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ABSTRACT

Analytical modeling of structures subjected to ground motions is an important aspect
of fully dynamic earthquake-resistant design. In general, linear models are only sufficient
to represent structural responses resulting from earthquake motions of small amplitudes.
However, the response of structures during strong ground motions is highly nonlinear and
hysteretic.

System identification is an effective tool for developing analytical models from ex-
perimental data. Testing of full-scale prototype structures remains the most realistic and
reliable source of inelastic seismic response data. Pseudo-dynamic testing is a recently de-
veloped quasi-static procedure for subjecting full-scale structures to simulated earthquake
response. The present study deals with structural modeling and the determination of op-
timal linear and nonlinear models by applying system identification techniques to elastic
and inelastic pseudo-dynamic data from a full-scale, six-story steel structure.

It is shown that the feedback of experimental errors during the pseudo-dynamic tests
significantly affected the higher modes and led to an effective negative damping for the
third mode. The contributions of these errors are accounted for and the small-amplitude
modal properties of the test structure are determined. These properties are in agreement
with the values obtained from a shaking table test of a 0.3 scale model.

The nonlinear hysteretic behavior of the structure during strong ground motions is
represented by a general class of Masing models. A simple model belonging to this class is
chosen with parameters which can be estimated theoretically, thereby making this type of
model potentially useful during the design stages. The above model is identified from the
experimental data and then its prediction capability and application in seismic design and

analysis are examined.
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CHAPTER 1

INTRODUCTION

Modeling of structures subjected to ground motions is an-important aspect of earth-
quake-resistant design. Also, system identification is an effective tool for developing models
from experimental data. This dissertation deals with structural modeling and the determi-
nation of optimal linear and nonlinear-hysteretic models by applying system identification

techniques to experimental data from a full-scale structure.

Since the acquisition of response data from structures during earthquakes is infre-
quent, it becomes necessary to complement the field data by means of analysis and/or
experiments. Many analytical methods are questionable because of their simplified model-
ing of structural and material behavior, and they need to be assessed using real structural
data. Also, because of disadvantages associated with the testing of small-scale models and
full-scale structural components and subassemblages, testing of full-scale prototype struc-
tures remains the most realistic and reliable method for evaluating the inelastic seismic

performance of structures.

The pseudo-dynamic test method is a recently developed quasi-static procedure for sub-
jecting full-scale structures to simulated earthquake response by means of on-line computer
control of hydraulic actuators. In contrast to the usual quasi-static test procedures, the
relation between the interstory forces and deformations is not preseribed prior to the test.
Instead, feedback from displacement and load transducers is used to force the appropriate
earthquake behavior on the structure in an interactive manner as the experiment proceeds.
Hence, full-scale structures can be tested at strong-motion amplitude levels without mak-
ing any assumptions about the stiffness and damping characteristics of the structure. The
pseudo-dynamic method, its advantages and the sources of errors are described in Chapter
2. An analysis of experimental errors in pseudo-dynamic testing shows that these errors
act as effective excitations of the structure in addition to the ground motion.

A six-story, two-bay, full-scale steel structure was tested by the pseudo-dynamic
method at low amplitudes to give nominally elastic response and at larger amplitudes
to excite the structure into the inelastic range. These tests were carried out in 1984 as part

of a U.S.—Japan Cooperative Earthquake Research Program Utilizing Large-Scale Testing
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Facilities, at the Building Research Institute in Tsukuba, Japan. A major portion of this
study is devoted to analysis of these test data.

Linear models are, in general, sufficient to represent structural responses resulting from
earthquake motions of small amplitudes. In addition, Beck [1] recommends that if linear
models afe to be used in system identification, the parameters.of the lower modes whose
contributions dominate the respcnse, and not the stiffness and damping matrices, should
be estimated from the records for reasons of uniqueness and measurement noise. Linear
modal models are used to study the elastic response of the pseudo-dynamic test structure

in Chapters 3 and 4.

A single-input single-output structural identification technique has been developed by
Beck [2] which is applicable when the input and output consist only of one component
of -ground motion and a parallel component of response at some point in the structure,
respectively. This method is used to estimate the modal properties of the full-scale six-
story steel structure from the ‘elastic’ pseudo-dynamic test data, in Chapter 3.

The surprising result is that the third-mode damping is negative. This is then at-
tributed to the cumulative effect of feedback of control and measurement errors during the
pseudo-dynamic test in which each of these errors acted as an effective excitation to the
structure in addition to the ground motion, as shown in Chapter 2. In Chapter 4, these
additional excitations are treated explicitly in order to get more reliable estimates of the

modal properties of the test structure.

A nultiple-input multiple-output structural identification technique, namely
MODE-ID [3], which is applicable to any number of simultaneous input excitations and
structural response measurements used in conjunction with a linear modal model, is used
to determine the optimal modal properties of the test structure from the elastic pseudo-
dynamic test data, while accounting for the experimental errors as additional excitations
to the test structure. It then becomes possible to estimate the actual structural damping
effective during the test and also the apparent equivalent viscous damping effect of the
feedback errors on the structural modes. The identification results of modal parameters
from the full-scale structural test data are compared with the Berkeley shaking table test

results of a 0.3 scale model of the same prototype test structure.

The response of a structure during strong earthquake ground motions, as described by

its dynamic force-deflection relationship, is highly nonlinear and hysteretic. The modeling
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of such behavior is a difficult task. This subject is dealt with in detail in Chapter 5.

A class of Masing models is discussed in which Masing [4] assumed that a system
consists of a collection of elasto-plastic elements each with the same elastic stiffness but
different yield limits. He asserted that if the load-deflection curve for the entire system at
virgin loading is given, then the branches of the hysteresis loops for steady-state response
are geometrically similar to the virgin loading curve and are described by the same ba-
sic equation but scaled with two-fold magnification. It is shown that Masing’s hypothesis
results in a continuous distribution of constant stiffness surfaces in the region of the restor-
ing force space, an idea similar to the concept of multiple yield surfaces with kinematic
hardening in the incremental theory of plasticity. The Ramberg-Osgood model [5], Iwan’s
model [6], Pisarenko’s model [7] and Rosenblueth-Herrera’s model 8] are a few examples
of nonlinear, hysteretic relations which belong to the class of Masing models describing
steady-state response.

It has been contended by previous researchers [6,9-11] that Masing’s hypothesis is of
no help for cases of transient loading. It is shown in the present study that this problem
can be eliminated by defining the transient response by two simple hysteresis rules. It is
also proved that Iwan’s distributed-element formulation [6,10] is mathematically equivalent
to this general class of Masing models. However, the implementation of the latter class
of models is much simpler as compared with the computation of the force-deformation
relationship for Iwan’s model which requires keeping track of element behavior involving
several integral terms. Finally, a simple hysteretic restoring force-deformation relationship
belonging to the general class of Masing models is chosen to represent the inelastic response
of the pseudo-dynamic test structure.

A hysteretic system identification program, HYSID, is developed in Chapter 6 to de-
termine the optimal estimates of the hysteretic model parameters from experimental data.
The optimal estimates for the structural parameters resulting from the hysteretic model-
ing of the full-scale six-story steel structure are then obtained by applying HYSID to the
inelastic pseudo-dynamic test data. The hysteretic model chosen in Chapter 5 is used to
represent the story shear-deformation relationship. The predictive capability of the model
and the prospects of using the hysteretic model in the seismic analysis of structures are

also examined.
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Conclusions and directions for further exploration of the nonlinear model are given in

Chapter 7.



