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PREFACE

The National Center for Earthquake Engineering Research (NCEER) is devoted to the expansion
of knowledge about earthquakes, the improvement of earthquake-resistant design, and the
implementation of seismic hazard mitigation procedures to minimize loss of lives and property.
Initially, the emphasis is on structures and lifelines of the types that would be found in zones of
moderate seismicity, such as the eastern and central United States.

NCEER's research is being carried out in an integrated and coordinated manner following a
structured program. The current research program comprises four main areas:

• Existing and New Structures
• Secondary and Protective Systems
• Lifeline Systems
• Disaster Research and Planning

This technical report pertains to the second program area and, more specifically, to secondary
systems.

In earthquake engineering research, an area of increasing concern is the performance of secon
dary systems which are anchored or attached to primary structural systems. Many secondary
systems perform vital functions whose failure during an earthquake could be just as catastrophic
as that of the primary structure itself.

The research goals in this area are to:

1. Develop greater understanding of the dynamic behavior of secondary systems in a
seismic environment while realistically accounting for inherent dynamic complexities that
exist in the underlying primary-secondary structural systems. These complexities include
the problem of tuning, complex attachment configuration, nonproportional damping,
parametric uncertainties, large number of degrees of freedom and nonlinearities in the
primary structure.

2. Develop practical criteria and procedures for the analysis and design of secondary
systems.

3. Investigate methods of mitigation of potential seismic damage to secondary systems
through optimization or protection. The most direct route is to consider enhancing their
performance through optimization in their dynamic .characteristics, in their placement
within a primary structure or in innovative design of their supports. From the point of
view of protection, base isolation of the primary structure or the application of other
passive or active protection devices can also be fruitful.
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Current research in secondary systems involves activities in all three of these areas. Their
interaction and interrelationships with other NeEER programs are illustrated in the accompany
ing figure.
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The work described in this report deals with the combined secondary - primary system analysis.
A simple case consisting of a continuous primary structure and ao discrete secondary system is
studied in order to develop an understanding of the combined system behavior. Two different
solution techniques are used; the first is a truncated modal analysis and the second involves the
cascade assumption in which the response ofthe primary system is assumed to be independent of
the secondary system dynamics. Several general conclusions are drawnfor this class of secon
dary systems based on the results obtained in this study.
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ABSTRACT

A parametric study of the response of a class of linear secondary systems to earthquake

excitations is made. The combined dynamical system studied consists of a single-degree-of

freedom oscillator attached to a continuous cantilever beam. The generalized differential

equation governing free vibration is solved exactly for the modes of the combined system.

Floor response spectra for records from the 1985 Mexico City and the 1940 EI Centro earth

quakes are presented in several formats. The floor response spectrum concept is an extension

of widely used ground response spectrum concept and may provide useful insight into the

behavior of linear secondary systems. The effects of each of the system parameters are

examined. It is shown that the frequency characteristics of the excitation modify the relative

importance of the system parameters. The study also demonstrates the effectiveness and lim

itations of the cascade approximation which is often applied as an approximate solution to

the problem.
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SECTION 1

INTRODUCTION

In this investigation, a simple exact model of a combined dynamical system is used to

develop an understanding of the response of a secondary system to earthquake excitations.

The system considered consists of a viscously damped uniform cantilever beam with a

damped single-degree-of-freedom oscillator attached at some point along the length of the

beam (see Figure 1-1). The cantilever beam is frequently employed as a simple limiting case

in dynamic analysis of some structures. The attached oscillator can be thought of as a piece

of equipment, a passive control device, or some other secondary system at a given level of

the structure. Both the beam and the oscillator are assumed to behave linearly throughout

the response.

The aim of this study is to compute and interpret earthquake response spectra for the

deformation of the oscillator relative to the beam when the system is subjected to determinis

tic earthquake excitations. In addition to giving insights into the behavior of linear secon

dary systems, the response spectra can be used in the analysis of multi-degree-of-freedom

secondary systems in the same fashion as traditional ground response spectra are used to esti

mate maximum responses of multi-degrees-of-freedom primary systems (e.g. the square root

of the sum of the squared maximum modal responses).

