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OSCILLATORS -
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Gustavo Omar Maldonado
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Eﬁgineering Mechanics
(ABSTRACT)

During strong ground shaking structures often become inelastic and respond hysteretically.
Therefore, in this study some hysteretic models commonly used in seismic structural analysis are
studied. In particular the characteristics of a popular endochronic model proposed by Bouc and
Wen are examined in detail. In addition, analytical expressions have also been developed for most

commonly used bilinear model as well as another model, herein called as the hyperbolic model.

As stochastic response analysis with such models commonly use the stochastic linearization a;;-
proach which is necessarily iterative, here the convergence characteristics of such methods, when
applied to calculate the response of single degree of freedom oscillators, are studied in detail. Several
oscillators with different parameters are considered in the study. The ground motion is modeled
by a stationary random process with Kanai-Tajimi spectral density function. It is noted that some
adjustments in the equivalent linear parameters are necessary to achieve convergence. Also the rate

of convergence to the final results is slower for the oscillators with low yield levels.

The numerical results obtained by the equivalent linear approach are also compared with the
results obtained for an ensemble of ground motion time histories and the possible causes of the

discrepancy between the two results are discussed.
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CHAPTER I: INTRODUCTION

The behavior of engineering structures which are affected by dynamic loads can not always be
described by stmple linear-elastic models, Fig. 1. In many cases, the structures have nonlinear and
inelastic stiffness characteristics. Often such stiffness characteristics also have, what we call, mem-
ory; that is, the response of the system at a given time not only depends on the input at that time
but also on the input and response at an earlier time. If the applied load is cyclic, the structural
response may also be cyclic with dissipation of energy through hysteresis cycles. Structures sub-
jected to strong ground shaking exibit such inelastic characteristics, and it is necessary to consider

these in the calculation of seismic response.

In earthquake structural engineering, the constitutive law of inelastic structures has often been
approximated by the popular elasto-perfectly-plastic model, Fig. 2, or by the bilinear model, Fig.
3. Tests on some structural elements have, however, demonstrated the need of using more complex
multilinear models, like the Takeda’s model shown in Fig. 4 and used for reinforced concrete. Se-
veral such models are being utilized now in dynamic analysis of structures subjected to earthquake
induced ground motions. In such analyses, usually a step-by-step time history analysis is per-
formed. Computer codes like DRAIN-2D [1] and ANSR-1 [2] have been developed to carry out
such analyses. It has, however, been found difficult to utilize these discrete multilinear models in

the stochastic response analysis of structures.
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In addition to these discrete multilinear models, continuous models have also been developed
to characterize the hysteretic force deformation characteristic of structural elements and nraterials,
The earliest example of such a model is, probably, the Ramberg-Osgood model [3]. This model
has been utilized to characterize the hysteretic behavior of soils in several soil dynamics studies [4,
5] in earthquake engineering. The utilization of this model for metal and concrete structures is,
however, uncommon. For such structures, the continous model proposed by Iwan [6] and an
endochronic model proposed by Bouc [7] have recently been utilized. Bouc’s model has been
modified and improved further to include the time dependent degradation and pinching effects
commonly observed in structures subjected to earthquake induced ground motions. Another model
similar to Bouc’s has also been developed by Ozdemir [8] which was utilized by Bhatti and Pister

[9] in optimization studies in seismic design of structures.

Because of the analytical simplicity, Bouc’s model has been of special interest lately. It has been
extensively used by Wen [10], Baber and Wen [11], Casciati and Faravelli [12], Casciati [13] and
many others in their studies of stochastic response of structures subjected to stochastic loads. In
these studies, the nonlinear differential equations associated with the constitutive law are linearized
through the concept of stochastic linearization [14]. The coefficients of the linearized equation are
functions of the response statistics, which are not known a priori. Some initial estimates of these
coeflicients are obtained which are then used in the calculation of the response from the linearized
equations. The calculated response is then used to modify or improve the earlier estimates of the
coefficients. This process is repeated till a convergence in the calculated response and coefficient

values is acheived. Such approaches are thus iterative in nature.

In this work, the utilization of the endochronic model proposed by Bouc in stochastic seismic
response evaluation of a simple oscillator subjected to random earthquake inputs is further studied.
In Chapter II, the characteristics of various parameters of Bouc’s model are studied. The limita-
tions and appropriateness of this model in earthquake structural engineering are examined. Two
new endochronic laws are also proposed. One of them uses hyperbolic trigonometric functions to

model a softening system and the other models bilinear hysteresis loops. In Chapter I1I the ana-
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lytical details of the equivalent linearization process used for calculating the response of an oscillator
with nonlinear hysteretic spring, and subjected to stationary filtered white noise excitationi at the
base are provided. In Chapter IV the convergence characteristics of the iterative procedure used in
the calculation of response are examined in detail. The comparison of the results obtained by the
stochastic linearization with those obtained by the time history analysis for an ensemble of

accelerograms is also given. The summary and concluding remarks are given in Chapter V.
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CHAPTER II: HYSTERETIC MODELS

2.1 INTRODUCTION

In this chapter we will discuss the characteristics of some commonly used hysteretic force mod-
els. In particular the model proposed by Bouc and subsequently modified by Wen, Baber, etc., is
discussed in detail. Based on the study of this model, analytical forms of two other models --the

hyperbolic and the bilinear-- are proposed.

2.2 EQUATION OF MOTION AND RESTORING

FORCE

In general the equation of motion of a single-degree-of-freedom (SDF) system can be written

as follows:
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mi + Q'(x, %, 1) = — mik, 01
Where Q'(x, x, ?) is the general nonlinear hysteretic force; x is the relative displacement of the
oscillator with respect to its moving base; x and X are the relative velocity and acceleration respec-
tively; m is the mass of the oscillator and X, is the ground acceleration. In the present study we
will consider that the damping dependent restoring force is linear. Then, the equation of motion

reduces to:

mi + ok + Qx, %, 1) = — mi, 202

Now Q represents the undamped nonlinear hysteretic term, which is a function of the displacement

and velocity; ¢ is the damping constant.

