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PREFACE

The National Center for Earthquake Engineering Research (NCEER) is devoted to the expansion
of knowledge about earthquakes, the improvement of earthquake-resistant design, and the
implementation of seismic hazard mitigation procedures to minimize loss of lives and property.
The emphasis is on structures and lifelines that are found in zones of moderate to high seismicity
throughout the United States.

NCEER's research is being carried out in an integrated and coordinated manner following a
structured program. The current research program comprises four main areas:

• Existing and New Structures
• Secondary and Protective Systems
• Lifeline Systems
• Disaster Research and Planning

This technical report pertains to Program 1, Existing and New Structures, and more specifically
to Reliability Analysis and Risk Assessment.

The long term goal of research in Existing and New Structures is to develop seismic hazard
mitigation procedures through rational probabilistic risk assessment for damage or collapse of
structures, mainly existing buildings, in regions of moderate to high seismicity. This work relies
on improved definitions of seismicity and site response, experimental and analytical evaluations
of systems response, and more accurate assessment of risk factors. This technology will be
incorporated in expert systems tools and improved code formats for existing and new structures.
Methods of retrofit will also be developed. When this work is completed, it should be possible to
characterize and quantify societal impact of seismic risk in various geographical regions and
large municipalities. Toward this goal, the program has been divided into five components, as
shown in the figure below:

Program Elements:

Seismicity, Ground Motions
and Seismic Hazards Estimates

Reliability Analysis
and Risk Assessment

Expert Systems

iii

Tasks:
Earthquake Hazards Estimates,
Ground Motion Estimates,
New Ground Motion Instmmentation,
Earthquake & Ground Motion Data Base.

Site Response Estimates,
Large Ground Deformation Estimates,
Soil-Structure Interaction.

TyPical Structures and Critical Structural Components:
Testing and Analysis;
Modern Analytical Tools.

Vulnerability Analysis,
Reliability Analysis,
Risk. Assessment,
Code Upgrading.

Architectural and Structural Design,
Evaluation of Existing Buildings.



Reliability Analysis and Risk Assessment research constitutes one of the important areas of
Existing and New Structures. Current research addresses, among others, the following issues:

1. Code issues - Development of a probabilistic procedure to determine load and resistance
factors. Load Resistance Factor Design (LRFD) includes the investigation of wind vs.
seismic issues, and of estimating design seismic loads for areas of moderate to high
seismicity.

2. Response modification factors - Evaluation of RMFs for buildings and bridges which
combine the effect of shear and bending.

3. Seismic damage - Development of damage estimation procedures which include a global
and local damage index, and damage control by design; and development of computer
codes for identification of the degree of building damage and automated damage-based
design procedures.

4. Seismic reliability analysis of building structures - Development of procedures to evalu
ate the seismic safety of buildings which includes limit states corresponding to service
ability and collapse.

5. Retrofit procedures and restoration strategies.
6. Risk assessment and societal impact.

Research projects concerned with Reliability Analysis and Risk Assessment are carried out to
provide practical tools for engineers to assess seismic risk to structures for the ultimate purpose
of mitigating societal impact.

Most existing structures are subjected to spatial variations of their material and/or geometrical
properties. The extent of response variability of structures arising from such spatial variations
may be significant from a structural reliability point of view. In this context, the result of this
study has contributed to the reduction of the uncertainty level involved in structural reliability
estimation, particularly when the result is combined with other NCEER studies in the reliability
area.
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ABSTRACT

The response variability of statically indeterminate linear structures due to spatial

variation of material and/or geometrical properties, is investigated. Utilizing a Green's

function formulation, or the more general flexibility method, the mean square response of

statically indeterminate beams and frames (multi-story/multi-bay) is determined without

recourse to a finite element analysis. The response variability is expressed in terms of

random variables even though the material and/or the geometrical properties (in this

case the flexibility) are considered to constitute stochastic fields. This makes it easier to

estimate not only the response statistics but also the limit state probability, if the limit

state conditions pertain to serviceablity and hence are given in terms of linear structural

response. The response variability can be estimated by various methods including the First

Order Second Moment method and Monte Carlo simulation techniques. The safety index

for the beam midspan deflection and end moment are evaluated using standard methods.

One of the example analyses deals with the effect of such spatial variability on the seismic

structural response evaluated under quasi-static conditions. While the loading condition

and structure considered in this example analyses are relatively simple, the result provides

some insight to the extent of the response variability expected under these circumstances.
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SECTION 1

INTRODUCTION

The response variability of structures is generally caused by random loading

or random structural properties. Recently, interest has been generated among en

gineers and researchers concerning the spatial variation of material properties. In

this connection, Shinozuka ( 1972b) and Shinozuka and Lenoe (1976) presented

analytical models for the spatial variability of material strength. Methods for digi

tally generating sample functions of random fields were developed (Shinozuka, 1974;

Shinozuka and Jan, 1972) and applied to the Monte Carlo solution of nonlinear dy

namic problems (Shinozuka, 1972a; Shinozuka and Wen, 1972; Vaicaitis, Jan and

Shinozuka, 1975; Vaicaitis, Shinozuka and Takeno, 1975).

