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PREFACE

The National Center for Earthquake Engineering Research (NCEER) is devoted to the expansion
of knowledge about earthquakes, the improvement of earthquake-resistant design, and the
implementation of seismic hazard mitigation procedures to minimize loss of lives and property.
The emphasis is on structures and lifelines that are found in zones of moderate to high seismicity
throughout the United States.

NCEER'’s research is being carried out in an integrated and coordinated manner following a
structured program. The current research program comprises four main areas:

L 4

Existing and New Structures
Secondary and Protective Systems
Lifeline Systems

Disaster Research and Planning

»

L]

This technical report pertains to the second program area and, more specifically, to secondary
systems.

In earthquake engineering research, an area of increasing concern is the performance of secon-
dary systems which are anchored or attached to primary structural systems. Many secondary
systems perform vital functions whose failure during an earthquake could be just as catastrophic
as that of the primary structure itself. The research goals in this area are to:

1. Develop greater understanding of the dynamic behavior of secondary systems in a
seismic environment while realistically accounting for inherent dynamic complexities
that exist in the underlying primary-secondary structural systems. These complexities
include the problem of tuning, complex attachment configuration, nonproportional
damping, parametric uncertainties, large number of degrees of freedom, and non-
linearities in the primary structure.

2. Develop practical criteria and procedures for the analysis and design of secondary
systems.

3. Investigate methods of mitigation of potential seismic damage to secondary systems
through optimization or protection. The most direct route is to consider enhancing
their performance through optimization in their dynamic characteristics, in their
placement within a primary structure or in innovative design of their supports. From
the point of view of protection, base isolation of the primary structure or the applica-
tion of other passive or active protection devices can also be fraitful.
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Current research in secondary systems involves activities in all three of these areas.

Their

interaction and interrelationships with other NCEER programs are illustrated in the accompany-

ing figure.

Secondary Systems

Analyses and
Experiments

Evaluation
and Design

Performance Optimization
and Protection

Criteria

Program 1
- Structural

Response
- Risk and
Reliability
- Seismicity
and Ground
Motion

Program 2
- Protective

Systems

R —— e L

Response of a yielding primary structure under normal white noise excitations is studied in this
report. The focus is on the nonnormality of the absolute acceleration. While the report does not
address its effect on the response characteristics of secondary systems, results suggest that
secondary system response can be decidedly nonnormal as well and this nonnormality should be

investigated.
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ABSTRACT

Response nonnormality is investigated for a yielding primary structure sub-
jected to a normally distributed ground acceleration. This is a preliminary step in
the nonlinear investigation of primary-secondary systems, since this primary acceler-
ation is the base excitation of a light secondary system. The nonlinearity considered
is bilinear hysteretic yielding in the primary structure. Results are presented from

simulation, and from analysis of a simplified nonhysteretic substitute structure.

This study of the nonnormality of acceleration is an extension of previous
investigations whick focused on displacement nonnormality. The nonlinear but
nonhysteretic substitute structural model used here is a substantially improved
version of an earlier model. The substitute structure is one for which the stationary
Fokker-Planck equation can be solved to obtain values for probability distribution
and moments of response. The coeflicient of excess is used as a measure of the

nonnormality.

Analytical and numerical results for the substitute structure are compared with
those from simulation of the bilinear hysteretic system. Such comparisons are made
for both the relative displacement and the absolute acceleration of the primary
structure, and include both the mean squared levels and the coefficients of excess
of those responses. The agreement between the two sets of results for acceleration

is shown to be quite good.
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SECTION I

INTRODUCTION

If the excitation of a linear system has a normal or Gaussian probability
distribution then the linear system response is also normal. The theory of the
stationary response of linear systems to random excitation is quite well developed
and is available in common reference books {7,13,17,18]. Unfortunately, structural
systems under dynamic loading often exhibit nonlinear behavior, and the response
of a nonlinear system under normal excitation is not normal. Some recent studies of
fatigue damage accumulation {106,14,22] and of first-excursion [8] probabilities have
shown that these two quantities can be significantly affected by nonnormality of
the random process studied. Such nonnormality is particularly likely to occur in
a situation involving significant nonlinearity, like the yielding eflect in a hysteretic

system.

