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STOCHASTIC RESPONSE OF SINGLE DEGREE OF FREEDOM HYSTERETIC 

OSCILLATORS 

by 

Gustavo Omar Maldonado 

Mahendra P. Singh 

Engineering Mechanics 

(ABSTRACT) 

During strong ground shaking structures often become inelastic and respond hysteretically. 

Therefore, in this study some hysteretic models commonly used in seismic structural analysis are 

studied. In particular the characteristics of a popular endochronic model proposed by Bouc and 

Wen are examined in detail. In addition, analytical expressions have also been developed for most 

commonly used bilinear model as well as another model, herein called as the hyperbolic model. 

As stochastic response analysis with such models commonly use the stochastic linearization ap­

proach which is necessarily iterative, here the convergence characteristics of such methods, when 

applied to calculate the response of single degree of freedom oscillators, are studied in detail. Several 

oscillators with different parameters are considered in the study. The ground motion is modeled 

by a stationary random process with Kanai-Tajimi spectral density function. It is noted that some 

adjustments in the equivalent linear parameters are necessary to achieve convergence. Also the rate 

of convergence to the fmal results is slower for the oscillators with low yield levels. 

The numerical results obtained by the equivalent linear approach are also compared with the 

results obtained for an ensemble of ground motion time histories and the possible causes of the 

discrepancy between the two results are discussed. 
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CHAPTER I: INTRODUCTION 

The behavior of engineering structures which are affected by dynamic loads can not always be 

described by simple linear-elastic models, Fig. 1. In many cases, the structures have nonlinear and 

inelastic stiffness characteristics. Often such stiffness characteristics also have, what we call, mem­

ory; that is, the response of the system at a given time not only depends on the input at that tinie 

but also on the input and response at an earlier time. If the applied load is cyclic, the structural 

response may also be cyclic with dissipation of energy through hysteresis cycles. Structures sub­

jected to strong ground shaking exibit such inelastic characteristics, and it is necessary to consider 

these in the calculation of seismic response. 

In earthquake structural engineering, the constitutive law of inelastic structures has often been 

approximated by the popular elasto-perfectly-plastic model, Fig. 2, or by the bilinear model, Fig. 

3. Tests on some structural elements have, however, demonstrated the need of using more complex 

multilinear models, like the Takeda's model shown in Fig. 4 and used for reinforced concrete. Se­

veral such models are being utilized now in dynamic analysis of structures subjected to earthquake 

induced ground motions. In such analyses, usually a step-by-step time history analysis is per­

formed. Computer codes like DRAIN-2D [I) and ANSR-I [2) have been developed to carry out 

such analyses. It has, however, been found difficult to utilize these discrete multilinear models in 

the stochastic response analysis of structures. 
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In addition to these discrete multilinear models, continuous models have also been developed 

to characterize the hysteretic force deformation characteristic of structural elements and materials. 

The earliest example of such a model is, probably, the Ramberg-Osgood model [3). This model 

has been utilized to characterize the hysteretic behavior of soils in several soil dynamics studies [4, 

5) in earthquake engineering. The utilization of this model for metal and concrete structures is, 

however, uncommon. For such structures, the continous model proposed by Iwan [6) and an 

endochronic model proposed by Bouc [7) have recently been utilized. Bouc's model has been 

modified and improved further to include the time dependent degradation and pinching effects 

commonly observed in structures SUbjected to earthquake induced ground motions. Another model 

similar to Bouc's has also been developed by Ozdemir [8] which was utilized by Bhatti and Pister 

[9) in optimization studies in seismic design of structures. 

Because of the analytical simplicity, Bouc's model has been of special interest lately. It has been 

extensively used by Wen [IOJ, Baber and Wen [1lJ, Casciati and Faravelli [12], Casciati [13] and 

many others in their studies of stochastic response of structures subjected to stochastic loads. In 

these studies, the nonlinear differential equations associated with the constitutive law are linearized 

through the concept of stochastic linearization [14J. The coefficients of the linearized equation are 

functions of the response statistics, which are not known a priori. Some initial estimates of these 

coefficients are obtained which are then used in the calculation of the response from the linearized 

equations. The calculated response is then used to modify or improve the earlier estimates of the 

coefficients. This process is repeated till a convergence in the calculated response and coefficient 

values is acheived. Such approaches are thus iterative in nature. 

In this work, the utilization of the endochronic model proposed by Bouc in stochastic seismic 

response evaluation of a simple oscillator subjected to random earthquake inputs is further studied. 

In Chapter II, the characteristics of various parameters of Bouc's model are studied. The limita­

tions and appropriateness of this model in earthquake structural engineering are examined. Two 

new endochronic laws are also proposed. One of them uses hyperbolic trigonometric functions to 

model a softening system and the other models bilinear hysteresis loops. In Chapter III the ana-
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lytical details of the equivalent linearization process used for calculating the response of an oscillator 

with nonlinear hysteretic spring, and subjected to stationary fIltered white noise excitation at the 

base are provided. In Chapter IV the convergence characteristics of the iterative procedure used in 

the calculation of response are examined in detail. The comparison of the results obtained by the 

stochastic linearization with those obtained by the time history analysis for an ensemble of 

accelerograms is also given. The summary and concluding remarks are given in Chapter V. 
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CHAPTER II: HYSTERETIC MODELS 

2.1 INTRODUCTION 

In this chapter we will discuss the characteristics of some commonly used hysteretic force mod­

els. In particular the model proposed by Bouc and subsequently modified by Wen, Baber, etc., is 

discussed in detail. Based on the study of this model, analytical forms of two other models --the 

hyperbolic and the bilinear-- are proposed. 

2.2 EQUATION OF MOTION AND RESTORING 

FORCE 

In general the equation of motion of a single-degree-of-freedom (SDF) system can be written 

as follows: 

CHAPTER II: HYSTERETIC MODELS 4 



mX + Q'(x, x, t) = - mxg (2.01) 

Where Q'(x, x, t) is the general nonlinear hysteretic force; x is the relative displacement of the 

oscillator with respect to its moving base; x and x are the relative velocity and acceleration respec­

tively; m is the mass of the oscillator and Xg is the ground acceleration. In the present study we 

will consider that the damping dependent restoring force is linear. Then, the equation of motion 

reduces to; 

mX + eX + Q(x,x, t) = - mXg (2.02) 

Now Q represents the undamped nonlinear hysteretic term, which is a function of the displacement 

and velocity; c is the damping constant. 