More recent publications deal with stochastic field theory (Vanmarcke, 1983),

digital simulation and related applications (Shinozuka, 1974; Shinozuka, 1985a) as

well as discretization of random fields using finite element analysis, perturbation

techniques and related reliability analysis (e.g., Der Kiureghian, 1985; Handa and

Anderson, 1981; Hisada and Nakagiri, 1980; Vanmarcke and Grigoriu, 1983) or

Neumann expansion (Shinozuka, 1985b; Shinozuka and Dasgupta, 1986; Yamazaki

and Shinozuka, 1987). Other analytical treatments of the same subject are found

elsewhere (Lawrence, Liu and Belytschko, 1986; Liu, Belytschko and Mani, 1985).

In an earlier study (Shinozuka, 1986), the response variability of statically

determinate linear structures due to spatial variability of the elastic properties was

examined from an analytical point of view. In a more recent work (Bucher and

Shinozuka, 1986), (1) the above concept was extended to relatively simple statically

indeterminate structures, (2) a Green's function formulation was used to obtain the

mean square response quantities in terms of convolution integrals, and (3) it was

shown that the response variability can be expressed in terms of random variables
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only, whose statistics depend on the characteristics of the stochastic fields involved.

The present study extends these concepts even further to more complicated

structures, including beams of a higher degree of statical indeterminacy, and multi

bay multi-story frames. The response variability is expressed in terms of random

variables, as was mentioned above, which facilitates the estimation of the response

statistics. This can be achieved either by analytical methods with the aid, for

example, of the First-Order Second-Moment (FOSM) method, or using Monte Carlo

simulation techniques. The safety index for the response quantities can be evaluated

using the Lagrange multiplier and other methods, if a meaningful limit state can

be prescribed. The analysis presented in what follows is based on the assumption

that flexibility is the only quantity that varies significantly along the axis of the

structure.

One of the example analyses deals with the effect of such spatial variability on

the seismic structural response evaluated under quasi-static conditions. While the

loading condition and structure considered in this example analyses are relatively

simple, the result provides some insight to the extent of the response variability

expected under these circumstances.
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SECTION 2

DESCRIPTION OF PROBLEM

Consider the problem of a beam loaded with a deterministic load, with flex-

ibility varying randomly along its length. It is assumed that the flexibility of the

beam is described by a Gaussian homogeneous stochastic field with autocorrelation

function R(~). Thus, the randomly fluctuating flexibility is given by :

1 1
EI = EoIo [1 + f(x)] (2.1)

where 1j(EoIo) is the expected value of the flexibility and f(x) is a zero mean

homogeneous Gaussian random field with autocorrelation function

Rff(x - y) = E[f(x)f(y)] (2.2)

in which E[.] indicates the expectation. In Eq. 2.1, it is implied that both E and

I, or one of these alone, can be a stochastic field.
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SECTION 3

FORMULATION OF PROBLEM

3.1 Statically Determinate Beams

The governing differential equation for a beam is

(3.1)

where w is the deflection, p(x) the distributed load and x the coordinate along the

beam axis. For a statically determinate beam, integration of Eq. 3.1 yields

dZw " M(x)
--=W =---
dxz E1

(3.2)

where M(x) is the bending moment. Since, in this case, the boundary conditions

used to derive Eq. 3.2 do not depend on the elastic properties of the beam, there

is only one random quantity in the last member of Eq. 3.2, i.e., the flexibility term

l/(EI). Inserting Eq. 2.1 into Eq. 3.2 yields:

w" = - M(x) [1 + f(x)]
Eo10

(3.3)

Hence, w" becomes a Gaussian field and thus w(x) obtained from the above equation

through integration is also Gaussian.

In the study by Bucher and Shinozuka (1986), it was shown that statistics

of w(x) can be easily obtained by utilizing the Green's function of the bending

problem. First of all, Green's function h(x,~) must be a solution to the given

differential equation with the delta function on the right-hand side:

Integration yields

dZ

dxzh(x,~) = 8(x - ~)

d
-h(x,~) = a
dx

=b

3-1
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where, from the properties of the delta function,

b- a = 1

Further integration results in

h(x,O = ax + c

= b(x - E) + d

x<E

(3.6)

(3.7)

From the two boundary conditions imposed on h(x,~) with respect to x together

with Eq. 3.6 and the continuity condition at x = ~, the four constants a, b, c and d

can be determined uniquely.

