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PREFACE

The Natonal Center for Earthquake Engineering Research (NCEER) is devoted to the expansion
and dissemination of knowledge about earthquakes, the improvement of earthquake-resistant
design, and the implementation of seismic hazard mitigation procedures to minimize loss of lives
and property. The empbhasis is on structures and lifelines that are found in zones of moderate to
high seismicity throughout the United States.

NCEER'’s research is being carried out in an integrated and coordinated manncr following a
structured program. The current research program comprises four main areas:

+ Existing and New Structures
 Secondary and Protective Systems
» Lifeline Systems

» Disaster Research and Planning

This technical report pertains to Program 1, Existing and New Structures, and more specifically
to geotechnical studies, soils and soil-structure interaction.

The long term goal of research in Existing and New Structures is to develop seismic hazard
mitigation procedures through rational probabilistic risk assessment for damage or collapse of
structures, mainly existing buildings, in regions of moderate to high seismicity. "I hc work relies
on improved definitions of seismicity and site response, experimental and analytical evaluations
of systems response, and more accurate assessment of risk factors. This technology will be
incorporated in expert systems tools and improved code formats for existing and new structures.
Methods of retrofit will also be developed. When this work is completed, it should be possible to
characterize and quantify societal impact of seismic risk in various geographical regions and

large municipalities. Toward this goal, the program has been divided into five components, as
shown in the figure below:

Program Elements: Tasks:
Seismicity, Ground Motions Gm;:d ;,m-m !;m“
and Seismic Hazards Estimates 0 New Ground Moticn Lnstrumentation,
‘ Earthquake & Ground Motion Data Basc.
: : 3 Site Response Estimates,
Geotechnical Swdies, Son!s Large G Deformation Estimatrs,
and Soil-Structure Interaction -1 Sail-Structure Interaction.
- Typical § and Critical § 1 Comp
System Response: > Testing and Analysis;
Testing and Analysis Modem Analytical Tools.
* ' ' Vulnerability Analysis,
Reliability Analysis Reliability Analysis,
: [ Risk Assossmen!
Asses t L
and Risk smen ' Coe Upgrds
Expert Systems Evalustion of Eaining Buil fings

it



Geotechnical studies, soil and soil-structure interaction constitute one of the important areas of
research in Existing and New Structures. Current research activities include the following:

Development of linear and nonlinear site response estimates.

Development of liquefaction and large ground deformation estimates.
Investigation of soil-structure interaction phenomena.

Development of computational methods.

Incorporation of local soil effects and soil-structure interaction into existing codes.

U hWN =

The ultimate goal of projects in this area is to develop methods of engineering estimation of large
soil deformations, site response, and the effect that the interaction of structurss and soils have on
the resistance of structures against earthquakes.

Increasing numbers of structures and buildings are built on poorly performing soils which
require pilings for stability. Thus the understanding of the performance of piling in soft soils
under dynamic loads is of increasing importance. This paper addresses fundamental methods to
analytically describe the behavior of a single element of a pile foundation during seismic loads.
It addresses but one element in a complex problem which needs to be solved step by step to
devise methods to increase the earthquake resistance of new and existing structures, many of
which require pile foundations. Thus, this study must be seen as one step in a sequence of
investigations carried out by NCEER in the field of soil-structure interaction.

iv



ABSTRACT

A boundary element formulation is presented to analyze the seismic
response of a single pile. The piles are modeled by compressible beam-
column elements and the soil as a hysteretic elastic half-space. A new
Green's function corresponding to dynamic loads in the interior of a semi-
infinite solid is developed for this study. The qoverning differential
equations of motion for the pile domain have been solved exactly for
distributed periodic loading intensities. These solutions were then
coupled with a numerical solution for the motion of the soil domain by
satisfying equilibrium and compatibility at the pile-soil interface. The
responses were evaluated over wide ranges of the pa-ameters jnvolved to
vertically and cbliguely incident P, SV and SH-waves. Results are
presented as dimensionless graphs and the plle-soil interaction is studied.
It is observed that the existence of the pile produces a filtering of the
waves, reducing the amplitude of motion as a function of frequency. Also
the filtering effects, the pile motions and the amplitudes are found to be
dependent on the slenderness ratio, the stiffness rat.io and the angle of
incidence. Finally, an actual transient analysis is perfommed to study the

response of piles to seismic waves in the time domain.
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SECTION 1
INTROOUCTION

In recent years much progress has been made in develoving procedures
for calculating the responses 'f single piles and pile groups to both
static (4,5,7,19]) and dynamic "oads [6,7,13,20,21]). However, realistic
dynamic analyses of pile foundaticns have received comparatively less
attention: most of the work done is essentially restricted to foundations
subjected to periodic excitations [(6,7,13,20,21), It iswell known that
the excitation in an actua’ :.arthquake is a camplex time dependent function
and theretore. in order to predict the seismic response of pile
foundatioris, it is necessary to carry out a transient analysis [12],

The effect of vertically and obliquely incident seismic waves on
surface and embedded shallow foundations has been investigated in some
detail in recent years [9,22]1. Simplified rules have been suggested [9,22]
to estimate both the translatjonal and rotational response fram the free-
field motion as a function of the embedment depth. It was found that the
existerce of the foundation produces a filtering of the waves, reducing the
amplitude of the motion as a function of frequency.