(1]

(2]

(8]
[9]

(10]

(14
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CHAPTER 2

PSEUDO-DYNAMIC TESTING OF FULL-SCALE STRUCTURES
TO SIMULATE EARTHQUAKE DYNAMICS

2.1 Introduction

It is well recognized that an earthquake can be viewed as a full-scale, large-amplitude
experiment on a structure, and that if the structural motion is recorded, it offers an oppor-
tunity to make a quantitative study of the behavior of the structure at dynamic force and
deflection levels directly relevant to earthquake-resistant design. However, the time and
location of a strong-motion earthquake cannot be predicted with confidence so that the
acquisition of such data is very infrequent [1]. Hence, it becomes necessary to complement
the field data by means of analysis and/or experiments.

Although various analytical methods are available to predict the inelastic response of a
structure, the confidence that can be placed in results obtained with them is severely limited
by the uncertainties associated with the simplified modeling processes of structures and of
their nonlinear material and member behaviors [2-6]. For these reasons, experimental
testing remains the most reliable means to evaluate the inelastic behavior of structural
systems and to devise structural details to improve their seismic performance.

Small-scale models of structures, full-scale structural components and subassemblages
have been tested in the past as economical and efficient means of predicting the response
of prototype structures. However, the scale effects which usually arise in small-scale model
testing may prevent good correlation of the model response with the prototype structural
behavior (7,8], whereas any results obtained from full-scale tests can be applied in practice
almost directly. Also, it is not always possible to scale material properties.

Component tests provide useful information on the individual characteristics of these
members, but do not provide much information on the overall behavior of building struc-
tures in which many members are connected. Although the subassemblage test is a useful
approach to investigate closely the behavior of a structure as a unit, on many occasions it is
difficult to perfectly simulate the boundary conditions which are present in the real struc-
ture [9]. The ultimate validity of the adopted boundary conditions can only be checked by

comparison with the behavior of the real structure. Often engineering judgement is needed



.

to incorporate member and assembly test data into structural design. Therefore, testing of
full-scale prototype structures remains the most realistic and reliable experimental method
for evaluating the inelastic seismic performance of structures. Some of the available testing

methods of structures for earthquake dynamics are listed in Table 2.1.

2.2 Pseudo-Dynamic Testing

The pseudo-dynamic test method is a recently developed quasi-static procedure [11-15]
for subjecting full-scale structures to simulated earthquake response by means of on-line
computer control of hydraulic actuators. The inertial effects of the structure are modeled
in an on-line computer, but in contrast to the usual quasi-static test procedures the re-
lation between the interstory forces and deformations is not prescribed prior to the test.
Instead, feedback from displacement and load transducers is used to force the appropriate
ea.rthquaj;e behavior on the structure in an interactive manner as the experiment proceeds.
Hence, full-scale structures can be tested at strong-motion amplitude levels without making
any assumptions about the stiffness and damping characteristics of the structure. Also, it is
relatively inexpensive to test full-scale structures by the pseudo-dynamic method compared
with the construction and instrumentation of a big shaking table facility.

In the pseudo-dynamic method, a multi-story building structure is modeled as a
lumped-mass discrete system using the following assumptions:

(a) Floor slabs are rigid in their own planes.

(b) Mass of the building is lumped at each floor level.

(c) Rotational inertias are negligible.

(d) Both horizontal translational degrees-of-freedom are uncoupled.

The equation of motion of such a system when excited by earthquake ground acceler-

ations £(t) (Fig. 2.1) is given by:
Mz +Cg+R=F(t) = -Mi(t) L , (2.1)

where mass and viscous damping matrices, respectively,

-
[e!
[

= restoring force, a function of the displacement history,

excitation due to earthquake accelerations Z(t),

o~
ot
ot

vector of floor displacements relative to the ground, [z;,z2,...,2x ",
floor velocities and accelerations relative to the ground, and

= [L,1,...,1]F.

ol DR LA IR
ta:
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The Cz term represents the viscous damping added artificially by the on-line data pro-
cessing computer which is part of the pseudo-dynamic testing facility (Fig.2.2} during the
tests.

Equation 2.1 is solved for the displacements by a direct step-by-step numerical in-
tegration scheme. At each time step, the calculated displacements are imposed on the
structure and the resulting story restoring forces are then measured. The nature of the
pseudo~dynamic test procedure prevents the possibility of employing implicit integration
schemes since they require the knowledge of stiffness characteristics to solve the equation of
motion for displacements. Implicit integration methods involve iterations which are highly
undesirable for pseudo-dynamic testing of history-dependent inelastic systems. Therefore,
Eq. 2.1 should be integrated using explicit integration schemes which are, in general, only
conditionally stable but are computationally more efficient.

Therefore, for an explicit integration scheme, Eq. 2.1 becomes:
Mii'{'czi'l'ﬁi:g:i i=1’2y"':N » (22)

where z; = z{t)
ti = i{At) and
At = discretization time of the ground motion.

Japanese researchers (11] chose to use the central-difference method for which:

Zi=(Zit1 — Ei-1) /(2 At) (2.3)
Zi=(Zi-1 -2z +sa+1)/(At)2 : (2.4)
Substitution of Eqs.2.3 and 2.4 in Eq.2.2 gives:
(M+CAt/2]z,,, = (At [E; ~ Ri] + 2Mz; + [CAt/2-M]z;, . (2.5)

The mass matrix is prescribed from the known mass distribution of the test structure so
that the on-line computer can simulate its inertial effects, and the viscous damping matrix
is set equal to that derived from the preliminary free and forced vibration tests of the
structure at low amplitudes assuming Rayleigh damping. From the knowledge of measured
restoring forces and calculated displacernents at the previous time steps, the displacement

at the time step (i+1) is calculated using Eq.2.5 in the data processing computer. This
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displacement is first transformed to a voltage change in the servo-controller (Fig. 2.2) and
the resulting elecirical command signal is then converted by means of the servo-valve to a
regulated flow of high pressure hydraulic fluid to the actuators [16]. The actuators in turn
force the structure quasi-statically to deflect to the calculated position. When the desired
displacement is achieved, the load cells mounted on the actuators measure the restoring
forces and the displacement transducers on the structure measure the final displacements
achieved. This information is fed back to the on-line data processing computer to calculate
the displacements to be imposed at the next time step. The basic operations of the pseudo-

dynamic test procedure are given as a flow diagram in Fig.2.3.

By the pseudo-dynamic testing method, a full-scale structure can be tested quasi-
statically using a given earthquake ground motion so that the deformation and restoring
force history will be close to that the structure would have experienced during the actual
earthquake. This method is a more cost-effective procedure for achieving this realism than
construction and operation of a sufficiently large shaking table facility to test structures
which are large and massive. The large scale structure test laboratory at the Building
Research Institute in Tsukuba, Japan which houses the pseudo-dynamic testing facility
(Fig.2.2) can accommodate a building specimen as large as 300 m? in floor area and 25 m
in height on each side of a reaction wall, with the floor bearing capacity being 1 MN/m?.
But the world’s largest shaking table, a counterpart of this laboratory, is 15 mx15 m in
table dimensions and can carry at most 10 MN weight {16]. There is therefore a sizable
difference between the allowable maximum scale of structures which can be tested on a

shaking table and by the pseudo-dynamic method.

Another advantage of the pseudo-dynamic method is that it is possible to keep track
of the localized behavior and damage propagation while loading because of the quasi-static

nature of the test.

Behavior of structural foundations is very difficult to evaluate because of the complexity
of soil properties and soil-structure interaction. Considering that soils are difficult to scale

down properly, a full-scale test can be performed pseudo-dynamically.

