Note that in this case, the mean value of 'x' is zero; this leads to the

following resuit

E[x2] = ¢ 2 (2.19)
Now,
Cy = j_:cp(x)fx(x)dx (2.20)
and @
K = [ ®x(x)f, (x)dx

1
e

52 = 2.21)
Substitution of equations (2.18) and (2.19) in (2.13) and (2.17) leads
to the following results

1
C = | cp(x) EXP (-xz/Zoxz)dx (2.22)

YZn o, =%

and

1 2 2 2
K o= e x%k (%) EXP (-X4/20_<)dx
© T3 F7! ( ) (2.23)
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Equations (2.22) and (2.23) define the equivalent damping and stiffness
for a nonlinear, non-hysteretic system described by (differential)
equation (2.1). It must be noted that these eq'uations are valid only
after we assume that the response is of stationary, Gaussian nature
with zero mean.

It can be easily seen that the integrations in the (2.22) and
(2.23) may not possess closed form solutions; vyet they can be dealt
with using Hermite's quadrature. In fact, in this work, Hermite's
quadrature scheme for numerical integration was exclusively used to
evaluate the equivalent linear properties. Let us define two functions

g(x) and h(x) as below

g(x) = X2 kp(x) (2.24)

and

h{x) = cp(X) (2.25)

Then using Hermite's quadrature for numerical integration, we can write

yon \
K, * = 121 9(vZ o, x;W(x;) (2.26)
=1
and

L% (/2 o, s M(x)

R N WX
e V. N7z oy 27 (2.27)
where, X, = i‘th root of the nth order Hermite polynomial, W(xi)= Weight

corresponding to the above root Finaily, W/ the equivalent natural

frecuency and Be’ the equivalent damping ratio are given as
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_2n K'e
Ye T T T w9 g (2.28)
and
¢ T,
= e _ e
Be = T Celg) (2.29)

Where, Te is the period of the equivalent linear systemr corresponding
to an original hysteretic system with mass m, stiffness ko' and natural
frequency W,

The systems considered for this work are of hysteretic nature,
wherein the force-displacement characteristics are velocity dependent.
In order that the above formulation be applicable to systems under
consideration, it is necessary to define their equivalent nonlinear
systems. Many such equivalent non—hysteretié models have been
proposed and each one of them uses one or more criteria to define the
equivalent non-hysteretic system. For the purpose of this thesis, five
of these models were considered satisfactory and they are presented in
the following paragraphs. In each case, the model is specialized for
bilinear systems (elasto-plastic systems happen to be a special case of
the bilinear ones with «=0).

fwan and Gates (12,17) have extensively‘studied various non-
hysteretic models and they arrived at many useful expressions for the
application of those models. However, for the purpose of this work, it
was aimed to model the stiffness and damping coefficient of hysteretic

systems by using equivalent non-hysteretic models, hence, the
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expressions derived here are somewhat different than the ones obtained
by lwan and Gates. In all these models, it may be noted that the
response is assumed to be of harmonic nature corresponding to any

amplitude level under consideration.

2.4 HARMONIC EQUIVALENT LINEARIZATION (HEL)

In this method, an-. equivalent non-hysteretic system is obtained by
characterizing the response to be of harmonic nature. This method has
been studied by Caughey, Iwan, Gates (9,12,17). Following is a brief
derivation of the results involved in this approach.

Harmonic response can be expressed as

x = A cos{wt - ¢) = Acos® (2.30)

where, A=amplitude of the oscillations and w=the frequency of the
forcing function. The equation of motion for the given hysteretic

oscillator is given by
X + 230“‘0’.‘ + mgf(x,i) = -a{t) (2.31)

where, the function f(x,x) symbolically represents the response
dependance on its own response history. The equation of motion for

the equivalent non-hysteretic oscillator can be written as

x + 28, (x)a, (x)% + uZ(x)x = -a(t) (2.32)
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The error involved in the above approximation is given by the
difference between equations (2.32) and (2.31)
§(x) = zgomoi + wgf(x,i) - ZBp(x)mp(x))'( ~ w2p(x)x (2.33)
Let us define following variables
£y = 2w, and £.(x) = 28 (x)u(x) (2.34)

Again, we stipulate that the best results are achieved using the mean
square error minimization technique. Thus, following two conditions lead

to the optimal equivalent parameters

333 (32) = 0 (2.35)
and
3 (32) =0
(u2) (2.26)

=2 . A
where §&° is the mean square error averaged over one oscillation of

amplitude A
2 5 1 T 2
8224 IO §2qt (2.37)

Substituting equations (2.32) and (2.33) in {2.37), we get

2 L
" [x(gg = 55(R)) + wZf(x,x) - wp(A)x]2dt (2.38)

Now, equation {2.30)} implies
x = - Awsin(wt - ¢) = - Awsind

and (Z.29)
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ta32e

w

Hence,
f(x,x) = f(Acos®, - Awsine)
and (2.40)
d8
dt = -—

Substitution of (2.39) in (2.38) leads to the following expression

A

32 = 3%- fo [[ao - Ep(A))(-Ausine) + wgf(Acosag- Amsine)mﬁ(A)Acosande

(2.41)
Neote that the equivalent non-hysteretic properties are a function of the

amplitude of the oscillation only. Substituting (2.40) in (2.33), we get

2n .
o = E% fo 2((-husing) (5, - §,(R)) + wif(Acose, - Ausine)

- ws(A)Acose](-Acose)de (2.42)

Simplifying above expression, we get

2n Z2n
1 A202(A) [ cos?8d8 = w2A —1-j f(Acosd,- Awsine)coseds  (2.43)
m p 0 oy
or
2 “5)¢ (a)
= (—]C(A
wpih = 5 (2.44)
where,
1 2T
C(A) = = J’U f(Acos8,- Awsine)cosede (2.45)

Also, substituting (2.40) in (2.36)}, we get
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2% .
0 =%I [(-Ausine) (g, - E,(A)) + ugf(Acost, - Awsing)

- w%(A)Acose](-Amsine)de

(2.46)
or
1 211' 1 21[
0 = = A2w2(g (A) - £ ) [ sin2ede + w2Aw =~ [ f(Acose, - Awsine)sineas
L P 07 7y IR A 0
(2.47)
Let us define
S(A) = -}r— f(Acos8, - Awsine)sineds (2.48)
then,
95, s(A) (2.49)
Ep(A) =&, - [g-) — )
p
or
b h) = e (02 - L (%0 S
p 0 w, 2 02 A (2.50)
p

Equation (2.49) is obtained after assuming resonant conditions on the
equivalent non-hysteretic oscillator (w=wp). Equations (2.43), (2.44},
(2.47) and (2.49) define the (nonlinear) equivalent non-hysteretic
properties of the original system. In terms of the dampi{lg coefficient,

equation (2.50) may be written as (after multiplying by m)

K, S(A)
Cp = Co - a;; ‘ A (2.51)

