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SUMMARY

Seismic behavior and design of heavy facades/claddings and connections in
buildings has been investigated, and unique cyclic racking tests of
representative precast concrete facade/cladding panels and connections have
been carried out. During the first major phase of the research project
current practices for design and detailing of heavy facade/claddings and
their connections to supporting structural systems, were evaluated. In
consultation with practicing architects, engineers, researchers and
facade/cladding manufacturers, state-of-the-art data for facade/cladding
design, detailing and erection practices was compiled. Available data on
the performance of building facade/cladding during previous destructive
earthquakes including the recent Mexico City Earthquake of September 1985
was evaluated. Analytical and experimental techniques of modeling the
seismic behavior of heavy precast concrete facade/cladding panels and
connections have been investigated. The role of modern testing methodology
in assessing the seismic behavior of building facades/claddings and
connections has been evaluated. Pilot static tests of typical ductile
(push-pull) cladding connections were carried out to investigate the
strength and behavior of these connections. Cyclic in-plane racking test of
a full-size precast concrete cladding panel with bearing connections at the
bottom and ductile (push-pull) connections at the top, representative of
California current practices, has been carried out. Test results consist of
cyclic load-displacement curves; time-history plots of loads, displacements,
accelerations, etc., during each test; analysis of peak response quantities,
e.g., displacements and load-levels reached; estimated rigidities of the
cladding panel-connection assembly at increasing levels of peak
displacements of block cycles; as well as the relationship between drift
levels and behavior of cladding panel-connection assemblies. Dynamic
testing of a representative reduced scale three dimensional model two story
steel-framed building structure with and without precast concrete cladding
panels, was carried out. Results provide quantitative experimental data on
the earthquake resistance and stiffness of cladding connections and the
overall seismic behavior of cladding connection assemblies. The test
results obtained will help develop improved and more realistic analytical
modeling of building structural systems interacting with heavy
facades/cladding and connection systems in low/medium-rise buildings during
earthquakes.
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CHAPTER 1: INTRODUCTION

This report documents results of a research program carried out to
investigate the behavior of heavy facades/claddings and connections in
buildings during earthquakes.

The widespread use of heavy facades and claddings in a broad class of
buildings in seismic zones, and the potential life-hazards and significant
economic losses posed by damage and/or collapse of such heavy exterior
finish systems warrants a systematic and thorough examination of the
behavior of heavy facades and claddings during earthquakes.

The overall nature and scope of the problem is further evidenced by
available observed damage data on the behavior of exterior facade/cladding
enclosure systems in buildings during previous earthquakes, e.g.,
Anchorage, Alaska-1964, San Fernando, California-1971, Miyagi-Ken-0ki,
Japan-1978, Mexico City, Mexico-1985, and Whittier-Narrows, California-
1987.

A study of the limited available observed damage data clearly shows that
mitigation of earthquake damage of building facades/claddings is a very
important issue because of the potential hazard to public and significant
economic losses posed by such non-structural damage in buildings during
earthquakes.

The importance of mitigation of earthquake damage of exterior architectural
components, e.g., facades/claddings in buildings was also highlighted at
the EERI/NSF workshop (40) on non-structural issues, to attempt to define
practical research needs and further research work.

Furthermore, heavy facades and cladding can have significant influence on
the overall lateral stiffness of buildings and thus alter the fundamental
dynamic properties, e.g., natural frequencies, and also damping, and hence
the response and behavior of the overall building system during
earthquakes.

It is only recently that efforts have been directed to developing a better
understanding of behavior of claddings and connections during earthquakes.

The general lack of an adequate base of test data on the static and cyclic
behavior of building facades/claddings and connections, necessitates that
testing be carried out to provide quantitative results on the strength and
cyclic behavior of typical building facades/claddings and connections,
including threshholds of damage, as well as their fundamental
characteristics, e.g., natural frequencies, damping, etc.

It is also necessary to document and evaluate the effectiveness of the
applicable design provisions of the regulatory standards, e.g., Uniform
Building Code (86), ATC 3-06 (7), SEAOC (133), State of California (101),
Tri-Services Manual (139) and the recently developed NEHRP Guidelines (28),
through correlation with test results and available field data.

1 Numbers in parenthesis refer to Bibliography on page 71.



CHAPTER 2: BUILDING FACADES/CLADDINGS

2.1 BACKGROUND

In general, facades/claddings are regarded as a means of enclosing a
building structure by attachment of enclosure material assemblies,
capable of spanning between supporting points, on the exterior face of
a building. The sizes of the cladding components are based in most
part on their ability to resist lateral loads (e.g., wind and
earthquakes) acting on the building, and then transfer those loads
safely to the building:

The function of building facades/claddings may be described as follows,
to provide:

a. Building envelope that protects the interior of the building from
all climatic conditions and maintain a comfortable thermal
environment.

b. Acoustic insulation that protects the occupants from noise
pollution.

c. Fire resistance.

d. Solar protection and possibly reduce the energy demand of
HVAC systems.

e. Enhancement to building’s external appearance.
Photographs (Figures 1-9) show the many different facade/cladding

types, their configurations, materials and exterior finishes in use in
low- and medium-rise buildings on the West Coast.
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Figure 1 Precast Cladding - Medium-Rise Building
Los Angeles, California

* 00 AT R e m I

EEE?E Effff EEEEE TETRE X

Figure 2 Precast Cladding - Medium-Rise Building
Los Angeles, California



Figure 3 Precast Cladding - Checker-Board Pattern
Medium-Rise Building - San Jose, California

Figure 4 Curtain-Wall Facade - High-Rise Buildings
Downtown, Los Angeles, California



Figure 5 Facade/Cladding Elevation - Medium-Rise Building
Downtown, Los Angeles, California

Figure 6 Spandrel Cladding/Facades - Medium-Rise Building
Downtown, Los Angeles, California



Figure 7 Precast Cladding (Window-Wal] Units)

- Medium-Rise Building
Downtown, Los Angeles, California



Figure 8 Close-up Detail - Precast Cladding (Window-Wall Units) -
Medium-Rise Building, Downtown, Los Angeles, California

Figure 9 Precast Cadding - Spandrel - Panels & Column-Cover-Panels,
Medium-Rise Building, Downtown, Los Angeles, California



2.2 CLASSIFICATION OF BUILDING FACADE/CLADDING SYSTEMS

For this research report, facades and claddings fastened to
moment-resisting frame building systems may be classified as follows:

FACADE/CLADDING CONFIGURATION
TYPE
WINDOW-WALL SPANDREL
PANELS PANELS
I. Precast Concrete Cladding " n
II1. Glass Fiber Reinforced n .
Cement (GFRC) Cladding
III. Masonry Veneer Facades " N
on Framed-Backing
IV. Stone/Granite/Marble Facades n n
on Framed-Backing

The above list is not intended to be complete and only represents a
partial summary of representative facade and cladding types that should
be considered.



2.3 DESIGN ISSUES

Development of facade/cladding systems in buildings in seismic zones
requires the consideration of the following design issues:

o Facade/Cladding Component Issues
Under this category the following should be considered:
(i) Materials

From the point of view of earthquake resistance of

facades/claddings, the following material issues should be

considered in addition to the general considerations of
appearance, durability and weather-staining:

- Mass Properties

- Strength and Deformation Properties

(ii) Geometry and Configuration

Important issues under this category are:

- Shape and Proportions of precast facade/cladding
components, e.g., solid shapes, open vs. closed shapes and
their combination thereof to provide desired
facade/cladding elevations.

- Size of precast facade/cladding components, e.g., length,
width, thickness, etc.

o Connections - Design Issues

Important connection design issues are:

Types of connections with respect to number, types and methods of
load transfer or accommodation of movement/deformation.

Location of connections.

Connections between precast facade/cladding components and
supporting structural system.

Connections between precast facade/cladding components.
o Supporting Structural System - Design Issues

The important issues under this category may be summarized as
follows:

Gravity Loads - Supporting structural system must safely carry the
weights of the precast facade/cladding components in addition to



usual dead and live loads, through the connections between the
precast facade/cladding components and the supporting structure.