In standard form, this equation can also be written as; 

(2.03) 

where 0)0 is the preyielding natural frequency and ~o is the viscous damping ratio of the system de­

fmed as So = _c_. 
2mO)o 

If the material is linear and elastic, Q(x, x, t) reduces to Q(x) = kx , where k is the elastic con­

stant of the spring supporting the mass, called the stiffness coefficient. To include the hysteretic 

behavior along with linear behavior, Wen [15] has proposed the following expression to model the 

restoring force 

Q(x,x,t) = klux + (1- u)z] (2.04) 

where z is an auxiliary variable which has hysteretic characteristics. Thus the second part in the 

above equation represents a nonlinear element in parallel with a linear element represented by the 

flrst part. The constant u is a weighting constant representing the relative participations of the 
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linear and nonlinear terms. We will discuss the meaning of this parameter for three different 

models considered in this study. 

The tangent stiffness for the nonlinear restoring force is defmed as: 

k = dQ = k [a + (1 - a) dz ] 
t dx dx 

(2.05) 

The stiffness when z = 0 is called as the initial stiffness. If we choose the auxiliary variable z such 

that dz = 1 at z = 0, we obtain the following for the initial stiffness: 
dx 

ki = k [a + (1 - a) I = k (2.06) 

We can also defme the fmal stiffness for such a model at the asymptotic value of z, when 

~~ = 0, as: 

k{ = k [ a + 0 I = ka (2.07) 

Thus, the parameter a can be seen to be the ratio of the fmal stiffness to the initial stiffness: 

(2.08) 

In the following we now discuss the characteristics of Bouc-Wen, hyperbolic and bilinear models. 

2.3 BOUe-WEN MODEL 

To model the hysteretic behavior through z in Eq. 2.04, Wen [10] proposed an endochronic law 

as follows: 
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z=Ax-ylxlzlzln-l_~xlzln (2.09) 

This model is a generalization of the model proposed by Bouc 17] which has been extensively used 

and modified by Wen [10, 15], Baber and Wen [11], Casciati [12] and Casciati and Faravelli [13] in 

their work. 

This model has four parameters A, y, ~ and n. The effect of these parameter values on the shape 

of the hysteretic curve has been discussed earlier by Baber and Wen [11]. Here we will re-analyze 

this model comprehensively to understand better the influence of its various parameters on the 

characteristics of the model. 

For this we devide Eq. 2.09 by X, to obtain: 

dz = A­
dx 

Izln [~ + 2.L y] 
Ixzl 

(2.10) 

We now defme the ultimate value of Z as the value at which :. = O. By setting ~; = 0 in Eq. 

2.10 we obtain: 

IZu l = [ ~z ]* ~ + __ u_ y 
Ixzu l 

(2.11 ) 

Since the positive value of Zu corresponds to the positive x and negative to the negative x, the term 

~ is equal to 1. this defmes Zu as: 
Ixzul 

(2.12) 
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It is seen from Eq. 2.10 that the slope dz/ dx is equal to A at z = O. By properly adjusting the 

value of k to deflne initial stiffness, we can choose A = 1. This will also permit us to defIne a as 

the ratio of the fmal stiffness to the initial stiffness. 

2.3.1 GAMMA PARAMETER 

Various branches of a hysteretic loop, such as these shown in Fig. 5, can be devided into out-

ward and inward paths. The paths starting at z = 0 and going towards ± Zu will be called as the 

outward paths. For such paths the product xz is always positive, and thus Eq. 2.10 for xz > 0 can 

be written as: 

~~ = A - W + y) 1 zl n (2.13) 

Likewise, the paths starting from the extreme position of z toward z = 0 will be called as the inward 

paths. For such paths, the product xz is always negative, and thus Eq. 2.10 for xz < 0 becomes: 

dz = A - (~ _ y) 1 z 1 n 
dx 

(2.14) 

It is noted that for y = 0, Eq. 2.13 and 2.14 are the same. That is, the outward and inward paths 

coalesce into a single path. This implies that the relationship between z and x is not hysteretic, 

although for n > 1 it is still nonlinear. 

Let us now consider a case with ~ > 0, and examine the effect of varying y. If we choose 

y > 0, then the slope in the x-z plane defmed by Eq. 2.14 will always be greater than the slope 

defmed by Eq. 2.13. Thus, the shape of the hysteresis loop will be like those in Fig. 6 or Fig. 7, 

with the loop being traced in a clockwise direction. On the other hand, if we choose y < 0, then 

in the x-z plane, the slope defmed by Eq. 2.14 will always be smaller than the slope defmed by 

Eq. 2.13. The hysteresis loop in this case will be as shown in Fig. 8 or Fig. 9, with the loop now 
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being traced in a counterclockwise direction. The counterclockwise loop is, however, not phys­

ically possible as it implies a negative dissipation of the energy. This means that the parah1eter y 

should be positive, at least when P is positive. 

A similar observation can also be made for the negative ~ values. We observe that when 

y > 0, the loops will again be traced like in Fig. 06 or in Fig. 07. Whereas if y < 0, the loops will 

be traced like in Fig. 08 or Fig. 09. Thus we can conclude that the parameter y should always be 

positive, independently of the value taken by ~ 

2.3.2 BETA PARAMETER 

We now observe that the softening and hardening characteristics can be created by proper choice 

of ~ and y values. 

2.3.2.1 Softening model 

For a softening model, the slope of outward paths must decrease with / z/. For this it is nec­

essary that: 

(~ + y) > 0 or ~ > - y (2.15) 

Thus for softening stiffness characteristics, the parameter ~ could possibly take a negative value 

since y is always positive. 

Now, to obtain a softening model with inward-path slopes decreasing as z -+ 0 , we need that: 

(~ - y) < 0 or P < y (2.16a) 
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Thus, to satisfy the conditions expressed by Eq. 2.15 and Eq. 2.l6a it is necessary that 

- y < ~ < y. In such a case, the hysteresis loop will be as presented in Fig. 10.a. 

To decrease the area under the hysteresis loop, we can choose an inward path with increasing slope 

as z -+ O. This can be achieved by choosing: 

(~ - y) > 0 or ~ > y (2.16b) 

In this case, satisfaction of Eq. 2.16b, i.e., 0 < y < ~, will give us a loop traced in Fig. lO.b. 

We can obtain a linear inward path by simply choosing ~ = y. 

2.3.2.2 Hardening model 

Similarly, for hardening stiffness characteristics, the slope of the outward path should increase 

with 1 z I. This can be ensured by choosing 

~ + y < 0 or ~ < - y (2.17) 

However, unlike softening models there is only one possible shape in this case (see Fig. lO.c). 

We can now summarize the effect of ~ and y on the shape of the hysteresis loop. We observe 

that: 1) y must be grater than or equal to zero. A value of y = 0 implies nonhysteretic behavior. 