However, relatively few reports exist in the published literature with
regard to the behavior of deep foundations (piles, piers and caissons) to
traveling waves. The response of piles to vertically propagating S-waves
has been studied by several authors (11,12). Gazetas [12] has presented
results of a numerical study of the dynamic response of end-bearing piles
embedded in a rumber of idealized soil deposits. Still, several questions
remain unanswered, especially with regard to the practical assessment of
the influence of piles on the seismic excitation of a structure.
Furthermore, only a very limited number of results are available in the

form of dimensionless graphs [16].
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It is the objective of this report to present the results of a study
on the behavior of a single pile subjected to incident P, SV and Sil-waves.
Such results would be useful not only £for developing an improved
understanding of the mechanics of the problem, but, also for deriving
simple preliminary design rules for foundation engineering practice. Sich
a study is well worth undertaking, since the majority of important
structures, such as tall buildings, major highway bridges, offshore oil
platforms, etc., are supported on piled foundations and the existing state
of knowledge is poor. Also, the results would be of great interest to many
engineers who have built heavy structures on soft soils in seismic prone
areas.

In the present work, the modeling of this problem has been done by
means of a hybrid boundary element formulation [3]. The numerical scheme
is based on the discretization of the pile and the soil domain around the
pile into elements throughout which the displacement and tractions are
assumed to be constant (or can be interpolated between nodal values in a
higher order fomulation). The boundary element method offers considerable
advantage over the other numerical methods, for this problem, primarily
because of its ability to take into account the three dimensional effects
of soil continuity and boundaries at infinity. In this work, for soil-
domain a new fundamental solutjon corresponding to a periodic dynamic point
force in the interior of an elastic half-space is developed and then used
in the numerical scheme. This solution represents the dynamic equivalent

of Mindlin's (18] static half-space point force solution.
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SECTTON 2
METHOD OF ANALYSIS

2.1 GOVERNING EXUATIORS

The general strateqy used for the analysis of the pile foundations
under static and dynamic loading by Banerjee and Driscoll [5], Sen et al
(20,21] is followed here. This involves the construction of an integral
representation for the soil domain and the equations of motion for the
piles, represented by linear structural components.

For dynamic loading of a homogeneous, isotropic, elastic solid, the
governing differential equation in terms of the displacements uy
(neglecting body forces) is [3):

”’ﬂl)uj.ji + Ilu]-,:‘i - pui =0 (2.1)
where

A n are the Lame’'s constant

P is the mass density of the solid

’e

uy = azuil at2 are the accelerations
If the displacements are periodic (time harmonic), i.e.,
W (x, 0 =y tx,weltt (2.2)

where U;(x,e) is the amplitude of the displacement and « is the circular

frequency, then, equation (2.1) reduces to Belmholtz’s equatjon {3)

2
(lﬂl)uj’ji + “ui.jj v opuuy =0 (2.3)

For a homogeneous solid of finite extent the solution of this
differential equation for arbitrary boundary conditions can be expressed as
an integral equation in which the full-space Green’'s function takes the

roles of the kernel function [3l. BHowever, in the present application, in
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which the s0lid is of semi-infinite extent. it is advantageous to cast tl.e
integral equation in terms of the Green’s function for the half-space,
since this reduces the domain of integration to the soil-pile interface

only. The integral equation describing the motion of the soil can be

written as:
u (g0 = Is Gy4 (.3, 008, (x,0)ds (2.4)
where
uj are the displacements of the soil
Gij is the Green’s function for an elastic, homogeneous half-
space
d’i are the tractions at the pile soil interface

Equation (2.4) must be coupled with equations describing the response
of the piles (idealized as beam-column structures) to axial and flexural
hammonic excitations. The equations of motion [20] are:

dzu
b4
2

2 - -
meTu, + %dz = nddz (2.5)

for the axial dynamic response and

atu a%u

X X
E y - = °
PIP . +ma ) = ddx (2.6)

for the lateral dynamic response, where

Ep the Young's modulus of the pile material
Ip the second moment of the area of pile cross-section
I\p the cross sectional area of the pile shaft



d the diameter of the pile
u, and u, are the lateral and axial displacements, respectively

m the mass per unit length of the pile

6x and d’z are the lateral and axial tractions on tie pile

Equations (2.4), (2.5) and (2.6) represent the complete set of

equations for the solution of the problem.

2.2 NOMERICAL SCLOTION
By discretizing the pile-shaft-soil interfaces into n cylindrical
segments, the bases of the piles being circular discs, we can use equation

(2.4) to determine the displacements at the pile-soil interface as

n
- p
e = [_[As Gy (X, & ) S, 187 (x, ) (2.7)
=1 ®p

where surface tractions dFi’ have been assumed to be constant over each
segment of the pile-shaft soil and pile-base soil interfaces p(p=1,....n).

