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Chapter I

INTRODUCTION

In structural engi.neering, it is customary to use response spectra for

the design of structural members subjected to earthquake excitation.

Response spectra are generated for a range of frequency and damping.

Usually this range' is such that it is common for most structural

systems. Also, response spectra correspond to a certain intensity of

seismic excitation, which is a characteristic of the geological properties

of the place where the structure is to be located. For normal design

purposes, the maximum displacement, force and other relevant response

parameters corresponding to a given natural frequency and damping of

a structure can be obtained using the appropriate response spectrum.

The structure is then designed to endure the response characteristics

obtained in the above fashion.

It must be noted that most of the structures respond inelastically

during a seismic occurence. However, the response spectra are

generally constructed based on the assumption that the oscillator

behaves elastically. They do not account for the fact that much of the

energy is dissipated by inelastic yielding and/or hysteresis during such

response. Hence, the conventional response spectra generally

underestimate the design displacement. This explains the fact that many

times failure of important structural elements, such as columns and

beams, occurs due to the lack of provision of sufficient ductility in

them.
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In light of the above observations, it is necessary to construct

response spectra which accommodate various possible inelastic behaviors

of structural elements. In this thesis, several methods capable of

predicting the response of hysteretically behaving, single-degree-of­

freedom oscillators are studied. In general, it is not possible to obtain

the exact solution for the response due to nonlinear, hysteretic

behavior. Time history analysis using Newmark's or Wilson's method is

always possible, but this is computationally expensive, hence unsuitable

for normal structural designs. The purpose of this work is to explore

simple methods which can be effectively used to study the response of

hysteretic structu res.

Commonly, the so called inelastic spectra are generated for

specified levels of ductility. They define the magnitude of yield

displacement required to cause the response of a desired ductility ratio.

This idea was introduced by Newmark and Hall (28). Several

investigators have since worked in this field to predict the response

due to various types of nonlinear and/or hysteretic behavior.

Significant work has been contributed by Caughey (6,7,8,9), Iwan and

Gates (12,16,17,18,19), Wen and Baber (2,3,44,45), among others

(11,13,23,24,28,35,39,41). The inelastic spectra for other response

quantities are of the same nature as in the elastic spectra. The famous

tripartite grid representation of the response characteristics can be

done for inelastic oscillators, too(28,36).
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It is common to use artificially generated earthquake time-histories

of ground motion due to the scarcity of the records of authentic seismic

ground motions. Typically, such records are based on the Kanai-Tajimi

formulation. In this, the seismic input is assumed to be of white noise

type (containing all possible frequencies). Depending on the properties

of the underlying soil medium, the ground response spectra are

represented as a wide or narrow band input of appropriate spectral

density function. Various ensembles of artificially generated ground

response spectra (earthquake time histories) were used for this thesis.

The basis for such approach along with the characteristics of these

ensembles is presented in chapter 4.

For random inputs, it is believed that acceptable solutions can be

obtained by replacing the hysteretic character of the original system by

an equivalent non-hysteretic but nonlinear system. This is done by

defining suitable stiffness and damping parameters of non-hysteretic yet

nonlinear nature. This eliminates the response dependance on its own

time-history, a characteristic of hysteretic behavior. This idea was first

introduced by Jacobsen (20) in his geometric energy approach. Since

then, several such models have been proposed and studied, each using

certain criteria to define the properties of the resulting non-hysteretic

model (4,9,12,17,22,24,29,37,39). Typically, the names of these

methods suggest the criteria used for their formulation. In this thesis,

some such non-hysteretic models were studied. Five of these are

presented in chapter 2. Equivalent linear properties of these non-
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hysteretic models were obtained using stochastic equivalent linearization

approach, based on a mean square error minimization technique. The

response of the original hysteretic oscillator is then approximated as the

one caused in the equivalent linear oscillator. In this thesis, it is

intended to examine these methods from accuracy and expense point of

view. Also, the domains of natural frequency and ductility in which

such methods can work satisfactorily are explored.

Exact closed form solutions were developed for elasto-plastic and

bilinea r, hysteretic systems. The resu Its of such solutions were

validated by a program based on Newmark's method (27) with very small

time-step. All this formulation is presented in chapter 3. A computer

program which implements the e'xact solutions was also developed.

Inelastic response spectra and some other sample resu Its were generated

using this program. These results were also used for checking the

accuracy of equivalent linear analysis approach, which is

computationally inexpensive.

Chapter 4 deals with presentation of results

formulations developed in the preceding chapters.

remarks are also presented in this chapter.



Chapter II

METHODS USING EQUIVALENT LINEARIZATION
APPROACH

2.1 , INTRODUCTION

As mentioned in chapter 1, time-history analysis is computationally

expensive. Thus it· is necessary to develop simple, yet reasonably

accurate methods for the prediction of seismic response of hysteretic

structures. From a design point of view, it is important to note that we

are interested only in the- response statistics (mean, standard deviation,

maxima, root mean square, etc). Whereas the time-history analysis

produces an elaborate response history of the structu re, the equivalent

linearization approach leads to the computation of the vital

characteristics such as those mentioned above. This justifies the use of

simple yet effective methods like the ones presented in this chapter.

Exact solution is possible in very few cases of hysteretic

behavior. In any case, such exact solutions result in expensive time-

history analysis. Nonlinear differential' equations of motion can be

handled with the use of pertu rbation methods (11), equivalent

linearization schemes, etc. It has been found that perturbation approach

is not satisfactory for highly inelastic behavior. Some researchers have

also attempted to use the Markovian process to model the hysteretic

response (7); indeed, such response is a function of the previous

response history. Equivalent linearization approach is a well accepted

5
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method in this regard and it is widely being used

(2,3,8,12,14,16,17,23,24,39,41,45,46). In this chapter, a simple

algorithm is developed for equivalent linearization of nonlinear, non­

hysteretic systems. As mentioned in chapter l, hysteretic structu res

can .be modelled by equivalent non-hysteretic structures. In this

chapter, some of these equivalent non-hysteretic models are presented.

The equivalent linearization scheme used in this thesis is an indirect

one, since it is carried out on the ensuing non-hysteretic model as

opposed to carrying it out on the original hysteretic oscillator.

2.2 SYSTEMS CONSIDERED

Figure 1 shows a single-degree-of-freedom oscillator subjected to base

excitation. The response characteristics of this oscillator depend on the

stiffness and damping properties associated with the system as well as

the nature and intensity of base excitation. The damping is caused due

to viscous effects for ordinary structures under consideration. Such

damping is directly proportional to the velocity of the oscillator at any

instant and the viscous damping force acts in the direction opposite to

th e direction of motion.

For the systems considered in this work, the nonlinearity in the

response is due to the hysteretic character of the force-displacement

relationship. Figure 2 represents a perfectly elastic, non-hysteretic

system. Figu re 3 depicts an elasto-plastic, hysteretic behavior. A

bilinear hysteretic system is represented in figure 4. An elasto-plastic



7

behavior is a special case of the bilinear one in that the bilinear system

has a non-zero stiffness along paths 2 and 4, unlike in the elasto-

plastic systems. In both these cases, the response is characterized by

paths 2 or 4 as long as the velocity does not become zero. The moment

the velocity becomes zero, the system then behaves according to the

nature characterized by path 3. Looking at figures 3 and 4, it is easy

to see when the system changes its behavior from one path to another.

Figure 5 portrays a general type of smooth hysteretic behavior. The

velocity and/or response history dependance of the behavior of such

systems may not be as simple and explicit as that in the elasto-plastic

and bilinear hysteretic systems. These types of systems were not

considered in this work. Their behavior may be modelled analytically

by equations proposed by Wen, Bouc and Baber (2,3,5,45,46). It

should be noted that all the systems considered in this work are of

non-deteriorating type. The basic notation used is clearly indicated in

above mentioned diagrams.