2) To obtain softening models ~ must be greater than - y. Since y > 0, ~can take positive or 

negative values. 3) To obtain a softening model with inward paths concave inside the loop, the ~ 

value must be between - y and y. 4) To obtain a softening model with inward paths concave 

outside the loop, the ~ value must greater than y. 5) To obtain hardening models, ~ must be less 

than - y. 
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2.3.3 EXPONENT PARAMETER 

We will now study the effect of changing the exponent parameter in the endoehronic law. It 

was mentioned by Wen [15J that as n -+ 00 , the endochronic law approaches the commonly used 

elasto-plastic model for the softening case. To show this analytically, we examine the softening 

model. For a softening outward path (~ + y) > O. The expression for such path is: 

(2.18) 

Substituting for (~ + y) in terms of Zu from Eq. 2.12, we obtain: 

~ = A - A 12.ln 
dx Zu 

(2.19) 

As noted before, the slope at z = 0 is A. Futhermore we note that when n approaches inflnity, the 

ratio (z/ zu) approaches zero as I z I < I Zu I . From Eq. 2.19 we note that in such a case the slope 

at any point (x, z) becomes equal to A, and the relationship between z and x is a straight line. 

Similarly, we ean obtain the slope on the inward path, defmed by Eq. 2.14 as: 

dz = A - ~ - y I zZu I n 
dx ~ + y 

(2.20) 

This slope also approaches a constant value of A as n becomes large. 

Thus, for n = 00, both the outward and inward path become straight lines, giving rise to an 

elasto-plastic endochronic model in the x-z plane. For a fmite value of a in Eq. 2.4, the restoring 

force is then defmed by a bilinear hysteresis loop. 
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2.3.4 PATH EQUATIONS IN THE X-Z PLANE 

Eq. 2.10 defmes a set of differential equations for various paths of the endochroruc law. De­

pending upon the values of x and z, we will obtain different equations for different paths from Eq. 

2.10. Integration of these equations will provide the equations for these paths. For example, if 

x > 0 and Z > 0 , the differential equation for one of the two outward paths becomes: 

Integration of this will provide 

dz = A - W + y) zn 
dx 

Z dz' 
S = (x - xo) 
o A - W + y) z,n 

(2.21 ) 

(2.22) 

Where Xo is the x-value when z = 0 The integration on the left hand side of Eq. 2.22 is difficult 

to evaluate for higher values of n. However, we can for n = 1 obtain explicit expressions for z as a 

function of x for various paths. For this case, Eq. 2.10 for all paths can be written as: 

dz = A + <') z 
dx 

Where <') takes on different values for different paths as: 

<') = - W + y) for x > 0, z > 0 

<') = - (~ - y) for x < 0, z > 0 

<') = + W + y) for x < 0, z < 0 

<') = + W - y) for x > 0, z < 0 

Integrating Eq. 2.23 and solving for z, we obtain: 
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(2.25) 

Where at x = xo, z = O. For the four paths defmed by various values of 0 in Eq. 2.24, the following 

expressions are obtained: 

Outward path: x > 0, z > 0 

z= 

Inward path: x < 0, Z > 0 

z= 

Outward path: x < 0, Z < 0 

Z= 

Inward path: x > 0, Z < 0 

Z= 

A [1 - e -(p+y)(x- Xv)] 

(~ + y) 

A [1 - e - (13-y)(x- Xv)] 
W -y) 

- A [1 - e(13+Y)(x- Xv)] 
(~ + y) 

-A [1 _ e(13-Y)(x- xo)] 
(~ - y) 

(2.26a) 

(2.26b) 

(2.26c) 

(2.26d) 

For various possible values of ~ and y for the softening and hardening models, these paths are 

schematically shown in Figs. 11 and 12. The boundaries between the softening and hardening cases, 

which correspond to the values of ~ + y = 0 and ~ - y = 0 are also shown in these figures. The 

equation for all these boundaries can be simply written as: 

Z = A (x - xo) (2.27) 
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By a proper selection of p and y values, as discussed earlier, a variety of hysteresis loops can be 

traced. For - y < p < y , (I P I < y), Eqs. 2.26a-d, will form the hysteretic loop shown in Fig. 13. 

Similarly, if P = y, the loop shown in Fig. 14 is obtained. 

2.3.5 ALTERNATIVE FORM OF THE MODEL 

For a comparison of different hysteretic models, it is sometimes convenient to use the same ul-

timate value of z. This value for the Bouc-Wen model is defmed by Eq. 2.12. We will now rewrite 

Eq. 2.09 with Zu as one of the model parameters. 

We solve Eq. 2.12 for P in terms of Zu and y as: 

P= Iz~ln-Y (2.28) 

Introducing this in Eq. 2.09, we obtain: 

(2.29) 

For the special case of P = y, where the inward paths are linear, this expresion simplifies to: 

(2.30) 
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2.4 HYPERBOLIC HYSTERETIC MODEL 

Representation of Bouc-Wen model by Eqs. 2.26a-d for various branches of the loop suggests 

the possibility of developing the analytical expressions for other hysteretic models. For this we 

choose appropriate expressions for the outward and inward paths. For a smooth transition between 

these two paths it is necessary that the slopes of these paths be the same at z = 0. To demonstrate 

this, we choose the following expressions for the outward and inward paths: 

Outward path: 

z = a tanh[b (x - xo)] (2.31) 

Inward path: 

z = a sinh[b (x - xo)] (2.32) 

It is seen that both these functions are zero at x = Xo. Also, the slopes of these two functions at 

x = Xo or z = ° are the same and equal to: 

dz = ab at z = ° 
dx 

The differential equations of the two paths in the x-z plane are given by 

Outward paths: (x > 0, z > 0) and (x < 0, Z < 0) 

dz = __ --=a:;;:,.b ___ = ___ ...:;a:.:;.b __ _ 

dx cosh2[b (x - xo)] cosh2[ tanh - 1 (z/a)] 

Inward paths: (x < 0, z > 0) and (x > 0, z < 0) 
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dz = ab cosh[b (x - xo)) = ab cosh[ sinh -1(z/a)) 
dx 

The corresponding endochronic model is obtained as: 

.!k.. = dz dx 
dt dx dt 

Which for the two paths can be written as: 

Outward path: (xz) > 0 

Inward path: (xz) < 0 

i = a b x cosh[ sinh - 1 ( ~ ) ] 

These two expressions can be combined into a single expression as: 

z~abX[fi+[+J[l- 1:1]lf,-fi)] 

where}; = sech2 [tanh-1(z/a)) andJ; = cosh [sinh-l(z/a)) . 

_ (2.35) 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

This model will trace a hysteretic loop as shown in Fig. 15. Eq. 2.39, however, can only produce 

a softening system. 

It is also possible to have linear inward path in this case by simply adopting the following 

equation in place of Eq. 2.38: 

i = a b x, (xz) < 0 (2.40) 
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Combination of Eq. 2.37 and 2.40 into a single equation gives: 

z = abx [Jl + [ ~ ] [1 - I;~ I ] (1 - Jl) 1 (2.41) 

2.5 BILINEAR HYSTERETIC MODEL 

Since the bilinear models have been very frequently used to defme the restoring force, it is of 

interest here also to develop an analytical expression for such models. It is also necessary to have 

an elasto-plastic law for z in Eq. 2.04 to obtain a post-yielding slope of u. We will, therefore, dis-

cuss the formulation of an elasto-plastic model now. 