By taking { successively as the centroidal point of each element on

the boundary, we can obtain the following matrix equations for the

interfaces:
() = (G142 (2.8)

where superscript ‘s’ represents the scattered values and the subscript ‘s’
indicates that the stress and displacement values are obtained from a
consideration of soil domain alone.

The differential equation (2.3), the Helmholtz's equation, is that

governing time harmonic wave scattering. Scattering problems dealing with
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infinite and semi-infinite regions are usually formulated decomposing the
total displacement and stress fields (ut,d%) into two parts [31: (1) a
known free or undisturbed field (uf.df). and (2) the scattered field
uS,45), {.e.,
wh - why o+ W
(2-9)

Bt = b + S

The free-field or the incident wave is simply the wave motion that
would be present in the absence of scattering surfaces and the scattered
part is the wave diverging from the scattering region. uS satisfies the
radiation condition at infinity, which guarantees the absence of reflected
radiation.

Writing (2.8) in terms of eq. (2.9),

R SO S ty_raf
Che fug) = [G]({dsl lds})

or
t t
{usl = ls]t&s} - {bg) (2.10)
where,
f £
b} = [G][és} - {ug} . (2.11)

The set of equations represented by eq. (2,10} has to be coupled with
an equivalent set for the pile domain by solving the governing differential
equations (2.5) and (2.6) describing the responses of the piles to axial
and flexural harmonic excitation. The general solutions of these equations

[i.e., (2.5) and (2.6)] are of the form [20].

u, = Alsin(yz) + Azcos(yz) (2.12)

u, = Blsin(nz) + Bzcos(nz) + B3sinh(1|z) + B4cosh(nz) (2.13)

where



y = [mzlapap]l’z (2.13a)

1/4

_ 2
n = [Mme /Ep]:p] (2.13b)

and the arbitrary constants can be detemmined from the specified boundary
conditions at the ends of the pile. Since the distribution of tractions
along the pile-soil interface is a complex function of nodal values of
tractiorn, direct determination of the particular solutions of equations
{2.5) and (2.6) is scarcely possible. For arbitrary pile head
displacements it is necessary to examine the behavior of individual piles
when subjected to axial and lateral dynamic loeds. This can be best done
by considering the effects of applied pile head displacements as the
algebraic sum of the motion of an unsupported pile (i.e., no soil reaction)
under arbitrary pile head boundary conditions and those of a fixad head

pile. Superposition of these solutions leads to the linear set
ty _ t
fug) = D) + vy (by) (2.14)

where (bpl is the displacement vector derived fram unit pile-head boundary
conditions, the matrix [D] comprises constants of equations (2.12) and
(2.13), and u, is the arbitrary pile head displacements or rotation. Here
't' indicates the total field values and subscript 'p’ indicates that the
pile-soil) interface displacements and tractions are obtained from a
consideration of pile domain alone. Egquation (2.14) may be rearranged

into,
t, . t
Bl {up] D] {dp} (2.15)

where [B) is an identity matrixwith {bp} vector subtracted out from the
first column for the axial case. The corresponding {bp} vector is

similarly incorporated in the first column for the lateral case.

2-5



Now premultiplying both sides of equation (2.10) with [B] matrix we

have
[B]{uz} = [BI(GI{5) - (Bl1(b_} = (E1Y) - (a ) (2.16)
S S S S
where, (E) = [R)I(G] 2.17)
and, (dsl = (B] {bs} (2.18)

By satisfying the equilibrium and compatibility conditions at the
pile-soil interface, the total tractions acting on the piles may be

determmined from (2.15) and (2.16) as

-1
W3 = - [o1 + |1} 1gy) (2.19)

The total displacements are then obtained from (2.10).
The axial loads, shear forces and bending moments in the piles at any

depth due to the seismic forces can then be easily recovered from the

values of 6; and the inertial forces:

4
o t -2t £
P, () Ileznd + Mu’ulldz + Ay (2.20a)
_ t, -2t
P (2) _[ztéxd + e u )z (2.20D)
M(z) = IzM;'d + E\uzuilzdz (2.20¢)
L

where m is the difference of mass/unit length between the pile and the soil
filled pile domain.

In equation (2.11) information is needed about the free-field stress
and displacement values (dg}. {ug}. which is discussed in the next section.
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2.3 INCIDENT WAVES

Consider the half space z > 0 (Fig. 2-1), and a train of plane waves,
propagating parallel to the x-z plane. The motions are therefore
independent of the coordinate y and the overall problem can be studied in
two uncoupled parts, one corresponding to SH-waves with a motion in the y-
direction and the other to SV and P waves with coupled motion in the x and
z-directions. The solutions adopted for SH, SV and P waves is the one
obtained by direct integration of the differential egquations of motion in
terms of amplitudes used in reference {171, as opposed to solutions in

terms of pctentials proposed by some researchers [91.

