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Abstract

Stan9.ard earthquake analyses of civil engineering structures use uniform

ground motions even though considerable variations in both amplitude and phase

can occur along the foundation interface for long-span bridges and large dams, The

objective of this thesis is to quantify the effect that these nom:miformities have on the

structural response.

The nonuniform, free-field motions of the foundation interface are assumed to

be caused by incident plane body waves. The medium in which these waves travel is

a linear, elastic half-space containing a canyon of uniform cross section in which the

structure is placed. The solutions for the free-field motions that are due to incident

SH, P a.nd SV waves are calcula.ted using the boundary element method.

An analysis of Pacoima (arch) dam located near Los Angeles, California, IS

performed for both uniform and nonuniform excitations. The important effect of

nonuniformities in the free-field motions, sometimes leading to a decrease in the dam

response and sometimes to an increase, is quantified,
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Chapter 1

Introduction

Seismic analyses of civil engineering structures typically use uniform, free-field mo­

tions at the foundation interface as the earthquake loading. However, significant

variations in amplitude and phase can occur along the interface if its spatial extent

is large; this is certainly true for long-span bridges and large dams. The objective of

this thesis is to quantify the effect that these nonuniformities have on the response of

concrete arch dams.

The state of the art in computing the earthquake response of a three-dimension­

al dam assumes uniform, free-field motions and employs a finite block of foundation

rock, usually assumed massless, which is fixed at its far boundary. Omission of foun­

dation mass eliminates the artificial foundation modes that arise from the finite extent

of the foundation and that may tend to dominate the response. Foundation radiation

damping can be included approximately in such a representation through equiva­

lent damping ratios assigned to the modes of the dam-water-foundation system [10]

or through equivalent hysteretic damping assigned to the dam [19-]. More rigorous

mathematical treatment of dam-foundation interaction would include the foundation

mass and would either provide transmitting boundaries to prevent reflected waves or

extend the foundation mesh far enough from the dam to allow travelling waves to

be absorbed by material damping. However, construction of accurate transmitting
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boundaries for complicated, three-dimensional canyon geometries is beyond the cur­

rent state of the art, and extension of the foundation mesh for wave absorption is

computationally infeasible.

In addition to the foundation interaction problem, a remaining important task

is to define and incorporate a realistic, nonuniform free-field input. The few instances

where motions at points near the interface between the darn and foundation were

recorded during an earthquake indicate that the motion is far from uniform, more so

for the higher frequency components [26,24,6,28,27,25,1,35,8,7]. (Note that the rela­

tive amounts of variation present in the free-ofield motion and due to dam-foundation

interaction are unknown.) Only a few analytical studies employing nonuniform in­

put to the dam have been reported: [40 j 14,11] for two-dimensional systems and

[5,14,45,9,46] for three-dimensional arch dams. All agree that nonuniformity in seis­

mic input is important Also of concern is nonuniform seismic input to the water.

A few studies have been made with two-dimensional systems, using variations of the

ground motion in the direction of the stream [39,29,21]. Again, significant effects are

noted.

Only references [45,9,46] mentioned above represent serIOUS studies for arch

dams. However, the reduction in the dam response in [45] caused by an incident wave

excitation compared to uniform excitation seemed rather excessive, and studies [9]

and [46], which showed larger stresses that were due to nonuniform seismic input,

considered only phase variations in the free-field motions because of the time lag of

the travelling wave. Further, neither [45] nor [46] considered reservoir water j and [45]

em,ployed only excitations in the stream direction. Thus j further iIlvestigation of the

effects of nonuniform seismic input is needed.

In this study, a frequency domain investigation into the effects of nonuniform
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earthquake excitation on the linear response of a three-dimensional arch dam-water­

foundation system (Pacoima dam) is performed. The analysis consists of two parts.

First, the free-field motions of the canyon walls are obtained by the direct boundary

element method after making some simplifying assumptions about the canyon geom­

etry and"the earthquake mechanism. In the second part of the analysis, the frequency

domain response of the dam-water-foundation system is computed by the finite ele­

ment method, using the previously determined free-field excitations. To quantify the

effect of nonuniform seismic input more concisely, the frequency domain responses

are converted into the time domain in the form of standard deviations of the response

to a random input with an earthquake-like frequency content.