Now, let us specialize the above results for a bilinear, hysteretic
system. Note that for an amplitude level less than the vield

displacemeant, Xor We have a linear, non-hysteretic response. Hence,
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m%(l\) = w? (2.52a)
and X. < A< Xe
Ep(R) = &,

(2.52b)
Consider the case when 1A|>xc. Referring to figure 5, we can write
Now,
F(x,Xx) = mméf(AcosB,- Awsine) = k f{Acos8 - Awsing)

(2.54)

where, F{x,x) = the restoring force in the spring. Again, referring to

figure 5, we can write

fx,x) = k. x. + ako(x - X

ocC C)

A )
ko(l = a)x  + akg [Yc_)xccose (2.55)

koxc[(l - a) = aucoss ]

Comparing equations (2.52) and (2.53), we get

f(Acos8, - Awsing) xc[aucose + (1 - a)] along path 1 (2.356a)

Likewise,

f(Acose, - Awsing)

X [ucoss - (1 - a){y - 1)] along path 2 (2.56b)

f(Acose, - Awsing) xc[apcose - {1 - a)] along path 3 (2.56¢)

f(Acose, - Awsing) = x_[ucosé + (1 - a){n - 1)] along path 4 (2.56d)
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Referring to figure 4, we note that
(—A + ZXC) < x <Aand x>0 {(2.57)

In terms of u, the ductility ratio and 6, the argument, we can express

the above result as

- {py - 2) < ucosd <u (2.58)

This may also be expressed as

(v +0%) >0 2 2n along path 1 (2.58a)

Likewi;e,
ax > 6 » 0 along path 2 (2.58b)
T » 6 » 8% along path 3 (2.58¢)
(n +8%) >8> along path 4 (2.58d)

where,
o* = cos'l[“;—z) (2.59)

Using equations (2.38) and (2.38), we can write
g%

C(A) = [;%) { jO [ucose - (l-a)(u-1)]cosede + fﬂ [auC’O‘SB - {1-a)]cosede

8

(2.60)

T+e* 2n
+ f [ucose + (l-a)(u-1)]coseds + [ [aucoss + (1l-a)]coseds )
T Te*

and
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X o*
S{A) = ['ZHEJ{ IO [uCOSB - (1-a)(u-1)]sinede + j" [uucose - (1-0.)]31'n9d6
. B*
(2.61)
1r+9»* 21
+ [ [ucose + (1-a)(u-1)]sinede + [ [ancosé + (1-a)]sinede }
o T+e*
Simplifying (2.60) and (2.61), we get
X : %
C(A) = TC [(1-a) + (0% - EJI‘_%B_) + an (2.62)
and
UXC ]
S(A) = - o (1-‘1)51“26* (2.63)

Substitute {2.53) and (2.63) in (2.62) and then substitute the resuiting

expression in (2.44) and (2.51). We thus get

{(1-a)(e*

£
ElE=M)

3 *
w2(u) = - SI0297) 4 an ) | (2.64)
and

syln) = 8o + Ls8d (or - SE UL

, (2.63)
- in2o* 1-a)sin2e*
+ %_ {0. + (1,".(1) (6* _ s1n§6 )H( (1)." }
Using equation {2.53), we can write
cose* = (HE— 2) , sin2e* = 4 (w - 1) (2.66a)
H U2
and
sin2e* _ 2 _ T
z T (2. 66b)

Substituting (2.66) in (2.64) and (2.63), we get



20

2) -f oy - 2) /u—ﬁ_—]}I/Z(z._en

‘mp(u) = mo{“ + —(l‘;:'a—) [Cos-l(L:—‘

Hu uz
and
“o \1/2 , 2 (w=1) %
Bo(k) = Bo{B;‘(‘ET} el ”uz {wp(u)} (2.68)

finally, in terms of the damping coefficient, we can write

e = ¢y + (mg){a + Lz®leos™HEZE) - -% (w - 2) /=T ] }M/2
{2l a) (- 1)} (2.69)

Equation (2.69) is obtained after substituting (2.67) into (2.46).

2.5 CONSTANT CRITICAL DAMPING (CCD)

This model was proposed by Jennings (22). In this method, the critical
damping of the substitute non-hysteretic system is made equal to that
of the given hysteretic system. This is accomplished as follows
= (2.70)
kpmp |<0m0

or

2m2 = ,2p2

wpmp wgma (2.71)
Where, mp, is the effective mass of the non-hysteretic model and m is
the mass of the original hysteretic oscillator. The effective period for
this method is defined the same as in the HEL method. The effective
damping is found by equating the resonant amplitudes and dissipated
energies of the given vyielding system and the non-hysteretic system.

This is deone as below
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AHp(A) = AW(A) (2.72)

where, AWp(A)=energy dissipated by the equivalent non-hysteretic
system per a cycle of oscillation of amplitude A and AW(A)= energy
dissipated per a cycle of oscillation of the given yielding system

T

aW_(A) = [ (cx)xdt (2.73)
P o

Let us substitute the following relationships

= 27 (2.74)
T=&
P
and
X = - Awsinwt (2.75)
Using above equations, we get
2r/w
AW (A) = f ¢ w2A2sin2utdt
P o P
= ¢ wA2r (2.76)
p

Equation (2.76) is obtained after substituting w=wp at resonance. Also,

AW(A) = H(A) + V{A) (2.77)

where, H(A)=Area of the hysteresis loop ABCD shown in figure 4 and
V(A)=Viscous energy dissipated by the yielding system. From fig A4 ,

it can be seen that for a bilinear system

H(A) = 4kOXC2(1 -a)(y - 1) ‘ (2.78)
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‘Also,

V(A) = cqupx2n (2.79)

substituting above two equations in (2.77), we gst

cpwpx"%u = compxl%n + 4k0x§(1 - a){u - 1) (2.80)

Solving for cp, we can write

k
- 4(1 - @) (Coy g
< = S F "> (mp)(u ) (2.81)

Substituting (2.67) in {2.81), we get

c. = {a+ {1-a) [cos™l (B=2) - Lp-2) AT ]}-1/2 (2.82)

™
Y K b2

Equations (2.67) and (2.82) together define the equivalent non-
hysteretic system for given properties of a bilinear hysteretic system.
It is important to note that for this method, the equation (2.29)

is modified as below

Ce

8 T (2.83)

®lcen

The reason for the above variation is explained in brief by the

following formulation
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= Yk, (2.84)

2.6 GEOMETRIC STIFFNESS (GS)

This mode! was introduced by Berg (4) and Rosenblueth (37). |n this
method, the effective stiffness is specified by using the geometry of the
hysteresis loop of the yielding system. The concept of secant stiffness

is often used in this context. In reference to a bilinear system, we can

write
. L(8E)
k =
o\ = ToEr
_ Koke + ak, (A - x.)
x (2.85)
or
Kplu) = kofa + 228] 5y 5 (2.86)

Hence, the effective frequency is written as

“p . [EE]NZ
Yo Ko

Again, the effective damping is found by equating the resonant
amplitudes and energies dissipated in the two systems. Hence, the
effective damping is given by equation (2.81). Substituting (2.87) in

(2.81), we get
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ey = c+ [o+ Lol l/ZAU - a) (g ju =L ;21)} (2.88)

Equations {2.87) and (2.88) together define the properties of the
substitute non-hysteretic system. This method was used by Singh and
A-shtiany (39,40) to model Ramberg-Osgood type of nonlinear behavior
(34).