2.3 PROPOSED EQUIVALENT LINEARIZATION SCHEME

Consider the following type of equation of motion; applicable to

nonlinear, non-hysteretic systems

m~ + c (x)~ + k (x)x = -ma(t)p p
(2.1)

We propose an equivalent linear system described by the following

equation of motion

+ c x· + k x = - ma(t)mx e e
(2.2)
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. where, C and K are the proposed equivalent linear properties of thee e

given nonlinear system described by equation (2.1). Such approximate

representation of the actual system introduces the following error,

obtained as the difference between equations (2.1) and (2.2)

(2.3)

It has been shown that the mean square error minimization technique is

at least as good as any other type (15). Hence, let us minimize the

mean square error by defining C and K as followse e

and

a [E(e2)] = 0-rr;
Equations (2.4) and (2.5) can be rewritten as

and

E[2e ~] = 0
e

Substituting equation (2.3) in (2.6), we get

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

or
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If we assume that the response is stationary and Gaussian, then

Hence, equation (2.9) can be rewritten as

E[c (x)x2 ]
C = _...J:P _

e E[ x2 ]

But

Substituting equation (2.12) in (2.11), we get

Now, substituting equation (2.3) in (2.7), we can write

or

Similar to equation (2.10), we have

Substituting equation (2.16) in (2.15), we get

k = E[k p(X)x2]

e E[x2 ]

(2. 10)

(2. 11)

(2. 12)

(2.13)

(2.14)

(2.15)

(2.16)

(2. 17)
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Equations (2.13) and (2.17) together define an equivalent linear system

for the type of nonlinear systems described by equation (2.1).

We can further specialize equations (2.13) and (2.17) for a zero-

mean, stationary, Gaussian response. The probability density function

for such a distribution is given by

f (x) = 1 EXP(-x2/2a 2)
x Iz:ia, x

X

(2.18)

Note that in this case, the mean value of 'x' is zero; this leads to the

following result

Now,

E[x2] = a 4x (2. 19)

and

Ce = f C,,(x)fx(X)dx
_co (2.20)

(2.21)

Substitution of equations (2.18) and (2.19) in (2.13) and (2.17) leads

to the following results

co

Ce
1 f cp(x) EXP (-x2/2ax

2)dx=

f2iT crx· -co

and

1
co

Ke = f x2k (x) EXP (-x 2 /2a 2)dx
Iz:i 0 '3 -co P x

x

(2.22)

.(2.23)
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Equations (2.22) and (2.23) define the equivalent damping and stiffness

for a nonlinear, non-hysteretic system described by (differential)

equation (2.1). It must be noted that these equations are valid only

after we assume that the response is of stationary, Gaussian nature

with zero mean.

It can be easily seen that the integrations in the (2.22) and

(2.23) may not possess closed form solutions; yet they can be dealt

with using Hermite's quadrature. Infact, in this work, Hermite's

quadrature scheme for numerical integration was exclusively used to

eval uate the equivalent linear properties. Let us define two functions

g(xl and hex) as below

(2.24)

and

(2.25)

Then using Hermite's quadrature for numerical integ ration, we can write

n
x;)W(x;)Ke

::: ') g( v'~ a X (2.26)
L

vI! ;=1

and

1
n

x; )W(x i )Ce
~

h( /2":::: - a
;; ;:;1

x (2.27)

where, xi = ith root of the nth order Hermite polynomial, W(x i)= Weight

corresponding to the above root Finally, (AI, the equivalent naturale

frequency and ~e' the equivalent damping ratio are given as
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(2.28)

and

(2.29)

Where, T is the period of the equivalent linear system correspondinge

to an original hyster-etic system with mass m, stiffness k
o

' and natural

frequency lil
O

'

The systems considered for this work are of hysteretic natu re,

wherein the force-displacement characteristics are velocity dependent.

In order that the above formulation be applicable to systems under

consideration, it is necessary to define their equivalent nonlinear

systems. Many such equivalent non-hysteretic models have been

proposed and each one of them uses one or more criteria to define the

equivalent non-hysteretic system. For the purpose of this thesis, five

of these models were considered satisfactory and they are presented in

the following paragraphs. In each case, the model is specialized for

bilinear systems (elasto-plastic systems happen to be a special case of

the bilinear ones with tX=O).

Iwan and Gates (12,17) have extensively studied various non-

hysteretic models and they arrived at many useful expressions for the

application of those models. However, for the purpose of this work, it

was aimed to model the stiffness and damping coefficient of hysteretic

systems by using equivalent non-hysteretic models, hence, the
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expressions derived here are somewhat different than the ones obtained

by Iwan and Gates. In all these models, it may be noted that the

response is assumed to be of harmonic nature corresponding to any

amplitude level under consideration.

2.4 HARMONIC EQUIVALENT LINEARIZATION (HEL)

In this method, an· equivalent non-hysteretic system is obtained by

characterizing the response to be of harmonic nature. This method has

been studied by Caughey, Iwan, Gates (9,12,17). Following is a brief

derivation of the results involved in this approach.

Harmonic response can be expressed as

x = A cos(wt - ~) = Acose (2.30)

where, A=amplitude of the oscillations and w=the frequency of the

forcing function. The equation of motion for the given hysteretic

oscillator is given by

(2.31)

where, the function f(x, x) symbolically represents the response

dependance on its own response history. The equation of motion for

the equivalent non-hysteretic oscillator can be written as

~ + 28 (x)w (x)x + w2 (x)x = -a(t)
p p p

(2.32)



14

The error involved in the above approximation is given by the

difference between equations (2.32) and (2.31)

(2.33)

Let us define following variables

(2.34)

Again, we stipulate that the best results are achieved using the mean

square error minimization technique. Thus, following two conditions lead

to the optimal equivalent parameters

a
a~p (~2) = a

and

(2.35)

(2.36)
....L- (a 2 ) = 0
3(ll~)

h -2. h d II fwere is IS t e mean square error average over one osci ation 0

amplitude A

(2.37)

Substituting equations (2.32) and (2.33) In (2.37), we get

(2.38)

Now, equation (2.30) implies

x = - Awsin(wt - $) = - Awsine

and (2.,39)
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t .. ~6_+.-..p
w

Hence,

f(x,x) - f(AcoS6, - Aws;n6)

and (2.40)

dt • !J!w

Substitution of (2.39) in (2.38) leads to the following expression

2'11'
~2 =--21 J [(~ - ~ (A))(-Awsin6) + w2f(AcoS6~- Awsine)w2(A)Acose]2d6

'II' 0 0 pop

(2.41)

Note that the equivalent non-hysteretic properties are a function of the

amplitude of the oscillation only. Substituting (2.40) in (2.35), we get

2'11'
o = 2; fa 2[(-Awsine)(~o - ~p(A)) + w~f(Acose1- Awsine)

- w2(A)Acose](-AcoS6)d6 (2.42)
p

Simplifying above expression, we get

2'IT 1 27T
-'lTl A2w2

p
(A) f cos 2ed6 = w2A- f f(AcoS6,- Awsin6)cos6d6 (2.43)

a 0 'IT a

or

where,

2'IT
C(A) = l J f(AcoS6,- Awsine)cos6d6

IT U

Also, substituting (2.40) in (2.36), we get

(2.44)

(2.45)
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a = ; f21TI(-AwS;na)(~O - F;p(A)) + w~f(ACOSa, - Aws;na)

- w~(A)AcOSa](-AwS;ne)da (2.46)