In standard form, this equation can also be written as:

F+ (2L 0% + o= 0x, %, 1) = — % (2.03)

where o, is the preyielding natural frequency and {, is the viscous damping ratio of the system de-

[4

fined as §, = .
2mao,

If the material is linear and elastic, Q(x, x, ¢) reduces to O(x) = kx , where k is the elastic con-
stant of the spring supporting the mass, called the stiffness coefficient. To include the hysteretic
behavior along with linear behavior, Wen [15] has proposed the following expresston to model the

restoring force

O(x, %, 0 = k[ax + (1 = a)z] (2.04)

where z is an auxiliary variable which has hysteretic characteristics. Thus the second part in the
above equation represents a nonlinear element in parallel with a linear element represented by the

first part. The constant o is a weighting constant representing the relative participations of the
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linear and nonlinear terms. We will discuss the meaning of this parameter for three different

models considered in this study. -

The tangent stiffness for the nonlinear restoring force is defined as:

k,=—‘;—g-=k[a+(1—-a)3—i] (2.05)

The stiffness when z = 0 is called as the initial stiffness. If we choose the auxiliary variable z such

that —;% = ] at z = 0, we obtain the following for the initial stiffness:

ki=kla+(1—a)]=k (2.06)

We can also define the final stiffness for such a model at the asymptotic value of z, when

dz.
dx

= (), as:

K =kla+0]=ka (2.07)
Thus, the parameter « can be seen to be the ratio of the final stiffness to the initial stiffness:

o= (2.08)

In the following we now discuss the characteristics of Bouc-Wen, hyperbolic and bilinear models.

2.3 BOUC-WEN MODEL

To model the hysteretic behavior through z in Eq. 2.04, Wen [10] proposed an endochronic law

as follows:
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t=dAx—vylxlzlz" T = Bxlz)” (209

This model is a generalization of the model proposed by Bouc [7] which has been extensively used
and modified by Wen [10, 15], Baber and Wen [11], Casciati [12] and Casciati and Faravelli [13] in

their work.

This model has four parameters 4, y, B and n. The effect of these parameter values on the shape
of the hysteretic curve has been discussed earlier by Baber and Wen {11]. Here we will re-analyze
this model comprehensively to understand better the influence of its various parameters on the

characteristics of the model.

For this we devide Eq. 2.09 by x, to obtain:

dz _ 4 Izl”[B + X2 Y] (2.10)
| xz|

We now define the ultimate value of z as the value at which 4% = 0 . By setting 4z — g Eq.

dx dx
2.10 we obtain:
1
lz,] = 4 " (2.11)
B+ iy
|z,

Since the positive value of z, corresponds to the positive x and negative to the negative X, the term

Zu

is equal to 1. this defines z, as:

XZ,

u

|zu|=[ A ]% 2.12)
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It is seen from Eq. 2.10 that the slope dz/dx is equal to 4 at z = 0. By properly adjusting the
value of k to define initial stiffness, we can choose 4 = 1. This will also permit us to define a as

the ratio of the final stiffness to the initial stiffness.

2.3.1 GAMMA PARAMETER

Various branches of a hysteretic loop, such as these shown in Fig. 5, can be devided into out-
ward and inward paths. The paths starting at z = 0 and going towards % z, will be called as the
outward paths. For such paths the product xz is always positive, and thus Eq. 2.10 for xz > 0 can
be written as:

Loy~ B+ )2l (2.13)
dx

Likewise, the paths starting from the extreme position of z toward z = 0 will be called as the inward

paths. For such paths, the product xz is always negative, and thus Eq. 2.10 for xz < 0 becomes:

dz n

== =4-(B - .

e B -y lzl (2.14)
It is noted that for y = 0, Eq. 2.13 and 2.14 are the same. That is, the outward and inward paths

coalesce into a single path. This implies that the relationship between z and x is not hysteretic,

although for n > 1 it is still nonlinear.

Let us now consider a case with § > 0, and examine the effect of varying v. If we choose
vy > 0, then the slope in the x-z plane defined by Eq. 2.14 will always be greater than the slope
defined by Eq. 2.13. Thus, the shape of the hysteresis loop will be like those in Fig. 6 or Fig. 7,
with the loop being traced in a clockwise direction. On the other hand, if we choose v < 0, then
in the x-z plane, the slope defined by Eq. 2.14 will always be smaller than the slope defined by

Eq. 2.13. The hysteresis loop in this case will be as shown in Fig. 8 or Fig. 9, with the loop now
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being traced in a counterclockwise direction. The counterclockwise loop is, however, not phys-
ically possible as it implies a negative dissipation of the energy. This means that the parameter y

should be positive, at least when [ is positive.

A similar observation can also be made for the negative B values. We observe that when
v > 0, the loops will again be traced like in Fig. 06 or in Fig. 07. Whereas if y < 0, the loops will
be traced like in Fig. 08 or Fig. 09. Thus we can conclude that the parameter y should always be

positive, independently of the value taken by 8

2.3.2 BETA PARAMETER

We now observe that the softening and hardening characteristics can be created by proper choice

of B and y values.

2.3.2.1 Softening model

For a softening model, the slope of outward paths must decrease with |z|. For this it is nec-
essary that:

B+v)>0 or B> —vy (2.15)

Thus for softening stiffness characteristics, the parameter B could possibly take a negative value

since y is always positive.

Now, to obtain a softening model with inward-path slopes decreasing as z — 0, we need that:

B-v)<0 or <y (2.16a)
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Thus, to satisfy the conditions expressed by Eq. 2.15 and Eq. 2.16a it is necessary that

—v < B < v. In such a case, the hysteresis loop will be as presented in Fig. 10.a.

To decrease the area under the hysteresis loop, we can choose an inward path with increasing slope

as z — 0. This can be achieved by choosing:

B-m=>0 or B>y (2.160)
In this case, satisfaction of Eq. 2.16b, i.e., 0 < y < f, will give us a loop traced in Fig. 10.b.

We can obtain a linear inward path by simply choosing 8 = .

2.3.2.2 Hardening model

Similarly, for hardening stiffness characteristics, the slope of the outward path should increase

with |z|. This can be ensured by choosing

B+y<0 or B<—vy (2.17)
However, unlike softening models there is only one possible shape in this case (see Fig. 10.c).

We can now summarize the effect of f and v on the shape of the hysteresis loop. We observe
that: 1) y must be grater than or equal to zero. A value of ¥ = 0 implies nonhysteretic behavior.
2) To obtain softening models § must be greater than — y. Since v > 0, B can take positive or
negative values. 3) To obtain a softening model with inward paths concave mside the loop, the f8
value must be between —vy and y. 4) To obtain a softening model with inward paths concave
outside the loop, the B value must greater than y. 5) To obtain hardening models, § must be less

than — v.
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2.3.3 EXPONENT PARAMETER

We will now study the effect of changing the exponent parameter in the endochronic law, It
was mentioned by Wen [15] that as n — o , the endochronic law approaches the commonly used
elasto-plastic model for the softening case. To show this analytically, we examine the softening

model. For a softening outward path (§ + y) > 0. The expression for such path is:

%=A— lZI"(B + ) (2.18)

Substituting for (B + v) in terms of z, from Eq. 2.12, we obtain:

dz _ , _
e A—4A4

Z
2y

" (2.19)

As noted before, the slope at z = 0is 4. Futhermore we note that when » approaches infinity, the
ratio (z/z,) approaches zero as |z| < |z,| . From Eq. 2.19 we note that in such a case the slope

at any point (x, z) becomes equal to A4, and the relationship between z and x is a straight line.