In the traditional quasi-static tests, to select a proper load sequence, a simplified
mathematical model is first assumed, and the earthquake response of the test component
is calculated. Based on test results obtained by the use of this calculated load sequence,

a new mathematical model is formulated and the analysis is repeated, this sequence being
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followed until satisfactory convergence is achieved [9]. Hence, the most important advan-
tage of pseudo-dynamic testing over these traditional quasi-static test methods is that no
assumption is made regarding the stiffness or restoring force characteristics of the test sys-
tem. This makes it a very powerful means of analyzing the dynamical behavior of structures
in the inelastic region, since the actual restoring forces developed are measured during the
test and used to compute the deformation response, in contrast to the a priori prediction
of these forces using analytical models during ordinary quasi-static tests. Indeed, a better
understanding of the inelastic behavior of structures gained from the pseudo-dynamic tests
can be used to improve the current analytical modeling techniques, as has been done in

this study.

2.3 Sources of Errors in Pseudo-Dynamic Testing

As in all experimental methods, the pseudo-dynamic method has errors inherently
associated with it. These errors occur mainly in the following three stages:

(a) Modeling of mass distribution and damping.

(b} Numerical algorithm used to integrate the equation of motion.

{c) Experimental errors arising from displacement control and force measurements.

By prescribing a diagonal mass matrix, it is assumed that masses exist only at a few
selected degrees-of-freedom. This assumption is reasonable for structures like multi-story
buildings where the masses can be lumped at the floors whose horizontal motion constitutes
the degrees-of-freedom. But structures whose distributed mass can significantly influence
local failure modes are not suitable for pseudo-dynamic testing, such as dams.

Energy dissipation due to friction and hysteresis is taken care of since the actual
restoring forces developed are measured during the test and used in the computation of the
displacement résponse (18]. However, because of the quasi-static nature of the test, energy
radiation due to soil-structure interaction will be negligibly small in a pseudo-dynamic
test compared to that of the same structure during an actual earthquake. This can be
conveniently modeled by prescribing viscous damping in the on-line control algorithm. The
viscous damping matrix may be constructed using the modal damping values estimated
from the preliminary free and forced vibration tests and the mode shapes obtained from
a pre-test finite element analysis of the test structure. Viscous damping is not a realistic

damping model for structures, since they appear to exhibit rate-independent damping over
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a range of strain-rates expected during earthquake response. For structures with significant
inelastic deformations, the energy loss due to hysteresis will be very large compared to the
energy loss due to radiation, so that the error made by prescribing a viscous damping

matrix in the on-line computer will be negligible.

Solutions obtained by numerical integration are, in general, approximate. However, if
the numerical integration scheme is convergent, the numerical solution should approach the
exact solution of the differential equation as the time step At tends to zero. Therefore, the
time integration step At should be as small as possible for solutions to be accurate enough.
In addition, the algorithm should be stable. The central-difference scheme used to integrate
Eq.2.2 is stable if and only if At < 2/w,, where w,, is the largest natural frequency of the
system in rad/sec and the accuracy of the solution is of the order {A¢)2. One-sixth of the
above time interval is recommended to guarantee sufficient accuracy [16]. For example, if
the natural frequency of the sixth mode of a six-story test structure is 17 Hz, the required
At would be 0.003 sec. The very small At results in considerable limitations and difficulties
such as creep of concrete in reinforced concrete structures and error accumulation problems,

in implementing the pseudo-dynamic technique.

The most serious error comes from the experimental control system itself. Since it
is impossible to make the structure deform precisely to the computed displacement levels,
an allowable error bound is set for each actuator. This results in the structure always
undershooting the desired displacements, which leads to displacement-control errors adding
energy into all the modes of the structure. To correct this, an overshoot is added to
the calculated displacement. Hence, the restoring forces measured and fed back to the
data processing computer for further computations do not correspond to the displacements
computed for the time step, but instead to the actual deformation that was realized by the
structure. In addition, errors can also occur in the measurements of these displacements and
forces. The displacement errors, which include both the control and measurement errors,
are plotted in Fig.2.4 against the increment in the calculated displacements at every step.
These data are from the inelastic test of a concentrically braced six-story full-scale steel
structure tested at the pseudo-dynamic testing facility in Tsukuba, Japan. Although the
control and measurement errors may be small at every time step, being of the order of
0.1 mm, the cumulative effect of the feedback of these errors seems to be very severe. In

multi-degree-of-freedom systems, the higher-mode contributions are highly vulnerable to
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the cumulative effect of the feedback of experimental errors and this can even make the
test system unstable [20,21]. One possible scheme to avoid the instability is to suppress
the higher degrees-of-freedom by employing very high viscous dampings in the computer
algorithm corresponding to these modes. Aktan [22] has proposed a modification to the
pseudo-dynamic method which makes use of classical control theory to ease the constraints
on the time interval At and to include higher modes, but under the assumption that
the structure behaves linearly during each loading step. For the success of the pseudo-
dynamic test, the most critical requirements are, therefore, the capability of the actuators
to control the specimen deformation with sufficient accuracy and the accurate measurement
of restoring force values which should be transferred to the computer for the computation of
the next step. In the next section, the experimental errors in the pseudo-dynamic method
are analyzed and a method of treatment of these errors is proposed by which the structural
properties can be reliably estimated from the pseudo-dynamic test data.

The strain rates during the pseudo-dynamic tests will be very much different from those
during an actual earthquake because of the quasi-static nature of these tests. Materials
do behave differently under different strain-rate conditions. For example, dynamic tension
and bending tests on steel beams of section H 200x 100x5.5x8 at increasing strain rates
show a modest increase in yield strength (Fig.2.5). However, for most steel structures the
strain-rate effects are insignificant if the natural frequencies of interest are below 10 Hz
[24]. This may not be the case for reinforced concrete structures. For this reason, a ‘rapid
computer-actuator on-line system’ has been proposed by Takanashi and Ohi [23] to improve
the pseudo-dynamic testing system explained in Section 2.2, so that structural responses

can be simulated as near as possible to the actual dynamic rates.

2.4 Analysis of Experimental Errors in Pseudo-Dynamic
Testing

The displacements to be imposed on the test structure during the pseudo-dynamic

testing are calculated from the equation of motion 2.5 in Section 2.2:
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where Zi.1, 2; = displacements calculated at the previous time steps i-1 and i,
R; = restoring force measured at time step i,
F; = exciting force due to ground acceleration at time step i, and
Ziv1 = displacement to be imposed on the test structure at the next

time step.
However, as discussed in the previous section, it is not possible to control the testing
apparatus precisely so that the exact displacements calculated from Eq. 2.6 can be imposed
on the test structure.
Let the displacement-control errors and force-measurement errors at time step i be z5°

and R§™, respectively; then the restoring forces measured in the elastic tests will be:
R; =K(z; +z5°) +RT™ , (2.7)

where K i3 the stiffness matrix corresponding to the elastic behavior of the test structure.
Also, if z{™ is the displacement-measurement error at the i-th time step, then the

measured displacement z7 will be:
=zt T (2.8)

where z; is the displacement calculated from Eq.2.6. Figure 2.6 summarizes the experi-
mental errors and shows the feedback _of these errors in a flow diagram.
Substitution of Eq. 2.7 in Eq. 2.6 gives:
[M+CAt/2] 24 = (A) E; +[2M - (At)° K| g; (2.9
+(CaL2-M] g, - (A7 (KzF + B3
If the cumulative displacement error at time step i is z5, then the calculated displacement

Z; can be written as:
z= .:5‘1 +E,cx 3 (210)
where z} is the ideal displacement in the absence of experimental errors which satisfies the

following equation:

[M+CAt/2] 2}, = (At)2 B, + [2M - (At K| g + [CAt/2-M]gi., . (2.11)

~i""1
Subtraction of Eq.2.11 from Eq.2.9 and the use of Eq. 2.10 lead to:
[M+CaAt/2] 25, = (A4)? [-Kg¥ - R{™ | + [2M - (A0°K] £

(2.12)
+(CA/2-M]g.,
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Comparing Eq.2.12 with Eq. 2.11, it is evident that the cumulative displacement error
z°(t) is the response of the linear structure to an equivalent exciting force [—K z°<(t) —
R(6)].