Lateral Loads (Wind, Earthquakes) - Supporting structural system
must safely resist the effects of lateral loads, e.g., wind and
earthquake loading, transmitted through the connections between the
facade/cladding components and the supporting structure.

The interrelationship of the above design issues is graphically
illustrated in Figure 10.

10
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CHAPTER 3: SCOPE AND OBJECTIVES

The main focus of this research program is to analytically and
experimentally investigate the seismic behavior and design of heavy
facades/claddings and their connections in low/medium-rise buildings.

The general objective of this research program is to document and evaluate
applicable current provisions of the Uniform Building Code (86) and other
regulatory standards, e.g., State of California Title 21 and Title 24 (101),
ATC 3-06 (7), SEAOC (131), Tri-Services Manual (139), NEHRP Guidelines (28),
and current practices governing the design, detailing and installation of
heavy facades/claddings and their connections in Tow and medium-rise
buildings with different framing systems.

In 1ight of the diverse range of facade/cladding components and connections
in use in low/medium rise buildings in seismic zones across the U.S., it
was decided to focus on investigating the seismic behavior and design of
the following exterior finish systems representative of practices in
California and other western states.

I. Precast Concrete Cladding Panels Attached to Moment-Resisting
Rigid Frame Building Systems

IT. Brick Veneer/Granite/Marble Facades on Framed Backing Attached to
Moment-Resisting Rigid Frame Building Systems

It should be noted that a significant percentage of exterior building
facades/claddings in California, are of the types outlined above.

Upon further consideration it was further decided to focus attention only on

the study of Precast Concrete Cladding Panels and their attachments to
steel-framed building systems, at this time.

12



CHAPTER 4: UTERATURE REVIEW

A comprehensive survey of pertinent literature was conducted. The results
of this survey are presented in the form of an extensive bibliography (p.71)
which provides an exhaustive source of information on a broad range of
issues governing behavior, analysis and design of heavy facades/claddings
and connections in buildings in seismic zones.

McCue, et al. (93) reported the results of an ’‘Enclosure Wall - Case Study’
as an application of the conceptualized behavior models developed to
investigate interaction of building components during earthquakes.

Sack, et al. (118) reported the first detailed investigation of the seismic
response of precast curtain-walls in high-rise buildings. This research
involved both analytical modeling of precast curtain-wall panels and their
connections; as well as testing of curtain-walls and their connections.

Goodno, et al. (66), (67), (68), (69), (102), reported results of
investigations of seismic response of glass curtain-walls as well as precast
concrete cladding; cladding-structure interaction, analytical modeling for
investigating the stiffening effects of cladding on the seismic response of
buildings, as well as testing of cladding connections to investigate their
behavior.

Wang (147), (148) reported the results of large-scale testing of precast
cladding attached to a Full-Scale Steel Test Frame carried out under a
U.S.-Japan Cooperative Research Project.
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CHAPTER 5: FACADE/CLADDING PERFORMANCE DURING PREVIOUS
EARTHQUAKES

In the initial phases of this research project, sincere efforts were made to
systematically document the available data on observed performance of
non-structural facades/claddings in buildings during previous earthquakes.

The first attempt to systematically document non-structural damage during
earthquakes was reported by Ayres, et al. (12) for documenting the
non-structural building damage caused by the Anchorage, Alaska, earthquake
of 1964. Even though this was an excellent start, no consistent coordinated
efforts have since been made to document non-structural building damage in

general and facade/cladding damage in particular, during earthquakes since
then.

Selected highlights of building facade/cladding performance and damage
during the previous earthquakes are presented below as follows:

Table I : Anchorage, Alaska, Earthquake of 1964

Table II : San Fernando, California, Earthquake of 1971
Table III: Miyagi-Ken-0ki, Japan, Earthquake of 1978
Table IV : Mexico City, Mexico, Earthquake of 1985

14
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SUMMARY OF BUILDING FACADE DAMAGE - ANCHORAGE, ALASKA
EARTHQUAKE OF 1964 [Source Ref. 12]

"1. Heavy precast-concrete panels that were attached to the building frame
by clip angles and inserts collapsed.

2. Concrete-masonry-units filler walls were badly cracked and in some
instances they damaged the surrounding structural frame.

3. Brick veneers, attached to flexible steel frames without backing or with
insufficient backing, cracked and in some instances collapsed. Some
stone and brick veneers collapsed where they were imporperly tied to
concrete walls

4. Curtain Walls sustained very little damage, except in the vicinity of
structural failures. Some mounting brackets broke or pulled loose their
concrete inserts at the floor slabs.

5. Glass-block panels were practically undamaged.

6. Window-glass was damaged where adjacent structural elements failed or
sustained excessive deflections. Where mounts were rigid and mullions
were weak, large panels of glass in storefronts were broken. Some glass
ganels in curtain walls were damaged when flexible mountings worked

oose." ’
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Reproduced from N
best available copy. & 3

Figure 11 Collapsed Precast Concrete Facade Panels
J. C. Penney Building
Anchorage, Alaska Earthquake of 1964 (Ref.12)

Figure 12 Collapsed Precast Concrete Facade Panels
J. C. Penney Building
— Anchorage, Alaska Earthquake of 1964 (Ref.12)
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Figure 13 Facade Damage
First Federal Savings and Loan Building
Anchorage, Alaska Farthquake of 1964 (Ref.12)

Figure 14 Facade Damage
First Federal Savings and Loan Building
Anchorage, Alaska Earthquake of 1964 (Ref.12)
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o Figure 15 Failure of Precast Concrete Wall Panels

San Fernando, California Earthquake; 1971
(Ref.139)

Figure 16 Collapse of Precast Concrete Curtain Walls
Miyagi-Ken-Oki, Japan Earthquake, 1978 (Ref.39)



Figure 17 Pino-Suarez Building, Mexico City
Damaged Precast Concrete Cladding Already
Removed, Mexico City, Mexico Earthquake of 1985

Figure 18 Pino-Suarez Building, Mexico City
Damaged Precast Concrete Cladding Already
Removed, Mexico City, Mexico Earthquake of 1985
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Reproduced from £ W),
best available copy. Iy

Figure 19 Masonry Infill Facade Damage
Medium-Rise Building With Reinforced
Concrete Moment-Resisting Frames,
Mexico City, Mexico Earthquake of 1985

Figure 20 Masonry Infill Facade Damage, Medium-Rise Building
With Reinforced Concrete Moment-Resisting Frames,
Mexico City, Mexico Earthquake of 1985
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CHAPTER 6: SEISMIC DESIGN CODES AND REGULATIONS
The provisions of the following codes and regulatory standards governing
the seismic design and detailing of facades/claddings and their connections
were reviewed:

= ATC 03-6

= UBC

m Tri-Services Manual

s SEAOC

m 0SA - State of California

= NEHRP

A summary of the applicable code provisions is presented in Tables V-A and
V-B.
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CHAPTER 7: REVIEW OF CURRENT DESIGN AND
CONSTRUCTION PRACTICES

7.1 FACADES/CLADDING PANELS
7.2 CONNECTIONS

A schematic block diagram of the overall design process governing the
seismic design and detailing of non-structural facades/cladding
components and connections in buildings is presented on p.

Basically, the current facade/cladding and connections design and
detailing practices are based on the following:

m Seismic Design Codes and Regulations, e.g., UBC, ATC, Tri-Services
Manual, SEAOC, OSA, NEHRP

Comparative evaluation of applicable seismic design codes was
presented in Chapter 6.

= Industry Standards and Guidelines

Guidelines for design, detailing, production, and erection of precast
concrete facade/cladding panels and connections are provided by
Prestressed Concrete Institute (106), (107), (108), (109), (110),
(124), Precast Product Manufacturers (89) and others (103).

Current Facade/Cladding Construction Practices

GFRC Cladding Panels

This type of cladding is becoming increasingly popular on the West
Coast. Figure 21 shows a GFRC cladding panel fabricted at a precasting
plant before being shipped to the construction site.

Figure 22 shows a typical GFRC cladding panel being lifted for shipment
at a precasting plant on the West Coast.

