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PREFACE

The National Center for Earthquake Engineering Research (NCEER) is devoted to the expansion
and dissemination of knowledge about earthquakes, the improvement of earthquake-resistant
design, and the implementation of seismic hazard mitigation procedures to minimize loss of lives
and property. The emphasis is on structures and lifelines that are found in zones of moderate to
high seismicity throughout the United States.

NCEER's research is being carried out in an integrated and coordinated manner following a
structured program. The current research program comprises four main areas:

• Existing and New Structures
• Secondary and Protective Systems
• Lifeline Systems
• Disaster Research and Planning

This technical report pertains to Program 1, Existing and New Structures, and more specifically
to Reliability Analysis and Risk Assessment.

The long term goal of research in Existing and New Structures is to develop seismic hazard
mitigation procedures through rational probabilistic risk assessment for damage or collapse of
structures, mainly existing buildings, in regions of moderate to high seismicity. This work relies
on improved definitions of seismicity and site response, experimental and analytical evaluations
of systems response, and more accurate assessment of risk factors. This technology will be
incorporated in expert systems tools and improved code formats for existing and new structures.
Methods of retrofit will also be developed. When this work is completed, it should be possible to
characterize and quantify societal impact of seismic risk in various geographical regions and
large municipalities. Toward this goal, the program has been divided into five components, as
shown in the figure below:

Program Elements:

Seismicity, Ground Motions
and Seismic Hazards Estimates

Reliability Analysis
and Risk Assessment

Expert Systems

iii

Tasks:
Earthquake Hazards Estimates,
Ground Motion Estimates,
New Ground Motion Instrumentation,
Earthquake & Ground Motion Data Base.

Site Response Estimates,
Large Ground Deformation Estimates,
Soil-Structure Interaction.

Typical Structures and Critical Structural Components:
Testing and Analysis;
Modern Analytical Tools.

Vulnerability Analysis,
Reliability Analysis,
Risk Assessment,
Code Upgrading.

Architectural and Structural Design,
Evaluation of Existing Buildings.



Reliability Analysis and Risk Assessment research constitutes one of the important areas of
Existing and New Structures. Current research addresses, among others, the following issues:

1. Code issues - Development of a probabilistic procedure to determine load and resis­
tance factors. Load Resistance Factor Design (LRFD) includes the investigation of
wind vs. seismic issues, and of estimating design seismic loads for areas of moderate
to high seismicity.

2. Response modification factors - Evaluation of RMFs for buildings and bridges which
combine the effect of shear and bending.

3. Seismic damage - Development of damage estimation procedures which include a
global and local damage index, and damage control by design; and development of
computer codes for identification of the degree of building damage and automated
damage-based design procedures.

4. Seismic reliability analysis of building structures - Development of procedures to
evaluate the seismic safety of buildings which includes limit states corresponding to
serviceability and collapse.

5. Retrofit procedures and restoration strategies.
6. Risk assessment and societal impact.

Research projects concerned with Reliability Analysis and Risk Assessment are carried out to
provide practical tools for engineers to assess seismic risk to structures for the ultimate purpose
of mitigating societal impact.

This technical report develops a practical method for modeling earthquake ground motion by
means ofARMA models utilizing observed ground motion records. The report then re-evaluates
the adequacy of nonlinear response spectra for the eventual purpose of structural design, taking
damage control into consideration.
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ABSTRACT

Seismic risk analysis for structural engineering purposes is primarily based
on peak ground accelerations taken from earthquake records. Such an approach
has a number of logical flaws and ignores a great deal of the information in
measured data.

This study investigates the use of simple, non stationary ARMA models to
represent underlying earthquake events. Measured earthquake records are
considered to be random samples. Models are developed and samples of
acceleration records are generated for 4 major events. Maximum displacement
ductility demand, normalized hysteretic energy demand and a simple damage
index spectra for bi-linear and stiffness softening SDOF systems are computed
for these samples of accelerograms. The sensitivity of demand spectra to ARMA
model characteristics are also examined.

It is concluded that, for the events studied, simple ARMA models may be
considered to capture most of the information contained in earthquake
acceleration records insofar as non linear response spectra are concerned. It
was found that, for each event, the average of the logarithms of displacement
ductility and hysteretic energy demand for bi-linear systems are very nearly
linearly related to the logarithm of system period for SDOF systems.
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SECTION 1

BACKGROUND AND OBJECTIVES

Current structural design practice for earthquake excitations is based on peak

values of historical acceleration records

flawed for several reasons.

an approach that is seriously

1. The damage potential in any earthquake record is dependent on other

characteristics of the excitation including, for example, frequency

content, duration, rms or Arias intensity and duration.

2. Each acceleration record is one realization of a non-stationary random

process. The peak value of each realization is a random variable. The

measured peak from a single record is just one sample of that random

variable.

The use of such a statistic to scale or otherwise characterize an

earthquake process is not a statistically valid procedure.

Calculated structural response spectra for measured acceleration records tend

to be highly sensitive to system frequency. It is not surprising that

attempts to combine several recorded earthquakes from different sources to

form a composite sample of response spectra by normalizing records on the

basis of their peak values leads to large coefficients of variation.

In this study, a measured record is assumed to be a sample from an underlying

population which is characteristic of the earthquake process involved.

Measured records are used to estimate the parameters of the underlying

population using maximum likelihood techniques. Simulated records from this
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population are then used to obtain average response spectra for each

historical event along with an estimate of the variance of response.

The major long term objective of this study was to establish minimal

stochastic earthquake models which satisfy two primary criteria.

1. The set of parameters for an historical event must be small enough to

permit seismic hazard mapping but large enough to effectively summarize

the damage potential in seismic events.

2. The parameters for historical events must be estimated using accepted

statistical reasoning.

Other long term obj ectives are to examine the relationship between response

and the parameters of earthquake process models and to assess the sensitivity

of structural response to model simplification. This report describes the

results of the first stage of the study.

After preliminary review, the class of ARMA models was chosen as a basis for

analysis. Simple ARMA models were established for four maj or historical

earthquakes and samples of accelerograms for each event were generated.

To assess damage potential, response spectra for damped, single degree of

freedom systems were used. Spectra for samples of simulated acceleration

records for linear, bi-linear and stiffness softening systems with and without

P - /::,. effects were examined. Damage predictors include ductility demand,

normalized hysteretic energy demand and various damage indices. Programs have

been prepared and used for a preliminary sensitivity study.
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SECTION 2

SEISMIC PROCESS MODELS

2.1 GENERAL

The concept underlying this analysis is that any measured acceleration record

is a sample from a population of such records. For design purposes, the

properties of the population characterize the damage potential of the event.

Previous studies have modeled acceleration records in either the time domain

or the frequency domain. Excellent reviews of progress to date have been made

by Kozin (1987) and Shinozuka et a1 (1987). Recent work involving ARMA models

includes an extension of the univariate, one-dimensional model to the bi­

variate, one-dimensional case by Naganurna, Deodatis and Shinozuka (1987). An

analysis of the relationship betweeen non stationary AR models and spectral

representations with evolutionary power is given by Deodatis and Shinozuka

(1987).

The choice of the domain of analysis for non-stationary processes such as

earthquake acceleration is rather arbitrary. Both approaches involve

modulation of the amplitude of a stationary white noise process and both

approaches can lead to problems in certain ranges of response spectra. In this

study, analysis in the time domain by means of ARMA models (Box and Jenkins

1976) was adopted primarily because rather grossly simplified models were to

be developed. Interpretation of model parameters for structural design

purposes was felt to be intuitively more straight-forward if the models are in

physical dimensions rather than derived dimensions.
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The techniques of ARMA analysis are well known (Box and Jenkins, 1976, Kozin,

1987). Early applications to seismic analysis (Chang et a1 1979, Kozin, 1977,

Kozin and Nakaj imi, 1978) attempted to reproduce the details of historical

acceleration records using multi-variate spline functions or analysis in

sequential time segments. The resulting models involve far too many parameters

for design purposes or even for the calibration of design procedures.

Most recently, an extensive study of ARMA models was completed by Ellis and

Cakmak (1987) who employed a similar model to that used in the present study

with additional corrections to account for zero crossing rates and distortions

in Fourier spectra at low frequencies. Regression analysis for model

parameters were completed for several sets of records.

An ARMA model at any time step "k" may be represented as follows:

[2-1]

where ~i' 8 j are constant coefficients.