Recent papers by Bergman and Nicholson [1,8] have presented an exact solution tech

nique for the forced vibration of combined systems such as the one considered here. While

other recent approaches to secondary system problems have employed modal synthesis or

perturbation techniques (e.g. [9,10]), the method presented in [1] uses separation of variables

and the resulting generalized differential equation to compute the natural frequencies and

modes of the combined system. The existence of an orthogonality relation allows the forced

vibration problem to be solved by standard modal analysis techniques. Because the beam is

continuous, results are given in terms of an infinite sum over the modes of the system. The

results in [8] are exact for proportionally damped systems. However, when damping

coefficients are specified for both the beam and the oscillator, the system is nonproportion

ally damped (Le., the modal equations are coupled by the damping terms). In these cases,

the modal series is truncated to N terms, and the resulting system of equations is written in
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FIGURE 1-1 Combined Beam-Oscillator System
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state space fonn. The 2N x 2N system of equations is then uncoupled by means of a com

plex eigenproblem. The solution resulting from this process converges to the exact solution

as the number of modes considered goes to infinity. With this in mind, this technique will

henceforth be referred to as a truncated modal analysis of the combined system.

Another approach which will be referred to as the cascade approximation can be used to

compute approximate secondary system response spectra. In this approach, the effect of the

secondary system on the beam is neglected which leaves the ground motion as the only

remaining beam excitation. With this assumption, the response of the beam is readily com

puted. Given this approximation for the beam motion, the response of the oscillator involves

a simple computation. The effectiveness of the cascade approximation is obviously depen

dent upon the mass of the oscillator relative to the mass of the beam. The influences of this

and other parameters are revealed by a comparison of cascade response spectra and response

spectra based on the truncated modal analysis of the combined system.
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SECTION 2

SYSTEM ANALYSIS

2.1 Equations of Motion

The governing equations for linear response of the beam and oscillator to a base

acceleration, Yit), can be derived in terms of the constraint force, F(t), at the interface

between the continuous and discrete elements of the system. The equation for the beam

response, y(x,t), is

py'(x,t) + Cby(x,t) +EIy""(x,t) = F(t) 8(x-h) - Pyit) (1)

where partial derivatives with respect to time and space are denoted by <')= a~/ and

()'= ~~ , respectively. Further, E is the elastic modulus; I is the beam moment of inertia;

P is the mass per unit length; Cb is the viscous damping per unit length; and 8(x - h) is

the Dirac delta function which indicates that the constraint force is a concentrated force

applied at the attachment point, x =h.

The equation of motion for the oscillator in terms of the beam response at the attach

ment point, y(h,t), is

M i'(t) + C i(t) +K z(t) = Cy(h,t) +K y(h,t) - M ygCt) (2)

where M is the oscillator mass; C is the oscillator viscous damping coefficient; and K is the

linear spring constant. Note that the response, z(t), is the displacement of the oscillator with

respect to the base of the cantilever beam. The relative displacement or deformation of the

oscillator is [z(t) - y(h,t)]. The oscillator equation can also be written in terms of the con

straint force, F(t). In this case, the equation is

M i~t) = - F(t) - M y~(t) (3)

The constraint force is the sum of the forces generated by the oscillator spring and dashpot at

time, t Therefore,

F(t) = C [ i(t) - y(h,t) ] +K [z(t) - y(h,t) ]

2-1
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In order to isolate the important parameters of the combined system, it is useful to

recast the equations of motion in dimensionless fonn before proceeding with the solution.

To accomplish this the following tenns are introduced:

y(~,.t) = y(x,t)
L

t = nt

.:.:. yg(t) pgL3
0

Y (t) = -- ; "( = - ----2.-
g g EI - Ln2

KL 3
K= --

EI
M

J.1 = pL

(5)

In equation (5), g is the acceleration of gravity; ~ is the percent of critical damping in the

oscillator when uncoupled from beam; and ~b is the percent of critical damping in the first

mode of the beam disregarding the oscillator. The parameters Kand J.1 are the oscillator to

beam ratios of stiffness and mass respectively. The parameter no will be referred to as the

dimensionless frequency ratio of the system. The natural frequencies of a cantilever beam

are Ain (where Ai = 3.516, 22.03, ...). Therefore, D.o is a constant multiple of the ratio of

oscillator natural frequency to beam natural frequency.

