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Abstract

This thesis examines the response of stick-slip, or frictional, systems to har

monic and random excitation. Two frictional models are considered: constant

slip force, or Coulomb, friction, and displacement dependent slip force, used

to model a caster, or pivoting wheel. The response to harmonic excitation of

systems exhibiting both frictional models is determined using the method of

slowly varying parameters. Changes in the response amplitude of both systems

caused by the addition of a linear centering mechanism are also examined.

The response of the system with displacement dependent slip force is ex

amined under Gaussian mean zero white noise excitation using the generalized

equivalent linearization method. It is shown that a lower bound is obtained

from the Coulomb friction system's response.

For filtered random excitation, linearization methods are shown to pre

dict erroneous displacement trends for the Coulomb system when the input

has no spectral content at zero frequency. When the excitation is modeled as a

Poisson pulse process, an approximate method exhibiting the proper displace

ment trends can be constructed. The method is shown to be accurate over a

broad range of input parameters if overlaps in the input pulses are considered.

A set of excitation parameters consistent with seismic events is then used to

estimate final rIDS displacements as a function of coefficient of friction.
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Chapter 1

Introduction

A problem that has been of interest for some time, but that is receiving in

creased attention recently, is the response of freestanding objects to earthquake

motions. When the center of gravity of these objects is not high compared with

their width, the predominant mode of motion is sliding, with the forces restrict

ing the motion being frictional. The size of the objects extends from the small,

such as merchandise on a market shelf, through the moderate, which includes

data-processing, hospital and industrial equipment, to the large, with build

ings on base-isolation foundations or soft first stories as prime examples. The

damage or loss of these systems, in addition to endangering human life, can

have large economic consequences. It has been estimated that the loss of a ma

jor banking institution's computing facilities could adversely affect the world

economy. Additionally, lifeline systems in hospitals and some utilities could

be imperilled if proper precautions are not taken. Thus, it is important that

the behavior of these systems during seismic events be understood, and that

estimates of the magnitudes of the motions be obtained.

The advantages of leaving objects freestanding are twofold. First, in

applications such as computer or hospital equipment, mobility is important,

and anchoring these systems makes their use impractical. A second benefit,
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due to the frictional interface between the object and the seismic excitation, is

that the largest acceleration to which the system is subjected is the frictional

slip level. It is this feature that is exploited in the base-isolation of some

structures in an attempt to minimize damage. If the seismic accelerations

are below the frictional threshold, the system "sticks" and there is no relative

motion between the system and the surface on whiCh it rests. For higher forces,

the system slips, and the maximum force to which it is subjected is the frictional

one. This slippage produces relative displacement between the object and its

support, introducing a source of potential damage if provisions are not made

to account for the motion.

The damage can take on various forms, depending on the object involved.

In supermarkets and warehouses where the inventory is kept on shelves, sub

stantial losses occur from breakage of containers sliding off the shelving. Del

icate hospital equipment can injure patients or be damaged from rolling or

sliding into stationary objects, possibly compromising the effectiveness of the

medical facilities during a time of great need. Computer equipment may crush

operators or be destroyed if provisions are not made for seismically induced

motion. Even large machinery that is often anchored, such as machine tools,

respond principally by sliding when their restraints fail. If sufficient space is not

left between a base-isolated building and its abutment, the collision of these

during an earthquake could lead to structural damage and injury. Thus, to

minimize the risk from sliding objects, it is important to estimate their seismic

motions.

Previous work on sliding systems [1,2,3,4,5,61 has concentrated on sys

tems restrained by Coulomb friction, where the frictional force is dependent
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only on the sign of the system's relative velocity. However, many freestanding

objects have a frictional force, which is dependent on the magnitude of the

relative motion. Specifically, a system mounted on casters, or swiveling wheels,

such as those on which hospital and computer equipment are routinely set,

exhibits such a behavior. To determine the seismic response ofthese systems,

a model for the frictional force-relative displacement relationship is developed

herein and examined under both deterministic and random excitation. This

response is compared to that obtained from the constant frictional force sys

tem, and it is shown that the constant force system provides a lower bound to

the caster-mounted system's response for various types of excitation.

In Chapter 2, both the constant force and the displacement-dependent

frictional systems' response to deterministic, harmonic excitation is examined.

The effect of centering mechanisms, intended to reduce the amplitude of the

motions, is also studied in this chapter and is shown to actually increase the

displacements in many cases. Additionally, the constant frictional force, or

Coulomb, system's behavior is a lower bound to the caster-mounted response

for configurations both with and without centering devices.

The response of the Coulomb and caster-mounted systems to random

excitation with a white-noise spectrum is examined in Chapter 3. Although the

white noise excitation is not representative of a typical earthquake, many of the

existing methods in the theory of random vibrations are most easily applied

when a white spectrum is used. Previous studies on the Coulomb system have

used this excitation [1,2,3,6], and in this thesis the work is extended to cover

systems with decreasing frictional force. The Coulomb system is again shown

to be a lower bound to the response of the caster-mounted system by means of
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the generalized equivalent linearization.

A study of the response to more general excitation spectra is undertaken

in the fourth chapter, where filtered stationary excitation is taken as an input.

The equivalent linearization method is used and is shown by simulation to be

accurate in predicting velocity response for the majority of the cases considered,

but the displacement response trends computed by linearization are erroneous

when the input spectrum has no content at zero frequency. It is also shown

that the greatest sensitivity in the velocity response is to the spectral content

at low frequencies. Consequently, a model of the seismic spectrum should be

accurate in this range. Unfortunately, stationary seismic spectra with correct

large-time velocity and displacement behavior have negligible content at zero

frequency. Thus, the equivalent linearization method cannot be used to predict

displacements for realistic seismic spectra. Previous equivalent linearization

studies of the response of a Coulomb block to filtered excitation [41 used the

Kanai-Tajimi input spectrum [7,81, which has a non-zero component at zero

frequency, thus avoiding the an error in the displacement trend. However, for

the reasons outlined previously, this spectrum does not correctly characterize

the seismic input in the case of stick-slip systems.

To correctly predict the displacement response of the Coulomb system

excited by spectra with no zero frequency content, a different method is de

veloped. In Chapter 5, a Poisson process model of the input is used, and

the overall mean-squared response is computed using a superposition of the re

sponses to the individual pulses. This procedure is similar to the one developed

by Lin [5] to estimate the mean response for a block on an inclined plane. If the

overlapping of pulses in the input process is included in the analysis, then the
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agreement between the Poisson process method and simulations is improved.

Final rms displacements are computed for parameters representative of seis

mic events, and displayed as a function of the coefficient of friction. Lower

and upper response bounds for a caster-mounted system are obtained from the

Coulomb system and frictionless systems, respectively.
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Chapter 2

Response of Stick-Slip Systems to Harmonic

Excitation

2.1 Introduction

To understand some features of the stick-slip systems that play a role in their

response to random excitation, these systems are first studied under harmonic

excitation. Two types of stick-slip systems are considered: a constant slip

force system, also known as a Coulomb friction system, and a system whose

resisting force is dependent on its relative displacement. It is shown that the

Coulomb system, for which the analysis is algebraically more straightforward,

can be used, through a judicious choice of parameters, as both a lower and

an upper bound to the response of the latter system. The effect of centering

mechanisms such as springs or caster cups is investigated and shown in many

cases to increase, rather than decrease, the amplitude of the system response.

The technique used in this investigation is the method of slowly varying

parameters. In addition to predicting approximate values for the amplitude

and phase of the periodic response, the method presents information about

the stability of these solutions. A derivation of the method is presented in

Section 2.2, and is used in the following section to determine response estimates
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for the various systems.

2.2 The Method of Slowly Varying Parameters

The method of slowly varying parameters, also known as the Krylov-Bogoliubov

method, is a widely used averaging method for determining approximate peri

odic solutions to nonlinear equations with harmonic excitation [9, pp.165-168]

[10]. As the notation to be used in this chapter differs from that in the refer

ences, a brief derivation of the method is presented.

The general second-order equation of motion with harmonic input is

given by

x+ f(x, x) = Bcos wt, (2.1)

where dots denote derivatives with respect to time. The periodic solution of

interest is of the form

x(t) = A(t) cos 8(t) 8(t) = wt + </>(t) , (2.2)

where A(t) and </>(t) are the amplitude and phase, respectively. If f(x, x) is

linear and time invariant, then the solution is exact once the initial conditions

decay, and A(t) and </>(t) are constants. For nonlinear f(x, x), an approximate

solution is obtained for A(t) and </>(t) being slowly varying functions of time.

Differentiating x(t) with respect to time results in

x{t) = -w4 sin 9 + Acos 9 - AJ sin 9. (2.3)

At this point, an auxiliary equation is added, akin to that used in the method

of variation of parameters for linear differential equations. It is

Acos8 - A~sin8 = o. (2.4)
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Thus,

x - -wAsinO,

!i; - -w2AcosO-w[AsinO+A~cosOj.

(2.5)

(2.6)

Substituting these expressions for x, X, and Ii into the equation of motion (2.1),

results in

-w2A cos 0 -w[Asin 0+ A~cosOJ + f(A cos 0, -wAsinO) = B cos(O- 4». (2.7)

Multiplication of (2.7) by sinO, (2.4) by wcosO, and subtraction yields

- w2A cos 0 sin 0 - wA. + f(-) sin 0 == B cos(0 - 4» sin 0, (2.8)

while multiplying (2.7) by cosO, (2.4) by wsinO and adding results in

- w2A cos2 0 - wA~ + f(·) cos 0 = B cos(O - 4» cos 0. (2.9)

When the previous equations are integrated over one cycle of the input the

resulting formulae represent the average value and change in value for both the

amplitude and phase, if these vary slowly over a cycle. These are

-2wA + S(A) - -B sin 4>,

-2wA~ - w2A + C(A) - B cos <P,

where

(2.10)

(2.11)

S(A)
1 fo21r

(2.12)- - j(A' cos'O, -wA sin 0) sin 0 dO,
11" 0

G(A) 1 l21r- - f(A cos 0, -wA sinO) cos 0 dO. (2.13)
11" 0

S(A) is the average force out of phase with the response, while C(A) is the

average in-phase portion.
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The approximate steady-state periodic solutions are obtained by setting

A and J to zero. Letting the steady-state values be Ao and <Po, respectively,

Equations (2.10) and (2.11) become

S(Ao) - -B sin <Po, (2.14)

(2.15)

By squaring and adding the previous equations the following expression in the

amplitude variable Ao is obtained:

An ~quation for the phase

<Po =arctan [-W2~:~~(Ao)]

is found by dividing Equation (2.14) by (2.15).

(2.16)

(2.17)

From a perturbation expansion on (2.10) it can be shown that there are

two conditions for the stability of the approximate solutions. These are

o <

o ~

as(A) I S(Ao)
aA + A 'Ao 0

[
- 2 C(Ao)] [_ 2 aC(A) I] S(Ao) as(A) I

w + A W + aA + A aA .
o Au 0 Au

(2.18)

(2.19)

The equality in Equation (2.19) corresponds to the condition that d~<;) = 0,

the point of vertical tangency of the curve A(w). For this reason, this line is

known as the "locus of vertical tangencies."
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2.3 Application of Slowly Varying Parameters to Stick

Slip Systems

Two stick-slip systems are examined in this section: a constant slip force sys

tem, and a system whose slip force is dependent on its position. The former

is important because it is commonly used in models of nonlinear systems. The

latter is examined since many physical devices, such as a caster, or pivoting

wheel, can be shown to exhibit a displacement dependence in the slip force.

In fact, a model of a caster-mounted system is used in this analysis with the

expectation that many of the features illustrated by this particular model are

typical of systems with varying slip.

The use of centering devices has been proposed for systems mounted on

casters (11] in the expectation that the magnitude of the motions is reduced.

The effect of these devices is modeled, to first order, as a linear restoring force

and is examined in connection with the response of both the constant and

non-constant slip force systems.

2.3.1 Systems Without Centering Devices

2.3.1.1 Constant Slip Force SysteIns

As was mentioned in the introduction, constant slip force systems, also known

as Coulomb systems or Coulomb elements because of the frictional resisting

force, are used in various models of physical systems. In some applications,

a rigid mass with a Coulomb friction interface has been used as a model for

studying the response of buildings with "soft first stories," or base isolation

systems, to seismic forces [2,3,4]. It can be equally well employedto examine the
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behavior of freestanding rigid equipment such as computer cabinets or hospital

equipment during an earthquake. Elements exhibiting Coulomb friction are

also used as components in more complex systems such as bilinear systems [12],

generalized yielding systems [13], and even deteriorating systems [14]. It is felt

that the insights gained through this work are useful in both sets of applications.

When the relative velocity is non-zero, the" resisting force of the Coulomb

element is dependent only on the sense of the relative velocity, with an ampli

tude equal to the so-called "slip level." For zero relative velocity, the force

equilibrates any applied force whose magnitude is less than the slip level; for

larger applied forces, the element slips and the first statement applies. In the

" notation of Equation (2.1) in the previous subsection, the nonlinear system

function is given by

f(x) = asgn(x), (2.20)

where a = p,g, p, is the coefficient of friction, g is the gravitational acceleration,

and

1
+1, x> OJ

sgn(x) = -1, ~ < OJ (2.21)

0, x = O.

The functions S(A) and C(A) are found by substituting the above ex-

pression for f(x) into (2.12) and (2.13), resulting in

S(A) -
4a

(2.22)

C(A) = o. (2.23)

Since C(A) = 0, and S(A) is negative, the resisting forces lag the response

by 900
• The approximate amplitude for the periodic response is obtained by
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substituting S(A) and C(A) into (2.16), yielding

(
4a)2 4A2 _ B 2+w 0 - •

11"
(2.24)

Solving this equation to find an explicit expression for frequency in terms of

the other system parameters results in

(2.25)

This function is plotted in Figure 2.1. A dimensionless form of the equation is

not used, as (2.25) is more useful for comparisons with the response of a caster

mounted system. Although in this particular example it is possible to explicitly

determine A(w), for most problems it is difficult to obtain this functional form.

Note that (2.25) indicates that there is no response solution for IB/al < 4/11".

For this range, the only solution admitted by the equations of motion is Ao = O.

An exact solution to the equation of motion would show there is a non-zero

response for 1 < IB/al < 4/11", while slowly varying parameters admits only

the zero solution. This is because fot sufficiently large input, the slip force is

a mean zero square wave with amplitude a. The first term in a Fourier series

expansion of this wave, equal to S(A), has amplitude 4a/1I". Thus, the input
.

harmonic excitation must exceed this level for the system to move.

The amplitude of the absolute ground displacement input to the system

is
B

A=-,
w2 (2.26)

where A is the displacement corresponding to a sinusoidal acceleration with

amplitude B. This expression can be obtained from either of two methods.

The first is by direct calculation from the harmonic acceleration input. The
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Figure 1!.1: Response amplitude as a function of frequency for a Coulomb block.
The different curves correspond to, from left to right, B / a equal to 1.3, 2, 4,
and 8.
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second method, which will prove useful for calculations in later chapters, IS

by allowing the slip level of the Coulomb system to go to zero. When this is

done the mass remains fixed in the absolute coordinate frame, and its relative

displacement is equal in magnitude to the absolute displacement but opposite

in sign. As can be seen by the form of Equation (2.25), this displacement is an

upper bound to the system response. This contrasts with the Coulomb element

with a centering spring that is examined in a later subsection, for which the

relative displacements can exceed the magnitude of the input displacements.

The peak displacements of the system without a spring occur as the frequency

goes to zero, due to the input displacements becoming unbounded in this range.

For large B / a, the relative displacement amplitude of the system approaches

the ground displacement, and the absolute displacement of the system is small

compared to the other displacements. In other words, the system remains

practically stationary, while the ground slides beneath it. For smaller B / a, the

relative displacement is. a fraction of the ground motion.

2.3.1.2 A System With Displacement Dependent Slip Force-The

Caster

To examine the response of systems with varying slip force, a particular system

with this characteristic is investigated in this subsection. The caster-mounted

system is an idealization of objects such as computer cabinets or hospital equip

ment that are routinely mounted on these pivoting wheels. The model consists'

of a rigid mass with a low center of gravity, with weight evenly distributed

among the wheels on which it rests. If a simple frictional law is assumed for

the casters, then, as shown in Appendix A, the system equation for motion



15

along one dimension is given by

x+ asgn(x)sech (:~J = -n(t), (2.27)

where the constants a and f. are determined from the caster properties discussed

in the appendix, and n(t) is the absolute ground acceleration. The problem of

interest in this chapter is the response to the harmonic excitation

- n(t) = Bcoswt.