SH-Waves: To be consistent with the previous fomulation, we may consider
the SH-waves to have a motion in the x-direction as a result of waves
propagating parallel to the y-z plane. The motion for an elastic medium

with one-dimensional geometry in the case of Si-waves has the form [91:

u, = tASHexp(% nz) + Rgrexp(~ El:-u-’ nz)] . f{x,t) (2.21)
s s

where,

o is the angular frequency

ASH and A&, are amplitudes of the incident and reflected waves
Cq is the shear wave velocity of the soil

1 and n are direction cosines of direction of propagation

For the half-space, Agy = Asy and for a unit amplitud~ of the motion

on the surface, eq. (2.21) reduces to [9]:

o
ux = COS (CS nz) . f(x,t) (2.22)
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FIGURE 2-]1. Model for Pile and System of Coordinates
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where

£(x,t) = exp(- 22Xy | oxp ({ut) = explin(t - g)] (2.23)

Cs s
The shear stresses are obtained from the displacements by

differentiation,

on, ., w
Tz = G(q) sin (Cs nz) . fix.t) (2.24)

where G is the shear modulus.
Bquations (2.22) and (2.24) directly furnish (uf) and L} variations
along the depth in eq. (2.11) for SH-waves.

SV and P-Waves: In the case of SV and P-waves the horizontal displacement
u, and the vertical displacement u, depend on both waves. but the
formulation can be simplified assuming the same variation in the x-
direction of all the displacement components. Equations similar to (2.22)
and (2.24) can be written for axial and transverse stress and displacement

values for this case, details of which are given in Ref. (9].

2.4 TRANSIENT ANALYSIS

The transient analysis has been done in the Laplace transform domain
followed by a numerical inverse transformation to obtain the responses in
the real time domain., a procedure which was previously used by Doyle [10],
Cruse and Rizzo [8], Ahmad and Manclis [1], and others.

For *ransient analysis., the actual input is given as

u_ = cos (w— nz) sin(et - m—ll) (2.2%)
X Cs Cs

® w wlx
Cyzg = " G (cs n) sin (cs n) sin(wt - Cs ) (2,26)
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For transient disturbances use is made of the Laplace transform of the

field eqs. (2.25) and (2.26) with respect to time of the form [1,8)

£(x,8) = LIEXO) = [ £x,0)e7 et (2.27)
o}

where ‘s’ is the Laplace transformed parameter. The transformed domain
integral equation representation does not require time convolutions that
are necessary in a time domain formulation. Instead, the formulation is
parametric in the transformed variable and the resulting algorithm involves
the solution of a rumber of ‘quasi-static’ type equations.

Any internal viscous dissipation of energy can easily be accounted for
by replacing the Lame constants A and u by their complex counterparts and
leaving Poissons’s ratio unaltered. The system matrices [G] and [D] in eq.
(2.19) are dependent on the transform parameter s, and are thus complex.
Equation (2.19) is solved for unknowns {u;l in terms of the prescribed
boundary quantities {d.} and for a spectrum of values of the transform
parameter. What remains to be done is to invert the solution back to the
real time domain. The inverse lLaplace transfcrmation is defined as [(1,8]:

1 (e st .

£lx.t) = 3= Ji_i’f(x.s) eStas, i=J1 (2.28)
where B > 0 is arbitrary, but greater than the real part of all the
singularities of f(s), and s is a complex number with Re(s) > 0. Details
of the mmerical inversion algorithm can be found in Ref. [1). BHowever, it
has to be noted that the Laplace transform solution is essentially a
superposition of a series of steady-state solutions and is therefore
applicable only to linear problems. Also, since the Laplace transform
casts the entire problem in the complex domain, the storage and computer

time requirements are considerably increased.
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SECTION 3

3.1 INTRODOCTION

Implementation of the algorithm is dependent on the availability of
the Green's function [3] for a dynamic point force buried in the interior
of an elastic half-space. A boundary element formulation of the pile
problem was recently revorted by Kaynia and Kausel [13] who obtained
{numerically) dymamic buried ring load (axial and lateral) solutions from
the work of Apsel {2]. The major problem here is, of course. the accuracy
of the numerically constructed dynamic solutjons, since the convergence of
the semi-infinite integrals in Apsel’s work is heavily dependent on the
frequency parameter.

An approximate solution (161 for the displacement field due to a point
force ej acting at a depth ‘c’ below the surface of the half-space can be
constructed by superposing the displacement fields due to two dynamic
forces acting within an infinite sclid; one acts at a depth ‘¢’ below the

‘surface’ and the other acts at a distance 'c’ above the surface (i.e., the

mirror image of the buried force):. thus

uy(x,0) = G;j(x.t.m)ej(t.m) (3.1)
where
G?j = G‘i’j(x.:'.u) + G?j(x.t“.w) (3.2)

§' o= (§,8,,0) and &' = (%,8,,C) .