Mter substituting the above tenns into the equations of motion, equations (1), (2), and

(4) can be rewritten as

F(t) = J.1E [z(t) - Y(11,t)] + K[Z(t) -Y(11,t)] = - J.1[i(t) + 'Yy/t)] (8)

where the temporal and spatial partial derivatives are now ()= ~l and (y= ~V ,respec

tively.
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2.2 Free Vibration

In order to compute the natural frequencies and modes, and to establish an orthogonal

ity relation for the modes of the combined system, the approach developed by Nicholson and

Bergman [8] is applied to the dimensionless equations (6), (7), and (8). Free vibration

requires that the damping coefficients and external forces be set equal to zero. This reduces

equation (6) to

y(~,'t) +y"'(~,'t) = F('t) B(~-ll)

where

Assuming that the space and time dependencies of the response can be separated, let

y(~,t) = Y(~) Q(t)

and

z('t) = A Y(ll) Q(t) = Z Q(t)

(9)

(10)

(11)

(12)

where A is an amplification factor defining the free vibration displacement of the oscillator

as a multiple of the beam displacement at ~ =1]. Substituting equations (10), (11) and (12)

into equation (9) and separating variables leads to
..

_ .ill& = __~Y'_"~'(S~)__ = 0.4

Q('t) Y(~)[ 1+ J.1A B(~ - T\)]

where 0.4 is the separation constant. Equation (13) can be rewritten as

Q(t) + o.4 Q('t) = 0

and

Substituting equations (11), (12), and (14) into equation (10) and solving for A yields

oJA=---
06-0.4

(13)

(14)

(15)

(16)

Equation (14) demonstrates that the time dependent portion of the response, Q('t), is a har

monic function with dimensionless frequency 0.2.
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Equation (15) can be solved in tenns of the Green's function that satisfies the general

ized differential equation

(17)

and the homogeneous boundary conditions of a cantilever beam. The definition of

G(;,n;a) for this case is given in [8]. Since equation (15) is a linear differential equation

with the same boundary conditions as equation (17), the solution to equation (15) is simply

(18)

(19)

(20a)

The natural frequencies of the non-dimensional system (a; ; n = 1,2,3,....) are obtained by

letting ; -+ n and solving for the roots of the homogeneous equation

o,ra4

[ 1 - Jl 2 4 G(n,n;a)] yen) = 0no-a
The eigenvalues, an' satisfying equation (19) can be shown to interlace the sequence {O,

1.875.., 4.694.., 7.854.. , ...} where the positive numbers are the eigenvalues of a non

dimensional cantilever beam [~]. These bounds can be used along with a root finder to

efficiently compute the an's. The natural frequencies of the original, dimensional system

are 0 an where 0 is the temporal scaling factor defined in equation (5).

Since the magnitude of a free vibration mode is arbitrary, it is convenient to define the

magnitude of each mode by Yn(Tl) = 1. Thus, the n'th mode shape is

1"\ 2 4
4 "1;0 an

Yn(;) = JlAnan G(;,Tl;a,.) = Jl 2 4 G(;,n,lX,.)
0 0 - an

(20b)

(21)

In order to perfonn a traditional forced vibration analysis of the system, the final tool

that is necessary is an orthogonality relation. By applying the operator

1

fYm(;)[ ... ] d;
o

to equation (15), and integrating by parts (using the homogeneous boundary conditions),

Nicholson and Bergman [8] have shown that the orthogonality relation is
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1

J[1 +~AnAm~(~ - T1) ] Ym(~) Yn(~) d~ = dn8mn
o

where 8mn is the Kronecker delta, and

1

dn = JY;(~)d~ + ~A;
o

is the n'th modal mass.