2.4.1 Modal Analysis of Experimental Errors

If the damping matrix C used in the computer algorithm is symmetric and ‘classical,’
then the modal column matrix ®, whose columns are the modeshapes of the structure,

" satisfies the following orthogonality relationships:
eTMe=1I, @®TK&=0% and &TCE®=22Q . (2.13)

Premultiplication of Eq.2.12 by the modal row matrix ®T gives:

[2T M+ 3T C AL/2] 25, = (A4 [-@T Kz - 8T RT™ | 210
+{287M - (At)? 8TK] 25 + [T CAL/2 - 8TM| 25, '
Furthermore, the cumulative displacement error, the displacement-control and force-

measurement errors may be modally decomposed in the following manner:

Zi=9f,
g =20, (2.15)

MR =0f,

where £, n and I’ are the modal coordinates, respectively.
Substituting Eq.2.15 into Eq.2.14 and using Eq.2.13 gives:

(1+atzn]g,  =[21- (At €, +{At20-1]¢, - (a2 [0%n + 1)

or in component form: (2.16)

(1+Atgw) &, = (2 (Atw)?) &7 + (Atgew, — 1) &7,
(At)z (w n(l') +fi(r))
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Equation 2.16 can also be written as:
60— ol € + 4l € =al"

(x) 2- (Atwr)2 (r} _ 1— At wy

where 1 14 Abgewn ’ 2 14+ At w, ;
(2.17)
and alV = o) g™ _ go) g
2 2
() = _(Btw:)? - _ (a2
where i vy vowl e VXYY

The transient and steady-state response statistics of the difference equation 2.17 are ob-
tained by the method of operational calculus in Appendix A, in which the steady-state

response variance for the cumulative error (Eq. A.25) is shown to be:

] 2 2
Oy = Wr O (s } Trir . 2.18
Ccn‘ ) g,[‘i— (AtQ)p)Z] [ nt® wf-’ f )] ( 1 )

Equation 2.18 shows that the control errors have a greater effect in the higher modes
whereas the response of the lower modes is affected more by the measurement errors,

provided o, and oy are of the same order for different modes.

2.5 BRI Testing Program

A six-story, two-bay, full-scale steel structure (Figs.2.7 and 2.8) was tested by the
pseudo-dynamic method at the Building Research Institute (BRI) in Tsukuba, Japan during
November, 1983~March, 1984. This structure, which represented Phase II of the steel pro-
gram under the U.S.—Japan Cooperative Earthquake Research Program Utilizing Large-
Scale Testing Facilities, was designed to satisfy the requirements of both the 1979 Uniform
Building Code (UBC) of the U.S. and the 1981 Architectural Institute of Japan code, using
eccentric K-bracings (25]. It was 15 mx15 m in plan and 21.5 m high. The two exterior
frames A and C are unbraced moment-resisting frames with one column in each oriented
for weak-axis bending in order to increase the torsional stiffness, and the interior frame
B is a braced moment-resisting frame with eccentric K-bracing in its north bay. All the

girder-to-column connections have been designed as moment connections in the loading
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direction and shear connections in the transverse direction. The floor system consisted of a
formed metal decking with cast-in-place light-weight concrete acting compositely with the
girders and floor beams (Figs.2.9 and 2.10). No non-structural component was attached
to the frame system.

The eccentric-braced frame is a new type of structural system for earthquake resistant
design [27] which has a high elastic lateral stiffness as in concentric braced frames but in
addition has a good energy dissipation capacity due to active shear links, whereas concentric
braces can buckle under compressive cyclic loading and so suffer a drastic decrease in their
buckling strength and their ability to dissipate energy.

The BRI tests were performed at low amplitudes to give nominally elastic response and
at larger amplitudes to excite the structure into the inelastic range. The uni-directional
loading in the elastic and inelastic tests was produced by an early digitized version (not
the Caltech Vol. IT A004 version) of the Taft S21W component from the 1952 Kern County,
California, earthquake (Fig. 2.11) scaled to peak accelerations of 6.5% g and 50% g, respec-
tively. The Fourier amplitude spectrum of the ground accelerations is shown in Fig.2.12
[28].

During the inelastic test, yielding in shear links, brace gusset plates and some columns
was observed. Overall, the structure performed very well without much visible damage, so
additional three large-amplitude tests were performed using sinusoidal ground acceleration
pulses of one cycle each in order to explore the uitimate strength, ductility and failure
mechanism of the structure [29]. Table 2.2 summarizes some of the elastic and inelastic

test details.
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Type Excitation Amplitudes Scale Cost/Time Comments
Ambient Microtremors, Wind, Limited
Small Fall Cheap/Short
Vibrations Cultural Noise Information
Building Harmonic Small— Not at Earth-
Full Cheap/Short
Shaker force medinm quake Levels
Validity of
Shaking Earthquake Expensive/ Scaling,
Large Reduced
Table Record Long Structure/Table
Interaction
Inertia Modeling
Pseudo- Earthquake Expensive/
Large Fuil Errors,.
Dynamic Record Long
Unstable Control
Extensive
Cheap/
Natural Earthquake Large Full Instrumentation
: Unscheduled
not Practical

Table 2.1 Testing Structures for Earthquake Dynamics {10]
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zZ (1) \

Input Ground Accelerations
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Measure Restoring Forces R; .,

from the Structure using Load Cells

'

Seti=i+1

Fig.2.8 A Simplified Flow Diagram for Pseudo-Dynamic Test Operation {17
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CHAPTER 3

SYSTEM IDENTIFICATION APPLIED TO THE ELASTIC
PSEUDO-DYNAMIC TEST DATA
—IGNORING FEEDBACK OF EXPERIMENTAL ERRORS

3.1 Introduction

In system identification, we are concerned with the determination of system models
from records of system operation [1,10]. The problem can be represented diagrammatically

as Fig. 3.1 in which

u(t) = known input

z(t) = system output

w(t) = process noise (e.g., unknown inputs)
n(t) = observation noise

y(t) = measured output.

Thus, the problem of system identification is the determination of a system model from
records of u(t) and Z.(t) In other words, given the input-output data set for a real system,
we want to obtain a mathematical model which describes a certain behavior of the system.

We will be concerned with parametric system identification in this study, in which
a particular mathematical form is chosen to describe the essential features of the system
and then the unknown parameters of the model are estimated from the input and output
data. In contrast, in nonparametric system identification, functions rather than parameters
are estimated, such as a transfer function or impulse response function. In practice, only
discrete values of the functions can be estimated and g0, in effect, a model with a very large
number of parameters must be estimated. This makes the results very sensitive to model

error and measurement noise. Nonparametric models have been discussed by Beck [2].
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3.2 Output-Error Method for Parameter Estimation

In this section, the output-error approach to parameter estimation is described, follow-
ing Beck [2]. In this method, the parameters of a model are estimated by determining those
values which give an optimal match of the output of the model and the measured output
of the real system, when both are subjected to nominally the same input. The quality of
the output match is determined by some scalar function J of the output-error called the
measure-of-fit. The parameter adjustment algorithm shown in Fig.3.2 selects the optimal
parameter values by minimizing the measure-of-fit J in a systematic manner.