Similarly, we can obtain the slope on the inward path, defined by Eq. 2.14 as:

n

(2.20)

Z.
2y
This slope also approaches a constant value of 4 as n becomes large.

Thus, for n = o, both the outward and inward path become straight lines, giving rise to an
elasto-plastic endochronic model in the x-z plane. For a finite value of a in Eq. 2.4, the restoring

force is then defined by a bilinear hysteresis loop.
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2.3.4 PATH EQUATIONS IN THE X-Z PLANE

Eq. 2.10 defines a set of differential equations for various paths of the endochronic law. De-
pending upon the values of x and z, we will obtain different equations for different paths from Eq.
2.10. Integration of these equations will provide the equations for these paths. For example, if

x > 0 and z > 0, the differential equation for one of the two outward paths becomes:

—2‘% =4—- B+ (2.21)

Integration of this will provide

J.z dz'
o A=—B+7 z"

= (x — xp) (2.22)

Where x; is the x-value when z = 0 The integration on the left hand side of Eq. 2.22 is difficult
to evaluate for higher values of n. However, we can for n=1 obtain explicit expressions for z as a
function of x for various paths. For this case, Eq. 2.10 for all paths can be written as:

dz

= + .
L - 4+52 (2.23)

Where & takes on different values for different paths as:

d=—-PB+vy) for x>0, z>0 (2.24a)
d==B—-vy) for x<0, z>0 (2.24b)
b=+ P+y) for x<0, z<0 (2.24¢)
d=+PB—v) for x>0, z<0 (2.244)

Integrating Eq. 2.23 and solving for z, we obtain:
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z= _,g_[eS(x— ) 1]

- (2.25)

Where at x = x;, z = 0. For the four paths defined by various values of 3 in Eq. 2.24, the following

expressions are obtained:

QOutward path: x>0, z>0

g= A [] < BN x)]
B+

Inward path: x <0, z>0

z = 4 [1 - e‘(B‘Y)(x— xo)]

B -
Outward path: x <0, z<0
s=_—A4 [~ BENx-x)]
B+

Inward path: x>0, z<0

z = —A [1 — e(B—Y)(x_ Xo)]
B-7

(2.26a)

(2.265)

(2.26¢)

(2.26d)

For various possible values of B and y for the softening and hardening models, these paths are

schematically shown in Figs. 11 and 12. The boundaries between the softening and hardening cases,

which correspond to the values of B + v = 0 and B — y = 0 are also shown in these figures. The

equation for all these boundaries can be simply written as:

z=A(x — Xxp)

CHAPTER [I: HYSTERETIC MODELS
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By a proper selection of B and y values, as discussed earlier, a variety of hysteresis loops can be
traced. For —y < B < v, (IBl <), Egs. 2.26a-d, will form the hysteretic loop shown in Fig. 13.

Similarly, if B = v, the loop shown in Fig. 14 is obtained.

2.3.5 ALTERNATIVE FORM OF THE MODEL

For a comparison of different hysteretic models, it is sometimes convenient to use the same ul-
timate value of z. This value for the Bouc-Wen model is defined by Eq. 2.12. We will now rewrite

Eq. 2.09 with z, as one of the model parameters.

We solve Eq. 2.12 for B in terms of z, and v as:

p=—A—y (2.28)
|z,
Introducing this in Eq. 2.09, we obtain:
z'=A[1— Izil”]x+y(xlzl”—zlzl”"llxl) (2.29)
U

For the special case of B = vy, where the inward paths are linear, this expresion simplifies to:

z~=2—lfi-u-|T [@lz)™ = 121"y % = 221" 1 ] (2.30)
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2.4 HYPERBOLIC HYSTERETIC MODEL

Representation of Bouc-Wen model by Eqs. 2.26a-d for various branches of the loop suggests
the possibility of developing the analytical expressions for other hysteretic models. For this we
choose appropriate expressions for the outward and inward paths. For a smooth transition between
these two paths it is necessary that the slopes of these paths be the same at z = 0. To demonstrate

this, we choose the following expressions for the outward and inward paths:

Outward path:

z = a tanh[b (x — xy)] (2.31)

Inward path:

™
i

a sinh[b (x = xp)] (2.32)

It is seen that both these functions are zero at x = x;. Also, the slopes of these two functions at

x = x, or z = 0 are the same and equal to:

4z gy ar z=0 (2.33)
dx

The differential equations of the two paths in the x-z plane are given by

Outward paths: (x > 0, z > 0) and (x <0, z < 0)

dz _ ab = ab (2.34)

dx  cosh’[b(x — xp)]  cosh’[tanh” '(z/a)]

Inward paths: (x <0, z>0) and (x>0, z < 0)
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%_ = ab cosh[b(x — x)] = ab cosh[sinh " '(z/a)]

The corresponding endochronic model is obtained as:

dz _ dz dx
dt dx dt

Which for the two paths can be written as:
Outward path: (xz) > 0

z=abx sechz[ tanh ! (—g—):l
Inward path: (xz) <0

z=abx cosh[ sinh ! (%)]

These two expressions can be combined into a single expression as:

2= abfc{fl ¥ [%:Hl -2

]cfz—fl)]

where f; = sech?[tanh™!(z/a)] and f; = cosh [sinh~!(z/a)] .

. (2.35)

(2.36)

(2.37)

(2.39)

(2.39)

This model will trace a hysteretic loop as shown in Fig. 15. Eq. 2.39, however, can only produce

a softening system.

It is also possible to have linear inward path in this case by simply adopting the following

equation in place of Eq. 2.38:

Z=abx, (%2)<0
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Combination of Eq. 2.37 and 2.40 into a single equation gives:

2=aw{ﬁ+[%n _TﬁTklim} (2.41)

2.5 BILINEAR HYSTERETIC MODEL

Since the bilinear models have been very frequently used to define the restoring force, it is of
interest here also to develop an analytical expression for such models. It is also necessary to have
an elasto-plastic law for z in Eq. 2.04 to obtain a post-yielding slope of a. We will, therefore, dis-

cuss the formulation of an elasto-plastic model now.