(22)

(23)

2.3 Response to Base Excitation

With a complete set of orthogonal modes now in hand, the forced vibration analysis fol

lows directly from traditional techniques. The response is assumed to be of the form

00

y<~,'t) = :r, an('t) Yn(~)
n=1

00 00

~'t) = :r, ai't)AnYn(l1) = ~ ai't)An
n=1 n=1

Similarly, substituting equations (24), (25), and (16) into equation (7) leads to

(24)

(25)

(26)

(27)

1

Operating on equation (26) by JYm(~) [ ... ] d~, adding equation (27) multiplied by ~m'
o

and applying equation (22) yields the infinite dimensional system of equations

i ldn8mnan('t)+[£bdn8mn+~AnAm(£ a:U; -£b)]tin('t) +a: dn8mn an('t») =
n=1 ~
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Theequationsuncouprerr

m = 1,2,3, ... (28)

(29)

Bergman and Nicholson [1] define this to be the condition for proportional damping in the

combined system. However, rr £ and £b (or, equivalently, ~ and ~b) are assigned fixed

values, the equations remain coupled by the damping terms. In this case, the infinite system

of equations represented in equation (28) can be truncated to N equations and approximated

in 2N x 2N state space [6,7] as

(30)

where

A _ r[C] [M]]. _ r[K] [0]]
[ ] - l[M] [0] , [B] - l[O] -[M]

{{act)}} - {in}
(bet)} = (aCt)} ; (n = {OJ

The elements of the submatrices M, C, K, and f are:

(31)

1

Kmn = a:dnBmn ; 1m = IYm(;)d;+~Am
o

m,n = 1,.../V (32)

The equations in (30) can be uncoupled by a set of N pairs of complex conjugate eigen

vectors. The associated eigenproblem is

i = 1,...,W (33)

The modal matrix [~] = [{4>tl
Therefore,

{4>1N}] is orthogonal with respect to both [A] and [B].
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and

[<1>]T [A] [<1>] = diag[ail

[<1>]T [B] [<1>] = diag[bil

(34)

(35)

Letting

i = 1,...,2N (36)

{b(t)} = [<1>] (u(t)} (37)

and premultiplying equation (30) by [<1>t uncouples the system of state space equations.

The i'th equation is

where

i = 1,...,2N (38)

(39)

i = 1,...,2N

Using equations (5) and (36), equation (38) can be rewritten as

. 19 =
u-(t)-p·u-(t) = - Y (t)

I I I fj.LQ2 g
I

Let

At = QAt

(40)

(41)

where At is the constant time step used in the digitized earthquake record. Assuming that

the system is initially at rest (Le., ui (0) = 0 for all i) and that the ground acceleration is

piecewise linear between specified values [4], the solution to equation (40) can be expressed

as

i = 1....,2N (42)

The transformation back to state space coordinates from the uncoupled state space coor

dinates is accomplished through equation (37). The temporal components of the response,
2-7



anCt), are contained in the upper half of the state vector {b(t)}. Finally, the beam and oscil

lator motions are computed by summing the first N terms in equations (24) and (25) respec

tively.
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SECTION 3

FLOOR RESPONSE SPECTRA

Using digitized acceleration records from the 1940 El Centro (5OOE comp.) [5] and

1985 Mexico City (NOOE compo of the CDAF record) [11] earthquakes, a series of floor

response spectra are computed for the combined cantilever beam - oscillator system. These

two earthquakes are chosen because they represent two very different types of ground

motion. The El Centro record is a broad-band excitation and is more likely to excite higher

modes in the structure. On the other hand, the Mexico City earthquake is basically a

narrow-band, low frequency ground acceleration. Ground response spectra for the earth

quakes are shown in Figure 3-1. The dashed lines represent the maximum ground accelera

tion, velocity, and displacement for each of the earthquakes.

In addition to using the the truncated modal analysis method discussed in the previous

section, response spectra curves are also computed by using the simpler cascade approach.

Under the cascade assumption, the beam response is not influenced by the presence of the

oscillator. Equations (1) and (2) are uncoupled by setting the interaction force, F(t), equal to

zero in equation (1). The solution to equation (1) can then be easily computed by standard

dynamic analysis of continuous beams [2,5]. The beam response is then included in the right

hand side of equation (2), and the oscillator equation is reduced to a simple single degree of

freedom problem.