Fig. 16 shows the elasto-plastic behavior of z versus x. It is noted that on the outward path 

A-B-C the time derivative of z can be simply written as: 

z = 1.. x [ Zu - Z + 1]; x > 0, z > 0 
2 Izu- zl 

(2.42) 

Where Zu is the maximum value. Similarly on the other outward path, D-E-F, 

(2.43) 

Whereas on the inward paths F-A and C-D The time derivative of z is: 

z = x; z > 0, x < 0 and z < 0, x > 0 (2.44) 

All these equations can be combined into a single expression as follows: 
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Where h is defmed by: 

z = f3 - [x - f31-L [~ - 1] 
2 Izxl 

(tI)zu- z 

l(tI )zu - zl +~ Ixl 

_ (2.4Sa) 

(2.4Sb) 

2.6 OSCILLA TOR RESPONSE AND HYSTERETIC 

BEHAVIOR 

In this section, we obtain the response of an oscillator subjected to some base motion time his-

tory. The three restoring force models discussed in previous sections have been used. The z(t) and 

x(t) responses were obtained from the solution of the following equations: 

x + 2 ~o COo + (06 [ ax + (1 - a)z 1 = - Xg (2.46a) 

i = i(x, z) (2.46b) 

To solve these differential equations we used a step by step integrating procedure encoded in the 

routine IlA2F of Abaci's library written for personal computers. 

Fig. 17 shows the x-z response of the oscillator for the base motion time history shown in the 

inset. The Bouc-Wen model with ~ = .5, Y = 1.5, A = 1., n = 1. and a = .25 has been used to 
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defme the restoring force. The response after point A on the curve is the free vibration response, 

as the base motion ceases at this point. 

Fig. 18 shows almost complete hysteresis loops obtained for the three restoring force models 

discussed in previous sections. For the Bouc-Wen model, Eq. 2.09, for the hyperbolic model, Eq. 

2.41, and for the bilinear, Eq. 2.45 were used. For comparison purposes the ultimate values Zu were 

kept the same in the three models. The base motion time history for this case is shown in the inset. 

These complete loops fail to point out a serious drawback of the Bouc-Wen and hyperbolic 

models. The experiments on metals have shown that a partial loading-unloading path should be 

like the one shown in Fig. 19 and 20. After a partial unloading, the reloading should form a small 

loop to reach the asymptotic yield level. However, this is not the case with the Bouc-Wen and the 

hyperbolic models. It can be clearly seen from Fig. 21, where the partial unloading paths A-B and 

reloading path B-C do not intersect. This softening behavior during a reloading followed by a 

partial unloading has not been observed in the experimental tests on metals. Probably there also 

exist more fundamental physical or thermodynamical reasons for the behavior shown in Fig. 20, 

but the author is not aware of this. 
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CHAPTER III: EQ UIV ALENT 

LINEARIZATION 

3.1 INTRODUCTION 

In Chapter II, we presented the equation of motion of a single degree of freedom oscillator with 

a nonlinear hysteretic constitutive law. That equation along with the endochronic law forms a 

system of two differential equations. These equations can be rewritten in the following form: 

x + 2 So (00 X + (O~ [ax + (1 - a)z 1 = - Xg (3.0la) 

z + g(x, z) = 0 (3.0 lb) 

Where the natural frequency (00 and the conventional damping ratio So are, respectively, defmed as: 

So = C 
2(00 m 

(3.02) 

and k is the initial stiffness parameter, discussed in Chapter II. 
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We also solved Eqs. 3.01a and 3.01b for various models of z, for a prescribed base motion time 

history xg , by a step-by-step nonlinear equation solver. Here in this chapter, however, WfJ are in­

terested in obtaining the response of this system for Xg defmed stochastically. 

A general solution of these equations for an arbitrarily defmed Xg is almost impossible to obtain, 

even for the simplest of the endochronic models. Therefore, researchers have tried to obtain some 

approximate solutions. For stochastically defmed inputs, the stochastic linearization is commonly 

used. In this chapter we will discuss the linearized solution of these equations for the Bouc-Wen 

and the bilinear hysteretic models. 

3.2 EQUIVALENT LINEARIZATION TECHNIQUE 

The linearization techniques have been widely used in practice since the fIrst proposal by Krylov 

and Bogoliubov [16J. For hysteretic models, Wen and others have used this technique extensively 

in the analysis of single and multiple degree of freedom structures subjected to random earthquake 

loading. Here we will reiterate some important steps utilized in the linearization technique, not 

because they are new but because of completeness of the topic discussed in this work. 

For the solution of Eqs. 3.0 I, the nonlinear equation 3.01 b is replaced by a linear equation as 

follows: 

i+Cx+Kz=O (3.03) 

Where K and C are the linearization constants, yet to be determined. This linearization introduces 

some error, !; 

!; = g(x, z) - C x - K z (3.04) 
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The error E is a stochastic process. To obtain some estimates of K and e, it is customary to 

minimize the mean square value of this error. This minimization requires that 

(3.05) 

Where E [ .] is the expected value of [ . J. Substitution of Eq. 3.04 into 3.05 and slight simplifi-

cation give the following two simultaneous equation for the coefficients K and e 

e ELx2] + K E[zx] = E[xg(x,z)] (3.06) 

C E[,Xz] + K E[z2] = E[zg(x,z)] (3.07) 

These two equations can be solved for the coefficients as: 

[C] = [exz] -1 [E [x g(~, z)]] 
K E[zg(x,z)] 

(3.08) 

Where [exz] is the correlation function matrix for variables x and z. For known joint probability 

density function of x and z, the expected values on the right hand side of Eq. 3.08 can be calculated 

in principle. 

However, under some very general conditions fulfilled by the density function of x and z and 

also the function g(x, z) , it has been shown by Atalik and Utku [14] that Eq. 3.08 can also be 

simplified to: 

(3.09) 

The conditions to be satisfied by the density function fix, z) and the function g(x, z) are: 
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1) fix, z) is Gaussian. 

2) Ig(x, z) I < A e(xa 
+ zb), for an arbitary A and for a ,b < 2. 

3) g(x, z) is well behaved and differentiable. 

For g(x, z) defmed by the Bouc-Wen, Hyperbolic and Bilinear models, the conditions (2) and 

(3) are satisfied. Thus if we can also assume that the joint density function of x and z is Gaussian, 

Eq. 3.9 can be applied to simplify the computations. 

3.3 BOUe-WEN MODEL 

Wen [151 has also provided explicit expressions for calculating C and K for the Boue-Wen model. 

