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is presented. Similar to the response spectrum procedure for analysis of classically 
damped systems, the only required information regarding the ground motion input is 
its respons\. spectrum. The procedure takes into account the effect of cross correlation 
between modes with closely spaced frequencies, and it is simple for practical application. 

The proposed method is used to approximate the maximum response of several non-
c.lassically damped structural systems. Emphasis is placed on noncJassically damped 
primary-secondary systems in which the effect of nonclassical damping is significant. 
Numerical results indicate that the maximum structural responses predicted by the 
proposed response spectrum approach are generally closer to the exact solutions than 
those obtained using an approximate classically damped procedure. The accuracy of the 
present approach is quite reasonable. ~\ 
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PREFACE 

The National Center for Earthquake Engineering Research (NCEER) is devoted to the expansion 
of knowledge about earthquakes, the improvement of earthquake-resistant design, and the 
implementation of seismic hazard mitigation procedures to minimize loss of lives and property. 
Initially, the emphasis is on structures and lifelines of the types that would be found in zone:; of 
moderate seismicity. such as the eastern and central United States. 

NeEER's research is being carried out in an integrated and coordinated manner following a 
structured program. The current research program comprises four main areas: 

• Existing and New Structures 
• Secondary and Protective Systems 

• Lifeline Systcms 
• Disaster Research and Planning 

This technical repon penains to the second program area and. more specifically. to secondary 
systems. 

In eanhquake engineering research. an area of increasing concern is the perfonr.ance of M:Con
dary systems which are anchored or attached to primary structural systems. ~hny secondary 
systems perform vital functior,s whose failure during an earthquake could be just as catastrophic 
as that of the primary structure itself. The research goals in this area are to: 

1. Develop greater understanding of the dynamic behavior of secondary systems in a 
seismic environment while realistically accounting for inherent dynamic complexities 
that exist in the underlying primary-secondary structural systems. These complexities 
include the problcm of tuning. complex attachment configuration. Donproportional 
damping. parametric uncertainties. large number of degrees of freedom and non
linearities in the primary struCture. 

2. Develop practical criteria and procedures for the analysis and design of secondary 
systems. 

3. Investigate methods of mitigation of potential seismic damage to secondary systems 
through optimizaticn or pi otection. The most direct route is to consider enhancing 
their performance through optimization in their dynamic characteristics. in their 
placement within a primary structure or in innovative design of their suppons. From 
the point of view of protection. base isolation of the prinw:y structure or the applica
tion of other passive or active protection devices can also be fruitful. 
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Current research in secondary systems involves activities in all three of lhese areas. Their 
interaction and interrelationships with olher NCEER programs are illustrated in the accompany
ing figure. 

Seotndary Systems 
I 
I Prol!am 1 

Analyses and I - Structural 
Experiments Response 

/"" 
- Risk and 

Reliability 
- Seismicity 

and Ground 
Perfonnance Optimization Motion 
Evaluation and Prediction 
and Design Prol!!m% 

Criteria - ProteCtive 
Systems 

The purpose of research documented in this report is to develop a response spectrum approach 
for nonclassically damped structural systems. The aim is to make the procedure simple for 
practical applications and similar to the response spectrum procedure commonly used for 
analysis of classically damped systems. Emphasis is placed on nonclassically damped primary
secondary systems in which the effect of nonclassical damping is significunt. 
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ABSTllCT 

A response spectrum approach for analysis of nonclassically damped 

structural systems is presented. Similar to the response spectrum procedure 

for analysis of classically damped systems, the only required information 

regardi.ng the ground motion input is its response spectrum. The procedure 

takes into account the effect of cross correlation between modes with closely 

spaced frequencies, and it is simple for practical application. 

The proposed method is used to approximated the maximum response of 

several nonclassically damped st.ructural systems. Emphasis is placed on 

nonclassic3lly damped primary-secondary systems in which the effect of 

nonclassical damping is significant. Numerical rellultll indicate that the 

maximum IItructural respon.es predicted by the proposed respon.e spectrum 

approach are generally closer to the exact solutions than those obtained using 

approximate classically damped procedure. The accuracy of the present 

approach is quite reasonable. 
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SECTION 1 

INTP..ODUCTION 

In seismic analysis of multi-degree-of-freedom linear structures, modal 

analysis in conjunction with the res~onse spectrum continues to be the most 

widely used technique, referred to as the response spectrum approach. The 

main reasons are the simplicity of the procedure and the fact that in most 

design situations the input ground acceleration is specified in terms of the 

displacement response spectrum (commonly referred to as the response 

spectrum) . 

Traditionally, the response spactrum approach requires the decoupling of 

the equations of motion using the undamped modes of vibration of the system. 

Then, the maximWl response in each mode can be obtained using the response 

spectrum of the ground acceleration [2). Then, the maximWII value of the 

response quantities are determined using a proper modal combination rule [13). 

Consequently, such as approach requires that the damping matrix of the 

structure is of the classical (proportional) form (i.e., the form specified by 

Caughey and O'Kelly [1]). However, real structural systems may not always be 

classically damped, so that the damping matrix may not be diagonalized by the 

eigenvectors of the undamped systell. For these structures, referred to as 

nonclassically damped structures, the classical modal analysis is not 

applicable and the co~lex modal analysis procedure has been used in the 

literatures. 

Response spectrum approaches for nonclassically damped structures ha'.e 

been suggested, recently, tn the literature [9,12,6,ll}. Based on the complex 

modal analysis, the maximum response of a nonclassically damped structure had 

been expressed in terms of the displacement response spectrum and the velor-tty 

response spectrum of the ground acceleration [6,11]. The velocity re~ponse 
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spectrum was obtained from the displacement response spectrum using var; ous 

approximations [6,5]. 

