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PREFACE

The National Center for Earthquake Engineering Research (NCEER) is devoted to the expansion
of knowledge about earthquakes, the improvement of earthquake-resistant design, and the
implementation of seismic hazard mitigation procedures to minimize loss of lives and property.
Initially, the emphasis is on structures and lifelines of the types that would be found in zones of
moderate seismicity, such as the eastern and central United States.

NCEER's research is being carried out in an integrated and coordinated manner following a
structured program. The current research program comprises four main areas:

• Existing and New Structures
• Secondary and Protective Systems
• Lifeline Systems
• Disaster Research and Planning

This technical report pertains to the second program area and, more specifically, to secondary
systems.

In earthquake engineering research, an area of increasing concern is the performance of secon­
dary systems which are anchored or attached to primary structural systems. Many secondary
systems perform vital functions whose failure during an earthquake could be just as catastrophic
as that of the primary structure itself.

The research goals in this area are to:

1. Develop greater understanding of the dynamic behavior of secondary systems in a
seismic environment while realistically accounting for inherent dynamic complexities that
exist in the underlying primary-secondary structural systems. These complexities include
the problem of tuning, complex attachment configuration, nonproportional damping,
parametric uncertainties, large number of degrees of freedom and nonlinearities in the
primary structure.

2. Develop practical criteria and procedures for the analysis and design of secondary
systems.

3. Investigate methods of mitigation of potential seismic damage to secondary systems
through optimization or protection. The most direct route is to consider enhancing their
performance through optimization in their dynamic characteristics, in their placement
within a primary structure or in innovative design of their supports. From the point of
view of protection, base isolation of the primary structure or the application of other
passive or active protection devices can also be fruitful.
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Current research in secondary systems involves activities in all three of these areas. Their
interaction and interrelationships with other NCEER programs are illustrated in the accompany­
ing figure.
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Dynamics of a hysteretic structure is considered in this report. Under the action of a strong
earthquake, the primary structure can deform into the hysteretic regime. This possibility must be
taken into consideration in the analysis and design of secondary systems. Consequently, a
thorough understanding ofthe hysteretic behavior ofthe primary structure is essential.

A new method of hysteretic structural analysis is developed in this report. In this procedure, a
hysteretic system is replaced by another system belonging to a class of generalized stationary
potential for which an exact solution is possible. It is shown that the method has broad ap­
plicability and it is accurate over a wide range ofexcitation levels and system parameters.
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ABSTRACT

An approximate procedure is developed for computing the probability density and

statistical properties for the response of a hysteretic system under Gaussian

white-noise excitations. In this procedure, the original system is replaced by

another system belonging to the class of generalized stationary potential for

which an exact solution is possible. The replacement is based on a criterion

that the statistical average of the energy dissipation remains the same for

substituting and substituted systems. The method is applicable to either

bilinear or smooth type hysteresis and for either hardening or softening

hysteretic behaviors without the restriction that the response be a narrow-band

process or the energy dissipation be small. Comparison of computed results with

available simulation results indicates that the proposed method is accurate for

wide ranges of excitation levels and system parameters.
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SECTION 1

INTRODUCTION

In structural dynamics, the term hysteresis is used to describe a non­

conservative system behavior, in which the restoring force depends not only on

the instantaneous deformation but also the past history of deformation. If

motion is cycliC, then a plot of restoring force versus deformation forms a

closed loop, the area within the loop being the energy loss per cycle.

Reinforced concrete structures are perhaps the most notable examples of

hysteretic systems. Steel structures, while essentially linear within the

elastic limit, also become hysteretic when loaded beyond that limit. Excellent

reviews of hysteresis characteristics for various structural elements were given

by Sozen [21J and Iwan [10].

The problem of hysteretic system under random excitation is difficult, and no

mathematically exact solution is available at the present time. Most published

approximate solutions have been restricted to single-degree-of-freedom systems,

governed typically by the following equation of motion:

2

d X + 2Cwo
dX + F(t) =E(t)

de dt
(1.1)

where E(t) is a stochastic process often assumed to be a Gaussian white noise,

and

2 2F(t) = awoX + (l-a)woZ(t), o < a < 1 (1.2)

Equation (1.2) describes a restoring force consisting of a linear component and

a hysteretic component. In the limit a = 1, the system reduces to a linear one,
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in which case Wo represents the natural frequency, and ~ represents the ratio of

damping to the critical damping.