For example, for a cantilever beam, the boundary conditions are h(O,~) =

h'(O, E) = 0. From these conditions together with Eq. 3.6 and the continuity

requirement, it follows that

h(x,~) = x - E

=0 x<E (3.8)

Utilizing Green's function h(x, ~), the deflection w(x) of a statically determinate

beam may be expressed in terms of a convolution integral as

w(x) = -1£ h(x, ~)M(~) [1 + f(E)] dE
o Eo10

(3.9)

where L is the beam length. Since f(x) is assumed to be a Gaussian stochastic

field, so is w(x). The expected value of w(x) is

1 1£E [w(x)] = - Eo1
o

0 h(x, E)M(E)d~

and the covariance function R ww (x, y) :

3-2
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This form is useful in estimating the autocorrelation-free upper bounds of the re-

sponse variability. Since

the variance a~(x) = Rww(x, x) is bounded by the following inequality:

a
2 1£ 1£a~(x) ~ Et;2 [h(x, ~)h(x,TJ)M(~)M(TJ)ld~dTJ
o 0 0 0

(3.12)

(3.13)

(3.14)

(3.15)

If, furthermore, neither the bending moment M(~) nor Green's function h(x,~)

change sign in the interval [0, L], then

2 1£ £
a~(x) ~ ;;;2 r h(x, ~)h(x, TJ)M(~)M(TJ)d~dTJ = aJf E 2 [w(x)]

o 0 0 Jo
and therefore

aw(x)

E[w(x)] ~ aff

This implies that the coefficient of variation of the displacement w(x) is bounded

by the coefficient of variation of the flexibility if neither M(x) nor h(x,~) change

sign in the interval [O,L].

3.2 Statically Indeterminate Beams

In the analysis of statically indeterminate structures, statically indeterminate

forces B k (k = 1,2, ... , N) are introduced in order to satisfy N boundary condi-

tions, which cannot be satisfied from equilibrium only. If the boundary conditions

are

i=1,2, ... ,N (3.16)

where V (Xi) represents deflection or its corresponding spatial derivative, then the

statically indeterminate forces can be derived from the following set of linear equa-

tions:

N

VO(Xi) + L BkVk(Xi) = V(Xi) = Vi
k=l

3-3
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where the indices k and i refer to locations where statically indeterminate forces

are applied and where boundary conditions are satisfied, respectively. In Eq. 3.17,

VO(Xi) represents deflection or its corresponding derivative at Xi of the associated

statically determinate structure under external loads only (Bk = a for all values of

k). Also in Eq. 3.17, the quantities Vk(Xi) represent deflection or its corresponding

derivative at Xi of the associated statically determinate structure under the stati-

cally indeterminate forces Bk = 1 and °Bj = a for all j :::f- k. Solving Eq. 3.17 for

Bk, the deflection w(x) at any point can be written as

N

w(x) = wo(x) + L BkWk(X)
k=l

(3.18)

where wo(x) is the deflection of the statically determinate system under external

forces only and Wk(X) the deflection of the same system due to Bk = 1 and Bj =

a U:::f- k). The statically determinate forces B k obtained from Eq. 3.17 are

usually nonlinear combinations of VO(Xi), Vk(Xi) and V(Xi). Among these, VO(Xi)

and Vk(Xi) are Gaussian random variables with zero mean in the same sense as

W(X) in Eq. 3.9 can be so interpreted when X is fixed. Writing Xl, X 2, ... for VO(Xi)

and Vk(Xi) (i, k = 1,2, ... , N) for simplicity, w(x) in Eq. 3.18 can be symbolically

expressed as w(x) = g(XI , X 2 , ••• , X M ) where M = N + N 2 •

The statistics of w(x) can be obtained analytically in principle. However, such

an analytical procedure is not very practical particularly as the number of random

variables Xk increases. Since X k are Gaussian random variables with zero mean,

a covariance matrix describes their statistical characteristics completely, and can

be evaluated numerically as shown later. Upon constructing the covariance matrix

C, appropriate approximations are used to estimate the statistical characteristics,

primarily the second moments, of w(x). A typical technique that can be used for

this purpose is the FOSM method where a truncated Taylor expansion of w(x)
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g(X1 , X 2 ,'" X M ), about the expected values of X~, is employed together with the

covariance information provided by matrix C. As an alternative to, and/or for

the validation of, the FOSM method, Monte Carlo techniques can be used. For

this purpose, the covariance matrix C is diagonalized by means of an eigenvalue

analysis:

(3.19)

where ~ is the normalized modal matrix and A a diagonal matrix consisting of the

eigenvalues of C. Hence, the following transform pair exists for Z and X:

X=~Z (3.20)

If Z is a Gaussian vector consisting of independent components with covariance

matrix A, then it can be shown that C is the covariance matrix of X:

(3.21)

A Monte Carlo simulation is carried out beginning with generation of vector Z.

Each realization of Z is transformed into a realization of X by means of X = ~Z,

and then substituted into Eq. 3.18 recalling that w(x) = g(X1 , X 2 , ..• , X M ). This

results in a realization of w(x) from which sample statistics such as moments are

estimated.

The safety index for the response quantities can be also evaluated, if the limit

state conditions are given, with the aid of the Lagrange multiplier method (Shi

nozuka, 1983), while other methods (e.g., Rackwitz and Fiessler, 1977) can certainly

be utilized for this purpose.