The left side of Eq. 2-1 is known as the auto regressive (AR) part of order

"p". The time series [Ak ] is the sequence of measured data. The right side of

Eq.2-1 is known as the moving average (MA) part of order "q". The sequence

[Wk ] is a set of independent, identically distributed Gaussian random

variables.

In the present study, the digitized data is first normalized. For a moving

window of 100 time steps centered on time step "k", the root mean square of

acceleration [Sk] is calculated. A record [Zk] = [Ak] / [Sk] which has zero

mean and unit variance is then constructed and modeled as a 2nd order

stationary process of the form of Eq. 2-1.
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The steps involved in fitting an ARMA model to an acceleration record are the

following.

1. Calculate the experimental envelope function Sk and normalize the

measured record.

2. Assume a simple general analytical form for Sk and estimate its

parameters from a least squares analysis.

3. Stabilize the original record.

4. Calculate the autocorrelation and partial correlation functions.

5. Select an order "p" for the AR part and an order "q" for the MA part of

Eq. 2-l.

6. Estimate the coefficients qii' i = 1,2 .. p and El j , j 1,2.. q on the

basis of a maximum likelihood analysis. Calculate the auto-correlation

and partial correlation functions to check the orders used and to

ensure stationary of the data.

7. Evaluate alternative sets of model orders (p,q) on the basis of the Arc

criteria and select the model with minimum Arc (p,q).

Steps 4 and 6 of the preceding analysis were performed using the STATGRAPHrCS

software package.

2.2 APPLICATIONS

In this study, ARMA models were developed for four maj or earthquakes - El

Centro 1940 (M = 6.7), Parkfield 1966 (M = 5.6), Mexico City 1985 (M = 8.1)

and Nahanni 1985 (M = 6.9) in northern Canada (Figs 2-1 a-d). These records

were chosen for historical reasons (El Centro and Parkfield), exceptional

duration and frequency content (Mexico) and as a major recorded eastern event

(Nahanni). Measured acceleration records are shown in Figs 2-1 a-d.
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To obtain a practical number of parameters, the envelope function was

generally assumed to have a single peak at time Tp and a very simple form:

S(t) [2-2]

The constants a and fJ and the peak time Tp were found through an iterative

least squares procedure.

The maximum variance (s )2.0 = a 2 . 0
max and its time of occurrence Tp are very

important since they are correlated to peak ground acceleration.

To examine the sensitivity of structural response to the shape of the envelope

function, a more general form involving peaks at times Tp,l , Tp ,2 •• '. Tp,m

was considered. The records were partitioned into a series of intervals T1 , •.

Tm by the recursive relationship

Tp,i + 0.66 [Tp,i+1 - Tp,i ]

Algebraic expressions in an interval Ti - 1 ~ t ~ Ti , To

form

S (t)

[2-3]

0, were taken in the

[2-4 ]

where the parameters ai' ~i and fJ i are obtained in any time segment by least

squares.

Measured and fitted one peak envelope functions are shown for the four

earthquakes in Figs 2-2 a-d. It is important to realize that the peaks occur
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at different times Tp relative to the total duration of the events. A number

of possible sets of coefficients ~i and 8 j were examined for each of the four

earthquakes.
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SECTION 3

RESPONSE ANALYSIS

3.1 GENERAL

As a basis for comparison of alternative earthquake process models, the

response of single degree of freedom systems with viscous damping was adopted

(Fig.3-l-a). Linear, bilinear and stiffness softening systems were used with

consideration of P - ~ effects.

Response spectra were obtained by numerical integration of the general

equation assuming linear acceleration in each time step (Clough &

Penzien,1975)

M*u(t) + C*u(t) + R(u,t) [3-1]

where u(t) is the relative displacement of the mass with respect to the

ground, M is the mass, C is the damping coefficient, ug(t) is the ground

acceleration and R(u,t) is the restoring force.

For a system which behaves linearly in at least the initial stages of motion,

Eq. [3-1] can be rewritten as

u(t) + 2 * ~ * w * u(t) + R(u,t)/M [3-2]

where R(u,t)/M is the restoring force per unit mass, w is the initial natural

frequency and ~ is the fraction of critical damping of the structure.

3.2 STIFFNESS MODELS
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3.2.1 LINEAR RESPONSE

The simplest model used in analysis is the linear oscillator (Fig.3-l-b) where

the restoring force is given by R(u,t) = K * u(t), K = constant. The natural

frequency is then given by w = (K/M)o.5 Such a system fails suddenly with

no indication of distress until the maximum displacement ~ax is reached.

Linear analysis was only used to check analytical programs against published

spectra.

3.2.2 BILINEAR RESPONSE

Most real structures behave inelastically before failure. A relatively simple

basis for analysis is the bilinear model shown in Fig.3-l-c (Veletsos &

Newmark, 1960). Riddell and Newmark(1979) compared the results from several

load-deformation models and pointed out that the ordinates of "average"

spectra obtained are not significantly different. Iwan and Gates (1979)

suggested that the precise details of load-deformation relationships may not

be required to make reasonably accurate estimates of maximum response. For

these reasons, elastoplastic and bilinear hysteretic load-deformation models

have been adopted in recent studies (Nau and Hall 1984, Zahrah 1982, Lin and

Mahin 1983).

A bilinear stiffness system is characterized by three parameters; the initial

yield displacement uy , the initial elastic stiffness Kr and the post-yielding

stiffness Ky. While the absolute value of the displacement is increasing, the

restoring force is given by

R(u,t) Kr * u(t)

3-3

u(t)::5uy

[3-3]



R(u,t) Ky * ( u ( t) - U z ) u(t» uy

where Uz is the displacement at which the yield envelope crosses the

displacement axis. When the system is unloading, the stiffness is taken to be

the initial stiffness until displacement reaches a yield envelope.

The response of an e1asto-p1astic system can be evaluated by setting Ky = 0.0

and R(u, t) = Kr*uy for u(t)~Uy. The response of an elastic system can be

evaluated by setting uy = 00

3.2.3 STIFFNESS DEGRADING RESPONSE

Stiffness softening under repeated dynamic loading is generally observed for

concrete structures. An early model proposed by Clough & Johnston (1966) and

modified by Ridde1 and Newmark (1979) is used in this study. A comparison of

response for e1astop1astic and stiffness degrading systems has been made by

Mahin and Bertero (1981).

As shown in Fig.3-1d, the stiffness degrading model is defined by three

parameters; the initial elastic stiffness, the initial yield displacement and

the post-yielding stiffness. Yielding occurs when the displacement of the

system reaches one of the envelope lines.

Although the unloading stiffness after yielding decreases with cycling and

maximum peak displacement (Fenwick 1983, Park & Pau1ay 1975), the unloading

stiffness in the model is taken to be the initial elastic stiffness. Thus,

pinching effects and deterioration are ignored for simplicity. It has been

suggested by Lin & Mahin (1983) that consideration of degrading of unloading

stiffness does not in general have a significant effect on seismic response.
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When, after first loading, the load path crosses the displacement axis and

begins loading in the opposite direction, the stiffness is reduced. In this

case the load-deformation curve is linear from the zero loading point to the

last yielding point.

3.2.4 P-~ EFFECTS

The axial load effect in reinforced concrete members has been examined

analytically and experimentally (e.g. Atalay and Penzien 1975, MacGregor and

Hage 1977, Bertero 1987). The effects of axial loads were clearly evident in

field observations after the 1985 Mexico City earthquake .

An accurate computation of member response considering axial force is

difficult because of variations in axial forces due partly to vertical

accelerations. To simplify analysis, it is assumed that the axial load is

constant and equal to the system weight.

For the system shown in Fig.3-l-a, the restoring force in Eq. 3-2 is given by

R* (u, t) R(u,t) -(giL) * u(t) [3-4 ]

where g is the acceleration due to gravity, L is the system height and R(u,t)

is as before.

When p-~ effects occur, the load deformation relationship may be modified as

shown in Fig.3-l-e. Response is calculated numerically using the same

procedures as before. The maj or effect is that post-yielding stiffness is

negative.

3.3 DAMAGE MEASURES
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A number of damage measures have been used to summarize the impact of an

earthquake on linear and nonlinear structures. Applications of some of these

response measures have been made by Zarah and Hall (1984), Lin and Mahin

(1985), Park, Ang and Wen (1984), Baron and Veneziano (1982) and Casciatti and

Farave11i (1982). A comparison of alternative measures has been made by

Grigoriu (1987).