Equations (1.1) and (1.2) may be replaced by their non-dimensionized versions

as follows

x + 2~l + f(t) = ~(t)

f(t) = ax + (l-a)z(t)

(1.3)

(1.4)

using the transformations x =~, z = i, t = wot, ~(t) = E(t/wo)/(w02~) and

f(t) = F(t/wo)/(wo2~) where ~ is a characteristic displacement. The hysteretic

component z in equation (1.4) can often be modeled by a first order differential

equation

! = g(x,l,z)

One simple example is the widely used elasto-plastic model,

(1.5)

o
! ={ I

I z 1= 1

I z 1< 1
(1.6)

shown in Fig. 1-1 (a) where the elastic limit has been chosen as the

characteristic displacement A. The restoring force f(t) obtained from combining

this hysteresis component z(t) and the linear component constitutes the well­

known bilinear model shown in Fig. l-l(b).

The first analysis of the response of a bilinear system to statistically

stationary random excitation was due to Caughey [7], who used the methods of

equivalent linearization and slowly varying parameters. Accurate results were

obta1ned for the mean square response when the hysteretic component in the
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(a)

-I

(b)

FIGURE 1-1 A bilinear hysteretic system: (a) elasto-plastic component;
(b) restoring force-defonmation relationship.
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system is not dominant, namely, the coefficient a in (l.4) is not too small;

significant errors were found when this is not the case [11].

For structural reliability estimations, the more detailed knowledge of the

response, namely its probability distribution is required. Lutes [16] obtained

an estimate of the response probability density for a bilinear hysteretic system

using an equivalent non-hysteretic nonlinear system belonging to Caughey's class

of solvable systems [8]. Selection of the equivalent system was based on equal

energy dissipation. The applicability of his method requires that energy

dissipation be small and the response be a narrow-band random process since a

so-called resonant frequency must be calculated. However, the approximation

does not appear to be more accurate than that of the equivalent linearization

when values of the mean square response obtained from the two methods are

compared. Subsequently, Lutes and Takemiya [17] devised a modified power

ba1ance method to improve the accuracy of the computed mean square response,

especially for nearly elasto-plastic systems.

Roberts [18J and Zhu and Lei [28J have used another approach called

stochastic averaging [23] in the treatment of bilinear hysteretic systems, and

obtained the probability densities for the amplitUde and energy envelope,

respectively, for the stationary response by solving the so-called Fokker-Planck

equations for the respective response variables. Again, applicability of the

stochastic averaging method requires that the energy dissipation must be small.

Kobori, Minai and Suzuki [e.g. 13J computed the statistical moments of the

displacement and velocity using the Fokker-Planck equation for these variables

and assumed fonms for approximate probability densities.

The abrupt change of slope in the deformation-restoring force relationship

in a bilinear model is obviously not realistic. To remedy this deficiency Iwan
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[9J has proposed a distributed hysteretic model, composed of a number of

Jenkin's elements in parallel, each of which consists of a linear spring in

series with a Coulomb damper. This smooth hysteresis model was used by Takemiya

and Lutes [24J in conjunction with the power balance method, and by Spanos [22]

in conjunction with stochastic averaging and equivalent linearization in the

investigation of system response.

Another smooth hysteresis model proposed initially by Bouc [3] and extended

later by Wen [25J [26J is described by

! = - y II I z I z I n-1 - al I z I n + Al (1.7)

Sketches of z versus x and the restoring force f versus x are shown in Figs.

1-2(a) and (b), respectively. By choosing different sets of values for y, a, n

and A the behaviors of real hysteretic systems can be approximated closely [2].

This model has become more widely used recently, since it is more amenable to

analytical treatments. Further refinements of the model were proposed by Baber

and Noori [1], and by Casciati [6]. The Galerkin method [25], Gaussian closure

[12], eqUivalent linearization [26] and stochastic averaging [19] have all been

applied to the analysis of this model with various degrees of success and

limitations.