From (2.27), the system resisting force per unit mass is given by

f(x, x) = asgn(x)sech (:l) .

(2.28)

(2.29)

The functions S(A) and C(A) used by the method of slowly varying parameters

are found by substitution of the resisting force function into (2.12) and (2.13).

This results in

12al (. (A))S(A) - - 7f'A arctan smh 3£

_ _ 1:~£ arcsin (tanh (~)) , (2.30)

where the last substitution of trigonometric and hyperbolic functions has been

performed to avoid numerical overflow in computations. Additionally,

C(A) = o. (2.31)

As in the case of the Coulomb block, the system forces are 900 out of phase with

the response displacement. Replacing (2.30) and (2.31) into (2.16), and solving

to obtain frequency as an explicit function of the steady-state amplitude Ao,

results in

(2.32)
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Ideally, one would prefer to obtain the amplitude as an explicit function of the

frequency, but in this case it appears impossible to do so analytically.

Bounds for the relative displacement are obtained from the previous

equation by observing that

o~ arcsin (tanh (:~)) ~ ~ '. for :~ ~ o.

Using these inequalities in (2.32) results in

B 2
- (~)2 < B2 - [~arcsin (tanh (t-))r < B 2

A5 A5 ~ A5"

(2.33)

(2.34)

By comparing the left~hand side of this expression to Equation (2.25), it is

seen that the lower bound to w(Ao) for a caster isgiven by the response of a

Coulomb block with slip level G. The right-hand bound is the amplitude of the

absolute ground displacement. Since the function w(Ao} is bounded both above

and below by either single valued functions or constants, its inversion Ao(w) is

bounded by the inverses of bounding functions. Thus, the response amplitude

for the caster motion is bounded from below by the response of a Coulomb

system with a slip level G, and bounded above by the amplitude of the absolute

ground displacement. These same limits should apply for any system whose

resisting force is bounded, with velocity dependence of the form sgn(x). For

these systems, the Coulomb slip level should be set to the maximum resisting

force to obtain a lower bound for the response amplitude.

To further understand the function w(Ao}, a non-dimensionalization is

performed on (2.32) to obtain

(3i {( 31)2 [(B)2 (12l ( A )))2] }1/4wy -; = A
o

-;:;: - 7f'A
o

arcsin tanh ( 3~ , (2.35)
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where a frequency group wJ3l/a is presented as a function of an input am

plitude group B / a and a response amplitude group Ao/3f. The results of

substituting numerical values for these groups can be observed in Figure 2.2.

In addition to the approximate solutions found in Equation (2.35), another

solution to the equation of motion for the caster is Ao = O. Based on the re

sponse of a Coulomb system, the zero solution is always stable for IB/al < 4/1r

and unstable for larger input amplitudes. Immediately observable differences

in Figure 2.2 between the caster response and that of a Coulomb block are the

caster exhibiting non-zero response amplitude for B / a < 4/1r, and the response

diagram containing an unstable region. The remainder of this subsection is de-

voted to exploring these two subjects.

For a solution to (2.32) to exist,

B 12i . ( (Ao))-; 2::: 'JrA
o

arcsm tanh 31 . (2.36)

The minimum value of -Ao/31 for which a solution exists is found by iterating

on Ao/31 in the equation

(AO) 4a . ( (AO) )
31 n+l = 1rB arcsm tanh 3£ n • (2.37)

This procedure converges to the correct limiting value independently of the

initial value chosen for Ao/31, with the convergence rate determined by the

closeness of B / a to 4/'Jr. These minimum values for which the solution exists

appear in Figure 2.2 at the intersections of the amplitude curves with the Ao/3£

axIS.

Stability of the approximate solutions is determined by substituting the

appropriate functions into the stability boundary Equations (2.18) and (2.19).
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Figure 2.2: Response amplitudes for caster system with harmonic input. The
curves represent from left to right, B / a= 0.5, 1.0, 1.25, 1.30, 2, 4, and 8.
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From (2.30) and (2.31), the derivatives of S(A) and C(A) are

a~~A) fA. - ~~ [arcsin (tanh (~)) - ~sech (~)] ,

8C(A) f = o.
8A Ao

Thus, the solution is stable if

4a sech (Ao) ,
1rAo 3£

> (4~~')' arcsin (tanh (~) )

x [arcsin (tanh ( :~ )) - :~ sech ( :;) ] .

(2.38)

(2.39)

(2.40)

(2.41)

The first of these inequalities is automatically satisfied for all realistic values of

parameters. -The range over which the second holds is determined numerically

and displayed in Figure 2.2. The plot of the unstable region does not include

the value Ao/3£ = 0, because the stability of this solution is dependent on the

input amplitude.

From an asymptotic expansion on the second stability condition for small

Ao/3£ it is found that the stability boundary crosses the frequency axis at

(2.42)

The minimum B / a for which the response amplitude curves cross into
. .

the unstable region is found by isolating those curves intersecting the Ao/3l

axis. Expanding (2.25) for small Ao/S£, one obtains

B2 _ (44)2
4 > 1r

W - Aa (2.43)

Substituting w == 0 into this relation shows that for B / a < 4/1r, curves cross the

unstable region. The frequency at which the response curve crosses the stability
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boundary separates domains for which the system has different numbers of

solutions. Above this frequency the only stable periodic solution is the zero

solution, while below there are three amplitude solutions for a given frequency.

.The stable solutions are the zero solution and the upper branch of the solution

to (2.35), while the intermediate solution given by the lower branch of (2.35)

is unstable. The choice of which stable solution is exhibited by the system

is determined by the initial conditions on the caster. For B / a > 4/1r the

amplitude curves do not cross the locus of vertical tangencies and are single

valued functions of frequency representing the stable periodic solution. The

zero amplitude solution is unstable for these larger inputs.

For comparison with the amplitude response curves of the Coulomb

block, the caster amplitude responses have been plotted as a function of the

parameters used for the former system's response curves in Figure 2.3. The

difference between the sets of curves shown is the value chosen for a/3t. Since

the Coulomb element response is a lower bound to the caster responses, all

curves lie above those for a Coulomb block with the same slip level. As a/3R. is

decreased with all else held constant, the response amplitude decreases, making

the values closer to those of a Coulomb element. In addition, the stability

bounoary shrinks horizontally ano is p.longatp.o in thp. vertical (Hrec.tiori. For

a/3f. -+ 0, the caster behaves like a Coulomb block, and the stability boundary

disappears. In Figure 2.4, the stability boundaries are plotted for various values

of a/3R., and the dependence of the shape on the caster parameters is more easily

discerned.
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Figure 2.9: Caster response amplitude curves plotted to the parameters used
for Coulomb block. Values of B / a used are, from left to right, 1.25, 1.3, 2, and
4. The shaded area of the plots are regions of unstable solutions.
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2.3.2 Systems With Centering Devices

The effect of a centering device, represented herein by a linear restoring force,

is studied in this section. It is shown that the addition of a centering device

causes a shift in the frequency squared parameter of the response curves by

an amount equal to the squared natural frequency system. The peak of the

response curve is unbounded for all possible parameters of both the Coulomb

and caster systems, and the centering system is more likely to result in an

increase rather than a decrease in the amplitude of the response.

2.3.2.1 Constant Slip Force Systems

The equation of motion for the relative displacement of the Coulomb system

with an attached spring is given by

!i + asgn(x) + w~x = Bcoswt, (2.44)

with w~ = kim. The slowly varying parameter functions S(A) and C(A) are

given by

S(A) -

C(A) =

4a

1r
(2.45)

(2.46)

Note that the only the C(A) function is affected by the addition of the spring,

and the component of the resisting force in-phase with the response is now

non-zero. The response amplitude is found by substituting these functions

into (2.16) to obtain

(2.47)
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which, when solved for w2 results in

(2.48)

This function is plotted in Figure 2.5. When the preceding equation is com

pared with (2.25), it can be seen that the addition of a spring shifts the fre

quency squared axis by an amount w~, leaving the shape of the curves un-

changed. All solutions can easily be shown to be stable through the use of

Equations (2.18) and (2.19).

The response of the system with a centering device is no longer bounded

from above by the amplitude of the absolute ground displacement. In fact, if

the input frequency is above the system natural freque.ncy, the response of the

centering system is larger than that of the system without the spring, thereby

defeating the purpose of the centering device. For frequencies between zero

and the W n , the response may increase or decrease, depending on the precise

location of the input frequency.

Although this analysis has been performed for a single harmonic input,

the same type of behavior is to be expected for excitation with a moderate

bandwidth. Many forms of random excitation occurring in engineering appli-
.

cations have negligible components at zero frequency, with the majority of their

energy being in higher frequencies. Since the spring has shifted the unbounded

response from the zero frequency to the system natural frequency, the response

may well be larger than that without a centering device. Thus, although on

an intuitive level it might seem that a centering device would reduce the size

of the relative displacement, it appears that for some situations the effect may

be the opposite.



25

10

B

6

Ao
a

4

2

o.
o. 0.5 1.5 2

Figure 2.5: Response amplitude as a function of frequency for a Coulomb block
with a centering spring. The spring-mass system's squared natural frequency
has been set to 0.5 rad/sec. The different curves correspond to, from lowest to
highest, B / a equal to 1.3, 2, and 4.
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The steady-state displacement response becomes unbounded at the nat-

ural frequency of the spring-mass system, even though the input displacement

is bounded. This behavior is independent of the slip level of the frictional ele-

ment. For inputs at this frequency, the frictional element dissipates less energy

per cycle than that stored in the spring. Since the energy in the spring is

proportional to the square of its extension, the transient response grows as the

square root of time and has no upper bound.

2.3.2.2 Effect of Centering Mechanism on Caster System

A proposed mechanism meant to restrict the motion of a caster-mounted system

is a so-called "caster cup" !11]. It consists of a bowl-shaped piece of hard

material affixed to the ground, with a concave surface onto which the caster

is placed. This device is intended to decrease the amplitude of the motion

since the caster must move up the side of the cup as the system displaces.

Unfortunately, as is shQwn in this section, for many types of excitation the

motion's amplitude actually increases.

If the shape of the caster cup is a conic section or hemispherical, then,

to first order, the natural frequency introduced by the cup is

(2.49)

where 9 is the gravitational acceleration, and re is the radius of curvature of

the cup. This frequency is the same as that of a pendulum of length r e•

The equation of motion for the overall system is

x+ asgn(x)sech (3~) + w~x = B coswt.. (2.50)
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For this system,

S(A)

C(A)

12al . ( (AO))
- 1l" A arCSIn tanh 3l· , (2.51)

(2.52)

Using these relations in (2.16) and solving for w(Ao) one obtains

B2 - [~arcsin (tanh ( t-))]2

A5 (2.53)

From a comparison with (2.32), it can be seen that, as in the Coulomb system,

the centering device introduces a shift of w~ in the frequency squared axis. The

response curves are displayed in Figure 2.6, where a non-dimensionalization

has been performed to capture the overall nature of the response. The stability

boundaries are the same as those for the caster without a centering mechanism,

except for a shift of w;. It can be seen the peak response has been shifted to the

natural frequency of the centering system, as occurred in the Coulomb system.

For the most part, the nature of the solutions is the same as that of the caster

without a centering force, except for the shift. One major difference in the

response is that it is no longer bounded from above by the ground motion.

Recall that the Coulomb system without a centering device is a lower

bound for the caster system without caster cups. Since the addition of cen

tering mechanisms causes the same shift in the frequency for both systems,

the Coulomb system attached to a spring is a lower bound for the correspond-

ing caster system. Thus, all comments made in the previous subsection about

the centering device's tendency to increase rather than decrease the response

hold equally well for the caster-mounted system. Consequently, the caster cups

appear to perform the opposite function for which they were designed.
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Figure 2.6: Response amplitudes for caster system with a centering device and
harmonic input. The curves represent from innermost outward, B / a= 0.5, 1.0,
1.25, 1.30, 2, and 4. The non-dimensional squared natural frequency has been
set to 0.5.
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2.4 Conclusions

The method of slowly varying parameters has been used to examine the re

sponse to harmonic excitation of Coulomb and caster-mounted systems, both

with and without centering mechanisms. The Coulomb system has been shown

to be simpler to analyze than the caster system, as well as useful for determin

ing both upper and lower bounds for the caster system response through the

proper choice of slip level. The addition of a centering mechanism has been

shown to shift the frequency axis of the amplitude vs frequency function. In

terms of system response, this shift is likely to cause an increase in amplitude,

the opposite effect from that sought. The response will also not be bounded

by the amplitude of the ground motion, which can be a distinct disadvantage

when the nature of the input is not known beforehand.
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Chapter 3

Response of Stick-Slip Systems to White Noise

Excitation

301 Introduction

In the previous chapter, the Coulomb system, whose resisting force is depend

ent only on the sign of the velocity, and the caster-mounted system, with a

force dependent on the relative displacement and the sign of the velocity, were

examined under deterministic harmonic excitation. To examine the response

of these systems to random excitation, their behavior under white noise excita

tion is determined in this chapter. The method used is the generalized equiv

alent linearization method, an approximate technique useful for determining

the transient response of nonlinear systems subjected to random excitation.

It is shown that the response of a caster is non-stationary in both velocity

and displacement. When a limiting case of the caster parameters IS taken,

the response is that of a Coulomb system, which is stationary in velocity and

non-stationary in displacement. The Coulomb system is shown to be a lower

bound to the response of the caster-mounted system. An upper bound is found

in the frictionless system, for which exact solutions for the response statistics

are easily found.
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3.2 Previous Work

To the author's knowledge, this is the first examination of the response of

a caster-mounted system to random excitation. However, a reasonable body

of work exists pertaining to the response of a Coulomb block to stochastic

excitation. As the Coulomb block's response is shown to be a lower bound to

the caster system response when equivalent linearization is used, a short review

of earlier work on this system is included.

The problem of a Coulomb system under white noise excitation was first

examined by Caughey and Dienes [1]. Using the Fokker-Planck equation, they

obtained the exact stationary probability density function and stationary spec

tral density of the velocity. In addition, they obtained equivalent linearization

estimates of the stationary velocity spectral density using both the Gaussian

and exact stationary probability density functions.

The problem was also investigated by Crandall, Lee, and Williams [2]

using the stationary equivalent linearization method to obtain the transient

velocity and displacement response to white noise. The probability density

function used for the velocity was the exact stationary one found by Caughey

and Dienes [1], instead of the Gaussian one commonly assumed in equivalent

linearization. Simulations were used to check the approximate analytical re

sults.

Ahmadi [3] solved the same problem using the generalized equivalent

linearization method, explained in this chapter. He found that both stationary

and generalized linearization predict identical values for both short and long

time velocity and displacement standard deviation, but for moderate times,

discrepancies up to 15% occur.
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3.3 The Generalized Equivalent Linearization Method

As was mentioned in the introduction, the generalized equivalent linearization

method is useful for determining the non-stationary response of nonlinear sys

tems with random inputs. For reasons of expediency, the version presented in

this chapter is restricted to stationary white noise input, although the general

method can account for non-whiteness and non-stationarity in the excitation.

The method presented here is based upon the work of Iwan and Mason [15],

who extended the stationary equivalent linearization method of Caughey [16]

and Booten [17] to cover the general non-stationary response of multi-degree-of

freedom systems. The technique consists of two parts. First, the "equivalent"

linear system is determined and used as a replacement for the nonlinear system.

The linear parameters of this system are generally time-varying. The next step

is the determination of the transient mean-squared statistics of this linear sys

tem. This consists of solving a Liapaunov-type matrix differential equation for

the covariance matrix. In this way, the nonlinear stochastic differential equa

tion is approximated by a deterministic ordinary differential equation in terms

of the covariance of the response variables.

3.3.1 Determination of the Equivalent Linear Parameters

The general nonlinear system of interest stated in first-order form, is given by

z= h(x) + Dn(t), (3.1)

where z is an n-dimensional state vector, h(z) is the nonlinear system restoring

force, D is a diagonal matrix, and n(t) is a white noise process. It is not

strictly proper to write the equation in the above form because the white noise
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input causes x to exist almost nowhere. However, the notation is kept as it

is simpler than the more rigorous integral equation formulations. Using the

first-order form of the equation presents no loss of generality as higher-order

equations can always be written in this form. The above nonlinear system is

to be approximated by a linear system of the form

x= A(t)z + Dn(t), (3.2)

where the variation of the linear system is dependent on the response statis

tics. An equation deficiency l can be defined by subtracting Equation (3.2)

from (3.1) to obtain

l = h(z) - A(t)z. (3.3)

(3.4)

A suitable criterion on the equation deficiency must then be imposed. The

usual approach is to minimize the expected value of the Euclidean, or mean

squared, norm of this deficiency with respect to the linear parameter values.