The following - two methods use the results of the geometric
stiffness method to find average system properties corresponding to an

amplitude of A.

2.7 AVERAGE STIFFNESS & DAMPING (ASD)

This idea behind this method was proposed by Newmark and
Rosenbleuth (29). in this work, however, the averaged quantities are
stiffness and damping coefficient, unlike in their method, where period
and damping ratio are the averaged quantities (Average Peried &
Damping). These can be applied to any nondeteriorating SDOF system
under a condition that the system has equal vyield for posiﬂve and
negative displacements. As the name suggests, the stiffness and
damping of the effective non-hysteretic system is obtained by averaging
the expressions for the same quantities as developed in the geometric

stiffness scheme. This is done as below

A
!
kp(A) x fo kp(a)da (2.89)

and

p 0 (2.90)
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Specializing for a bilinear system, we get

1, &~ A c
k(A =3[ “kdat [ k[ 1 = %) 4a] (2.91)

0 X
C d

But

da
E - o.. da = d
a T X e a (2.92)

Carrying out the integration, we get

k
k() =—3 [1+a(y-1)+(1-an}su>l (2.93)

Let us make the following substitution in equation (2.90)

X = XA, gy = x dA (2.94)

Substituting above relations, we get

21 A
) =4 fo [e,(x)]gan (2.95)
where, p = A/xc
1
_1 M lea"1/2 401
cp(u) =5 [fo Codh + fl fe, + (a+ =) (d:(r_izf‘_l. (ma,) (A-1)) Jax ]
21 4(1-a) H leq "1/2 5. (2.96)
v Io Cotr * = (M) fl((“'—xg) (;TLJdA
But
_-1/2 ——
R RS v (2.97)

Hence,



26

; 4(1-a) u (A-1) (2.98)
cp(u) o * i (mmo) fl 372 o da

Equations (2.93), (2.98) together define the properties of the

substitute non-hysteretic system.

2.8 AVERAGE STIFFNESS & ENERGY (ASE)

This method was proposed by Gates (12}. In this extension of
geometric stiffness method, the effective stiffness is obtained in the
same way as in ASD. However, the equivalent damping is obtained by

averaging the energies dissipated. This is accomplished as follows
1 A
aW(A) = ¢ [ ow(a)da (2.99)
0

Again, the effective damping is determined by using the criteria
expressed in equation (2.72), the difference being that here the
average of the dissipated energies is considered. This is described by

equation (2.99). This approach leads to the following equation

o Yoy L 6 - a) Ko 2
CP co(“D) ’ wud (ND)(H "

s :‘l 6{(1 - a) _ 132
e, + S22l ma - 12 o)

Substituting k0=mwo, we get

c = [.(1;‘;“). (1 + am) +a]"Y2c  + 80 -8) () - 2} (2,701

p wud



As mentioned earlier, the effective stiffness, kp(A), is given by
equation (2.93).

This method is particularly suitable for dete.riorating systems.
The effective propverties of the equivalent non-hysteretic system are
obtained by averaging the values associated w-ith the upper and lower
loci of response maxima. However, the results derived above are valid
only for elasto-plastic and bilinear, hysteretic systems.

It shouid be noted that in all the above methods, the values of
the effective stiffness and damping are the same as those of the original
system if the absolute value of the displacement is smaller than the
yvield displacement. Hence, the functions kp(x) and cp(x) are not
continuous and this must be properly accounted for in the numerical
integration scheme described in section 2.3. Fig. 6 shows a typical
representation of the effective non-hysteretic properties as defined by

the various models considered in this study.

2.9 IMPLEMENTATION OF EQUIVALENT LINEAR APPROACH

A computer program was developed to implement the methods presented
in this chapter. For a given set of system parameters such as natural
frequency, damping ratio and vyield dispiacement the program computes
the response predicted by each method. This is accomplished by finding
the properties of the equivaient {inear system corresponding to the non-
hysteretic model of each method. The program uses the available elastic

spactra to determine the response of the equivalent linear system.
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The results are obtained in an iterative fashion. First the.
properties of the equivalent linear system are first assumed to be
certain values and then depending on the assumed value of the peak
factor, the value of standard deviation Sy is determined. Based on this
estimation of the standard deviation, the new values of equivalent
propertieas are obtained. The program iterates until the criteria for
convergence are met with. An iteration limit is also specified to avoid
any possible non-convergent case.

It may be noted that the response prediction in each method
depends on the value of the peak factor assumed. Due to the nature of
criteria on which these models are based, the adoption of a proper peak
factor in each case is not an easy task. A certain judgement can
however be exercised in this regard and this part is discussed in
chapter 4 in more details. Vanmarcke has proposed a way of computing
the peak factor for known spectral characteristics and the given system
properties (43). A modified approach based on Vanmarcke's formulation
(38) for peak factor was also used. The computational algorithm for
the implementation of the equivalent linear approach can be summarized
by the following steps |

1. Input the system parameters viz W the natural frequency, Bo,
the damping ratio, a, the ratio of the secondary stiffness to
the primary stiffness and Xor the vield displacement level. A
fixed peak factor vaiue should be stipulated unless Vanmarcke's

formuiation is being used.
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2. As‘sume the wvalues for Wq and Be’ the properties of the
linearized system. If Vanmarcke's formulation is to be used,
then an iterative approach may be used to solve for the value
of the peak factor corresponding to the above assumed valyes.
After this, the steps for either the fixed peak factor or
Vanmacke's peak factor approach is the same.

3. Read the spectral values corresponding to the present values of
linear properties,

4. Compute the Oy standard deviation of relative displacement
response corresponding to the assumed set of linear properties.
It is obtained by dividing the mean spectral displacement by
the value of the peak factor.

5. Using the desired non-hysteretic model and the proposed
equivaient linear mgthod, compute the new estimates for Wy and
Be. These depend on the current value of o the standard
deviation.

6. Check for a simultaneous convergence of v, and ﬁe to a desired
ievel of accuracy. Repeat s'teps three through six until
convergence occurs.

The results of the algorithms developed in this chapter are discussed in

chapter 4,



Chapter Il

TIME-HISTORY ANALYSIS

3.1 INTRODUCTION

In this chapter, exact solution algorithms for elastic, elasto-plastic and
bilinear hysteretic (BLH) systems are p‘resented. A time-history
analysis scheme baséd on Newmark's method is also presented. The
results of this (approximate) method can be used to cross-check the
formulation and the results of the exact solutions. Development of the
computer program to implement these algorithms is also discussed.
Various results generated using the exact algorithm are thus made
available for checking the accuracy of the methods presented in chapter
2.