3.3 Statically Indeterminate Frames

The use of Green's function in the response analysis of frames becomes cum

bersome and thus in this case it is more appropriate to use a more general flex-
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ibility method. For the static analysis of statically indeterminate frames con-

sisting of n components (beams and columns), statically indeterminate forces

B k (k = 1,2, ... , N) are introduced in conjunction with an appropriate associ-

ated statically determinate structure in order to satisfy N boundary conditions

(N =degree of indeterminacy).

The flexibility of component l is assumed to be

with

1

(El)l
(3.22)

1 1
E[(El)lJ = CtlEolo

(3.23)

The homogeneous stochastic field f(l)(x) has zero mean and represents the spatial

variability of the flexibility of component l. The standard deviation aY) of f(l)(x)

is then identical with the coefficient of variation of l/(El)l. In the following dis

cussion, f(l) (x) and fern) (x) are assumed to have the same autocorrelation function

and to be statistically independent if l i= m for the sake of simplicity.

Coefficients 0ik are then introduced as:

with

n

Oik = LoR)
l=l

(3.24)

Oi(~) = iLL MP)(~)Mll)(~) Ctl~olo [1 + f(l)(~)]d~ (3.25)

where L l = length of component land MP) (x) = bending moment distribution

along component l of the associated statically determinate structure under a unit

indeterminate force Bi (with Bj = 0 if J i= i). The coefficients Oik represent the

deflections or slopes of the associated statically determinate structure at the location

ofthe indeterminate force B i , under a unit indeterminate force B k = 1 (with Bj =

o if J i= k).
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Upon imposing the boundary conditions at the locations of the indeterminate

forces, the unknown indeterminate forces Bk are determined from a set of linear

equations:

(3.26)i = 1,2,··· ,N
N

L BkDik = -DiO
k=1

The coefficients DiO represent the deflection or slope of the associated statically

determinate system at the location of the indeterminate force Bi, due to external

loads only. In order to obtain the coefficients Dik and DiO, the moment diagrams of

the statically determinate system under external loads only and also under each of

the unit forces Bk, must in principle be constructed. Solution of Eq. 3.26 yields B k

as nonlinear combinations of Dik and DiO which depend on the elastic properties of

the structure and are Gaussian random variables.

Any desired deflection w q or moment M q at point q of the structure may be

expressed as:

(3.27)
N

wq = wqo + L BkWqk
k=1

N

M q = M qo + L BkMqk (3.28)
k=1

where M qo and Mqk are moments at point q of the associated determinate structure

due to external loads only and unit indeterminate forces Bk = 1 with Bj = 0 if

JO i= k, respectively. These moments as well as any moment calculated from the

associated statically determinate structure do not depend on the elastic properties

of the structure and thus, they are deterministic. The quantities wqo and Wqk can

be expressed as:
n

Wqk = LW~~
[=1

(3.29)

with

(3.30)
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(3.31)

and they represent deflection at point q due to external loads only when k = 0 and

due to unit indeterminate forces Bk (with Bj = 0 if i i= k) when k i= O. MJI)(x) is

the moment of component 1 of the associated statically determinate structure due

to a unit concentrated load at point q, and MJI) (x) indicates the bending moment

distribution along component 1 of the associated statically determinate structure

under external loads only:

As can be seen from Eqs. 3.27 and 3.28, in order to obtain the statistics of

moment M q and deflection wq , the statistics of the quantities Wqk as well as of

the indeterminate forces B k should be obtained first. In this respect, since B k are

obtained as a function of the quantities Oik and OiD, the statistics of these quantities

are also needed.

The expected values of the quantities Oik are

n n iLl 1
E[Oik] = LE[Oi(2] = L MP)(e)MP)(e) a E J, de

1=1 1=1 a 1 a a

where i = 1,2,,", Nand k = 0,1,2"", N. Assuming independence between the

stochastic fields of each and every pair of structural components, then:

(3.32)

where

The covariance matrix of the random variables Oik becomes

n

COV(Oik,Omn) = I:,COV(Oi~)'O~U
1=1

with

(3.33)

(3.34)
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Similarly, the expected values of the quantities Wqk are

E[Wqk] = tE[w~~] = tjLI Mkl)(~)MJI)(~) 1 d~
1=1 1=1 0 cxIEolo

and the covariance matrix of the quantities Wqk becomes

n

Cov(wqk,Wqm ) = L Cov(w~~ ,w~~J
1=1

with

(3.36)

(3.37)

Also, the covariance matrix of the quantities 0ik and wqm with i = 1,2, ... ,N and

k, m = 0,1,2, ... ,N, can be expressed in a similar way as:

n

COV(Oik, w qm ) = L COV(Oi~)' w~~J
1=1

with

(3.39)

With all the information given above, the statistics of M q and wq can be obtained

either through Monte Carlo simulation or through the FOSM method. When Monte

Carlo techniques are used, covariance matrix C, whose elements are the quantities

0,1,2, ... , N), is diagonalized by means of eigenvalue analysis, as shown previously.