21T 2'1f
a =1. A2w2(~ (A) - ~ ) J s;n2ade + w2Aw 1. J f(Acose, - J1A!s;na )s;neda

'If p 0 0 0 'If 0

(2.47)

Let us define

then,

or

SeA) =1 f(Acosa, - Aws;na)s;nade
'If

w w2
e (A) = e (--2..) _ 1.. (--2..) SeA)

p 0 wp 2 2 Awp

(2.48)

(2.49)

(2.50)

(2.51)

Equation (2.49) is obtained after assuming resonant conditions on the

equivalent non-hysteretic oscillator (w=w ). Equations (2.43), (2.44),
p

(2.47) and (2.49) define the (nonlinear) equivalent non-hysteretic

properties of the original system. In terms of the damping coefficient,
•

equation (2.50) may be written as (after multiplying by m)

ko S( A )
c =c __ e

p 0 wp A

Now, let us specialize the above results for a bilinear, hysteretic

system. Note that for an amplitude level less than the yield

displacement, xc' we have a linear, non-hysteretic response. Hence, ,
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oo~ Ct\) = 00 2
0

and Xc " A" Xc

~p (A) = ~o

(2.52a)

(2.52b)

Consider the case when IA I>xc ' Referring to figure 5, we can write

Now,

F(x,x) = mw~f(Acose)- Aws;ne) = kof(Acose,- Aws;ne)

(2.53)

(2.54)

where, F(x,x) = the restoring force in the spring. Again, referring to

figure 5, we can write

+ ak (x - x )o c

- a)x + ak (-A)x cose
c 0 Xc c (2.55)

Comparing equations (2.52) and (2.53), we get

f(ACose, - Awsine) = xc[a~cose + (1 - a)]

Likewise,

f (Acose, - Aoos; ne) = Xc [~cose - (l - a) (~ - 1)]

f(Acose, - Aoosine) = xda\Jcose - (1 - a)]

f(Acose, - Aoosine) = xc[\Jcose + (1 - a)(~ - 1)]

along path 1 (2. 5Ga)

along path 2 (2.5Gb)

along path 3 (2.5Gc)

along path 4 (2.56d)
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Referring to figure 4, we note that

(-A + 2xe) < x < A and x > 0 (2.57)

In terms of ll, the ductility ratio and e, the argument, we can express

the above result as

- {p - 2) < peose < p

This may also be expressed as

('If + 6*) ) 6 ) 2'1f

Likewise,

e* ) e ) 0

'If ) e ) e*

where,

(2.58)

along path 1 (2.58a)

along path 2 (2.58b)

along path 3 (2. 58c)

along path 4 (2.58d)

Using equations (2.58) and (2.59), we can write

x 6* 'If
C(A) = (~) {J [peose - (l-a)(p-l)]eosecte + f [apcose - (l-a)]eosede

'-'If 0 e

(2.60)

'If~* ~
+ J [pcose + (1-a)(p-l)]cOS6d6 + J [apcos6 + (1-a)]cos6d6}

n n+6*

and
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x 6*

= (~){ J
o
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n
[~COS6 - (l-a)(~-I)]sin6d6 + J [a~COS6

6*
(I-a) ] s i n6 d6

(2.61)
n+6* 2n

+ J [lJCOS6 + (l-a)(lJ-l)]sin8d8 + J [alJCOS8 + (l-a)]sin8d6}
Tr Tr+6*

Simplifying (2.60) and (2.61), we get

and

etA) =lJ:c [(I-a) + (6* _ sin~6*) + an] (2.62)

S(A)
~X

= c (l-a)sin2e*
n (2.63)

Substitute (2.53) and (2.63) in (2.62) and then substitute the resulting

expression in (2.44) and (2.51). We thus get

W
2 *

2 ( ) =~ {( l-a)( 8* _ s i n26 ) + an }
wp lJ 11' 2

and

ep(lJ) = Bo{a + (1 ; a) (6* _ sin~6*)}-1/2

1 { (l-a) (6* _ s;n26*) }{(l-a)s;n2e*}
+7 a + n 2 'IT

Using equation (2.53), we can write

and

Substituting (2.66) in (2.64) and (2.65), we get

(2.64)

(2.65)

(2.66a)

(2.66b)
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( ) = w {a + (1 - a) [cas-1(~ - 2) -...l (~_ 2) I~ _ 1]}1/2(2.67)
wp ~ a 1f ~ ~2

and

(2.68)

finally, in terms of the damping coefficient, we can write

c =c +p a

(2.69)

Equation (2.69) is obtained after substituting (2.67) into (2.46).

2.5 CONSTANT CRITICAL DAMPING (CCD)

This model was proposed by Jennings (22). In this method, the critical

damping of the substitute non-hysteretic system is made equal to that

of the given hysteretic system. This is accomplished as follows

k m = kamap p

or

(2.70)

(2.71)

Where, m , is the effective mass of the non-hysteretic model and m isp

the mass of the original hysteretic oscillator. The effective period for

this method is defined the same as in the HEL method. The effective

damping is found by equating the resonant amplitudes and dissipated

energies of the given yielding system and the non-hysteretic system.

This is done as below
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(2.72)

where, AW (A)=energy dissipated by the equivalent non-hystereticp .

system per a cycle of oscillation of amplitude A and AW(A)= energy

dissipated per a cycle of oscillation of the give'; yielding system

T
AWp(A) = f (cx)xdt

o

Let us substitute the following relationships

and

x= ~ Awsinwt

Using above equations, we get

(2.73)

(2.74)

(2.75)

(2.76)

Equation (2.76) is obtained after substituting w=w at resonance. Also,
p

AW(A) = H(A) + V(A) (2.77)

where, H(A)=Area of the hysteresis loop ABeD shown in figure 4 and

veAl =Viscous energy dissipated by the yielding system. From fig ~.,

it can be seen that for a bilinear system

H(A) = 4k x 2(1 - a)(~ - 1)o C (2.78)
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Also,

V(A) = c xlO/.llp m11'

substituting above two equations in (2.77), we get

C /.II X211' = C /.II X211' + 4k x 2 (1 - a)(~ - 1)P pm 0 P moe

Solving for c , we can writep

Substituting (2.67) in (2.81), we get

c = {a + (1 - a) [cos-1 (U - 2) _ -1 (~ _ 2) I~ _ 1 ] }-l/Z
p 11' ~ ~2

(2.79)

(2.80)

(2.81)

(2.82)

Equations (2.67) and (2.82) together define the equivalent non-

hysteretic system for given properties of a bilinear hysteretic system.

It is important to note that for this method, the equation (2.29)

is modified as below

(2.83)

The reason for the above variation is explained in brief by the

following formulation
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= Ikd»o

2.6 GEOMETRIC STIFFNESS (GS)

(2.84)

This model was introduced by Berg (4) and Rosenblueth (37). In this

method, the effective stiffness is specified by using the geometry of the

hysteresis loop of the yielding system. The concept of secant stiffness

is often used in this context. I n reference to a bilinear system, we can

write

= koxc + ~ko(A - xc)
A

or

(2.85)

k (~) = k [~ +~]
p 0 ~

Hence, the effective frequency is written as

~ > 1 (2.86)

(2.87)

Again, the effective damping is found by equating the resonant

amplitudes and energies dissipated in the two systems. Hence, the

effective damping is given by equation (2.81). Substituting (2.87) in

(2.81), we get
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(2.88)

Equations (2.87) and (2.88) together define the properties of the

substitute non-hysteretic system. This method was used by Singh and

Ashtiany (39,40) to model Ramberg-Osgood type of nonlinear behavior

(34) .

The followin"g" two methods use the results of the geometric

stiffness method to find average system properties corresponding to an

amplitude of A.