The output-error ¢ is the difference between the output measurements ¥ of the system

and the model output m:
)=y -mtl) . (3.1)

In structural identification, the output vector ¥ will be the recorded response such as
displacement, velocity or acceleration at various points in the structure.

For a given observed input z{t) and measured output yovera time interval [t, , t.],
the optimal estimates of the parameters are defined to be the values which minimize the

measure-of-fit:
te
J(i):[ <e(t8), Ve(t;4) > dt {3.2)
te v

where < ., . > is the Euclidean scalar product and V is a prescribed positive definite
diagonal matrix which allows weighting of the output-error.

The problem of identifying the optimal model from system data has been now reduced
to minimizing the function J(¢ ) in Eq. 3.2. This minimization could be achieved by directly

solving the stationarity condition of J with respect to g

v =0 , (3.3)

()
where E is the vector of optimal parameter estimates. This usually leads to a set of si-
multaneous nonlinear algebraic equations in § which cannot be solved analytically. The
nonlinearity arises because the model response is, in general, a nonlinear function of the
parameters, even if the model itself is linear in the state and linear in the parameters.
Some descent methods for optimization which have been used in structural identifica-

tion include the Gauss-Newton method, the method of steepest descent and the conjugate
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gradient method. The Gauss-Newton method is equivalent to applying to Eq. 3.3 a mod-
ification of the classical Newton-Raphson method for finding the zeros of a multi-variable
vector function.

A descent method called the modal minimization method, developed by Beck and
J emiings [3] to provide a reliable technique for the identification of linear modal models, is

used in this study.

3.3 Linear Structural Model
3.3.1 Analytical Model

A discrete analytical model which has the following equation of motion:

Mg+ Dz + Kz = -Mz2(t) L

with the initial conditions (3.4)

g(t,) =Zo and E;(‘%) =Yoo

represents a physical model consisting of a distribution of lumped masses linked by linear,
massless springs and dashpots, with the base being rigid and moving in only one direction.
The vector z = [z1,22,+*+,2x]T then consists of horizontal displacement relative to the
base of each degree of freedom of each lumped mass of the model, and % is taken to be
the horizontal component of acceleration of the base motion. All the components of 1 are
unity. M,D and K are mass, damping and stiffness matrices, respectively, and along with
the initial conditions form the parameters of the model.

With respect to the inverse problem, Beck [2] showed that the stiffness and damping
matrices are not determined uniquely in typical situations. The first limitation arises from
the fact that seismic response is usually measured at only a few points in a structure while
‘local’ uniqueness of K and D requires measurement of response at 3N or more of the
coordinates. Another important limitation is due to the deterioration of the signal-to-noise
ratio at higher frequencies, implying that the higher mode information in the stiffness and
damping matrices will be unreliable if attempts are made to estimate these matrices from
seismic records.

On the other hand, modal parameters for the structure can theoretically be determined

which contain all the information about the structural properties that can be estimated
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directly from the input and output records, although the small signal-to-noise ratio at
higher frequencies implies that only the dominant modes of the response can be estimated
reliably from earthquake data. Beck [2] then concluded that when linear models are to
be estimated from seismic excitation and response time-histories, they should be based on
the domiﬁa.nt modes in the records of the response and not on.the stiffness and damping
matrices. If estimation of structural parameters is of interest, this may be done in a separate

stage using the identified modal parameters.

3.3.2 Modal Model

If the mass matrix M is assumed symmetric and positive definite, then a real inner-
product in RY can be defined as :

<gz,y>=z My Vg,yeR" , (3.5)

~

where R™ is an N-dimensional Euclidean vector space. Also, the stiffness matrix K and
the damping matrix D being assumed symmetric matrices and K also being assumed a
positive definite matrix [i.e., self-adjoint and positive definite operators with respect to the
usual innerproduct (z,y) = £Ty], it can be shown that M~'K and M™'D are self-
adjoint operators and M~1K is also a positive definite operator, but with respect to the
innerproduct defined in Eq.3.5. Furthermore, if the damping is assumed to be classical,
then M™1K and M™!D are commutative.

The above properties of MK and M™~!D ensure that they have a common set of N

orthonormal eigenvectors {4] such that:

MIKd =002

(3.8)
M™ID® =&(220) ,

where @ = [¢'V), 9@ ... ¢ ] denotes the modeshape matrix whose columns are the

eigenvectors of M~ 1K and M~1D. Also
Wy Q $1 0
0 Wy 0 N

where the w, and ¢ are the modal frequencies and modal damping factors, respectively.
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Since ® gives an orthoncrmal basis for R¥ with respect to the innerproduct defined

in Eq. 3.5,
PTMP=1 . (3.7)
Premultiplying Eq. 3.6 by ®7 and using Eq.3.7:

$TK® =07 and STDO®=2Z0 . (3.8)

Since the eigenvectors ¢{') are a basis for the N-dimensional space RY, Z can be written

a8
z(t) = £(t) vz € RY
N (3.9)
_ r=1
where £ is the vector of coordinates of z with respect to the basis of eigenvectors.
Substituting Eq. 3.9 into Eq.3.4:
M@E+DPE+KPE=-ME(t) L . (3.10)
Premultiplying Eq.3.10 by ®T and using Eqs. 3.7 and 3.8:
E+22Qé+0% = -9TME(1) L

=-gi) ,
where g is the vector of modal participation factors whose magnitude in general depends
on the normalization used for @, such as Eq.3.7. Hence it i3 useful to express Eqgs. 3.9 and
3.11 in forms which are invariant with respect to any particular normalization introduced
for ®.
Equation 3.9 can also be written as:

N

()= =7() (3.12)

r=1

where a,'im (t)= ¢§r) & (t) (3.13)

and is the contribution from the r-th mode to the response at degree-of-freedom i.

From Eqgs. 3.11 and 3.13, the following equation can be deduced:

$§r) + 25'1- Wy z}r) + w? :gr) = *—pgr) z(t) s (3]_4)
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where pir) = ¢§') ay, is called the effective participation factor for the r-th mode at the i-th
degree-of-freedom, and it is independent of the normalization chosen for the ¢

The corresponding initial conditions for Eq.3.14 are:

N
2 (8) = ¢ & (8) = 81 3 6 myp zi (t)

i k=1

. (3.15)
k=1
Summary:
i?) + 26 we a':i(') + w? zgr’ = —pgrl #(t)
with the initial conditions 27 (t,) and 7 (4); (3.16)
N
and zi(t) = Z (1) .

r=1

Hence the parameters of the modal model to be estimated are:

{@r, e, PP, 27 (5), 27 () : 4,7 =1,2,+--,N}.

3.4 Single-Input Single-Output (SI-SO) System Identification
Technique

A single-input single-output system identification technique may be used to estimate
the modal parameters when the input and output consist only of cne component of ground
motion and a parallel component of response at some point in the structure, respectively.

The parameters to be estimated are the modal parameters:
i(r) — wgr)’ 0:(;), 0:(;)’ 3‘(:), 05.:) ]T r=1,2,---,R
where each modal contribution, x{*) (), is governed by the standard equation of motion:

56 4 0f7) 20 4 p{") 20 = —9{7) 2(2)

with the initial conditions (3.17)

) (t,) =0 and 0 (t,) = 6"
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Comparing Eqgs. 3.16 and 3.17:
Bgr) = “’? ’ eét) = 2¢; W 9‘.(‘:) = Pi(r) )

and R is the number of dominant modes in the structure contributing at the point of
consideration.