The dynamics of linear primary-secondary systems have been quite extensively
investigated for both deterministic and stochastic excitations [1,9,12,19]. One aspect
of the dynamic response which cannot be found from such linear studies, though, is
the nonnormality which may result from nonlinearities in the system. As for simupler
systems, this nonnormality could have a very important effect on the probability of
damage or failure. One very simple nonlinear primary-secondary situation is when a
very light secondary system is attached to a yielding single-degree-of-freedom (SDF)
primary structure. In this situation the absolute acceleration of the response of the
primary structure becomes a nonnormal base excitation of the secondary system.

The current study is primarily concerned with quantification of the nonnormality
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of the absolute acceleration for such a yielding primary structure.

A simple and natural way to include nonnormality in the analysis of a random
variable is through consideration of moments higher than the second. In particular,
the fourth moments are important for characterizing nonnormality (especially if the
random variable is symmetric about its mean value so that the third moment gives
no new information). In this study, the kurtosis or the coeflicient of excess (i.e.
kurtosis minus 3) will serve as the index to represent the degree of nonnormality of

a random process.

The objective of this study is to investigate the nonnormality of the response
behavior of a SDF bilinear hysteretic structure under normal white excitation.
Particular attention will be paid to the nonnormality of the absolute acceleration.
Both approximate analytical methods and computer simulation results will be
presented. The approximate technique uses a nonlinear nonhysteretic substitute
structure. Numerical results from computer simulation and from the substitute
structure will be presented, and appropriate conclusions will be drawn regarding

the extent of nonnormality and the usefulness of the substitute structure model.
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SECTION 1I

HYSTERETIC SYSTEM

A mechanical systern which exhibits a bilinear hysteretic restoring force is

shown in figure 2-1. The equation of motion can be written as :
me + cz + (k1 + k2)é(z) = 72(?)

or

&+ 2Ppwet + widlz) = ﬁ-—_g—) = n(t) (2.1)

where:
m is the mass

wy = 1/ If%—k—"-, small amplitude undamped natural circular frequency

By = 2w2m, small amplitude fraction of critical damping, and
@(x) is the bilinear hysteretic restoring force as shown in figure 2-2. Note
that ¢(z) is chosen to have a unit slope for small amplitudes and a second slope

a = (,T’ffm Also, ¢(z) depends on previous value of z(t) but with the limitation

that if z(¢) is periodic, then ¢(x} is also periodic.

For the present investigation, the excitation n(f) represents ground accelera-
tion. It is taken to be a stationary, white, random process with a normal probability
distribution, and a uniform power spectral density equal to D/7 (per radian) for

all frequency. That is, the auto-correlation function is given by

E[n(ti)n(tg)] = 2D6(t1 — tz) (22)

in which 6(¢) is the Dirac delta function.
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The system described by eq. 2.1 has probably been more widely studied than
any other class of nonlinear hysteretic oscillator[3,10,15]. Two particular values of
the slope ratio were chosen to illustrate important situations. These are a=1/2, a

moderately nonlinear system, and a=1/21, a nearly elastoplastic system.

No exact solution for the statistics of the response of such a hysteretic system
to random excitation have yet been obtained by an analytical technique. Thus,
a computer simulation program has been used to obtain empirical data, and a

substitute structure concept is used for analysis.
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SECTION II1

EQUIVALENT NONHYSTERETIC SYSTEM

A general class of nonlinear oscillators for which the exact analytical probability

density function of stationary response has been obtained is described by
8+ f(H)2 + gz) = n(t) (3.1)

where g(x) is an odd nonhysteretic function and g{x)>0 for x>0, H=G(x)+z?/2

{energy in the system),

6(z) = / " (w)dy

F(H) is a positive function, and n(t) is a Gaussian, white process with mean zero.

The method used in this study involves choosing f(H) and g(z) in eq.(3.1) in
such a way as to give an approximate equivalence between the systems described
by eq. 3.1 and eq. 2.1. Approximate response statistics for the hysteretic system

are then predicted from the analytical or numerical solution for eq. 3.1.