In this paper an alternate approach is presented in which the equations 

of motion for a nonclassically damped structure are decoupled using the 

canonical modal decomposition approach [14]. The decoupled equations involve 

only real parameters and the maximum response of the structure is expressed in 

terms of the sine spectrum, that is related to the displacement response 

spectrum, as well as the cosine spectrum. The cosine spectrum is determined 

in approximation from the sine spectrum. A proper modal combination rule for 

sine and cosine spectra is derived and the maximum respons4r quantities are 

determined taking into account the effect of cross correlation of modes with 

closely spaced frequencies. Similar to the response spectrum approach for 

analysis of classically damped structures, the present approach is simple fur 

practical applications and only the information of the response spectrum f01: 

the ground acceleration input i. needed. 

The propo.ed respon.e spectrum approach is employed to approximate the 

maximum reapon.e of a number of noncla •• ically damped primary-secondary 

structural systells. Particular empha.is is placed on evaluating the maximum 

response of primary-secondary structure. in which the effect of noncl.ssical 

damping is known to be .ignificant [14]. including the tuning of the secondary 

system. Numerical result. indicate that the accuracy of the proposed response 

spectrum approach is quite re.sonabl. in comparison with the exact solution. 
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SECTION 2 

BACKGROUND 

The response of a linear n degree-of-freedom viscously damped structure 

subjected to a ground acceleration can be obtained by solving the 

following matrix equation of motion 

(1) 

in which ts, ~, and K denote the (nxn) mass, damping, and stiffness matrices of 

the structure, respectively, and X is an n displacement vector relative to the 

~oving base. The vector X is a unit vector X - [1, 1, ... ,1)'. The super dot 

f.ndieates differentiation with respect to time and an underbar denotes a 

vector or matrix. In Eq. (1). the argument of time, t. for X and x has been 
g 

omitted for simplicity. 

Caughey and O'Kelly (1) showed that if the damping matrix satisfies the 

identity ~ H- 1 K - K H-1 ~. the matrix of the eigenvectors of the undamped 

system, !. can be used to transform the equations of motion into a set of n 

decoupled equations. The eigenvectors are found from the solution of the 

following 

2 
1.01.1 ts!j - !!j - 0 (2) 

2 
in which Wj and!j are the j th eigenvalue and eigenvector, respectively, 

where CooI
j 

is the jth undamped natural frequency of the structure. 

The equations of motion are decoupled using the transformation X - • 

l in Eq. (1), where ! - [ !1' !2' .'. I !j] is the modal matrix. 

deeoupled equation of motion is given by [2) 

Tne jth 

(3) 

in which Yj is the jth element of I, 'j - ~' ts X I .' ts. is the jth modal -j -j-j 
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participation factor, and Ej - !j ~ !j / 2wj is the jth modal damping ratio. 

In the expressions above, a prime denotes the transpose of a matrix or vector. 

The solution of Eq. (3) can be expressed in terms of the well known 

Duhamel's integral 

(4) 

in which 

1 -- t Io exp[ -Ejwj(t-r)] sin wOj(t-r) xg(r) dr (5) 

is the relative displacement with respect to the ground for a SDOF oscillator 

2 1/2 with frequency Wj and damping ratio Ej . Note that wDj - wj(l - Ej ) is tha 

jth damped frequency. Generally, the quantity of most interest is the maximum 

value of Yj(t), denoted by Yj . For small values of damping (e.g., E < 20') it 

can be approximated by 

(6) 

in which 

S (e,w) -v Jt exp[-ew(t-r)] sin w(t-r) i (r)dr 
o g ~ 

(7) 

is called the spectral pseudo-velocity respon.e of the ground motion. Finally, 

the maximum value of the responae vector X(t), denoted by i, can be 

approxim4ted by the well known .quare-root-of-sum-of-square. (SRSS) 

procedure 

1/2 

(8) 

However, if the damping II&trix, k, is not of the cl.ssical fora, the 

eigenvectors of the undamped syste. will not diagonalize the damping .. trix. 

For such syste.s, the approach proposed by Foss (4) and Trai11-N •• h [10) can 

be used. In this approach, Eq. (1) is converted into a 2n first order .. trix 
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equation 

(9) 

where ~ is a 2n state vector, Z -{!} and 

~-[:I:l. 8- [
-IS Q 1 { Q } ~j , l!- ..... 
Q K -Ii 1: 

(10) 

The eigenvalue problem of Eq. (9), I>. Al + ~I - 0, can be expressed as 

follows 

(11) 

in which >'j and !j are the jth eigenvalue and eigenvector, respectively. If 

the systell is underdamped, the eigenvalue. and ei~411vectors are n pairs of 

complex conjugAte. The jth pair of eigenvalues can be written as 

(12) 

in which 1 - G , CoIOj - IoIj(l-(j 2)1/2, where IoI
j 

is different froll the jth 

natural frequency of the corresponding undallped systell. 

The response state vector, Z. can be expressed as a linear combination of 

the eigenvectors 

Z - ! ~ (13) 

where ! - [ !1' !2.···. !n ] is a (2nx2n) cOlDplex 1I0dal matrix. Sub

stituting Eq. (13) into Eq. (9) and prellu1tiplying it by the inverse of the f 
-1 matrix,! ,one obtaina a set of 2n decoupled equations 

j - 1,2 •...• 2n (14&) 

in Which Vj and Q
j 

are the jth e1e.ent of the ~ and Q vectors, Where 

Q _ t'l {. ::.}. (14b) 

Solutions of £q. (14a) together with t~e transforaation of Eq. (13) yield 
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the response state ve::tor ~(t) of the structural s·J'item. Since).j and !j are 

complex parameters that occur in complex conjugate palrs, the final response 

quantities are all. real. 

Igusa and Der Kiureghian (6). and Veletsos and ventura (11) expressed 

the solution of ~, Eq.(13), in terms of the Duhamel's integral and its 

derivative 

~ - j~l [~j hj (t) + ~j hj (t)] (15) 

in which ~j - -2 Re[ !jQj).j ] and ~j- 2 Re[ fjQj]' In Eq. (1:), hj(t) is the 

relative displacement of a SDOF system with frequency Wj and damping ratio 

~j given by Eq. (5); whereas hj(t) is the rel.ative velocity with respect to 

the ground. For classically damped systems, 13
j 

- 0, and as expected, the 

response can be expressed in terms of hj(t) alone. 