2.7 AVERAGE STIFFNESS (, DAMPING (ASD)

This idea behind this method was proposed by Newmark and

Rosenbleuth (29). In this work, however, the averaged quantities are

stiffness and damping coefficient, unlike in their method, where period

and damping ratio are the averaged quantities (Average Period (,

Damping). These can be applied to any nondeteriorating SDOF system

under a condition that the system has equal yield for positive and

negative displacements. As the name suggests, the stiffness and

damping of the effective non-hysteretic system is obtained by averaging

the expressions for the same quantities as developed in the geometric

stiffness scheme. This is done as below

_ 1 A
kp(A) -A J kp(a)da

0

and

1 A
Cp(A) =A J cp(a)da

0

(2.89)

(2.90)
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Specializing for a bilinear system, we get

x A
k (A) =1 [ f c k da + f

p a 0 0
Xc

But

(2.91)

~ - a • da =a - Xc •• (2.92)

Carrying out the integration, we get

Let us make the following substitution in equation (2.90)

Substituting above relations, we get

(2.93)

(2.94)

(2.95)

where, ~ = Alxc
1

cp(~) =1 [f codA +
11 0

~ ( + l-a)-1/2(4(l_a)f {co + a A 2 (!Tblo) (A-I)) }dX]
1 11'X

But

Hence,

1 ~ 4(1 a) ~ 1 -11 2 X 1=- f codA + - (l1'blo) f (a + x-a) (--;"")dX
~ 0 11'11 1 xc.

-1/2
(a + I-a) = I XX -a"T"O:(X--'::""'1),-:"+"'-1

(2.96)

(2.97)
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C (lJ) = C + 4(I-a) ( ITtil )
P 0 1l'lJ 0

(2.93), (2.98) together

I lJ ().-l)

1 ).3/2 la().-l)+l d).

define the properties

(2.98)

of the

substitute non-hysteretic system.

2.8 AVERAGE STIFFNESS .§: ENERGY (ASE)

This method was proposed by Gates (12). In this extension of

geometric stiffness method, the effective stiffness is obtained in the

same way as in ASD. However, the equivalent damping is obtained by

averaging the energies dissipated. This is accomplished as follows

A
~W(A) • i f ~W(a)da

o
(2.99)

Again, the effective damping is determined by using the criteria

expressed in equation (2.72), the difference being that here the

average of the dissipated energies is considered. This is described by

equation (2.99). This approach leads to the following equation

Substituting k =mw , we geto 0

(2.100)
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equation (2.93).
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the effective stiffness, k (A),
p is given by

This method IS particularly suitable for deteriorating systems.

The effective properties of the equivalent non-hysteretic system are

obtained by averaging the values associated with the upper and lower

loci of response maxima. However, the results derived above are valid

only for elasto-plastic and bilinear, hysteretic systems.

It should be noted that in all the above methods, the values of

the effective stiffness and damping are the same as those of the original

system if the absolute value of the displacement is smaller than the

yield displacement. Hence, the functions k (x) and c (x) are not
p p

continuous and this must be properly accounted for in the numerical

integration scheme described in section 2.3. Fig. 6 shows a typical

representation of the effective non-hysteretic properties as defined by

the various models considered in this study.

2.9 IMPLEMENTATION OF EQUIVALENT LINEAR APPROACH

A computer program was developed to implement the methods presented

in this chapter. For a given set of system parameters such as natural

frequency, damping ratio and yield displacement the program computes

the response predicted by each method. This is accomplished by finding

the properties of the equivalent linear system corresponding to the non- .

hysteretic model of each method. The program uses the available elastic

spectra to determine the response of the equivalent linear system.
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The results are obtained in an iterative fashion. First the.

properties of the equivalent linear system are first assumed to be

certain values and then depending on the assumed value of the peak

factor, the value of standard deviation Ox is determined. Based on this

estimation of the standard deviation, the new values of equivalent

properties are obtained. The program iterates until the criteria for

convergence are met. with. An iteration limit is also specified to avoid

any possible non-convergent case.

It may be noted that the response prediction in each method

depends on the value of the peak factor assumed. Due to the natu re of

criteria on which these models are based, the adoption of a proper peak

factor in each case is not an easy task. A certain judgement can

however be exercised in this regard and this part is discussed in

chapter 4 in more details. Vanmarcke has proposed a way of computing

the peak factor for known spectral characteristics and the given system

properties (43). A modified approach based on Vanmarcke's formulation

(38) for peak factor was also used. The computational algorithm for

the implementation of the equivalent linear approach can be summarized

by the following steps

1. Input the system parameters viz w , the natu ral frequency, S ,o 0

the damping ratio, 0;, the ratio of the secondary stiffness to

the primary stiffness and xc' the yield displacement level. A

fixed peak factor value should be stipulated unless Vanmarcke's

formulation is being used.
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wand ae e' the properties of the

linearized system. If Vanmarcke's formulation is to be used,

then an iterative approach may be used to solve for the value

of the peak factor corresponding to the above assumed values.

After this, the steps for either the fixed peak factor or

Vanmacke's peak factor approach is the same.

3. Read the spectral values corresponding to the present values of

linear properties.

4. Compute the ox' standard deviation of relative displacement

response corresponding to the assumed set of linear properties.

It is obtained by dividing the mean spectral displacement by

the value of the peak factor.

5. Using the desired non-hysteretic model and the. proposed

equivalent linear method, compute the new estimates for wand
e

ee' These depend on the current value of ox' the standard

deviation.

6. Check for a simultaneous convergence of we and 5e to a desired

level of accuracy. Repeat steps three through six until

convergence occurs.

The results of the algorithms developed in this chapter are discussed in

chapter 4.



Chapter III

TIME-HISTORY ANALYSIS

3.1 INTRODUCTION

In this chapter, exact solution algorithms for elastic, elasto-plastic and

bilinear hysteretic (BLH) systems are presented. A time-history

analysis scheme based on Newmark's method is also presented. The

results of this (approximate) method can be used to cross-check the

formulation and the results of the exact solutions. Development of the

computer program to implement these algorithms is also discussed.

Various results generated using the exact algorithm are thus made

available for checking the accuracy of the methods presented in chapter

2.

For the purpose of equivalent linear analysis, it is necessary to

construct a wide range of elastic response spectra as the basic

reference data set. The whole purpose of equivalent linearization is to

be able to predict the response of a given inelastic system by defining

its equivalent linear system. The response of the inelastic system is

approximately equal to that of its equivalent linear system, which is

obtained by reading the appropriate elastic response spectrum.

30
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3.2 LINEAR ELASTIC SYSTEMS

The equation of motion for a single-degree-of-freedom, elastic oscillator

is given by

mx + ex + kx = -ma(t)
(3.1)

where, 'x' is the relative displacement of the oscillator with respect to

its moving base; ~ and x are the relative velocity and relative

acceleration respectively. m, c and k are respectively the mass, viscous

damping coefficient and the (constant) stiffness of the spring. aCt) is

the base acceleration at instant t. Dividing each term of equation (2.2)

by m, we can write the following standard equation

x + 2e w x+ w2x = -a(t)o 0 0
(3.2)

where, Wo= kim , the natural (circular) frequency of the oscillator,

S =c/(2w m)=c/c , ratio of the actual damping to the critical damping ino 0 cr

the system. Critical damping is defined as the one which removes all

vibration of the oscillator.