Fig. 16 shows the elasto-plastic behavior of z versus x . It is noted that on the outward path

A-B-C the time derivative of z can be simply written as:

z=ix{ﬁﬁll+1};x>o,z>o (2.42)
2 Llg -2

Where z, is the maximum value. Similarly on the other outward path, D-E-F,

. 1. z, tz .
z=—x|—+1|; x<0, z<0 (2.43)
2 |z, + 2l

Whereas on the inward paths F-A and C-D The time derivative of z is:

t=x; z>0, x<0 and z<0, x>0 (2.44)

All these equations can be combined into a single expression as follows:
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z=f-x-fl= [—— - 1} -(2.45q)
| 2|

Where f; is defined by:

E] (ljl)z“—z L
()

=

(2.45b)
[x]

2.6 OSCILLATOR RESPONSE AND HYSTERETIC

BEHAVIOR

In this section, we obtain the response of an oscillator subjected to some base motion time his-
tory. The three restoring force models discussed in previous sections have been used. The z(¢) and

x(t) responses were obtained from the solution of the following equations:
i+ 26w + oplax + (1 —a)z] = — % (2.46a)

z= % 2) (2.46b)

To solve these differential equations we used a step by step integrating procedure encoded in the

routine I1A2F of Abaci’s library written for personal computers.

Fig. 17 shows the x-z response of the oscillator for the base motion time history shown in the

inset. The Bouc-Wen model with B = .5,y = 1.5, 4 = 1., n = . and o = .25 has been used to
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define the restoring force. The response after point A on the curve is the free vibration response,

as the base motion ceases at this point. -

Fig. 18 shows almost complete hysteresis loops obtained for the three restoring force models
discussed in previous sections. For the Bouc-Wen model, Eq. 2.09, for the hyperbolic model, Eq.
2.41, and for the bilinear, Eq. 2.45 were used. For comparison purposes the ultimate values z, were

kept the same in the three models. The base motion time history for this case is shown in the inset.

These complete loops fail to point out a serious drawback of the Bouc-Wen and hyperbolic
models. The experiments on metals have shown that a partial loading-unloading path should be
like the one shown in Fig. 19 and 20. After a partial unloading, the reloading should form a small
loop to reach the asymptotic yield level. However, this is not the case with the Bouc-Wen and the
hyperbolic models. It can be clearly seen from Fig. 21, where the partial unloading paths A-B and
reloading path B-C do not intersect. This softening behavior during a reloading followed by a
partial unloading has not been observed in the experimental tests on metals. Probably there also
exist more fundamental physical or thermodynamical reasons for the behavior shown in Fig. 20,

but the author is not aware of this.
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CHAPTER III: EQUIVALENT

LINEARIZATION

3.1 INTRODUCTION

In Chapter II, we presented the equation of motion of a single degree of freedom oscillator with
a nonlinear hysteretic constitutive law. That equation along with the endochronic law forms a

system of two differential equations. These equations can be rewritten in the following form:

¥+ 20,0p% + of [ax + (1 —a)z] = — %

A (3.01a)

2+ g(x,2) =0 (3.015)

Where the natural frequency ®; and the conventional damping ratio {; are, respectively, defined as:

- JK . = 4

and k is the initial stiffness parameter, discussed in Chapter 1I.
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We also solved Eqgs. 3.01a and 3.01b for various models of z, for a prescribed base motion time
history %,, by a step-by-step nonlinear equation solver. Here in this chapter, however, we are in-

terested in obtaining the response of this system for X, defined stochastically.

A general solution of these equations for an arbitrarily defined X, is almost impossible to obtain,
even for the simplest of the endochronic models. Therefore, researchers have tried to obtain some
approximate solutions. For stochastically defined inputs, the stochastic linearization is commonly
used. In this chapter we will discuss the linearized solution of these equations for the Bouc-Wen

and the bilinear hysteretic models.

3.2 EQUIVALENT LINEARIZATION TECHNIQUE

The linearization techniques have been widely used in practice since the first proposal by Krylov
and Bogoliubov [16]. For hysteretic models, Wen and others have used this technique extensively
in the analysis of single and multiple degree of freedom structures subjected to random earthquake
loading. Here we will reiterate some important steps utilized in the linearization technique, not

because they are new but because of completeness of the topic discussed in this work.

For the solution of Eqgs. 3.01, the nonlinear equation 3.01b is replaced by a linear equation as

follows:

P+ Cx+Kz=0 (3.03)

Where K and C are the linearization constants, yet to be determined. This linearization introduces

some &rror, €
e=g*%2) - Cx—-Kz (3.04)
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The error € is a stochastic process. To obtain some estimates of K and C, it is customary to

minimize the mean square value of this error. This minimization requires that -

3 E[*] = £ [e*] =
acC oK

0 (3.05)

Where £].] is the expected value of [.] . Substitution of Eq. 3.04 into 3.05 and slight simplifi-

cation give the following two simultaneous equation for the coefficients X and C
C EL:2] + K E[21 = E[%5(%, 2)] (3.06)
C Elxz] + K E[2*] = E[zg(%, 2] (3.07)

These two equations can be solved for the coefficients as:

i _1 [E [x5(x,9)]
u =[Cp]™ { g [Zg(xyz)ﬂ (3.08)

Where [C, ] is the correlation function matrix for variables x and z. For known joint probability
density function of x and z, the expected values on the right hand side of Eq. 3.08 can be calculated

in principle.

However, under some very general conditions fulfilled by the density function of X and z and
also the function g(x, z) , it has been shown by Atalik and Utku [14] that Eq. 3.08 can also be

simplified to:

= ' (3.09)

The conditions to be satisfied by the density function f{x, z) and the function g(x, z) are:
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1) Ax, z) is Gaussian,
2) lg(x,2)] < A4 e+ foran arbitary 4 and fora, b < 2.
3) g(x, z) 1s well behaved and differentiable.

For g(x, z) defined by the Bouc-Wen, Hyperbolic and Bilinear models, the conditions (2) and
(3) are satisfied. Thus if we can also assume that the joint density function of x and z is Gaussian,

Eq. 3.9 can be applied to simplify the computations.

3.3 BOUC-WEN MODEL

Wen [15] has also provided explicit expressions for calculating C and K for the Bouc-Wen model.
However, as it has been very instructive for the writer to prove Eq. 3.9 and obtain the explicit ex-
pressions for C and K, the details of this proof and derivation for n = 1 are given in the Appendix

for completeness of record. The mentioned expressions for n = 1 are:

v Elxg] ]
C= + 3.10
JE [ s+ Bo (3.10)
K=\/—‘:;~ [ycx+B—%[—)£ﬂ] (3.11)
In addition, for n > 1 Wen [15] obtained the following expressions:

22 Bk rf2 n

C=y T Ty Ty [1=ph]P pi " of + B -4 (312
T Lr=0lr \/n

n2n-1n =1 nj2
K=72n l:z jlrlrz [I—sz]r/z ;'cz r+1+B” 2 I3 ps; 05 Gz ](3-13)

r=of r \/n

L

CHAPTER III: EQUIVALENT LINEARIZATION 23



where 0, 0, and o, are the standard deviations of the x, x and z responses, respectively and p;, is
the correlation coefficient of x and z In both equations I, are the following Gamma functions:

el R B IRk

Futhermore » must be an even integer.