The references quoted above were limited to additive random excitations,

namely excitations appearing as inhomogeneous terms in the equation of motion.

One exception was the work by Shih and Lin [20] in which a mUltiplicative random

excitation, appearing in a coefficient in the governing equation, was also

included in the analysis. In this case, the multiplicative excitation arose due

to vertical ground motions during an earthquake. Both additive and

multiplicative random excitations were modeled as amplitude-modulated
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FIGURE 1~2 A smooth hysteretic system: (a) hysteretic component; (b) restoring
force-deformation relationship.
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nonstati onary processes, and the Gaussian closure techni que was employed to

compute the statistics of the structural response.

In this paper, a new approximate procedure, developed recently by the

authors [15,5] for computing the probability density of the response of a

nonlinear oscillator to Gaussian white-noise excitations, is extended for

application to hysteretic systems. The excitations can be either additive, or

multiplicative, or both. The approximation is obtained from a class of exact

solutions, called the class of generalized stationary potential [14,4], which

includes Caughey's solutions [8] as special cases. The approximation is also

based on balancing the statistical averages of energy dissipation, but the

approach is more direct, and most importantly, it can be applied without the

restrictions of small dissipated energy or being a narrow-band random process.

The class of generalized stationary potential is richer than Caughey's class of

exact solutions to allow for more accurate approximations, as to be demonstrated

by comparison with earlier results and Monte Carlo simulations.
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SECTION 2

METHOD OF ENERGY DISSIPATION BALANCING

Consider a general single-degree-of-freedom nonlinear system

x+ h(x,l) = fi(X,l) W;(t) (2.1)

where Wi(t) are Gaussian white noises with delta-type correlation functions

E[Wi(t)Wj(t + u)J = 2nKij&(U) (2.2)

It has been shown [4] that the response of the stochastic system (2.1) has an

exact stationary probability density

where

A =~l2 + J g(x)dx =~l2 + G(x)

if function h(x,l) in (2.1) can be expressed in the fonm of

(2.3)

(2.4)

h(x,l) =nlKijfi(X,l)fj(x,l)t'(A) - nKijfi(X,l)iIfj(x,l) + g(x) (2.5)

in which case the system is said to belong to the class of generalized

stationary potential. In equations (2.3) and (2.5), C is a nonmalization

constant, t is an arbitrary function, and a prime denotes one differentiation

with respect to the argument. Of course, equation (2.3) is a valid probability
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density only if it is normalizable, namely, integration on x and ~ over the

state space is finite.

If the multiplicative random excitations are absent or if they do not

appear in the coefficient of l, then g(x) can be identified as the conservative

spring force of the system; otherwise, it is the effective spring force which

may include the well-known correction term of Wong and Zakai [27J. Therefore, A

given in equation (2.4) is either the total kinetic and potential energy or the

effective total energy. The integral shown in (2.4) may be treated as an

indefinite integral and the choice of an integration constant is unnecessary

since it can be compensated when computing the normalization constant C in

(2.3).

From the point of view of obtaining an exact solution, functions h, g and

fi and the spectral constants Kij in equation (2.5) are given. The objective is

to find a consistent "(A) function which satisfies equation (2.5). When

equation (2.5) can indeed be satisfied, the stochastic system is said to belong

to the class of generalized stationary potential. To our knowledge, this class

includes all the published exact solutions to date.

In many practical cases, equation (2.5) imposes severe restrictions which

cannot be satisfied exactly. However, a sUbstituting system can be found within

the class of generalized stationary potential which is closest to the original

system in some statistical sense. The criterion we propose to select such a

substituting system is that the ensemble· average of the dissipated energy

remains the same for the substituting and the substituted systems. Application

of this criterion yields

(2.6)
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where E[ ] denotes ensemble averaging. It follows upon using the approximate

probability density (2.3) to evaluate the above ensemble average [5],

aj(A) af· af·
a1(A){[h + nKijfi~JI = ~2A - 2G(x)-[h + nKijfi~]1 = -~2A - 2G(x)}dX

41 1 (A) =
a2(A)

na!(A){[IKijfifj]1 = ~2A - 2G(x)-[IKij f i f j]1 = -~2A - 2G(x)}dX

(2.7)

where a1(A) and a2 (A) are the two roots of the equation G(x) = A; they are the

minimum and the maximum values of x, respectively, corresponding to a given

effective energy level A, as depicted in Fig. 2-1.