The resulting stress field arising from G‘ij does not completely
satisfy the traction free-boundary conditions at the ground surface. In
the aforementioned fomulation, other fundamental solutions (151 such as

double forces, line of forces, doublets, centers of compression, lines of
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doublets, etc. are added on the negative side of the half-space to cancel
the residual tractions. Therefore, the solution for the half-space can be

expressed as

- |
Gij(x.{.w) = Gij(x.ﬁ.m) + Rij(x.ﬁ.m) (3.3)

where the comporents of Ri 3 (x.%.w) are contributed by the other fundamental
solutions mentioned above.

This fundamental solution is derived by extending to the dyramic case
of the superposition techrique devised by Mindlin [18) for the half-space
fundamental solution under static conditions. Mindlin’s solution
essentially consists of superposition of a combinati~n of nuclei of strain
[15] derived by synthesis from Kelvin’'s solution [14}, such that the
stresses vanish on the plane boundary of the half-space. Here the same
procedure is employed by starting with the harmonic counterpart of Kelvin's
solution in the Laplace's transformed domain [8]. In the following, only
the various components of the residual functions are given. The problem is
divided into two parts: (1) periodic force normal to the bocundary. and (2)
periodic force perallel to the boundary.

3.2 PERIODIC FORCE NORMAL TO THE BOUNDARY

The semi-infinite so0lid is considered to be bounded by the plane z=0,
the positive z-axis penetrating into the body. A periodic dynamic force
pei"’t is applied at point (0,0,+c) and acts in the positive z-direction
(Fig. 3-1(a)), where w is the circular frequency and i the imaginary unit.
Since for this case, the displacement and stresses are symmetrical about
the z-axis., the formulations have been derived in cylindrical coordinate
systems. The solution for this case is compposed of six individual
components, which in an unlimited solid, represent: (1) a single periodic
dynamic force at (0,0,+c); (2) a single periodic dynamic force at (0,0,-c);
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(3) a dynamic double force at (0,0,-c). (4) a dynamic center of compression

at (0,0,-c); (5) a line of dynamic centers of compression extending from z

= -c to z = -= and (6} a dynamic doublet at (0,0,-¢).

Single periodic force at (0,0,+c)

The displacements in the r and 2 directions due to this are [8):

1 aRl aRl

Urz = Ky [- By (5?—) (Bz—)] (3.42)
R

1 "2

Uzz = K, [A1 - B, (az )71 (3.4b)

vhere R1 is the distance between x and . In addition.

1
K1 = .zﬂ_l-l (3.4¢)
cg c, e SRy/cy cg cf c; e SRy/cy
A ( + — 1) - — + —) — (3.44)
1
szRi Ry Ry ci szki SR, Ry
3c§ 3¢, e SRy/Cy cg 3ci 3¢, e sRy/cy
B, = ( + ==+ 1) — - == (T — + 1) ———— (3.4¢)
1
sZRi 1-‘:1?1 R1 ci szRi SR1 Rl
vhere

2.

u is the shear modulus,
¢, and ¢, are the pressure and shear wave velocities, respectively, and
s is the Laplace transformed parameter which is equal to -ie for the

present case.

Single periodic force at (0,0,-)

The expressions (Uiz and Uzu) due to this are exactly the same as

(3.42) to (3.4e) above, except that R, now has to be replaced by R,- and
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3. Dynamic double forces at (0,0,—)
The displacement components are:
R, 3R,
3 42 _ _°
Upz = Ry [B3(527)7 - Byl (57)
R, )
3 _ 52 _2
Uzz = K3 [A3(az ) C3] (az )
where
c
Ry = - 2m
15c§ 15c, SR, e SRy/cy
A3 = + + —= + 6)
SZRi sR2 Cy R%
2 152 1%, s;, &SR/
- = (= 4+ — + — + §)
ci szng SRy & Ri
3c§ 3c2 e SR2/C2 c% 3ci 3c1
B, = ( + ==+ 1) - L r =+ 1)
3
szRg sR2 R% ci szRi st
%l 9, s, e SRy/C;
C, = (—= + == 4+ 4) ——
3 szki SR, c, R%
3c§ 3c§ 3c, e SRy/Cy
- + +1)
c"; szRg 8Ry Rg
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(3.6a)

(3.6b)

(3.6c)

(3.6d)

(3.6e)
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4. Dynamic center of compression at (0,0,—c)
The displacement components are
IR,
4 = ——
Up, = Ry [By (37)] (3.7a)
. ]
Uzz = K4 [B4 (E'H (3.7
where
_c(1-2v)
K4 = nui3-4v (3.7¢)
3c§ 3c, e SRy/C,y
Bym 55t v T
s E% 5By R
cg 3ci 3c; s e SRy/Cy
- 53t gﬁ; oY (3.10)
c] s Rg 1 R,
5. Line of dynamic centers of compression extending fromz = Cc to z = —=
These are obtained by integrating expressions (3.7a) and (3.7b) above
5 - IR
ul, =Kg | 1Bg(EDa: (3.82)
{=-c
5 - 3R
Ul =Ry | BG4 (3.8b)
=
where
K a-931-2v (3.8¢c)

s " Tnu(3-4v)

B is the same as B, above, except that R, now has to be replaced by

arbitrary R = (r2+(z*§)211/2.

nurerically.