For the purpose of equivalent linear analysis, it is necessary to
construct a wide range of elastic response spectra as the basic
reference data set. The whole purpose of equivalent linearization is to
be able to predict the response of a given inelastic system by defining
its equivalent linear system. The response of the inelastic system is
approximately equal to that of its equivalent linear system, which is

obtained by reading the appropriate elastic response spectrum.

30
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3.2 LINEAR ELASTIC SYSTEMS

The equation of motion for a single-degree-of-freedom, elastic oscillator

is given by

mx + ck + kx = -ma(t) 3.1)

where, 'x' is the relative displacement of the oscillator with respect to
its moving base; x and X are the relative velocity and relative
acceleration respectively, m, ¢ and k are respectively the mass, viscous
damping coefficient and the (constant) stiffness of the spring. a(t) is
the base acceleration at instant t. Dividing each term of equation (2.2)

- by m, we can write the following standard equation

X + ZBOmO;( + ng = -a{t) (3.2)

where, w = k/m , the natural (circular) frequency of the oscillator,
BO:C/(szm):C/CCP' ratio of the actual damping to the critical damping in
the system. Critical damping is defined as the one which removes all
vibration of the oscillator.

If we assume that the base acceleration varies linearly between
the instances of two consecutive readings A. and Ai+1’ then we can
express the response at time ti+1 in terms of the (known) response at
time ti.This exact step-wise soiution scheme was presented by Nigam
and Jennings (30,31). Above result can be obtained using the
convolution integral approach to get the particular solution.. Also, X,

and ;(i are treated as the initial conditions. Denoting h=(ti+1—ti),
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{constant] time interval between consecutive readings, then the results

of Nigam and Jennings (30,31) can be expressed in a matrix form as

{"} BT {"} . by P12 {Ai
“isr P21 %2 K b2 bzzJ Al - @33

where, the entries .of matrices A and B are given by Nigam and

follows

Jennings (30,31), but they are repeated here for a ready reference.

-8.w.h. 8
0”0 0 .

a;, = & —— sin(w,, ) + cos{w,, ]

e—BomOh ‘
ay, = o sin(ayh)

w -8B w,h

3y = — 2 e 00 sin(wyh]

Yy T - Boz

-g w.h - 8
a9 = & o0 {cos[mdh) - —2 _sin (wdh)}_

Y I - Boz
-Bouh( 282 -1 8, sin(w,h) 28 1 28
wih o d woh ws moh
-8.w_h L. 1 sin{wh) 28 28
b, = -e 00 (290 ) 4 ocos(wdh)} S .
w?h w w3n w?  w3h
0 d 0 0 0

-8wh-282-1 B B .
by ¢ TR L P cos(agn) - 2 sinlegn]
21 mgh wo /1 - 30
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28= -wh )
0 q N
o [———]lw sin{w N +Bmcoswh}+—-——
(2 mgsin(ogh) + Sqageos(ugh)] |+ —-
0 0
-8 w_h 282 - 1 8 28
b,, =-e °° {(——O—J[cos(«ndh) - — 2 sin(uyh)] - —= [ugsin(o4h
22 wgh Y1 - Boz mgh
+ 8w cos(a h)]} S
oo d wgh
Note that
wg = wgl 1 - B3 (3.5)

It may be noted that 'h' need not be a constant; however, a changing
value of h would necessitate the computation of entries of matrices A
and B whenever such a change is made. It should also be noted that
these results are accurate irrespective of the value of h, the size of
the time step.

A compufer program that implements above algorithm was
developed. Sharma, Singh, etc (37), generated a wide range of elastic
response spectra using that program. In his work, the periods
considered ranged from .02 seconds to 5.00 seconds and the damping
coefficients ranged from .005 to .500. The spectra were generated for
ensembles of 12 seconds, 15 seconds and 30 seconds time histories. The
15 second spectra are used in this work. They correspond to a
maximum ground acceleration in the neighborhood of. .10G. For the case
of linear behavior, the spectral values for linearly amplified ground

motion are simply obtained by multiplying the values in the available
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records by the same (constant) amplification factor. A simple log-log
interpolation was used to obtain the response spectrum values for
frequencies and damping ratios other than the ones used to define

spectra.

3.3 ELASTO-PLASTIC & BILINEAR HYSTERETIC SYSTEMS

Systems considered .in this work have the following general form of

equation of motion

mx + cx + f(x,X) = -ma(t) (3.6)

It can be easily seen that the nonlinearity considered is of material type
(unlike the geometric one). Clearly, the hysteresis is caused due to
véiocity. dependence of the restoring force in the spring. Referring to
figures 3 and 4, it can be seen that in both cases, the force-

displacement relationships along paths 1 and 3 are given by

(3.7)

-h
—
—
>
-
>
o
i
>
>

and
0 (3.8)

where 'c’ is the X-intercept of line 3 as seen in figures 3 and 4. Along

lines 2 and 4, the restoring force is given by

(x,x) = Fc( X ) elasto-plastic  (3.9)

and
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f5.4(%:%) = F, ==+ ak (x - x 2 bilinear (3.10)
x| x|
Note that
FC = kyX, (3.11)

It is easy to observe that the solution along path 1 is the same as the
one given by equations (3.3), (3.4) and (3.5). Along path 3, we can

write the equation of motion as
X + 230m0>'< + mg(x -¢c) = -a(t) (3.12)
this may be rewritten as
" . 2y = _ 3
X + 230(.\!0)( + mox a(t) (3.13)

where,

a(t) = — [a(t) - wic]
(3.14)

Clearly, equation (3.3) is applicable to the above form of the equation
of motion, thus the solution for response along path 3 can be expressed

in a matrix form as follows

1 2| \ % by bya| 1A
*Jinn Par f22] Wx Uy b Aj 519

where,

(3.16a)

>
1]
™
x
i
=4
(o3 8]
(]
| —
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and

Ajpp = [A

j+1 - 95c] (3.16b)

Equations (3.15) and (3.16) are used to obtain the reéponse along path
3. Note that the entries of matrices A »and B are the same as defined
earlier by equations (3.4) and (3.5).

For elasto-plastic systems, the equation of motion along path 2

and 4 can be written as

m o+ ox +F I;I = - ma(t) (3.17)

In the above equation F is the spring force corresponding to either
positive or negative vyieid displacement. In particular, the positive and
the negative vyield displacements may be denoted as Fcp and Fcn
respectively. Thus equation (3.17) is equivalent to the following two

differential equations.

mx + cX + Fcp = -ma(t) (3.18a)
and
mx + ck + Fon = - ma(t)
(3.18b)
where,
(3.19)
Fep = KoXes Fen = =koXe
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Clearly, both the equations labelled as (3.18) are equivalent as far as
the solution procedure is concerned. Hence, we find the solution tb the

differential equation of following type
X+ cx = .A+[A1+1‘Ai)t] F ;0<tsh  (3.20)
mx + cx = - m[A; + (———)t] - F_; :

Dividing each term of above equation by m, we get

x+ 280k = [A + A+ (] (3.21)
where,
%5 (3.22)
= = 2 1
AC F./m moxc _—j;(

The homogenecus solution to above differential is found to be as foliows

=28 w_t
= oo (3.23)

Using the method of undetermined coefficients, we get the particular
solution as

A A A - A.