However, as it has been very instructive for the writer to prove Eq. 3.9 and obtain the explicit ex-

pressions for C and K, the details of this proof and derivation for n = 1 are given in the Appendix 

for completeness of record. The mentioned expressions for n = 1 are: 

(3.10) 

(3.11) 

In addition, for n > 1 Wen [151 obtained the following expressions: 

(3.12) 
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where CY., CY, and CY. are the standard deviations of the x, x and z responses, respectively and P,z is 

the correlation coefficient of x and z In both equations r; are the following Gamma functions: 

r = r[ n - r + l] 
2 2 ' 

Futhennore r must be an even integer. 

3.4 BILINEAR MODEL 

We can also obtain the equivalent linear coefficients for a bilinear model using Eqs. 3.09. In this 

case, the analytical expression for g(x, z) is given by Eq. 2.45. It is noted that for this case also, the 

function g(x, z) satisfies the conditions (2) and (3) given by Atalik and Utku. Again if we make the 

assumption that the joint density function is Gaussian, we can obtain the coefficients by Eq. 3.09. 

The function g(x, z) in Eq. 2.45 can also be defmed over the domain of x and z as follows: 

-x for o :::;; z :::;; Zu and x ::?: 0 

0 for z::?: Zu and x::?: 0 

-x for z::?: 0 and x:::;; 0 
g(x, z) = (3.14) 

-x for - z :::;; z :::;; 0 and x :::;; 0 

0 for z :::;; - Zu and x :::;; 0 

-x for z:::;; 0 and x ::?: 0 

In this domain the function is at least piecewise differentiable. The derivative required in Eq. 

3.09 can be defmed as: 
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-1 for o :s: z :s: Zu and x ::: 0 

0 for z::: Zu and x ::: 0 

a g(x, z) -1 for z::: 0 and x:S: 0 
= (3.15) ax -1 for - Zu :s: z:S: 0 and x:S: 0 

0 for z:S: - Zu and x:S: 0 

-1 for z:S: 0 and x ::: 0 

Also, it is noted that the function is independent of z in these discrete domains. Thus, its de-

rivative with respect to z is zero. Substitution of these in Eq. 3.09 gives: 

2 co co 0 
C = - SuS jjjx, z) dz dx - S S jjjx, z) dz dX 

- co 0 - Zu - co 
(3.16) 

K=O (3.17) 

The integrals in Eq. 3.16 can be evaluated at least numerically and thus C can be defmed. On 

the other hand the coefficient K is defmed but its value being zero poses some problems in sta-

tionary equivalent linear response analysis. This is discussed later. 

3.5 EQUIV ALENT LINEAR ST A TIONAR Y 

RESPONSE 

With the substitution of the equivalent linear expression for g(x, z) in Eq. 3.01b we get a set 

of coupled linear differential equations as follows: 

x + 2 ~o CUo x + cu~ [a x + (1 - a) z I = - Xg (3.18) 
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i+Cx+Kz=O (3.19) 

These equations can be written as a system of ftrst order differential equations for the state vector 

defmed as: 

The differential equation is: 

~ [:1 = [ ~ 2 
. -ucoo 

x 

o 
-K 

- (1 - u)co6 1 [
X1 

1 
-C z + 

- 2~ocoo x 

o 

o 

(3.20) 

(3.21) 

Often Xg is defmed as the output of a ftlter subjected to a white noise or shot noise as the input. 

In such cases we introduce another equation for the ftlter defmed as: 

(3.22) 

Where COg and ~g are the frequency and damping ratio parameters of the ftlter, X'g is the relative 

displacement response of the ftlter with respect to the base and j( t) is the acceleration at the base 

of the ftlter. This acceleration is assumed to be a delta correlated process. 

The absolute acceleration response of this ftlter is the input Xg in Eq. 3.18, that is, 

(3.23) 

Eqs. 3.18, 3.19 and 3.22 can now be combined into a single system of ftrst order differential 

equations as: 
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x 0 0 1 0 0 x 0 
z 0 -K -c 0 0 z 0 

d X 2 2 - 2~ocoo 2~g(Og 
2 X 0 - COou - (00(1 - u) COg + (3.24) 

dt X'g 
0 - 2~gCOg 2 X'g 

.::. fit) 0 0 -COg 
X' 0 X' g 0 0 1 0 

g 0 

This system of Eqs. 3.21 or 3.24 can be written in a more compact fonn as: 

(3.25) 

For a zero mean excitation, the expected value of y will be zero. As shown by Lin [17], the 

differential equation for the covariance matrix of y can be obtained as: 

dS = GS + SG T + B 
dt 

(3.26) 

Where S is the covariance matrix of y and B is a matrix with all its elements being zero except the 

diagonal element corresponding to the nonzero row of the forcing function vector in Eq. 3.21 and 

Eq. 3.24. The nonzero element of this matrix is defmed as 2nGo, for a white noise with spectral 

density ordinate of Go. 

If we are interested in the stationary response, then the left hand side of Eq. 3.26 is zero. Thus, 

the stationary covariance matrix can be obtained from the solution of the following Liapunov's 

matrix equation: 

GS + SG T + B = 0 (3.27) 

A computer scheme developed by Bartels and Steward [18] was used in this study to solve this 

Liapunov's equation. 
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It is, however, noted that the equivalent linear coefficients C and K in this scheme are themselves 

defmed in terms of the response which is not known a priori. To start the solution therefore some 

appropriate values are assumed for C and K, which are then used to defme matrix G in Eq. 3.27. 

Solution of this equation provides the response covariances which are in tum used in the calculation 

of new values of C and K from Eqs. 3.10 and 3.11 or from 3.12 and 3.13 for the Bouc-Wen model. 

This iterative process is repeated till a convergence is achieved. The convergence characteristics of 

this procedure for the Bouc-Wen model are presented in the following chapter. 

Implementation of this equivalent linear procedure in the calculation of stationary response 

covariance for a bilinear hysteretic model, however, has not been possible. This is because the 

coefficient K for this case is zero, which renders matrix G singular for this case. Thus, the numerical 

approach used with Eq. 3.27 can not be utilized. The nonstationary solution can still be obtained 

in principle. This will be attempted in future investigations. 
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CHAPTER IV: NUMERICAL RESULTS 

4.1 INTRODUCTION 

As mentioned in the previous chapter, the stochastic linearization approach is necessarily itera­

tive. In this chapter we will consider the convergence characteristics of the linearization approach. 

The linearization coefficients of the nonlinear equation depend upon the response, which in tum 

is not known a priori. The process, thus, starts with some assumed values of the linearization co­

efficients and then is obtained the response. The calculated response is then used to calculate the 

new values of the coefficients which are then used again to calculate a new response value. The 

process is repeated till a desired convergence in the response quantities of interest is achieved. 