This inteqral can be only evaluated



(3.9a)
(3.9b)
(3.9¢)
e SRy/Cy
(3.94)
3
Ry
3c 5 e SRy/cy
+—l+__Rl+2)-—————-.
S8R, ¢ Ri
(3.9%)

The addition of all the six camponents produce the complete solution

6. Dynamic doublet at (0,0,—C)
The displacement components are:
IR 0
6 & Ry
Urz = K6 [AG(az )(ar )]
3L
6 2
Uzz ; KG [A6(az )+ le
where
Koo
6 = T 2au(3-4v)
15c2 15, sR, e SRy/cy
A6 = -(——-5  ———— ¢ ——— 4 —_—
ssz s}, ¢ R;
2 2 2
C 15¢c 15c s 4s
+ 2 ( 1 + 2 R% + R2 + 9)
ci szki S8Ry c% 31
3c§ 3c, e SRy/cy ci 36%
B, = ( +—= + 1) ———— -t (e
6 2.2 S 3 2 2
a8y > ] %
Urz and U,ur

When s —= 0, the expressions reduce identically to Mindlin's

solution (18], of a (static) point force in the interior of a semi-infinite

solid.

3.3 PERIODIC FORCE PARALLEL T0 1HE BOUNDARY

In this case there is no axial symmetry and it is therefore convenient

to employ rectangular cartesian coordinates,
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Pei"’t is applied at (0,0,+c) and acts in the positive x-direction (Fig.
3-1(b). For this case, the solution is composed of six individual
components, which in an unlimited solid represent: (1) a single periodic
dynamic force at (0,0,+c), (2) a single dynamic force at (0,0,-c), (3) a
dynamic double force with moment at (0,0,-c), (4) a semi-infinite line of
dynamic double forces with moment extending fromz = -c to z = -=, (5) a
dynamic doublet at (0,0,-c) and (6) a semi-infinite line of dynamic
doublets extending from z = -c to z = -= with strength proportional to the

distance from z = -c.

1. Single periodic force at (0.0.+c)

The displacement components in x, y and z directions are [8]:

; oR, ,

Upy = Ly [P1=Q;(559)°) (3.10a)
3R, 3R

1 1, %%

Upx = L1 [5G (3.10b)
R, B8R

1 1, Ry

Upy = Ly (-9 (357) G5! (3.10¢)

Ll' P1 and Ql are the same as Kl' Al and By in (3.4¢), (3.44) and

(3.4¢), respectively.

2. Single periodic force at (0,9,-c)
The expressions (Uix. U;x and Uix) are the same as (3.10a) to (3.10¢)

above with R; replaced by R,. and

1

2 = m (3.11)

L

3. Dymnamic double force with moment at (0,0,—c)

The displacement components are:
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% i’

42 2
xx - D3 [P3(ax ! Qa]‘az )

(@]
w
t

R, R, IR,
U;x = Ly 10,0550 (50 G
) IRy
3 2.2 2
sz = L3 [P3(az ) Tal(ax )
where
C
Ly = 3
Py = A,
9 = B3
2 sR,/c
T=(-3_C—2—+32+§2_+2)eR22
3 szRg SR, ¢, R%

(3.12a)

(3.12b)

(3.12¢)

(3.128)

(3.12e)

(3.126)

e SRy/cq

(3.12q)

4. Line of dynamic double forces with moment extending from z = ~c to z =

These are obtained by integrating expressions (3.12a), (3.12b) and

{J.12¢c) above

4 - aRy2_ . 3R
vl -, I&_c [Py (507-0,1 (5 0de

4 - 3R, 9R, OR
RS j&_c [P, Gy’ (g 14t

4 - R2 ., 8R
o} -1, jt__c [P, (5,0 T4l (5,068

where,

(3.13a)

(3.13b)

(3.13¢)



arbitrary R = {x2+y2+(z+t)

5.

(1-2.)
Ly = - %m

(3.13d)

P, Q, and T, are the same as P;, Q; and T; above, with R, replaced by

Dynamic doublets at (0,0,-r)

The displacement components are:

"Rzz

5. £
Ul = Ly [Pgrag(3-5)%)

R, Ry
5 4y (=
Uox = LslQg(ay )(ay

vx )]

3R2 R,
5
% = L5[Q5( Y

= 9z !

(=)
I

o
|
w
LN

2}1/2.

(3.14a)

(3.14b)

(3.14c)

(3.144)

(3.14e)

(3.14f)

Line of dynamic doublets extending fram z = —C to z = —= with strength

proportional to the distance from z = ¢

The displacement components are:

6 _ a 3R 2
us, = Lg jga_c [P+Qg (5021 (2-c)dg

6 —* 3R
of, = L “'t-c Qg5 ¢

(3.15a)

(3.15b)



6 _ . [ 3R 3R
o, = Lg j&_c 196 (55 (5501 (&-C)diE (3.15¢)
vwhere,

6 = T ap(3-4v) (3.15d)

P¢ and Q¢ are the same as P, and Q¢ respectively with R, replaced by

arbitrary R = {x2+y2+(z+{)2}1/2.