Let the measured output history be:
1= (K1 z0,Kz v0,Ks a0 |T (3.18)

over some time interval [t, , t], then any combination of displacement, velocity or accelera-
tion records of one component of the structural response at a point can be used by choosing
each K; as either 1 or 0.

The corresponding model output is:
m=[K z,Kz4,Ka32)T | (3.19)

where the response at each floor is modelled as a superposition of the contributions of a
small number, R, of classical modes so that:

R

z(t; 4) =Y =0 (5 40)
r=1

and ‘ (3.20)
8= (0,40, gV
From Eq. 3.1, the output-error is:
£(t; 9) =K (z0 — z), Ko (vo — £), Ka (a0 — £)]T . (3.21)
The m_easure-of-ﬁt can be obtained by substituting Eq. 3.21 into Eq.3.2:

te te te
J(‘e’) = K]_V]_ (20 - 2)2 dt -+ KQVg f (00 - 3)2 dt -+ K3V3 / (ao b 1.:)2 dt s
tg ts tl

where (3.22)

te ‘. t!
=1/ [ g, V2=1/[ o dt, va=1/f adt
ty t, ty

The diagonal weighting matrix V has been chosen to normalize each integral in Eq.3.22 in

order to give a meaningful comparison between the optimal values of J for different time
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segments and for different response quantities. The optimal estimates of the parameters
are obtained by minimizing the above measure-of-fit by the modal minimization method.
This method, which is explained in detail by Beck in his thesis dissertation [2|, is given

very briefly in the following section.

3.4.1 Moda} Minimization Method

The method consists of three parts:

(a) Modal Sweeps

(b) Single-Mode Minimizations

(c) One-Dimensional Minimizations
(a) Modal Sweeps

Initial estimates are made for § = | -Q.( V.63 ... g®)|T Then the following sequence
of minimizations, which is called a modal sweep, is applied:

A(1) min
TELY ™) = g I@DL%,7)

~(1) 42) (R) min (1) () (R)
I8 .., 8 J(g,8@ ... 08

~(1) ~(2) ~(R) min ~(1} ~{2) ~(R—-1) ~(R}
J(fg‘ 1,50., !""2, ) = o(R) J(ﬁ, ,f_, :"':,Q, si )

Each of the above steps involves minimization at the modal level and is called a single-mede

minimization. Successive sweeps are performed until the change in J is insignificant.

(b) Single-Mode Minimizations
The minimization of J(8) in Eq.3.22 with respect to g(') is equivalent to minimizing

the function:

te te

I (4 =K, v, / (287 - )2 dt + KaVa / (w8 = 3))2 at
ts ty

g (3.24)

+ KaVs / (a) - £()3 dt
ty

R R
where z{()r)==0_zx(s)’ )—vo—-Zz , a(()r)=ao—z 2}

=1 a=.'l. s=1

#r #z
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Let s,(:), k = 3,4,5, satisfy the following differential equations:

DOl = —3(t) s (t)=0 &) (t,) =0
D s =0 s (t)=1 &7 (t,)=0
D gl = s (k) =0 & (t,) =1
where D) = ;; + 64 é—i; +ol7 (3.25)

Comparing Eq. 3.25 with Eq. 3.17 yields:

5
200 (4 80 =3 o7l (1 607, 87) . (3.26)
k=3

For a fixed EY) and 6", the minimum of J,( f}')) is given by:

a3l

Frcie =0 k=3,45 . (3.21)
Applying the stationarity condition in Eq. 3.27 to Eq. 3.24 and using Eq. 3.26 gives a linear

system of equations:

=(z)

HOF =@ | (3.28)

A(r

~(r)
whose solutions, § are the optimal estimates
37 = (W, 8P, A

for a given 0&') and Bg), and where

te te te
Y =KV, ft s 8l dt + K;Va j; s 8 dt + KaVs ft 575 4
and
te te te
M =KV, / szl dt + KyV, f ol dt + KeVa f 5 ol dt
€, ty t,
Hence the original problem of minimizing J.{ ﬁ'(')) with respect to i“) reduces to finding

the minimum of J; where

(1) r
36, 6) = 3,00, 00,8) = - ,, 369, 60,8%) . (3.29)

2’~

This is achieved by applying a series of one-dimensional minimizations of J} alternately

with respect to 8" and 0%,
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(¢) One-Dimensional Minimizations

J? is mininuzed alternately with respect to 9§‘) and 8;') as shown in Fig.3.3. This
process is continued until a consecutive pair of one-dimensional minimizations results in a
fractional decrease in J} of less than a specified tolerance. This technique for minimizing J2
with respect to BY) and 9(;) turns out to be equivalent to the method of steepest descent,
after the first step, as seen in Fig. 3.3, but with the advantage that the gradients of J¥ with
respect to ﬂgr) and B,E,r) need not be computed.

To evaluate J? in Eq.3.29, first the linear differential equations in 3.25 are solved for
the ‘sensitivity coefficients’ using the transition-matrix method of Nigam and Jennings [5].
This method gives exact solutions at each time step for a linear variation of the ground
accelerations Z(t) within each time step. Equation 3.28 is then solved using Gaussian
elimination for E(' and the contribution of the r-th mode to the response is calculated
from Eq.3.26. The value of J; can then be obtained from Eq. 3.24 using Simpson’s rule for

numerical integration.

3.5 A SI-SO Analysis of Pseudo-Dynamic Elastic Test Data

Using the single-input single-output structural identification method explained in the
previous section, the data from the Phase II ‘elastic’ test at Tsukuba, Japan, described in
Chapter 2, are analyzed. The principal objectives are:

(a) to examine the validity of the pseudo-dynamic method, within the elastic range

of the structure,

(b) to ascertain how well a linear model with classical normal modes is capable of

reproducing the measured response, and
(c) to determine what damping levels were operative during the elastic test.

As explained in Section 2.3, the higher modes in multi-degree-of-freedom systems are
susceptible to becoming unstable due to the cumulative effects of feedback of experimental
errors in the computer control system. This led to artificial suppression during the test of
the higher structural modes beyond the first three. This was dore by effectively adding
large viscous damping factors of 90% of critical to the computer model used to calculate
the experimental displacements to be imposed on the structure during the test. However,
the Fourier amplitude spectrum of the Taft record in Fig.2.12 shows that these higher
modes would not be significantly excited by the earthquake accelerations since their natural

frequencies lie above 10 Hz where the ground motions are negligibly small and, in addition,
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these modes have relatively small participation factors. It should be noted that since only
three modes can be determined from the test data, it is not possible to use these data
for an inverse calculation to compute the stiffness and damping matrices uniquely for a
six-degree-of-freedom model corresponding to the horizontal motions of each floor, unless

a chain model is assumed.

3.5.1 Identification Results: Two-Mode Models

The results of applying the SI-SO system identification procedure independently to
each of the displacement histories measured at each floor level are given in Table 3.1. In
this application, the model response is computed from a modal model consisting of just the
first two modes. It is seen from Table 3.1 that the period and damping for the fundamental
mode are estimated as 0.553 sec and 1.2% of critical, respectively, and these estimates -
are remarkably consistent from floor to floor. This is again observed for the period of
the second mode, which is estimated as 0.191 sec. However, the damping of the second
mode shows some scatter about a mean value of 2.1% of critical damping. This scatter is
probably due to the fact that the response of a mode is much less sensitive to changes in
damping than to changes in its period, so that the damping is more difficult to estimate
reliably, again confirming the observation made by Beck and Jennings [3]. The above
difficuity is accentuated by a low signa.l-to-noiée ratio when the second mode is estimated
from the displacement records, since this mode makes a relatively small contribution to the
displacement. Overall, the estimates from each floor and the small values of J, in Table
3.1, suggest that the structural displacement is approximated well by two classical modes
of vibration, each giving structural motions in which all the floors move in phase.