A detailed study of several alternative damage measures was completed by

DiPasquale and Cakmak (1987). Non linear response to simulated earthquakes was

evaluated with the conclusion that existing damage predictors hold

considerable promise for engineering applications.

Many proposed damage models for reinforced concrete structures were

investigated analytically by Chung, Meyer and Shinozuka (1987). A new model

was proposed and a number of parameters were calibrated against available test

data. It was noted that an absence of reliable data limits the evaluation of

all damage models.

A convenient way to present the results of response analysis is a frequency

spectrum where a response or damage measure is plotted against system

frequency or period. At best, any single measure of response to an earthquake

can be a relatively weak predictor of damage because dynamic response may

involve a variety of failure modes. For example, a structure might fail due to

very large displacements in a mode similar to monotonic static failure or it

could fail after relatively small displacements due to a large number of

cycles with cracking and reduced stiffness.

Such details of response are beyond the scope of this study where the emphasis

is on the damage potential of seismic records and general criteria are
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required. For comparison purposes, damage spectra were obtained for the

following damage measures.

3.3.1 MAXIMUM DISPLACEMENT ( Umax )

During response, the absolute maximum displacement is recorded. Under cyclic

loading, this measure is useful only for linear systems without fatigue. In

this study, linear spectra were only used to check computer programs against

published data.

3.3.2 MAXIMUM DISPLACEMENT DUCTILITY ( v )

This conventional design measure is defined as the ratio of the absolute

maximum displacement during ground motion to the yield displacement. For

bilinear systems, it is correlated to the energy absorbed during inelastic

response and is a useful measure of the deformation capacity required to avoid

collapse.

3.3.3 HYSTERETIC ENERGY DEMAND ( EH )

This response measure indicates the total energy dissipated by inelastic

deformation in a structure with a hysteretic load-deformation relationship.

It is calculated from the relationship

f R(u,t) * u(t)*dt [3-5 ]

where Es is the elastic strain energy. A "normalized" hysteretic energy demand

ENH is defined (Fig. 3-2) as the total energy dissipated by the system during

excitation divided by twice the energy absorbed at first yield plus 1.0:
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R(t)

1Il.i--- A1

A2

(A1 + A2 + AS)
Normalized Hyste. Energy = + 1.

Ry • Uy

FIGURE 3-2 NORMALIZED HYS1ERE1lC ENERGY
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[3-6]

where Ry = Ky*uy is the yield force. Normalized hysteretic energy is used in

this analysis to avoid problems dealing with systems that do not yield.

Alternative methods for normalizing the hysteretic energy have been developed

(Zahrah and Hall, 1982). For example, the "equivalent number of yield cycles"

is defined by the ratio of the total energy dissipated by yielding to the

energy corresponding to the system loaded monotonically until maximum

displacement ductility is reached.

Hysteretic energy demand is an indirect measure of both the magnitude of

displacements and the number of cycles experienced during an excitation. It is

related to other measures such as the number of yield events, yield reversals

and zero crossings.

For bilinear systems, energy demand depends on the yield force Ry . In this

study, results are shown as a function of the non-dimensional ratio Y =

Ry/(M*g) where the product M*g is the weight of the system.

3.3.4 DAMAGE INDICES ( DI )

Theoretically, none of the preceding elementary measures of response are

sufficient to predict the effects of an earthquake on a structure. For this

reason, several combined measures have been defined as "Damage- Indices". (See

for example, DiPasquale and Cakmak, 1987, and Chung, Meyer and Shinozuka,

1987.) Banon(1980) developed a stochastic model for damage in reinforced

concrete using normalized dissipated energy and normalized cumulative

rotation. Park, et al (1984) introduced a very simple damage index defined to

be the ratio of demand to capacity of a structure.
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In the form proposed by Park, the damage index is expressed as a linear

combination of relative maximum deformation and relative energy demand.

DI +
f3

[3-7]

where Umax(t) is the maximum deformation under the earthquake loading, Umax is

the ultimate deformation capacity under monotonic loading, Ry is the yield

force and EH is the hysteretic energy due to inelastic deformation. The

structural property f3 is a non-negative number reflecting the relative

energy absorption capacity of a structure and may not be independent of the

excitation.

For calculation purposes, development of a spectrum of damage index requires

specification of f3 as well as the frequency, damping and yield force of a

structure. It should be noted that Eq. 3-7 has not been validated for general

use.
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SECTION 4

NUMERICAL RESULTS

4.1 GENERAL

As mentioned previously, a variety of ARMA models were fitted to the

experimental records for four earthquakes. The complete set of orders (p,q)

and alternative envelope functions is indicated in TABLE 4-1. The AR

coefficients ~1' ~2' MA coefficient 8 1 , white noise standard deviation WNSD,

and single peak envelope parameters 0:, fJ, Tp corresponding to maximum

likelihood, one peak, order (2,1) estimates for each event are shown in TABLE

4-11. As shown subsequently, the use of one peak envelope functions and one

set of orders seems to be sufficient for response analysis. Also shown are the

peak accelerations and the durations of recorded events defined as the time

between the 1% and 98% fracti1es of the integral of the squared amplitude.

Response for other sets of parameters was also obtained for sensitivity

studies as explained subsequently.

For each set of model coefficients, a sample of twenty acceleration records

was generated. In each case, a standard baseline correction was applied along

with a low pass filter. To test the stability of the variance of response

spectra, a sample of 50 records was generated for El Centro with a single peak

and orders p = 2, q = 1. To generate a sample of twenty records for one set of

parameters for one event required approximately one hour of computer time on

an ATT 6300 micro computer.

As an indication of the general nature of results, one record from each sample

of twenty for the one-peak (2,1) models is shown in Figs 4-1 a-d. Rather
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TABLE 4.1 SET OF ARMA MODELS

EARTHQUAKES

MODELS E1-Centro Parkfield Nahanni Mexico
------------------------------------------------------------------

ORDERS

ENVELOPE
FUNCTION

ARMA(l,l) ARMA(l,l) ARMA(l,l)
ARMA(2,1)* ARMA(2,1)* ARMA(2,1) ARMA(2,1)*
ARMA(3,1) ARMA(3,1) ARMA(3,1) ARMA(3,l)
ARMA(4,l) ARMA(4,l) ARMA(4,l)

i-peak 1-peak i-peak i-peak
2-peaks 2-peaks

3-peaks
------------------------------------------------------------------
*:Optima1 set by AIC criteria

TABLE 4.11 PARAMETERS FOR ONE PEAK ARMA(2,1) MODELS

EARTHQUAKES

PARAMETERS E1-Centro Parkfield Nahanni Mexico

AR(l) 1. 383 1. 612 0.397 1. 894
AR(2) -0.574 -0.695 0.136 -0.899
MA(l) 0.144 -0.394 -0.587 0.375
WNSD 0.455 0.156 0.610 0.059
a: (cm/s2 124.118 199.461 302.230 103.800
f3 (sec-1 0.079 0.340 1.275 0.093
Tp (sec) 1. 500 4.040 9.020 58.000
-----------------------------------------------------------

DURATION 27.000 11.680 10.120 42.580
(sec)

PGA 0.348 0.489 0.981 0.171
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FIGURE 4-1 SINGLE SAMPLES OF SIMULATED RECORDS
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unexpectedly, the simple model captured a good deal of the periodicity of the

Mexico City event.

For the response analysis, numerical values of the damping ratio e were .02

and .05 with yield ratios Y = Ry/M*g of 0.05, 0.10 and 0.15. For calculation

of p-~ effects, the column height was taken as 10.0 ft. For spectra of damage

indices, it was assumed that U~ was 3uy with ~ in Eq. 11 = .05.

For the original and one sample of El Centro, ductility demand and normalized

hysteretic energy demand spectra for an elasto-plastic system are shown in

Figs 4-2 a,b. Corresponding demand spectra for a stiffness degrading system

are shown in Figs 4-2 c,d.

A major problem in evaluation of results for relatively long periods in some

cases was that all earthquake records in a sample of twenty did not cause

yielding. As a result, the average hysteretic energy demand, for example, for

a sample of twenty is not meaningful. In analysis, only the records causing

yielding were used to calculate average demand and demand ratios. The result

is an over estimation of average demand.