In practical design applications, the designer is provided with the 

description of the ground motion in terms of a response spectrua. The 

response spectrum is the plot of the maximUII pseudo-velocity, s « ,W), v 

defined by Eq. (6) as a function of frequency wand damping ratio (. The 

respon.e spectrUII also contains information regarding maxiCIUII relative 

displacement. Sd«('w), and 

they are related as follows 

S « ,w)/w v 

s «(,w) - w s «(,w) a v 

the maximWl pseudo-acceleration, S «(,w), since 
a 

(16a) 

(16b) 

Thes. thr.. quantities, i.e. , Sc:lce,w), s (e,w) and S «(,w) are plotted in v a 

a slngle chart against frequency in a so-called tripartite losarlthalc plot. 

It follow. fro. Eq. (15) that the determination of the maximum response 

of a noncla .. lcally damped structure requires not only the maxillUll relative 

displace.ent Sc1(e ,w) but also the maximum relative velodty, h(e ,w) 

maxi. Ih(t)l. Note that the maxillUll relative velocity, ~(e,w), is different 
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from the ~ximum pseudo v~locity, S (~,w). 
v 

Since, however. the maximUID 

relative displacement Sd(~'w) is the only information available to a 

designer, it is desirable to obtain the maximum velocity, h(E.w), in term 

of Sd<{'w). Attempts in this regard have been made by several researchers in 

the following. 

Villaverde and Newmark (12) assumed that for small values of damping 

ratio e. the maximum relative velocity. h({.w). can be approximated by the 

maximum pseudo veloCity S (e.w). v When the ground acceleration excitation is 

assumed to be a stationary white noice process. the relation between the 

maxilllUll relative velocity h(E .i00i) and the maximWl relative displacement 

Sd(E.w) can b. obtained in approximation. Such a relationship was assumed to 

hold for general earthquake excitations to obtain h(~ ,w) from Sd<{ ,w) by 

Igusa and Der Kiure~hian (6]. 

Gupta and Jaw (5) compared the maximum relative velocity. h(E. i00i), and 

the maximum relative displacement. Sd<e.w). for several earthquake records in 

different frequency ranges and concluded that for intemediate values of w 

(i.e .• 1< w <10 hz.). the maximum realtive velocity h({.w} can be 

approxim~ted by the maximum pseudo-velocity S (e.w). 
v Further. procedures are 

proposed for approximating the IUxillUll relative velocity li(e .w) using the 

knowledge of the IlAxillUll relative displacement Sd(e .w) for other frequency 

ranges. 

In this paper. we propose an alternate approach for approximating the 

maximum resp~nse of a nonclassically damped system from the knowledge of the 

response spectrum. Sd«('w). This is accomplished using the "canonical modal 

analysls· formulated by the authors for the analysis of nonclassically damped 

structures [141. 
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SECTION 3 

CANONICAL MODAL ANALYSIS 

The equations of motion for the state vector, Eq. (9), are rewritten as 

follows: 

(In 

where 

[ 
-1 -1 1 {} H & -li K -1: 

~ - I I Q ; li - . 'g' (18) 

The eigenvalues and eigenvectors of matrix ~ are identical to those of 

Eq. (11), denoted by ~j and!j' respectively, for j - 1,2, ... , 2n, lee Eq, 

(12). Further, the jth pair of eigenvectors can be expressed as 

!2j-l - !j + 1 ~j 

!2j - llj - 1 ~j j-l,2, ... ,n 

in which llj and h
j 

are 2n real vector. 

The (2nx2n) real matrix I constructed in the following 

will transform the matrix ~ into a canonical form~, i.e., 

~ - I-I ~ I 

in which 1-1 is the inverse of the I matrix and 

A _ [~1 ~2 .. 0 1 
o 'A 

-n 

where 

• j - 1. 2, .... n 
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Let the transformation of the state vector be 

Z - I ~ (24) 

Substituting Eq. (24) into Eq. (17) and premu1tip1ying it by the inverse of 

-1 
the I matrix. I . one obtains 

. 
v - A II + I x 

- - g 
( 25) 

in which A is given by Eqs. (22) and (23). and 

Equation (25) consists of n pairs of decoup1ed equations. Each pair of 

equations represents one vibrational mode, and it is uncoupled with other 

pairs. However. the two equations in each pair are coupled. The 

tran~"::ormation given in Eq. (24, is referred to as the canonical 

transformation [14). All the parameters in Eq. (25) are real. 

The jth pair of coupled equations in Eq. (25), corresponding to the jth 

vibrational mode, is given as follows: 

(27a) 

(27b) 

in which F
2j

_l and F2j are the 2j-lth and the 2jth elements of the [ vector, 

respectively. Solutions of Eqs. (27) together with the transformation of Eq. 

(24) yield the response state vector Z(t) of the structural system. 

The advantage of the formulation given above is that the computations for 

the solution. are all in the real £leld. The modal de.ccmposition approach 

described above is referred to as the canonical audal decomposition. 

There are a number of procedures that call be used to solve Eqa. (27) as 

explained in details in Ref. 14. Let hv (t) be the impulse response function 
j 

of the jth vibrational mode, i.e., Xg 6(t) and ~j(t) -[v2j_l,V2j)' - bv (t) 
j 
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where &(t) 1s the Dirac delta function. Then b (t) can be easily obtained 
Vj 

from Eq. (27) as 

-ej'-ljt 
cos '-IOj t) F2j -1 + 

-(j'-ljt 
sin c.lDj t) F2j (e (e 

II (t)- (2ij) 
Vj 

t 
-<e-(j'-lj -E '" t ~in c.lDjt) F2j _l + (e j j cos c.lDj t) F2j 

The response of the jth vibrational mode ~j<t) - [V2j _l , v2j ] 1s given 

by 

j - 1, 2, ... n (29) 

Using Eq. (29) and the transformation of Eq. (24), the displacement vector can 

be expressed as: 

(30) 

in which 

(318) 

(Jlb) 

r: 
-{ Col (t-f) 

Sj (t) - e j j dn c.lDj (t-f') i (r) dr 
g (llc) 

r: 
-( Col (t-f) 

Cj(t) - e j j cos "'Dj(t-f') ig(f) dr (lld) 

where AjL and ~jL are the lower halve. of the &j and ~j vector., re.pectively. 