Consider the case of the FOSM method. Expanding the w q and M q given by

Eqs. 3.27 and 3.28, respectively, in a Taylor series around the mean values and

keeping only linear terms:

(3.41)
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(3.42)

and

- ~(BMq)*( - )Mq - M q = L- BB Bk - Bk
k k

where the quantities with superbars represent mean values and (~;:)* indicates

the partial derivatives evaluated at the mean values of the variables involved, and

hence, is equal to Wqk; similar expressions apply to other partial derivatives. The

mean values Ih of the indeterminate forces B k can be obtained from Eq. 3.26 with

the quantities Dik and DiO replaced by their expected values. Also, the mean values

W q and Mq of the deflection wq and the moment Mq, respectively, can be obtained

from Eqs. 3.27 and 3.28 when the quantities Bk, wqo and Wqk are replaced by their

expected values. Using Eqs. 3.41 and 3.42, an approximation can be obtained of

the variances of wq and M q , respectively, as follows:

Var(wq) = E[(wq - wq)2]

= LL(Bwq)*(Bwq)*E[(Bi-Bd(Bk -Bk)]
i=l k=l BBi BBk

+ L L (:~: )*(B~W~ )*E[(Bk - Bk)(wqm - wqm )]
k=l m=O q

+ L L(:w
q

)*(:w
q

)*E[(wqm - wqm)(wqn - wqn )]
m=O n=O wqm wqn

= L L(:~~ )*(:~q )*COV(Bi, Bk)
i=l k=l t k

+ L L (:;: )*(B~W~ )*Cov(Bk,wqm )
k=l m=O q

+ L 2:)BBw
q

)*(:w
q

)*Cov(wqm,wqn ) (3.43)
m=O n=O wqm wqn

and

(3.44)

where the quantities Cov(Wqm , wqn ) in Eq. 3.43 are obtained from Eq. 3.38, whereas

the quantities COV(Bi, Bk) and COV(Bk' wqm ) need to be determined.
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In order to obtain the covariance matrix of the indeterminate forces Bk, Eq.

3.26 is written in matrix form:

AB=-W

where

B!

A=(
011 8',N) B2

B=
ON! ONN

BN

Thus

B = -A-1W

W=

(3.45)

(3.46)

(3.47)

Taking the derivatives of the above expression with respect to the random variables,

Since AA -1 = I,

aB _ -(~A-1)W
aOik aOik

aB _ A-1 (aw)
aSkO - - aOkO

(3.48)

(3.49)

Hence,

a
a8ik A = Liik

(3.50)

(3.51)

where Liik is a matrix whose components are all zero except for. the i-kth component

which is equal to unity. With the aid of matrix Liik,

(3.52)

(3.53)
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Substituting Eq. 3.53 into Eq. 3.48 we obtain

BB (B -1) -1-- = - --A W = -A ~ikB
B8ik B8ik

The element I of the above vector is

where f3ln is the l - n component of A-I:

Also,

(3.54)

(3.55)

(3.56)

(3.57)

where ~k is a vector whose components are zero except for the kth component

which is equal to unity. Substituting Eq. 5.57 into Eq. 3.49,

BB _ A-I ( BW) = -A-1~ k
B8kO - - B8kO

Element I of the above vector is

(3.58)

(3.59)

Expanding Bl in a Taylor series around the mean values and keeping only linear

terms

With the aid of Eqs. 3.54, 3.55, 3.58 and 3.59, Eq. 3.60 becomes

Bl - Bl = - L L !3liB k(8ik - 8ik) - L !3lk(8kO - 8kO )
i k k

3 - 12
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In Eq. 3.61, lJzk is obtained from Eq. 3.56 by replacing all the elements of A by

their respective expected values. Using the above equation, we obtain the covariance

matrix of Bz and Bz, (l, I' = 1,2, ... , N):

Cov(Bz, BZI) = E[(Bz- 13z)(BI' - 13ZI)]

= E{ [- L L lJzi13k(Oik - Sik) - L lJlk(OkO - SkO)]
i k k

. [- LLlJzlm13n(Omn - Smn) - LlJzlm(Omo - Smo)]}
m n m

= E{L LL L lJzi13klJz'm13n(Oik - Sik) (Omn - Sr;m)
i k m n

+ L L LlJli13klJzlm(Oik - Sik)(OmO - SmO)
i k m

+ L L L lJzklJl'm13n(Omn - Smn)(OkO - SkO)
k m n

+ L L lJZklJZlm(OkO - SkO)(OmO - SmO) }
k m

= L L L L lJzi13klJz'mBnE[(Oik - Sik) (Omn - Smn)]
z k m n

+ L L L,BZiBk,BZl mE[(8ik - Sik) (8mo - Smo)]
i k m

+ L L LlJzli13klJzmE[(Oik - Sik)(OmO - Smo)]
i k m

Finally,

+ LLlJZklJZlmE[(Oko - SkO)(OmO - Smo)]
k m

Cov(Bz, BD = L L L L lJziBklJZ'mBnCoV(Oik' Omn)
i k m n

+ L L L lJzi13klJzlmCOV(Oik, OmO)
i k m

+ L L L lJzli13klJzmCoV(Oib omO)
i k m

+ LLlJzklJZlmCOV(Oko,Omo)
k m

3 - 13
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Using Eq. 3.61, the quantities Cov(En, wqrn ) are obtained with n = 1,2, ... Nand

m = 0,1" .. N, as below.