Equation (2.7) can be greatly simplified if the hysteresis constitutive law

is symmetric, so that a1(A) = - a2 (A) = a(A) and if only an additive Gaussian

white-noise excitation is present, in which case

() ~ AdA)
41 1 A = nK + -~a"'T(AM):---"""""....r.-.-----

2nK f ~2A - 2G(x)dx
-a(A)

(2.8)

where Ar(A) is the area of the hystersis loop corresponding to a given A, and K

is the spectral density of the additive random excitation.

Substituting (2.8) into (2.3), we obtain an approximate stationary

probability density for the hysteretic system

2(; Ar(A)
Ps(x,~) =Cexp {- -A -f --~----- dA} = peA)

nK a(A)
2nK f Y=2A"---""":l2=GT"(x""T')dx

-a(A)

2-3
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FIGURE 2-1 Potential energy function G(x).

2-4

x



which depends only on A. We hasten to add that this expression is an

approximate probabi 1i ty density for x and ~, but not for A. The mean-square

value of the displacement may be computed from

+CD CD a(A) 2

E[x2] = II x2ps(x,~)dXdl = I peA) [J 2x dx]dA
_CD 0 -a(A) y'2A - 2G(X)

(2.10)

The probability densities for the energy level A and the amplitude a,

respectively, can be found readily from equation (2.9). Specifically,

and

a(A)

pS(A) =2p(A) J
-a(A)

dx
y'2A - 2G(x)

(2.11)

ps(a) = 2 I g(a) I p[A(a)]

a

J dx
-a y'2A(a) - 2G(x)

(2.12)

As indicated, A must be expressed in terms of the amplitude a in equation

(2.12). Once the area Ar within a hysteresis loop and the effective spring

force g(x) are determined, the probability densities (2.9), (2.11) and (2.12)

and the mean-square displacement can be evaluated numerically.
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SECTION 3

APPLICATION TO BILINEAR HYSTERETIC SYSTEM

A bil i near hystereti c system is described mathemati cally by equations

(1.3), (1.4) and (1.6), depicted graphically in Figs. l-l(a,b), and represented

schematically in Fig. 3-1. The area of the hysteresis loop Ar , representing the

dissipated energy per cycle at amplitude a, which is attributable solely to the

hysteretic property can be obtained by inspection:

Ar = {
0,

4(a - 1),

a ~ 1

a ~ 1
(3.1)

The potential energy of the system accumulated in the two spring elements, shown

in Fig. 3-1, represents the ability of the system to return to a local

equilibrium upon removal of the external force. Its values for different ranges

of x can be computed by referring to the shaded areas in Fig. 1-1(a).

Speci fi ca lly,

1 2
'2"X , a ~ 1

G(x) = !aX2 + !(l-a)(X + a_1)2; a ~ 1, - a ~ x ~ - a + 2 (3.2)

1 2 1
'2" ax + '2"(1-a); a ~ 1, - a + 2 ~ x ~ a

Plots of G(x) versus x for a = 1/21 are shown in Fig. 3-2 for increasing x(l>O).

Plots corresponding to decreasing x(l < 0) are mirror images of those shown in

Fig. 3-2. The potential energy of a hysteretic system is seen to be a non­

unique function of the displacement x, since it also depends on the amplitude a
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FIGURE 3-1 Schemat1 c r,epresentat1on of a b111 near hysteret1 c system.
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3 X2a-1

=2.5
,/=2.0
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FIGURE 3-2 Potential energy of a bilinear hysteretic system with a = 1/21,
l ~ o.
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and whether x is increasing or decreasing. Finally, the total energy" is

related to the amplitude as

a ~ 1

" = {
~(l-a) + ~a2 , a > 1

(3.3)