For cla •• ie.lly aa-ped .tructure., the vector ~j c.n be shown to be null 

and, •• expected, tbe response reducea to teras involving the slne integrals 

S j (t) only. Of course, the lI&XilllWl value of integrals involving the sine 

terma is nothing but the pseudo-velocity S «(,w) which can b. obtained from 
v 
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the response spectrum Sd<€'w), Eq. (16a). 

For nonclassically damped syst.ems, the maximum response involves not only 

sine integ"Cals. but also cosine integrals, The following 

section outlines a simple procedure that can be used to evaluate the maximum 

of cosine integrals from the pseudo-velocity spectrum of the ground motion, 

i.e., maximum of the sine integrals. 
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SECTION 4 

EVALUATION OF COS IN! SPECTRUM 

The maximum value of Sjet) that involves sine integral denoted by 5j -

maxi. \Sj(t)\, is nothing but the pseudo-velocity, i.e., 5j - Sv(€j'wj } - Wj 

Sd(€j,wjJ. The plot of Sj against the frequency, wj ' for a given damping 

ratio, € j' is the pseudo-velocity spectrum, and herein referred to as the 

"sine spectrum". The maximum value of Cj(t) that involves cosine integral Eq. 

01), is denoted by <:j - maxi. \cjet)\. The plot of Cj against the 

cre ::juency, wj ' for a given damping ratio, € j' is herein referred to as the 

"cosine spectrum". Note that 5
j 

and <:j (or sine and cosine spectra) are 

functions of Wj and €j' and because of simplicity in notation these arguments 

are omitted. 

The pseudo-velocity spectrUII of an earthquake record can be generated 

either directly by numerical integration of Eq. (5) or using an approximate 

procedure developed by Newmark, Blume and Kapur [8]. In the latter case the 

pseudo-velocity spectrum (or the sine spectrum) is approximated by the 

knowledge of the lIaxilllUll values of the ground acceleration, ground velocity 

and ground displacellent. Such an approximate procedure is based on an 

empirical study of the respon.e spectra of a large number of earthquake 

records. 

In this study, the pseudo-velocity spectrum or the sine spectrum will be 

obtained using either one of the two approaches mentioned above, whereas the 

cosine spectrum will be evaluated, in approxillAtion, froll the sine spectrum. 

In order to evaluate the approxillAte relation between the sine spectrum 

and the cosine spectrua, the earthquake ground acceleration i (t) is ~del.d g 

expediently as a uniformly lIodulated non.tationary randoll process with zero 

mean 

(32) 
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in which a(t) is a deterministic non-negative ~odulating or envelope function 

and XO(t) is a stationary random process with zero mean and a power spectral 

density, ~xx(w). The stationary random process Xo(t) can be expressed 1n 

terms of a summation of sine functions as follows 

N 
xo(t) - L ~ sin(""'k t + ;k) 

k-l 
(33a) 

in which ;k's are independent random phase angles distributed uniformly in 

[0,211) and ~ - [ 2;xx(wk ) w ]1/2 with ~xx(""'k) being the power spectral 

density of xO(t) evaluated at frequency wk - kW. A commonly used form of the 

spectral density, .xx(w), is that given by (2,7) 

2 2 
1+4~ (w/I.) ) 

g g 

[ 
2] 2 2 2 l-(w/w) + 4e (,,",/101 ) g g g 

* (33b) 

in which eg , wg ' eO' wO' and S are parameters depending on the intensity and 

the characteristics of the earthquake at a particular geological location. 

Various typ •• of the envelope function aCt) have been suggested in the 

literature to introduce the non.tationarity of the ground acceleration into 

Eq. (32). One po •• ible fora of aCt) is: aCt) - (t/t
l

)2 for 0 s t s t l , aCt) 

- 1 for tl s t s t 2 , and aCt) - exp [P(t-t2) ] for t > t 2 · Note that t 1 , 

t2 and ~ can b. .elected to reflect the shap. and duration of the earthquake 

ground acc.leration. When aCt) - 1, the ground acceleration i. a .tationary 

random proc •••. Th. stationary a •• umption i. r.a.onabl. wh.n the duration of 

the .trong .haking of the .arthquake ground motion is much lonb~r than th. 

natural period of the structur •. 

Thus, the earthquake ground acc.l.ration can b •• xpr •••• d a. follow. 

(34) 
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Note that for a giv~n set of ;k values (k-l, 2, ... , N). Eq. (34) represents a 

sample time history of the ground acceleration x (t). Substituting Eq. (34) g 

into Eq. (31) and changing tor to a new integration variable r. one obtains 

N 

J: o(t-<l 
-~ w r 

Sj (t) - L ~Ksin[wk(t-r) ~ .k] e j j sin w r dr 
k-l 

Dj 
(35a) 

N 

J:O(t-') ... in["k(t-.) + 'oj 
-~ w , 

C
j 

(t) - L e j j cos wDj ' d, 
k-l 

(35b) 

It is mentioned that wk's for k - 1.2 ...• N are the frequency values of the 

power spectral density of the random process XJ(t); whereas Wj and e
j 

are the 

natural frequency and damping ratio of the single-degree-of-freedom 

oscillator. 

The maxiaull value. of expression. in Eqs. (35a) and (3Sb) have been 

denoted by Sj and C
j

• r.spectively. C
j 

will b. obtained in approximation .s 

follows. 