If we assume that the base acceleration varies linearly between

the instances of two consecutive readings Ai and Ai +1, then we can

express the response at time t i+1 in terms of the (known) response at

time t .. This exact step-wise solution scheme was presented by Nigam
I

and Jennings (30,31). Above result can be obtained using the

convolution integral approach to get the particular solution. Also, xi

and x. are treated as the initial conditions.
I

Denoting h=(t·+ 1-t.),
I I
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(constant) time interval between consecutive readings, then the results

of Nigam and Jennings (30,31) can be expressed in a matrix form as

follows

[Xl rall

x i+1 -~21 . (3.3)

where, the entries .of matrices A and B are given by Nigam and

Jennings (30,31), but they are repeated here for a ready reference.

e-eOooOh\ eo }
all = -C.; 2 sin(oodh ) + cos(oodh )

1 - eo

eo
---- sin
.; 1 - e2

o

1 2e o--+-
00 2 oo 3 h

o 0
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+ eOwOcos(wdh)] }

Note that

(3.5)

It may be noted that 'h' need not be a constant; however, a changing

value of h would necessitate the computation of entries of matrices A

and B whenever such a change is made. It should also be noted that

these results are accurate irrespective of the value of h, the size of

the time step.

A computer program that implements above algorithm was

developed. Sharma, Singh, etc (37), generated a wide range of elastic

response spectra using that program. In his work, the periods

considered ranged from .02 seconds to 5.00 seconds and the damping

coefficients ranged from .005 to .500. The spectra were generated for

ensembles of 12 seconds, 15 seconds and 30 seconds time histories. The

15 second spectra are used in this work. They correspond to a

maximum ground acceleration in the neighborhood of . lOG. For the case

of linear behavior, the spectral values for linearly amplified ground

motion are simply obtained by multiplying the values in the available
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records by the same (constant) amplification factor. A simple log-log

interpolation was used to obtain the response spectrum values for

frequencies and dampin·g ratios other than the ones used to define

spectra.

3.3 ELASTO-PLASTIC & BILINEAR HYSTERETIC SYSTEMS

Systems considered .in this work have the following general form of

equation of motion

mx + ex + f(x,x) = -ma(t)
(3.6)

It can be easily seen that the nonlinearity considered is of material type

(unlike the geometric one). Clearly, the hysteresis is caused due to

velocity dependence of the restoring force in the spring. Referring to

figures 3 and 4, it can be seen that in both cases, the force-

displacement relationships along paths 1 and 3 are given by

and

(3.7)

= k (x - e)o (3.8)

where 'c' is the X-intercept of line 3 as seen in figures 3 and 4. Along

lines 2 and 4, the restoring force is given by

•
f ( .) F (_X_)
2,4 x,x = e I~I

and

elasto-plastic (3.9)



Note that

35

. .
= F __x__ + ak (x _ x X)

c Ixl 0 C Ixl
bilinear (3.10)

(3. 11)

It is easy to observe that the solution along path 1 is the same as the

one given by equations (3.3), (3.4) and (3.5). Along path 3, we can

write the equation of motion as

(3.12)

this may be rewritten as

(3.13)

where,

a(t) = - [a(t) - w~c]
(3.14)

Clearly, equation (3.3) is applicable to the above form of the equation

of motion, thus the solution for response along path 3 can be expressed

in a matrix form as follows

+
(3.15)

where,

(3.16a)
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and

(3.16b)

Equations (3.15) and (3.16) are used to obtain the response along path

3. Note that the entries of matrices A and B are the same as defined

earlier by equations (3.4) and (3.5).

For elasto-plastic systems, the equation of motion along path 2

and 4 can be written as

.
F

_ x_mx + ex + =
e Ixl

- ma(t) (3. 17)

In the above equation F is the spring force corresponding to either

positive or negative yield displacement. I n particular, the positive and

the negative yield displacements may be denoted as Fcp and Fcn

respectively. Thus equation (3.17) is equivalent to the following two

differential equations.

and

where,

mx + ex + Fep = -ma(t)

mx + ex + Fen = - ma(t)

(3.18a)

(3.18b)

(3.19)



37

Clearly, both the equations labelled as (3.18) are equivalent as far as

the solution procedure is concerned. Hence, we find the solution to the

differential equation of following type

- Ai+l - Ai
mx + ex = - m[Ai + ( h )t] - Fe ; a ( t ( h

Dividing each term of above equation by m, we get

(3.20)

A. 1 - A·
= - [Ae + Ai + ( 1+ h 1 ) t ] (3.21)

where,

•
_ 2 Xi

Ae = Fe/m - w x ----
o e Ix; I

(3.22)

The homogeneous sol ution to above differential is found to be as follows

-2B w t
x = e + e e 0 0

h 1 2
(3.23)

(3.24)

Using the method of undetermined coefficients, we get the particular

solution as

A-A. A· 1 - A. ACG + A. A. 1 - A.
x = _ ( i +1 1 ) t 2 + [ 1+ 1 _ 1] t ._ ( 1+ 1) t 2

p 4Bowoh 4B~W~ 2B owo 4B owoh

Now, x=x
h

+x p ' hence, substituting equations (3.23) and (3.24), we get

-2B w t
x = e + e e 00+

1 2

Differentiating (3.25),

[Ai +1 - Ai

4B zwzho 0

we get

Ai+1 - Ai
+ ( )

4B zwzho 0

ACG + Ai
( 2B w )

o 0

(3.25)
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The above solution is subject to the following initial conditions

x(t=O) = X.
1

and x(t=O) = X.
1

(3.27)

Applying these initial conditions, we obtain the following values of the

boundary terms

X. A'+l - A. ACG + Ai
c2

=. 1 + 1 1
- 2Sowo 8133 3h 4132 2oWo oWo

and
•

Ai+1 - A. ACG + A.
c1 = x. +

xi 1 1
1 213owo 8133 3h

+ 2 2
oWo 4Sowo

(3.28)

(3.29)

After substituting equations (3.28) and (3.29) in (3.25) and (3.26) and

reorganizing the terms, we can write the final expressions in following

form (with t=h for the response at time t i+ 1)

Dl+1 =Gll clJrl Gll dl21r'~ tpJ (3.30)
c
22

X. + d
21 d2~ Ai~l +Vp1C21

where,

cn = 1.0

1 (1 _ e-2Sowoh)C12 = 2Sowo

C21 = 0.0

= e-2SowohC22

dn
1 {l ( -2Sowoh)+ 1 + 1 - h }= 4Sowo 2132 2h - e Sowo 2S2w2h

oWo 0 0

1 {1 (e-2Sowoh - 1) 1
h}

(3.31)d12 = + ---
48owo 2S~w~h Sowo
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Equations (3.30) and (3.31) define the solution for response along

paths 2 and 4 of an elasto-plastic, hysteretic oscillator.

Considering a bilinear, hysteretic system (0.#0), we can write the

following equation of motion along paths 2 and 4

or

.
mx + ex + F __x_ + ak (x

e IxI a

.
x x) = - ma(t)

e Ixl
(3.32)

.. . x
mx + ex + (ak )x = - ma(t) - F --- (1 - a)

o e IxI (3.33)

Similar to equations (3.18), above equation is equivalent to two

ordinary differential equations. Hence, as before, we can consider a

following form of differential equation to solve for the response

~ + 2B*w*x + w*2x = - a(t)

where, the quantities marked with asterisk are given as

and

(3.34)

(3.35)
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Also,

(3.36)

Note that

a(t)
•

= a(t) + w2x (1 - a) __x__
a e Ix\

(3.37)

( 2e w ) = (2e*w*) = elmo 0 (3.38)

Comparing equations (3.2) and (3.34), we observe that the solution to

equation (3.34) can be expressed in a form similar to equation (3.3) as

follows

tl ;+1 = [:::

where,

-/3*w*h
=e w*h sin (wdh)

d

(3.40)
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2 sin(w*dh) 2 * 1 2 *
_e6*oo*h{.(28* - 1) 6 ( *h)} 6= 00* + - COS ood - - + --

oo*2h d 00*3 00*2 oo*3h
h

-==6=*==: 5 i n
II - 6*2

II - 8*2

_ 28* [oo*sin(oo*h) + S*oo*cos(oo*h)]} 1_
oo*3h d d d oo*2h

Note that

Also,

•
xi

A,. = A· + oo 2 (xc)(1 - a) -----
, 0 Ixi I

and
•
xi

A'·+I = A. 1 + oo 2 (xc)(1 - a) -----
1+ 0 Ixi I

(3.41)

(3.42a)

(3.42b)

Equations (3.40), (3.41) and (3.42) define the solution to the response

along paths 2 and 4 for a bilinear, hysteretic systems.
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Radoshycka (33) did similar work for his Master's thesis at Rice

University. More recen~ly, Nau (25) presented essentially the same

results as presented above. It is however, mentioned here that the

author was unaware of these works at the time the above solution was

developed .It was observed that the formulation developed in this work

is consistent with the ones derived by Radoshycka and Nau.