Precast Concrete Spandrel Panels

This type of facade/cladding is widely used not only on the West Coast
but other states as well, in the United States.

Figures 23 and 24 show typical precast concrete spandrel panels being
delivered to a construction site in the San Francisco Bay Area. The
precast panels already have steel-angle-attachment assemblies embedded
in them during the panel fabrication process.

Figure 25 shows typical layout and configuration of precast concrete
spandral panels during construction in a low-rise steel-framed building
near San Francisco.

Figure 26 shows close-up detail of precast concrete spandrel panels and
column-cover-panels during construction.
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Figure 27 shows the installation of precast column-cover-panels in
progress in a low-rise steel-framed building near San Francisco.

Precast Concrete Window-Wall Cladding Panels

Figure 28 shows the installation and connection details of a story-
high precast concrete cladding panel in a steel-framed high-rise
buildings in San Francisco.

Figure 29 shows the detailing and installation of precast concrete
cladding corner units in a steel-framed high-rise building in San
Francisco.

Precast Concrete Facades/Claddings and Connections

In Tight of the diverse range of facade/cladding components and
connections used in low/medium-rise buildings in seismic zones across
the U.S., it was decided to focus on investigating the seismic behavior
and design of precast concrete cladding panels attached to rigid-frame
building structural systems representative of current practices in the
U.S. It was further decided to focus on the investigation of seismic
behavior and design of story-high window-wall panel components and
connections in buildings with moment-resisting frame structural
systems.

Connections

A study of the state-of-the-art of seismic design and detailing of
cladding connections shows that there are many different types of
connections and details in use in different parts of the U.S.

According to current design practice in California and other seismic
zones of the U.S., Ref. (89), (93), (106), (53), (124), (125), (103),
(108), (109), (110), (147), (148) connections of precast concrete
window-wall facade/cladding panels to the building structural frames
may be divided into the following categories:

m Flexible Connection at Top

Typically there are two attachment points at top of the cladding
panel. These felxible or push-pull connections between the cladding
panel and the structural frame are expected to accommodate all
possible differential movements including inter-story drifts caused
by lateral load, e.g., wind and earthquakes; as well as differential
movements due to unbalanced gravity loads, temperature changes, creep
and shrinkage.

= Bearing Connection at Bottom
Typically there are two attachment points at the bottom of the
cladding panel. These rigid connections at the bottom of cladding

panels are designed to provide resistance to gravity and lateral
loads, e.g., wind and earthquakes.
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In current design practice, it is assumed that cladding contributes
only mass to building system. Thus the designer accounts for
facade/cladding in the seismic design process by including only the
dead weight of cladding panels tributary to building floor under
consideration. The total mass distribution in the building, thus
obtained is used along with the lateral stiffness of the building to
determine fundamental dynamic properties, e.g., modal frequencies and
mode shapes, as well as seismic response analysis and design of the
building system.

It is also assumed that the flexible lateral connections at top of the
cladding panels provide no in-plane earthquake resistance and function
only to accommodate differential movements between the facade/cladding
panels and building structural frames.
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Reproduced from Wz
best available copy.

Figure 21 GFRC Cladding Panels During
Fabrication at Fabrication Plant

Figure 22 Typica1 GFRC Cladding Panel Being Lifted
for Shipment at Precasting Plant
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Figure 23 Typical Precast Concrete Spandrel Panels
Being Delivered to Construction Site

Figure 24 Typical Precast Concrete Spandrel Panels
Being Delivered to Construction Site
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Figure 25 Typical Configuration of Precast Concrete
Spandrel Panels in a Low-Rise Steel-Framed
Building - During Construction
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Figure 26 Close-up of Precast Concrete Spandrel Panels
and Column-Cover-Panels - During Construction
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Figure 27 1Installation of Precast Concrete Column-Cover-Panels
in a Low-Rise Steel-Framed Buildings
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Figure 28 Installation and Connection Details of a Story-High Precast
Connection Cladding Panel in a Steel-Framed High-Rise Building

Figure 29 Installation and Details of Precast Concrete Cladding
Corner Units in a Steel-Framed High-Rise Building
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CHAPTER 8: TESTING PROGRAM

GENERAL

In Tight of a general lack of test data on claddings and connections, a
testing program was developed and carried out to investigate the behavior
of precast concrete cladding panels with threaded-rod flexible lateral
connections at top and rigid bearing connections at bottom, representative
of design practices on the west coast of the U.S.

8.1 TEST I TESTING OF LATERAL (THREADED-ROD) CONNECTIONS

8.1.1

8.1.2

8.1.3

8.1.4

TEST OBJECTIVE

The objective of these tests was to study the static
load-deflection behavior of 5/8 inch diameter threaded rods of
different lengths and support conditions representative of those
used in precast concrete cladding panels.

DESCRIPTION OF TEST SPECIMEN

Test I specimens consisted of a mock-up assembly of flexible
lateral connection at the top part of a precast concrete
cladding panel. The mock-up assembly consisted of a block of
concrete 4 inches thick, 11 inches high and 40 inches long.
Threaded-rods of different lengths, e.g., 4, 6, 8, 10 and 12
inches were connected to the block of concrete by a typical
assembly consisting of a steel plate with a hole at the center
and a Ferrule insert welded to the back of the plate in addition
to four headed studs, as shown in Figures 2, 3 (Appendix A).

TEST SET-UP AND PROCEDURE

The overall test set-up is shown in Figures 1, 4, 5 (AppendixA).
Loading was applied by means of a loading structural Tee with a
2-inch diameter hole, with 1/4-inch thick washers and one nut on
each side of the stem of the loading Tee. Loading was applied
using a Riehle Universal Testing machine, and threaded-rod
deflections were measured using dial gages. Each threaded-rod
specimen was subjected to statically applied loading and
unloading. A uniaxial tensile test of a 5/8-inch diameter
threaded-rod was also carried out to investigate the behavior of
such a rod in axial tension and establish its fundamental
strength and deformation properties.

TEST RESULTS

A summary of results of static tests of threaded-rod lateral
connections is presented in Table VI. Typical load-deflection
curves for all threaded-rods are presented in Figs. 7 to 11
(Appendix A).

Based on an experimentally obtained uniaxial tensile stress-
strain curve for a 5/8 inch diameter threaded-rod (Fig.6
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-Appendix A), an analytical model for prediction of the
load-deflection relationship for the threaded-rods tested, was
developed. A plot of estimated stiffness of threaded-rod
specimens at different load levels is presented in Fig. 12
(Appendix A).
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TEST I

LATERAL CONNECTIONS

STATIC TESTS OF THREADED ROD-TYPE

MAX. BENDING

SPECIMEN THREADED ROD MAX. TEST MAX. ROD | STRESS IN ROD
LOAD DEFLECTION | @ MAX. LOAD:
NO. LENGTH DIA. BASED ON
IN. IN. LBS. IN. ANALYTICAL
MODEL KSI

CST-L4 4 0.625 478 0.64

77
CST-L4A 4 0.625 415 0.78
CST-L6 6 0.625 290 0.87

73
CST-L6A 6 0.625 290 0.79
CST-L8 8 0.625 180 1.34

73
CST-L8A 8 0.625 178 1.00
CST-L10 10 0.625 133 0.86

65
CST-L10A 10 0.625 145 0.95
CST-L12 12 0.625 103 1.11

65
CST-L12A 12 0.625 104 1.06

TABLE VI: SUMMARY OF TEST RESULTS
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8.2 TEST II CYCLIC TESTS OF PRECAST CONCRETE CLADDING PANELS AND

8.2.1

8.2.2

8.2.3

CONNECTION ASSEMBLY
TEST OBJECTIVE

The objective of Test II was to investigate the in-plane
resistance and behavior of full-size precast concrete cladding
panels and connections under cyclic displacements of increasing
amplitudes and different frequencies.

DESCRIPTION OF TEST SPECIMEN

Test II specimen consisted of a soiid precast concrete cladding
panel 8’ wide x 10’ high x 4-1/2" thick, with two threaded-rod
lateral connections at top of panel and two bearing connections
at the bottom. The bearing connection consists of a steel angle
assembly with four 5/8-inch diameter studs welded to back of the
angle, and embedded in the cladding panel. Two threaded-rod
lengths of 6 and 8 inches were used for Test II.