Although different minimization criteria have been used_ in other studies [18],

none appears to have significant advantages over this approach. From [15],

minimization implies
aE[cTc]
-...:.-~ = O.

8a;j

Substitution of (3.3) into the above expression and manipulation results in

(3.5)

To evaluate the expectation operators in the previous equation, a probability

density function must be assigned to the random variable z. The most common

assumption is that the response process is described by an n-dimensional Gaus

sian distribution. The reason for this is twofold. First, a linear operation of
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a Gaussian vector process results in another Gaussian process; thus, an equiv-

alent linear system acted upon by a Gaussian process has Gaussian response

statistics. Second, the Central Limit Theorem for random variables states that

the probability distribution for the sum of random variables approaches the

Gaussian distribution as the number of variables in the sum becomes large,

making the Gaussian distribution a good estimate when little is known about

the true distribution.

For some nonlinear systems, knowledge exists on the form of the response

variable's distribution. In these cases, it is advantageous to use this information

when one is determining the equivalent parameters [1,2]. However, no such

knowledge exists for the caster system considered in this chapter.

Once the response is assumed to have a Gaussian distribution, a result

of Atalik and Utku [191 can be used to simplify Equation (3.5), the expression

for the equivalent" linear parameters. This gives

To evaluate this expression, one must compute

/
00 /00 ah.(z)

aij(t) - ... I p(z) dXl· .. dx,..-00 -00 ax;

(3.6)

(3.7)

The probability density function for a mean zero Gaussian response is given by

(3.8)

where Q(t) = E[Z(t)ZT(t)] = QT(t) is the covariance matrix, and T denotes

transpose. As the response is Gaussian, evaluation of the expression (3.6) for

a given h(x) results in the linear coefficient matrix's being a function of the

mean vector and covariance matrix of the response.
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3.3.2 Transient Response of the Linearized System

The previous subsection described a method for determining the equivalent

linear parameters. The transient response of this system is now found. Only

mean zero processes, and "non-rectifying" functions h(x) are considered in the

remainder of this study, so the response is taken to be mean zero.

An expression for the response covariance matrix for a linear system is

given by the Liapaunov equation [15]

where

Q(t) - A(t)Q(t) + (A(t)Q(t))T + 21rSoDDT,

Q(O) - 0,

Q(t) - E[x(t)xT(t)] = QT(t),

E[n(t)] - 0,

E[n(t)n(s)] = 21rSoc5(t - s),

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

and A(t) is found from (3.6). The problem has been converted from solving

a stochastic differential equation to finding solutions to a deterministic ~a

trix differential equation. Equation (3.9) is usually solved numerically with

standard techniques.
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3.4 Application of Generalized Equivalent Linearization

to the Caster-Mounted System

3.4.1 Derivation of Covariance Equation for Caster System

The equation of motion for a caster-mounted system, as described in the pre-

vious chapter, is given by

x+ asgn(x)sech (:t) = -n(t).

To convert this equation to the first-order system notation use

Xl - X,

X2 - X,

1&(z) - {X2' - f(Xt, X2)}T,

f(xll X2) - asgn(x2)sech (;~) ,

D - [:~J
Substituting these expressions into (3.6), results in

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3019)

au - 0, (3.20)

au - 1, (3.21)

a21 - E [3algn(X2)sech (;~) tanh (;~) ] , (3.22)

a22 E [-2aO(X2)sech (;~)] . (3.23)

Note that the kernel of the expectation operator in (3.22) is odd in both Xl

and X2. Thus,

au = o. (3024)
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Computing an by replacing Equation (3.23) in (3.7), yields

a22 = i: i: -2ac5(x2)sech (;~) P(Xl' X2) dXldx2

-2ai: sech (;~) p(Xl, 0) dxl,

where, from (3.8),

(3.25)

(3.26)

detQ (3.27)

The integral in (3.25) is difficult to determine in closed form, so an approxima

tion is performed to sech(·). This is

1
sech(y) ~ 2'

1+y
(3.28)

This approximation has the correct asymptotic behavior for both small and

large arguments, and integration of both functions from zero to infinity yields

the same value. Hence, for large displacement excursions, both the exact and

approximate relations account for equal expenditures of energy by the caster-

mounted system. Substituting (3.28) into (3.25), and integrating, results in

where

(3.29)

z -

erfc(z) =

3lyt'q22
V2det Q'

. 2 lOO 21 - erf(x) = r,;; e-t dt,
. v 1r :e

(3.30)

(3.31)

The components of the covariance matrix are given by substituting the expres-

sions for G.ij into the coupled differential equations

(3.32)
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(3.33)

(3.34)

. where a22(') is found in (3.29) and initial conditions are qij(O) = O. These

equations are solved numerically, using the procedure described in the next

subsection.

From (3.29) it can be seen that a22 is non-positive. Thus, the maximum

rate of growth of the covariance equations is achieved when a22 ~ O. In a later

subsection it is shown that this maximum growth rate is achieved when the

rms displacement becomes much larger than 31.

3.4.2 Numerical Solution of Covariance Equations

Particular attention is paid to two topics in the numerical solution of the covari

ance equations (3.32), (3.33), and (3.34). The first is the selection of proper

numerical values for the initial conditions, as the zero values introduce nu

merical problems. The second is the numerical integration technique used for

efficiently solving the covariance equations.

The exact initial conditions for the covariance equations are qij = O.

Unfortunately, substitution of these values into the covariance equations results

in numerical division by zero, although a carefully performed limiting process

indicates that the equations are not singular. There are two ways to deal with

.this numerical anomaly. The first is to perform an expansion of the equations

that does not become unbounded at zero, commence the solution with these

equations, and later patch this solution with one to the complete equations.

The second approach, the one adopted in this study, is to initiate the solution

with small but non-zero values. The choice of these values is now examined.
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Conditions that must be satisfied by any solution, including the starting

values, are the following:

1. The covariance matrix must be positive semidefinite. Thus, det Q

qllq22 - q~2 2': O.

3. Using the previous condition in Equation (3.32) implies that q12 2': 0 when

qll is small.

These conditions provide constraints used in determining the initial conditions.

Note that Equations (3.33) and (3.34) are closely coupled nonlinear

equations, while (3.32) involves the integral of (3.33). Thus, the rate of change

of qll is slower than that Ofq12 and q22. One of the methods for finding suitable

initial conditions is to first set qll to an arbitrary, but small, fixed value, and

, to then obtain equilibrium solutions of (3.33) and (3.34). Although fixing the

value of qll implies through the covariance equations that q12 and q22 are both

zero, the interpretation used here is that qll is slowly varying, and its value is

frozen at a particular instant. Letting the equilibrium values be denoted by

qij(e), it is found that equilibrium solutions to (3.33) and (3.34) are

1rSo

a22 (qll(e),q12(ej'V1rSOq12(e)) '

q22(e) = v1rSoq12(e).

(3.35)

(3.36)

The conditions on the non-negative determinant of the covariance matrix and

positiveness of q12(e) require that

(3.37)
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Equilibrium values are determined by first selecting an arbitrary q12(e) satisfy

ing (3.37), and using this value as a seed for iteration on (3.35). This value

is then used in (3.36) to find Q22(e)' The triplet of qii(e) values found in this

manner are suitable non-zero starting conditions for the covariance equations.

After the covariance equations are solved numerically, a check is performed to

determine whether the initial conditions are truly small in comparison with

the characteristic dimensions of the transient solutions. This ensures that the

character of the solutions has not been modified by the choice of non-zero initial

values. The particular initial conditions used in this solution are

a6

(3.38)8~ qu(O) - 0.01,

a4
5.4 x 10-8 , (3.39)83 q12 (0) -

a2
1.3 X 10-5• (3.40)8 2Q22(0) -

0

The numerical solution of the covariance equations is obtained by means

of a fifth-order Runge-Kutta algorithm with variable step size. The algorithm

computes estimates of the local error, and these are used to automatically

adjust the step size. This algorithm is efficient for solving these covariance

equations as the time scales of the solutions are dependent on the system pa-

rameters, with little known in advance about the form of this dependence. The

maximum relative local error is set to 10-5 , and the solutions displayed in the

following subsection require from 60 to 500 time steps, depending on the caster

parameters.
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3.4.3 Discussion of Results

The results of the numerical solution of the covariance equations are presented

in Figures 3.1, 3.2, and 3.3. The non-dimensionalization chosen permits a study

of the effects of a variation in anyone of the systems parameters, but the ensu

ing discussion will concentrate on the dependence on the caster pivot radius £.

As can be seen in the figures, for small times (a2t/ So < 1), the solution is only

weakly dependent on "y = S~ /31a3 • In this range of times, the ground moves

beneath the system, which remains stationary in the absolute coordinate sys

tem. For larger times, the form taken by the solution is dependent on "y, but it

is apparent that very large and small i define the two limiting response behav

iors. For "y ~ 0, the system reaches a steady-state value in both velocity and

velocity-displacement covariance while being non-stationary in displacement.

If i is very large, all three statistics grow without bound at constant rates. For

intermediate values of "y, the solution moves· from the small to large "y limiting

solutions, with the transition time depending on the value of "y. The remainder

of this subsection is devoted to showing that the lower limit is defined by the

Coulomb system, the upper bound by a frictionless system, and the switching

time is determined by the caster's displacement variance crossing a threshold,

changing the nature of the response.

Due to the sech(x/31) form of the slip force function, the caster resisting

force is small for displacements much larger than 31. For systems with smalll,

or large i, the rms displacement does not have to be large for the effective slip

level of the caster to become small. In terms of the covariance equations, l ~ 0

implies through Equation (3.29) that a22 ~ 0 from below. In this case, the

covariance equations achieve their highest growth rate. Substitution of a22 = 0
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Figure 3.1: Transient velocity variance for caster-mounted system subjected to
white noise excitation.
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into the covariance Equations (3.32), (3.33), (3.34) and solution, results in

q12 (t)

(3.41)

(3.42)

( ) E[X2(t)] __ 27rSot3
qu t = 3 (3.43)

These solutions are exact as the approximations introduced by equivalent lin-

earization all appear in the a22 coefficient, which has gone to zero. An equiv-

alent approach is obtained by noting that for a frictionless system the relative

measures of the motion equal the negative of the absolute measures. Since the

input process is white noise, the absolute input and response statistics for a

frictionless sys,tem are integrals of the white noise process.

To this point it has been shown that the frictionless system is an upper

bound for the caster system response. Recall that this is not only the case

for white noise excitation, but also, as shown in Chapter 2, the situation for

harmonic input. The subsequent discussion shows that the Coulomb system is

a lower bound for the white noise response, as it was in the harmonic excitation.

Letting l go to infinity, or 1 to zero, results in the caster resisting force

being independent of displa~ementj Le. it behaves like a Coulomb block. An

asymptotic expansion of (3.29) for large l reveals that

lim a22 = -av 2 .
t->oo 7rq22

(3.44)

This is a lower bound to the value of a22, so the rate of growth of the covariance

matrix is minimized when this value is used, providing a lower bound to the

caster system response. The solution of the covariance equations using this

value of a22 correspond to the lower bound curves displayed in Figures 3.1, 3.2,
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and 3:3. It can be shown that the value of a22 in (3.44) is that of the Coulomb

system. Solution of the covariance equations shows that both the velocity

variance and velocity-displacement covariance reach steady-state values, but

the displacement variance increases proportionally with time for large time.

These large time behaviors are given by

'lr
3 8J

for
580 (3.45)q22 -

2 a2 t> -2'
a

'lr5 S3 580
q12 - _.-Q. for t> -2' (3.46)

4 a4 a

'irs S3 580 (3.47)qu - _.-Q.t for t>-z'2 a4 a

The value of qu in (3.47) is half of that presented by Ahmadi [3], which appears

to be in error. For t < 580 / a2
, the system has not reached stationarity in

velocity and the behavior is similar to that of a frictionless system.

The approximation inherent in equivalent linearization is contained in

the Coulomb system covariance equations, so they are only an approximate

(3.48)for t -+ 00,

lower bound to the true behavior of the caster systems. Caughey and Dienes [I]

have shown that the exact stationary mean-squared velocity is

8 2

q _ 2-2 022 - 11-

aZ

indicating that the equivalent linearization expression given by (3.45) is low by

20%, which is equivalent to an 11% discrepancy in rms values. Using results

from [I], Crandall et aI. [2] determined that the behavior of the exact large

time displacement variance is given by

(3.49)

showing that the rate of increase of qu predicted by equivalent linearization

in Equation (3.47) is 49% of the exact rate. Since <iu = 2q12, the values of
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q12 also disagree by the same amount. Consequently, the exact lower bound

to the caster responses is somewhat higher than that obtained from equivalent

linearization.

As mentioned earlier, the response of the <;aster-mounted system moves

from the lower limit, the Coulomb system response, to that of a frictionless

system. An explanation for this transition follows. In Figure 3.3 it is seen that

the displacement variance increases with time for all ranges of parameters.

Thus, at some time the rms displacement approaches the effective caster pivot

radius 31. As this happens, the effective slip level of the caster system lowers,

causing the rms velocity to increase, in turn raising the rate at which the

displacement variance increases. This process continues until the displacement

variance reaches a level at which the system's effective slip level approaches

zero. From this time onward, the system behaves like a frictionless system.

The time at which the transition occurs is important, as it determines which

of the limiting behaviors describes the caster system motion.

To find the transition time, it is useful to recall the form of a22:

a22 = -a (2zexp(z2)erfc(z),yq;; (3.50)

For z ~ 1, the denominator of z dominates the function, indicating that l ~

yqu. Thus, the system acts like a Coulomb block. Conversely, for small z the

system behaves as if it were frictionless. Arbitrarily setting the transition point

at z = 1 permits determination of the time tt at which this occurs. Substituting

Equations (3.45), (3.46), and (3.47) for the components of the covariance matrix

into z = 1 and solving for tt results in

(3.51)
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subject to the condition that tt > 580 / a2
, obtained from the requirement that

the caster velocity reach stationarity. For "I > 5 X 10-2, tt is less than 580/ a2
,

and the system does not reach velocity stationarity before the transition oc

curs. Thus, the system acts for all time like a frictionless system. For smaller

values of "I, corresponding to larger caster length l, the system transition time

predicted by (3.51) agrees with the transition times apparent in the figures.

Note that (3.51) indicates that all caster systems with non-zero "I will eventu

ally undergo the transition and behave like a frictionless system, although the

transition time can be quite large if "{ is small.

. 3.5 Conclusions

The response of a caster-mounted system to white noise excitation has been

examined by means of the generalized equivalent linearization method. The

behavior of the elements of the covariance matrix are characterized by two

limiting responses: that of the Coulomb system from below, and that of a fric

tionless system from above. Since the maximum relative response is that of the

frictionless system, the relative system motions are bounded from above by the

ground motions. For short times, the limiting responses define a narrow band,

but as the Coulomb system reaches stationarity in velocity, the range of re

sponses becomes large. It has been demonstrated that the response of a caster

system is initially described by the Coulom~system's covariance equations, but

as the rms displacement exceeds the caster dimension l, the system response

tends to that of the frictionless system. Consequently, all caster-mounted sys

tems will have a non-stationary response in both velocity and displacement

when excited by white noise.
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Chapter 4

Response of the Coulomb System to Filtered

Random Excitation - Equivalent

Linearization Approach

4.1 Introduction

This chapter deals with the response to filtered random excitation of systems

exhibiting a Coulomb friction resisting force. As was mentioned in Chapter 2,

the Coulomb system has been used not only as a model for free-standing equip

ment and base-isolated structures, but also as a component of more elaborate

models such as elasto-plastic and generalized yielding systems. Additionally, it

was shown in the previous two chapters that the Coulomb system response is a

lower bound to systems with a decaying slip force, such as the caster-mounted

system, when the excitation is either harmonic or white noise. Although diffi

cult to prove, it is expected that this. lower bound behavior carries over to the

more general case of filtered random excitation. Thus, based on the behavior

of the Coulomb system to filtered input, the nature of the response of more

complex systems can be examined.