The actunal choice of a nonhysteretic system to approximate a given hysteretic
system could be based on any of several methods of comparison of the two systems.
Two rather mathematical approaches have been applied to specific problems by
Caughey and Ma [4] and by Cai and Lin [13]. In the former work, the choice is
based on a minimization of the mean squared difference between the two equations

of motion, and in the latter the comparison is in terms of the stationary probability
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distribution seolution of the appropriate Fokker-Planck equations. The method
of comparison chosen here is less mathematical and somewhat intuitive. It is a
modification of the procedure used in [15]. The nonlinear stiffness is taken to be
the same as in that earlier work, but the damping function is modified based on more
recent results regarding the energy dissipation of hysteretic structures. Specifically,
two different nonlinear oscillators will be considered to be approximately equivalent
herein if the following two statements hold true :

1. The two oscillators have the same functional relationship between resonant
frequency and amplitude of vibration, and

2. The two oscillators have equal energy dissipation per unit time.

To make equivalence statement 1 be precise, the resonant frequency w, for eq.

2.1 will be taken as

2%
w? = ;—%[) cosu ¢(Acosu) du (3.2)

where A is amplitude of vibration. For eq. 3.1, one merely replaces ¢ by ¢ in
eq. 3.2. eq. 3.2 can be shown to be closely related to other common definitions
of resonance. For example, eq. 3.2 approximates the frequency of free vibration
of an undamped nonlinear system, and the frequency of maximum response of a
hysteretic system with harmonic excitation [15]. Equivalence statement 1 requires
that g(z) in eq. 3.1 be chosen such that eq. 3.2 gives the same w, as for eq. 2.1
with some particular functional ¢. For the ¢ of the bilinear hysteretic system it has

been shown [15] that an appropriate g(z) function is

g-(fl=w or |&
w} forlal < ¥ (3.3)

=(1-~ a)Y%z"lj;c]% + oz for lz|>Y
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Equivalence statement 2 involves the rate of energy dissipation. For comnve-
nience, this will be taken as energy per unit mass. The energy dissipation of eq. 3.1
will depend on f, which is given to be a function of the energy H. If one postulates
that H varies slowly as compared to displacement and velocity variations, then the

energy for a cycle of amplitude 4 can be approximated as
H = G(4) (3.4)

Hence, the damping function f is only a function of the amplitude of vibration.

Neglecting higher-harmonic contributions, the energy dissipated per cycle for eq.

3.11s
ED = rfw,A* (3.5)

The energy dissipated per unit time is then found by dividing by the period of the

cycle (27 /w,) and averaging over all possible amplitudes:
1
E(EDT) =  E{fIG{A)wX(A)4° (3.6)

The energy dissipated per unit time for the hysteretic system of eq. 2.1 is
slightly more complicated. The viscous damping term can be handled as above,
with f[G(A4)] in eq. 3.6 replaced by 2Bpwy. The hysteretic energy dissipation,
though, will be treated somewhat differently. Previous studies of the power balance
in hysteretic oscillators [16,20] have shown that this rate of energy dissipation can

be approximated by using the area of the hysteresis loop (EDH), which is the energy
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dissipated per hysteretic cycle, and a period based on the tangent stiffness of ¢, For
the bilinear hysteretic system this tangent stifness is k for A <Y and k2 = ak for
A > Y. Combining these resulis gives the energy dissipation per unit time in eq.

2.1 as

E(EDT) = owo E[w?(A) 4] + ‘/—“"’ Y20 E(EDH) (3.7)

Comparing eq. 3.6 and eq. 3.7 shows that equal energy dissipation per unit

time is achieved if f is defined by

Ve w (EDH)

T w: A2

f=2Bowe + (3.8)

where

(EDH) = 4(1 - a)wlY(A-Y) (3.9)

for the bilinear hysteretic restoring force.
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SECTION 1V

RESPONSE OF THE NONHYSTERETIC SYSTEM

Caughey solved the Fokker-Planck equation for the system of eq. 3.1 to obtain

the joint, stationary, probability density function as [5)

pz:i:(q’ Q) = Cewp{—F[H(%é)/D} (41)

where

H
F(H) = /0 F(h)dh

Note that p,; depends on the energy H associated with particular combinations of

z and z, rather than depending on z and ¢ independently.