3.4 BILINEAR MODEL

We can also obtain the equivalent linear coefficients for a bilinear model using Egs. 3.09. In this
case, the analytical expression for g(x, 2) is given by Eq. 2.45. It is noted that for this case also, the
function g(x, 2) satisfies the conditions (2) and (3) given by Atalik and Utku. Again if we make the

assumption that the joint density function is Gaussian, we can obtain the coefficients by Eq. 3.09.

The function g(x, z) in Eq. 2.45 can also be defined over the domain of % and z as follows:

—x for 0<z=<gz and x=20
0 for z22z and x20
—x for zz0 and x<0
gx,2) = (3.14)
—x for —z<z<0 and x<0

0 for z< —z, and x <0

—x for z<0and x=20

In this domain the function is at least piecewise differentiable. The derivative required in Egq.

3.09 can be defined as:
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-1 for 0£z=<z and x=20
0 for zz2z and x2 0
ag(x’z);: —1 for z2 0 and x <90

: (3.15)
0x =1 for —z,<z<0 and x<0

0 for z< —z, and x <0

L—l for z<0 and x 20

Also, it is noted that the function is independent of z in these discrete domains. Thus, its de-

rivative with respect to z is zero. Substitution of these in Eq. 3.09 gives:
2" w . . w 0 . )
C= — J' J‘ fifX, 2y dz dx — j j fi(X, 2) dz dx (3.16)
-0 0 Tz, -0
K=0 (3.17)

The integrals in Eq. 3.16 can be evaluated at least numerically and thus C can be defined. On
the other hand the coefficient K is defined but its value being zero poses some problems in sta-

tionary equivalent linear response analysis. This is discussed later.

3.5 EQUIVALENT LINEAR STATIONARY

RESPONSE

With the substitution of the equivalent linear expression for g(x, z) in Eq. 3.01b we get a set

of coupled linear differential equations as follows:

i+ 2wpx + ap [ax+ (1 -ayz]= — % (3.18)
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2+ Ci+Kz=0 (3.19)

These equations can be written as a system of first order differential equations for the state vector

defined as:

x
y=1z (3.20)
X
The differential equation is:
X 0 0 : X 0
% zl=| 0 -K ~c | |z|+]| 0 (3.21)
—aco% - (1 - a)co% —2Lgwg i .
X X - xg

Often X, is defined as the output of a filter subjected to a white noise or shot noise as the input.

In such cases we introduce another equation for the filter defined as:
Bo 2L 0,5 + 0px'y = — f(0) (3.22)

Where o, and §, are the frequency and damping ratio parameters of the filter, x’, is the relative
displacement response of the filter with respect to the base and f(¢) is the acceleration at the base

of the filter. This acceleration is assumed to be a delta correlated process.

The absolute acceleration response of this filter is the input X, in Eq. 3.18, that is,

Bp= Xg + fl) = — 20,0, %, — @b X, (3.23)

Eqs. 3.18, 3.19 and 3.22 can now be combined into a single system of first order differential

equations as:

CHAPTER 1II: EQUIVALENT LINEARIZATION 26



r —
z 0 -K ~C 0 02 z 0
di Tl= - ede —oX(l—w) —Loo g O 1+ 0 | (329
r| X, =5 SRE -
0 0 0 Lo — g =)
x' 0 x’'
8] 0 0 1 0 " 8] 0
This system of Egs. 3.21 or 3.24 can be written in a more compact form as:
dy -
— = + .
7 Gy+F (3.25)

For a zero mean excitation, the expected value of y will be zero. As shown by Lin [17], the

differential equation for the covariance matrix of y can be obtained as:

-dc% =GS+SGT+ B (3.26)

Where S is the covariance matrix of y and B is a matrix with all its elements being zero except the
diagonal element corresponding to the nonzero row of the forcing function vector in Eq. 3.21 and
Eq. 3.24. The nonzero element of this matrix is defined as 2nG,, for a white noise with spectral

density ordinate of G,.

If we are interested in the stationary response, then the left hand side of Eq. 3.26 is zero. Thus,
the stationary covariance matrix can be obtained from the solution of the following Liapunov’s

matrix equation:

GS+SGT+B=0 (3.27)

A computer scheme developed by Bartels and Steward [18] was used in this study to solve this

Liapunov’s equation.
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It is, however, noted that the equivalent linear coefficients C and K in this scheme are themselves
defined in terms of the response which is not known a priori. To start the solution therefore some
7 appropriate values are assumed for C and K, which are then used to define matrix G in Eq. 3.27.
Solution of this equation provides the response covariances which are in turn used in the calculation
of new values of C and X from Eqs. 3.10 and 3.11 or from 3.12 and 3.13 for the Bouc-Wen model.
This iterative process is repeated till a convergence is achieved. The convergence characteristics of

this procedure for the Bouc-Wen model are presented in the following chapter.

Implementation of this equivalent linear procedure in the calculation of stationary response
covariance for a bilinear hysteretic model, however, has not been possible. This is because the
coefficient X for this case is zero, which renders matrix G singular for this case. Thus, the numerical
approach used with Eq. 3.27 can not be utilized. The nonstationary solution can still be obtained

in principle. This will be attempted in future investigations.
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CHAPTER 1IV: NUMERICAL RESULTS

4.1 INTRODUCTION

As mentioned in the previous chapter, the stochastic linearization approach is necessarily itera-
tive. In this chapter we will consider the convergence characteristics of the linearization approach.
The linearization coefficients of the nonlinear equation depend upon the response, which in turn
is not known a priort. The process, thus, starts with some assumed values of the linearization co-
efficients and then is obtained the response. The calculated response is then used to calculate the
new values of the coefficients which are then used again to calculate a new response value. The

process is repeated till a desired convergence in the response quantities of interest is achieved.

The above procedure seems simple. Yet, some convergence problems were noted when no ad-
justments to the iterative process were made. It was also observed that the convergence also de-
pended upon the parameters of the problem. In some cases as high as 39 number of iterations are
required to achieve the desired level of convergence. In this Chapter, therefore, the experience
gained in achiveing convergence to the final results is discussed. Numerical results showing the

convergence rate for various cases are presented. Finally, the comparison of the response values
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obtained by the stochastic linearization approach with the values obtained by the time history en-

semble analysis are also presented and discussed.

4.2 PROBLEM PARAMETERS

The parameters considered in this study are the oscillator parameters, the parameters of the

hysteresis model and the input motion parameters.