. - A. . - A. ACG + A, A.
i+l i i+l i Tq. . i+l i
X = - 112 + [ - ]t - (a——_—JtZ (3.24)
p ( 38 jwoh 4820} 2849, 48 guoh

Now, x=xh*xp, hence, substituting equations (3.23) and (3.24), we get

X =c +c e-ZBOwot + Mot = Ay - e AT]t'T(—T__TAHI _ Ai]tz (3.25)
2 48Zw2h 2B g Bo%

Differentiating (3.23), we get

: 28wt , litl Ai] i (ACG YA AT Ai]t ‘_

X = - Zsomocze 00 _— TE o Zsowoh (3.26)

4nggh 00
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The above solution is subject to the following initial conditions

x(t=0) = x, and x(t=0) = iT. (3.27)

Applying these initial conditions, we obtain the following values of the

boundary terms

X, A

S i Ay PCE+ A (3.28)
: B w 33 272
00 SBOwoh 480m0
and , ‘
] i 28 w 833h 422 (3.29)
00 Ba¥o Bag ’

After substituting equations (3.28) and (3.29) in (3.25) and (3.26) and
reorganizing the terms, we can write the final expressions in following

form (with t=h for the response at time ti*1)

[ o dpn e 00 o
“Jisl [Ca1 S22 U % dzz_J A Wl

where,
¢y = 1.0
: ] -2Baunh
¢y, = 5 (1 - e"2Botol)
12 280w0
21 = 0.0
‘280w0h
€22 *
1 1 ~28awnhy, 1 ]
dis = (- o% + - h
1 460“’0{285&;2?1 Bowo 28§m§h
1 [ -28qugh 1
d.. = (e“"o“0 -1)+-——-h} (3.31)
12 480w01283m§h Bovo
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s fefouah 1 }
d21 B 280“0 {e Bowoh ZBOth
~2Bguwohy _
22 ZB m {Zs e ) ]}
] '2800)011) -
Xpi Emu:lés (1-e - (ae)

VP' =[2_B_]_w_(e-260{doh - ])] (A_’:f)

00

d

Equations (3.30) and (3.31) define the solution for response along
paths 2 and 4 of an elasto-plastic, hysteretic osciilator.
Considering a bilinear, hysteretic system (af0), we can write the

following equation of motion along paths 2 and 4

mx + Cx + FC—:(—+ak [x'xc*-x—J = - ma(t) (3.32)
x| | x|
or
mx + cX + [akoJx = - ma(t) - Fe \:I (1 - a) (3.33)

Similar to equations (3.18), above equation is equivalent to two
ordinary differential equations. Hence, as before, we can consider a

following form of differential equation to sclve for the response

X + 28%uw*% + w*2x = - @(t) (3.34)
where, the quantities marked with asterisk are given as

w* = yak /m = wov/a (3.35)

Q

and
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g* = ¢/(2w*m) = BO/JE (3.36)
Also,
-t = alt +w2X (1"(1)—:x'-— 337)
a(t) (t) o%c |;'(l (
Note that
(3.38)

(280,) = (28%) =

Comparing equations (3.2) and (3.34), we observe that the solution to

equation (3.34)] can be expressed in a form similar to equation (3.3) as

follows
{"} _ (et e1z {"} RERISENRSTI B
xJ 1+l ey epf [XJ fi2 fao| (Mie) (839
where,
*ukn * .
e, = B*0 {___.‘E_B__ sin(wZh) + cos (wn) }
e-B*w*h
ey = = sin (wh)
w* -B8*w*h,_ .
€, = —————e sin{w*h)
21 g d
€yy = e'B*m*h{cos(wgh] S L sin(wh) |
(3.40)
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sin(w%h)
- e-B*w*h{(ZB*z -1 +%;J 3 ¥ ( 28% + L )cos(w*h]}- 2B*

fll B w*2h wé w*3p w*2 d w*3n
* *2 sin{w*n) * *
fi2 ° -8 h{[ZB 1) m*d + 2 cos[m;h)} L2t
w*Zh d w*3 w*2  y*3p
-B*w*h 28*2 - 1 + B* . g* . N
= —_— 0s(w*h) = ————————o sin (w%h
o = e ME L Efeosugn) - £ stn (ugn)]
- _ZB:- + _.1_ w¥sinlwlh) + B*w*cos{ w*h + 1
[m*3h w*ZJ[ getnlagn) (g} w*2h
%* *2 * .
fop = - B*w h{(gﬁ_*_z___l)[cos(wa‘h) - — B8 Sm[ma'h)]
w*<n
Yl - g*2
- 8% [uksin(win) + B*wrcos(wn)]} - 1
w*3p @ d w*2h
Note that
w¥ = wt/l - B*2 : (3.41)
Also,
- Xs
A = A+ w2(xc)(l - @) — (3.42a)
1 1 0 .
lxi|
and
- X,
_ 2 _
Aiv1 Aipgp t O (xc)(1l - a) P (3.42b)
j

Equations (3.40), (3.41) and (3.42) define the solution to the response

along paths 2 and 4 for a bilinear, hysteretic systems.
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Radoshycka (33) did similar work for his Master's thesis at Rice
University. More recently, Nau (25) presented essentially the same
resuits as presentad above. It is however, mentioned here that the
author was unaware of these works at the time the above solution was
developed. |t was observed that the formulation developed in this work

is consistent with the ones derived by Radoshycka and Nau.

3.4 TIME-HISTORY ANALYSIS USING APPROXIMATE METHODS

As mentioned eariier, it is generally not possibie to develop the exact
solution to the response of systems with any general type of noniinear
and/or hysteretic behavior. A time-history analysis of such response is
sometimes necessary for a detailed study of the response history.
Various time-history analysis schemes may also be used for the purpose
of verification of the resuits obtained using other methods. Newmark
was one of the pioneers in developing such methods. These are often
referred to as the direct integration methods, since the equation of
motion is integrated at each instant to obtain the response at that
instant. The relative acceleration in the response is assumed to be
either linearly varying or constant during each incrementai time-step.
In case of nonlinear problems, an improvisation over Newmark's original
method can be done by a tangent stiffness approach to arrive at a
better estimate of the stiffness (or stiffness matrix for a multi-degree

of freedom system) at each. instant.
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3.5 IMPLEMENTATION OF TIME-HISTORY ANALYSIS METHODS

A computer program was developed to implement the exact solution
algorithms presented earlier. This program is capable of solving for
perfectly elastic systems as well as elasto-plastic and bilinear hysteretic
systems. The program incorporates the following advantages of the
exact solution
1. The response is accurate regardless of the size of the time-
step.
2. The times at which the system behavior changes from one path
to another can be located accurately.
As mentioned earlier, the size of time-step is governed by the spacing
of ground acceleration readings and hence, the first advantage is
generally rendered insignificant, since in case of nonfinear systems, it
is necessary to compute the response at all known acceleration readings
as the response is dependent on the path between the instances of any
two readings under consideration. This is in contrast to the linear
systems, where the response at any given time depends only on the
values at the beginning of the time-step and the ground acceleration
reading at that time.