E [(En - Bn)(wqrn - Wqrn )] = Cov(En,wqrn )

= E [- L L,BniBk(bik - 8ik )(Wqm - W qrn ) - L,Bnk(bko - 8kO)(Wqrn - wqrn)]

i k k

= - L L ,BniBkCOv(bik, wqrn ) - L ,BnkCOV(bkO, Wqrn ) (3.64)
k k

where Cov(bik'Wqrn ) and Cov(bkO'Wqm ) in Eq. 3.64 are given by Eq. 3.39,
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SECTION 4

NUMERICAL EXAMPLES

In the examples below, the following correlation function IS considered for

f(l)(x) (for other possible examples of the correlation functions see Shinozuka,

1987):

Rff(x - y) =
1-3(9)2

[1+(X~Y)2r
2

'Off (4.1)

The corresponding power spectrum density is

(4.2)

The above functions are plotted in Figs. 4-1 and 4-2 respectively. The parameter b

(referred to as correlation distance in this study) in Eq. 4.1 controls the shape of

the autocorrelation function. The case where b -+ 00 represents a fully correlated

stochastic field, whereas the case where b -+ a corresponds to a "finite power white

noise" (Shinozuka, 1986). In the example of the fixed beam, another correlation

function of the following form is also considered.

(4.3)

The numerical value for off, which is also the coefficient of variation of the flexibility

l/(E1), is chosen to be 0.1 for all examples.

4.1 EXAMPLE 1: Fixed Beam

In this example, a fixed beam as shown in Fig. 4-3a is considered, subjected to

a distributed load p(x). The associated statically determinate system is chosen to

be a cantilever beam shown in Fig. 4-3b. The bending moments of the cantilever

beam due to the distributed load and to unit indeterminate forces B 1 and B 2 are:
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MI(x) = -(L - x)

(4.4)

(4.5)

(4.6)

Utilizing the procedure described before, specifically Eq. 3.8, and Eqs. 4.4-4.6,

the deflection Wo (x) due to the applied load, and WI (x) and W2 (x) due to BI = 1

and B 2 = 1, respectively, can be expressed in terms of the following convolution

integrals:

Wo(x) = ;;1 jX (x - E)(L - E)2[1 + f(E)]dE
2 a 0 a

1 jX
Wl(X) = Eol

o
0 (x - E)(L - e)[l + f(E)]de

1 l x

W2(X) = -1 (x - e)[l + f(e)]dE
Eo a a

Hence, the corresponding end deflections wo(L), wl(L) and w2(L) are

1 1L

wl(L) = -E (L - E)2 [1 + f(E)] de
0 10 a

1 rL

w2(L) = Eol
o
J
o

(L - e) [1 + f(e)] de

Similarly, the corresponding end slopes wb (L), w~ (L) and w~ (L) are

w~(L) = 2£1
0
iL

(L - e)2 [1 + f(e)] de

w~ (L) = E~Io 1L (L - e) [1 + f(e)] de

w;(L) = E~Io iL

[1 + f(e)] de

4-5

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)



The deflections and slopes of the original system can be expressed as:

w'(x) = wb(x) + BIW~(X) + B2W~(X)

The boundary conditions w(L) = 0 and w'(L) = 0 should be satisfied:

Solution of the above system yields:

wb(L)W2(L) - wo(L)wHL)B 1 = ---=--'----'---'--'-------'--'------~-'--

wI(L)wHL) - W~(L)W2(L)

B
2

= wo(L)wi (L) - wdL)wb(L)
wI(L)w~(L) - wi(L)W2(L)

The deflection w(x) can finally be written as:

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

where Xi (i = 1,2, ... ,9) are written for wo(x), wo(L), wb(L), wr(L), wi (L),

W2 (L), w~ (L), WI (x), w2 (x), respectively, partly for simplicity and partly to empha-

size that they are Gaussian random variables. The expected values of the random

variables appearing on the right-hand side of Eq. 4.22 become
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E[w~(L)] = pL
3

6E0 10

L 3

E[Wl(L)] = E 1
3 0 0

L 2

E[w~ (L)] = E 1
2 0 0

L 2

E[W2(L)] = -2E-
0
-1-

0

E[w~(L)] = E~10
1

E[Wl(X)] = E 1 [3x2L - x3]
6 0 0

x 2

E[W2(X)] = E 1
2 0 0

Introducing the following abbreviations

(4.23)