Shown in Figs 4-3 a-d are selected, average, elasto plastic and stiffness

degrading demand spectra with one standard deviation confidence intervals for

the samples of twenty and fifty El Centro earthquakes. Other spectra showed

similar dependence on sample size. It can be concluded that a sample of twenty

records for each event provided a reasonable estimate of average nonlinear

demand spectra and their standard deviations.

Shown in Figs 4-4 a-d are mean +/- one standard deviation confidence intervals

for typical one peak, elasto-plastic demand spectra for the four earthquakes

investigated. As expected, the artificial records do not duplicate the
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originals. However, for this limited set of data it can be concluded that,

assuming conventional criteria for statistical analysis, the hypothesis that

the measured record is drawn from the model process may be accepted for at

least a limited class of response characteristics.

Although the results for Mexico City do not contradict this statistical

statement, the systematic variation of the difference between measured and

simulated response spectra suggest caution.

Since average response spectra for the earthquake processes are quite smooth,

it may also be concluded that irregularities in nonlinear response spectra for

individual measured acceleration~.records may be considered to be random

variations which do not represent a reliable property of the process.

As a preliminary study of the influence of P-Ll effects, selected nonlinear

demand spectra were obtained. Results for the average of 20 for El Centro are

shown in Figs 4-5 a-d. These suggest that the effects may not be significant

in some cases. However, in other cases it was found that all structures in a

sample of twenty failed due to P-Ll effects in the sense that displacements

began to grow without limit. In fact, the loss of stiffness due to P-Ll effects

was the only failure mechanism considered in analysis.

These results are very limited but several observations can be made. In

general, as the initial period increases the number of structures in a sample

of twenty that collapsed increased significantly. In some cases , long period

structures which did not even yield without P-Ll effects collapsed when the

effects were considered.

Finally, as a general note concerning all four sets of response data, the

coefficients of variation of both ductility demand and normalized hysteretic
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energy demand were quite large (20-50%). In the case of an elasto-plastic

system under El Centro type excitation, the 20 sample average ductility demand

for a structure with an initial period of 0.20 sec., for example, was 22.4.

Since, the standard deviation was 10.4, the +/- one standard deviation

confidence interval on ductility demand was from 12.0 to 34.8 This represents

a significant uncertainty in response.

4.2 COMPARISON OF EVENTS

As a first step in the evaluation of alternative models, average nonlinear

response spectra for the one-peak process models of order (2,1) were computed

for the four earthquakes considered. E1asto-p1astic and stiffness softening

systems were examined.

Selected ductility demand and hysteretic energy demand spectra for e1asto­

plastic and stiffness degrading systems are shown in Figs 4-6 a-d. Least

squares straight lines were fitted to the ductility demand spectra as shown.

It can be seen that except perhaps for the Mexico City event which is known to

have pronounced site effects, one can conclude that, for the earthquakes

studied, the logarithms of both average ductility and hysteretic energy demand

spectral ordinates were very nearly linearly related to the logarithms of

initial period.

Although the numerical values of spectral ordinates for elasto-plastic and

stiffness softening systems are not identical, both classes of behavioral

models display similar spectral shape. For evaluations of earthquake models it

seems that simple elasto-plastic behavior could be assumed. Similar

conclusions were reached by Lin and Mahin(1983)
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It should be noted that for long period structures, average response spectra

are not very reliable. As the average demand approaches 1.0 (i.e. no yielding)

more and more structures in a sample of twenty do not yield.

Similar effects for the spectra of damage index are shown in Figs 4-7 a-d for

elasto-plastic systems with and without P-~ effects. Results are too limited

to suggest conclusions. However, it should be noted that the damage index

spectra can be obtained from a combination of the ductility demand and

hysteretic energy demand spectra.

4.3 SENSITIVITY STUDIES

The following results involve two sets of response analysis; one set

corresponds to the one peak, order (2,1) maximum likelihood models found using

the formal Box and Jenkins approach; the second set involves arbitrary

perturbations to the process model parameters in a sensitivity analysis. To

normalize data for comparison purposes, spectral ordinates were divided by the

corresponding ordinates for the one-peak, (2,1) ARMA models.

Because of the volume of calculations involved, most spectral ordinates were

calculated for only four initial periods of vibration: 2~/w = 0.3 sec., 0.6

sec., 1.0 sec., and 3.0 sec. Damping ratios v = 0.02, 0.05, and yield force

ratios Y= Ry/M*G = 0.05, 0.15 were used.

4.3.1 PEAKS IN THE ENVELOPE FUNCTION

To evaluate the effects of the number of peaks assumed for the envelope

function, average (samples of 20) response spectra for the El Centro (1,2

peaks) and Nahanni (1,2,3 peaks) are shown in TABLE 4-111.
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TABLE 4.111 EFFECTS OF NUMBER OF ENVELOPE PEAKS

(a): DISPLACEMENT DUCTILITY: ELASTO-PLASTIC SYSTEM

EL-CENTRO NAHANNI

-----------------------------------------------
v Y 21(/w origi 1p 2p origi 1p 2p 3p

nal (2,1) (2,1) nal (2,1) (2,1) (2,1)
--------------------------------------------------------------------

.02 .05 .30 .50 1.00 .93 1.08 1.00 1. 75 2.058
.60 .54 1.00 .97 .91 1.00 1. 78 2.46
1.00 1.26 1.00 1.03 1.10 1.00 1.84 2.53
3.00 .73 1.00 1. 05 1.08 1. 00* 1.23 1. 61

.15 .30 .55 1.00 .77 1.05 1. 00 1.99 3.59
.60 .91 1.00 .98 .63 1.00 1.59 2.41
1.00 .82 1.00 .97 .69 1.00 1. 64 1. 3l
3.00 .92 1.00* 1.03* .78 1.00* 1.24* 1.30*

.05 .05 .30 .61 1. 00 .91 1.20 1.00 1. 66 2.55
.60 .53 1.00 1. 01 .97 1.00 1. 68 2.35
1.00 1.10 1.00 1. 02 1.05 1. 00 1. 72 2.40
3.00 .72 1.00 1.02 1.10 1. 00* 1.20 1. 59

.15 .30 .54 1.00 .75 1.04 1.00 1.92 3.37
.60 .89 1.00 .87 .67 1. 00 1. 61 2.46
1.00 .75 1.00 .94 .65 1. 00 1.E8 1. 93
3.00 ** 1.00* 1.10* ** 1.00* 1.24* 1.27*

----------------------------------------------------------------~~--
*:Some of samples do not yield

**:original recorcd does not yield

(b): NORMALIZED HYSTERETIC ENERGY: ELASTO-PLASTIC SYSTElI

EL-CENTRO NAHANNI

-----------------------------------------------
v Y 21(/w origi 1p 2p origi 1p 2p 3p

nal (2,1) (2,1) nal (2,1) (2,1) (2,1)

-------------------------------------------------------------------
.02 .05 .30 .96 1.00 1.07 1.55 1.00 2.21 2.53

.60 .93 1.00 1.10 1.32 1.00 2.09 2.38
1.00 .77 1.00 1.13 1.11 1.00 2.00 :t. 26
3.00 .97 1.00 1.03 1.51 1.00* 1.70 2.06

.15 .30 .87 1.00 .98 2.49 1.00 2.89 4.07
.60 1.14 1.00 .95 1.74 1.00 2.74 3.52
1.00 .72 1.00 1.09 1.18 1.00 2.19 2.72
3.00 .81 1.00* 1.04* .68 1.00* 1.37* 1.36*

.05 .05 .30 .97 1.00 1.05 1.67 1.00 2.22 2.59
.60 .97 1.00 1.09 1.38 1.00 2.14 2.46
1.00 .76 1.00 1.13 1.12 1.00 2.04 2.32
3.00 .95 1.00 .98 1.31 1.00* 1.66 2.04

.15 .30 .87 1.00 .97 2.68 1.00 2.94 4.21
.60 1.15 1.00 .92 1.79 1.00 2.83 3.76
1.00 .73 1.00 1.04 1.12 1.00 2.32 2.95
3.00 .* 1.00* 1.05 ** 1.00* 1.32* 1.26*

-------------------------------------------------------------------*:50m8 of samples do not yield
**:original record does not yield
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TABLE 4.111 EFFECTS OF NUMBER OF PEAKS (continued)