The program produces results for given values of the naturai
frequency, damping ratio, ratio of the secondary to the primary
stiffness and the magnitude of yield displacements (positive and
negative}). At each time-step, the properties of the system are

inspected tc determine the path it is following at such instant. A
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Paz(32) has presented an algorithm to compute the response of
any general nonlinear single-degree-of-freedom system. It is based on
Newmark's method and corresponds to the case of the parameter, B =
1/6. The relative acceleration of the oscillator is assumed to vary
linearly during each time interval as shown in figure 7. ‘The
app.roximate solution can be described by the following equations

,m{'“i +§';‘i +3x, |+ 3%, +.g.xi}

8% TR (3.47)
(k‘l + h—2 + —HJ
- 5 6 . had
axy = --2- Ax1 "W * 3x1 (3.48)
n
and
» 3 . - h -
I i R A (3.49)
Finally the response at time i is given as
Xisl Xy * Ax1 (3.50)
and
'/ Y X A..
ST I (3.51)

Equations (3.48) and (3.49) together define the response of any general

nonlinear system.



45

change of path (fig. 4) indicates Ehange in the system behavior.
Every time such change occurs, the program invokes the appropriate
kink locater routine to determine the exact time at which the system
changes its behavior. Thus the response history for reiative
displacement, relative velocity, relative and absolute acceleration and
the spring force (if desired) is generated during the execution of this
program. However, in the context of this thesis, one wouid only be
interested in the response characteristics such as the mean and
standard deviation of response maxima, root mean square wvalues, etc.
As such, these are the outputs produced by this program with an
option for printing the response history, if desired.

A computer program based on Paz's algorithm was also developed
for the purpose of verification of 'the results obtained with the program
employing the exact solution algorithms. |In this case, it is necessary
that the size of the time-step be very small to ensure accurate results.
In this case the size of time-step was taken to be the same as the
spacing of consecutive ground acceleration readings {(0.002 seconds),
which is small enough to ensure good accuracy.

The above mentioned computer programs were used to create
elastic response spectra and a few sample spectra for the hysteretic
oscillators. The exact solution results were used as reference for
" testing the accuracy of the results obtained t_Jsing the methods
presented in chapter 3. The results from chapter 3 are presented in

chapter 4.



Chapter 1V

RESULTS AND CONCLUSIONS

4.1 SEISMIC INPUT

For the purpose of this work, ensembles of artificially generated ground
response spectra (acceleration time histories) were used. It is necessary
that the seismic inpﬁt be defined in terms of ground response spectra
curves for the sake of consistency.. It was thought better to artificially
generate the ensembles of time histories {with certain frequency and
intensity characteristics) for the use in time history analysis and for
the genération of elastic response spectra, since it is difficuit to find
authentic ground acceleration records having consistent energy
dissipation characteristics. Variety of methods have been proposed in
this context (42,44).

The base accelerations are assumed tc be represented as follows
xy(t) = x (t)e(t) (4.1

in which xg(t) is the base acceleration, xs(t) is a stochastically
generated time history motion; and e(t)} is an intensity modulation
function. The modulation function causes the (artificial} input to be of
a character similar to the actualb earthquakes (consisting of a build-up
phase, strong-motion phase and the decaying phase). The stationary
nature of xs(t) is destroyed since it is multiplied by the modulation

function. Hence, the actual input used is of non-stationary nature.

46
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xs(t) is characterized by a modified Kanai-Tajimi type of spectral
density function in which more terms are added to get a broad band

effect.

w} + 4BFwle
5. 1 171
11 (‘”12 - w2)2 4+ 481%»13:»2 (4.2)

([N e T 4%

@s(w) = -i
Table 1 tabulates the parameters Si’ W, and Bi of the above spectral
density function (see ref. 39). A standard technique, originally
proposed by Rice (35) is used to generate the sample acceleration time-
history functions corresponding to the above density function. As
mentioned earlier, all these time-history functions are then rendered
non-stationary with the use of rather arbitrarily selected envelope
functions. A further modification for base line correction is carried out
so that any erroneous long period effects occuring during the
generation process are removed. The importance of this has been
investigated by Chopra and Lopez (10) in reference to inelastic
response of structures. The ensembles used in this work were
generated by Singh and Ashtiany (39).

A total of 75 earthquake time histories were generated using
above procedure. Each record is of 15 seconds duration. In a similar
manner, 100 records of 12 seconds duration each and 39 records of 30
seconds duration each were generated. The maximum wvalue of ground
acceleration for all the records is in the neighborhood of .1G.

In order to cause large displacement response beyond the elastic

range, ‘the same earthgquake time histories were used by applying
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amplification factors of 2 over each reading in the ground acceleration
records. Due to this, the elastic response spectra are merely amplified
by the same factor, however, the effect on inelastic systems can not be
predicted in such a simple manner.

It is necessary to construct a wide range of elastic response
spectra as the basic reference data set. The whole purpose of
equivalent linearization method is to be able to predict the response of
a given inelastic system by defining its equivalent linear properties.
The response of the inelastic system is approximately equal to that of
its equivalent linear system; which is obtained by reading the

appropriate elastic response spectrum.

4.2  GENERATION OF ELASTIC RESPONSE SPECTRA

The available response spectra were extended for higher values of
periods and damping. Use of the equivalent linear analysis methods may
give rise to large values of equivalent damping ratio and/or period, out
of the range of the available spectra. This necessitated the generation
of elastic spectra covering a wide range periods and damping ratios.

A simple computer program was written to generate the elastic
response spectra uptoc a range of 15 seconds period and .90 damping
ratio. Results by Nigam and Jennings (30,31) were used in this
program. [t computes mean and standard deviation of the maximu}n
response quantities such as relative displacement, relative velocity,

relative acceleration and absolute accelearation. Since the results are
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accurate despite the size of the time-step, a comparatively larger time-
step was used to affect computational savings.

in Figures 4.10 through 4.13, the elastic response spectra are
represented by the uppermost of the curves, corresponding to a
ductility ratio of one (no vyielding). The famous enveloping effect at
intermediate frequency range as observed in the Newmark - Blume -

Kapoor spectra (26) .can be seen present in these plots, too.