Figure 30 shows an overall schematic of Test II Precast
Cladding Specimen including location of Threaded-Rod Flexible
Connections and Rigid Bearing Connections.

Details of cladding cyclic test specimen and top and bottom
connections are shown in Figures 1, 2, 3, 4, 5 (Appendix B).

TEST SET-UP AND PROCEDURE

The overall cyclic test set-up for Test II is shown in FlIgures
1, 4 (Appendix B). The cyclic displacements were applied to the
precast cladding specimen through a loading assembly attached to
the threaded-rod laterall connections as shown in Figures 2, 4
(Appendix B).

The cladding test specimens were subjected to cyclic racking
motions using an MTS electro-hydraulic shaking system located in
the High-Bay laboratory of the School of Architecture. An
overview of the dynamic testing instrumentation set-up is
ppresented in the Block Diagram of Figure 31. The cyclic test
sequence consisted of block cyclic tests. During each test run
frequency was fixed at 0.1 Hz or 0.5 Hz and the test specimen
was subjected to five cycles of loading for each peak command
displacement starting with 1/4, 3/8, 1/2, 3/4, 1, 1-1/2, 1-3/4,
2, 2-1/2 inches.

A summary o the Cyclic Test Control Parameters is presented in
Table VII.

Representative Cyclic Test Data and Cyclic Load-Displacement
Curves are presented in Appendix B (Figures 11-15).
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8.2.4 TEST RESULTS

Time-History Data for all transducer channels was analyzed and
peak-responses were recorded. Representative plots of time-
history data for force, displacement and strain are presented
in Figures 11-20 (Appendix B). The peak-response data for all
cyclic test runs is presented in Tables I-IV (Appendix B).

The observed behavior and fracturing of threaded-rod Tateral
connection under cyclic displacements just prior to failure is
shown in Fig. 32. Graphs of peak lateral-force resistance of
threaded-rod lateral connections vs. horizontal displacement
(drift) are shown in Figs. 16, 17 (Appendix B). A summary of
cyclic test results for the precast cladding specimens with
6-inch and 8-inch Tong threaded-rod lateral connections is
presented in Tables VIII and IX. These tables document not only
the peak load and horizontal displacement (drift) levels reached
but also present estimates of service load-surcharge to the
bearing angle for each of the test runs up to failure. The
service-load surcharge is expressed as a percentage of the
standard design load both for the bearing connection angles and
the headed-studs in the bearing connection. Details of the
computation of the service-load surcharge to the bearing
connection due to the resistance of the threaded-rod connections
are given in Appendix B.
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JEST It

IN-PLANE CYCLIC TEST OF PRECAST FACADE/CLADDING PANEL
AND CONNECTIONS

SUMMARY OF TEST RESULTS - ESTIMATE OF LOAD SURCHARGE TO BEARING
' CONNECTION

THREADED ROD - LENGTH = 6 INCHES. TEST FREQUENCY = 0.1 Hz

HORIZONTAL MAX. PEAK ESTIMATED LOAD SURCHARGE AS
RELATIVE LOAD-CELL % OF STANDARD DESIGN LOAD
RUN DISPLACEMENT READING A /H
(DRIFT) A TO BEARING TO STUDS IN
INCHES kips CONNECTION BEARING
ANGLE CONNECTICN
AF 1 0.171 1.075 0.0014 52 28
AF 3 0.374 1.466 0.0031 70 38
AF 4 0.591 1.661 0.0049 80 43
AF 6 0.811 1.759 0.0068 84 45

THREADED ROD - LENGTH = 6 INCHES. TEST FREQUENCY = 0.5 Hz

51

HORIZONTAL MAX. PEAK ESTIMATED LOAD SURCHARGE AS
RELATIVE LOAD-CELL % OF STANDARD DESIGN LOAD
RUN DISPLACEMENT |  READING A /H
(DRIFT) A TO BEARING T0 STUDS IN
INCHES kips CONNECTION BEARING
ANGLE CONNECTION
BF 1 0.122 0.885 0.0010 41 22
BF 3 0.266 1.319 0.0022 63 34
BF 4 0.437 1.637 0.0036 78 42
BF 5§ 0.623 1.734 0.0052 83 45
BF 6 0.967 1.881 0.0081 90 48
BF 7 1.151 1.808 0.0096 87 46
TABLE VIII




TEST li: IN-PLANE CYCLIC TEST OF PRECAST FACADE/CLADDING PANEL
AND CONNECTIONS

SUMMARY OF TEST RESULTS - ESTIMATE OF LOAD SURCHARGE TO BEARING
‘ CONNECTION

THREADED ROD - LENGTH = 8 INCHES. TEST FREQUENCY = 0.1 Hz

HORIZONTAL MAX. PEAK ESTIMATED LOAD SURCHARGE AS
RELATIVE LOAD-CELL % OF STANDARD DESIGN LOAD
RUN DISPLACEMENT READING A/
(DRIFT) A TO BEARING TO STUDS IN
INCHES kips CONNECTION BEARING
ANGLE CONNECTION
Al 0.186 0.782 0.0015 38 20
A3 0.393 1.075 0.0033 52 28
A4 0.608 1.172 0.0051 56 30
AS 0.838 1.246 0.0070 60 32
A6 1.290 1.343 0.0108 64 35

THREADED ROD - LENGTH = 8 INCHES. TEST FREQUENCY = 0.5 Hz

HORTZONTAL MAX. PEAK ESTIMATED LOAD SURCHARGE AS
RELATIVE LOAD-CELL % OF STANDARD DESIGN LOAD
RUN DISPLACEMENT READING A/H
(DRIFT) A TO BEARING TO STUDS IN
INCHES kips CONNECTION -BEARING
ANGLE CONNECTION
B 1 0.152 0.554 0.0013 26 14
B3 0.340 0.953 . 0.0028. 46 24
B 4 0.506 '1.050 0.0042 50 27
B5 0.696 1.172 0.0058 56 30
B 6 1.058 1.163 0.0088 56 30
B7 1.231 1.196 0.0103 57 31
B 8 1.400 1.197 0.0117 57 31
TABLE IX
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8.3 TEST III  DYNAMIC TESTING OF PRECAST CONCRETE FACADE/CLADDING AND

8.3.1

8.3.2

CONNECTIONS IN A MODEL TWO-STORY STEEL
MOMENT -RESISTING-FRAME STRUCTURE

TEST OBJECTIVE

The objective of Test III was to experimentally determine the
fundamental periods and modal responses of a model two-story
steel moment-resisting-frame structure as follows:

m Steel Test-Frame without Cladding Panels
m Steel Test-Frame with Cladding Panels
DESCRIPTION OF TEST SPECIMEN

STEEL TEST STRUCTURE

This test structure is a model two-story one-bay x one-bay
steel moment-resisting frame structure with roof/floor system
and connections representative of current practice including
the base-plate connections at the base. This test structure is
a scaled down version of a larger (full-size) steel test
structure that was designed sometime back to be tested at an
appropriate time at a large earthquake simulator such as the
one at U.C. Berkeley. Geometry of the test frame was
established by the scaling considerations as well as
considerations of laboratory space. The steel test frame was
designed to carry a maximum lateral force of 11 kips at roof
level in the N-S direction and so as to undergo inter-story
drift levels that are significant to investigate the behavior
of precast cladding and connections. All beams and columns are
W6x9, A-36 steel sections. The test structure was fabricated
by a local fabricator and erected in the high-bay laboratory of
the School of Architecture. The steel test structure was
connected at the bottom to a precast concrete base (bolted to
the strong floor slab of the laboratory) using standard
base-plate connections that were assumed pinned for analysis
and design of the test structure.

Details of the test structure are presented in Figure 1
(Appendix C) and drawing sheets C-4 to C-10 (Appendix C)

Precast Concrete Cladding Panels and Connections

Precast concrete cladding panels were 4-1/2 inches thick, as in
Test II and the width and height dimensions of the panels were
established so that the mass of the cladding panels expressed
as a percentage of the mass of the steel test structure is the
same as that in the prototype structure. The cladding panel
thickness was kept the same as in Test II so that the cladding
connection details will be the same in Test II and III.