In this chapter, the use of the stationary equivalent linearization method
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to predict the response to filtered inputs is investigated. This method is widely

used and has been used by other authors examining this same problem [4],

although with a different excitation spectrum than that presented herein. It

was remarked in Chapter 3 that work by Ahmadi [3] shows that both stationary

and generalized linearization predict the same small and large time Coulomb

system response for white noise input. This agreement is true for both the

velocity and the displacement statistics, where the former are stationary while

the latter are not. This matching of results from the different linearization

methods should also hold for non-white excitation. As the stationary method

yields results in a more straightforward manner, this method is used.

In addition to equivalent linearization, simulations are used to obtain

estimates of the response statistics. Monte-Carlo simulations are a straightfor

ward, but time-consuming, numerical procedure for determining the response

of nonlinear systems such as this one to random excitation. By means of these

simulations, it is shown that equivalent linearization correctly determines the

non-stationary trends in displacement only when the input has spectral con

tent at zero frequency. For excitation without zero frequency components, it is

shown that equivalent linearization predicts stationarity in displacement, while

simulations show non-stationarity. An explanation is found in the spectrum

of the response velocity, from which it can be deduced that no linearization

technique is likely to show the correct trend. The formulation of a technique

that determines the correct trend is postponed until the next chapter.

Section 4.2 gives a brief description of previous work in the response of a

Coulomb system to filtered excitation. In Section 4.3 the stationary equivalent

linearization method is developed and applied to the Coulomb element. The
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simulation technique is presented in Section 4.4, and the final section of the

chapter compares and discusses the results from the two methods.

4.2 Previous Work

The synopsis of prior work presented in this section is restricted to the response

of the Coulomb system with filtered random excitation. For a review of the

behavior of this system under white noise, the reader is referred to the second

section of the previous chapter.

An analysis of the response to filtered white noise excitation was per

formed by Constantinou and Tadjbakhsh [4], using the stationary equivalent

linearization technique to predict the transient velocity and displacement re

sponses. The spectrum used in their analysis was one proposed by Kanai [7]

and Tajimi [8], in which the spectral content of the acceleration is non-zero at

zero frequency, rises to a peak as frequency increases and then decays to zero at

high frequency. The principal difference between this. spectrum and the band

pass filter used in the present study is the spectral content at low frequencies.

While the parameters of the band-pass filter considered herein can be adjusted

to eliminate content in this range, the Kanai-Tajimi spectrum always has con

tent at zero frequency. It is shown that when the zero frequency content is

removed from the input spectrum, the character of the displacement predicted

by eq,uivalent linearization changes drastically,and the method is inaccurate

when used to determine the response.

A related problem that has received some attention is that of a block

on an inclined plane, also formulated as a Coulomb-friction system with non

symmetric sliding force. First proposed by Newmark [20] as a model for failed
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portion of an earth dam, it has also been used in studies by Lin [5] and Con

stantinou, Gazetas, and Tadjbakhsh [211. The method used by Lin is similar

to that used in Chapter 5 of this study, and a discussion of his method is

postponed until then. Constantinou et al. used equivalent linearization with a

suitable decomposition of the non-zero mean non-stationary input process, to

obtain estimates for the mean and standard deviation of the system drift. It is

expected that the flaw in equivalent linearization presented in this chapter for

Coulomb systems with symmetric sliding forces carries over to the case with

unequal sliding force. Thus, their method should be valid only for spectra with

zero frequency content.

403 Stationary Equivalent Linearization Applied to a

Coulomb Element

The stationary equivalent linearization technique is an approximate method

useful for predicting the stationary response ~of nonlinear systems under both

white and filtered random excitation. The method is very similar to the gener

alized equivalent linearization method developed in the previous chapter, with

the principal difference being the determination of the response of the equiv

alent linear system. Instead of permitting the linear parameters to vary with

time, as in the generalized equivalent linearization method, the linear param

eters are set to constant values determined from the stationary response of

the linear system. It is shown in this section that this stationary response is

straightforward to calculate, even for an arbitrary input spectrum.
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4.3.1 The Method of Stationary Equivalent Linearization for Ran

dom Excitation

There are two parts to the Stationary Equivalent Linearization technique.

First, the equivalent linear parameters are determined for the approximating

system. The method is identical to that in generalized linearization presented

in the previous chapter, but some steps are briefly included as the notation

is different. Next, the response of this equivalent linear time invariant system

system is determined.

4.3.1.1 Determination of the Station~ryLinear Parameters

The nonlinear system of interest is of the form

x + j(x) = -n(t), (4.1)

where dots denote derivatives with respect to time, x is the relative displace

ment, f(x) is the resisting force per unit mass, and n(t) is the ground ac

celeration, modeled as a Gaussian, mean-zero random process with arbitrary

spectral density. Note that this is a first-order equation in velocity, so the

only requirement on the use of stationary linearization is that the moments of

the velocity reach stationarity. There is no requirement on the displacement

response, so non-stationarity in the displacement does not violate assumptions

made in using the method.

The above nonlinear system is approximated by the linear viscously

damped system

x+ ~eqX = -n(t). (4.2)
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The methods of the previous chapter can be used to show that

(4.3)

4.3.1.2 Stationary Response of the Linearized System

In the previous section, the parameter of the equivalent linear system was

determined. The remaining step in the process is to compute the stationary

statistics of this auxiliary system.

A well-known result from linear time-invariant system theory [22,

p. 120], [23, p. 79] is that when both the excitation and the response are weakly

stationary, the response spectral density is the product of the excitation spec-

tral density and the squared magnitude of the system transfer function. Stated

mathematically, this becomes

(404)

where Szz(w) and Snn(w) are the two-sided input and response velocity spectral

densities, respectively, and Hzn(w) is the linear system transfer function.

For the linear system in Equation (4.2), the transfer function is com

puted from the velocity impulse response

(4.5)

(4.6)
~eq + iw·

where u(t) is the unit step function. The transfer function is then found as

I: hzn(t)e-iwt dt

1

Thus,

(4.7)
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Substituting this into (4.4) results in

S .. ( ) _ Snn(W)
z:z:W - 2 2'

W + ~eq
(4.8)

The stationary velocity variance is given by the stationary velocity auto-

correlation at zero time difference, which is defined through Parseval's relation

as the following integral of the stationary velocity spectral density:

U~ - RZ:i:(O)z

- i: S:i:z(w)dw

/00 Snn(w) dw. (4.9)-
-00 ~2 + w2

eq

Equations (4.3) and (4.9) form a set of equations, usually implicit, that are

solved to obtain the stationary values of the root mean-square velocity U:i: and

equivalent damping ~eq.

The stationary displacement spectral density, when it exists, is given by

(4.10)

It is clear from the preceding equation that S:i::i:(w) must be O(w2 ) as w tends

to zero, for Szz(w) to be well behaved. When this is the case,

(4.11) .

Substituting (4.10), (4.7), and (4.4) into (4.11) results in

(4.12)
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In the case where the velocity spectral density Sxx (w) is non-zero as w

tends to zero, it has been shown that [2]

(4.13)

with s,~:i:(O) obtained from (4.8). This result is useful for white noise and

spectra containing low-pass filtered white noise, as used in [4] for a Kanai

Tajimi input spectrum. It has also been found through simulation that when

the zero frequency velocity spectral density is non-zero, this equation gives a

good estimate of the divergence of the displacement variance, independent of

the form of the input spectrum.

4.3.2 Application of Stationary Equivalent Linearization to the

Coulomb Element

The model for the resisting force per unit mass of a Coulomb system given in

Chapter 2 is

where

I(x) = asgn(x);

a = J,£g.

(4.14)

(4.15)

The equivalent linear parameter for the Coulomb element is found by substi

tuting (4.14) into (4.3), resulting in

~eq = E[d~a sgn(x)]

- E [2ac5(x)] , (4.16)

where S(X) is a delta funct'ion with unit area. In the previous subsection, it

was assumed that x was Gaussian, with unknown mean and variance. As the
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input process is mean-zero and the resisting force is symmetric, the response

also has a 'zero mean. Thus, the velocity probability density function is

1 [. 2]Px(x) = V21r exp -x2 •
211" O':i: 20':i:

Using this in Equation (4.16) yields

(4.17)

(4.18)

(4.19)

(4.20)

Some comments about the above equation are in order. If O':i: increases

monotonically until reaching its stationary value, Equation (4.19) shows that

~eq decreases monotonically. Thus, the equivalent viscous damping is lowest

when the system has reached stationarity. This value is precisely that used by

the stationary equivalent linearization method and gives conservative predic-

tions for transient velocity statistics when compared to those of the general

ized equivalent linearization method, in which S"eq is permitted to vary in time.

Also, with the stationary velocity standard deviation and equivalent damping

inversely proportional to each other, large damping is an indicator of small

velocity response.

Another expression relating 0';; and ~eq is obtained from the stationary

response of the equivalent linear system. Substituting Equation (4.9) into (4.19)

yields

S"eq = f!a [100 S;n(W~ dw]-1/2V-.; -00 W + ~eq

The response of the Coulomb element to excitation with a given spectral den-

sity Snn(W) is determined by solving for the stationary equivalent damping <:""7

using this equation. Substituting this result into a suitably arranged form of
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Equation (4.19) gives the stationary velocity standard deviation ax. In the

subsequent subsections, this method is used to study the Coulomb element's

response to white noise passed through an ideal band-pass filter.

Before continuing with the solution process, it is shown that Equa-

tion (4.20) indicates a limitation to the equivalent linearization method. Note

that

/00 S:n(W~ dw :s; ~ /00 Snn(w)dw = (an)2 ,
-00 w + ~eq ~eq -00 ~eq

where an is the excitation standard deviation. The expression on the right side

of the previous equation becomes asharper upper bound as ~eq becomes large,

or, using Equation (4.19), Uz becomes small. Substitution of (4.21) into (4.20)

leads to

(4.22)

Consequently, equivalent linearization predicts response velocities when the

ratio of the input root mean-squared acceleration to the slip level is greater than

J2/1r. Below this, the only physically reasonable solution to (4.20) and (4.19) is

infinite viscous damping, which implies zero velocity variance. This breakdown

in the equivalent linearization method was also observed by Constantinou and

Tadjbakhsh [41 at the same level of rms input to slip level, although they

attributed it to the "ground frequency" of the Kanai-Tajimi spectrum, rather

than to the low input variance.

A possible explanation for this abr~pt cutoff in the equivalent lineariza

tion solution is that when un/a :s; J2/1r, the majority of the acceleration process

is at a level below the slip level of the Coulomb element. Hence, the element

does not move for a considerable portion of the process. The assumed Gaussian

distribution for the response velocity cannot account for the infinitesimal prob-
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ability of being at a particular non-zero velocity as well as the finite probability

of zero velocity. Thus, at the critical input rms level the velocity distribution

changes from a smooth distribution, allowing non-zero response velocities, to a

delta function for which the zero velocity occurs with probability one. Although

the true response distribution is unknown, it is expected that an expansion of

the exact response in terms of Hermite polynomials, where the Gaussian distri

bution is the zero-th order polynomial, would show that the "closest" Gaussian

distribution is one with zero variance.

4.3.3 Response of a Coulomb Element to Band';'Pass Filtered Ran~

dom Excitation

The spectra of many excitation processes in engineering exhibit behavior that

is modeled by Gaussian band-pass filtered white noise. These inputs have

small spectral ordinates for both low and high frequencies, and the majority of

their energy is within a "band" of frequencies. The spectrum considered herein

is produced by the so-called "ideal" band-pass filter, in which the spectral

amplitude is a constant value within the pass-band, and zero elsewhere. With

this spectrum it is possible to perform a sensitivity analysis on the bandwidth

and low frequency content of the excitation. In addition, the sharp falloff in

the spectrum is helpful in illustrating reasons that equivalent linerarization fails

when used to predict the displacement statistics of the Coulomb element.

The equation of motion for a the Coulomb element is

x+ asgn(x) = -n(t). (4.23)

The assumed ground acceleration process n(t) is Gaussian with mean-zero,

standard deviation Un' For band-pass filtered excitation, the spectral density
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is given by

{

So, WI < Iwi < W2,

Snn(W) =
0, elsewhere.

From Parseval's relation, the variance of the excitation is given by the integral

of the spectral density. Thus,

(4.25)

Letting

(4.26)

Equation (4.23) becomes

X" + sgn(X') = -N(r),

where

{

1, 01 < 101 < O2;

SNN(O) =
0, elsewhere;

'0 = Sow, N(r) = .!:.n(a
2 t) .

a2 a So

The variance of this process is given by

(4:28)

(4.29)

(4.30)

Note that if this change of variables is performed, the number of independent

parameters is reduced from four (WI,W2' SO, a), to the two groups 111 and 11 2 •

The equivalent linear equation corresponding to (4.23) is

X" + ZeqX' = -N(r),

where Z~q = SO~eq / a2 is the non-dimensional equivalent damping,

(4.31)
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The stationary response velocity of the equivalent linear system is ob-

tained with the method of Section 3.3. It is

(4.32)

where

(4.33)

The non-dimensional equivalent damping in terms of non-dimensional rms ve-

locity is

(4.34)

(4.35)

Substituting (4.34) into (4.32) results in

1 (Zeq(02 - Od)Z = 1r arctan Z2 0 n .
eq eq+ 12

Since the argument of the arctan term in the previous equation is never nega-

tive, 0 ~ arctan(·) ~ 1r/2, which implies 0 ~ l/Zeq ~ 1r2 /2. Using this in (4.34)

yields

~
3

0< qx' < -.- - 2 (4.36)
.

It is now shown that the lower limit corresponds to the non-dimensional input

variance, 2.6.0, being less than 2/1r, while the upper limit occurs for white noise

input.

The first assertion to be proven is that for ~O < 1/1r, the stationary

velocity variance is zero. For small arguments, arctan(x) ~ x. Thus, Equa-

tion (4.35) becomes

_1__ Zeq(02 - 0d
1rZeq - Z~ + 0 10 2 '

(4.37)
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provided the right hand side is small. Manipulating this equation to solve for

Zeq, gives the result

(4.38)

from which it is seen that real solutions for Zeq exist only if

1
An> -.

11"
(4.39)

Hence, it appears that the method can say nothing for variance levels below

this value. This is the same breakdown in the equivalent linearization solution

alluded to in Section 4.3, when the ratio of input standard deviation to slip level

falls below J2/1I". For the cases where the ratio is too small, the only physically 

reasonable solution to (4.35), and its approximation (4.37), is that Zeq -+ 00.

This implies, through Equation (4.34), that the stationary velocity standard

deviation ux' is zero. When An is greater than 1/11", but not too large, then

Equation (4.38) is used to determine Zeq provided the right-hand side of (4.37)

remains small. It was remarked earlier that the true response does not have

zero variance, although the closest Gaussian distribution to the real response

distribution is the one with zero standard deviation. In a later section it is

shown by means of simulation that the velocity variance is non-zero, but small,

indicating that this cutoff exhibited by equivalent linearization is spurious.

Another assertion made is that for white noise input, ux' = ')11"3/2. To

model white noise with the band-pass filter, let n1 -+ 0 and n2 -+ 00. In this

case, Equation (4.35) becomes

1 11"
--=-,
11"Zeq 2

which upon substitution into (4.34) yields the desired result for ux'.

(4.40)
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To obtain the stationary velocity standard deviation ax' for general rh

and O2 , Equation (4.35) is solved to obtain the equivalent damping Zeq, and

this value is substituted into (4.34) to obtain ax,. As the former equation is

transcendental, an exact solution is not available. A numerical value for Zeq

can be obtained by performing numerical iteration on the equation

(4.41)

where

2
. Zo~2·

1f

It has been found that practical values for nand Zo are 50 and 106 , respec

tively. The resulting values of Zeq are then substituted into (4.34) to obtain

the corresponding rms velocity ax,. In cases where (02 - 0 1) < 1/1f, numerical

overflow can occur in iterating on Zn, as the correct solution for this case is

Zeq -l- 00. Thus, a che~k is performed in the iteration procedure, and, if an

overflow is apparent, Zn is set to an arbitrarily large value.

This procedure has been carried out for values of 0 1 and ~o ranging

from zero to two, and the results are displayed in Figure 4.1. In Section 3.4

a comparison is performed between these predictions and simulation results.