Using equations (3.2) and (3.3), we obtain various integrals which appear

in equations (2.9) - (2.11) as follows

a ~ 1a

J
-a

dx
y'2A - 2G(x} l

lT ,

= !(1 + 1_) + sin-1 _1_+a~-~a~a 1 . -1 a-2
I-a+aa + .r.=a Sln -a-'2 ya ru

a ~ 1

(3.4)

(a-l)(l-a)y'a(a-l) + (1-a+aa)2(lT + sin-1 l+a-aa )
2 ~ l-a+aa

a

J y'2A-2G(x}dx =
-a

1 2
~lTa , a ~ 1

+ va a2(lT + sin-1 a-2) a ~ 12 ~ a '
(3.5)
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1 2
~1Ta ,

2

J
a x dx = (4a-S-3aa + 3a + z~a)Ya(a_1) +

yZ"-2G(X)
-a

a ~ 1

+ ~[3(a-1)2(1-a)2+a(2-2a-a+2aa)](~Sin-1 l+a-aa )
L l 1-a+aa

2

+ ~(! + sin-1 a-2
2ra 2 a ), a ~ 1 (3.6)

Substituting (3.1), (3.4), (3.S) and (3.6) into (2.9) through (2.1Z) and

integrating with respect to " numerically, we can obtain the stationary

probability density Ps{x,l), Ps{") and ps{a), as well as the mean square

response E[x2
].

A nearly elasto-plastic system (Cl=1/21) under white noise excitation was

studied numerically. Different values for the viscous damping coefficient (C=O,

0.01, 0.05) were assumed for the investigation. The root-mean-square response

Ox computed for different Cvalues and normalized with respect to D=y2K is shown

in Fig. 3-3(a)-(c) where D is a measure of the excitation strength. The results

appear to be in excellent agreement with known analog simulations [11] at all

response levels and for all three values of C. Also shown in Fig. 3-3(a)-(c)

are results obtained from equivalent linearization [11], which do not agree as

well with the simulation results, particularly in the range of intermediate

excitation levels. Yet, it is in this range that the hysteretic component in

the restoring force plays a dominant role. The comparison suggests that the

present procedure is much better suited for the analysis of bilinear hysteretic

systems.

Figs. 3-4(a)-(c) depict the computed stationary probability density for the
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total response energy ~ for the same system. It is seen that when the

excitation strength is either weak (0=0.05) or strong (0=3), the total energy ~

follows approximately an exponential probability distribution, similar to that

of a linear system. In such cases, hysteresis effect is unimportant, and the

linear viscous effect has a much greater influence on the probabilistic

structure of the response. This is also borne out in the computed mean-square

properties, shown in Figs. 3-3(a) - (c), and explains why linearization

technique can lead to somewhat more acceptable results in these ranges. At an

intermediate excitation strength (0=0.5), however, the energy dissipated by the

hysteresis component is important. Therefore, the probability distribution of

the total energy deviates greatly from being exponential, as shown in Fig.

3-4(b).
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SECTION 4

APPLICATION TO SMOOTH HYSTERETIC SYSTEMS

To illustrate how the present procedure can be applied to smooth hysteretic

systems, cons ider the Bouc-Wen model for the hysteretic component governed by

equation (1.7). The smoothness of the force-displacement curve for this model

is controlled by n, the general slopes of the curve controlled by y + a and the

slimness of the hysteresis loop by y.

Equation (1.7) can be transformed to

A + (y - ~) I z In, l ~ 0, z S 0

dz A - (y + ~)zn, l ~ 0, z ~ 0
dx =

(y - ~)zn, l S 0,
(4.1)

A + z ~ 0

A - (y + ~) I z In, l S 0, z S 0

The area of hysteresis loop corresponding to a given amplitude a is computed

from the integral

a

Ar = 2 J z(x)dx
-a

(4.2)

The total potential energy, representing the ability of the system to return to

a local equilibrium, again consists of two parts: one stored in the linear

element, another in the hysteretic element. The latter may be computed by

referring to the shaded areas shown in Fig. 1-2(a) for different values of x.