Details of the precast concrete cladding 2 panel and
connections are presented in Figure 5 (Appendix C) and sheets
C-6, C-7, C-8 (Appendix C).
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8.3.3

The cladding configuration and connection details were
developed in consultation with a Precast Manufacturer (89) on
the west coast who also fabricated the cladding panels in
accordance with current practices of manufacture of
architectural precast cladding panels including their
connections.

DYNAMIC TEST SET-UP AND PROCEDURE

The test structure was dynamically excited by an APS Electro-
Seis shaker positioned on the floor of the test structure.
This shaker could be oriented in the Transverse direction (N-S)
or the Longitudinal direction (E-W). For study of torsional
response characteristics this shaker was positioned 12 inches
off-center on the floor of test structure in the Transverse
direction (N-S).

Figures 2 and 4 (Appendix C) show photographs of the APS shaker
and Test III in progress.

Basically Test III was divided into three separate parts:

Test III-A Steel Test Frame Structure without Precast Cladding
Panels.

Test III-B Steel Test Frame Structure with One Precast
Cladding Panel attached to east face of the
structure.

Test III-C Steel Test Frame Structure with Two Precast
Cladding Penels, attached one each to the east and
west faces of the structure.

Two types of excitations were used in Test III, as follows:

m Random Excitation

This was provided by the HP Spectrun Analyzer used in this
test.

m Sinusoidal Excitation
This was provided by a function generator used in this test.

A schematic block diagram of Dynamic Test Set-up is shown in
Fig. 33.

The sequence of the Dynamic Test Runs and Test Control
Parameters are presented in Table X.

For each test run the selected excitation was continuously
applied and dynamic responses of test structure at roof & floor
levels measured by appropriately positioned statham
accelerometers.
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Modal response of the test structure was obtained by feeding the
accelerometer output into the HP Spectrum Analyzer Fig. 3
(Appendix C) which provided a screen display of modal response
and then dumping the screen-display down to an x-y plotter.

Figure 1 (Appendx C) shows the overall dynamic test set-up.
Figures 2 & 3 (Appendix C) show the test instrumentation and in
Test III.

8.3.4 Test Results

A summary of test results obtained for Test III-A (No Cladding
Panels) is presented in Table XI.

A summary of test results obtained for Test III-C (Test

Structure with Two Cladding Panels in Transverse Direction N-S)
is presented in Table XII.
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TEST It

DYNAMIC TESTING OF MODEL TEST STRUCTURE
WITHOUT & WITH CLADDING PANELS

HP 3582A
SPECTRUM
ANALYZER

FUNCTION
GENERATOR
APS
TEST FRAME ELECTRO-SEIS
STRUCTURE SHAKER
STATHAM SIGNAL
ACCELEROMETERS CONDITIONING

Figure 33 BLOCK DIAGRAM OF DYNAMIC TEST SET-UP
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TEST lli-A DYNAMIC TEST OF MOMENT-RESISTING STEEL
FRAME STRUCTURE WITHOUT PRECAST CONCRETE
FACADE/CLADDING PANELS

NATURAL FREQUENCY Hz

SHORT LONGITUDINAL TORSION
MODE DIRECTION DIRECTION

N-S E-W
First
Translational 7.0 Hz 10.6 Hz
Mode
Second
Translational 19.75 Hz 39.6 Hz
Mode
First
Torsional 13.0 Hz
Mode
Second
Torsional 43.0 Hz
Mode

Table XI SUMMARY OF TEST RESULTS
TEST IlI-A
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TEST 1lI-C DYNAMIC TEST OF MOMENT-RESISTING STEEL
FRAME STRUCTURE WITH TWO PRECAST CLADDING
PANELS ATTACHED ONE EACH TO THE EAST AND
WEST FACES (SHORT DIRECTION) OF TEST

STRUCTURE
NATURAL FREQUENCY Hz

SHORT LONGITUDINAL TORSION
MODE DIRECTION DIRECTION

N-S E-W
First
Translational 5.9 Hz 7.4 Hz
Mode
Second
Translational 17.0 Hz 34.5 Hz
Mode
First
Torsional 9.2 Hz
Mode
Second
Torsional 34.8 Hz
Mode

Table Xl SUMMARY OF TEST RESULTS
TEST 1lI-C
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CHAPTER 9: ANALYTICAL MODELING OF BEHAVIOR OF CLADDING
AND CONNECTIONS

s Behavior of Thread-Rod Flexible Connections [TEST I]

Based on an experimentally obtained stress-strain curve for a 5/8-inch
diameter threaded-rod, an analytical model for load-deflection prediction
of contilever threaded-rod specimens with support conditions similar to
those used in practice, was developed.

Details of the analytical model development process are presented below
(p.62-66). Figure 34 shows the assumed stress and strain distribution
for the cantilever threaded-rod specimens. A block diagram outlining the
steps involved in the analytical prediction model is shown in Figure 35.
Details of the derivations required to obtain theoretical
moment-curvature relations and load-deflection relations are presented on
p.65-66.

A polynominal fit to experimental stress-strain curve for a 5/8-inch
diameter threaded steel-rod specimen is presented in Figure 13 (Appendix A).

The moment-curvature curve that was obtained with this analytical model
is shown in Figure 14 (Appendix A).

Results in the form of Load-Deflection curves obtained with this
analytical prediction model for threaded-rod specimens of 4, 6, 8, 10 and
12 inch lengths are presented in Figures 7-11 (Appendix A).

s In-Plane Behavior of Precast Facades/Claddings and Connection Assemblies
[TEST II]

The behavior of full-scale precast facades/claddings and connection
assemblies is very complex, especially under cyclic motions. In light of
these complexities only practical and simplified analytical evaluation of
results of Test II was carried out.

The basic objective of this analytical evaluation was to obtain an
overall behavior model, based on cyclic test results of Test II, and
compare this model to the conceptual behavior model used in seismic
analysis and design of precast cladding and connections.

Based on peak cyclic lateral force and peak cyclic displacements levels
reached in each run of Test II, the proposed analytical behavior model
was based on the assumption that the peak lateral-force resistance is
controlled by the resistance of the top flexible threaded-rod
connections. This concept is presented graphically in Figure 36. A
seismic design evaluation of the cladding panel and connections was made
to determine if any design changes were necessary to account for the
lateral-force resistance provided by the threaded-rod flexible
connections.

In any case, the fact remains that a great deal of work needs to be done

to improve our understanding of the behavior of cladding panels and
connections especially under cyclic motions.
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The standard design
calculation for vertical load R transferred to bearing connection is given by
Egqn.(1).

R =0.5W + (0.5h)F/b (1)

The effect of binding-force P developed in the threaded-rod Tateral
connection, on the vertical load R’ transferred to bearing connection is given
by Eqn.(2).

R’ = 0.5W + (0.5h)F/b + (P)(h)/b (2)

The service load-surcharge to bearing angles expressed as a percentage of
standard design load is given by Eqn.(3).

-0 —nb P (3)
1 + 0.4h/b W

The service load-surcharge to studs in bearing connection expressed as a
percentage of standard design load is given by Fig.(4).

- 200 —0 | P (4)
1+ 1.2h/b W
where W = weight of cladding panel

h = height of threaded-rod lateral connection from the bearing
connection

b = horizontal distance between the centerline of the bearing
connection

F

= Standard Seismic Design Load
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Modal Response of Two-Story Steel Moment-Resisting Frame Structure With
and Without Precast Concrete Cladding Panels (TEST III)

The analytical evaluation of modal response results obtained during Test
IIT is still in progress.