(c): DISPLACEMENT DUCTILITY: STIFFNESS DEGRADING SYSTEM

~~~_~==~~~=====~======~=~==~K=~~=~~~_================== =======

EL-CENTRO NAHANNI
-----------------------------------------------------

II Y 21f/r.J origi ~p 2p origi ~p 2p 3p
na1 (2,1) (2,1) na1 (2,1) (2,1) (2,1)

---------------------------------------------------------------~---

.02 .05 .30 .56 1.00 1. 01 .80 1.00 1.54 2.19
.60 .63 1.00 .98 .71 1.00 1.55 ~.1.6

1.00 .83 1.00 1.02 .73 1. 00 1.41 1.95
3.00 .80 1.00 .97 .96 1.00* 1.17 1..42

.15 .30 .83 ~.OO .93 .83 :L 00 1.96 3.23
.60 .79 1.00 .93 .71 ~.OO 1.64 2.52
1. 00 .78 1.00 .97 .72 1. 00 1.50 1.97
3.00 .93 1.00* 1.04* .78 ~.OO* 1.22* 1.22 ....

.05 .05 .30 .57 1. 00 .96 .88 1.00 1.50 2.20
.60 .63 1. 00 .99 .78 ~.CO 1.54 2.17
1.00 .82 1. 00 1.00 .78 1. 00 1.47 2.11
3.00 .80 1.00 .96 .92 1.00* 1. 13 1..39

.15 .30 .80 1. 00 .97 .73 1. 00 1..89 3.08
.60 .84 1.00 .92 .79 1.00 1. 68 2.54
1.00 .79 1. 00 .96 .72 1. 00 L55 1. 99
3.00 ** 1.00* ~.13* ** 1.00* 1.22* l.18 ....

-------------------------------------------------------------------
*:Some of samples do not yield

**:origina1 record does not yield

(d): NORMALIZED HYSTERETIC ENERGY: STIFFNESS DEGRADING SYSTEM

EL-CENTRO NAHANNI
-----------------------------------------------

II Y 21f/r.J origi ~p 2p origi Ip 2p 3p
nal (2,1) (2,1) nal (2,1) (2,1) (2,1)

-------------------------------------------------------------------
.02 .05 .30 .91 1.00 1. 06 1.15 1. 00 1. 78 2.02

.60 .87 1.00 ~.06 1.16 1.00 1. 76 2.02
1. 00 .82 1.00 1. 07 1.~5 1. 00 1.73 2.02
3.00 .87 1.00 1.06 1.32 1. 00* 1.54 1.87

.15 .30 1.04 1.00 1.01 1.71 1.00 2.51 3.08
.60 .91 1. 00 1. 01 1. 47 1.00 2.20 2.65
1.00 .76 1.00 1.11 1. 02 1.00 1. 87 ~.20

3.00 .8~ 1. 00* ~.~1* .61 1.00* 1.34* :1..31*
.05 .05 .30 .94 1.00 1.06 1.18 1.00 1. 78 2.04

.60 .88 1.00 1. 07 1.15 1. 00 ~.77 2.02
1.00 .8~ 1.00 1.08 1.15 1. 00 1.77 A:.06
3.00 .90 ~.OO 1.04 1.28 1.00* 1.50 l.83

.15 .30 1.06 1.00 1.01 1.83 1.00 2.58 3.26
.60 .96 1.00 .99 1. 6~ 1.00 2.35 2.88
1.00 .76 1.00 1.09 ~.07 1. 00 1.98 2.37
3.00 ** 1.00* 1.15 ** 1.00* 1. 31* 1. 24*

-------------------------------------------------------------------
*:Some of samples do not yield

**:Origina1 record does not yield
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For both elasto-plastic and stiffness degrading systems, it can be seen that

displacement ductility and hysteretic energy demand generally but not always

increase with the number of peaks in the envelope function. Except perhaps for

several cases of hysteretic energy demand, spectral ordinates for the original

record were within reasonable confidence intervals for the one peak samples.

Although the data are limited, they suggest that increasing the number of

peaks in the envelope function did not yield improved estimates of non-linear

response for the cases studied.

Since many recorded events have only one obvious peak, the use of a single

peak in most cases would seem to be justifiable. A single peak was used in all

subsequent analysis.

4.3.2 ORDERS (p,q) OF THE ARMA PROCESS

Shown in TABLE 4-IV are average, normalized, nonlinear spectral ordinates for

alternative orders (p,q) for El Centro and Nahanni. Comparing these data for

each event suggests that models with order (1,1) did not lead to reliable

demand spectra. Results for models of order (2,1) seemed to have a random

relationship to the spectra for the measured events. Nahanni spectra for the

optimal order (3,1) were not significantly closer to the original spectra than

results for order (2,1).

Although the data are again quite limited, it was concluded that models of

order (2,1) were sufficient for further analysis.

4.3.3 ENVELOPE PARAMETERS
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TABLE 4.IV INFLUENCE OF MODEL ORDER (p,q)

(a): DISPLACEMENT DUCTILITY: ELASTO-PLASTIC SYSTEM

EL-CENTRO NAHANNI

------------------------------------------------~--

II Y 21rlw oriqi (1,1) (2,1) (3,1) origi (1,1) (2,1) (3,1)
nal nal

-----------------------------------------------------------------------
.02 .05 .30 .50 1.57 1. 00 1.07 1.08 1.08 1. 00 1.25

.60 .54 1.56 1.00 1.07 .91 1.01 1. 00 1.16
1.00 1.26 1.57 1.00 1.07 1.10 1. 07 1.00 1. 29
3.00 .78 1.48 1.00 1.05 1.08 .84* 1.00* .96

.15 .30 .55 1.36 1.00 1.06 1.05 1. 07 1.00 1.10
.60 .91 1.29 1.00 1. 04 .63 1.14 1.00 1.19
1.00 .82 1.47 1.00 1.06 .69 1.02 1.00 1.10
3.00 .92 1.30* 1.00* 1.03* .78 .97* 1.00* .99*

.05 .05 .30 .61 1.45 1. 00 1.06 1.20 1.10 1.00 1.21
.60 .53 1.52 1.00 1.08 .97 1. 02 1.00 1.14
1. 00 1.10 1.51 1.00 1.06 LOS 1.05 1. 00 1.23
3.00 .72 1.45 1. 00 1. 05 1.10 .82* 1.00* .93

.15 .30 .54 J..32 1.00 LOS 1.04 1.02 1. 00 ':'.05
.60 .89 1.31 1. 00 1.04 .67 loll 1.00 :.20
::.. 00 .75 1.46 1.00 LOS .65 1.02 1. 00 l.13
3.00 ** 1.25* 1.00* 1.00 ** .94* 1.CO* .96*

-----------------------------------------------------------------------
*: SOlDe of samples do not yield

**:Oriqina1 record does not yield

(b): NORMALIZED HYSTERETIC ENERGY: ELASTO-PLASTIC SYSTEM

EL-CENTRO NAHANNI
----------------------------------------------------

II Y 21Clw oriqi (1,1) (2,1) (3,1) oriqi (1,1) (2,1) (3 I 1)
nal na1

-----------------------------------------------------------------------
.02 .05 .30 .96 1.37 1. 00 1.04 1.55 .95 1.00 1.10

.60 .93 1.50 1.00 1.06 1.32 .92 1.00 1.10
1.00 .77 1.59 1.00 1.08 loll .90 1.00 1.07
3.00 .97 1. 75 1.00 1.09 1.51 .93* 1.00* ... 05

.15 .30 .87 1.07 1.00 1.00 2.49 loll 1.00 1.16
.60 1.14 1.55 1.00 1.07 1. 74 1.13 1.00 :'.27
1.00 .72 1.68 1.00 1.09 1.18 .98 1.00 1. 07
3.00 .81* 1.49* 1.00* 1.05* .68 .94* 1.00* .88*

.05 .05 .30 .97 1.32 1.00 1.04 1. 67 .96 1.00 1.09
.60 .97 1.49 1.00 1.06 1.38 .93 1.00 1.11
1.00 .76 1.60 1.00 1.08 1.12 .91 1.00 1.06
3.00 .95 1.80 1.00 1.09 1.31 .89* 1.00'" 1.02

0.15 .30 .87 1.04 1.00 .99 2.68 1.09 1.00 1.16
.60 1.15 1.57 1.00 1.07 1.79 1.14 1.00 :'.26
1.00 .73 1. 74 1.00 1.10 1.12 .98 1.00 1. 09
3.00 ** 1.29* 1.00* 1.00* ** .87* 1.00* .83*

-----------------------------------------------------------------------
*:Sollle of samples do not yield

**:Oriqinal record does not yield
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TABLE 4.IV INFLUENCE OF MODEL ORDER (p,q) (continued)

(c): DISPLACEMENT DUCTILITY: STIFFNESS DEGRADING SYSTEM

==================-=:='==:======1:2:===-=-=-==::a::a:I:SZ=~Z:Z===~::I:Z:Z:===:Z===============

EL-CENTRO NAHAlfNI
---------------------------------------------------

II Y 211:/w origi (1,1) (2,1) (3,1) origi (1,1) (2,1) (3,1)
na1 nal @

-----------------------------------------------------------------------
.02 .05 .30 .56 1.62 1.00 1.08 .80 1.05 1.00 1.15

.60 .63 1.53 1.00 1. 07 .71 1.05 1.00 1.17
1.00 .83 1.50 1.00 1. 06 .73 .99 1.00 1.09
3.00 .80 1.37 1.00 1.04 .96 .89* 1.00* .38