For the present purpose, it is more convenient to write the results in a slightly
different form. Let a variable 4 > 0 be defined by H = G( A}, then one can compute

the probability density function of this variable from eq. 4.1 as

pa(a) = CT(a)g(a)exp{—F[G(a)|/ D} (4.2)

where

T(A) = 4 / ! [2G(A) - 2G(=)]” * de (4.3)

One can show that T(A4) is exactly the period of free vibration of amplitude 4 of

an undamped system, and it will be approximated by
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T(A) (4.4)

~
where w, is given by eq. 3.2, which can be written for the bilinear hysteretic system

as

2 2
YrZ2 1 for A<Y
wz(l-a)
° l (4.5)
1 ., 2¥ 2 2y ¥ Y 3
- = — Ty 21 - Sy =1 - — >
—cos (1 i } 77(1 Y ){A(l A)] for A>Y

The g(A) in eq. 4.2 will be evaluated from eq. 3.3, for the corresponding

nonhysteretic system, and G{A4) is obtained by integration as

2 A2
G(A) = "’ﬂzA for A<Y
(- a)wiy?

2

4.6
Al awl A? (4.6)
{4(37) -—3]+—-§—— for A>Y

Using eq. 3.9, the EDH for a bilinear hysteretic system, in eq. 3.8 to obtain

" the damping function f in eq. 3.1 yields

fIG(A)] = 2Bows for ASY

2y (4.7)

Y
Z(l—Z) fm'A>Y

= 2B + -/a(1 — afwo( )

Since both f and H = G(A4) can now be easily evaluated as functions of the
amplitude A, it is straightforward to use numerical integration to evaluate F (for
H > w3Y?/2) for use in eq. 4.2. This gives all the terms in eq. 4.2 except C, which
can be obtained from the necessary normalization that the integral of p4(a) from

zero to infinity must be unity.
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Next consider the evaluation of the desired response moments. Let the response
be written as

z{t) = A(t)cos[w,t + 8(t)] (4.8)

where w, 1s a function of 4, and assume that the random phase angle 4 is uniformly
distributed from zero to 27 and is statistically independent of A. Then, the mean-

squared value of x can be written as

E(z*) = ai = E(: ) = -;-/Ow asz(a)da (4.9}

the fourth moment of x i1s

E(z*) = gE(A‘*) = g/om a*pa(a)da (4.10)

and these two integrals can be easily evaluated by numerical integration.

Let 7 denote the absolute acceleration (£ — n) of eq. 3.1. Then
Z=—[f(H)z + g(z)] (4.11)

Unfortunately, some of the terms in FE(%?) and E(Z*) are not quite so easily
converted into integrals over A as were the expectations for displacements. Looking

at the conditional expectations given 4, the moments of Z can be shown to be

w2 A%

B(F|4) = G4

+ Efg*(x)l4] (4.12)

3w At

B(*14) = PG4

+ 6% |G(A)E[2"g*(«)|A] + Elg™(2)|4]  (4.13)

After some simplification the conditional expectations involving g (from eq. 3.3)

can be shown to be
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Biealfug = 5~ O gy X s

4&(1 -—O() 3/2 1/’2 9‘ ]/2
4 7Y% 4 (cos8) ' “d8 (4.14)
T 0
(1-a)’Y® 1+ sind"

—1
og( 1 —sinf*

s A )

At (1 -a?) Y Y? |
Ei+%a* 4,02y 2 N S oadrgr o T (1 — *
[£”g*(x)|A]l/(wow;) = 3 yym A%[6" + A(l 23 )sin*]

8a(l — a) 3/2 45/2 /ﬁ 1/2 Y 3/2 5 oF
+ Y32 Av i (cosh) d()——(A) siné”]
14 siné®

m) - 23%7&9 ]

2
+ Llﬂt;il—Y3A[log(
(4.15)

O R Y

3¢ _
+ ?ﬁ“__(_l____?le/%AW[s/ (cos8)/*db + 2(%)3/252'”9*]

om 0
2¢4 _ .32 Y vs
+ 12a7(1 - o) Y3 Asind* + 21 -a) EC*.sim?’"
T T A

8a(l — o)’ Y/2

T A1/2

3 ... Y Y. .
[5(9 +Asm0)+(A)sm0]

*

(4.16)

8" Y 1/2
[3/ (cosﬁ)s’/zdﬂ - 2(*A—) sind"]
0

in which cosf* = Y/A.