4.2.1 OSCILLATOR PARAMETERS

The oscillator parameters are: the initial frequency o, the damping ratio {; and the yield level
F,. The oscillator frequencies ©, = 1, 1.5, 5, 6, 16 and 20 cps, and the damping ratios {; = 0.05
and 0.10 have been used. The yield displacement values of the stiffness element, y, were varied

between .003 to .800 inches.

4.2.2 PARAMETERS OF THE HYSTERESIS MODEL

For the Bouc-Wen model, the parameters are B, v and the exponent n. In all the cases § = y
is assumed. The parameters  and v are related to the yield level as follows. For the ultimate value

of z = z,, we obtained Eq. 2.28, which for 4 = 1 gives:

B+y= (_Zlu_)n (4.01)

For an equivalent bilinear model, the yield force at the yield displacement x = y is given by

CHAPTER IV: NUMERICAL RESULTS 30



Fy=aky+k(l-a)z (402

Where z, is the z-value at x = y. However, when n — %, z, approaches z,, which in turn for

A = lisequal to y. Thus in the limiting case of n — o,
F,=aky+k(l—a)y=ky=kg, (4.04)

Which gives

?vl&ﬁ

(4.05)
Substituting Eq. 4.05 into Eq. 4.01 we obtain:

B+y=-—L (4.06)
y

With the parameters § and y choosen according to Eq. 4.06, in the limit, the restoring force defined

as
OQ=akx+k(l—-a)z (4.07)

will approach the bilinear case with initial stiffness of 4, final stiffness of ak and yield displacement
of y. With this equivalence in mind, the parameters  and vy are obtained from Eq. 4.06 for a given

yield level.

As observed before in Chapter II, when 7 is increased, the hysteretic law approaches the bilinear
case. Herein, the results are obtained for n = 1, 3 and 5. The convergence of the iterative process

for the increasing values of # is extensively studied.

For an elastoplastic case, the post yielding stiffness parameter o should be equal to zero.
However, this poses some problems in stochastic linearization as the matrix in Eq. 3.21 becomes

singular and we cannot solve this equation in a stationary response case. The nonstationary re-
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sponse can still be obtained, but it then depends upon the initial conditions. Analysis for such a
case is more complicated and is not considered in this work. We have therefore, assumed as low
values of a as possible without affecting the numerical accuracy of the results. For the elasto-plastic
case, @ = 1/21 , has often been assumed in stochastic linearization approaches in the past. We have
used this value for obtaning the results for the elasto-plastic case, although some results with smaller
values of a we also reported. For the bilinear hysteretic case, the numerical results with o = .25

have been obtained.

4.2.3 INPUT MOTION PARAMETERS

The input to the oscillator is defined by a filtered white noise model. The most commonly used
seismic input of this type is defined by the Kanai-Tajimi spectral density function of the following

form:

co + 41;%,@2 o

((o -co) +4C2 2 o?

D (o) = S, (4.08)
Where S, is the intensity of the white noise which establishes the level of exitation and o, and ¢,
are the ground filter parameters representing the frequency and damping ratio for the site. These

two parameters were taken to be ©, = 17.64 rad/sec and {, = .3535

In the design of important structures, broad band inputs defined in terms of smoothed ground
response spectra have often been used. The spectra presented by the U.S. Nuclear Regulatory
Commission in Regulatory Guide 1.60 [19] for the design of Nuclear Power Plants are of this form.
Spectral density functions which are consistent with such broad band spectra have also been used
in practice. A model of spectrum consistent spectral density function proposed by Singh and Chu

[20} is of the following form:
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co?' + 4 Cz-z coi2 @

3
O 0) = I,

(4.09)
i=1 (col-2 - (1)2)2 + 4C52 (o? ©*

This is the multimodal form of the Kanai-Tajimi spectral density function defined earlier. The
parameters of this model used in this study are given in Table 1. This spectral density function gives
the root mean square value {RMSV) of ground acceleration to be equal to 2.147 f¢/ sec?. This with
the peak factor value of 3.00 for ground acceleration random process, gives a peak ground acceler-
ation of 6.44 ft/ sec? or .2 g. The results obtained with this seismic input are compared with the
results obtained by time history analysis for an ensemble of ground motion time histories scaled to

2g.

4.3 RATE OF CONVERGENCE RESULTS

The results for the rate of convergence obtained for several oscillators with different frequencies,
damping ratios and yield level parameters are shown in Figs. 22 - 36. These curves are plotted for
n= 1,3 and 5. Each plot shows the logarithm (to the base 10) of the error versus the number of

iterations. The error is defined as:
IR, — Ry,
= TNEll 4.10
e [ z (4.10)

Where R, and R, are the mean square values of the response obtained at the i* and ( + 1)* iter-
ation. All three response quantities, x , x and z, were considered to obtain this error. Only the
maximum error obtained among all three response quantities is shown in the plots. The conver-
gence was assumed to have been achieved when this error was less than .01 for all response quan-

tities.
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Based in these results, it is felt that in a given problem the rate of convergence of the response
to the final response primarily depended on the choice of the linearization parameters C and X .
It has been suggested [22] that a value of C = 1.0 and K = .05 (B + vy) provides a better conver-
gence. These initial values of C and K were observed to work very well with n = 1 and rather well
with n = 3 in almost all cases. However for » = 5, some problems were observed. The experience
showed that if the initial value of K was increased to be of order 1 (between 1 and 10), the con-

vergence was assured in almost all cases.

Besides the choice of the initial values, it was also found to be important that the subsequent
values of C and K, for following iterative steps, be chosen carefully. It was observed that if the C
and K values, obtained according to Eqs. 3.10 and 3.11, were directly utilized then the convergence
was not always assured. It was found desirable to choose C and K values somewhere in between
the values obtained in the two consecutive steps. In fact, a simple average of the two values, if
chosen as the value for the next step worked very well. That is, for the a* step the initial values

C; and KX calculated as:

C,_,+ C
Cl.=_”_;._ﬁ_ (4.11
2
K,.,+K
Kl=_"_12___i (4.12)

expedited the convergence. Here C,_, and K, ;| are the values used in the (n — 1)* iterative step

and C, and K, are the values calculated from Eqs. 3.10 and 3.11 in the #* iterative step.

The convergence results were also obtained for two spectral density function models. It was
observed that the type of input did not affect the convergence rate significantly. It was also ob-
served that the rate of convergence was not aifectéd by the choice of parameter a (see Fig. 37).
As observed from Figs. 22 through 29, the rates of convergence are different for different yield level

parameters. The number of iterations are seen to increase with a decrease in the yield level at which

CHAPTER IV: NUMERICAL RESULTS 34



the stiffness element will yield. That is, for the oscillators with large inelastic response or ductility

ratio the number of iterations required for convergence will be large.