When Wj is very slDall, both the exponential term, and the 

cosine term, 

results in 

C
j 
(t) 

N 

1: - r 
k-l 

N 

1: -r 
k-l 

- x (t) g 

in Eq. (3Sb) can b. approximated by unity. This 

~ Q(t-r) sln[wk(t-r) + ;k] dr 

d. - I: ~ Q(r) sin(wkr + ;k) x (r) dr (36) 
g 

Therefore, the maximua value of Cj(t) for ... 11 Wj 1. the maximum ground 

velocity. Le .• C
j 

- maxi. lig(t) I. In other word., the cosine spectrum in 

the small frequency range 1. equal to the maximum earthquake ground velocity. 
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When w.l is very large, the natural period Tj of the oscillator is very 

short and hence the stationary period of the earthquake is much longer than 

the oscillator pe~iod T
j

. Thus, the maximum values G
j 

and Sj will occur in 

the stationary portion of the response. Conse~uently, the earthquake ground 

acceleration can be modeled as a stationary random process, i.e., oCt) - 1, 

and C.l(t) can be expressed as 

N 
Cj(t) - L 

lo.-l 
(37) 

Using exponential relations (Euler's equation) for the sine terms and cosine 

terms in Eq. (37), the integral can be evaluated as 

(38) 

Uhen Wj i. large compare to ~, the above expre •• ion can be approximated 

by 

in whlch 

1 +-2 
Wj 

(39a) 

(3gb) 

• Let t b. the ti .. at which Cj(t) reaches It. maximum value, 1.e., C
j 

-

* Cj(t}. Then, Eq. (39.) beeo ... 
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For ~j ~ 0, Eq. (40) can be further simplified to 

Cj - 12 [~j"'j Xg(t*) + Xg(t*) ] 
"'j 

(40) 

(41a) 

since the summation of sin ~k or cos ~k for k-1,2, ... ,N is close to zero. 

Eq. (41a) represents the maximum value of Cj(t) when "'j is large. Note 

that E
j 

is generally much smaller than unity. EXaDlination of Eq. (41a) 

reveals that ~ "'j 1I D2k extremely lAI&A, Cj ~ ~ approximated AI ~ 

inversely proportional !2 ~~. 

Cn the other hand, when "'j is extremely large, Ej"'j Xg(t) is the dominant 

term and Cj reduces to 

(41b) 

In a similar manner using Eq. (35a) with aCt) - 1, the following 

approximate expression for the sine spectrum Sj(t) for "'j very large can be 

obtained as 

(42) 

If t denotes the time at which Sj(t) reaches its maximum value, i.e., 

" 
Sj - Sj(t), then Eq. (42) can be simplified as 

.. 
Sj - Xg(t)/"'j - maxi. IXg(t)/"'jl (43) 

provide that (j ~ O. Equation (43) indicates that in the high frequency 

region (i.e., Wj very large), the relative pseudo-spectral acceleration ",j Sj' 

is constant and equal to maximum ground acceleration i (t) as expected. 
g 

A comparison of Eqs. (41b) and (43) indicat.s that when "'j is extremely 

large and (j .. 0, the cosine spectrum is related to the sine spectrum as 

follows 
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(44) 

In the intermediate frequency range for Wj' closed form expressions for 

Sj and Cj are not tractable. 

ground acceleration X (t) is 
g 

However, for a comparison of 5
j 

and C
j

, the 

approximated by stationary white noise with 

zero mean and a power spectral density SO' Then, and are 

st.:ltionary random process with zero mean and their mean square values (or 

variance) can be obtained as follows (see Appendix). 

(45a) 

(4Sb) 

It follows from above equations that for small damping e
j 

the variances 

of Sj(t) and Cj(t) are identical. Thus, the maximum values of Cj(t) and Sj(t) 

are approximately equal, i .•.• C
j 

= Sj' This, indeed, has been verified by 

comparing the exact C
j 

and Sj values for several earthquake records for 

intermediate values of w
j

. 

Noted that in Dlost situations the =esponse spectrulll used for design 

purposes is approximated by a series of straight lines in the tripartite 

logarithmic paper and it i. referred to as a smooth spectrum herein. These 

straight linea correspond to regions of amplification of the ground 

acceleration. velocity and displacement. There are also guidelines available 

that can be used to approxilll4te a smooth spectrum based on only the knowledge 

of the maxilllUla ground acceleration, velocity and dlaplace .. ent [8 J . 

Therefore the cosine spectrum will be obtained in approxilll4tion froll the 

available .lIOoth alne spectrum using the result. derived above. Tht. will 

lead to a smooth co.ine spectnmt, and the procedures are described in the 

following. 

Exact sina and cosine apectra for .everal earthquakes have been 

constructed and all sine spectra have been smoothlad out with straight lines. 
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A comparison betw •. en the smooth sine spectrum with the respective cosine 

specttum indicates that at low frequency values of "'j' the cosine spectrum i& 

constant and is equal to maximum value of ground velocity, Eq. (36), up to the 

frequency value, ~ . at which it intersects the sine spectrum as shown in Fig. , 
1 by segment 1. This point of intersection, ~ , determines the beginning of 

a 

the intermediate region in which the two spectra are almost identical. The 

upper frequency, ~, at which the two spectra are almost identical can be well 

approximated by the lar~est frequency at which the sine spectrum is equal to a 

constant amplification of the ground acceleration. This frequency, wb ' can 

easily be determined from the smooth sine spectrum, see Fig. 1. Beyond ~, 

the cosine spectrum can be well approximated by a straight line on the 

log-log paper with a slope of -1. see Eq.(41a), as shown in Fig. 1 by the 

segment (3). 

When Wj is extremely large, the cosine spectrum can be approximated by 

multiplying the sine spectrum by the damping ratio {j as shown in Eq. (44). 

Thus. in the extremely large frequency region, say Wj > 100 cps, a straight 

line parallel to the sin. spectrum but its ordinate being equal to {j Sj can 

be drawn as shown in Fig. 1 by the segment (4). The intersection of segments 

(3) and (4), denoted by we' is the beginning of the region where C
j 

= ejsj, 

Eq. (44). 