3.4 TIME-HISTORY ANALYSIS USING APPROXIMATE METHODS

As mentioned earlier, it is generally not possible to develop the exact

solution to the response of systems with any general type of nonlinear

and/or hysteretic behavior. A time-history analysis of such response is

sometimes necessary for a detailed study of the response history.

Various time-history analysis schemes may also be used for the purpose

of verification of the results obtained using other methods. Newmark

was one of the pioneers in developing such methods. These are often

referred to as the di rect integ ration methods, si nee the equation of

motion is integrated at each instant to obtain the response at that

instant. The relative acceleration in the response is assumed to be

either linearly varying or constant during each incremental time-step.

In case of nonlinear problems, an improvisation over- Newmark's original

method can be done by a tangent stiffness approach to arrive at a

better estimate of the stiffness (or stiffness matrix for a multi-degree

of freedom system) at each- instant.
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3.5 IMPLEMENTATION OF TIME-HISTORY ANALYSIS METHODS

A computer program was developed to implement the exact solution

algorithms presented earlier. This program is capable of solving for

perfectly elastic systems as well as elasto-plastic and bilinear hysteretic

systems. The program incorporates the following advantages of the

exact sol ution

1. The response is accurate regardless of the size of the time­

step.

2. The times at which the system behavior changes from one path

to another can be located accurately.

As mentioned earlier, the size of time-step is governed by the spacing

of ground acceleration readings and hence, the first advantage is

generally rendered insignificant, since in case of nonlinear systems, it

is necessary to compute the response at all known acceleration readings

as the response is dependent on the path between the instances of any

two readings under consideration. This is in contrast to the linear

systems, where the response at any given time depends only on the

values at the beginning of the time-step and the ground acceleration

reading at that time.

The program produces results for given values of the natural

frequency, damping ratio, ratio of the secondary to the primary

stiffness and the magnitude of yield displacements (positive and

negative). At each time-step, the properties of the system are

inspected to determine the path it is following at such instant. A
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Paz(32) has presented qn algorithm to compute the response of

any general nonlinear single.,.degree-of-freedom system. It is based on

Newmark's method and corresponds to the case of the parameter, a =

1/6. The· relative acceleration of the oscillator is assumed to vary

linearly during each time interval as shown in figure 7. The

approximate solution can be described by the following equations

(3.47)

(3.48)

and

(3.49)

Finally the response at time t1.+\ is given as

(3.50)

and

(3.51)

Equations (3.48) and (3.49) together define the response of any general

nonlinear system.
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change of path (fig. 4) indicates change in the system behavior.

Every time such change occurs, the program invokes the appropriate

kink locater routine to determine the exact time at which the system

changes its behavior. Thus the response history fo"r relative

displacement, relative velocity 1 relative and absolute acceleration and

the spring force (if desired) is generated during the execution of this

program. However, in the context of this thesis, one would only be

interested in the response characteristics such as the mean and

standard deviation of response maxima, root mean square values, etc.

As such, these are the outputs produced by this program with an

option for printing the response history, if desired.

A computer program based on Paz's algorithm was also developed"

for the pu rpose of verification of the results obtained with the program

employing the exact solution algorithms. In this case, it is necessary

that the size of the time-step be very small to ensure accurate results.

In this case the size of time-step was taken to be the same as the

spacing of consecutive ground acceleration readings (0.002 seconds),

which is small enough to ensure good accuracy.

The above mentioned computer programs were used to create

elastic response spectra and a few sample spectra for the hysteretic

oscillators. The exact solution results were used as reference for

testing the accuracy of the results obtained using the methods

presented in chapter 3. The results from chapter 3 are presented in

chapter 4.



Chapter IV

RESULTS AND CONCLUSIONS

4.1 SEISMIC INPUT

For the purpose of this work, ensembles of artificially generated ground

response spectra (acceleration time histories) were used. It is necessary

that the seismic input be defined in terms of ground response spectra

curves for the sake of consistency. It was thought better to artificially

generate the ensembles of time histories (with certain frequency and

intensity characteristics) for the use in time history analysis and for

the generation of elastic response spectra, since it is difficult to find

authentic ground acceleration records having consistent energy

dissipation characteristics. Variety of methods have been proposed in

this context (42,44).

The base accelerations are assumed to be represented as follows

in which xg(t) is the base acceleration,

(4.1)

x (t) is a stochasticallys

generated time history motion; and e(t) is an intensity modulation

function. The modulation function causes the (artificial) input to be of

a character similar to the actual earthquakes (consisting of a build-up

phase, strong-motion phase and the decaying phase). The stationary

nature of x (t) is destroyed since it is multiplied by the modulations

function. Hence, the actual input used is of non-stationary nature.

46
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Xs (t) is characterized by a modified Kanai- Tajimi type of spectral

density function in which more terms are added to get a broad band

effect.

3
I

i=l (4.2)

Table 1 tabulates the parameters S., w., and a. of the above spectral
J J I

density function (see ref. 39). A standard technique, originally

proposed by Rice (35) is used to generate the sample acceleration time-

history functions corresponding to the above density function. As

mentioned earlier, all these time-history functions are then rendered

non-stationary with the use of rather arbitrarily selected envelope

functions. A further modification for base line correction is carried out

so that any erroneous long period effects occuring during the

generation process are removed. The importance of this has been

investigated by Chopra and Lopez (10) in reference to inelastic

response of structu res. The ensembles used in this work were

generated by Singh and Ashtiany (39).

A total of 75 earthquake time histories were generated using

above procedure. Each record is of 15 seconds duration. In a similar

manner, 100 records of 12 seconds duration each and 39 records of 30

seconds du ration each were generated. The maximum value of ground

acceleration for all the records is in the neighborhood of .1 G.

In order to cause large displacement response beyond the elastic

range, ·the same earthquake time histories were used by applying
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amplification factors of 2 over each reading in the ground acceleration

records. Due to this, the elastic response spectra are merely amplified

by the same factor, however, the effect on inelastic systems can not be

predicted in such a simple manner.

It is necessary to construct a. wide range of elastic response

spectra as the basic reference data set. The whole purpose of

equivalent linearization method is to be able to predict the response of

a given inelastic system by defining its equivalent linear properties.

The response of the inelastic system is approximately equal to that of

its equivalent linear system; which is obtained by reading the

appropriate elastic response spectrum.

4.2 GENERATION OF ELASTIC RESPONSE SPECTRA

The available response spectra were extended for higher values of

periods and damping. Use of the equivalent linear analysis methods may

give rise to large values of equivalent damping ratio and/or period, out

of the range of the available spectra. This necessitated the generation

of elastic spectra covering a wide range periods and damping ratios.