Although the cascade solution is independent of the mass ratio, Jl, the technique pro

duces reliable results for the limiting case in which the mass ratio approaches zero. On the

other hand, modal analysis of the combined system is valid for all mass ratios and is exact as

the number of modes considered goes to infinity. For the figures presented in this section,

five combined system modes are kept in the truncated modal analysis, and five cantilever

beam modes are kept in the cascade analysis. Truncated modal analysis allows a check on

the accuracy of the cascade solution over a wide range of system parameters such as mass

ratio, natural period of the oscillator, fundamental period of the beam, and oscillator location

and damping. In addition to investigating the limitations of the cascade solution, the

parametric study also provides information required to make some generalizations about the

behavior of this class of combined systems when exposed to earthquake loadings.
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damping is most effective when the frequency ratio is in the range of dominant earthquake

frequencies. This is similar to the behavior observed in ground response spectra shown in

Figure 3-1.

The effect of the beam parameter n on the deformation of the secondary system is

demonstrated in Figure 3-4. In this pair of figures, response spectra are plotted for various

fundamental periods of the beam. The dashed curves in the plots were taken from the

ground response spectra with the same oscillator parameters and correspond to an infinitely

stiff beam (Tb = 0). For oscillator periods greater than the largest fundamental beam period

considered, the response curves converge monotonically towards the dashed ground response

curve as Tb approaches zero.

The most significant curve shown in Figure 3-4 appears in the Mexico City plot when

Tb =2 seconds. In this case, the fundamental frequency of the beam falls within the rela

tively narrow band of dominant frequencies in the Mexico City earthquake. The earthquake

excitation is amplified by the beam and the oscillator experiences accelerations on the order

of ten times the maximum ground acceleration over a wide range of oscillator natural

periods. Because of the broad-band characteristics of the EI Centro record, the oscillator

deformation spectra in Figure 3-4(b) do not exhibit extreme amplifications for any particular

fundamental beam period.

Figures 3-5 and 3-6 display maximum deformation versus mass ratio and oscillator

location respectively. Several values of oscillator natural period are assumed in each of the

two figures while the two damping parameters and the fundamental beam period are held

constant. The values plotted for J.1 =0 in Figure 3-5 are obtained by using the cascade solu

tion technique, and the values plotted for 11 = 0 in Figure 3-6 are taken from the appropriate

ground response spectra.

Increasing the mass ratio while holding the frequency ratio and other parameters con

stant generally results in smaller maximum deformations. This pattern appears to be fol

lowed more closely for broad-band excitations (Figure 3-5(b) than for narrow-band excita

tions (Figure 3-5(a». The natural frequencies of the combined system change as the mass

ratio is varied Shifting of natural frequencies appears to be more important when the excita

tion is narrow-banded because the system natural frequencies are more likely to move into or

out of the range of dominant excitation frequencies. This is the cause for the irregularity of
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Typical floor response spectra for maximum relative defonnation, pseudo relative velo

city, and pseudo absolute acceleration of the oscillator are shown in Figures 3-2 through 3-4.

In each of these figures, three dashed lines representing the maximum acceleration, velocity,

and displacement of the ground for the earthquake record under consideration are provided

as reference lines.

In Figure 3-2, the oscillator location (11) , the fundamental period of the beam (Tb) , and

the damping ratios (~, ~b) are held constant, and response spectra are plotted for the two

earthquakes as a function of the uncoupled natural period of the oscillator (T). Instead of

giving the maximum response values for several ratios of oscillator damping as is nonnally

done in ground response spectra, the curves in Figure 3-2 represent different mass ratios Q.t).

The dashed curve corresponds to a mass ratio of zero and is computed using the cascade

solution technique; the solid curves are computed using the truncated modal analysis

approach.

Peaks in the cascade response occur when the oscillator natural period is equal to one of

the natural periods of the beam. The peaks due to "tuned" secondary systems are sharply

reduced when interaction between the beam and oscillator is taken into consideration. In

general, interaction increases as the mass ratio gets larger. Except for oscillators with natural

frequencies near a narrow band of dominant excitation frequencies, defonnation spectra gen

erated using the cascade assumption tend to give upper bounds on the actual response. The

bound is most conservative for tuned oscillators. Therefore, for secondary systems that are

not closely tuned to a natural frequency of the beam, it appears that the cascade approxima

tion may be acceptable for a fairly wide range of parameters.