For a specific system, the functional relationship between z and x can be

obtained by integrating (4.1). Then the hysteresis loop area Ar as a function
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of amplitude a, and the total potential energy G(x) can also be obtained in

closed forms.

In what follows, the case of n = 1 and A = 1 will be considered in more

detail. The assumption of A = 1 does not result in a loss of generality,

because it can always be accomplished by adjusting the characteristic length ~

when normalizing equations (1.1) and (1.2). For this special case, the

hysteretic component of the restoring force is found to be

z(x) =

z(x) =

z(x) =

__l__[l_e-(V-a) (x+Xo)];
V-B

1
----[l-e-(V+a) (x+xo)];
v+a

x+xo;

lX+X o;

- a s x s - xo , V * ± a

- Xo S x s a, V * ± B

- a s x s - xo , V =B

- Xo S x s a, V= B

- a s x s - xo ' V = - B

- Xo S x s a, V = - a

(4.3)

where xo, shown in Fig. 1-2(b) is uniquely determined for a given amplitude a by

solving z(±xo)=O. The area of the hysteresis loop corresponding to a given

amplitude is given by
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A = 4 {va - Qx + V [e-(V+a) (a+xO)_l]} V ¢ ± a
r~ l"0v+B t

2 2xAr = -(a-xo) +~,

2 2xAr = (a+x o) -~,

and the potential energy by

v = a

v = - a

(4.4)

G(x)

- Xo ~ x ~ a, V ¢ ± a

G(X) =

G(x) =
1 2 1-a{ 1 }
~x +~ x+xo- 2Y1n[l+2V(x+Xo)] ;

- a ~ x ~ - xo, V= a

- Xo ~ x ~ a, V =a

- a ~ x ~ - xo, V = - a

- Xo ~ x ~ at V = - a
(4.5)

The potential energy of such a smooth hysteretic system is illustrated in Fig.

4-1 for a=1/21, v.a-O.S and di fferent ampli tudes and for 1ncreasi ng x. Plots

for decreasing x are mirror images of those shown in Fig. 4-1. With the above

results, it is rather simple to compute the stationary probability densities for

the state variables x and I, the total energy ~, and the amplitude a, as well as

the mean square response using equations (2.9) - (2.12).

A smooth hysteretic system with a-1/21, v.a-o.S was studies numerically in
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deta il us i ng the present di ss ipation-energy-ba1anci ng procedure. The computed

mean-square displacements are shown in Figs. 4-2(a) and (b) for C=O and C=O.05,

respectively. Earlier results obtained by Wen [26] using equivalent

linearization and digital simulation, and by Iyenger and Dash [12] using

Gaussian closure are shown also in the figures for comparison. Results from

both equivalent linearization and dissipation energy balancing agree with the

simulation results.

The computed probability densities for the response amplitude in the

absence of linear viscous damping are shown in Figs. 4-3 (a)-(c) with the

excitation strength D as a varying parameter. As D increases, the change of the

general shape of the probability distribution is again extremely interesting.

Under either weak (D < 0.25) or strong (D > 2) excitation, the ampl itude

distribution is closer to Rayleigh, indicating that the linear component of the

restoring force has the dominant effect. Under excitations of intermediate

range (0.5 < D < 2), both the linear and hysteretic components contribute

importantly, giving rise to two peaks in the amplitUde probability density, as

shown in Fig. 4-3(b).

The effect of linear viscous damping on the probability distribution of the

response amplitude is illustrated in Fig. 4-4(a)-(c). The added damping does

not appear to change the general shape of the distribution which is primarily

controlled by the strength of excitation. Thus, the shape is closer to the

single-peak Rayleigh distribution when the excitation strength is either weak

(D=0.2) or very strong (0=5). It becomes a bi-modal distribution in the

intermediate range of excitation strength (0=1). As expected, the additional

viscous damping shifts a peak of the probability density to the left and

shortens the tail of the distribution. This effect, however, is much greater
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when the excitation is strong.