A simple computer program was written to generate the elastic

response spectra upto a range of 15 seconds period and 0.90 damping

ratio. Results by Nigam and Jennings (30,31) were used in this

program. It computes mean and standard deviation of the maximum

response quantities such as relative displacement, relative velocity,

relative acceleration and absolute acceleration. Since the results are
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accurate despite the size of the time-step, a comparatively larger time­

step was used to affect computational savings.

In Figures 4.10 through 4.13, the elastic response spectra are

represented by the uppermost of the curves, corresponding to a

ductility ratio of one (no yielding). The famous enveloping effect at

intermediate frequency range as observed in the Newmark - Blume ­

Kapoor spectra (26) .can be seen present in these plots, too.

4.3 GENERATION OF INELASTIC RESPONSE SPECTRA

Response spectra were generated for an elasto-plastic system with

damping ratio of 0.05. For this, the frequency was varied between 0.20

cps to 35 cps. The 21 values of frequencies considered in this range

are listed in Table 1. The ensemble of 75 time-histories of 15 seconds

duration each was used for this work. An amplification factor of 2.0

was used for each ground acceleration reading in all time-histories.

This was done so as to affect a higher ductility ratio at values of yield

displacements which were not too small. The computer program

mentioned in section 3.5 was used to achieve the results. A time-step of

0.002 seconds was used for the pu rpose of accu racy. The times at

which the system changes its behavior during its response history were

traced accurately with the use of this program. Some of the results of

were validated by a simpler computer program based on Paz's algorithm.
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The procedure to obtain the yield displacement corresponding to a

desired level of ductility is described by Riddell (36). Since a given

level of yield displacement is unlikely to produce the response at a

specified ductility level, the program was used to compute the statistical

response characteristics for a range of yield displacements depending on

the frequency of the oscillator. An inspection of the elastic response

spectra for relativ.e displacement is helpful for this purpose.

Corresponding to each yield displacement level, the computer program

computes the mean and standard deviation of the maximum response

quantities of each time history. The effective root mean square value is

taken as the maximum of the various root mean square values (along the

time axis). Each such value is in turn computed by the following

formula

~ q2(t)
RMS(q(t)) a t __i_2~1~i___

N
(4.3)

where, q(t) = the value of response quantity at time t and N = number

of time histories

It may be noted here that 't' in this case is a discrete variable in

this case is a discrete variable with increments of 0.002 seconds. Thus

there are 7500 such RMS values along the time axis. Finally, the

maximum RMS values are given as

RMS(q) = Maximum [
N

j = 1, 7500 (4.4)
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ll, the ductility ratio and Pf(q), the peak factor are defined as

Maximum Relative Displacement

Yield Displacement

and

Maximum value of Response. q
PJ! (q) =- ------------

RMS(q)

(4.5)

(4.6)

In the above equations, the 'maximum' may be taken as the mean

of the maxima corresponding to all the time-histories, or it may be

taken as (mean plus some constant times the standard deviation) of

such maxima. For example, if we assume a stationary Gaussian

response, the mean would correspond to a probability of exceedance of

50 %. The program gives the ductility ratios and peak factors

corresponding to the mean and (mean plus one standard deviation).

Again, the response quantities considered were relative displacement,

relative velocity, relative acceleration and absolute acceleration.

A run of the program for given values of yield displacements for

a fixed value of frequency and damping ratio would thus yield a range

of ductility values corresponding to that set. A plot of yield

displacement vs ductility ratio can then be made and the yield levels

corresponding to the desi red ductilities can be picked out by either

graphical interpolation or simply by a linear interpolation scheme (see

fig. 7-9). A graphical interpolation scheme was presented by Riddell
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(36). For this work, linear interpolation was carried out between the

appropriate pairs of consecutive readings to pick out the yield levels

corresponding to ductility ratios of 2, 4, 5, 8, and 10. Corresponding

values of other response quantities were also obtained by linear

interpolation between the same pairs of consecutive records.

In most uses the dependance of ductility on the yield level is of

monotonic nature. Thus, a decrease in the yield level generally leads to

an increase in the ductility. However, this is not necessarily true. In

particular, for ~Iasto-plastic systems the displacement and velocity

responses sometimes tend to accumulate. This means that for certain

time-histories, it may happen that these responses become very large,

thereby largely affecting the mean, standard deviation and the RMS

values. This also distu rbs the otherwise monotonic relationship between

yield level and ductility. In order to overcome this problem, an

arbitration procedu re was incorporated in this program. Since most

structural steel materials exhibit a strain-hardening behavior after some

level of ductility (which in fact, can be idealized by a trilinear

behavior, Ref. 1), an upper limiting value of ductility was prescribed

for each computer run and the program would consider the maximum

relative displacement as this upper limit times the yield level, in case it

is detected that the displacement exceeds this upper limiting value.

The selection of this upper limit was based on the remarks in Ref. 1.

Using this procedure, the response spectra were generated for

ductility ratios of 2, 4, 5, 8 and 10 for elasto-plastic oscillators (0: = 0)
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with damping ratio of 0.05. The spectra were generated for relative

displacement, relative velocity, relative acceleration and absolute

acceleration. Figures 10 through 13 represent these spectra.

4.4 OTHER TIME-HISTORY ANALYSIS RESULTS

A few runs were made for different values of ex, the ratio of stiffnesses

and p, the damping. ratio. The main intention for this was to generate

the exact results which can be used to judge the effectiveness of the

equivalent linearization scheme with different non-hysteretic models.

The same comp.uter program mentioned above was used for this

purpose. A value of ex other than zero was chosen which represents a

BLH system and the program is capable of producing the same results

for such a system with the same kind of accu racy.

4.5 RESULTS OF EQUIVALENT LINEARIZATION

The method of equivalent linearization used in this work is an indirect

one, since the original hysteretic system is fi rst modelled as a non­

hysteretic one and then the equivalent linearization is carried out on

such a model. Hence the results of these analyses depend on the

criteria on which these models are based. As mentioned in chapter 2, a

computer program was developed to implement these methods. The

results are generated in an iterative fashion described earlier.

Besides the nature of the model itself, all the methods under this

category depend on the value of peak factor used for thei r
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implementation. For the Pu/'pose of this wor'k, a rangc of pCJk Llctol'S

was used to inspect values of the peak f<lctor' that would give the best

possible results. Runs were also made using the known values of peak

factor obtained from the time-histor'y analysis to see any COITelatioll

between the two correspondi ng res u Its. Additi.oi1ClllJ'1 Vanma rcke' s

approach was also used to compute the results based on that formulation

The results of time-history analysis were available for' checking

the accuracy of these methods. It was observed that the results of such

a comparison define three zones of frequencies, depending on the kind

of accu racy produced in each such zone, eha racteristically, these zones

almost coincide with the ones defined in the standard Newmark - Blume

- Kapoor spectra (26). The results were found to be most consistent in

the first frequency range (.25 cps-2.5 cps) and least consistent in the

intermediate frequency range (2.5 cps-g.O cps). All these trends are

exemplified by the results tabulated in tables 3 through 17. It should

be noted that the units are as follows displacement - inches, velocity

- ft/sec, acceleration - G units and frequency - cycles/second. The

fact that a consistent peak factor can not be used to produce results of

consistent accuracy range is exemplified in figures 14 through 16.