In the graph it is seen that for ~O < 1/1f, the predicted rms response ve

locity is zero. For slightly larger non-dimensional input bandwidth, the rms

velocity increases abruptly, until ~o ~ 2/1f. For bandwidths larger than this,

ax, is weakly dependent on ~o and is more strongly dependent on the non-

dimensional low frequency cutoff rho The peak value of ax, is reached for white

noise input (01 -l- O,~O -l- do) and was shown earlier to be J1f3 /2.
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Since the value of the stationary rms velocity is only weakly dependent

on the input bandwidth for excitations with non-dimensional bandwidth DoO

greater than about 2/7r, it is useful to find out the order of this dependence.

Asymptotic expansion of (4.35) for large O2 and 0 1 ~ 0 results in

1 Zeq
- = 7r arctan-.
Zeq 0 1

This equation is also solved iteratively, and after substitution into (4.34), val

ues of ax, are obtained. The results of this procedure are displayed in Fig-

ure 3.2. An estimate of the rate of dependence of (7x, on 0 1 is obtained from

asymptotic expansions of (4.42) for both large and small ratios of Zeq to 0 1 ,

When Zeq/Ol ~ 1, this equation implies Zeq ~ 2/7r2 , which through (4.34)

gives ax, ~ V7r3/2, the white noise result derived earlier. For Zeq/rit ~ 1,

arctan(Zeq/Ol) ~ Zeq/Ot, which upon substitution into (4.42) yields

Z;q
0 1 1

(4.43)~ for 0 1 ~ -,
7r 7r

#;' 1
(4.44)ax' ~ for 0 1 ~ -,

7r

where Equation (4.34) has been used in obtaining the second expression from

the first. Hence, for AO large, the dependence of ax, on 0 1 is initially weak,

but as fh in~reases, ax, becomes inversely proportional to the square root

of 0 1. Thus, equivalent linearization indicates that the velocity variance is

most strongly dependent on the low frequency content of the excitation for

inputs whose non-dimensional variance exceeds 4/7r. For this reason, it is very

important that an input model chosen for use with the Coulomb element ac-

curately represent the low frequency content of the true physical excitation.

The high frequency cutoff of the model becomes important only when the non

dimensional bandwidth of the signal is less than 2/7r.
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An expression for the stationary displacement variance is obtained from

Equation (4.12), which after non-dimensionalization and substitution of the

ideal band-pass spectrum becomes

0'2 /00 SNN(O)
X -

-00 0 2(02+ Z;q) dO

iO~ 2-
0 1 02(02 + Z;q) dO

- ~qk' [-!.. - -!.. - "k'] , (4.45)
0 1 O2 2

where Equations (4.32) and (4.34) have been used to simplify the results of

the integration. The values of Zeq needed in the above expression are obtained

from the solution of (4.35). This expression for O'x is clearly not valid for the

case when 0 1 equals zero. In that case, suitably non-dimensionalized forms of

Equations (4.13) and (4.8) predict the long time behavior of the non-stationary

displacement variance as

T
O'~(t) ,..,; 21T Z2 = 1T

2
T O'~, as T - 00, for 01 = o.

eq

(4.46)

This equivalent linearization prediction that the displacement variance achieves

stationarity in all but the 0 1 = 0 case does not agree with simulations. The

discussion of this discrepancy is postponed until the last section of the chapter.

4.4 Simulation studies

The accuracy of the stationary equivalent linearization results is estimated

from a comparison with Monte-Carlo simulations of same process. A station

ary Gaussian inp~t process with arbitrary spectral density is generated using

an inverse fast Fourier transform. This process is then used as excitation to



68

the system (4.23), which is solved numerically to obtain velocities and displace

ments. As an interpolation function is used in the solution of the equation of

motion, the input spectrum is affected; a proposed correction compensates for

these changes. The procedure is repeated until an ensemble is generated, and

averages are taken to obtain estimates of the desired statistics. The spectral

density of the stationary response velocity is also calculated by means of an

FFT, using a Kaiser-Bessel window to improve the spectral resolution.

A stationary time series n(t) with arbitrary spectral density can be

generated from [24,251

N

n(t) =L 2[Snn(wli:)~wli:ll/2 cos (Wli:t + <P1i:),
k=1

(4.47)

where <Pk{k = 1,2, ... , N) are independent identically distributed random vari

ables with a uniform density function on [0,2'11"r, and Snn(Wk) = Snn(w)lw=wl:'

with Snn(W) being the two-sided spectral density of n{t). If AWk is a constant,

then Wk =kAw and (4.47) simplifies to

N

n(t) = L 2[Snn(kAw)~wll/2 cos(ktAw + <Pk).
k=1

(4.48)

When the random process is sampled at discrete times mAt, with At =
'11" /N Aw, the previous equation becomes

N ('1I"mk )n(mAt) =E2[Snn(kAw)Aw]1/2cos N + <Pk , (4.49)

which is in the form of a discrete Fourier transform. These series are very

efficiently computed using the Fast Fourier Transform (FFT) or inverse FFT

algorithms taking advantage of symmetries in the above expression. Yang [251

has remarked that this method should yield variables with accurate Gaussian

distributions when N 2: 500. For the results presented in this discussion, Hall's
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inverse FFT algorithm [26] is used with N = 512, producing a time series with

1024 points. The advantages of this method are speed of computation for the

time series as well as accurate representation in the time domain of a signal

with arbitrary spectral density. Drawbacks to this technique are associated

with the discretization of both the time and frequency domains. When the

frequency domain is discretized, a periodicity of'length 271" / ~w is introduced

into the time domain signal. This can be overcome by gathering statistics from

only the central portion of records. Discretization of the time domain implies

that time series values are available only at evenly spaced time intervals. Fortu-

nately, most algorithms used for the numerical solution of ordinary differential

equations are perfectly suited for this type of data.

Once the random time series is generated using the previously described

method, the next step is to solve the equation of motion

x+ /(x) = -n(t),

where

(4.50)

{

asgn(x), x:f OJ
/(x) =

n(t), x= 0, In(t)1 :::; J1.g,

dots denote derivatives with respect to time, x is the relative displacement,

a is the slip level, and n(t) is the ground acceleration. Note that the above

formulation for /(x) is different mathematically from that of Coulomb friction

in (2.20), although physically the two are equivalent. The particular formula-

tion used here is more convenient for numerical applications. Equation (4.50)

can be rewritten as the three separate equations

x - x(t) - a, x > OJ

x - 0, x= 0, In(t)l ~ aj

(4.51)

(4.52)
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n(t) + a, x < 0, (4.53)

each one corresponding to a different "state" of X. These equations are easily

solved by closed form integration to obtain x(t) and x(t) provided the state of

x does not change. When the solution for x indicates a change in state, the

solutions must be patched together to ensure continuity in both the relative

velocities and displacements.

As was mentioned earlier, the input process used in the simulations

provides n(t) at discrete, uniformly spaced times milt, m = 1,2, ... , 2N. Since

it is meaningful to obtain x and x only at these times, and the system exhibits

no memory, the solution can be set up as a discrete process, with the values at

time (m+ 1)ilt being determined by the conditions at milt and the excitations

n(milt) and n((m + 1)ilt). For the relative velocities and displacements, this

can be stated as

x((m + 1)ilt) - p [x(milt),x(milt), n((m + 1)ilt), n(milt)] , (4.54)

x((m + 1)ilt) = q[x(milt),n((m + l)ilt),n(milt)] , (4.55)

where the functions p and q are determined from the solution of (4.53). Note

that the expression for x((m + 1)ilt) is independent of the displacement.

A reasonable way to attempt to obtain expressions for p and q would

be to use one of the standard numerical solution methods used for solving

ordinary differential equations. Unfortunately, the majority of these methods

fail when applied to (4.53) because of the abrupt changes in resisting force for

a small change in velocity when x~ 0 (sometimes referred to as being a "stiff

equation") and because of the zero "tangent stiffness" when x =j:. O. However, a

closed form solution of these equations is possible for certain forms of forcing
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function n(t).

To solve (4.53) in closed form to obtain relative velocities and displace

ments for t E [m~t, (m + 1)~tl, a continuous extension of n(t) is needed over

this range. An interpolation scheme must be chosen to supply this information.

Since points are being added to the signal, the spectrum of the interpolated

excitation is different from that of the original. A balance must be struck be-

tween simplicity in the interpolation, resulting in poor spectral characteristics

but ease of solution of equations of motion, and higher-order interpolation for

which solution of (4.53) is difficult. For the simulations described herein, linear

interpolation is chosen. Thus,

t-m~t
n(t) = n(m~t) + b.t (n((m + 1)~t) - n(m~t)), mb.t ~ t ~ (m+ 1)b.t.

(4.56)

The solution of (4.53) with this excitation is straightforward, although many

special cases must be considered. Note that the velocity can change sign a

maximum of two times within an interval ~t.

It can be shown that the spectrum of a continuous, linearly interpolated

signal is given by

Fe(l) = F(l) IT cos2(N1r;+1) ,
k=l 2

where F(l) is the discrete, periodic spectrum of the discrete, periodic signal

n(m6.t), and Fe(l) is the discrete spectrum of the interpolated excitation n(t).

An illustration of the infinite product On the right-hand side of the previous

equation is seen in Figure 4.3. For Il/NI < .3, the spectral ordinates of F(l) are

reduced by less than 10%, but beyond this the distortion of the desired spectral

shape can become quite severe. Although not displayed, the aliased, or peri

odic, portions of the spectrum of F(l) occurring above the Nyquist frequency
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(ll /NI = 1) are also modulated, but are of little concern as they do not affect

the system of interest. To correct for the reduction of the spectrum in the range

o ::; 11/NI ::; 1, F{l) can be multiplied by the reciprocal of the trigonometric

product in (4.57), causing the spectrum of the interpolated signal to match the

desired spectrum in this range. Thus,

(4.58)

where -N < 1 ::; N, and Fe(l) is the target spectrum. This process is the

"pre-correction" alluded to earlier. Since F(l) is periodic, each one of its pe

riodic extensions is also affected, but the amplitude of these is reduced by the

modulation of (4.57) occurring during interpolation.

This pre-correction procedure is applied to the spectra used in the sim-

ulations. Although seemingly cumbersome, the input power spectrum is mul-

tiplied only once by the product in Equation (4.58). Also, the use of a lO-term

truncated product results in values accurate to five significant figures when

compared to a 100-term truncation, indicating that 10 is a sufficiently large

number of terms to represent the infinite product.

The methods described to this point are sufficient to obtain time series

for the response velocities and displacements. A brief overview of how these

data is used to generate ensemble statistics now follows. The statistics esti-

mated are the response velocity and displacement variances and covariance,

and the input acceleration variance, which are computed using

where
1 Nli}

E[f(y(t))j ~ Ii"" L fp(y(t)),
E p=l

(4.59)

(4.60)
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and y represents either acceleration, velocity or displacement, fp(y(t)) is a sam-

pIe from a single simulation, and NE is the number of records in an ensemble.

This estimator is unbiased, and it can be shown that [27]

1 NE u
E[J(y)] = N L fp(y) ± jN(Z) . (4.61)

E p=l E

In the simulations, 1000 records are used in an ensemble, which can be seen by

the above equation to give a good estimate of the true values, provided uI(z) is

small. The sums are determined by keeping a running average, updated after

each simulation, and the times kept are the sampling times mLlt.

Stationary estimates of the input covariance, velocity variance, and co-

variance of velocity and displacement are obtained by taking timewise averages

of the ensemble statistics. As zero initial conditions are used for both velocity

and displacement, the response process is initially non-stationary. It is also

found that the final portion of the records are non-stationary due to the peri-

odicity inherent in using FFT's to generate the input signal. For these reasons,

only the central 512 of the 1024 points in the velocity record are used in ob-

taining an estimate of the velocity variance; a check is also made to ensure

stationary of the velocity response process.

In addition to generating the response velocity and displacement, there

is also interest in determining the spectral content of the stationary portion of

the velocity response. The spectral resolution is improved if the central 512

points of the velocity record are multiplied by a Kaiser-Bessel windowof the

form
_ 10 [,8.)1 - (2n/N)2]

W(n) - 0: 1
0

(/3) ,

where 0: is a numerically determined coefficient that normalizes th~ rms value

of the window to one, (J is the time-bandwidth product, 10 is the modified
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Bessel function of order zero, and n - 512 = -N/2, ... , -1,0, 1, ... ,N/2. The

parameter {3 is set to 8.0, since it has been shown that this lowers the first

Fourier amplitude side lobe below 70 dB., equivalent to 140 dB. or 10-7 in

the spectral density. The tradeoff for these low side lobes is an increase in the

width of the main lobe. The spectral density of the record is then found from

a forward FFT using Hall's algorithm [261 on the windowed segment of the

record. The squared magnitude of the spectrum is then computed, and this

quantity is divided by 411'N !:i.t to obtain the spectral density for a single record.

An estimate of the stationary velocity spectral density is then found by taking

an average of the densities across the ensemble.

4.5 Comparison of Stationary Equivalent Linearization

and Simulation Results for Ideal Band-Pass Filtered

Input

In this section, the simulation methods described in the preceding subsection

are used to check the accuracy of the stationary equivalent linearization pre

dictions. Three measures of the response are used in this comparison: the

stationary velocity standard deviation, the stationary velocity spectral density,

and the displacement variance. It is shown that the agreement is reasonably

good for rms velocity, but differences in the low frequency content of the ve

locity spectral density cause the displacement variance in the simulations to be .

always non-stationary. This is contrary to the equivalent linearization predic

tion of stationarity for all excitations with 0 1 i= O. The discussion begins with

a detailed comparison of results from these two methods for a particular set of
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input parameters, followed by a comparison of the rms velocity results over a

broad range of input parameters.

A comparison is performed between the simulation statistics of the

Coulomb element response and those predicted by equivalent linearization, as

well as simulations performed on a linear system using the viscous damping

value computed by stationary equivalent linearization. The equations of motion

for the linear system simulation are solved using the fourth order Runge-Kutta

method. This linear simulation is useful not only for determining the effects of

a finite ensemble size, but also in establishing the accuracy of the method used

to generate the band-limjted excitation.

The case that is studied in detail has input parameters 6.0 = fh =
20/1r2 ~ 2.02. This input is broadband, and, as can be seen in Figure 4.1,

has a value of 6.0 well above the critical bandwidth of equivalent linearization.

Another important feature of this input is the lack of spectral content near

o = O. This will be useful during the discussion of differenc'es between the

velocity spectral densities of the linear and Coulomb systems.

A co~parison of the rms velocity for the Coulomb and linear system

simulation methods as well as the stationary equivalent linearization predictions

is found in Figure 4.4. Both of the equivalent linear systems are within 10% of

the Coulomb element simulation once stationarity is reached. The fluctuations

exhibited by the simulations are caused by two aspects of the random input.

The overshoot at the beginning of the record is caused by the periodicity of the

input records, while the oscillations occurring in the rest of the record are due

to the sharp low frequency cutoff of the band-pass filter. Stationarity is reached

within a short time compared with the length of the record, so the use of fixed
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linear parameters is acceptable. In fact, the fixed linear parameters used in the

linear simulation even do a good job of predicting the initial non-stationary

response.

Figure 4.5 presents the stationary velocity spectral densities for the

Coulomb and linear system simulations along with the equivalent lineariza

tion prediction. The latter result is obtained from a non-dimensionalized form

of Equation (4.8). On a linear scale, all three responses appear limited to

the input frequency range. The linear and nonlinear simulation responses are

similar within this range, and it seems that the differences are due more to

discrepancies in the rms velocity than to the shapes of the power spectra of

the different systems. The agreement between the two linear systems is not as

good as in the· rms velocity. A possible reason for this discrepancy is that the

simulation spectral densities are computed from data that may not be mean

zero, while the equivalent linearization has a zero mean. Since the spectral

density is a measure of the mean-squared statistics, the use of a non-zero mean

signal increases the spectral density.

On the logarithmic plot of Figure 4.5, it can be seen that outside the

frequency range of the input, the response of the linear systems is practically

zero, as it should be, but the nonlinear Coulomb element exhibits small but

finite response in this range. The apparent response of the linear system simu

lation outside the input band is due to the use of a finite length record, which

causes the appearance of side lobes in the frequency domain. As was men

tioned earlier, the use of a Kaiser-Bessel window in the time domain has the

effect of making the side lobe amplitude 10-7 times that of the main lobe. A

drawback to the window is that the main lobe of the signal is widened. Both
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these effects are apparent when a comparison is performed between the linear

simulation and the equivalent linearization prediction in the logarithmically

scaled portion of Figure 4.5. The Coulomb element response is far above the

side lobe level, indicating that a velocity response in these frequency ranges is

truly present in the stationary signal. It can be seen that this non-zero spectral

content is present at zero frequency. Hence, the displacement is non-stationary,

and its rate of growth is given approximately by

(4.63)

Since the linear system shows no response in this frequency range, the displace

ment response is expected to be stationary.