A mode-shape and frequency analysis of the test structure without any
cladding panels was carried out using the computer program ETABS, using
appropriate modeling to simulate the pinned-base condition assumed. The
modal frequencies obtained are presented in Table XIII.
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CANTILEVER THREADED- STRAIN DIAGRAM STRESS DIAGRAM
ROD SPECIMEN
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FIG. 34

ANALYTICAL MODEL FOR LOAD-DEFLECTION PREDICTION
TEST I: TESTS OF THREADED-ROD FLEXIBLE CONNECTIONS
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VARIABLES AND PARAMETERS

P: LOAD, LBS. o(y):
L: ROD LENGTH - INCHES e(y):
E: ROD ELASTICITY n:
r: ROD RADIUS, INCHES £
¢: CURVATURE = € /R=¢ /Y €
§: END DEFLECTION OF ot

ROD ALONE $:

6c: END DEFLECTION DUE
TO ROTATION OF RIGID CONNECTION

ST: S + 6C: TOTAL END DEFLECTION
m(¢): MOMENT CORRESPONDING TO CURVATURE ¢

STRESS AT y
STRAIN AT y
STRAIN HARDENING EXPONENT
STRAINAT y = r

STRAIN AT YIELD, y
STRESS AT YIELD, y

DISTANCE ELASTIC ZONE EXTENDS
ABOVE AND BELOW ROD CENTERLINE

X(P,L; m(¢)): LOCATION ALONG ROD CORRESPONDING TO CURVATURE ¢
cmax(P,L): MAXIMUM STRESS IN ROD FOR GIVEN P,L
CS: CANTILEVER CONNECTION STIFFNESS, LB-IN/RADIAN

!

ANALYTICAL MODEL FOR LOAD-DEFLECTION PREDICTION
TEST I: TESTS OF THREADED-ROD LATERAL CONNECTIONS
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SELECT
@ INITIAL
P, L

SELECT ¢
@ AS PARAMETER

CALCULATE

M (¢) .
® MOMENT-CURVATURE
RELATIONSHIP

CALCULATE
® X(P,LM(4)

CALCULATE s (P,L) AS
SUM OVER ¢
OF ¢*(L-x) * Ax

® RereaT (., ). (@

CALCULATE 0 (P,L)
§o(P.L), (L)

QUTPUT
L

® A
max

@ NEXT B, L
B

FIG 35 BLOCK DIAGRAM
ANALYTICAL MODEL FOR LOAD-DEFLECTION PREDICTION

TEST I: TESTS OF THREADED-ROD LATERAL CONNECTIONS
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COMPUTATION OF m(¢) [BLOCK (3)]: MOMENT-CURVATURE

(i) For a specific value of Y, the moment m(Y) producing corresponding
state of stress/strain is:

m(Y)

r
Jé(y)ydA =2 Jo(y) * 3/ rl-y2 dy

-r

y r
dogl T(e/edy/v2-y% dy + S (e/eg)™w/ r2-y? dy]
o Yy

Yy r
do ol T(y/NyVrd-y% dy +7 (y/V)"yVr2-y2 dy]
0 y

(i1) Substitute ¢ for Y where Y =¢,/¢p =3,/E ¢

o /E
m(¢) = 4o, [ ®r (YEd/og) * yV rZ-y2 dy +/f¢(yE¢/o )n * yy/ ri- y2 dy]
e

(ii1) Numerically this is calculated as a sum over I

m(¢) = If(d,y1) * Ayp where Ay; is incremented from 0 to r
I
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COMPUTATION OF X(P,L,m(¢)) [BLOCK (&) ]

P
(i) For cantilever ? J, -
m=P* (L-X) 4
| L |
| |
(II) Then m
__)
X(P,L;m(¢)) = L - m(o)/P 0 ‘ X
COMPUTATION OF 8 (P,L) [BLOCK(®)] ¢
¢
Y \RL - X \
(1) | (P,L) = SO*[L-X(9)] * dx(¢) | % AN
L dx X
) L

(ii) Numerically this is calculated using ¢; as a parameter and summing over J:

(PoL) = ZHOMIL-X(8)] + 6 *IL-X(0q.1)1) * [K(85.1)-K(0g)]
The moment enters implicitly through X(P,L;m(%))

X is computed for sequential ¢, pairs. The iteration sensitivity is

interactively varied to assure adequate precision.

COMPUTATION OF 0 .. & o [BLOCK (B)]

(1) | Tpax(P>L) =0 (r/Ypip)" where 2Y . is the depth of

elastic zone when M=Mpay = P-L

(ii) OT(P,L) = o(P,L) + PLZ/CS where CS is the stiffness, Lb.-In./Rad.

of the support connection of cantilever

threaded rod
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CONCEPTUAL MODEL OF STANDARD DESIGN PROCEDURE
FOR VERTICAL LOAD TRANSFER TO BEARING
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FOR VERTICAL LOAD TRANSFER TO BEARING
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Figure 36 Test II o
Conceptual Simple Behavior Model for Seismic
Analysis and Design of Cladding Panels Connections
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ANALYTICAL EVALUATION OF RESULTS OF TEST III-A

MODAL FREQUENCIES OF MOMENT-RESISTING STEEL FRAME STRUCTURE

WITHOUT PRECAST CONCRETE FACADE/CLADDING PANELS

MODE

NATURAL FREQUENCY Hz

SHORT
DIRECTION
N-S

LONGITUDINAL
DIRECTION
E-W

TORSION

FIRST
TRANSLATIONAL
MODE

4.4 Hz

8.5 Hz

SECOND
TRANSLATIONAL
MODE

19.5 Hz

39.6 Hz

FIRST
TORSIONAL
MODE

10.9 Hz

SECOND
TORSIONAL
MODE

49.9 Hz

TABLE XIII
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CHAPTER 10: DISCUSSION OF RESULTS AND CONCLUSIONS
BEHAVIOR OF LATERAL/THREADED-ROD CONNECTIONS [TEST I}

A study of the results of Test I specimens shows that load-capacity of
threaded-rod cladding connections decreases with increasing length.

Behavior of threaded-rod specimen in uniaxial tension shows evidence of
strain-hardening that must be considered in design and analysis.

Load-Deflection behavior of cantilever threaded-rod specimens can be
predicted using experimentally obtained stress-strain data with
reasonably good correlation between experimental and analytical results.
Simple elastic beam theory does not appear to be adequate to explain the
load-deflection behavior obtained in these static tests.

CYCLIC BEHAVIOR OF PRECAST CONCRETE CLADDING PANELS AND CONNECTION ASSEMBLY
[TEST II]

In-plane resistance of precast concrete cladding panels is controlled by
the resistance provided by the threaded-rod lateral connections at top of
panels.

In all cyclic test runs failure occurred in the threaded-rods at the
loading-end of top lateral connections.

The levels of inter-story drift that can be accommodated by the
threaded-rod lateral connections can be established from the drifts at
failure which varied from 0.0068 H at 0.1 Hz [6-inch threaded-rod length]
to 0.0117H at 0.5 Hz [8-inch threaded-rod length].

Behavior of threaded-rod connections under cyclic displacements shows
that further studies are needed to explain the fracturing mechanism of
failures observed possibly caused by low-cycle fatigue.

The lateral-force resistance offered by the threaded-rod lateral
connections at top of panels results in a service-load surcharge on the
bearing connections at bottom of the panels, which should be taken into

account in the seismic design of precast concrete cladding and connection
assemblies.