4.4 COMPARISON OF RESPONSE

In this section we compare the oscillator response results obtained by the equivalent linearization

approach with those obtained for an ensemble of time histories.

The time history analysis results were obtained by Malushte [21]. For these results, the accel-
eration time histories répresenting the ground motion were synthetically generated for a spectral
density function, the parameters of which are given in Table 1. These time histories were synthe-
sized from randomly phased harmonics, with amplitudes determined from the spectral density
function. The time histories were modified by a deterministic modulation function. These time
histories had a total duration of 15 seconds with the strong motion phase of 4 seconds. In all a total
of 75 such time histories were used. The maximum acceleration in each time history was normal-

ized to a value of .2 g.

The numerical results were obtained for the elasto-plastic case with o = 0 and for the bilinear

case with a = .25. Several yield levels were considered, as mentioned in the preceding section.

The time history response of each oscillator was obtained for each input motion time history.
Thus, for each oscillator the ensemble containing 75 time histories was available to obtain the re-
sponse statistics. From each response time history a maximum value was obtained which was then
used to determine the mean maximum response. Here this mean of the maximum response value
is compared with the mean of maxima obtained by the stochastic linearization technique. It is

noted that individual maximum values for time histories did not occur at the same time.
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In the stochastic linearization approach the mean of the maxima was obtained by multiplying
the root mean square response value by the peak factor. The root mean square response value was

obtained by a stationary random vibration analysis of the equivalent linear system.

The peak factor (PF) was calculated by the well-known Davenport formula [23] as:

t; 0
PF= 2 In(-A2%) + ——3172 4.13)
\/ T Ox 140
2 In( )
J no,

Where ¢, =standard deviation, o, = standard deviation of the response derivative and ¢, is the
equivalent stationary duration of the response. o, and o, are directly available from the random
vibration analysis of the equivalent linear system. Since it is difficult to know the equivalent sta-
tionary duration for a nonstationary response, here two values of ¢, = 4 sec. and ¢, = 7 sec. were
used to obtain the peak factors. The numerical results for the peak factor calculated with ¢, = 4
sec. are given in Tables 2-5 and those for ¢, = 7 sec. are given in Tables 6-9. The seismic input in
the equivalent linear approach is defined by a white noise. To ensure that the input used in the time
history approach is somewhat comparable with the input in the stochastic approach, a filter was
added between the oscillator and the base. Thus, the input motion at the base of the oscillator was
a filtered white noise of Kanai-Tajimi form. The numerical results for a single term Kanai-Tajimi
spectral density function (Eq. 4.08, in which the filter with parameters in Table 1 is used) and the
three-term Kanai-Tajimi spectral density function (Eq. 4.09, in which the three filters in parallel
with parameters in Table 1 are used) are presented. The intensity of the white noise at the base
of the filters was adjusted such that with a peak factor of 3, it gave a maximum ground acceleration

of .2 g at the base of the oscillator.

As mentioned before, the nonlinear stiffness element in the stochastic approach is modeled by
the Bouc-Wen model with exponent n = 1, 3 and 5. Since in a stationary response case we cannot
obtain results for a = 0, for a elasto-plastic model, we have used a = 1/21 = .048 which has

commonly been used in the literature. For the bilinear model, since the time history response
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values are available for @ = 1/4 = .25, the stochastic results have also been obtained with this

value.

Tables 2-9 show the results for various oscillators. Column 1 shows the oscillator identification ~
number and columns 2, 3 and 4 show the oscillator parameters. The values in the remaining col-
umns are for exponent n =1, 3 and 5. For each case the following values are shown: the peak
factor calculated by Davenport’s formula, the maximum diplacement of the oscillator and the error
between the maximum displacement value obtained by the equivalent linear \approach and the time
history ensemble results. This error is defined as:

(x; — Xs)

Error = 100 X;

(4.14)

Where x, and x, are the mean of the maximum values obtained by time history and stochastic

analysis approaches.

It is seen that the error is large in several cases and there is no particular trend, with respect to
the choice of exponent, and the equivalent time duration ¢, used in the calculation of the peak

factors.

Probably a better comparison can be made by comparing the averages of the absolute errors in
these tables. These averages are given in the last row. A comparison of these averaged errors shows
that a smaller error is obtained for o = .25 than for o = .048. It is noted that the results for
a = .25 are for the same value of this parameter, both in the time history and stochastic approach.
Whereas, the results for o = .048 are for different values of this parameter in the time history and
stochastic approach. In the time history the results are for o = 0, and in the stochastic approach
the results for @ = .048. It was not possible to obtain results for a values less than .048 because
in the stochastic approach the numerical error in the results started to increase when a values less

than .048 were used (see Fig. 38). Thus, it seems that a major share of the error in the results for
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the elasto-plastic oscillators is due to our inability of modeling this case in the stationary stochastic

approach.

Comparison of the average errors for one term and three term spectral density function inputs
shows that the error in the latter case is smaller. This is probably due to the fact that the input of
3-term spectral density function is closer to the input used to define the acceleration time history

in the time history analysis.

In conclusion it is felt that errors are large, though they can be improved by improving the
proper modeling of the system and considering the nonstationarity of the response properly in the
calculation of peak factors. To improve the accuracy of the stochastic linearization for the elasto-
plastic case (o = 0), it seems to be necessary to include the nonstationarity of the motion and re-

sponse.
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CHAPTER V: SUMMARY AND

CONCLUSIONS

The motivation for this work was to study the characteristics of some nonlinear hysteretic
models, commonly used in seismic structural analysis. In particular, here the model proposed By
Bouc and Wen has been studied comprehensively. The effect of various model parameters on the
characteristics of the model has been examined in detail in Chapter II. This study has led to the
development of the analytical forms for two other hysteretic models, viz, hyperbolic model and
bilinear model. It is expected that the expression for the bilinear model will be useful in future
studies. The nonlinear response of oscillators with these three models has also been obtained for
specified ground motion time histories. Some physical limitations of the commonly used Bouc-

Wen model have also been identified.

In Chapter III, the equivalent linearization of the equation of motion of an oscillator with
stiffness characterized by the Bouc-Wen model and by the bilinear model has been formulated. It
is observed that it is not possible to work with the equivalent linear equations of the bilinear
oscillator for calculating the stationary response. That is, to obtain any meaningful response in this

case it 1s necessary to consider the initial conditions and the nonstationarity of the response. Such
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a study is beyond the scope of this work. On the other hand, the Bouc-Wen model can still be used

for stationary response calculations as long as the parameter o is nonzero.