(4.24)

covariance matrix C of the nine variables Xk can be expressed in terms of integrals

involving these functions and the correlation function Rff(x, y). The following are

a few representative elements of the covariance matrix:

02 X; = fax fax b1(x,e)bdx,rJ)Rff (e,rJ)dedrJ

{212 0X1 0X2 = 1x 1£ bl(X,e)bl(L,rJ)Rff(~,rJ)dedrJ

{213 0X1 0X3 = 1x 1£ bdx,e)b4 (L,rJ)Rff (e,rJ)dedrJ

{21S 0 X 1 0X5 = 1x 1£ bdx,e)b3(L,rJ)Rff(e,rJ)dedrJ

(J2 X2 = 1£ 1£ bdL ,e)b1(L,rJ)Rff (e,rJ)dedrJ

{227(JX2(JX7 = 1£ 1£ b1(L,e)bsRff(E,rJ)dEdrJ (4.25)

{228(JX2(JX S = 1£1x

bl(L,~)b2(X,rJ)Rff(~,rJ)d~drJ
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a 2
x 3 = i L i L

b4(L, ~)b4(L,1J)Rff(~,1J)d~d1J

a
2
x 4 = iL iL

b2(L, ~)b2(L,1J)Rff(~,1J)d~d1J

a
2x 7 = iL iL

b5b5Rff(~,1J)d~d1J

a 2x g = i X i X

b3(x, ~)b3(x,1J)Rff(~,1J)d~d1J

Integration of Eqs. 4.25 is carried out numerically in order to construct the covari-

ance matrix. Then, both the FOSM method and Monte Carlo technique are used

for the evaluation of the response statistics.

For the sake of simplicity, the quantities p(x), (Eolo) and also the length of

the beam are set equal to one. The sample size used for the Monte Carlo analysis is

200. Using the autocorrelation function defined in Eq. 4.1, the coefficient of varia-

tion (C.O.V) of the midspan deflection Vw , based on both the simulation approach

and FOSM approximation, is plotted in Fig. 4-4 as a function of the correlation

parameter blL. As can be seen in the figure, the coefficient of variation converges

as blL -+ 00 to its limiting value of 0.1 which is the C.O.V of the flexibility.

The same procedure is carried out using the correlation function defined by

Eq. 4.3. The resulting coefficient of variation Vw is plotted in Fig. 4-5 for both

methods. Use of this correlation function produced, as can be seen in Fig. 4-5, a

faster convergence of the coefficient to its limiting value 0.1.

Furthermore, the coefficient of variation of the end moment M(L) = B 2 is

evaluated for the same correlation functions and the results are plotted in Figs. 4-6

and 4-7. It is also obvious from these figures that the FOSM approximation and

the Monte Carlo simulation show good agreement.
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Finally, using the Lagrange multiplier method, the safety index of the end

moment B 2 is evaluated, assuming that the deterministic resisting moment B R is

given by the form:

If the parameter k was chosen to be 3, the limit state condition becomes

X2 X S - X 4 X 3
g(X) = BR - B 2 = B R - X X X X

4 7 - S 6

= g(X2,X3,X4,XS,X6,X7)

(4.26)

(4.27)

As can be seen in Eq. 4.27, g(X) is a function of six random variables. The Lagrange

multiplier method yielded a safety index f3B
2

= 2.53.

The safety index of the midspan deflection w(L/2) was also evaluated assuming

that the maximum deflection w R allowed is given by:

WR = E[w(L/2)] + kO w (L/2)

The limit state condition in tenns of the deflection w(L/Z) is

(4.28)

The safety index of the midspan deflection f3w is then found to be 2.83, again by

means of the Lagrange miltiplier method.

4.2 Example 2: Two-Story Two-Bay Frame

A two-story two-bay frame as shown in Fig. 4-8a is considered, subjected to

a distributed load p(x) on the beams. The degree of indeterminacy for this frame

is 12 and thus 12 redundant forces should be selected. The associated statically

determinate system together with the introduced indeterminate forces Bk (k =

1,2, ... ,12) are shown in Fig. 4-8b.
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In this case, since the indeterminate forces introduced are all moments, the

coefficients 0ik represent slopes at the locations of the indeterminate moments Bi'

due to unit indeterminate moments B k . The moment diagrams of the statically de

terminate system due to external load and unit indeterminate forces Bk are plotted

in Fig. 4-9.

Upon imposing the 12 boundary conditions at the locations of the selected

indeterminate forces, forces B k follow from Eq. 3.26. The distributed load p(x),

lengths Ll and L2 and mean value of the flexibility 1j(azEol o), are assumed to be

one.

Following the procedure described in the section dealing with indeterminate

frames, covariance matrix C is constructed and then the statistics of the indetermi

nate forces as well as of the deflections and moments are evaluated using both the

FOSM and Monte Carlo methods. Monte Carlo analysis is again performed with

200 simulations.