The two integrals of non-integer powers of cosf in egs. 4.14 to 4.16 have been

approximated analytically (see Appendix A) as

f (cos)'/*df ~ 6°[1 — l(f—)2 ~ —1—(0.5784 6" (4.17)
0 32 11 \
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" 6 9 o
/ (0039)3/2d0 e 6*{1 -— (—2-)2 + a)‘('-z--)4
0 (4.18)

— [ = (= )P(0.4912 )0 + -2—11(0.4912 6y}

With appropriate substitutions it is now possible to obtain the desired moments
of z and 7 in one pass of numerical integration incrementing 4 from Y to some very
large‘ values. Specifically, integration of eq. 4.7 gives F in eq. 4.2, integration of
(g/wr)exp(—F/D) gives (2nC)~! for the same equation, integration of eqs. 4.9
and 4.10 gives the moments of z, and integration of eq. 4.2 times 4.12 and 4.13,

respectively, gives the moments of z.

If the excitation is either very small or very large, then one can use simpler
approximations for f(H) and g{z) than those proposed above and thereby avoid
numerical integration. That is, one can obtain analytic expressions for mean-
squared response as well as fourth moment response. Appendix B summarizes

the results of two such approximations.

In the computer simulation, the “white noise” excitation was obtained from a
pulse method. The acceleration at the base of a structure was taken to be a sequence
of uniformly spaced Dirac delta functions, with each acceleration pulse giving an
instantaneous change in the relative velocity & [2]. The pulse magnitude, in this

study, is a standard normal random number, obtained from subroutine RNNOA in

the IMSL-Library [21], scaled by a constant R, which is given by

R =v2DA! (4.19)



where

D /7 is the power spectral density of the white noise excitation.

At is the time interval between two adjacent pulses.
The interval At was chosen to give wgAt¢ =0.1 radian, giving approximately 63
pulses per cycle of the unyielded system. Each sample of simulated response was
long enough to contain approximately 2000 cycles of response of the unyielded
system (wo?t=4000 7w ). The first 100 cycles of each sample were omitted from
calenlations, though, on the basis of possible nonstationarity. Statistical accuracy
was improved by using an ensemble of 10 such samples for each process investigated.
The reproducibility of the results was verified by comparing numbers obtained from
different ensembles and from ensembles of different lengths. The resnlts for the
displacement z were also found to agree very well with analog computer results

[15].
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SECTION V

NUMERICAL RESULTS

Recall that the coefficient of ezcess (coe) is a measure of how much the
distribution of a random variable departs from a normal distribution, and it can be

written as :

. B
- = T 3 (5.1)
E(:4

This measure is zero for a normal distribution, negative for an amplitude-limited
type of distribution, and positive for a distribution with greater than normal
probability of large amplitudes. It will be used here to present the fourth moment

results.

It is also convenient to characterize the excitation level by a measure with
dimension length, so that the ratios of yield levels to excitation level and root-mean-
square response level to excitation level can be plotted as dimensionless quantities.

Such a length measure of the excitation level is

_ (2Dwy/m)?

2
Wy

N (5.3)

The numerical results of root-mean-square response from egs. 4.9 and 4.12 are

plotted in figures 5-1 to 5-4, and of coeflicient of excess from eqs. 5.1 and 5.2 are
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plotted in figures 5-5 to 5-8, for the cases of @ = 1/2 and 1/21, of damping § = 1%
and 5%. The simulation results for the bilinear hysteretic system are also included
in figures 5-1 to 5-8, as are the analytical approximations from Appendix B for very

large and very small Y/N values.

5.1 RMS VALUES:

Figures 5-1 to 5-4 show that for both the moderately nonlinear system (a =
1/2) and the nearly elastoplastic system (o = 1/21), the response levels of rms
displacement and absolute acceleration obtained from numerical integration for
the nonhysteretic system agree quite well with the simulation results for the

corresponding hysteretic system.