.15 .30 .83 1.67 1. 00 1. 09 .83 1.15 1. 00 :i..24
.60 .79 1.56 1.00 1.08 .71 1.07 1.00 1.10
1.00 .78 1.58 1.00 1.07 .72 1.06 1.00 1.22
3.00 .93 1.30* 1.00* 1.03* .78 .98* 1.00* l.OO-J:

.05 .05 .30 .57 1.51 1.00 1.07 .88 1.09 1.00 1.17
.60 .63 1.53 1.00 1.07 .78 1.07 1.00 1..16
1.00 .82 1.44 1.00 1.06 .78 1.03 1.00 1.14
3.00 .80 1.37 1.00 1. 04 .92 .88* 1.00* .94

.15 .30 .80 1. 62 1.00 1. 08 .73 1.12 1.00 1.19
.60 .84 1.54 1.00 1.07 .79 1.07 1. 00 1.14
1. 00 .79 1.51 1.00 1. 07 .72 1.09 1.00 :i..22
3.00 ** 1.26* 1.00* 1.02* ** .93* LOO* .95*

---------------------------------------------------------------------~-

*:Some of samples do not yield
**:Original record does not yield

(d): NORMALIZED HYSTERETIC ENERGY: STIFFNESS DEGRADING SYSTEM

EL-CENTRO NAHAlfNI

---------------------------------------------------~--

II Y 211:/w origi (1,1) (2,1) (3,1) origi (1,1) (2,1) (3,1)
nal nal

--------------------------------------------------------------------~--

.02 .05 .30 .91 1.44 1.00 1.06 1.15 .94 1.00 1.10
.60 .87 1.47 1.00 1.06 1.16 .93 1.00 1.13
1.00 .82 1.49 1.00 1.06 1.15 .92 1.00 :.13
3.00 .87 1.62 1.00 1.08 1.32 .95* 1. 00* 1.06

.15 .30 1.04 1.51 1.00 1.06 1.71 1.01 1.00 .!.. 07
.60 .91 1.50 1.00 1.07 1.47 .96 1.00 1.09
1.00 .76 1.60 1.00 1.07 1.02 .93 1. 00 :.06
3.00 .81 1.46* 1.00* 1.05* .61 .95* 1. 00* .39*

.05 .05 .30 .94 1.40 1.00 1.05 1.18 .93 1.00 1.07
.60 .88 1.45 1.00 1.06 1.15 .94 1.00 1.10
1.00 .81 1.49 1.00 1.06 1.15 .93 1.00 1.12
3.00 .90 1.65 1.00 1.08 1.28 .91* 1.00* 1.00

0.15 .30 1.06 1.44 1.00 1.05 1.83 1.04 1.00 1.08
.60 .96 1.52 1.00 1.07 1.61 .98 1.00 1.13
1.00 .76 1. 60 1.00 1.08 1.07 .95 1.00 1.07
3.00 ** 1.32* 1.00* 1.00* ** .86* 1. 00* .81*-----------------------------------------------------------------------

*:Some of samDles do not yield
**:Original record does not yield
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Shown in TABLES 4-V are normalized average nonlinear demand spectra for one­

peak (2,1) models of selected events where the decay constant f3 has been

increased by +/- 25% relative to the least squares values.

As expected, decreasing the rate of decay (increasing duration) increases

spectral ordinates while increasing the rate of decay (decreasing duration)

decreases demand. In general however, it may be observed that nonlinear

ductility and hysteretic energy demand spectra were not highly sensitive to

the envelope decay rate. The effects of decay rate did not significantly

depend on the initial structural period.

Similar results involving +/- 25% changes in the time to the peak of the

envelope function are shown in TABLES 4-VI. After analysis it was concluded

that these results were not meaningful since the effects on non-linear

response spectra depend on the original duration of motion.

For El Centro, for example, the peak time Tp = 1.5 sec. so the range of peak

times in TABLES 4-VI are +/- .375 sec. which corresponds to a total variation

of about +/- 1.5% of the total duration. As expected, the effects are small.

For Nahanni with Tp = 9.9 sec, the range is +/- 2.3 sec which corresponds to

about +/- 23.0% of the total duration. Since the peak for Nahanni occurs very

near the end of the record, increasing Tp significantly increased the duration

of the event. As a result, the effects were significant.

TABLES 4-VII provide similar data for a +/- 25% change in the height of the

peak Q of the envelope function. This factor is in fact a scaling factor for

the whole envelope function and, as such, it has an implicit effect on

duration ..
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TABLE 4.V SENSITIVITY TO ENVELOPE DECAY FACTOR ~

Cal: DISPLACEMENT DUCTILITY: ELASTO-PLASTIC SYSTEM

ELCENTRO NARAlmI

1/ 'l 2fC/W +25t -25t +25\ -25t
------------------------------------------------

.02 .05 .30 .94 1.09 .96 1.07
.60 .92 1.12 .95 1.07
1.00 .90 1.14 .95 1.07
3.00 .95* 1.13 .97* 1.04*

.15 .30 .89 1.14 .96 1.05
.60 .91 1.10 .97 1.06
1.00 .93 1.13 .98 1.02
3.00 .97* 1.05* 1.09* 1.00*

.05 .05 .30 .93 1.08 .96 1.07
.60 .93 1.10 .95 1. 07
1.00 .92 1.12 .96 1.06
3.00 .96* 1.11 1. 00* 1.05*

.15 .30 .89 1.16 .97 1. 06
.60 .90 1.11 .97 1.05
1.00 .93 1.11 .98 1.03
3.00 .95* 1. 01* 1.00* 1.00*

------------------------------------------------
*:Some of samples do not yield

(b): NORMALIZED HYSTERETIC ENERGY: ELASTO-PLASTIC SYSTEM

EL-CENTRO NAHANNI

1/ 'l 2fC/W +2St -25t +25t -25t
------------------------------------------------

.02 .05 .30 .82 1.29 .93 1.12
.60 .82 1.29 .93 1.12
1.00 .82 1.30 .93 1.11
3.00 .90* 1.23 .94* 1.09*

.15 .30 .81 1.31 .94 1.10
.60 .82 1.27 .94 1.10
1.00 .83 1.29 .93 1.12
3.00 .96* 1.10* 1.14* .99*

.05 .05 .30 .82 1.29 .93 loll
.60 .82 1.29 .93 1.12
1.00 .82 1.29 .93 1.11
3.00 .91* 1.20 .98* 1.09*

.15 .30 .81 1.31 .93 1.10
.60 .83 1.28 .94 1.10
1.00 .85 1.27 .93 1.11
3.00 .92* 1.00* .97* .99*

------------------------------------------------
*:Some of samples do not yield
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TABLE 4. V SENSITIVITY TO ENVELOPE DECAY FACTOR f3 (continued)

(e): DISPLACEMENT DUCTILITY: STIFFNESS DEGRADING SYSTEM

EL-CENTRO NAHANNI

v Y 2tr/w +25% -25% +25% -25%
------------------------------------------------

.02 .05 .30 .94 1.10 .95 1.07
.60 .94 1. 07 .95 1.08
1.00 .94 1.06 .95 1.08
3.00 .97* 1. 09 .98* 1.03*

.15 .30 .89 1.14 .94 1.11
.60 .92 1.11 .96 1.07
1.00 .95 1. 07 .96 1.06
3.00 .97* 1.05* 1.10* .99*

.05 .05 .30 .95 1.08 .96 1.07
.60 .94 1.08 .95 1.07
1.00 .94 1.06 .96 1.08
3.00 ~.• 97* 1.08 1.01* 1.04*

.1.5 .30 .92 1.12 .95 1.08
.60 .93 1.11 .96 1.05
1.00 .95 1. 07 .95 1.06
3.00 .95* 1.02* .99* 1.00*

------------------------------------------------
*:Some of samples do not yield

(d): NORMALIZED HYSTERETIC ENERGY: STIFFNESS DEGRADING SYSTEM

===~=~~~=~~==========~=====~======~~==a=~==

EL-CENTRO NAHANNI

v Y 2tr/w +25% -25% +25% -25%
------------------------------------------------

.02 .05 .30 .85 1.22 .94 1.10
.60 .85 1.23 .94 1.09
1.00 .85 1.22 .94 1.09
3.00 .91* 1.19 .96* 1.07*

.15 .30 .82 1.29 .92 1.13
.60 .83 1.26 .92 1.13
1.00 .85 1.24 .93 1.12
3.00 .94* 1.13* 1.16* .99*
.30 .85 1.23 .94 1.09
.60 .85 1..23 .94 1.10
1.00 .85 1.23 .94 1.09
3.00 .91* 1.19 .99* 1.07*

.15 .30 .82 1.28 .93 1.12
.60 .83 1.27 .92 1.13
1. 00 .85 1.24 .93 1.12
3.00 .90* 1.01* .98* .99*

-----------------------------------------------
*:Some of samples do not yield
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TABLE 4.VI SENSITIVITY TO PEAK TIME FACTOR Tp

(a): DISPLACEMENT DUCTILITY: ELASTO-PLASTIC SYSTEM

EL-CENTRO NAHANNI

II Y 21C/W +25% -25% +25% -25%
-----------------------------------------------
.02 .05 .30 .94 .94 1.30 1.52

.60 .94 .97 1.21 1. 43
1.00 1.04 .98 1.23 1.47
3.00 1. 00 1.00 1.09 1.04*