INFLUENCE OF PRECAST CONCRETE CLADDING PANELS ON MODAL RESPONSE OF STEEL
FRAME TEST STRUCTURE [TEST III]

A preliminary study of the results of shaking tests carried out in Test
III shows that the addition of precast cladding panels to the test
structure reduced the first translation mode frequency from 7 Hz to 5.9
Hz. (approx. 15.71%) and second transiational mode frequency from 19.75 Hz
to 17 Hz (approx. 13.92%) in the transverse direction, i.e., parallel to
the plane of the cladding panels. These preliminary results show that

the stiffening effects of precast concrete cladding are significant and
must be considered in the seismic design and analysis of buildings.
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Figure 3 Test I - Connection
Threaded-Rod Specime

Assembly Showing Placement of
n and The Loading-Tee
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Figure 4 Test I: Test Set-up, Threaded-Rod Specimen Length=4 Inches
After Load-Test

TESTI

LATERAL (DUCTILE) CONNECTION
STATIC LOAD TEST

SPECIMEN: CST-L12A
DATE: 7 -28 -87

Figure 5 Test I: Test Set-up, Threaded-Rod Specimen Length=12 Inches
Before Load-Test
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TENSILE STRESS O KSI

UNIAXIAL TENSILE TEST OF 5/8 INCH DIA. THREADED ROD
MODULUS OF ELASTICITY E = 23.35 KSI
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FIG. 6

GRAPH OF UNIAXIAL TENSILE STRESS VS. STRAIN

5/8 INCH DIAMETER THREADED-ROD SPECIMEN
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BENDING STIFFNESS LBS./INCH
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FIG. 12 ESTIMATED BENDING STIFFNESS OF
THREADED-ROD SPECIMENS AT
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TENSILE STRESS O KSI

R T T T i i
UNIAXIAL TENSILE TEST OF 5/8 INCH DIA. THREADED ROD |
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FIG. 13 STRESS-STRAIN CURVE FOR 5/8
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ANALYTICAL MODELING
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MOMENT LBS.-IN.
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APPENDIX B TEST II

DRAWINGS OF TEST SET-UP AND TEST SPECIMEN
PHOTOGRAPHS

TIME HISTORY PLOTS

GRAPHS OF TEST RESULTS
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Reproduced from %’/
best available copy. ;'//II\\\"‘

Figure 4 Overall View of Full-Size Precast Concrete Cladding Panel
Test Specimen and Cyclic Test Set-up

B-4



Figure 5 Rigid Bearing Connection
Close-up View

Figure 6 Test Instrumentation

B-5



]

Figure 7 Typical Cyclic Behaviour of Threaded-Rod
Lateral Connection at Top ,
Specimen FRCRT-L8; Run No. AF-6
Amplitude=11.5 Inches; Frequency=0.1 Hz

SPUNSOREL RESEARCH
TEST T
IN-PLANE CYCLIC TES

PRECAST CONCRETE FACADE,
PANEL AND COMNMECTU

| ._SPECIMEN NO: FPCRT-L8 "
RUN NO. AF8
AMPLITUDE % 2
FREQUENCY 01HZ

< NS

Figure 8 Overall View of Upper Portion of C]addiqg Panel
Typical Failure of Threaded-Rod Connections at Top

L Cyclic Test Specimen FPCRT-L8; Run No. AF-8
Amplitude=+2 Inches; Frequency=0.1 Hz
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Overall View of Typical Failure of Threaded-Rod

Lateral Connections at Top
Cyclic Test Specimen FPCRT-L6; Run No. A6

Figure 9
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Figure 10 Typical Failure of Threaded-Rod Connection at Top
Cyclic Cladding Test Specimen FPCRT-L8; Run No. AF-8
Amplitude=t2 Inches; Frequency=0.1 Hz

B-8



9-4Y uny €97-1Ydd4 uswidads buippel)
peoT 4O 30[d AUOISLH-dwL] T[T d4nbr4

SONO3S - THIL

aaai ey il AAae At Aaae o1 aang’
L L L A L LA m@mm _@mﬁml m
\ &) ___..__, M
i \ x_}__;, _\ \ | \ A . :
I R R L L
__ ___ \ ____ __ ,__ __ ._~ __ ,__ . T
| | J | ] 3
‘.. ____ | ___ \ ___ ___ 1 0060° i
| _ _ | | \ ] ]
_.i ___ \_ ___ ___ __ ___ ___ % ___ i :
N ) b ] e
/ f / |
VARV VA VA,
- 0000 "00az
_ _ TTED QUOT 4142 U
BTLI"85LT + XKUMA SONNOd-TH0L P o TINHUH)
BSTT ET9T- .+ NIHA  TONUH 9d44: NMY

OT-1dd. [51]
SNOLLJANNOT ¥ TANYL  ONIQQUTI/RQWONT ISWITUd 10 ISHL JITIAD ANVTL-NI .11 IS4I

B-9



9-4y uny £97-1¥dd4 uswioads bulppe()

quauLordsL(

[eIUOZLAOH dol 40 30Ld A403SLH-awL] 2T d4nbi4

TR T —_

peea’ —
_ I { ._r. X .., __._ { | { ...._ . -
m ﬂ m&.ﬂ \1 ! Haf \_/ .
___ ___ ___ ___ ___ _._ ___ ____ ____ .__
A
| | o | __ [ oo
. | Foo . L
o R Y N T
& ___ ___ ____ ___ ____ ___ ___ “_ 1 080"
! _ _ | )
ﬁ | f R f % f % f R “
____ ___ *__ __ ____ ___ ____ ___ _j | .mmmw_
- - L L o, ]
ffa /ck fcm ftx ffx “
" peeg’
Ly Y
o1 s T w,_*__Hzm W _

944, N 9T-Idd 15d]
(TYT0/30408d 1SUOTUd 0 ISAT I

TOR) INYTd-NI 1T 13dl

— T2 T B e

B-10



9-4Y uny $97-1¥3d4 uswLoads burppel)
abey uleuals [@ILIABA 2437 w0309
ULRAIS JO 3014 A4O3SLH-BWL] €T d4nbi4

SONOJIS - TWIL

aaan ‘a9 paae " cb paga et ililili | aaaa’
(B S e s B A Ay B A ey e e B 1 LY BRI q
™ 3 | s ™ __}..__ m_
H f ?f | ff E,f % _f ” BoAR'GL- ¥z ]
| } - | / SR 3
__ ___ ___ ___ __ d___ | __ __ ___ J m
L e 3
[ _ _ _ | |
x | | x h | H
orad | | o e
w_ __ ! | .\ __ \ __ /
_ ! {\ __,_..._‘_ ____._..L.L ( / ‘
- aee ALt ¢
IOUMD NIGHLS TOTIMAA LIAT WOLIOA 0§ 4N
GGRL'9ET .+ XUHA NIBLSOUDIH ¢« TANNUHD
£680'20T- .« NIMA  TONW 914, NI 9T-IHMdd. 1841
SHOLLJANNOT 2 TANYd  DHIQOWTI/AQUOYT 1SYORUd A0 1541 JITOAY ANVTd-NI 11 1§41

B-11



9-4y uny $97-1¥dd4 uswidadg buippe|d
aben uiedlS [eJUOZLJAOH 3}87 wollog
uLed1S 40 3014 A403sty-awLl pI 84nbr4

SINOJES - TWIL

009803 R9R 'S AR ‘0L oan ' ¢ 8
A L
“ i
Ny [ e |
S L S IR SR AR ¥ ;
i ‘ f _\ ! m
| j o000 xz 3
| | _ |
| B T 0
| | ] 0000'02 -
| ! | J ____ ]
ur -y - i
oo 'ap -
1089 NIBULS THLINOZIHON LA HOLLOA ol
0669'9E & XU HIBULSOED W E ¢ TINNYHD
B9 pE- i NIWA 0N 018 NIy 91-[40d] ISAL

SNOTLDANNOT ¥ TANGd  ODNIQQYTD/AQUOHL ISWOEHd 10 LSAL DTTOAD INWTI-NI <IT 1§41

B-12



fnea ‘a9

g-4y uny $97-L1¥ddd usutoads bulppe()
abey ULeAlS [ROLI49A FubLY wollog
ULRU}S 40 210[d A40ISLH-BWLL GT 94nbiL4

9

s e

_ |
r

—1 | I 1 1

DA NI SE

=3
=3
=
=
=
=
L |

1

x
N

ll""l&ﬂ.j

e g
..-“-..‘
T
___-3
= bt T TR T 0 i Sy T et R

|

. r | __

IR M A R I
% Q “ paae

| |

0800 aa7

———
——
TR
Py 1

__..a.\. _{_1 _.f.. .
7 ppee'enz s
TO0N9 HIVULS TUDIIHAG THOTH U 9% 1IN
CaT 1 XUMA _,_EW” ¢+ TINNGHD

GLED’ :
Te08'BTT- . HIHE  JONGH M1-14dd: 1511
§TINGS  ONTQQYTO/ZHRT 1SHORUd 40 ?g 8D INUTd-NI <1 1§41

SHOTLYANNOL

B-13



pg uny $87-1yddd4 uswioads buippe|)
peol JO 30[d AA01SLH~BWL]