The rms displacement levels have been investigated in various previous studies.
The values obtained here for the substitute nonhysteretic structure are similar to
those previously obtained by a power balance method [16], and are substantially
better than those previously obtained by Lutes {15] for a nonlinear nonhysteretic
model. The largest error is for the nearly elasto-plastic structure with intermediate
values of the yield level and 5% viscous damping. In ref. 16, it was concluded
that similar errors were primarily due to errors in the calculation of the average
frequency of the system. If the same conclusion applies in the present study, then
modification of eq. 3.2 or 3.3 could be expected to improve these rms displacement
predictions. The rms levels of absolute acceleration predicted for the nonhysteretic
system are seen {o be in very good agreement with those for the bilinear hysteretic
system. The errors are sometimes significantly smaller for acceleration than for

displacemnent. The authors are not aware of prior studies of the acceleration levels.
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Recall that the "small Y/N” and "large Y/N” results in the figures have been
obtained from purely analytical solution of simplified equations (as detailed in
Appendix B). These results are always good for the appropriate Y/N ranges. For
intermediate Y/N values no such simplified approximation has been obtained, but
the figures show that the results for large and small Y/N do also give considerable

information regarding the intermediate range.

One may also note that because the stiffness term dominates the acceleration
response when Y/N is either very large or very small, o3 /wlN tends to ao,/N
for small values of Y/N, and to ¢, /N for large values of Y/N. Thus, contrary to
displacement response, generally o = 1/21 has lower mean-squared acceleration

response than does o = 1/2.

5.2 COE VALUES:

There are essentially no prior data with which to compare the coe valnes
obtained here. Analytical approximation of the fourth moment of 2z for the bilinear
hysteretic system with o = 1/2 was included in ref. 16, but the corresponding
simulation values were not obtained. The coe(Z) is the primary focus of this study,
and 1t had apparently not been previously studied by either analytical or empirical

methods.

From figures 5-5 and 5-6, one can see that the coe of the displacement response
of the nonhysteretic system agrees well with simulation results for @ = 1/2 but not
for o = 1/21. The excessively large values of coe(z) predicted when a is small may

reflect an inadequate choice of g(z) according to eq 3.3.
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Figures 5-7 and 5-8 show that the coe of the absolute acceleration response
of the nonhysteretic system agrees quite well with the simulation results for the
corresponding hysteretic system for both @ = 1/2 and o = 1/21. The accuracy
of this approximation is somewhat surprising in light of the large errors in coe(3)
for @ = 1/21 and intermediate Y/N values. Apparently 7 is much more affected
by # than by z in this situation for a nearly elastoplastic structure. Figures 5-7
and 5-8 show that Z can be quite substantially nonnormal, and that this is often
in the direction of a negative coe value. The fact that 7 is nonnormal implies that
the response of a secondary system attached to this primary system will also be
nonnormal. If the mass of the secondary system is much smaller than that of the
primary system, then Z can be considered as the secondary excitation. If the mass

ratio is not very small, then interaction between the two systems may change the

coe(?) value.

The fact that the coe(Z) is often negative is good news in that it implies that
very large values of Z are less likely than for a normal process with the same rms
value. This should somewhat reduce the probability of damage in the secondary
system. The opposite and undesirable sitnation of coe{Z) > 0 does occur in a some

circumstances though. Specifically, moderately small Y/N values lead to coe(z) > 0

unless the system is nearly elastoplastic and 8y is not very small.
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SECTION VI

SUMMARY AND CONCLUSIONS

Response nonnormality has been investigated for a yielding primary structure
subjected to a normally distributed ground acceleration. This is viewed as a
preliminary step in the nonlinear investigation of primary-secondary systems, since
this primary acceleration would be the base excitation of a light secondary system.
The primary structure considered here has bilinear hysteretic yielding. Results have
been presented both from simulation and from analysis of a simplified nonhysteretic
substitute structure. Obtaining response moments (rms and coe) for the substitute
structure generally requires simple numerical integration, although closed-form
solutions have been obtained for simplifications appropriate to either large or small

values of the yield level.

From the numerical results the following conclusions can be drawn:

1. nonnormality of the response of a secondary system should definitely be
investigated, since the absolute acceleration of the primary structure is sometimes
decidedly nonnormal.