The limiting values of the deformation spectra in Figure 3-2 are a predictable extension

of the limiting values observed in ground response spectra. The maximum absolute accelera

tion of very stiff oscillators (short period) tends towards the maximum acceleration of the

beam at the connection point. The maximum acceleration of the beam depends on the mass

ratio because such oscillators behave as an additional concentrated mass on the beam. The

mass ratio is particularly important if higher modes of the beam are significantly excited, as

is the case in Figure 3-2(b) for the EI Centro earthquake.

In Figure 3-3 a mass ratio of 0.05 is assumed. and the oscillator defonnation is plotted

for four oscillator damping ratios. For almost any combination of system parameters, an

increase in oscillator damping causes a reduction in the maximum defonnation. Oscillator
3-3



the T = 2 seconds curve in Figure 3-5(a). Another distinct feature in both figures is the rapid

increase in defonnation at low mass ratios when the oscillator period is equal to the funda

mental beam period of one second. This is a result of decreased interaction between the

beam and oscillator as the mass ratio goes to zero.

Figure 3-6 confinns that the maximum defonnation of the secondary system generally

increases as the oscillator is moved away from the base of the cantilever beam. Exceptions

to this rule tend to occur when the oscillator is at or near a node of a highly excited beam

mode and for systems with large mass ratios. For most cases, ground response spectra with

the appropriate oscillator damping serve as a lower bound for the deformation spectra of

oscillators located above the base of the beam.
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SECTION 4

SUMMARY

The system considered in this paper consists of a continuous primary structure and a

discrete secondary system. The primary structure is a linear, viscously damped, cantilever

beam, and the secondary system is a linear, damped, single degree of freedom oscillator.

The combined dynamical system is subjected to translational ground excitations. Two

specific records are considered. The first is a narrow-banded, low frequency record from the

1985 Mexico City earthquake, and the second is the widely used 1940 EI Centro accelero

gram which has a relatively broad range of frequency components.

Two different solution techniques are employed in the response calculations. The first

approach is a truncated modal analysis in which exact free vibration modes of the combined

system are obtained in terms of the Green's function of the vibrating cantilever beam. An

orthogonality relation allows the uncoupling of the forced vibration problem in the case of a

proportionally damped system. In general, the system is nonproportionally damped if damp

ing coefficients are specified is terms of the beam and oscillator separately. To uncouple the

damping terms, the infinite dimensional system of equations is truncated to the first N equa

tions, and the problem is reformulated in state space. This step represents the only approxi

mation involved in the modal analysis approach. The state space equations are uncoupled by

means of a complex eigenproblem which leads to 2N complex-valued, first order differential

equations. Assuming that the ground response behaves linearly between the discrete points

given in the earthquake records, the equations can be solved exactly. Inverse transforma

tions are then applied to obtain the response of the system in the original physical coordi

nates.

The second approach to the solution involves the cascade assumption in which the

response of the beam is assumed to be independent of the oscillator motion. This uncouples

the problem and allows a straightforward analysis of the cantilever beam subjected to base

excitation. The beam response is then combined with the ground acceleration to form the

forcing function for the ordinary differential equation governing the oscillator. Although the

cascade solution is relatively simple to compute, it implicitly assumes that the ratio of
4-1



oscillator mass to beam mass is zero. The results are correct only for this limiting case.

Oscillator deformation spectra are presented in several different formats. The spectra

are based on the same relationships used to plot ground response spectra on four way log

paper. A direct comparison between the truncated modal analysis solution and the cascade

solution is obtained in Figures 3-2 and 3-5 by varying the mass ratio of the system. Since

the cascade solution is independent of mass ratio, the modal analysis response curves

approach the cascade curve as the mass ratio tends towards zero. The spectra in Figure 3-3

are a direct extension of ground response spectra in which the results are presented for vari

ous percentages of critical damping in the oscillator. The effect of the beam stiffness is

shown in Figure 3-4 by varying the fundamental period of the primary structure. In this case,

a comparison with ground response spectra is made for the limiting case in which the beam

becomes infinitely stiff. Finally, the results presented in Figure 3-6 demonstrate the effect of

oscillator location. As should be expected, the oscillator deformation spectra tend towards

the values obtained in ground response spectra as the oscillator is moved toward the base of

the beam.