The results of the simulation displacement response for Coulomb element

and the equivalent linear system are shown in Figure 4.6 The linear system

achieves stationarity quite rapidly, but the nonlinear system does not reach

stationarity within the span of the record. Thus, the prediction of equivalent

linearization that the displacement response is stationary if 0 1 ::j:. 0 is incorrect.

The unbounded increase in displacement variance for the Coulomb element

indicates that the system drifts, and that as time increases the expected position

of the system is known with decreasing accuracy. This non-stationary behavior

is not unique to the parameters of this simulation, and has been observed in

all simulations of the response of the Coulomb element to band-pass filtered

excitation.

The accuracy of the equivalent linearization method can be studied fur

ther by means of simulations performed with varying AO and 0 1, Two series

of simulations are presented herein: in the first, An is held constant while 0 1

is varied, and in the second the opposite situation is considered. This is equiv-
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alent to checking the accuracy of the method in two perpendicular slices across

Figure 4.1. A comparison between the methods is made only in the station

ary value of rms velocity, as the displacement behavior predicted by equivalent

linearization is universally incorrect.

Before the results are presented, a few comments on the efficiency of the

two methods are in order. To generate the 400 points plotted in Figure 4.1 us

ing the equivalent linearization procedure requires approximately 1 minute on

an IBM PC-AT. One simulation, resulting in a single data point, uses about 3

hours of computing time on the same machine. Thus, the equivalent lineariza

tion method is significantly more efficient, while simulations are a valuable tool

in estimating accuracy.

A comparison of the predicted rms velocity by equivalent linearization

and simulations is presented in Figure 4.7, where the value of ~n has been set

to 20/1r2• It is seen that the accuracy of the approximate method is better than

20% in all cases, and within 10% in most. The results of the same comparison

for 0 1 held fixed, while ~n is varied, is given in Figure 4.8. For ~o :::; 1/1r,

the equivalent linearization prediction of zero response velocity is not accurate,

as demonstrated by the two simulations in this range with non-zero response.

As the input variance is increased above the critical level, the equivalent lin

earization method is shown to be better than 20% accurate in predicting the

rms velocity.

In this chapter it has been shown that while equivalent linearization is

accurate in predicting the velocity response of a Coulomb element for most

ranges of input parameters, it cannot capture the non-stationary nature of

the displacement response when the excitation spectrum has no content at
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zero frequency. It is also shown that the system's velocity response is most

sensitive to low frequency content, with the same behavior expected for the

displacement. Although a discussion of the nature of the spectral content of an

earthquake is postponed until the next chapter, one important feature is the

lack of zero frequency content. Thus, neither of the equivalent linearization

technique described thus far can be used to estimate displacement variance

for seismic excitation. In the next chapter, a different approximate method is

developed and is shown to give good estimates of both the rms velocity and

rate of increase for the rms displacement.
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Chapter 5

Response of the Coulomb System to Filtered

Random Excitation - Poisson Process

Approximate Approach

5.1 Introduction

In the previous chapter it was shown that the equivalent linearization method

was inadequate for predicting displacement statistics for the simple Coulomb

system with band-pass filtered excitation. An alternate method is proposed in

this chapter. This method, to be called the Poisson process method, is shown to

be accurate in predicting response statistics for both velocity and displacement.

The chapter begins with an illustration of the differences in the response

of a linear viscously damped system and a Coulomb block when excited by

a symmetric rectangular pulse. These differences in response are exploited

to develop a random process consisting of pulses with this shape; but with

random amplitude and random starting times. If superposition is assumed

to hold, the response process can be calculated as a sum of responses to the

individual pulses. If the overlaps in the input pulses are taken into account,

estimates that are accurate over a larger parameter range are obtained. As in
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the previous chapter, the accuracy of the approximate method is determined by

comparison with simulation results. The simulation techniques are described

in Section 5.5, and in Section 5.6 simulation results are compared with those

predicted by the Poisson process approach. In the final section the response of

stick-slip systems to seismic excitation is considered, using a Poisson process

model for earthquakes.

5.2 An Illustration of Differences in Response for Cou

lomb and Linear Systems

In Chapter 4 it was shown that the displacement response of a Coulomb element

and an equivalent linear system have a fundamentally different character. The

linear system displays bounded variance, while the Coulomb d.amper's variance

incr~ases linearly with time once the velocity reaches stationarity. In this sec

tion, the response of the two systems to a particular type of loading is examined

to further illustrate differences in response. The insight gained through this

example is useful in formulating an approximate method developed later in the

chapter.

The equation of motion for the Coulomb element is

x+ asgn(x) == -n(t),

while that the viscously damped linear system is

x+ ~eqX == -n(t).

(5.1)

(5.2)
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The excitation n(t) applied in this example is

1
b., if 0 < t < ~t;

n(t) = -b, if ~t < t < 2At;

0, elsewhere.

(5.3)

The Fourier spectrum of the input pulse is obtained through the trans-

formation

n(w) = i: n(t)e iloli dt,

where i = yCT. Substituting (5.3) into (5.4) one obtains

(5.5)

which is used to obtain the Fourier Amplitude Spectrum of the pulse

(5.6)

From the above expression it is observed that for low frequencies the pulse

amplitude spectrum increases linearly with frequency, while for high frequency

it is bounded from above by an envelope that decreases inversely with frequency.

The relative velocity of the response of a Coulomb element can be solved

in closed form, and for Ibl > a is given by

j
-(lb1 - a)sgn(b) t,

[-(Ibl- a)~t + (161 + a)(t - ~t)lsgn(b),

v(t) = (Ibl - a) [t - 2At (~)] sgn(b),

I[2At(lbl- a) Cbl~a) - a(t - 2~t)] sgn(b),

0,

0< t < ~t;

(.:.ill-)~t < t < 2~t Ibl+a ;

2At Cb\~a) ~ t < 2~tj

2~t < t < 4At (Ibl~a) ;
elsewhere.

(5.7)

Note that the maximum duration of the velocity response is 4~t, occurring for

Ibl ~ a. The relative displacement is obtained by integrating the expression
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for the relative velocity. As the result is a complicated algebraic expression,

only the final displacement is presented. This is:

Llx = -a Llt
2sgn(b) [(,Bt9~11t9 (1- t9: 1)]' for t > 4Llt (t9 ~ 1) ,{3 > 1,

(5.8)

where

(3 ::;: l!1.
a

(5.9)

This final displacement offset Llx is non-zero for all input amplitudes that

exceed the slip level of the Coulomb element. If Ibl < a, the response velocity

and displacement are both be identically zero.

The linear system response is obtained from the convolution of the input

with the impulse response of the system. Thus,

v(t) - - fat hv(t - 0) n(O) dO, (5.10)

d(t) - fat ha(t - 0) n(O) dO, (5.11)

where

hv(O) - e-~·qe u(O), (5.12)

1
ha(fl) - -(1 - e-~·:qe) u(O); (5.13)

~eq

v and d are the relative velocity and displacement, respectively, and u((J) is the

unit step-function. The relative velocity response to the symmetric rectangular

v(t) =

pulse is found by manipulation of these expressions to be

_..!.. [1 - e-~·qtl , 0 < t < Lltj
~.q

..!.. [1 - 2e-~"q(t-6.t) + e-~Cqt], Llt < t < 2Lltj
~.q

..!..e-~cqt [1 _ e~.q6.t] 2 , t > 2Llt.
~.q

(5.14)
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The relative displacement is given by

_L [t _.l (1- e-~"qt)] , 0< t < ~t;
~.q ~.q

d(t) = ~~q [t - 2~t + ~~q (2e-~·q(t-At) - e-~·qt -1)], ~t < t < 2~t; (5.15)

- Le-~.qt [1 - e-~·qAt] 2 t > 2~t.
~;q ,

Note that for t ~ 2~t, the displacement goes to zero for all values of ~eq'

Plots of the excitation in the time and frequency domains, and the re

sponse velocity and displacement for both the linear and Coulomb systems are

presented in Figures 5.1, 5.2, and 5.3. For the case displayed in these figures,

~t = 1.0,a = 1.0,b = 1.5, and ~eq has been adjusted so that both systems ex

hibit the same rms velocity. The linear and Coulomb system velocity responses

shown in the latter figure are similar in shape, although the Coulomb block's

response is not mean-zero, while the linear system's is. When the displacement

responses of the two systems are compared, the shapes are again quite similar
,

with one notable exception: the Coulomb element exhibits a permanent offset,

while the linear system does not.

These differences between systems are consistent with those discussed in

Chapter 4, although the input spectra used are not identical. Since the input

pulse's spectrum is proportional to frequency for low frequencies, the velocity

spectrum of the linear system should exhibit the same trend, which implies

that the velocity has a zero mean because it has no content for zero frequency.

Thus, the displacement exhibits no offset for times which are large compared

with the duration of the excitation.

It can be shown that the Fourier amplitude spectrum for the Coulomb

element's velocity does not go to zero for zero frequency, the same trend ex-

hibited in the previous chapter by the Coulomb system under band-limited

excitation. Consequently, the displacement response to an input pulse input
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has a final offset, and the Fourier transform of the displacement does not ex

ist. This is analogous to the displacement's not having a stationary spectral

density. Since the response to a single symmetric rectangular pulse exhibits

many of the features not captured by the equivalent linearization method of

the previous chapter, it is used to construct an approximate method where the

input is characterized as a sum of pulses. The remainder of this chapter is

devoted to developing and using this technique.

5.3 A Poisson Process Approximate Method

In the previous section it was shown that by examining the response to a

single symmetric rectangular pulse many of the differences between a linear

and Coulomb system's response could be examined. A random process with

a prescribed power spectrum is generated from a suitably arranged sum of

input pulses. This process is used as an input to the Coulomb system, and an

approximate method is employed in determining the response statistics of the

stick-slip system.

The method used herein is related to that used by J. S. Lin [5] to de

termine the response of a Coulomb bloc.k on an inclined plane. To obtain the

mean and variance of the system's drift, Lin used a mean-zero set of rectangu

lar pulses with random amplitude occurring at evenly spaced times. Since the

angle of the slope was assumed to be moderate, the model considered only slid

ing in the downhill direction. An empirical fit to simulations was then used to

determine relations between the drift and seismic parameters. The Coulomb.

system in the present study is placed on a flat surface, so the method must

account for bidirectional motion. The Poisson process used herein consists of
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random amplitude pulses occurring at random times, making the relation be-

tween time and frequency domain representations of the process more direct

than Lin '8 process. In addition, estimates of the mean and variance are ob-

tained analytically, with simulations being used for determining their accuracy.

Y. K. Lin [22, pp. 87-94] has shown that a rather general class of random

processes can be generated using a sum of random amplitude pulses beginning

at randomly spaced times. A subclass of these processes can be written in the

form
M(t)

n(t) == L bkW(t - Tk),
k=l

where M(t) is a counting process, bk are identically distributed random vari-

ables, and w(t - Tk) is a deterministic function describing the pulse shape com

mencing at a random time Tk. If the counting process M(t) is a Poisson process

with stationary increments and arrival rate A, then the following hold:

E[M(t)] - At, (5.17)

E[n(t)] - AE[bj L: w(u) du, (5.18)

E[n2(t)J - AE[b2Ji: w2(u) du, (5.19)

Snn(W) - 211" AElbzJ lw(w) IZ + (E[nJ)z 6(w), (5.20)

where Snn(W) is the spectral density of the process, and w(w) is the Fourier

spect.rum of the deterministic pulse shape. Hence, the power spectrum of the

overall process is determined from the statistics of the pulse amplitude and the

Fourier amplitude spectrum of the deterministic pulse shape. Alternately, from

the process spectral density, the deterministic pulse shape can be determined

to within a constant. Since the time domain representation of the pulse is
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zero for t < Tic, a Hilbert transform can be used to obtain the missing phase

information needed to determine w(t) from jw(w)j. It should be emphasized

that all parameters of a pulse process are not uniquely determined by the

overall spectral density. This will be important in the final section of this

chapter where a pulse process is used to simulate earthquake motions.

An approximate method for finding the response of a nonlinear system

to'a Poisson process is constructed by assuming that superposition is valid for

this problem. The accuracy of this assumption must be verified by independent

means; in the case of the Coulomb element, a set of simulations is used to

establish the range of parameters for which the method appears to be accurate.

The response process is then be made up of a sum of the responses to the

individual pulses. Letting y(t) represent any of the response parameters, one

obtains from the superposition assumption that

M(t)

y(t) ~ 2: z(t - Tie, ble ),
Ie=l

(5.21)

where z(t - Tie, ble ) is the response to a single pulse blew(t - Tie)' For a nonlinear

system the response pulse shape is dependent on the amplitude of the input.

Hence, the response process generally cannot be separated into a deterministic

shape multiplied by the pulse amplitude.

The mean of the response process is given by

E[y( t)] '" E ['f:'(t - T•• b.)]

- E[M(t)j E[z(t, b)],

(5.22)

(5.23)

where the stationarity of the process and lack of correlation in pulse arrival

times have been used to simplify the first expression. The second expectation
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operator in the previous equation must be evaluated with respect to both time

and pulse amplitude. Thus,

I1t /00E[z(t,b)] = - z(t,b)p(b) dbdt,
t 0 -00

(5.24)

where p(b) is the probability density function of pulse amplitudes. Substitution

of this expression along with (5.17) into (5.23) yields an approximation for the

response process mean

E[y(t)] ~ .At ~ r /00 z(t, b)p(b) db dt
t 10 -00

- .A lot [I: z(t, b)p(b) db] dt. (5.25)

To determine the variance of the response variable y(t) a similar proce-

dure results in

(5.26)

where the independence of the pulses was used in the last simplification. Sta

tionarity of the pulse process leads to

(5.27)

Performing expectations over both time and pulse amplitude in the last equa-

tion and substitution into (5.17) yield

(5.28)

In principle it should be possible to determine approximately all moments of

the response process by continuing along similar lines of reasoning. These in



98

turn can be used in a series to determine a characteristic function whose Fourier

transform is the approximate probability density function of the response vari-

able. The approximations are valid for both stationary and non-stationary

response statistics.

The previous results are now used to obtain estimates of the response of a

Coulomb element to a series of symmetric rectangular pulses. The deterministic

form of the pulse is given by

!
1, Tie < t < Tie + ~t;

w(t - Tie) = -1, Tie + ~t < t < Tie + 2~t;

0, elsewhere,

(5.29)

while the amplitude of the pulses is set by the random variable ble • For the

ensuing discussion, ble will be taken to be Gaussian with mean zero and standard

deviation (Jb, with probability density function

. 1 (b2
)p(b) == y'2'1r exp -2 .

21r(Jb 2(Jb
(5.30)

The approximate velocity response process for a Coulomb element IS

given by
M(t)

x(t) ~ L v(t - Tie, ble),
Ie=l

(5.31)

where v(t - Tie, ble ) is the exact velocity response of a Coulomb element to a

single acceleration' pulse given by Equation (5.7). The velocity response can be

shown to be mean-zero for mean-zero pulse amplitude by substituting (5.31),

and (5.7) in (5.25).

To approximately determine the velocity variance, the integral over time

of the squared velocity response to a single pulse is needed. It was remarked

in Section 5.2 that the maximum duration of a velocity pulse is 4~t, so for
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times larger than this, the integral of the velocity squared will be a constant.

Performing this integration gives

rt 2 _ 2a2 6.t3 ({3 - 1)2{3 [ 4]
J0 v (t, b) dt - 3 ({3 + 1) 1 + ({3 + 1)2 ,

where

(3 = l!1.
a

t > 46.t, (5.32)

(5.33)

The resulting approximate stationary velocity variance IS obtained by us-

ing (5.32), and (5.30) in (5.28), to yield

E[x2(t)] ~ Ai: p(b) [h' v2(t, b)dt] db, t> 46.t

_ Aa
2

6.t
3

h(UB), (5.34)
UB

where

(5.36)

The function h(UB) can be evaluated numerically using trapezoidal integration.