.15 .30 .95 1. 00 1.21 1. 71
.60 1.01 .99 1.03 1.57
1.00 1.05 .95 1.07 1.21
3.00 .99* 1.00* 1. 04* 1.05*

.05 .05 .30 .95 .96 1.23 1.42
.60 .95 .97 1.21 1.35
1.00 1.03 .98 1.19 1.38
3.00 .98 .99 1.05 1.01*

.15 .30 .96 .99 1.16 1.47
.60 1.01 .99 1.01 1.45
1.00 1.05 .94 1.13 1.24
3.00 1.01* .99* .99* 1.00*

-----------------------------------------------
*:Some of samples do not yield

(b): NORMALIZED HYSTERITIC ENERGY: ELASTO-PLASTIC SYSTEM

==~~~==~==================================

EL-CENTRO NAHANNI

II Y 2W:/1J +25% -25% +25% -25%
-----------------------------------------------
.02 .05 .30 1.01 .98 1.29 1.06

.60 1.01 .98 1.25 1.01
1.00 1. 01 .98 1.23 .97
3.00 1.00 .98 1.16 1.15*

.15 .30 1.00 .98 1.27 1.66
.60 1.02 .97 1.29 1.56
1.00 1.02 .96 1.31 1.38
3.00 .99* .99* .98*' 1.10*

.05 .05 .30 1.01 .98 1.27 1.00
.60 1.01 .98 1.27 1.00
1.00 1.01 .98 1.24 .96
3.00 1.00 .98 1.13 1.12*

.15 .30 1.00 .98 1.28 1.53
.60 1.02 .97 1.27 1.54
1.00 1.02 .96 1.31 1.41
3.00 1.03* .98* .89* .95*

-----------------------------------------------
*:Sollle of samples do not yield
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TABLE 4.VI SENSITIVITY TO PEAK TIME FACTOR Tp (continued)

(e): DISPLACEMENT DUCTILITY: STIFFNESS DEGRADING SYSTEM

EL-CENTRO NAHANNI

II Y 21(/w +25% -25% +25% -25%
-----------------------------------------------
.02 .05 .30 .97 .96 1.22 1.06

.60 .96 .96 1.27 1. 06
1. 00 .99 .97 1. 21. .98
3.00 .99 .98 1.07 .97*

.1.5 .30 1.00 .96 1.36 1.28
.60 1. 02 .94 1..38 1. 09
1.00 1.05 .97 1.30 1.14
3.00 1. 00* .99* 1.. 05* 1.11*

.05 .05 .30 .98 .97 1.23 1. 09
.60 .98 .96 1.23 1.07
1.00 1.00 .96 1.26 1. 04
3.00 .98 .98 1..04 .94*

.15 .30 -~ 99 1. 01. 1.27 1.23
.50 1. 03 .95 1.35 1.14
1.00 1.04 .97 1.34 1.16
3.00 1..02* .99* .99* 1.10*

-----------------------------------------------
*:Some of samples do not yield

(d): NORMALIZED HYSTERETIC ENERGY: STIFFNESS DEGRADING SYSTEM

=~=====a=~==~============~============~~=

EL-CENTRO NAHANNI

II Y 21(/w +25% -25% +25% -25%
-----------------------------------------------
.02 0.05 .30 1. 01. .99 1.23 .89

.60 1.01 .99 1.22 .91
1.00 1. 01 .98 1.20 .92
3.00 1.00 .99 1.16 .98*

.15 .30 1. 00 .99 1.24 .93
.60 1.01 .98 1.27 .92
1. 00 1.02 .97 1.31 .88
3.00 .98* .99* .99* 1.13*

.05 .05 .30 1.01 .99 1.23' .88
.60 1.01 .98 1.23 .89
1.00 1.01 .98 1.22 .92
3.00 1.00 .99 1.12 .96

.15 .30 1. 00 .99 1.23 .95
.60 1.01 .98 1.29 .94
1.00 1.01 .96 1.33 .90
3.00 1.03* .97* .88* 1.03*

-----------------------------------------------
*:So.e ot samples do not yield
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TABLE 4.VII SENSITIVITY TO ENVELOPE SCALE FACTOR a

(a): DISPLACEMENT DUCTILITY: ELASTO-PLASTIC SYSTEM

EL-CENTRO NAHANNI

v Y 21f/w +25% -25% +25% -25%
-----------------------------------------------
.02 .05 .30 1. 34 .16 1.39 .65

.60 1.35 .19 1.31 .65
1.00 1.36 .26 1.39 .69
3.00 1.26 .52* 1.13* .85*

.15 .30 1.55 .14 1.59 .57
.60 1.33 .22* 1.45 .65
1.00 1.29 .38* 1.25 .70
3.00 1.22 ** 1.10* .86*

.05 .05 .30 1.32 .17 1.38 .66
.60 1.35 .21 1.34 .67
1.00 1.33 .27 1.31 .71
3.00 1.25 .54* 1.13* .79*

.15 .30 1.54 .14 1.57 .58
.60 1. 38 .22 1.42 .65
1.00 1.28 .39 1. 31 .73
3.00 1.10* ** 1.13* .91*

-----------------------------------------------
*:Some of samples do not yield

-J<*:All samples do not yield

(b): NORMALIZED HYSTERETIC ENERGY: ELASTO-PLASTIC SYSTEM

==--=====:===:::::::r.:I::===============::=:s=====-:z::====a:==z==========

EL-CEHTRO NAHAHHI

v Y 21C/'" +25% -25% +25% -25%
-----------------------------------------------
.02 .05 .30 1.42 .12 1.43 .61

.60 1.40 .13 1.40 .62
1.00 1.40 .16 1.37 .65
3.00 1.40 .30* 1.33* .78*

.15 .30 1.62 .07 1. 71 .50
.60 1.58 .07* 1.62 .53
1.00 1.50 .18* 1.49 .59
3.00 1.30 ** 1.07* .89*

.05 .05 .30 1.43 .11 1.43 .61
.60 1.42 .12 1.41. .62
1.00 1.41 .14 1.38 .64
3.00 1.42 .33* 1.30* .74*

.15 .30 1.67 .05 1.72 .48
.60 1.64 .06* 1.65 .52
1.00 1.55 .16* 1.52 .58
3.00 1.11 ** 1.07* .81*

------------------------------------------------
*:Some of samples do not yield

**:All samples do not yield
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TABLE 4. VII SENSITIVITY TO ENVELOPE SCALE FACTOR a (continued)

(e): DISPLACEMENT DUCTILITY: STIFFNESS DEGRADING SYSTEM

EL-CENTRO NAHANNI

11 Y 2or/w +5% -25% +25% -25%
-----------------------------------------------
.02 .05 .30 1.38 .16 1.35 .65

.60 1. 33 .19 1.36 .66
1.00 1.27 .24 1.30 .63
3.00 1.19 .52* 1.19* .85*

.15 .30 1.56 .12 1.61 .53
.60 1.40 .21* 1.44 .60
1.00 1.35 .42* 1.33 .70
3.00 1.20 ** 1.11* .89*

.05 .05 .30 1.32 .17 1.36 .67
.60 1.32 .20 1.34 .67
1.00 1.28 .25 1.33 .67
3.00 1.19 .53* 1.17* .81*

.15 .30 1.57 .13 1.51 .55
.60 1.38 .22* 1.46 .61
1.00 1.31 .42* 1.32 .73
3.00 1.11 ** 1.11* .90*

-----------------------------------------------
*:Some of samples do not yield

'l'(~'<' :All samples do not yield

Cd): NORMALIZED HYSTERETIC ENERGY: STIFFNESS DEGRADING SYSTEM

EL-CENTRO NAHANNI

11 Y 21t/w +25% -25% +25% -25%
-----------------------------------------------
.02 .05 .30 1.29 .21 1.33 .68

.60 1.30 .22 1.33 .69
1.00 1.30 .22 1.32 .68
3.00 1.34 .36* 1.27* .83*

.15 .30 1.47 .09 1.59 .49
.60 1.39 .09* 1.48 .54
1.00 1.39 .22* 1.38 .64
3.00 1.31* ** 1.10* .90*

.05 .05 .30 1.30 .20 1.32 .67
.60 1. 30 .22 1.32 .68
1.00 1.31 .21 1.33 .68
3.00 1.35 .36* 1.25* .79*
.30 1.48 .08 1.60 .48
.60 1.42 .07* 1.52 .52
1.00 1.40 .19* 1.43 .62
3.00 1.12* ** 1.08* .81*

-----------------------------------------------
*:Some of samples do not yield

**:All samples do not yield
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In this case, the effects of variations in the parameter are nonlinear and

significant. When the peak is increased, spectral ordinates for all cases are

increased on average rather more than the increase in the factor. When the

peak is decreased, demand ordinates are decreased significantly. For longer

periods, ductility demand approaches zero as more samples do not result in

yielding of the systems. These results support the observation that the peak

value of the envelope function has a primary influence on response spectra.

After completion of this analysis, when it was concluded that an assumption of

a single peak was reasonable, it was decided that a continuous one-peak

envelope function should have been used to cover the entire duration of

motion. Use of a two parameter Gamma function with unit area multiplied by a

scaling factor would have permitted a sensitivity study in which the average

total energy in a sample of an event was held constant.

4.4 FREQUENCY DEPENDENCE AND SCALING

To investigate possible differences in the response-period relationship for

different earthquakes, average response ordinates after scaling by the

corresponding ordinate for El Centro are shown in Figs 4-8 a-d. These data