Finally, the root-mean-square responses were calculated for systems without

the linear terms, namely, a=C=O. Two Y values were selected Y = 0.02 and 0.1,

the smaller y corresponding to a smaller hysteresis loop. Three 6 values were

selected 6=0, -1 and -5. The computed results are plotted in Figs. 4-5(a)-(c)

and 4-6(a)-(c). Also shown in these figures for comparison are the results

obtained using stochastic averaging and from simulations [19]. It is seen that

both sets of analytical results essentially agree with each other, and with the

simulation results when Y+6<0, namely, when the system exhibits a "hardening"

tendency. However, when Y+6>O, corresponding to a "softening" system, results

obtained from the two analytical procedures begin to diverge as the excitation

strength D increases. In this case, there appears to be a reversing trend in

the plot of 0x/D versus D when D increases beyond a certain value which is

predicted in our solution but not predicted in the stochastic averaging solution

[19]. The simulation results also seem to suggest such a reversing trend,

particularly those results shown in Fig. 4-6(a). It is of interest to note that

the applicability of the stochastic averaging method requires that Y be small

and that an approximate "back-bone" of the hysteretic system be computed, both

of which may entail additional errors in the results.
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SECTION 5

CONCLUSIONS

The method of energy dissipation balancing proposed herein to analyze

randomly excited hysteretic systems is quite versatile. The deduced formulas

for obtaining the stationary probability density and the mean square value of

the system response are applicable to either piece-wise linear or smooth type

hysteresis with neither the restriction that the response be a narrow-band

process, nor the restriction that energy dissipation be small. Comparison of

computed results with available simulation results indicates that the proposed

method is accurate for wide ranges of excitation levels and for either hardening

or softening type of hysteretic behaviors.

Two basic steps are required in the application of the proposed procedure.

First, the area of the hysteresis loop must be calculated, and second,

expressions for the potential energy stored in the linear spring and the

hysteretic elements, representing the ability of the system to return to a local

equilibrium, must be obtained for various ranges of deformation. Once these are

accomplished, the remaining steps are quite straight-forward.

Although attention has been focused on hysterestic systems with a symmetric

constitutive law and on purely additive random excitations, the method of

analysis is applicable to asymmetric hysteresis and when multiplicative random

excitations are also present. Multiplicative excitations can occur, for

example, when a column is sUbjected to vertical seismic motion, which will be

dealt with in a forthcoming paper.
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"Optimal Control of Nonlinear Structures," IN. Yang, F.x. Long and D. Wong, 1/22/88,
(pB88-213772/AS).

"Substructuring Techniques in the Time Domain for Primary-Secondary Structural Systems," by G. D.
Manolis andG. Juhn, 2/10/88, (PB88-213780/AS).

"Iterative Seismic Analysis of Primary-Secondary Systems," by A Singhal, L.D. Lutes and P. Spanos,
2/23/88, (pB88-213798/AS).

"Stochastic Finite Element Expansion for Random Media," P. D. Spanos and R. Ghanem, 3/14/88,
(pB88-213806/AS).

"Combining Structural Optimization and Structural Control," F. Y. Cheng and C. P. Pantelides, 1/10/88,
(pB88-213814/AS).

"Seismic Performance Assessment of Code-Designed Structures," H.H-M. Hwang, I Jaw and H. Shau,
3/20/88.

"Reliability Analysis of Code-Designed Structures Under Natural Hazards," H.H-M. Hwang, H. Ushiba
and M. Shinozuka, 2/29/88.
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NCEER-88-0009

NCEER-88-OO10

NCEER-88-0011

NCEER-88-0012

"Seismic Fragility Analysis of Shear Wall Structures," J-W Jaw and H.H-M. Hwang, 4/30/88.

''Base Isolation of a Multi-Story Building Under a Hannonic Ground Motion - A Comparison of
Performances of VariOllS Systems," F-G Fan, G. Alunadi and I.G. TadJbakhsh, to be published.

"Seismic Floor Response Spectra for a Combined System by Green's Functions," F.M. Lavelle, L.A.
Bergman and P.O. Spanos, 5/1/88.

"A New Solution Technique for Randomly Excited Hysteretic Structmes," G.Q. Cai and Y.K. Lin,
5/16/88.

A-3