From the expression for E[x2] it can be seen that the velocity will be weakly

stationary for t > 46.t. This predicted stationary value is compared with

simulation results in a later section.

The approximate displacement response is given by the series

M(')

x(t) ~ 2: d(t - Tie! ble).
Ie=l

(5.37)

For times much larger that 46.t, the values of the integrals of response dis-

placement and displacement squared are dominated by contributions of the
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final displacement offset. Thus,

fat d(t, b) dt ~ t ~x(b), t ~ 4~t, (5.38)

fat d2(t,b) dt ~ t ~x2(b), t ~ 4~t, (5.39)

where ~x is found in Equation (5.8). If the first of these equations is used

with (5.8), (5.30) and (5.25), it can be shown that the large time mean will be

zero for mean-zero input.

The large time displacement variance is found by substituting (5.39),

(5.8) and (5.30) into (5.28), yielding

E[x2(t)] ~ t..\I: p(b) ~x2(b) db,

..\a2 ~t4
- t g(us),

Us

where

t ~ 4At

(5.40)

f2 {'JO [(f3 - 1)f3 ( 2 )]2 (-f3
2

)
g(us) = Y-; J1 f3 + 1 1 - f3 + 1 exp 2u~ df3, (5.41)

which is evaluated numerically. From the above equation for the displacement

variance, it can be seen that this quantity increases linearly for large time.

This behavior was exhibited by the simulations in the last chapter, although

the random p'rocesses used are different. Later in this chapter a comparison

will be made between the predicted slope of the displacement variance and the

value found through simulations performed using a Poisson pulse process.

Rms values for the absolute ground velocity and displacement are ob-

tained by using a similar procedure. The variance of the absolute excitation

velocity is given by

(5.42)
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where xg is the ground velocity, and

it 2( b) d _ 2~t3b2
V t, t - ,

o 3
t > 2~t. (5.43)

Substituting (5.43) into (5.42), and performing the integration results in

(5.44)

From (5.19), it can be shown that the variance of the input process is given by

U~ = 2A~tU:,

which, upon substitution into (5.44) yields

un~t
uzg = y'3.

The absolute ground displacement variance is obtained from

(5.45)

(5.46)

(5.47)

where x g is the absolute ground displacement, and ~X is the absolute displace

ment of each pulse, given by

(5.48)

Thus,

(5.49)

Consequently, the displacement variance of the input motions grows linearly

with time.

The expressions for the rms absolute ground velocity and displacement

are exact. These values can be used to determine the accuracy of the approxi-

mate Poisson pulse methods by observing the case for which the slip level goes

to zero. When the system is frictionless, the absolute measures of the input
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should equal the relative response measures, with discrepancies being an indi

cation of error in the approximate method. This comparison is performed in

the last section of this chapter, although the approximate method used is a

refinement on the previously developed method. The remainder of this section

is devoted to improvements on the Poisson pulse method.

The Coulomb element acts as a thresholding system: if the excitation

is below the slip level, the system does not move. Individually, a collection of

pulses with amplitude standard deviation below the slip level only occasionally

causes the system to slip. However, when these pulses are assembled into a

Poisson process, overlaps between the pulses will produce additional crossings

of the threshold. Based upon this argument, for processes with rms pulse

amplitude below the slip level, the accuracy of the approximate method can be

improved if the overlaps are considered. Since a model that creates composite

pulses out of overlapping pulses can be very complicated, a process is developed

to accounts for overlaps ~n a simple manner.

This method, to be called the "overlap series method," accounts only

for overlaps occurring during the first half of the pulse. If- the starting times of

two or more pulses are within 6t of the starting time of the first pulse, then

the starting times are all shifted to correspond to that of the first pulse. The

amplitude of the resulting pulse is the sum of the amplitudes of the individual

pulses. Any overlaps occurring for times greater than 6t are ignored, and the

response is computed with the pulses operating individually. Due to the use .

of identical, mean-zero, Gaussian distributions for the pulse amplitudes, the

standard deviation for the overlapping pulse is given by

(5.50)
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where m is the number of pulses overlapping the first. The combined pulse is

simply treated as an individual pulse with larger variance. The probability of

overlaps occurring is determined by the arrival time process. As the interarrival
•

times are independent, Poisson distributed, the probability of exactly m arrivals

occurring within an interval t is

P(m, t) = (>.t),m e-At •
m. .

(5.51)

The response to this input process is the sum over the number of overlaps

of the response to processes with the overlapping pulse variance, multiplied

by the probability of the number of overlaps occurring. This can be stated

mathematically as

00

E[Y;III(t)] ~ L P(m, ~t)E[Yo2(t,Ob(m))] ,
m=O

(5.52)

with the expectation op.eration on the right being the response computed earlier

in this section. Substitution of (5.50) and (5.51) into the previous equation

results in

(5.53)

The velocity variance is found by substituting Equation (5.34) into the previous

equation, producing

(5.54)

withOh(.) computed using Equation (5.35). Likewise, the displacement variance

is given by

(5.55)

where (5.40) has been replaced in (5.53), and g(.) is found from (5.41).
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If the slip level is more than three times the standard deviation of the

pulse amplitudes, it is possible to construct a different process accounting for

overlaps in both the first and second half of the pulse. As the method is rather

involved, and this thesis is primarily concerned with processes having good

likelihood of causing motion of the Coulomb element, the details of the method

are not carried further.

5.4 Simulation Techniques

The accuracy of the approximate method developed in the previous section is

estimated by comparison with a series of simulations. The simulation process

consists of two parts: the generation of the pulse input process, and the solution

of the equation of motion for the Coulomb element. This section deals chiefly

with the former, as the latter was discussed in some detail in the previous

chapter.

The first step in the creation of the input process is the determination of

the random arrival times of the pulses. The arrival times constitute a Poisson

process, so the inter-arrival times are exponentially distributed. Variates with

this distribution are generated through the transformation [28, pp. 452-31

1
T = ->: InR, (5.56)

where T is the desired exponential variate, A is the arrival rate of the process,

and R is a uniformly distributed random number on [0,11. The process begins

at an arbitrarily selected starting time, and inter-arrival times are generated

until the total duration of the process has reached a desired length. In order

to randomize the time of the first pulse, the starting time is set to -10/A, with
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pulses occurring before zero being ignored. The resulting starting times are a

portion of a stationary process for t > 0, but the pulse process is not, since

pulses starting during -2At < t < 0 are ignored but are required for the overall

process to be a portion of a stationary record. However, the system reaches

stationarity in velocity more rapidly when excited by this non-stationary pro

cess than if the process were stationary. Thus, it is advantageous to use this

particular form of an initially non-stationary input process when stationary

response statistics are required.

Associated with each pulse arrival time is a Gaussian distributed pulse

amplitude..These are generated using the Box-Muller transformation [28, pp.

453-41

N I = 0'6 (-2 In Rd l
/
2 cos(21rR2 ) ,

N2 - 0'6 (-2ln RI)I/2 sin(~1rR2)'

(5.57)

(5.58)

where NJ and N~ are independent Gaussian distributed with mean zero, and

standard deviation O'fl, and RI and R2 are independent uniformly distributed on

[0,1). Once the arrival times and amplitudes are determined, a table is assem

bled with these, as well as the times at which the pulses change value, which,

in the case of,symmetric rectangular pulses, occur at the arrival times plus 6.t

and 2At. Each of the pulses can be produced by summing step-functions, so

the next step is to produce a list of step-function amplitudes and starting times

from the previous table. These step-functions are then sorted into ascending

time order using a hash sort routine. As response statistics must be taken at

a consistent set of times for aU records in the ensemble, sampling times are

added in chronological order to the list as step-functions with zero amplitude.

This method avoids having to use a complicated algorithm to extract response
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data from the randomly timed response record. Repeated times are eliminated,

and an absolute acceleration record is produced by summing the step-function

amplitudes.

The acceleration record is then used as an input to the Coulomb ele

ment. In Chapter 4, a method was described to exactly solve the stick-slip

system's equations of motion under piecewise lin'ear input. The pulse process

consists of piecewise constant inputs with varying length, permitting the use

of the same algorithm. The system equation is solved to obtain the response

velocity and displacement, and values of these at the sampling times are used to

obtain response statistics. Ensemble statistics useful for comparisons with the

approximate method predictions are the stationary velocity variance and the

stationary velocity-displacement covariance, the latter being used to determine

the slope of the divergence of the displacement variance through the relation

, d '
dtE[x2(t)] =2E[x(t):i;(t)]. (5.59)

Thus, a positive stationary value of E[x(t):i;(t)] indicates linear increase in the

displacement variance. Overall values for the stationary statistics are found by

taking timewise averages of the ensemble statistics using data from the central

half of the record.

5.5 Comparison of Poisson Pulse Process and Simula-

tion Results

When a dimensional analysis is performed on the Coulomb system with Pois-

son process excitation, it can be shown that the four natural 'parameters of

the problem (A, At, O'b, a) can be collected into two dimensionless groups. The
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groups chosen for use in this section are ,\ flt, which can be considered a mea

sure of the pulse spacing, and (JB = (Jb/ a, the ratio of the rms pulse amplitude

to the slip level. Simulations are performed using the methods of the pre

vious section and are used to determine the parameter ranges for which the

approximate methods are accurate. Ensemble sizes of 1000 are used, with the

programs requiring from 3 to 6 hours to complete on a PC-AT. The response

statistics used in the comparisons are the rms velocity and the rate of increase

of the velocity variance. The two approximate methods checked against sim

ulations are the simple Poisson process, in which overlaps are not taken into

account, and the overlap series method. The data for the no-overlap method

are obtained from Equations (5.34) and (5.40), while that for the overlap series

are from .(5.54) and (5.55).

As was mentioned earlier, ,\ flt is an indicator of the pulse spacing. For

Aflt = 0.5, the pulse duration is equal to the reciprocal of the arrival rate, and

a large number of overl~ps are likely to occur. Smaller values of Aflt ensure

more time, on the average, between the pulses.

In Figure 5.4 results for the stationary rms yelocity and the displacement

variance rate are plotted for simulations and for the approximate methods, for

the case where the rms amplitude of the acceleration pulses is one third of the

slip level. With this low input level, less than 0.3% of the pulses individually

exceed the slip level. Thus, overlaps in the pulses may be a large contributor

to the response statistics. This is indeed the case, as the two approximate'

methods disagree by large amounts, with the difference between predictions

increasing as ,\ li.t increases. The overlap series method does a very good job of

predicting the stationary rms velocity, but its predictions for the displacement
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variance rate are off by an order of magnitude. Although these errors are large

in relative terms, use of parameter values realistic for earthquakes indicate that

both the predicted and actual displacements are small in absolute terms. The

no-overlap method is half of the simulation result for rms velocity when AClt

small, with the error increasing to almost an order of magnitude for large AClt.

In displacement rate, the no-overlap method is in error by one to two orders of

magnitude.

As Us, the ratio of rms pulse amplitude to slip level, is increased, more of

the pulses individually exceed the slip level, so the effect of overlaps diminishes.

Figure 5.5 exhibits a comparison of simulations with approximate methods for

Us = 1.0. Both approximate methods do a reasonable job of predicting rms

velocity, with the maximum error for the overlap series method being on the

order of 10%, while the no-overlap method is in error by up to 30%. The

displacement variance rate error is on the order of 50% for the overlap series,

while the no-overlap method is off by up to an order of magnitude for large

AClt.

At Us = 5.0, the majority of the pulses individually exceed the slip level,

and overlaps have a negligible effect. The simulation points and approximate

method curves are plotted in Figure 5.6, and it is seen that errors in both

methods in both velocity and displacement are below 20% over the range tested.

As can be seen by this comparison, the overlap series method is su

perior in accuracy to the no-overlap method. The penalty in computational

time and programming effort is slight, as the expressions.evaluated are easily

implemented numerically. The overlap method appears to be an accurate pre-
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dictor of rms displacement for Ailt below 1.0. The displacement variance rate

is within 50% foraB :2 1/3 and for A ilt < 1.0.

In the next section, values are assigned to the input parameters to corre

spond to the motions expected during earthquakes. The overlap series method

is then used to predict final rms displacements for these seismic motions as a

function of the Coulomb system coefficient of friction.

5.6 Response of Stick-Slip System to Earthquake-Like

Motions

The motion of the Coulomb system under seismic excitation is studied by means

of the overlap series method. The study is comprised of two parts. First, the

parameters of the model must be chosen so that a reasonable emulation of

earthquake motions is performed. The second step is to use these parameters

in the overlap series method to predict the displacement variance rate. This

rate, along with the duration of the strong shaking, is useful for predicting a

displacement rms value at the end of the earthquake. The section closes with

a discussion of factors not considered in the model that could affect the system

response.

Before using the Poisson pulse methods to model earthquakes, a check

must be performed to determine whether the acceleration pulse process is a

suitable representation of the strong motion portion of a seismic event. The first .

aspect to be examined is the ability of the process to replicate the spectrum of

an earthquake., Although there is no consensus on the part of seismologists and

earthquake engineers on an equation for the acceleration spectrum, a number

of proposed models [29,30,31] characterize the far-field spectrum as increasing
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with the square of frequency for low frequency, and decaying as the inverse

of frequency squared or higher power for high frequency. The low frequency

behavior of these models is a consequence of the assumption that the earthquake

can be modeled as a release of energy by a series of double couples arranged

along a dislocation surface. The near-field spectrum for such an arrangement

increases linearly with frequency for low frequency, while decaying as w-2 or

faster for large w.

Since the strongest seismic motions are generally experienced in loca

tions in the near field of an earthquake, the most useful spectrum for pre

dicting ground motions likely to cause system sliding is the near-field one. In

Section 5.2 it was remarked that the form of the acceleration spectrum for a

model consisting of a set of Poisson distributed pulses is given by a constant

times the spectrum of a single pulse. A symmetric pulse of the form given

in Equation (5.3) increases at the proper rate to model the near-field spec

trum, but the high frequency fall-off rate is not as high as that required by the

near-field model. This deficiency is not serious when the model is used as an

input to the stick-slip system, since, as was shown in Chapter 4, this system is

most sensitive to the low frequency content of the excitation. Thus, the pulse

has much of the spectral character of the near-field accelerations, and a pro

cess consisting of symmetric pulses with a deterministic shape given by (5.29)

should constitute a reasonable approximation to an earthquake when used as

input to a Coulomb element.

The three parameters that determine a given pulse process are .x, tlt,

and 0'6, if the pulse amplitude distribution is taken to be mean-zero, Gaussian.

The value for tlt can be determined from the center frequency of the seismic
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spectrum, and the relation between these is given by

7r
At =-,

We
(5.60)'

~here We is the center frequency in radians per second. The value for this

center frequency may not· be immediately apparent from the spectrum of a

given earthquake, but may be determined by performing a curve-fitting using a

spectrum of the form (5.6) with undetermined coefficients. A similar procedure

has been used by Lai [32] in determining the coefficients for a Kanai-Tajimi

spectrum for an ensemble of earthquake records.

Another parameter that has been used to characterize various earth

quakes is the rms acceleration for the strong motion [33,32]. Substitution

of (5.29) into (5.19) results in the variance of the pulse process being given

by

(5.61)

One way to specify this rms value is, using Parseval's relation, to use the area

beneath the earthquake spectral density. The previous two relations are the

only constraints on the pulse process obtained from the earthquake spectrum.

Consequently, the three process parameters cannot be uniquely determined

from the spectrum.

A third constraint that can be applied to the variables is determined

from the nature of the strong motion. As was mentioned in the preceding

section, the group ,\ At determines the spacing of the pulses. During an earth-

quake, the excitation has no gaps, so ..\ At should be chosen to produce closely

spaced pulses. However, if ..\ At is very large, the approximate method loses

accuracy. A compromise between these two requirements is obtained by let-

ting ..\ At = 0.5, for which it has been shown that the overlap series method is
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Size Dist.t Un 21rwc td O'b A ~t O'zg O'zg(td)
(em/s2

) (Hz.) (s) (em/s2) (s-l) (s) (em/s) (em)

Great VNF 250 3 60 250 3 1/6 24 93

Great NF 100 2.5 60 100 2.5 1/5 12 49

Mod. VNF 200 4 15 200 4 1/8 14 24

Mod. NF 50 3 15 50 3 1/6 4.8 9.3

f - - -VNF. Very Near Field (0 20 km)
NF: Near-Field (20-50 km)

Table 5.1: Event parameters used in study of response of stick-slip systems
to seismic excitation. The values of the rms absolute ground velocity Uzg and
final displacement Uzg(td) are computed from the other input parameters using
Equations (5.46) and (5.49), respectively.

reasonably accurate for Us ?: 1/3. Another benefit of using this value of ,\ ~t

is that the peak acceleration is usually between 3 and 4 times the rms value,

agreeing with the general 'behavior of an earthquake.