In Chapter IV, numerical results have been obtained for oscillators with different characteristics
to study the convergence behavior of the equivalent linear iterative approach. It is observed that
the number of iterations required for convergence can indeed change with the parameters of the
oscillators, such as frequency, yield level and the exponent parameter of the Bouc-Wen model. It
is observed that the convergence is slowest for the exponent parameter value of n=35. This con-
vergence, however, can be improved by appropriately chosing the initial values of the linearization
coefficients. It has been observed that better convergence is acheived when the initial values of the
linearization coefficients for an iteration are taken as the average of the two recently calculated
values. For oscillators with large inelastic response or ductility ratio the number of iterations re-
quired for convergence will be large. The rate of convergence does not seem to be affected by the

other parameters of Bouc-Wen’s model or the input characteristics.

The numerical results obtained by the equivalent linear approach are also compared with the
results obtained for an ensemble of ground motion time histories. This comparison is not observed
to be good; that is, for some oscillators the response values calculated by the equivalent linear ap-
proach differ significantly from the average values calculated by the time history ensemble analysies.
The main reasons for this discrepancy are the inability of the equivalent linear approach (1) to
precisely model the elasto-plastic and bilinear hysteretic models in the analysis, {2) to consider the
nonstationarity of the input and response. The input in the equivalent linear approach is defined
stochastically and assumed to be stationary. Whereas the time history inputs used in the time his-
tory calculations do not have stationary characteristics. In establishing the level of intensity of the
stochastic input so that it gives the same maximum ground acceleration as the inputs in the time
history analysis, some assumptions are made about the ground acceleration peak factors. These
assumptions need to be verified. Also in calculating the peak response from the mean square re-
sponse, the peak factors have been obtained from some simplified formulas which do not consider

the nonstationarity of response. For a better corroboration of the two results it appears, therefore,
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necessary that nonstationarity for the input and response be some how reflected in the calculation

of response by the stochastic linearization approach.
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APPENDIX

Derivation of Eq. 3.09

To prove Eq. 3.09, let us rename it as Eq. A.01:

We first evaluate:
% |- g . .
E[K] N Ux <5 Sk D) dx dz

Integration by parts of Eq. A.02 gives:

0 R . .
¢ [Ffe‘]ﬂ [gfrz(x’@f —J'xg(%mz(x,zﬂ dx]dz

z -0

APPENDIX

(4.01)

(4.02)

(4.03)
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For the Bouc-Wen model and n = 1, the function g(x, z) is:
g2y =B lzl —A)yx+ylxlz (4.04)

The first term on the right hand side of Eq. A.03 is obviously zero at the limits. Thus, Eq. A.03

becomes:
og . _ d . .
E[—a—x—] = Ux ggxf[,gcz(x, 2)] dx dz (4.05)
The joint distribution, if assumed Gaussian, can be written as:

fidt,2) = [(2n) det [C]] ™1 exp [ - %[/T [Cy,) ! (}] (4.06)

Where UT = (%, z). It is noted that because |z| is limited to a maximum value of z,, the assump-
tion of the normality of the joint distribution is not correct. Nontheless, this assumption is com-

monly made. The derivative of Eq. A.06 can be written as:

2 s e T e = Lri | 8T e 1G4 0T 28U
—g[fxz(x, 2] = 5 Fer%, z){ — [Coll ™ U+ UGyl ax] (4.07)

Since 6(}7/635 = (1, 0), we can write:

i - : Lir E
7 [fit. 2] = = filss 2) [Cy,) (A4.08)
X 0 z
Thus, from Eq. A.0S:
1 P
E[gfﬂc—] = Ux 8%, 2) [O}T[%]“u dx dz (4.09)

In a similar way we can obtain £ [dg/dz] as:
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0 N BEIN
E[a—f] = Ux 8 fil% Z)[I]T[szl lu dx% dz

Combining Eq. A.09 and A.10, we obtain:

= [Cd ™" [f; 8/5l%,2) H dx dz
z

Which means:

(4.10)

(4.11)

4.12)

Substituting for the vector on the right hand side of Eq. 3.08 from Eq. A.12, we obtain Eq. 3.09.

Expressions of C and K for Bouc-Wen's model with n=1

To obtain the explicit expresions of C and K, we will use Eq. A.0l. For the particular case of

Bouc’s model with exponent # = 1, the expression for g(x, z) is given in Eq. A.04. The derivatives

of g(x, z) are:

APPENDIX

(4.13)

(4.14)
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Considering Eq. A.01, A.13 and A.14, we can write the linearization coefficients as follows:

C=YE[Z ‘K ]+BE[|zl]—A (4.15)
_ . . dlzl
K—-yE[le]+BE[x — } (4.16)

For the jointly Gaussian density function of x and z , it is straightfoward to obtain the expected

values in Eq. A.15 and Eq. A.16 as:

Ellx]] = 5x|xlf,c(x) dx (4.17)
Where
Sl = -\-/?71—(;: exp [:?.L[%ﬂ (4.18)
Integrating, from — o to 0, we get:
E[lx]] = \/%_cx (4.19)

In a similar way we can obtain E [|z|]:

E[lzl]= \/%_62 (4.20)

To determine £ [z (8|x|/dx)], we have to perform the following integrations:

E[z a(lail ] = aézl | 2ff%,2) dz dx (4.21)

x z
Where
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1 1 .2 2pxz 2
s 2 exp[-y————l Loz L)l um
210,04/l = p (1 =p7) [ o xz

After integrating from — o0 to o0 the variable z, we get:

alx] _ PG, ® [x] —L_E__ 5 )
E[z PR ]* ox f_oo \/};% exp[ Z[Gx]]dx (4.23)

Since the integrand in Eq. A.23 is the same as that in A.17, we can write:

alxl | _ 2
E[z PR ]-—pcz\/Ir (4.24)
Where p = i{?]. Then,
olx| | _ 2 E[xz]
E[“a;‘] “J7 o (4.23)

Following a similar procedure, we find:

colzl | 2 Elxz]

Substituting Eqgs. A.19, A.20, A.25 and A.26 into A.15 and A.16, we obtain:

c=\/—;’;— [Y%Z-L+Boz]—,4 (4.27)
_ 2 E[xz]
K= = [yck+B G’f] (4.28)
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TABLE 01  PARAMETERS FOR THE SPECTRAL DENSITY FUNCTIONS

Unimodal Kanai-Tajimi:

wy = 17.64  rad/sec

& = .3535

S= 38125 (in/secz).z/(rad/sec)
Trimodal Kanai-Tajimi:

&, = 13,50 rad/sec

&= 3925

S = .21600 (in/secz)z/(rad/sec)

4= 23.50 rad/sec

Zo=  .3600

S= .07128 (in/secz)z/(rad/sec)

4= 39.00 rad/sec

L= .3350

S= .05400 (in/secz)z/(rad/sec)
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