These figures also indicate that one can not generate inelastic response

spectra with the use of the models presented here, since the predicted

response is dependent ,on numerous factors such as frequency, ductility

ran$~' ass~med pea k factor, etc. Tables 3-17 use the following abbreviations:

PFC = Assumed Peak Factor. DRC = Predicted Ductility Ratio, RSVC = Predicted

Relative Velocity. RSAC = Predicted Relative Acceleration, and ASAC = Predicted

Absolute Acceleration.
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For the case of elasto-plastic systems it was generally observed

that these methods are satisfactory for low to moderate ductilities (upto

1l=4 or 5). For higher ductilities, the relative displacement response is

generalfy underestimated to a large extent. Also, the prediction of

absolute acceleration and relative velocity response is comparatively

overestimated in most cases. CCO was the only method most consistent

in its results. However, as a general observation it may be said that

these methods are not reliable for the task of producing a whole range

of response spectra; they could only be used in certain ranges of

frequency and ductility with some judgement for the selection of the

peak factor value. It is possible that they be satisfactory for the

prediction of the inelastic response of multi-degree of freedom

structu res.

Sample results for the BLH system response are also presented in

the above mentioned tables. It was observed that the methods work

much better for BLH systems. Again, the response prediction depends

on the same factors mentioned earlier. In general, the results are most

satisfactory for low to moderate ductilities. This observation is

consistent with some conclusions drawn by Caughey (6).

Some conclusions along with a few explanatory remarks are

presented in the next section.
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CONCLUSIONS

The time-history analysis is the most reliable tool for response

prediction. This fact was duly restated during this study.

Different methods (whether approximate or exact) under this

group stand as benchmarks for the purpose of verification of

results obtained by various methods in use. The fact that the

time-history. analysis is computationally expensive was

highlighted during this study. A comparison between the time­

history analysis and the equivalent linear analyses showed that

there is a 50-100 fold saving in computational time if the latter

are used to estimate the response.

It was observed that for elasto-plastic systems, for frequencies

4 cps and above, the relative displacement response tends to

become very large for some ground acceleration records. This

is attributed to the fact that such a system has zero stiffness

on the secondary path. The response follows this path as long

as the relative velocity does not change its sign; occurence of

which depends on the excitation input among other things. This

problem is not encountered for BLH systems (0;#0). However,

the response is relatively unaffected for very low values of 0:.

For large values of a; (.20 onwards), the relative displacement

response is considerably smaller compared to the one in the

elasto-plastic case.
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3. The approximate methods used in this study are satisfactory

for low to moderate ductilities only, particularly for the case of

elasto-plastic systems. This is due to the fact that all these

methods assign some effective value of stiffness to the

substitute non-hysteretic model, whereas the actual system

responding along the secondary paths has a zero stiffness.

This discrep~ncy becomes more pronounced for a highly ductile

response wherein the system behavior is along the zero

stiffness path for a considerable time; a fact which is not

accounted for by the non-hysteretic models considered in this

study.

4. The response prediction using the approximate methods of this

group is more reliable for the case of BLH systems. This is

due to the fact that such systems do have some stiffness after

their yielding. As such there is no fundamental discrepancy in

modelling them with some effective stiffness in their non­

hysteretic models. It must however be mentioned that the

accuracy of response prediction in this case would depend on

the magnitude of the secondary stiffness. It is possible that

these methods would overestimate the relative displacement

response i such cases.

5. A comparison of individual methods shows that the HEL and GS

methods produce similar results for low to moderate ductilities.

A glance at fig. 6 explains the reason for this. Here, it can be



58

seen that both these yield almost identical results in that range

of ductility. It was observed that CCD works satisfactory in

most cases. This ;s possibly due to the fact that it considers

the effective mass as changing as a function of the ductility

level. Hence, even though it gives the same value of effective

stiffness, it produces a smaller value of the effective damping

coefficient. -The last two methods were found to be most

unsatisfactory in that they are very inconsistent. This is

possibly due to the fact that they yield an effective system

(and consequently the equivalent linear system) that has

properties not very different from the original system. 'Thus

one ends up· with an equivalent linear system that is in the

same frequency zone (generally defined by the Newmark

Blume - Kapoor spectra). Obviously, the response prediction in

such a case is not much different from the one corresponding

to the elastic response of the origi nal system. In any case,

these methods were deviced to model deteriorating systems

unli ke the ones considered under this study.

6. The accuracy of response prediction depends on the value of

the peak factor assumed in the implementation of the

approximate methods. It is thus necessary to exercise some

judgement in the selection of a proper peak factor value. It is

difficult to come up with a unique value in this regard,

however, some general guidelines can be used for this purpose.
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It is important to note that all the non-hysteretic models

assume a harmonic response for a given amplitude level. The

value of peak factor corresponding to harmonic response is 2.

If we assume that the amplitude of displacement is a slowly

varying sine wave function of time (during the response

history), then the corresponding value of the peak factor

would be 2.0. Thus, it is reasonable to expect the proper peak

factor value in the vicinity of this number. Another factor

which governs this selection is the level of ductility. It can be

observed from the time-history analysis that the actual value of

the peak factor becomes smaller with an increase in the

ductility level. This indicates that the displacement response is

more dense (from the viewpoint of probability of actual

occu renee) near the maximum value, thus causing a reduced

peak factor. A due consideration of this fact suggests that a

value lower than 2.0 is more sensible for the cases where a

large value of ductility ratio is expected. Also, the peak factor

selection depends on the range of the frequency. For elasto­

plastic systems, it was observed that the peak factor is much

smaller for frequencies 4.0 onwards. This suggests a

corresponding decrease in the adopted peak factor value in this

range of frequency. Based on the runs made for various values

of peak factor, some general guidelines were drawn for arriving

at the proper peak factor. These are tabulated in table 18. It
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may be noted that the values for peak factor in case of CCD

are somewhat different from HEL and GS. No stipulation is

made for ASD and ASE because of their inconsistent

performance. In all cases, the peak factor evaluation based on

Vanmarcke's formulation was inappropriate for implementation of

these methods, because the values thus obtained were rather

high.

7. As mentioned earlier, relative velocity and absolute acceleration

response prediction is more error prone if the approximate

methods are used. The reason for this can be appreciated if we

look at the inelastic response spectra shown in fig. 11 and 13.

The enveloping effect in the response spectra for the

intermediate frequency is almost non-existent for larger

ductility ratios. In fact the curves are of monotonous character

for higher ductility values. The elastic spectra are used to

determine the response of the equivalent linear system and the

readings on these curves are subject to the above mentioned

enveloping effect, thus causing a considerable error in the

response prediction of these quantities.

8. Considering all the above comments, following recommendations

can be made. The approximate methods considered in this work

are satisfactory for low to moderate ductilities, particularly for

values of ex greater than 0.20. Incorporation of a non-zero mean

response assumption would probably yield better results in
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light of the fact that the actual response is far from the zero

mean case when the ductility ratio is high. Also, the methods

considered in this study would probably be more satisfactory

for modelling the hysteretic response of a multi-degree of

freedom system, since modelling the effective stiffness and

damping coefficient is more appropriate in such cases.
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Table 1

Parameters of Spectral Density Function

~g(W) , Eq. (4.2)

i

1

2

3

.0015

.000495

.000375

rad/sec

13.50

23.50

39.00

.3925

.3600

.3350
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Table 2

Values of Natural Frequency (cps) Considered for

Generation of the Inelastic Response Spectra

.20

4.0

25.0

.25

5.0

30.0

.50

6.0

35.0

1..00

7.0

1..50

8.. 0

2.. 00

10 .. 0

2..50

12.0

3.00

16.0

3 ..50

20.0
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Table 18

General Guideline for Selection of Peak Factors

for Implementation of Various Models

Frequency

Range .25 - 2.50 2.50 - 9.00 9.0 - 35.0

Method

HEL

GSM

CCD

1-4

2.0

2.0

2.0

4-10

1.7

1.7

2.2

1-4 4-10 1-4

1.7

1.7

1.9

4-10