2. The most nonnormal response acceleration found was in the direction
of amplitude limiting (coe =~ -1.5). Nonnormality in the opposite sense (coe 2~ 1.0)
was also observed, though, for smaller values of the yield level.

3. The nonhysteretic substitute sustem used here gave quite good predic-
tions of both the rms and coe of the acceleration response. It’s incorporation into
the investigation of coupled primary-secondary systems warrants investigation,

4. The substitute system also gave very good predictions of the rms values
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of displacement response, but the coe values for displacement were significantly in

error for a nearly elastoplastic structure.
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APPENDIX A
APPROXIMATION OF CERTAIN INTEGRALS

For use in eqs. 4.14 to 4.16 it is necessary to approximate the integral of
(cosf}'/% from zero to some upper Limit #* which is always between zero and 5
This is easily accomplished if (cos6)*/? on 0 < 8 < Z can be approximated by some
sitnple polynomial. It is most important that this approximation be quite good for
small @ values, since these values will contribute most to the integral. In order to
obtain this good approximation for small # it was decided to include the first two

terms from the power series for (cos#)!/%. Thus

(6089)]/2 ={1- %:i + 0(94))1/2
62 . (A1)
=1-7+0()

Numerical comparison shows that using only these first two terms gives an approxi-
mation of (cos#)*/? which is quite good for a surprisingly large range of # values. In
particular the error is less than 0.04 for § < 1.2 rad. Beyond that point the errors
become more significant because this parabola only drops to 0.383 at § = 7, where
the target function is zero. To give a more accurate approximation it was rather
arbitrarily decided to add one more term to eq. A.l1 which would give the proper
value for § = 7 without significantly changing the values from eq. A.1 for smaller

6 values. By trial and error the approximation was chosen as

6
(cos®)/? ~ 1 — (5)2 ~ (0.5784 4)° (A.2)
The maximum error in this expression is about 0.12 for 8 ~ 1.35, but the error in

A-1



the integral of (cos8)'/? must be considerably less than this. One further test of
eq- A.2 was made by squaring both sides of the relationship and integrating this
expression from zero to §*. The left-hand-side, of course, gives sind* and the right-
hand-side approximates this within 1% over the entire range from zero to 7. Thus,
eq. A.2 was judged to be an adequate approximation, and its integral is exactly eq.

4.17.

For the integral of (cos8)*/? a slight modification of the above procedure was
used. Obviously one could simply take the third power of eq. A.2 and integrate
that expression, but a slightly simpler forin was considered preferable. It is not very
efficient to use the the first two terms in the power series expansion for (cos)®/?
since 1 2¢? decreases too rapidly, becoming negative for 6 > 1.155. The alternative

used here was to approximate (cosf)*/* in much the same way as was done for

(cos6)'/2, Thus,

(cosb)*/* ~ 1 — -2-02 ~ (0.4912 )"° (A.3)

This is, in fact, a better approximation than eq. A.2, being within 0.015 for all

pertinent # values. This expression was then squared to give

3 g

(cosb)*/? ~ 1 - 202 + 6204 - 2(0.4912 6)*°

3 (A.4)
+ 302(0.4912 8)'® + (0.4912 9)*°

Integration then gives eq. 4.18.
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APPENDIX B
SOME LIMITING APPROXIMATIONS

In reference 15, simplified approximations for g{z) and f( H) were presented for
both very large and very small Y/N values. These approximations were both shown
to give analytical approximations for E(z?), requiring no numerical integration.
The following paragraphs present slight modification of these approximations and
show that the other desired response moments, E(z*), E(£?) and E(%?), can all be

evaluated analytically as well.

B.1 Large Y/N

In order to model accurately the abrupt increase in damping at the level x = A,

the f(H) function is taken as

FIHY =2Bowy  for H < wiY?/2
(B.1)
= 2B8owo + (2wo /)W a(l — @) 2H/wiY? 1)  for H > wlY?/2
For all values of a, the function f(H) in eq. 4.10 tends to eq. B.1 as H tends to
wiY?/2, The approximation of g(z) for this limiting case is simply taken as the

expression for an unyielding system;

g(z) = wiz (B.2)

For this system with nonlinear damping and linear spring the probability
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distribution of A can be written as

pala) = Craexp{-riad?) for a <Y

= Craexp]—ry — ra(a® + rq)?]  fora>Y

with

2,

YT oaN?