The summation of all the six components furnish the complete solution

Usx? ny and Uy The limits — 0, reduces to Mindlin’s static solution
[18]. nents U_ , i i .
Compo xy Uyy and Uzy can be similarly obtained
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SECTTON 4

PRESENTATION AND ANALYSIS OF RESULTS

4.1 PORM OF PRESENTATION

This report presents the results of an extensive study on the seismic
behavior of single piles in a non-dimensionless form. Among the groups of
problem parameters influencing the response, most important are: the
stiffness ratio Ep/l?:s of the pile Young’s modulus over a characteristic
Young’'s modulus of the soil deposit; the slenderness ratio L/d of the

length over the diameter of the pile frequency. and angle of incidence of
the seismic waves. The dimensionless frequency parameter is defined as:

a = — (4.1)

w circular frequency of excitation
4 pile diameter

C shear wave velocity

The Young’'s modulus of soil is assumed to be constant with depth -
tvpical of stiff overconsolidated clay depcsits. The Poisson’s ratio of
the soil deposit was assumed to be 0.4. The ratio of the density of pile
material to soil was taken as 1.6, typical of concrete piles. Material

damping (8) was set equal to 0.05.

4.2 RESPONSES DUE TO SH-WAVES

The motion of the pile under the effects of SH-waves is considered
first. Waves were assumed to produce a unit displacement on the free-
field. The pile was modeled with eleven cylindrical elements. The
displacement and tractions were assumed to be constant throughout each

element.
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The influence of Ep/Es ratio is portrayed in Figs. 4~1(a) and 4-1(b)
for a pile having L/d = 10 and 30 respectively and for a particular
frequency (ao = 0.5). The recsponses are shown for a vertically incident
SH-wave (angle of incidence = 90°). The figures show the variation along
the depth of the ratio of the total transverse displacement.,% to the free-
field transverse displacement, u% at the ground surface. It is seen that
Ep/Es ratio has a profound elfect on the responses, at all depths. We
observe high oscillatory variation for a very flexible pile (E:p/Es = 100)
and almost low, unifcrm rigid body motion for a very rigid pile. Also, for
short piles (L/d = 10) bending moment is severe around the bottom mid-half
of flexible piles - region particularly susceptible to fracture and/or
yielding. A comparison between Figs. 4-1(a) and (b) reveals a profound
difference between the behavior of short and long piles. Long piles are
more susceptible to oscillatory responses even for stiffer piles.

Figures 4-2(a) and (b) show similar responses for a short and long
rile respectively, but now for an obligquely incident wave (8 = 60} It is
observed that for both the pile types the motions are higher as compared to
a vertically incident wave. But still, the pile movements follow identical
pattern.

Figures 4-3(a) and 4-3(b) show the ratio of the total horizontal pile
motion. u; to the free field motion, u% at the top of a short pile (L/d =
10) to varying angles of incidence (8 = 45°, 60°, 75° and 90°), for a
flexible and rigid pile, respectively. Figures 4-4(a) and 4-4(t) show the
same variation for a long pile (L/d = 30). It can be seen that the angle
of incidence and the stiffness ratio have a profound influence on the
filtering effects. It is observed that in the low frequency range, the
filtering effects increase with the angle of incidence, but this is not

true for all frequencies due to oscillations of the results. Resonant
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peaks occur at a lower freguency for a vertically incident wave than
obliquely incident ones. Filtering effects increase more rapidly for a
very rigid pile than for a flexible one. This is particularly true for
longer piles where the motions rapidly reduce to negligible values at

higher frequencies.

4.3 RESPONSES DUE TO P AND SV-WAVES

The retion of single piles under the influence of a combination of P
and SV-waves are considered next. As in the case of SH-waves the results
will be presented as a function of the normalized depth, z/L and the
dimensicnless frequency parameter, a, Incident waves are assumed to
produce a unit displacement on the free-field. For vertically incident
waves the pile variations will be equal to that obtained wher only an S-
wave is considered (SV and SH-waves are the same for 6 = %09).

Figures 4-5(a) and 4-5(b) show the variation of axial displacement
ratio, u; versus the free field axial ground motion, ug for an obliquely
incident combinacion of P and SV-waves (8 = 75°) for a particular frequency
(a0 = 0.5), for a short and long pile, respectively. Corresponding
transverse displacement ratios are portrayed in Figs. 4-6(a) and 4-6(b).
As in the case of SH-waves, the stiffness ratio and the embedment length
have significant influence on the responses. Whereas, a rigid pile shows
almost a uniform rigid body motion, flexible pilies exhibit oscillatory
movements, resulting in unacceptable amounts of moments that could cause
vielding and/or fracture of the pile.