The estimates in Table 3.2 are obtained by the application of SI-SO technique to the
pseudo-velocity record at each floor, again using a two-mode model. The pseudo-velocity
is the velocity calculated by the on-line computer (Fig.2.2) using the central difference
method and displacement history. Since the second mode has a relatively stronger signal
in the velocity, the damping can be estimated more reliably in this case. Hence, much less
variation in the damping estimates is observed for the second mode in Table 3.2 compared
with Table 3.1. The estimates for the periods and dampings in Table 3.2 are again consistent
from floor to floor and the values of J are small, showing the validity of an approximation
of the pseudo-velocity by two classical modes of vibration.

Comparing Tables 3.1 and 3.2, it is seen that the estimates of the periods from the
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two sources, measured displacements and pseudo-velocities, are identical, to within the
precision specified in the tables, for both modes. The damping and effective participation
factors for the fundamental mode are also identical, but there are small differences in the
corresponding values for the second mode in Tables 3.1 and 3.2. Since the second-mode
signal is stronger in the pseudo-velocities than in the measured displacements, a signal-to-
noise argument suggests that the effective participation factors in Table 3.2 are the more
reliable estimates,

The small values of the measure-of-fit J shown in Tables 3.1 and 3.2 indicate that a
two-mode model is capable of reproducing the test displacement and velocity responses
very well. This is again demonstrated by the time-history comparisons in Figs.3.4 and
3.5. Figure 3.4 compares the velocities of the test structure and the optimal two-mode
model at the roof, mid-height (Hoor 4) and floor 2 using the parameters estimated from the
pseudo-velocity records (Table 3.2). The corresponding displacements are also compared
in Fig.3.5. Note the larger J-value for floor 2 in Table 3.2. This suggests high frequency
components in the pseudo-velocity record at this floor which require a higher mode model

approximation. A three-mode model is now examined.

3.5.2 Identification Results: Three-Mode Models

In this section, the SI-SO system identification method is applied to the pseudo-velocity
and pseudo-acceleration responses indépendenhly, uging a linear model consisting of three
modes. The results are shown in Tables 3.3 and 3.4, respectively. The estimates for the
first two modes are again consistent from floor to floor and they are essentially the same
as the estimates for the two-mode model in Table 3.2. The estimates of the third-mode
parameters from both' the pseudo-velocity (Table 3.3) and pseudo-acceleration (Table 3.4)
responses are also very nearly identical. The values of measure-of-fit J in Table 3.3 are
smaller than the corresponding values in Table 3.2, where the pseudo-velocity response was
used to estimate the parameters in both cases, as expected.

However, the surprising results in Tables 3.3 and 3.4 are:

(a) the third-mode damping is negative, and

(b) the measure-of-fit J is relatively large for the optimal three-mode model which
would be expected to be capable of giving a very good match of the pseudo-
accelerations since the higher modes beyond the first three were suppressed in the
test (Table 3.4).
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The response time-history comparisons from the test and the optimal three-mode
model obtained from the pseudo-velocity records are shown in Figs. 3.6 and 3.7. The veloc-
ities of the test structure and the three-mode model are compared at the roof, mid-height
and floor 2 in Fig. 3.6 and the corresponding displacement comparisons are given in Fig. 3.7.
The roof bseudo—acceleration from the test and that calculated from the three-mode model
identified from the roof pseudo-acceleration record are plotted in Fig. 3.8 for successive six-
second segments at a larger time scale so that the nature of the high-frequency differences
is easier to observe.

An examination of the Fourier amplitude spectrum of the roof pseudo-acceleration
record (Fig. 3.9) shows that the ‘third-mode’ signal near a frequency of 10 Hz is much too
large relative to the first- and second-mode signals. This anomaly is also demonstrated
in Fig.3.10 where the Fourier amplitude spectra for the roof pseudo-accelerations and the
accelerations of the three-mode model identified from the pseudo-acceleration record at the
roof are compared. Both spectra agree very well over a {frequency range of the first two
modes, but the third mode from the system identification procedure underestimates the
apparent resonant amplitude from the test, despite the fact that the system identification
procedure has tried to make the third-mode response of the model larger by selecting a
negative damping,

It is concluded that this strong signal around 10 Hz is not entirely due to the excitation
of the third mode by the Taft acceleration record but is partly due to the cumulative effect
of feedback of control and measurement errors during the test, as discussed in Chapter 2.
This unstable growth in the third mode produced the apparent negative damping when
the system identification procedure tried to account for the strong signal solely from the
earthquake excitation.

The equation of motion used to control the test structure is:
Miz+Cz+R(z)=-Mit)1 , (3.30)

where C represents the nominal damping used in the on-line computer algorithm. But
the linear model used in the system identification procedure can be represented by the
equation:

Mi + D + Kz = ~Mi(t) 1 . (3.31)

If the cumulative effect of feedback of the measurement and control ervors in the pseudo-
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dynamic test is approximated by an equivalent viscous damping, then D in Eq. 3.31 repre-
sents the total viscous damping which is the sum of the viscous damping from the computer
algorithm (C), the structural damping due to some hysteretic action and the apparent
damping due to feedback of experimental errors.

From Table 3.5, the algorithmic dampings used in the pseudo-dynamic test for the
first three modes are 0.35%, 0.35% and 2.00%, respectively. Hence, a negative damping
of -0.05% for the third mode from the linear model of the system identification method
suggests that the experimental errors introduced an equivalent negative viscous damping
in the third mode which is greater than 2% in magnitude. This phenomenon of adding
energy into the third mode explains why the third-mode signal appears very strong in the

Fourier amplitude spectrum in Fig.3.9.

3.5.3 Conclusiona

(a) For similar amplitudes to those in the elastic test (peak relative acceleration and
displacement of 30% g and 1.4 cm respectively at the roof), a linear model based on just
two classical modes should give an excellent approximation' to the real dynamic response
of the structure.

(b) At these amplitude levels, the overall equivalent viscous damping factors for the
first two modes are 1.2% and 2.1% of critical. The damping of the fundamental mode is
consistent with the value of 1.25% reported for a pseudo-dynamic free-vibration test per-
formed after the elastic test [8]. Part of the damping was artificially introduced as numerical
viscous damping in the computer model used to produce- the experimental displacerents
(Table 3.5). The cumulative effect of feedback of control and measurement errors also
contributed some damping.

Assuming the latter damping is small for the lower modes, especially the first two
modes, the energy dissipated by the structure itself produced equivalent viscous damping
factors of about 0.9% and 1.8%, respectively, for the first and second modes. These low
values of damping, compared with the values of 3% to 8% from the earthquake response of
tall buildings in the field [9], are most likely due to the absence of both energy dissipation by
nonstructural components and by radiation damping, the latter because of the quasi-static
nature of the test.