Ly gy

T T N? vea(l —a)N?
_Va(l-a)

Ty

T4 ﬂ'ﬁo ~1)Y2

ANy

In order to evaluate C; and the desired moments of z and 7 (as in section 4) it 1s
necessary to obtain the integrals of a* times pa(a) for various even k values. To

simplify the notation let

Y
Qk.::f a* exp(—rya®)da
0

and

R, = / a* exp{—ry — 7‘3((12 + r4)2]da
y

The ) terms can be evaluated from

1

Q: = 55[1 — exp{~-r1Y?)]

and the recursive relationship

1 k-1
Qr = — Yk CXP(*?'IYz) + —— Q2 for k>2
27‘] 21’1

B-2



The evaluation of Ry is simplified by using a change of variables u = a® + r4. Then

1 1 -
Ry = 3 exp{—rz) 2 (u—7r4 )(k‘l)/2 exp(—rsu’)du
Y +'I‘4

k—1

1 3 {(k-1) _
j:ﬂ

in which

o0
5; = / u? exp(—r3u®)du
Y2+T‘4 »

can be found from

1
Sp = -é(;;)l/zer Felma(Y? +74)]
1
S = I exp[—r3(Y? + ry)?]

and

j-1

27,3 Sj*2 fO’I’]__>_2

1 .
S = 5 (Y +ra) T explors (¥ )] +
3

Using this notation one finds that

Ci'=Q + Ry



s 'wg 8030

B(2*) = ~5{(1+ 465)(Qs + Rs) + 5 Va(l — a)(Rs — Y7 Ry)
+ miy+s al - a)2(R7 ~2Y"Rs + Y*Ry)]
C 8
E(:%) = Léw_ﬂ{(l +482)%(Qs + Rs)
26 a(l — «a 2
+ 8l Vall - a)(Rr — Y Rs) + “(‘;?if"&“)‘(Rg ~ 2V Ry + Y*Rs)|
16258 a1~ a)(By - V2R + S0 a(1 - 0 (Ry - 2R, + VIR
i [ﬂ'YZ ol ~ a)( B 5+7{4’Y4‘1’ — 8 — 7+ 5)
+ ‘11%%;&3/2(1 . C‘t)a(Rll - 3}72R9 3 3Y4R7 B Y6R5)
2 1 — 4 ,
r“X“LI‘T?‘)*(RH ~4Y* Ry +6Y 'Ry — 4Y° Ry + Y°Rs)]}
1Y

B.2 Small Y/N

For Y sufficiently small the stiffness can be modelled by a linear spring with

the post yielding stiffness;

g(z) = owge

The appropriate nonlinear damping in this situation can be approximated from eq.

47 for A > Y as

— _ 4 {1-a)Y
F1G(A)] = flawi A% (2] = 2fvwo + —wq N

The probability density can then be written as

pala) = Craexp|—si(a + s2)*]
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with

. 2af,
1= TN
o = 2(1 - )Y
? \/a—ﬁoﬂ'

In this situation it is not necessary to divide the integrals from a = 0 to @ = oo
into two separate parts, so 1t is convenient to write the desired expressions directely
in terms of moments of A. Thus, € is found from E(A") = 1 and the response

moinents are

E(z?) = éE(A?)
B(z*) = gE(A“)
B = “Founpa) + 2y Ew) + 5Oy Tl g
B = 2 B negpat) + P Sy g
. 38:253 (1 _aa)z VEB®) 4 51:363( 3/2) YEE(A) + 256 (1- = ) ys
6w} 4 16,50 (1-«a) 3 16 (1 - a)? 2
3 [482E(A*) + T YE(A’) + — TYzE(A )]
3atwd
+ 0 E(Ad)

The moments of A can be written as
k1
E+1 s
= Cs Z ( ) s2) T
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with

for which
1 7 1/2 1/2
Ty = 2(L ) 2erfe(s )
2 S1
1 2
h = ——exP('3132)
231
and
(s2)771 ji-1
Ti= CXP(—SJS§)+~2;I*TJ>2
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