Thus, the cC"sin. spectrum is completely define if the maximum value of 

the ground velocity is known. Note that the value. of the maximum ground 

acceleration and ground displacement can b. obtained from the sin •• pectrum. 

Unfortunately, the value of the maximWl ground velocity cannot be directly 

extracted from the slne spectrum. Based on emplrical study of a large number 

of earthquakes, the average values for the maximum ground velocity was 

expre.sAd in teras of the .. ,ilium ground acceleration and the site condltion, 

(i .•. , aol1 type), In Ref.B. For rock, the aaximua value. of ground velocity 

4-7 



and ground displacement are 36 in/sec. and l~ in., respectively, for every 1 g 

in/sec. 2 of maximum ground acceleration. For alluvium, the maximum values of 

ground velocity and displacement are 48 in/sec. and 36 in, respectively, for 

2 every 1 g in/sec of maximum ground ar.:celeration. Therefore, by comparing the 

above values with the maximum values of ground acceleration and displacement 

obtdined from the sine :;pectrum, one can determine the soil types and the 

approximate maximum value of the ground velocity. 

Figures 2a through 2h presents the exact and smooth sine spectra for 

several earthquake ground accelerations. Also shown in these figures a~e the 

approximate smooth cosine spectrum obtained from the knowledge af the 

smooth sine spectrum. Fa~ comparison purposes the exact cosine spectrum which 

was obtained using a O\'JIlerical itegration of Eq. 35b is also presented. 
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SECTION S 

COMBINING MAXIMUM MODAL aESPONSES 

We are now in the position to obtain the approximate maximum structural 

response from the sine and cosine spectra. Recall that the vector of 

structural response ~ is given by Eq. (30), i.e., 

The earthquake ground acceleration is modeled as a random process with zero 

mean. Further, it is assumed that the stationary segment of the ground 

acceleration is long compared with the period of the structure, so that the 

structural response can be considered as a stationary random process with zero 

mean. Thus, Sj (t) and C
j 
(t) are all stationary random processfls with zero 

mean. The stationary variance of the structural response can be obtained from 

Eq. (46) as follows 

n n 
- L L [ri rj P(Si,Sj) DS as + 2rj ~i p(Sj'C i ) DS DC 

i-l j-l i j j i 

1n which a 
Sj 

are the 

+ ~i ~j p(Ci,Cj ) aCia
Cj

] 

standard deviations of Sj(t) 

(47) 

and 

respectively, and p(:Ji,Sj) - E[Si(t) Sj(t)] I aSia
Sj 

coefficiant of Si(t, and Sj(t). Similar definition holds 

co.ffic~ants p(Ci,Cj ) and P(Si'Cj ), 

is the correlation 

for the correlation 

For a stationary random process with zero mean, such a. Sj(t) and Cj(t), 

the mean of the maxiJaulll value may b. expre .. ed in approximation by a peak 
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factor 1 multiplied by the standard deviation. Assuming that the peak factor 

-, for all stationary processes Cj(t) and Sj(t). for j - 1.2 •.... n. as well as 

the response vector process ~(t) is identical. i.e .• Sj- -'C7
Sj

' Cj - .., C7
Cj 

for j - 1.2, .... n and ~ - maxi. 1~(t)1 - -, ~~. one obtains from Eq. (47) the 

square of the maximum response as follows 

I~I ~ ~ I [ri rj P(Si,Sj) 5i 5j + 2r i ~j P(Si,Cj) 5i Cj 
i-l j-l 

(48) 

2 in which the jth element of the vector I~I given above is the square of the 

maximum value of the relative displacement to the moving bllse of the j th 

floor. 

For classically damped system. ~j - 0 and Eq. (48) redu~es to the 

Complete Quadratic Combination (CQC) methed (13). Since the sine and cosine 

spectra. Sj and C
j

, have been estimated previously, the remaining step is to 

evaluate the correlation coefficients in approximation. Der Kiureghian [ 3 ) 

computed the correlation coefficients P(Si,Sj) for the sine spectrum using 

the filtered white noise as the input excitation and compared with the 

corresp<'nding results when the input excitation is white noise. His 

correlation coefficientll P(Si' Sj) under filtered 

white noise input can very well be approxim3ted by that due to a white noise 

conclusion is that the 

input whf'n the damping is not very large (e.g. E<20t). Hence. the correlation 

coefficiAnts P(Si,Sj) obtained using the white noise excitation can be used 

for the computation of the maximum response. 

Here, we suggellt the use of the white noise excitation as input to 

compute the correlation coefficients, and 

appearing in Eq. (48). The resulta are given in the following (detailed 

5- 2 



derivations are presented in the Appendix) 

(49a) 

(49b) 

(49c) 

where 

(50a) 

(SOb) 

- eiwi ... e'j Wj (SOc) 

2 2 2 
- b ij ~Oi WOj (SOd) 
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SECTION 6 

NUMERICAL EXAMPLES 

In order to demonstrate the accuracy of the response spectrum approach 

developed in this paper, the maximum response of several nonc1assically damped 

structural systems subjected to several earthquake ground excitations will b. 

com:idered. Based on a detailed study conducted in Ref. 14, the effect of 

nonclassical damping is significant for certain primary-secondary syst~ms 

suO cted to earthquake excitations; particularly if the equipment is lhl- j-

an lt is tuned to a frequency of the primary structure. Therefore, emphasis 

is placed on approximating the maximum response of several nonclassica11y 

damp~d primary-secondary systems. 

All the example problems are subjected to the 1940 E1 Centro, 1971 San 

Fernando, 1985 Mexico City earthquakes, and simulated nonstationary ground 

accelerations described in Eqs. (33) and (34). The parameters that describe 

the envelope functlon, aCt), and the spe~tral density, ~ii(w), of the 

earthquake modal are: tl - 3 sec., t2 - 13 sec., ~ - 0.26, Wg - 3.0 Hz.,eg -

2 -4 2 3 
0.65, Wo - 0.5 Hz., eO - 0.71 and S - 74.7 x 10 m Isec. jrad. Wlth these 

parameters a simulated ground acceleration is shown in Fig. 3. 