The above procedure seems simple. Yet, some convergence problems were noted when no ad­

justments to the iterative process were made. It was also observed that the convergence also de­

pended upon the parameters of the problem. In some cases as high as 39 number of iterations are 

required to achieve the desired level of convergence. In this Chapter, therefore, the experience 

gained in achiveing convergence to the [mal results is discussed. Numerical results showing the 

convergence rate for various cases are presented. Finally, the comparison of the response values 
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obtained by the stochastic linearization approach with the values obtained by the time history en­

semble analysis are also presented and discussed. 

4.2 PROBLEM PARAMETERS 

The parameters considered in this study are the oscillator parameters, the parameters of the 

hysteresis model and the input motion parameters. 

4.2.1 OSCILLATOR PARAMETERS 

The oscillator parameters are: the initial frequency COo, the damping ratio ~o and the yield level 

Fy- The oscillator frequencies COo = 1, 1.5, 5, 6, 16 and 20 cps, and the damping ratios ~o = 0.05 

and 0.10 have been used. The yield displacement values of the stiffness element, y, were varied 

between .003 to .800 inches. 

4.2.2 PARAMETERS OF THE HYSTERESIS MODEL 

For the Bouc-Wen model, the parameters are ~, y and the exponent n. In all the cases ~ = y 

is assumed. The parameters ~ and y are related to the yield level as follows. For the ultimate value 

of z = zu' we obtained Eq. 2.28, which for A = 1 gives: 

(4.01) 

For an equivalent bilinear model, the yield force at the yield displacement x = y is given by 
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Fy = uky + k(l - u)Zy (4.02) 

Where Zy is the z-value at x = y. However, when n -t 00, Zy approaches Zu' which in tum for 

A = 1 is equal to y. Thus in the limiting case of n -t 00, 

Which gives 

Fy = u ky + k (l - u)y = ky = k Zu 

F 
zu=y=-2.. 

k 

Substituting Eq. 4.05 into Eq. 4.01 we obtain: 

(4.04) 

(4.05) 

(4.06) 

With the parameters p and y choosen according to Eq. 4.06, in the limit, the restoring force defmed 

as 

Q=ukx+k(l-u)z (4.07) 

will approach the bilinear case with initial stiffness of k, [mal stiffness of uk and yield displacement 

of y. With this equivalence in mind, the parameters p and y are obtained from Eq. 4.06 for a given 

yield level. 

As observed before in Chapter II, when n is increased, the hysteretic law approaches the bilinear 

case. Herein, the results are obtained for n = 1, 3 and 5. The convergence of the iterative process 

for the increasing values of n is extensively studied. 

For an elastoplastic case, the post yielding stiffness parameter u should be equal to zero. 

However, this poses some problems in stochastic linearization as the matrix in Eq. 3.21 becomes 

singular and we cannot solve this equation in a stationary response case. The nonstationary re-
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sponse can still be obtained, but it then depends upon the initial conditions. Analysis for such a 

case is more complicated and is not considered in this work. We have therefore, assumed as low 

values of a as possible without affecting the numerical accuracy of the results. For the elasto-p1astic 

case, a = 1/21 , has often been assumed in stochastic linearization approaches in the past. We have 

used this value for obtaning the results for the e1asto-p1astic case, although some results with smaller 

values of a we also reported. For the bilinear hysteretic case, the numerical results with a = .25 

have been obtained. 

4.2.3 INPUT MOTION PARAMETERS 

The input to the oscillator is defmed by a ftltered white noise model. The most commonly used 

seismic input of this type is defmed by the Kanai-Tajimi spectral density function of the following 

form: 

(4.08) 

Where So is the intensity of the white noise which establishes the level of exitation and COg and ~g 

are the ground ftlter parameters representing the frequency and damping ratio for the site. These 

two parameters were taken to be COg = 17.64 rad/sec and ~g = .3535 

In the design of important structures, broad band inputs defmed in terms of smoothed ground 

response spectra have often been used. The spectra presented by the U.S. Nuclear Regulatory 

Commission in Regulatory Guide 1.60 [19] for the design of Nuclear Power Plants are of this form. 

Spectral density functions which are consistent with such broad band spectra have also been used 

in practice. A model of spectrum consistent spectral density function proposed by Singh and Chu 

[20] is of the following form: 

CHAPTER IV: NUMERICAL RESULTS 32 



(4.09) 

This is the multimodal fonn of the Kanai-Tajimi spectral density function defmed earlier. The 

parameters of this model used in this study are given in Table 1. This spectral density function gives 

the root mean square value (RMSV) of ground acceleration to be equal to 2.147 it/ sec2• This with 

the peak factor value of 3.00 for ground acceleration random process, gives a peak ground acceler-

ation of 6.44 It/ sec2 or .2 g. The results obtained with this seismic input are compared with the 

results obtained by time history analysis for an ensemble of ground motion time histories scaled to 

.2g. 

4.3 RATE OF CONVERGENCE RESULTS 

The results for the rate of convergence obtained for several oscillators with different frequencies, 

damping ratios and yield level parameters are shown in Figs. 22 - 36. These curves are plotted for 

n = 1, 3 and 5. Each plot shows the logarithm (to the base 10) of the error versus the number of 

iterations. The error is defmed as: 

(4.10) 

Where R, and Rl+l are the mean square values of the response obtained at the ilh and (i + 1)lh iter-

ation. All three response quantities, x , x and z, were considered to obtain this error. Only the 

maximum error obtained among all three response quantities is shown in the plots. The conver-

gence was assumed to have been achieved when this error was less than .01 for all response quan-

tities. 
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Based in these results, it is felt that in a given problem the rate of convergence of the response 

to the fmal response primarily depended on the choice of the linearization parameters C and K . 

It has been suggested [221 that a value of C = 1.0 and K = .05 (p + y) provides a better conver-

gence. These initial values of C and K were observed to work very well with n = 1 and rather well 

with n = 3 in almost all cases. However for n = 5, some problems were observed. The experience 

showed that if the initial value of K was increased to be of order 1 (between 1 and 10), the con-

vergence was assured in almost all cases. 

Besides the choice of the initial values, it was also found to be important that the subsequent 

values of C and K, for following iterative steps, be chosen carefully. It was observed that if the C 

and K values, obtained according to Eqs. 3.10 and 3.11, were directly utilized then the convergence 

was not always assured. It was found desirable to choose C and K values somewhere in between 

the values obtained in the two consecutive steps. In fact, a simple average of the two values, if 

chosen as the value for the next step worked very well. That is, for the nth step the initial valu~s 

Ci and Ki calculated as: 

( 4.11) 

(4.12) 

expedited the convergence. Here Cn - I and Kn - I are the values used in the (n - l)th iterative step 

and Cn and Kn are the values calculated from Eqs. 3.10 and 3.11 in the nth iterative step. 

The convergence results were also obtained for two spectral density function models. It was 

observed that the type of input did not affect the convergence rate significantly. It was also ob-

served that the rate of convergence was not affected by the choice of parameter a (see Fig. 37). 