4.3 GENERATION OF INELASTIC RESPONSE SPECTRA

Response spectra were generated for an elasto-plastic system with
damping ratio of 0.05. For this, the frequency was varied between 0.20
cps to 35 cps. The 21 values of frequencies considered in this range
are listed in Table 1. The ensemble of 73 time-histories of 15 seconds
duration each was used for this work. An amplification factor of 2.0
was used for each ground acceleration reading in all time-histories.
This was done so as to affect a higher ductility ratio at values of vyield
displacements which were not too small. The computer program
mentioned in section 3.5 was used to achieve the results. A time-step of
0.002 seconds was used for the purpose of accuracy. The times at
which the system changes its behavior during its response history were
traced accurately wit_h the use of this program. Some of the results of

were validated by a simpler computer program based on Paz's algorithm.
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The procedure to obtain the yield displacement corresponding to a
desired level of ductility is described by Riddell (36). Since a given
level of yield displacement is unlikely to produce the response at a
specified ductility level, the program was used to compute the statistical
response characteristics for a range of yield displacements depending on
the frequency of the oscillator. An inspection of the elastic response
spectra for relative displacement is helpful for this purpose.
Corresponding to each yield displacement level, the computer program
computes the mean and standard deviation of the maximum response
quantities of each time history. The effective root mean square value is
taken as the maximum of the various root mean square values (along the
time axis). Each such value is in turn computed by the following

formula

i=l i (4.3)

RMS(q(t)) = N

where, q(t) = the value of response quantity at time t and N = number
of time histories

It may be noted here that 't' in this case is a discrete variabie in
this case is a discrete variable with increments of 0.002 seconds. Thus
there are 7500 such RMS values along the time axis. Finally, the

maximum RMS values are given as

RMS(q) = Maximum [ (4.4)
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U, the ductility ratio and Pf(q), the peak factor are defined as

Maximum Relative Displacement
TR (4.5)

Yield Displacement

and

Maximum value of Response,

P H = (46)
;\Q) RMS(q)

In the above equations, the 'maximum' may be taken as the mean
of the maxima corresponding to all the time-histories, or it may be
taken as (mean plus some constant times the standard deviation) of
such maxima. For example, if we assume a stationary Gaussian
response, the mean would correspond to a probability of exceedance of
50 %. The program gives the ductility ratiecs and peak factors
corresponding t;) the mean and (mean plus one standard deviation).
Again, the response quantities considered were relative displacement,
relative velocity, relative acceleration and absolute acceleration.

A run of the program for given values of yield displacements for
a fixed value of frequency and damping ratio would thus vyield a2 range
of ductility values corresponding to that set. A plot of vyield
displacement vs ductility ratio can then be made and the yield levels
corresponding to the desired ductilities can be picked ocut by either
graphical interpolation or simply by a linear interpolation scheme (see

fig. 7-9). A graphical interpolation scheme was presented by Riddell
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{36). For this work, linear interpolation was carried out between the
appropriate pairs of consecutive readings to pick out the yield levels
corresponding to ductility ratios of 2, 4, 5, 8, and 10. Corresponding
values of other response quantities were also obtained by linear
interpolation between the same pairs of consecutive records.

In most uses the dependance of ductility on the yield level is of
monotonic nature. Thus, a decrease in the yield level generally leads to
an increase in the ductility. However, this is not necessarily true. In
particular, for elasto-plastic systems the displacement and velocity
responses sometimes tend to accumulate. This means that for certain
time-histories, it may happen that these responses become very large,
thereby largely affecting the mean, standard deviation and the RMS
values. This also disturbs the otherwise monotonic relationship between
yield level and ductility. In order to overcome this problem, an
arbitration procedure was incorporated in this program. Since most
structural steel materials exhibit a strain-hardening behavior after some
level of ductility (which in fact, can be idealized by a trilinear
behavior, Ref. 1), an upper limiting value of ductility was prescribed
for each computer run and the program would consider the maximum
relative displacement as this upper limit times the yield level, in case it
is detected that the displacement exceeds this upper limiting wvalue.
The selection of this upper limit was based on the remarks in Ref. 1.

Using this procedure, the response spectra were generated for

ductility ratios of 2, 4, 5, 8 and 10 for elasto-plastic oscillators (a = 0)
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with damping ratio of 0.05. The spectra were generated for relative
displacement, relative velocity, relative acceleration and absolute

acceleration. Figures 10 through 13 represent these spectra.

4.4 OTHER TIME-HISTORY ANALYSIS RESULTS

A few runs were made for different values of ¢, the ratio of stiffnesses
and p, the damping ratio. The main intention for this was to generate
the exact results which can be used to judge the effectiveness of the
equivalent linearization scheme with different non-hysteretic modéls.
The same computer program mentioned above was used for this
purpose. A value of « other than zero was chosen which represents a
BLH system and the program is capable of producing the same results

for such a system with the same kind of accuracy.

4.5 RESULTS OF EQUIVALENT LINEARIZATION

The method of equivalent linearization used in this work is an indirect
one, since the original hysteretic system is first modelled as a non-
hysteretic one and then the equivalent linearization is carried out on
such 2 model. Hence the results of these analyses depend on the
criteria on which these models are based. As mentioned in chapter 2, a
computer program was developed to implement these methods. The
results are generated in an iterative fashion described earlier.

Besides the nature of the model itself, all the methods under this

category depend on the wvalue of peak factor used for their
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implementation. For the purpose of this work, a range of peak factors
was used to inspect values of the peak factor that would give the best
possible results. Runs were also made using the known values of peak
factor obtained from the time-history analysis to see any correlation
between the two corresponding results. Additlonally, Vanmarcke's
approach was also used to compute the results based on that formulation
(43).

The results of time-history analysis were availabie for checking
the accuracy of these methods. It was cbserved that the results of such
a comparison define three zones of frequencies, depending on the kind
of accuracy produced in each such zone. Characteristically, these zones
almost coincide with the ones defined in the standard Newmark - Blume
- Kapoor spectra (26). The results were found to be most consistent in
the first frequency range (.25 cps-2.5 cps) and least consistent in the
intermediate frequency range (2.5 ¢ps-9.0 cps). All these trends are
exemplified by the results tabulated in tables 3 through 17. It shouid
be noted that the units are as follows : displacement - inches, velocity
- ft/sec, acceleration - G units and frequency - cycles/second. The
fact that a consistent peak factor can not be used to produce resuits of
consistent accuracy range is exemplified in figures 14 through 16.
These figures alsc indicate that one can not generate inelastic response
specira with the use of the models presented here, since the predicted
response is dependent on numerous factors such as frequency, ductility

range, assumed peak factor, etc. Tables 3-17 use the following abbreviations :

I

PFCb = Assumed Peak Factor, DRC = Predicted Ductility Ratio, RSVC Predicted

Predicted

I

Relative Velocity, RSAC = Predicted Relative Acceleration, and ASAC

Absolute Acceleration.
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For the case of elasto-plastic systems it was generally observed
that these methods are satisfactory for low to moderate ductilities {upto
w=4 or 3}. For higher ductilities, the relative displacement response is
generally underestimated to a large extent. Also, the prediction of
absoiute acceleration and relative velocity response is comparatively
overestimated in most cases. CCD was the only method most consistent
in its results. However, as a general observation it may be said that
these methods are not reliable for the task of producing a whole range
of response spectra; they could only be used in certain ranges of
frequency and ductility with some judgement for the selection of the
peak factor value., It is possibie that they be satisfactory for the
prediction of the inelastic response of multi-degree of freedom
structures.