suggest that, relative to El Centro, ductility demand increased slightly with

period for Nahanni and decreased with frequency for Parkfield. Trends for

hysteretic energy demand are not as clear. Results for Mexico City are not

conclusive because of site effects.

Given the large coefficient of variation of spectral ordinates and the fact

that for longer periods a significant number of structures in a sample may not

yield, it may be concluded that this study does NOT provide strong evidence
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for the hypothesis that the dependence of nonlinear response spectra on period

varies between earthquakes.

From Fig 4-8 a, it can be observed that the ratio of ductility demand for

Parkfield, Nahanni and Mexico City relative to El Centro were on average about

(0.9, 2.0 and 2.0) respectively. In contrast, the corresponding peak ground

accelerations relative to El Centro were (1.4, 3.86 and 0.49). Clearly, the

damage spectra can not be scaled by peak ground acceleration.

The ratio of the magnitudes of Parkfield, Nahanni and Mexico City were (.85,

1.0 and 1.25) respectively. Thus, nonlinear demand spectra can not be scaled

by magnitude either.
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SECTION 5

SUMMARY AND CONCLUSIONS

5.1 ARMA MODELING

The purpose of this study was to develop non stationary process models which

can be considered to be characteristic of specific historical earthquakes.

Measured records are considered to be one realization of the underlying

process. Process parameters are estimated from measured accelerograms.

This study suggests that the development of simple ARMA models with a limited

number of parameters is a straight forward operation. A sample of twenty

records generated for each event provided reasonable estimates of average

nonlinear demand spectra and their standard deviations

Since only four earthquakes were modeled, general conclusions can not be

drawn. However, an evaluation of elasto-plastic and stiffness degrading

spectra coupled with an extensive sensitivity study of the effects of the

parameters of the ARMA processes supports a number of observations which seem

likely to have general validity. In particular, the use of only one peak in

the envelope function and models of order (2,1) seem to be sufficient for

analysis.

Nonlinear ductility and hysteretic energy demand spectra were not highly

sensitive to the envelope decay rate. The effects of decay rate did not

significantly depend on the initial structural period. The peak value of the

envelope functions had a major (nonlinear) influence on response spectra.

Since results did not suggest that the effects of variations in the peak value
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were frequency dependent, the peak of the envelope function has great

potential as an overall scale factor for the effects of earthquakes.

5.2 GENERAL CONCLUSIONS

Although this study dealt with only four earthquakes,

conclusions seem to be justified.

the following

1. The hypothesis that the measured records were drawn from populations

corresponding to the process models was statistically acceptable for the

limited class of response characteristics studied.

2. Irregularities in nonlinear response spectra for individual measured

acceleration records can be considered to be random variations which do

not represent a reliable property of the earthquake processes.

3. With the exception of the Mexico City event, the logarithms of average

nonlinear spectral ordinates were very nearly linearly related to the

logarithms of initial period.

4. This study does not provide strong evidence for the hypothesis that the

dependence of response spectra on period varies between earthquakes.

5. Response spectra for elasto-plastic and stiffness degrading single

degree of freedom systems were similar in nature. To compare the effects

of two events or the effects of variations in model parameters, either

response model was sufficient.

6. Nonlinear response spectra can not be scaled by either peak measured

accelerations or magnitudes.

5.3 REMAINING QUESTIONS
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This study provides a ~ood deal of support for the conclusion that reasonable

average nonlinear demand spectra can be obtained from one-peak, order (2,1)

ARMA models. To confirm this observation, a number of other events should be

modeled and mean +/- one standard deviation response spectra should be

compared to original records such as those in Figs. 4-4.

In future studies, it would be preferable to use a continuous envelope

function over the entire duration of an event. The parameters of the envelope

function could be found from least squares analysis subject to constraints on

total energy and duration. Members of the Gamma family of probability density

functions multiplied by a global scaling factor would be likely candidates for

such an approach.

This study did not consider the sensitivity of average response ordinates to

numerical values of the AR and MA coefficients or the magnitude of the white

noise variance. It seems possible that adequate models might be developed in

which only the envelope functions were chosen from data.

A limited number of response spectra including p-~ effects were obtained with

interesting results. In particular, it was found that as period increased and

hence ductility and hysteretic energy demand decreased, the number of

structures that collapsed increased significantly. Some structures which did

not yield without p-~ effects collapsed under the same acceleration input when

the effects were considered. The entire question of p-~ effects deserves

careful study.

The approach to nonlinear spectra for long periods where not all accelerograms

in a sample cause yielding should be reviewed. The probability distribution of
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ductility demand in such cases is of the mixed type

separately.

and should be treated

Finally, the conclusion that the logarithm of nonlinear demand ordinates are

linearly related to the logarithm of period should be investigated in greater

depth. If the linearity conclusion can be confirmed, a significant improvement

in structural hazard mapping will be possible.

If, as seems likely, the spectra for ductility and hysteretic energy demand

for different classes of stiffness models and strength ratios Ry/M*g can be

correlated to the ductility spectra for a basic elasto-plastic case (e.g. e=
.05, y= .15), the two parameters of the basic linear log-log spectra can be

used for mapping purposes.
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