As observed from Figs. 22 through 29, the rates of convergence are different for different yield level 

parameters. The number of iterations are seen to increase with a decrease in the yield level at which 
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the stiffness element will yield. That is, for the oscillators with large inelastic response or ductility 

ratio the number of iterations required for convergence will be large. 

4.4 COMPARISON OF RESPONSE 

In this section we compare the oscillator response results obtained by the equivalent linearization 

approach with those obtained for an ensemble of time histories. 

The time history analysis results were obtained by Malushte [21]. For these results, the accel­

eration time histories representing the ground motion were synthetically generated for a spectral 

density function, the parameters of which are given in Table 1. These time histories were synthe­

sized from randomly phased harmonics, with amplitudes determined from the spectral density 

function. The time histories were modified by a deterministic modulation function. These time 

histories had a total duration of 15 seconds with the strong motion phase of 4 seconds. In all a total 

of 75 such time histories were used. The maximum acceleration in each time history was normal­

ized to a value of .2 g. 

The numerical results were obtained for the elasto-plastic case with a = 0 and for the bilinear 

case with a = .25. Several yield levels were considered, as mentioned in the preceding section. 

The time history response of each oscillator was obtained for each input motion time history. 

Thus, for each oscillator the ensemble containing 75 time histories was available to obtain the re­

sponse statistics. From each response time history a maximum value was obtained which was then 

used to determine the mean maximum response. Here this mean of the maximum response value 

is compared with the mean of maxima obtained by the stochastic linearization technique. It is 

noted that individual maximum values for time histories did not occur at the same time. 
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In the stochastic linearization approach the mean of the maxima was obtained by multiplying 

the root mean square response value by the peak factor. The root mean square response value was 

obtained by a stationary random vibration analysis of the equivalent linear system. 

The peak factor (PF) was calculated by the well-known Davenport formula [23J as: 

td a· .5772 
P F = J2 In( __ x) + --=========-

1t ax tda· 
2ln(-_x) J 1tax 

( 4.13) 

Where a x = standard deviation, a x = standard deviation of the response derivative and td is the 

equivalent stationary duration of the response. a x and a x are directly available from the random 

vibration analysis of the equivalent linear system. Since it is difficult to know the equivalent sta-

tionary duration for a nonstationary response, here two values of td = 4 sec. and td = 7 sec. were 

used to obtain the peak factors. The numerical results for the peak factor calculated with td = 4 

sec. are given in Tables 2-5 and those for td = 7 sec. are given in Tables 6-9. The seismic input in 

the equivalent linear approach is defined by a white noise. To ensure that the input used in the time 

history approach is somewhat comparable with the input in the stochastic approach, a fllter was 

added between the oscillator and the base. Thus, the input motion at the base of the oscillator was 

a flltered white noise of Kanai-Tajirni form. The numerical results for a single term Kanai-Tajirni 

spectral density function (Eq. 4.08, in which the fllter with parameters in Table 1 is used) and the 

three-term Kanai-Tajirni spectral density function (Eq. 4.09, in which the three fllters in parallel 

with parameters in Table 1 are used) are presented. The intensity of the white noise at the base 

of the fllters was adjusted such that with a peak factor of 3, it gave a maximum ground acceleration 

of .2 g at the base of the oscillator. 

As mentioned before, the nonlinear stiffness element in the stochastic approach is modeled by 

the Bouc-Wen model with exponent n = 1, 3 and 5. Since in a stationary response case we cannot 

obtain results for a = 0, for a elasto-plastic model, we have used a = 1/21 = .048 which has 

commonly been used in the literature. For the bilinear model, since the time history response 
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values are available for a = 1/4 = .25, the stochastic results have also been obtained with this 

value. 

Tables 2-9 show the results for various oscillators. Column 1 shows the oscillator identification 

number and columns 2, 3 and 4 show the oscillator parameters. The values in the remaining col-

umns are for exponent n = 1, 3 and 5. For each case the following values are shown: the peak 

factor calculated by Davenport's formula, the maximum diplacement of the oscillator and the error 

between the maximum displacement value obtained by the equivalent linear approach and the time 

history ensemble results. This error is defmed as: 

(4.14) 

Where X t and x, are the mean of the maximum values obtained by time history and stochastic 

analysis approaches. 

It is seen that the error is large in several cases and there is no particular trend, with respect to 

the choice of exponent, and the equivalent time duration td used in the calculation of the peak 

factors. 

Probably a better comparison can be made by comparing the averages of the absolute errors in 

these tables. These averages are given in the last row. A comparison of these averaged errors shows 

that a smaller error is obtained for a = .25 than for a = .048. It is noted that the results for 

a = .25 are for the same value of this parameter, both in the time history and stochastic approach. 

Whereas, the results for a = .048 are for different values of this parameter in the time history and 

stochastic approach. In the time history the results are for a = 0, and in the stochastic approach 

the results for a = .048. It was not possible to obtain results for a values less than .048 because 

in the stochastic approach the numerical error in the results started to increase when a values less 

than .048 were used (see Fig. 38). Thus, it seems that a major share of the error in the results for 
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the elasto-plastic oscillators is due to our inability of modeling this case in the stationary stochastic 

approach. 

Comparison of the average errors for one term and three term spectral density function inputs 

shows that the error in the latter case is smaller. This is probably due to the fact that the input of 

3-term spectral density function is closer to the input used to defme the acceleration time history 

in the time history analysis. 

In conclusion it is felt that errors are large, though they can be improved by improving the 

proper modeling of the system and considering the nonstationarity of the response properly in the 

calculation of peak factors. To improve the accuracy of the stochastic linearization for the elasto­

plastic case (a = 0), it seems to be necessary to include the non stationarity of the motion and re­

sponse. 
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CHAPTER V: SUMMARY AND 

CONCLUSIONS 

The motivation for this work was to study the characteristics of some nonlinear hysteretic 

models, commonly used in seismic structural analysis. In particular, here the model proposed by 

Bouc and Wen has been studied comprehensively. The effect of various model parameters on the 

characteristics of the model has been examined in detail in Chapter II. This study has led to the 

development of the analytical forms for two other hysteretic models, viz, hyperbolic model and 

bilinear model. It is expected that the expression for the bilinear model will be useful in future 

studies. The nonlinear response of oscillators with these three models has also been obtained for 

specified ground motion time histories. Some physical limitations of the commonly used Bouc­

Wen model have also been identified. 

In Chapter III, the equivalent linearization of the equation of motion of an oscillator with 

stiffness characterized by the Bouc-Wen model and by the bilinear model has been formulated. It 

is observed that it is not possible to work with the equivalent linear equations of the bilinear 

oscillator for calculating the stationary response. That is, to obtain any meaningful response in this 

case it is necessary to consider the initial conditions and the nonstationarity of the response. Such 

CHAPTER V: SUMMARY AND CONCLUSIONS 39 



a study is beyond the scope of this work. On the other hand, the Bouc-Wen model can still be used 

for stationary response calculations as long as the parameter a is nonzero. 