The coefficients of variation of the indeterminate forces B 3 , B 4 , B s are plotted

in Figs. 4-10, 4-11, and 4-12 respectively, as a function of the correlation distance

bjL 2 •

Also, the statistics of the midspan deflection and moment (point q) of element

4 are obtained, using both Monte Carlo simulation and FOSM approximation. The

midspan deflection and moment of component 4, given in general by Eqs. 3.27 and

3.28, can be written in this particular case, respectively, as:

(4.30)

(4.31)
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Fig. 4-9 Moment Diagrams for the Applied Load p(x), Unit Indetermi

nate Forces Bk (k = 1,2, ... ,12) and Unit Concentrated Load at

Midspan of Component 4
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where wqo and Mqo are the midspan deflection and moment due to the external loads

only, W q3 and M q3 are the midspan deflection and moment due to unit indeterminate

force B 3 (with Bk = 0 if k i= 3) and W q4 and M q4 are the midspan deflection and

moment, respectively, due to the unit indeterminate force B 4 (with Bk = 0 if k i= 4).

As can be seen from the above equations, only the indeterminate forces B 3

and B 4 are involved in the expressions for the midspan deflection and moment of

component 4, since, in this case, the quantities Wqk and Mqk with k = 1,2,5, ... ,12

are zero. Deflection W in Eq. 4.30 is a function of five random variables. In order

to apply the FOSM method, the quantities a;qQ' a;Q3' a;Q4' Cov(WqO,Wq3),

Cov(wqo, Wq4) and Cov(Wq3, Wq4) must be determined from Eq. 3.37, the quantities

a~3' a~4' Cov(B3 , B 4 ) from Eq. 3.63 and finally, the quantities Cov(Bz, w qn ) (l =

3,4 n = 0,3,4) from Eq. 3.64.

The coefficient of variation of the midspan deflection of element 4 is plotted in

Fig. 4-13 as a function of the correlation parameter b/ L 2 • Also the coefficient of

variation of the midspan moment is plotted in Fig. 4-14.

4.3 Example 3: Portal Frame

In this example, a portal frame shown in Fig. 4-15a, is analyzed. The frame

is subjected to gravity as well as horizontal loading. The horizontal concentrated

load may represent the effect of wind or earthquake. In this example, the horizontal

load is assumed to be a quasi-static force representing the effect of an earthquake,

and it is taken to be 0.25 of the total gravity load. The dimensions of the frame are

shown in Fig. 4-15a and the parameters used in the analysis are

p(x) = 1 kip/ft

10 = 200 in2
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Eo = 30,000 ksi

L = 10 ft

P = 2.5 kips

The associated statically indeterminate system with selected indeterminate forces is

shown in Fig. 4-15b. The moment diagrams corresponding to external loads, unit

indeterminate forces B l , B 2 , B 3 , and unit concentrated horizontal force at node 2

and vertical at midspan, are shown in Fig. 4-16.

The coefficient of variation of the indeterminate forces B l and B 3 is plotted

in Figs. 4-17 and 4-18 respectively, as a function of the dimensionless correlation

parameter hiL. Also, the coefficient of variation of moment at node 1 is plotted in

Fig. 4-19. as a function of the same parameter. Finally, the coefficient of variation

of the midspan deflection as well as the horizontal displacement are plotted in Figs.

4-20 and 4-21 respectively.

The number of simulations used for the Monte Carlo solution is 500 in this

example, and thus, the agreement of the two methods is very good, as can be seen

from Figs. 4-17 ,...., 4-21.
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SECTION 5

CONCLUSIONS

The present study shows that it is possible to evaluate the response variabil

ity of statically indeterminate structures due to spatial variation of their material

properties and, in principle, their geometries, without recourse to finite element

analysis.

To achieve this, a Green's function formulation was utilized in the case of

simple structures such as a fixed beam and the more general flexibility method in

the case of more complex structures such as a two-story two-bay frame and a portal

frame. Using the general approach presented herein, structures with a large degree

of static indeterminacy ( e.g, multi-bay multi-story frames) can also be treated. The

amount of numerical effort involved depends on the number of degrees of statical

indeterminacy. The mean square statistics of the desired response quantities as well

as statistics of the indeterminate forces are obtained in simple integral form which

is evaluated by numerical methods.

Most importantly, it was shown that the response variability problem is reduced

to a problem involving only random variables, even if the material property is

considered to constitute stochastic fields. The response variability was estimated

using the First-Order Second-Moment method and the Monte Carlo simulation

technique. The results based on these methods show good agreement. The safety

indices of the midspan deflection and end moment of the fixed beam were also

evaluated with the aid of the Lagrange multiplier method under certain limit state

conditions.
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Of more relevance to earthquake engineering is the result of the portal frame

analysis under quasi-static conditions. The result indicates that the variabilities of

various response quantities measured in terms of coefficient of variation are of the

same order of magnitude as that of the flexibility variability.
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