The transverse displacement ratios u;/u% at the top of the pile is
depicted in Figs. 4-7(a) and 4-7(b) for a short and long pile respectively
with Ep/Es equal to 1000, Here again we observe the increase in the
filtering effects with the angle of incidence. For a vertically incident

wave (0 = 900) the results are identical to those in Fig. 4-3(a) and 4-4(a)
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vwhen only an SH-wave was considered.

The practical significance of all such curves are apparent: by
multiplying a given free-field design respcnse spectrum with the
appropriate interaction curve, one may obtain the design response spectrum

that must be input at the base of a structure on pile foundations.

4.4 TRANSIENT RESULTS

For the transient analysis, equations (2.25) and (2.26) represent the
input free-field excitation. The excitation frequency, o is set equal to
0.5 rad/sec and the time axis is normalized with respect to the sheur wave
velocity (Cg) and a characteristic length of the pile as

c.t

£ ==
t L (4.2)

Figures 4-8(a) and (b) show the actual transverse displacement, at the mid
length of the pile, for a short and long pile respectively due to
vertically incident wave. It is observed that, presence of the pile alters
the free-field displacement values substantially. Wwhereas, rigid piles
show small or neqligible movement, flexible piles appear to follow the
ground motions. This observation is more pronounced for longer piles.
Figures 4-9(a) and (b) show the corresponding values for an obliquely
incident wave (@ = 60°). Heras alsc rigid piles exhibit negligible
displacement and flexible piles experience higher motion. This phenomena
is more pronounced for longer piles, but still, the magnitudes are much

lower than the corresponding values for a vertically incident wave.
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SECTION S
CONCLUSIONS

Responses of piies to vertically and obliquely incident SH, SV and P
waves have been analyzed. It is found that the stiffness ratio, angle of
incidence ard the excitation freguercy have a significant influence on the
pile response. While the number of cases studied is not sufficiently large
to derive approximate formulae or general conclusions, it appears that the
existence of the pile foundation produces a filtering of the waves,
reducing the amplitude of the motion as a function of frequency. Longer
piles are more suscertible to oscillatory response even with higher
stiffness.

For short flexible piles, bending moment is found to be severe around
the bottom half of the pile. Filtering effects increase more rapidly for a
rigid pile than for a flexible one. Resonant peaks occur at a lower
frequency for a verticaily incicent wave than obliquely incident ones.
Finally., the pilot transient analysis also indicates that the presence of
the pile modifies the ground motion substantially.

The interaction curves presented in this report have significant
practical utility. A design response spectrum for a structure resting on a
pile foundation may be readily obtained by multiplying a given free-field

design response spectrum with the appropriate interaction curve.



SECTION 6
NOTATION

a dimensionless frequency parameter defined by equation (4.1)

A1 to Ag expressions defined in Section 3.1

Ao cross sectional area of pile hase
Ap cross sectional area of pile

ASH amplitudes of incident SH waves
A;.H amplitudes of reflected SH waves
(B} matrix defined in equation (2.15)

31 to B, expressions defined ir Section 3.1

{bp} displacement vector for unit pile head b.c.
{bs} known vector defined by eguation (2.11)

< depth of source from free surface of half space
Cp.c1 pressure wave velocity

Cﬁ.c2 shear wave velocity

d pile diameter

[ds] matrix defined in equation (2.18)

D] pile compressibility and flexibility matrix

{E] matrix defined in equation (2.17)
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(6i]
“b}
@)

{dz)

L, to Lg

Young's modulus of pile material

Young's modulus of soil material

parameter defined by equation (2.13b)

vector of pile-soil interface tractions

axial pile stress at base

vector of lateral pile traction

vector of axial pile traction

vector of total field pile tractions

vector of free field soil tractions

vector of scattered field soil tractions

vector of total field soil tractions

Green’s function

parameter defined by equation (2.13a)

imaginary unit, /-1

mament of inertia of pile cross section

constants defined in Section 3.1

direction cosine of propagation of SH wave

length of pile

constants defined in Section 3.2
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M(z)

Py to Pg
Px(z)

Pz(z)

9 to Qg

[Rij]

fadl

Lame ‘s oconstant

mass per unit length of pile

bending moment at depth z of pile

Lame’'s constant

direction cosine of propagation of SH wave

Poisson'’'s ratio

expressions defined in Section 3.2

ransverse load at depth z of pile

axial load at depth of z of pile

3.141592654

expressions defined in Section 3.2

canponent in polar axes system

distance between field point and real source point

distance between field point and image source point

residual terms in Green's function

density of pile material

Laplace’s transfomm parameter

time

dimensionless time defined by equation (4.2)
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inclination angle of seismic waves

pile head displacement

displacements in ith direction due to force in jth direction

acceleration camponent in ith direction

lateral pile displacements

axial pile displacements

vector of total field pile displacements

vector of free field soil displacements

vector of scattered soil displacements

vector of total soil displacements

circular frequency

integration parameter
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