In Chapter IV, numerical results have been obtained for oscillators with different characteristics 

to study the convergence behavior of the equivalent linear iterative approach. It is observed that 

the number of iterations required for convergence can indeed change with the parameters of the 

oscillators, such as frequency, yield level and the exponent parameter of the Bouc-Wen model. It 

is observed that the convergence is slowest for the exponent parameter value of n = 5. This con­

vergence, however, can be improved by appropriately chosing the initial values of the linearization 

coefficients. It has been observed that better convergence is acheived when the initial values of the 

linearization coefficients for an iteration are taken as the average of the two recently calculated 

values. For oscillators with large inelastic response or ductility ratio the number of iterations re­

quired for convergence will be large. The rate of convergence does not seem to be affected by the 

other parameters of Bouc-Wen's model or the input characteristics. 

The numerical results obtained by the equivalent linear approach are also compared with the 

results obtained for an ensemble of ground motion time histories. This comparison is not observed 

to be good; that is, for some oscillators the response values calculated by the equivalent linear ap­

proach differ significantly from the average values calculated by the time history ensemble analysies. 

The main reasons for this discrepancy are the inability of the equivalent linear approach (l) to 

precisely model the elasto-plastic and bilinear hysteretic models in the analysis, (2) to consider the 

nonstationarity of the input and response. The input in the equivalent linear approach is defmed 

stochastically and assumed to be stationary. Whereas the time history inputs used in the time his­

tory calculations do not have stationary characteristics. In establishing the level of intensity of the 

stochastic input so that it gives the same maximum ground acceleration as the inputs in the time 

history analysis, some assumptions are made about the ground acceleration peak factors. These 

assumptions need to be verified. Also in calculating the peak response from the mean square re­

sponse, the peak factors have been obtained from some simplified formulas which do not consider 

the nonstationarity of response. For a better corroboration of the two results it appears, therefore, 
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necessary that nonstationarity for the input and response be some how reflected in the calculation 

of response by the stochastic linearization approach. 
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APPENDIX 

Derivation of Eq. 3.09 

To prove Eq. 3.09, let us rename it as Eq. A.Ol: 

(A.Ol) 

We fIrst evaluate: 

[ Og] og. 
E ax = S S. ax hzCx, z) dx dz 

z x 
(A.02) 

Integration by parts of Eq. A02 gives: 

E [ a~ ] = S [ghz(X, z) I ex) - S. g4- !/xz(x, z)] dX]dZ (A.03) 
~ z x ~ 

-00 
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For the Bouc-Wen model and n = 1, the function g(x, z) is: 

g(x,z) = (p Izl - A)x + y Ixl z (A.04) 

The ftrst term on the right hand side of Eq. A.03 is obviously zero at the limits. Thus, Eq. A.03 

becomes: 

E [~J = - J J g~ [!xix, z)] dx dz ax z x ax 
(A.OS) 

The joint distribution, if assumed Gaussian, can be written as: 

. - [ 2 d ] -1/2 [_ 1 T - 1 U-] lxix, z) - (2n) et [exz] exp 2 u [exz] (A.06) 

Where UT = (x, z). It is noted that because I z I is limited to a maximum value of Zu' the assump­

tion of the normality of the joint distribution is not correct. Nontheless, this assumption is com­

monly made. The derivative of Eq. A.06 can be written as: 

(A.07) 

Since aUT/ax = (1,0), we can write: 

a· . [ilT _1[X] ax [!xix, z)] = - lxix, z) 0 [exz] z (A.08) 

Thus, from Eq. A.OS: 

(A.09) 

In a similar way we can obtain E [ag/az] as: 
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(A.10) 

Combining Eq. A09 and A 10, we obtain: 

(A.ll) 

Which means: 

(A.12) 

Substituting for the vector on the right hand side of Eq. 3.08 from Eq. A12, we obtain Eq. 3.09. 

Expressions of C and K for Bouc- Wen's model with n = 1 

To obtain the explicit expresions of C and K, we will use Eq. A.O!' For the particular case of 

Bouc's model with exponent n = 1 , the expression for g(x, z) is given in Eq. A04. The derivatives 

of g(x, z) are: 

APPENDIX 

og _ olxl + P I I A --yz-- z-ox ox 

og _ I' I + Q • 0 I z I --y X !-,x--
GZ OZ 

(A .13) 

(A.14) 
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Considering Eq. A 0 I, AI3 and AI4, we can write the linearization coefficients as follows: 

[ 
01'1] C = y E z 0: + ~ E [ I z I ] - A (A. IS) 

(A.l6) 

For the jointly Gaussian density function of x and z , it is straightfoward to obtain the expected 

values in Eq. AIS and Eq. A16 as: 

E[lxl] = flxl fx(x) dx (A.17) 
x 

Where 

(A.18) 

Integrating, from - 00 to 00, we get: 

(A.I9) 

In a similar way we can obtain E [ I z I]: 

(A.20) 

To determine E [z (0 I x lIox)], we have to perform the following integrations: 

(A.21) 

Where 
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(A.22) 

Mter integrating from - 00 to 00 the variable z, we get: 

E[zal~I]= pO'~z sO() Jlxl exp [_.L[:.J2] di (A.23) 
ax x _ 0() 27t 0' x 2 x 

Since the integrand in Eq. A.23 is the same as that in A.I7, we can write: 

[ 
alxl] ~ E Z-.- = pO' /-ax Z y 7t 

(A.24) 

E[xz] 
Where p =~. Then, 

x z 

E[ 
alxl] _ ~ E[xz] 

z a;;- - ~-:;;: cr;- (A.25) 

Following a similar procedure, we fInd: 

E[
' alzl ] _ ~ E[xz] 
x ~ - ~-:;;: -cr;- (A .26) 

Substituting Eqs. A.19, A.2D, A.25 and A.26 into A.15 and A.I6, we obtain: 

c = / 2 [Y E [iz] + ~ 0' ] - A 
Y 7t O'x Z 

(A.27) 

(A.28) 
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TABLES 

TABLES 74 



TABLE 01 PARAMETERS FOR THE SPECTRAL DENSITY FUNCTIONS 

Unimodal Kanai-Tajimi: 

Wj = 17.64 rad/sec 

~ = .3535 

~= .34125 (;n/sec2)2/(rad/sec) 
Trimodal Kanai-Tajimi: 

UJI = 13.50 rad/sec 

~ = .3925 

5, = .21600 Cin/sec2)2/Crad/sec) 

~= 23.50 rad/sec 

C2 = .3600 

52 = .07128 Cin/sec2)2/Crad/sec) 

~= 39.00 rad/sec 

~= .3350 

~= .05400 Cin/sec2)2/Crad/sec) 

TABLES 
75 
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