The results obtained in this study lead to several general conclusions about the response

of this class of secondary systems. For most cases considered, the cascade solution produces

a conservative upper bound on the response of the oscillator while ground response spectra

usually provide a lower bound on the response. There are two instances where the cascade

solution provides undesirable results. Extremely conservative response levels are obtained in

C:lses where the oscillator is tuned to a natural frequency of the primary system. On the other

hand, cascade results may be unconservative in cases where the natural frequency of the

oscillator falls within or near a relatively narrow band of dominant earthquake frequencies.

In situations other than these, particularly for small to moderate mass ratios, the cascade

results are generally quite acceptable.
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APPENDIX A

NOTATION

Elements of the diagonal matrix [ellf [A] [ell].

Temporal component of the response in the n'th mode and its
derivatives.
Oscillator amplification factor for the n'th mode.

State space coefficient matrix.

State vector and its derivative.
Elements of the diagonal matrix [cIl]T [B] [ell].

State space coefficient matrix.
Oscillator damping constant.
Beam viscous damping constant.

Element of the matrix [C].

Full damping matrix of the truncated system of equations.
n'th generalized modal mass.

Modulus of elasticity of the beam.
Element of the vector {f}.

Elementof the vector {}}.

Force vector of the truncated sysmm of equations.
Force vector of the state space equations.
Force vector of the uncoupled state space equations.
Constraint force between the beam and oscillator.
Dimensionless constraint force.

Acceleration due to gravity.

Green's function of a cantilever beam.
Location of the oscillator with respect to the base of the beam.
Moment of inertia of the beam.
Oscillator spring constant.
Element of the matrix [K].

Diagonal stiffness matrix of the truncated system of equations.
Length of the beam.
Mass of the oscillator.

Element of the matrix [M].

Diagonal mass matrix of the truncated system of equations.

Number of modes kept in truncated system of equations.
Complex eigenvalue of the state space equations.
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Temporal component of the free vibration response.
Time.
Natural period of the oscillator when uncoupled from the beam.

Fundamental natural period of the beam without the oscillator.
Coordinates in uncoupled state space.

Longitudinal axis of the beam.
Vector of coordinates in uncoupled state space.
Displacement, velocity, and acceleration of the beam.

Dimensionless displacement, velocity, and acceleration of the
beam.
Ground acceleration.

Dimensionless ground acceleration.

Free vibration mode shape of the beam.

Dimensionless beam displacement in the n'th mode at the oscilla
tor attachment point.
Absolute displacement, velocity, and acceleration of the oscillator.

Absolute dimensionless displacement, velocity, and acceleration
of the oscillator.
Free vibration mode shape of the oscillator.

n'th eigenvalue of the combined system.

Dirac delta function at x=h.
Dimensionless Dirac delta function at ~ = Tl.
Kronecker delta function.

Time step in digitized earthquake record.

Dimensionless time step.
Dimensionless damping coefficient of the oscillator.
Dimensionless damping coefficient of the beam.

Dimensionless location of the oscillator.
Dimensionless force parameter.
Oscillator to beam stiffness ratio.

Dimensionless part of the i'th natural frequency of a cantilever
beam.
Oscillator to beam mass ratio.
Oscillator natural frequency.
Dimensional part of the natural frequencies of a cantilever beam.
Dimensionless frequency parameter of the combined system.

i'th complex mode of the state space equations.

Complex modal matrix of the state space equations.
Mass per unit length of the beam.
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=
=
=

=

Dimensionless time.
Dimensionless longitudinal axis of the beam.

Ratio of damping to critical damping in the oscillator.
Ratio of damping to critical damping in the first beam mode.
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