(c) The feedback of control and measurement errors into the computer model used

to produce the experimental displacements in the elastic test produced a cumulative error
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of large amplitude in the pseudo-acceleration at the frequency of the third mode. This
addition of energy into the test structure is further demonstrated by an equivalent negative
viscous damping of at least 2% estimated for the feedback effect in the third mode. However,
these errors have an insignificant effect on the displacements and pseudo-velocities, where
the high-frequency content is greatly reduced. Chapter 4 deals with the estimation of the
actual structural damping and the effect of the experimental errors on the response of the

test structure.
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Mode 1 Mode 2
Floor Effective Effective J
Period | Damping | Participation ;| Period | Damping | Participation | (%)
. (aec) {%) Factor (sec) (%) Factor
Roof 0.553 1.2 1.39 0.191 2.3 -0.57 1.2
6 0.553 1.2 1.22 0.191 2.6 -0.25 09.57
b 0.553 1.2 1.00 0.192 1.6 0.13 0.51
4 0.553 1.2 0.77 0.191 1.9 0.39 0.35
3 0.553 1.2 0.53 0.191 2.0 0.47 0.48
2 0.553 1.2 0.30 0191 | 21 0.37 1.3
Table 3.1 Modal Parameters Estimated from the Measured Displacement Records Using a
Two-Mode Model and the SI-SO Technique [6]
Mode 1 Mode 2
Floor Effective Effective J
Period | Damping | Participation | Period { Damping | Participation | (%)
(sec) {%) Factor (zee) (%) Factor
Roof 0.553 1.2 1.39 0.191 2.2 -0.53 1.3
6 0.558 1.2 1.22 0.191 2.2 -0.21 0.34
5 0.553 1.2 1.00 0.191 2.0 0.16 2.8
4 0.553 1.2 0.77 0.191 2.1 0.42 0.93
3 0.553 1.2 0.53 0.191 21 0.48 4.3
2 0.553 1.2 0.30 0.191 2.1 0.36 18.7

Table 8.2 Modal Parameters Eatimnated from the Pseudo-Velocity Records Using a Two-Mode
Model and the SI-SO Technique |6}
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Mode 1 Mode 2 Mode 3 - 1

Floor T < P iy ¢ o} T < B J
(sec) | (%) (see) | (%) (sec) | (%) (%)
Roof  0.553 1.2 1.39 0.191 2.2 -0.53 0.108 -0.05 0.03 0.75
8 0.553 1.2 1.22 0.191 2.2 -0.21 0.108 -0.04 |} -0.01 0.24

5 0.553 1.2 1.00 0.191 2.0 0.16 0.106 «0.06 | -0.05 14
4 0.553 1.2 0.77 0.191 2.1 0.42 0.108 -0.06 | -0.02 0.62

3 0.553 1.2 0.53 0.191 2.1 0.47 0.108 -0.05 0.02 2.4

2 0.553 1.2 0.30 0.191 2.1 0.36 0.108 -0.05 0.04 9.5

Table 3.3 Modal Parameters Estimated from the Pseudo-Velocity Records Using a Three-Mode
Model and the SI-SO Technique [7)

Mode 1 Mode 2 Mode 3

Floor T ¢ o3 7 < 33 T 3 P J
(sec) | (%) (sec) | (%) (sec) | (%) (%)
Roof 0.553 1.2 1.39 0.191 2.2 -0.53 0.108 -0.05 0.03 11.2
6 0.553 1.2 1.23 0.191 2.2 |-021 0.108 -0.03 | -0.01 5.0
5 0.553 13 1.01 0.191 2.2 0.17 0.106 -0.06 | -0.04 21.0
4 0.553 1.3 0.78 0.191 2.1 0.43 0.108 -0.05 | -0.02 8.0
3 0.553 1.2 0.53 0.191 2.1 0.48 0.108 -0.04 0.02 19.6
2 0.553 1.2 0.30 0.191 2.1 0.36 0.106 | -0.05 0.04 35.8

Table 3.4 Modal Parameters Estimated from the Pseudo-Acceleration Records Using a
Three-Mode Model and the SI-SO Technique (7]
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Critical Damping Ratio (%)

Test Mode Comments
1 2 3 4 5 )

Preliminary Free
and Forced 0354 | 0311 — — — — | Calculated from Test Response
Vibration Tests
Elastic Selection Based on Vibration
Pseudo-Dynamic | 0.35 0.35 | 2.00 | 90.0 { 90.0 | 90.0 | Test Values and Stability
Test Considerations

Table 3.6 Damping Values for Tests in Phase II [8]
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Fig. 3.1 Block Diagram Illustrating the System Identification Methed (1]
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Fig. 3.3 Schematic Diagram of Contours of J; (9(1') , 04"} Showing a Path of
Convergence (2]
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CHAPTER 4

SYSTEM IDENTIFICATION APPLIED TO THE ELASTIC
PSEUDO-DYNAMIC TEST DATA
—TREATING FEEDBACK OF EXPERIMENTAL ERRORS

4.1 Introduction

As discussed in the previous chapter, a straightforward application of a single-input
single-output system identification technique to estimate the modal properties of the full-
scale six-story steel structure tested within its elastic range revealed negative damping for
the_third mode. This was attributed to the cumulative effect of feedback of control and
measurement errors during the pseudo-dynamic testing. These experimental errors were
analyzed in Chapter 2 and were shown to act as excitations to the structure in addition to
the ground motion.

In this chapter, these additional excitations are treated explicitly. For the purpose of
system identification, this requires a multiple-input multiple-output technique. An output-
error technique, namely MODE-ID [1,2], waa used, which is applicable to any number of
simultaneous input excitations and structural response measurements used in conjunction
with a linear model. By accounting fbr the cumulative effect of the feedback of the ex-
perimental errors during the estimation of the modal parameters of the structure from the
‘elastic’ test data, it is possible to estimate the actual structural damping effective during
the test and also the apparent equivalent viscous damping produced by the feedback errors.
The identification results from the full-scale structural test data are in good agreement with

the shaking table test results of a 0.3 scale model of the same prototype structure.

4.2 Modification of the Linear Structural Model
4.2.1 Analytical Model

It was shown in Chapter 2 that the cumulative displacement error z° is the response of
the structure to an excitation [ —Kz*°(¢) — R*™(t)] (Eq. 2.12), while the ideal (error-free)
displacement z* is the response of the structure to a ground excitation force [-Mi(t) 1]

(Eq.2.11). The total response z being the sum of both z* and z° (Eq.2.10) suggests using
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the following differential equation as a structural model:
Mz + Ez + Kz = ~MZ(t) 1 - Kz*(t) - R*™(¢) , (4.1)

where E is the equivalent viscous damping in the model.
If the force measurement errors are negligible in comparison with the force effects of

displacement control errors as expected for a stiff structure, that is,

IR™®1 < 1Kol (42)
where || - || is the Euclidean vector norm, then the structural model in Eq.4.1 can be
rewritten as:

Mz + Ez + Kz = ~MZ(t) 1 - Kz*(t) . (4.3)

If it is assumed, in addition, that the measurement errors in the displacements, z°™,

are much smaller than the displacement control errors, z°°, that is,

Izm®l < lz=@l (4.4)

then from Eq. 2.8, z°° can be calculated from known quantities, the measured and calculated
displacements, as:
zo(t)=z"(t) - z(t) . (4.5)
The time-histories of these displacement control errors during the Phase II elastic test are
plotted in Fig.4.1. At the roof, the peak displacement errors are about 1% of the peak
displacements and also the errors tend to cscillate at the fundamental frequency of the
structure.
For the reasons discussed in Section 3.3.1, a linear model based on the dominant modes
in the records of the response, and not on the stiffness and damping matrices as in Eq. 4.3,

is preferred. This modal formulation is explained in the following section.

4.2.2 Modal Model

If the damping matrix E in Eq. 4.3 is assumed to be symmetric and also classical, then
arguments similar to the ones in Section 3.3.2 will ensure that M~'K and M™'E hav