Sampie results for the BLH system response are also presented in
the above mentioned tables. It was observed that the methods work
much better for BLH systems. Again, tHe response prediction depends
on the same factors mentioned earlier. In general, the results are most
satisfactory for low to moderate ductilities. This observation is
consistent with some conciusions drawn by Caughey (6).

Some conclusions along with a few explanatory remarks are

presented in the next section.
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CONCLUSIONS

The time-history analysis is the most reliable tool for response
prediction. This fact was duly restated during this study.
Different methods (whether approximate or exact) under this
group stand as benchmarks for the purpose of verification of
results obtained by various methods in use. The fact that the
time-history . analysis is computationally expensive was
highlighted during this study. A comparison between the time-
history analysis and the equivalent [inear analyses showed that
there is a 50-100 fold saving in computational time if the fatter
are used to estimate the response.

It was observed that for elasto-plastic systems, for frequencies
4 cps and above, the relative displacement response tends to
become very large for some ground acceleration records. This
is attributed to the fact that such a system has zero stiffness
on the secondary path. The response foilows this path as long
as the relative velocity does not change its sign; occurence of
which depends on the excitation input among other things. This
problem is not encountered for BLH systems («#0). However,
the response is relatively unaffected for very low values of a.
For large values of a (.20 onwards), the relative displacement
response is considerably smaller compared to the one in the

elasto-plastic case.
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The approximate methods used in this study are satisfactory
for low to moderate ductilities only, particularly for the case of
elasto-plastic systems. This is due to the fact that all these
methods assign some effective value of stiffness to the
substitute non-hysteretic modei, whereas the actual system
responding along the secondary paths has a zero stiffness.
This discrepancy becomes more pronounced for a highly ductile
response wherein the system behavior is along the zero
stiffnessA path for a considerable time; a fact which is not
accounted for by the non-hysteretic models considered in this
study.

The response prediction using the approximate methods of this
group is more reliable for the case of BLH systems. This is
due to the fact that such systems do have some stiffness after
their yielding. As such there is no fundamental discrepancy in
modelling them with some effective stiffness in their non-
hysteretic models. It must however be mentioned that the
accuracy of response prediction in this case would depend on
the magnitude of the secondary stiffness. It is possible that
these methods would overestimate the relative displacement
response i such cases.

A comparison of individual methods shows that the HEL and GS
methods produce similar results for low to moderate ductilities.

A glance at fig. 6 explains the reason for this. Here, it can be
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seen that both these yield almost identical results in that range
of ductility. It was observed that CCD works satisfactory in
most cases. This is possibly due to the fact that it considers
the effective mass as changing as a function of the ductility
level. Hence, even though it gives the same value of effective
stiffness, it produces a smaller value of the effective damping
coefficient. ‘The last two methods were found to be most
unsatisfactory in that they are very inconsistent. This is
possibly due to the fact that they yield an effective system
(and consequently the -equivalent linear system) that bhas
properties not very different from the original system. “Thus
one ends up with an equivalent linear system that is in the
same frequency zone (generally defined by the Newmark -
Blume - Kapoor spectra). Obviously, the response prediction in
such a case is not much different from the one corresponding
to the elastic response of the original system. In any case,
these methods were deviced to model deteriorating systems
unlike the ones considered under this study.

The accuracy of response prediction depends on the value of
the peak factor assumed in the implementation of the
approximate methods. It is thus necessary to exercise some
judgement in the selection of a proper peak factor value. it is
difficult to come up with a unique value in this regard,

however, some general guidelines can be used for this purpose.
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[t is important to note that all the non-hysteretic models‘
assume a harmonic response for a given amplitude level. The
value of peak factor corresponding to harmonic response is 2 .
If we assume that the amplitude of displacement is a slowly
varying sine wave function of time (during the response
history), then the corresponding value of the peak factor
would bé 2.0. Thus, it is reasonable to expect the proper peak
factor value in the vicinity of this number. Another factor
which governs this selection is the level of ductility. [t can be
observed from the time-history analysis that the actuai value of
the peak factor becomes smaller with an increase in the
ductility level. This indicates that the displacement response is
more dense (from the viewpoint of prebability of actual
occurence} near the maximum value, thus causing a reduced
peak factor. A due consideration of this fact suggests that a
value lower than 2.0 is more sensible for the cases where a
large value of ductility ratio is expected. Also, the peak factor
selection depends on the range of the frequency. For elasto-
plastic systems, it was observed that the peak factor is much
smaller for frequencies 4.0 onwards. This suggests a
corresponding decrease in the adopted peak factor value in this
range of frequency. Based on the runs made for various values
of peak factor, some general guidelines were drawn for arriving

at the proper peak factor. These are tabulated in table 18. It
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may be noted that the values for peak factor in case of CCD
are somewhat different from HEL and GS. No stipulation is
made for ASD and ASE ©because of their inconsistent
performance. In all cases, the peak factor evaluation based on
Vanmarcke's formufation was inappropriate for implementation of
these methods, because the values thus obtained were rather
high.

As mentioned earlier, relative velocity and absolute acceleration
response prediction is more error prone if the approximate
methods are used. The reason for this can be appreciated if we
look at the inelastic response spectra shown in fig. 11 and 13.
The enveloping effect in the response spectra for the
intermediate frequency is almost non-existent for larger
ductility ratios. In fact the curves are of monotonous character
for higher ductility values. The elastic spectra are used to
determine the response of the equivalent linear system and the
readings on these curves are subject to the above mentioned
enveloping effect, thus causing a considerable error in the
response prediction of these quantities.

Considering all the above comments, following recommendations
can be made. The approximate methods considered in this work
are satisfactory for low to moderate ductilities, particularty for
values of o greater than 0.20. Incorporation of a non-zero mean

response assumption would probably yield better results in
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light of the fact that the actual response is far from the zero
mean case when the ductility ratio is high. Also, the methods
considered in this study would probably be more satisfactory
for modelling the hysteretic response of a multi-degree of
freedom system, since modelling the seffective stiffness and

damping coefficient is more appropriate in such cases.
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Table 1
Parameters of Spectral Density Function

Qg(m) » Eq. (4.2)

ft2-sec/rad rad/sec
.0015 13.50
.000495 23.50
000375 39.00

.3925
.3600



.20
4.0
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Table 2
Values of Natural Frequency (cps) Considered for

Generation of the Inelastic Response Spectra

25 .50 1.00 1.50 2.00 2.50 3.00 3.50
5.0 6.0 - 7.0 8.0 10.0 12.0 16.0 20.0
30.0 35.0
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Table 18
General Guideline forVSelection of Peak Factors

for Implementation of Various Models

Frequency ‘

Range .25 - 2,50 2.50 - 9.00 9.0 - 35.0
Method 1-4 4~10  1-4 4-10  1-4 4-10
HEL 2.0 1.7 1.6 - 1.7 1.6
GSM 2.0 1-7 1-6 - 1.7 107

CCD 2‘0 2.2 1.9 2.2 1.9 2.2