._:iuunn!n — —

9ET9 256
BGTE "ASHT-

SHOTLOMNNOD & TTANBd O

KUHA
HIHG ~ JONU
[QUT/2QU0A TSURTHL 0 T5EL ITTORY ANYTd-NI

91 @4nbL4
BASL'E aa0n"
e OO0 BACT- §
{
" . | 1
ﬂ [ H _ :
o m f | B0B0'B5L- -
fo __ .
____ .__ ___ l w
ol e i
I R R 0
] b
- ] i
o | oeeas
] - u
|
R
TILD QY07 4149 i
SONTIOA-A0 b TIHNOIR
Pl NI mg;ymuaﬁm %mmﬁ
' ot

B-14



pg uny ¢g7-14dd4 uswioads bulppe|)
1uawsde dsLg

[eauoziaoy do] Jo 10|d A403siH-awitl /I 24nb1 4

SOHOYTS. - THI ,
B D

BRGE TT il
[ p—— ¥ I R f i _ _ _ ! f [ T
" i i #, .__1__.. 1
& & [ 4 (]
| I x J | x x | (1
! | f ' _ '
A T O S T R R ARO[+ S
__ | _ | i I _4 § ”_h
| _ | t ~ _ _. _ f ! 1 “
. e _ _ __ _ _ __ _ | __ ] )
e se— o PRI
R R A T A T Y i
,___~_ | __ _ [ | | _ | d H
~__ | __ | ~__ _; _ _ __ __ ‘
_ | _ P _ o R
| ___ _._ __ ___ ___ _* | .__ ___ i E m __ i m
Yo . _ - ]
__,:.___ ___i___ ___.r__,__ __.._.___ ____L_, ]

IHOTH 401 IANT CIHD 0L "TINU
STHONI

g
g

jcan - o HIMG - dOHU Pl HIN 61-14
SHOTLIHHO ¥ TN ONTIOYTD/0UDRT LSUOTET 46 ISIL DTTOR) NV

W [

bbb’ . KURA

B-15



vg uny 1g871-1¥)d4 uswioadg buippe|)
8bey uLleuls [ROLIJ4BA 1497 wollog
uLedais 4o 301d A402SLH-awLl

SUNOJAS - AHI]

8T ®unbi4

i
m
)Y

’-’_:-"s.ﬂ'

=

I
b

N_
..“,-
1

L
7
N

i

I
ms
!

AV HIWELS TUITIMAR TAAT WO
KUH) HIVHL30
I

CHINE TN
SHTAQHTO/TAH00L TSUITHd 40 TS0,

HeRi BT > 2 |

L =

LT D T ey Bt £ I

gyﬁ:_@ﬁ g:gﬂ_? LT il
] 1 _ i * I | - _ | 1 ] f
~ i oy A Wy .
___ J____ ___“_ __._._ ___ [ .g_ _4_ w _____ "
o | ,_ b | A_ _ |
_ | __ ) _ ! _ __ __
_ __ | j ! * | __ _ o
___ ! __ ___ __ * __ __ . _~ ___ E
! ,.. __ ___ ﬁ_ ___ _d _ _ __ __ ]
il | / _ [ { Y
ERRETe | | _ ! _ [ [ / _ [
. _ _ _ ! __ _ | -
_ __ | i | ! ! __ /
__ __ | ___ __ | __ ___ | _._ k
__ { ! J P __ i __ /
ol __.:,_L ' W __ _ |
u 1 W Ll

8-
T4 INVTd-

HOA"BaT x 2
43 LA
¢+ TINNY]
M4 18
NI 1T 1

mcienan

|
)
ﬂ
_

I::J":-ﬂ

B-16



bg uny $g7-L¥ddd uswio-ds Butppe|d
aben uLe4}S [PIUOZLAOH 3497 wollod
ULea3S 40 30ld A403SLH-dwLl 6T 34nbLg

) o S(MedEs - Tl
il Bse 1] B B¢ Boga

[ ! 1 _ _ f | 1 _ [ ! ! ! _ _ ! _ f ﬂ @SE&.@Mi X ¢ @
_E y
| L et n
h I 2| AT x|
L .f \ ﬁ . &
_ H s H c
d o i
UM | BTN L
? | I E ,__
b S T T H

| ﬁ | | | L BRARET <

T R N A | | |
,r i ; _.:L\ #.._ ..x TR

AR
~I9UI NIYHLS TYLINOZIHON LAXT HOLIOA ol
QG 6T b XUMA NIBHISOIIH 3 TANNGHD
BETE'E1- o HINA  TONUA pll: NI yI-104d: 18]
SHOLLOMNNOD ¥ TING  ONTAQHT/IQUIYI LSUDINd 40 ISEL OTTOR) INWTd-NT 1T I5II

B-17



vg uny $g7-14¥dd4 uswioads buippel)

abey uLeals [eILI48A IyBLY wo3log
ULed1S 40 10[d A403sLH-aut] 02 d4nbig

SANODTS gzﬂy
foon" Gl ﬁamq_ﬁﬁ f aﬁ /i T ARk
_ f ! ! _. = __.J_ ! f i _ f _A ] [ ﬁ_,.___ f ___E_. f @ﬁ@ﬁ.@@—; X 2 2
ﬁ ; “3= % ﬁ ﬁ f “ ﬁ ” M
a | | | | | - )
_ __ _ { _ _ __ _~ ] x
IR A R N | S
 {IREOREN | W _ __ __ __ __ __ __ | ___ _. §
;Hﬁfﬁ_ % ; | f _ R f _ ,r.sgm AV
} | _ | | | _ _ _ ] _ w*
N Lol oo )
o | | | ]
u | ] o g
_ | | _ | .
TV ol s
| f . » ) ] :
W \/ \/ f L u
o 7 paeney «o
190ND NIWLLS THITIHEN THDTH HOLIO 99 LN
ATeE'G8  « XUWA HIOH LS0UD TN G+ TINNYHD
o pEaltie- o HINE  TONU Pl NI g1 r,:tﬁz 1511
SHOTIINNOY B 'TINUE  SNIQYTH/TQUIbT ISUOMHd d0 181 JTTOR) INWTI-HT 1T 154l

B-18



t_

]
e
f

C

QPE&{ME-N me—-r-
No.t —A}"‘ﬁw
PERUENCY = 01 HZ

PEAK ZOMMAND DIMA&EM&N;r
. — + i"lz_" i

,..,,i,_.

Figure 21

FULL PANEL CYCLIC
RACKING TEST
SPECIMEN FPCRT-L6
RUN NO. AF-6

PEAK COMMAND DISPLACEENT
=t]13"

B-19




PEAK LOAD - LBS.

TEST I: IN-PLANE CYCLIC TESTING OF PRECAST
FACADE/CLADDING PANEL & CONNECTIONS
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TEST FREQUENCY = 0.1 Hz
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APPENDIX C TEST Il

PHOTOGRAPHS

DRAWINGS OF TEST STRUCTURE AND CLADDING PANELS
AND CONNECTION DETAILS

TYPICAL OUTPUT FROM ANALYZER

{a i



Reproduced trom A 2
best available copy. TS

Figure 1 Photograph - Two-Story Moment-Resisting Rigid-Frame
Test Structure for Dynamic Testing of Cladding and
Connections

Figure 2 Photograph - APS Electro-Seis Shaker Positioned in the
Floor of Test Structure in the N-S Direction

C-1



Figure 3 Photograph - Test Instrumentation
HP3582A Spectrum Analyzer

Figure 4 Photograph - Dynamic Test of Test-Structure Without

Cladding Panels
APS Electro-Seis Shaker Positioned on Floor in the

N-S Direction
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Figure 5 Photograph - 4i-inch Thick Precast Cladding Panel Before
Attachment to the Test III Steel Test Frame Structure
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Typical Printout of Spectrum Analyzer

Display
Random Excitation

Test Run III-C
Short Direction

1O

Figure 6 TEST III
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