A number of studies have been performed [32,33,34] attempting to cor-

relate parameters such as center frequency, rms acceleration, and strong motion

duration to earthquake features such as epicentral distance, distance to fault

rupture, local magnitude, peak ground acceleration, and soil conditions. These

investigations point out trends, but the correlations exhibit much scatter, di-

minishing the predictive value of the regression equations. Instead of using

these models to determine a general response equation, four sets of parameters

with values consistent with certain types of seismic records are proposed. These

parameter sets are listed in Table 5.1 along with the Poisson process parameters

they induce. Although near-field records do not exist for a "great" earthquake,
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the values used in this study are consistent with the expected motions for this

size event.

The response statistic of greatest importance for design purposes is the

maximum expected displacement. Although the overlap process method can

not predict this value, it can be used to obtain an estimate for the rms dis

placement at the end of the record, from which other methods can be used

to estimate a maximum response. The non-stationarity present in earthquake

records is incorporated into the Poisson process model by initiating the process

at zero time, and stopping it at td, the record duration. The rms final dis

placement is (E[X2(td)J)1/2, where Equation (5.55) is used to obtain the overlap

series estimate for the displacement variance. This resulting rms displacement

determined by substituting parameters from Table 5.1 into this equation are

displayed as a function of coefficient of friction in Figure 5.7. The salient fea

tures of Figure 5.7 are now discussed. The great earthquake, very-near-field

model predicts an rms ground displacement close to one meter, which is not

unreasonable if one considers that fault offsets during this size events are on

the order of several meters. This is in good agreement with the value shown

in the Figure 5.7 for the coefficient of friction approaching zero. The same

agreement is true for the great earthquake, near-field case, although the final

displacements are on the order of half a meter. For the moderate earthquake,

the overlap series method overestimates the absolute ground displacement by

about 50% for both the near- and very-near-field models. For increasing co

efficients of friction, all curves decrease monotonically, but at different rates.

It can be see.n that the great earthquake produces large displacements over

a much larger range of coefficients of friction than the moderate event does.
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The range where (JB is small and the errors in the overlap series method be

come large relative to the simulation results is at high coefficients of friction,

where the rms displacements are below 1 cm. In this range, the maximum

error in displacement rate is about an order of magnitude, producing a factor

of three error in rms displacement. As the predicted displacements are small,

the absolute error should not be of much concern.

Measurements performed on computer equipment mounted on pads or

boots on a smooth floor indicate that coefficients of static friction for this type

of systems range from 0.3 to 0.7 [35]. The kinematic coefficient, the one used

in determining a Coulomb friction model, is generally between one-half and

one-third of the static one, possibly even lower if the surfaces are very clean.

Thus, the coefficient of friction for a Coulomb model of computer equipment on

a smooth floor is probably in the 0.1 to 0.3 range. For these values, the very

near-field response to a moderate earthquake is in the tens of centimeters, which

is generally consistent w!th the observed behavior for such systems. However,

there have been some reports of post-seismic drift on the order of a meter. The

remainder of this section is devoted to a qualitative discussion of characteristics

of real systems that may affect the scale of the motion, causing it to deviate

from the estimates given herein.

If Lhe equipmeuL is mounLed iu:side a. building, Lhe :sLrucLure behave:s as

a filter by amplifying the motions at certain frequencies. The effect seen by the

Coulomb element is an increase in both the rms acceleration and the duration .

of the strong shaking, both of which increase the displacement response. In

addition, if the structure is large, the center frequency of the process may be

lowered, producing larger displacement offset rates. However, the reduction in
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bandwidth of the spectrum may reduce the displacement offset expected for a

given rms input.

A true earthquake is not simply a one~dimensional process, but a three~

dimensional random process. The vertical acceleration produces a variation in

the normal force, causing the slip level to increase and decrease randomly. The

effective slip force is most likely below the value for on~dimensional excitation,

producing larger displacements than those predicted by the model. Since the

friction force acts vectorially, the horizontal slip level in a particular direction

for a horizontal tw~dimensionalexcitation is given by

I(t) = -JJg cos OCt), (5.62)

where I(t) is the desired slip level, and 9(t) is the instantaneous angle between

the axis of interest and the applied force. Since Icos O(t)1 $ 1, the perceived

slip force for tw~dimensiona.l motion is on the average lower than that for on~

dimensional motion. Consequently, if horizontal excitation were to be added in

a direction orthogonal to the already considered on~dimensional process, the

resulting relative displa.cements would most likely increase in the direction of

interest.

In frees.tanding equipment, the center of gravity is sometimes high when

compared to the length of the system's base. Consequently, the equipment may

rock and "walk" during an earthquake. This type of motion can contribute to

large displacements for high coefficient of friction and low width-to.height ratio

systems.

Another possible source of error in the predicted motion is the assump

tion that the pulse amplitudes are mean~zero. It may be entirely possible that

for a given earthquake and site, the first portion of the pulses would be more
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likely to be of one sign than another. The overall process would still be mean

zero because the pulses are symmetric, but the Coulomb element would undergo

a non-zero mean response, increasing the estimated displacement. A related

but different problem is that of a system resting on an inclined plane. In this

case, the Coulomb force is not symmetric, and the system response again has

a non-zero mean.

As can be seen, a one-dimensional model that accounts for friction in

a simple manner does not account for all effects present in real freestanding

objects. A complete understanding of the motion of these systems would require

an investigation of these conditions. Nonetheless, the Poisson process models

are valuable tools in obtaining order of magnitude estimates for permanent

offsets from sliding during earthquakes.

Although this Poisson process technique has not been applied to the

caster-mounted system, it is possible to speculate on the outcome based upon

results in Chapters 2 and 3. In these chapters it is shown that for both harmonic

and white noise excitation, upper and lower bounds for the caster response are

determined by the frictionless and Coulomb system, respectively. If the same

holds true for this excitation, then the results in Figure 5.7 can be used to

bound the caster system response.
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Chapter 6

Summary and Conclusions

In this thesis the response of frictional systems with both constant and dis

placement-dependent force has been examined for deterministic and random

excitation. The response to harmonic excitation is examined in Chapter 2.

When the method of slowly varying parameters is used, it is observed that the

Coulomb, or constant force, system is a lower bound to the caster-mounted

system response; the latter system's frictional force is displacement dependent.

An upper bound is given by the displacement amplitude of the input motion.

All solutions for the response amplitude of the Coulomb system as a function.
of frequency are stable. The caster-mounted system exhibits unstable regions

of response, but only for small input amplitudes.

The use of centering devices has been proposed previously for reducing

the drift of frictional systems. It is shown in the second chapter that the

centering mechanism shifts the peak response frequency for both the Coulomb

and caster-mounted systems. The response amplitude is shown to increase

for many input frequencies, the opposite effect from that sought. Another

drawback to the use of centering devices is that the response is no longer

.boun~ed from above by the ground displacement. Thus, it is more difficult to

predict the peak steady-state response amplitude.
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The third chapter is devoted to the examination of the response of the

caster system to white noise excitation. By means of the equivalent lineariza

tion method, it is shown that the response is characterized by two limiting

behaviors. The lower limit is the Coulomb system, which achieves steady-state

in both the velocity variance, and the velocity-displacement covariance, but

remains non-stationary in displacement. From above, the response is bounded

by the absolute input motion, which diverges in both velocity and displace

ment. The nature of the caster response is shown to change from the lower

to the upper bound behaviors, with the transition time being a clearly defined

function of the system and excitation parameters.

Spectra more representative of earthquakes are obtained by filtering

white noise. Chapter 4 contains an equivalent linearization study of the re

sponse of the Coulomb system to band-pass filtered excitation. The results

are compared with simulations, and it is shown that velocity is accurately pre

dicted in most cases, but the displacement trends are erroneous when the input

contains no zero frequency spectral content. An explanation is found in the ve

locity spectrum of the response, where it is seen that the linear system response

is limited to the band of input frequencies, while the nonlinear Coulomb system

response exterrds outside this band, reaching all the way to zero frequency. This

zero frequency response then causes the displacement variance to increase lin- .

early with time. It appears that no linearization method is capable of capturing

this behavior.

In Chapter 5, an approximate method able to represent this response

is developed. When the input is described in terms of a Poisson process, the

method computes the overall response as a superposition of responses to in-
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dividual pulses. If overlapping in the input pulses is considered, the method

agrees closely with simulation results. Estimates for final rms displacements as

a function of coefficient of friction are computed by using parameters represen

tative of certain seismic events. Although no precise estimates for the caster

system are computed with the method, lower and upper bounds may be found.

in the Coulomb system response and the absolute ground motion, respectively.
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Appendix A

Equations of Motion for a Caster

A caster is a pivoting wheel on which mobile objects su~h as data-processing

and hospital equipment are routinely mounted. In this appendix, the force

displacement relation is found for the rectilinear motion of a caster. The first

part of the derivation consists of finding the resisting force as a function of the

caster's angle. Next, a kinematic relation is found relating the linear position

with the angle of the caster. This kinematic relation is then used with the

resisting force relation to determine a force-displacement relation for motion

along a straight line.

A number of assumptions are made in deriving the equations of motion,

and some are discussed below. The caster is assumed massless, as its mass

generally is much smaller than that of the equipment it supports. Consequently,

the equations of motion can be derived quasistatically. The only energy loss

mechanism is frictional due to slipping of the caster on'the floor as it pivots.

Losses due to rolling and bearing friction are ignored. The wheel and the ground

on which it rests are assumed rigid, and the load is assumed to be uniformly

distributed along the line of contact between the wheel and the ground. The

resisting force is the sum of the frictional forces on the infinitesimal elements

that constitute the line of contact. Each one of the contact' line elements applies
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a force in the direction opposing its relative velocity, with magnitude equal to

the coefficient of friction multiplied by the load per unit length of contact.

A.I Resisting Force as a Function of Angle

The configuration of the caster used in the ensuing discussion can be seen in

Figure A.I. The caster is oriented at an angle 0 from the x-axis. The coordinate

system used for the caster consists of an axis s along the direction in which the

caster rolls freely and an axis n normal to this axis. All coordinate systems

have origins at the point 0, the center about which the caster pivots. The

horizontal distance between 0 and the wheel axis is l, and the wheel axis lies

directly above the line of contact. The point A is at the center of the line of

contact, and B is a general point along the line of contact, both points being

on the wheel. The wheel has radius r and width w.

The components of the velocity of B in terms of the velocity of A and

the caster rotation rate 0 are

(A.l)

(A.2)

The components of the frictional force along the line of contact are given by

where

J).N VBn
fBn = ---

w IVBI' (A.3)

(A.4)

(A.S)
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Figure A.1: Caster configuration used in the equations of motion.
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and J.L is the coefficient of friction, N is the load on the caster, and w is the

wheel width.

Due to th~ assumption of no rolling friction and no energy losses in the

wheel bearings, the net force in the s, or rolling, direction is zero. Thus,

f
W / 2

Fs = fBsdn = O.
-w/2

The force in the n direction, which is not yet known, is given by

f
W / 2

FYI = fBn dn .
-w/2

(A.6)

(A.7)

The goal in this section is to determine this force Fn . The net moment at the

thrust bearing at 0 is zero, leading to the expression

f
W / 2

Mo = Fnl- ' fBsndn = O.
-w/2

(A.B)

Substitution of Equations (AA) and (A.I) into (A.6), integration, and

manipulation, leads to the condition

VAs = o. (A.9)

Thus, the relative velocity of the wheel midline in the rolling direction is zero.

Replacement of (A.3) and (A.2) in (A.7) and integration results in

F. = _p,NfJ in [J1 +fJ2 + 1]
n 2 JI + /32 - 1 '

where

(A.IO)

(A.ll) ./3 = ± 2v~n.
w(}

Integration of (A.8) and substitution of the expression for Fn given above results

in the condition

fJ.
N (W/32 _ /3 i ) In [JI +,82 + 1] = O.
2 4 JI + ,82 - 1 (A.I2)
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Since the expression in brackets never equals one, the only solution to the above

equation is

which leads to

j3
_ 4£
- ,

w
(A.13)

(A.14)

Substitution of (A.13) into the expression for Fn given by (A.I0) yields an

expression for the normalized lateral force

Fn = s (I:.-) ,
J.tN w

with

(A.15)

(A.16)[
VI + (41)2 + 1]

sb) =21 In . / .
V1'+ (41)2 - 1

Thus, the normalized lateral force is only a function of i/w, the ratio of caster

pivot radius to wheel width.

The relationship between lateral force and caster geometry given by

Equation (A.lS) is plotted in Figure A.2. It is seen in the figure that for

ifw < 0.1, the lateral force Fn is a small fraction of the total available frictional

force J.tN. For ifw > 0.3, the lateral force is over 90% of the available frictional

force. Casters-used for mounting data-processing equipment typically have l/w

between 0.5 and 2, so the lateral force is almost equal to the available frictional

force J.tN in these applications.

A.2 Kinematics of the Caster Motion

Since the caster-mounted equipment is herein assumed to move in a straight

line, only the one-dimensional kinematics is derived in this section. If the caster
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support point 0 is displaces along the x-axis with velocity X, then the lateral

velocity of the point A on the wheel is given by

VAn = -xsinO + lO. (A.17)

In the previous section, it was shown that the condition for zero moment at 0

led to

VAn =±2l6. (A.18)

Manipulation of the previous expressions for VAn yields the two equations

0 x . 0 (A.19)- --sm
l '

6 x . 0 (A.20)- 3l sm .

The first of these can be eliminated on physical grounds, so the remainder of

the analysis considers only the second relation. So~ution of this equation with

the initial conditions Xo = 0 and 00 = 11"/2 results in

~ = In tan (~) .
3l 2

(A.2I)

The initial condition on (J indicates that in the zero position, the caster rolling

axis is perpendicular to the direction of support motion. Solution of (A.21) to

obtain 0 as a function of x yields

(J = 2 arctan (eZ/3l
) • (A.22)

This kinematic relation gives the caster orientation as a function of the location

of the support point and will prove to be useful in the next section.

Note that when (J ~ 0 or (J ~ 11", Equation (A.21) indicates that a small

change in the angle causes a very large change in x. Thus, when the wheel is
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directly ahead of, or behind, the pivot point, a small perturbation can cause the

apparent position of the caster to change by a large amount. This sensitivity

causes the motion to not be reversible if the displacements are sufficient to

cause the wheel angle to approach 'fr. However, for Ixl < 31, the angles remain

reasonably insensitive to perturbation, and the motion is reversible.

A.3 Force-Displacement Relation for Rectilinear Caster

Motion

The force in the x direction that must be applied at the support point 0 to

move the caster is given by

Fz = Fn sin () sgnO, (A.23)

where F", is given by (A.i5). Using (A.22) in (A.23) and the use of transcen-

dental function identities leads to

Fz = -Fnsgn(x) sech (;l) . (A.24)

It was remarked in an earlier section that for casters used with data processing

and hospital equipment

(A.25)

If the weight of the caster-mounted equipment is evenly distributed among fOUf

casters, then for each caster

N = J1.mg
4 '

(A.26)

where m is the mass of the equipment. Thus, the force of each caster per unit

mass of equipment is

Fz J1.g . ( x )m = -7 sgn(x) sech 31 . (A.27)
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While excitations considered in the thesis are one-dimensional in the

absolute coordinate system, it is unknown beforehand whether the response

measured in the relative coordinate system is also one-dimensional. When the

caster initial angles are symmetrically arranged about the direction of excita

tion, the forces in the perpendicular direction cancel, and the relative motion

is one-dimensional. For the more general case where the initial positions of

the casters are arbitrary, possibly random, the situation is more complex. If

the weight of the object supported by the casters is large compared with the

frictional forces, then the absolute motions are small compared to the relative

ones, and the relative motion is predominantly one-dimensional. For frictional

forces on the order of the system weight, a more careful analysis beyond the

scope of this study must be performed. Any two-dimensionality of the motion

causes a perturbation in the effective angle of the caster, in turn producing a

non-reversible motion for large excursions.
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