The maximWl structural responses (1. e. story diap'.acements and story 

deformatlons) are obtalned uslng the following approaches. 

1. The wilson-' dlrect time hiatory lntegration method. The maximWD 

response thus obtained i. exact, referred to as the exact solution. 

2. The re.ponse spectrum approach proposed. Recall that this approach 

requires the knowledge of the sine spectrum (pseudo-velocity response 

spectrum) and co.ine spectrum of the ground motion. The eosine 

spectrum may be generated from the time history of the ground 

acceleration (if available) or approximated from the .ine spectrum using tbe 

guideUnes discu .. ed in section IV. For the example problems studied the 
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maximum response is obtained using both t.he excat and approximate cosine 

spectra. 

3. The approximate classically damped approach. In this approach, the 

second order equations of motion are decoupled using egenvect:Jrs of the 

undamped system by disregarding the off-diagonal terms of the .' ~ ~ matrix, 

~here • is the (nxn) modal matrix of the undamped system. Then the maximum 

response is obtained from the sine spectrum using the SRSS procedure. 

The above solutions are obtained for a particular earthquake, such as El 

Centro or simulated sample eartllquake. Likewise, The maximWII response of all 

the example problems were also computed using the average sine and cosine 

spectra for twenty simulated ground motions having the power spectral density 

and envelope function described previously. Ho~ever for this situation one 

cannot obtain the exac -: maximum values of the response quanti ties. The 

maximum structural response obtained using various approaches will be compared 

to demonstrate the validity of each approach. 

The first example problem consists of a two-degree-of-freedom shear beam 

type structure. This structure is classically damped if Cl/kl - C2/k2' The 

mass and stiffness of each story unit are: ml - m2 - m - 30 tons and kl - k2 

- k - 19,379 kN/m. The natural frequencies of the structure are 2.S Hz and 

6.5 Hz, respectively. 

Let values of Cl and C
2 

be equal to 123.4 kN/m/sec. so that the structure 

is classically damped with first modal damping ratio of S,. Now the 

distribution of the damping is varied so the structure becomes nonclassically 

damped. Two nonclassically damped structures are considered. Firat all the 

damping Jf the structure is placed in the first story unit; with the results 

CI - 246.8 kN/m/sec. and C2 - 0.0. Next all the damping of the structure is 

placed in the second story unit, leading to the results C1 - 0.0 and C2 -

246.8 kNIll/sec. Tables I-a through l-c pre.ents the DSxillWII f~Ory 
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deformations (U
l

,U
2

) of the structure with these three different damping 

distributions. An examination of the Table indicates that, as expected, the 

effect of nonclassical dampi.ng on this type of structural system is not 

si.gnificant and that either of the response spectrum procedures (i.e. 

classical or nonclassical damping) predicts maximum structural responses that 

are in close agreement with the axact solutions. 

Next consider the classically damped two-story structure of example 1 in 

which a light single-degree-of-freedom equipment is mounted on the top floor. 

Such a primary structure is classically damped if Clikl - C2/k2 where Cl - C2 

- 123.4 kN/m.sec. and the combined equipment-structure system is classically 

C2/k2 - Celke where the subscript e referes to the 

equipment. In Ref. 14 it was shown that the effect of nonclassical damping 

for this equipment-structure system is significant if (i) the eqUipment is 

tuned to a frequency of the primary structure, (11) the equipment mass is 

light compared to the tuned modal ~.ss of the primary structure, and (iil) the 

equipment damping ratio is smaller than the damping ratio ~ that results in ec 

a classically damped equipment-structure system. 

Let the equip.ent frequency, w , be tuned to the fundamental frequency of 
e 

the primary structure, 1.e. we - 2.5 Hz. and the mass ratio (equip.ent rna .. 

over the fir.t modal ma •• of the primary structure which is 30 tonal be equal 

-4 to 10 . For this equip.ent-structure .ystem the value of ~ i. equal to 5t. ec 

Tables 2-a through 2-c pre.ents the maximum response of the equipment 

structure .yste. for 3 different damping ratios of the equip.ent i.e. ee - Ot, 

St. and lOt. 

Examination of the re.ult. in Table 2-a, which correspond to E - Ot, e 

indicate. that the displacement of the equipment relative to the attachment 

point using the re.pon.e spectrum approach developed in this paper is only 6t 

higher than the exact solution for the El Centro earthquake. 12t higher for 
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the San Fernando earthquake. l4t higher for the Mexico City earthquake. and 

3lt higher for the simulated earthquake. Whereas using the approximate 

classically damped approach, the response is 73t lower than the exact solution 

for the [1 Centro earthquake. 71t lower for the San Fernando earthquake, 25' 

lower for the Mexico City earthquake. and 60t lower for the simulated 

earthquake. A comparison of the results obtained using the approximate cosine 

spectra with those obtained using the exact cosine spectra for various 

earthquakes considered except the Mexico City indicates excellent agreement. 

For Mexico City earthquake the maximum equipment response using the 

approxiaate cosine spectra is 46t lower than that using the exact cosine 

spectra. ~ .xp.ctod, the effect of nonclassical damping on the response of 

the primary structure is inSignificant and the maximum response. obtained 

using differ.nt approaches are in close agreement. Results obtained using the 

response spectrum of a single grcund acc.leration reco~d and those obtain.d 

using the av.rage response spectrum of twenty records exhibit similar trends. 

Table 2-b pres.nts the maximum response when the equipment- structure 

system is classically damped (i.e. ~ -~ -5t). e ec Of course for this situation 

the nonclassically damp.d response spectrum approach reduces to classically 

damped response spectrum prodecure and these results are in good agr •••• nt 

with the exact solutions. 

Table 2-c pr.s.nts the results when the equipment damping ratio is lOt. 

EXAllination of the equip •• nt displace.ent relative to the attachment point 

indicat.s that the equip.ent response using the response spectrum approach 

developed is again in good agr.e.ent with the exact solutions. Th. aa1tillUll 

deformation of the equipment is within 2lt of the exact solution for all four 

earthquake •. However, the equipment respon •• is 250t higher than the exact 

solution when the approxiaate classically damped approach !.. used. The 

results obtained using approxlaate eosine spectra are in reaarkable agr.ement 
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with those using the exact cosine spectra for all earthquakes. Again. for the 

simulated earthquakes the results obtained using one and twenty sample records 

exhibit similar trends. 

Next we ~xamine the response of the equipment mounted on top of the two 

nonclassically damped structures of example 1. Again the equipment is tuned 

to the fundamental frequency of the primary structure and three different 

damping ratios for the equipment are considered (i.e. ~e - 0 •• 5' and 1o,). 

Tables 3-a through 3-c present the maximum story dp.formation for the 

equipment-structure system in which all the dampings of the primary structure 

are placed in the lowp.r story unit. The corresponding results for the case in 

which all the dampings of the primary structure are placed in the second story 

unit are presented in Tables 4-a through 4-c. 

It is observed from these tables that the maximum eqUipment deformation 

based on the response spectrum approach developed in this paper is within 44' 

of the exact solutions. However, based on the approximata classically damped 

procedure the equipment responses deviate up to 490t of the exact solutions. 

On the other hand, the effect of nonclassical damping on the primary structure 

response is insignifant. The re.ult. obtained using the approximate cosine 

spectra are very close to thos4 obtained from exact cosine spectra. 

Suppose the equipment is detuned and its frequency is chosen to be the 

average of the first tvo natural frequencies of the primary structure. 

Similar to the tuned equipment-structure system, three different damping 

diatributiona for the primary .tructure are considered and the equipment is 

undamped, i.a., ~-o. 
a 

Table. 5-a through 5-c pre.ent the respon.e of the 

datuned equipment-structure .y.tem. It 1s ob.ervad from these tabla. that the 

accuracy for tha propo.ed responae apectrwa approach, is well within 40', 

wherea. the accuraey for the approxi_te cla .. 1caUy damped procedure h 

within 711 of the exact .olution. Fur the more , the re.ults obtainad using 
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exact and approximate cosine spectra are very close. Finally. the response 

due to one simulated earthquake or twenty samples of simulated earthquakes 

exhibits similar trends. 
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SECTION 7 

CONCLUSIONS 

A response spectrum approach for the seismic analysis of non- classically 

damped structural systems has been presented. Similar to the r~sponse 

spectrum approach for analysis of classically damped structures, the only 

information required for the gt.-ound motion input is the response spectrum. 

The maximum re'lponse of the nonclassically damped structure is expressed in 

terms of the sine spectrum and the cosine spectrum. The stne spectrum is 

directly related to the response spectrum of the ground acceleration, whereas 

the cosine spectrum is obtained in approximation from tne response spectrum as 

well. The formulation takes into account the effect of cross correlation of 

modes with closely spaced frequencies. 

The proposed approach has been applied to approximate the maximum 

response of several nonclassically damped structural systems subjected to 

several earthquake ground accelerations. Particular emphasis is placed on 

evaluating the maximum respon~e of structural systems in which the effect of 

nonclassical damping is known to be significant. 

Numerical results are compared with the exact solutions obtained by 

numerically integrating the equations of motion. It is shown that the 

accuracy of the propo •• d approach i. quite rea.onabl •. Al.o pre.ented are 

maximum re.pon •• quanti tie. obtained using the approximate classically damped 

~?lution.. Numerical re.ult. indicate that the accuracy of proposed approach 

is generally better than that of the approximate cla •• ically damped solutions. 
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APPENDIX 

CALCULATION OF CORRELATION COEFFICIENTS 

In this Appendix, the various correlation coefficients needed to compute 

the approximate maximum response will be evaluated. These correlation 

coefficients are defined as 

(1. la) 

(1. lb) 

(I.le) 

in which 

-EO: r: 
(1. 2) 

Similary E(CiCj ) is given by Eq. (1.2) with sin c.lOi"l and sin c.lDj '2 being 

replaced by cos c.lDi"l and cos c.lOj "2' respectively. and E(SiCj) is also given 

by Eq. (1-2) with sin c.lDj "2 being replaced by cos c.lOi"2' 

With the assumption that the eqrthquake ground acceleration Xg(t) is a 

stationary white noise with zero lIean and a power spectral density SO' Eq. 

(1.2) can be obtained a. follows. 
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- [ ,.... R···· (1' -1' ) o JO xx 1 2 

(1. 3a) 

Similarly, the expressions for E(C
1

C
j

) and E(SlCj) can be obtained as 

follows 

[ 

(i wi + (, wJ 
«(1 wi + (j Wj )2 + (wD1 - wDj )2 

+ 

(1. 3b) 

and 
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(1. 3c) 

The mean square values are obtained by setting indicies i and j equal to 

each other in Eqs. (1.3a) and (1.3b) as follows 

2 

E(Si
2

) 
2 "SO(l-e i ) 

- u - 2e i "'i S1 
(I.48) 

2 

E(C i
2) 2 "SO(l+e i ) 

- u -
2(1 "'1 C

i 
(1.4b) 

Substituting Eqs. (1.3) and (1.4) into Eqs. (1.1). one obtains the three 

correlation coefficients in the following 

(1. Sa) 

(1. 5b) 

(1. 5c) 

and 

a
ij - (e1ejW1Wj) 

1/2 
(1.6a) 

b ij 
2 2 

- 1.11 + "'j + 2(1e j"'iWj (1. 6b) 

c 1j -, (11.11 + Ej Wj (1. 6c) 

d
ij 

2 
- 4c.ID1 

2 2 
- b ij "'Dj (I.6d) 
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