Details of the finite element analysis of the dam-water-foundation system are

presented in Chapter 2. Then, Chapter 3 describes the boundary element proce­

dure for calculating the free-field motions that are due to incident SH, P and SV

waves. Frequency and time domain responses for Pacoima dam near Los Angeles,

California, for various incident waves are presented in Chapter 4. Conclusions and

recommendations for future work follow in Chapter 5.
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Chapter 2

Formulation for Linear Dam Response

2.1 Basic Equations

A desirable way to specify the earthquake input to a structure is through free-field

motions, i.e., those motions that would occur in the foundation during the earthquake

if the structure were not present. Such a specification is valid if no nonlinearity occurs

outside the structure. The structure response can be obtained by superposing two

solutions as shown in Figure 2.1. The presence of water, as for a dam, is discussed

later.

In the first problem (problem 1), the earthquake occurs with the structure dis­

connected from the foundation (so that the foundation moves at the free-field motions

with a traction-free surface), and the structure is subjected to a special set of body

forces and surface tractions defined so that the surface that was connected to the foun­

dation also moves at the free-field motions. In the second problem (problem 2), in

which the structure and foundation are joined together, the structure is subject to the

negative of the body forces from problem 1 as well as to a line load applied along the

foundation interface equal to the negative of the surface tractions from problem 1. Su­

perposition of problems 1 and 2 leaves the incident wave on the structure-foundation

system with no body forces on the structure and with continuous displacements and



5

tractions across the foundation interface. Note that if the free-field motions are not

uniform, then the first solution involves nonzero strains in the structure, and, thus,

this superposition procedure can not be used in the case of a nonlinear structure.

The requirements for problem 1, that the foundation interface of the structure

move at the free-field motions, can be satisfied in an infinite number of ways. However,

the most convenient one avoids the solution of a dynamic problem and is known as

the pseudo-static solution (denoted. by superscript 51) obtained from

(2.1)

where [K] == the stiffness matrix of the structure (say, from a finite element discretiza­

tion) partitioned into degrees of freedom off (subscript d) and on (subscript i) the

foundation interface, {uSI (tn = nodal displacement vector containing the specified

free-field motions {u{J (tn in {urI (t)}; i.e.,

(2.2)

and t = time. Note that only the upper partitioned part of [K] appears in Equation

2.1. {u~l( t)} is computed as

(2.3)

The set of special forces applied to the structure in problem 1 can be obtained

by inserting {uS1.(t)} into the matrix equation of motion of the structure:

+
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where [C] and [M] are the structure's damping and mass matrices. Neglecting the

small damping term and employing Equations 2.2 and 2.3 reduces Equation 2.4 to

{;~:~:~ }-[:r. ;,,] {:~:~:; }+ [:;. :::] { :~~:~} (2.5)

In problem 2, the special forces of Equation 2.5 are removed from the dam-

foundation system. Thus,

K dd Kdi 0 u~(t) Cdd Cdi 0 u~(t)

KI K i; + Kii kif uHt) + cr C ii + Gii Gil ur(t) +

0
-T Kff u}(t) 0

-T
G ff u}(t)Kif Gif

Mdd Mdi 0 u~(t) jj1(t)

M! M j ; +Mii Mil u;(t) - j;l(t) (2.6)

0
-T

M ff u}(t) 0M ij

where the (-) denotes matrix quantities associated with the foundation region, and

the subscript j refers to foundation degrees of freedom off the structure-foundation

interface. For an infinite domain, [Kff ], [Gff] and [MffJ could include terms rep-

resenting a transmitting boundary. However, because such treatments are difficult

for the three-dimensional canyon geometries associated with dams, only the stiffness

of the foundation is included here ([G], [AJ] = [OJ). Actually, foundation radiation

effects are also approximately included as mentioned later. Such treatment has not

prevented good agreement from being obtained in correlations with forced vibration

test data on a number of concrete arch dams [15,32,31,33]. Omission of [G] and [AJ]

at this stage allows the f degrees of freedom to be condensed out, and Equation 2.6

reduces to

{
u~(t) }

u;( t)
+
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(2.7)

where [kid is the foundation stiffness matrix condensed to the interface degrees of

freedom, localized to preserve the bandedness of the matrices [13].

If foundation interaction is not included, then the "i" equations in Equations

2.5 and 2.7 drop out, and the free-field displacements affect only the pseudo-static

component of the solution ; Le., they do not appear on the right hand side of the

dynamic problem ("d" equations of Equation 2.7). This situation is desirable because

it enables the effect of the uncertainties in the free-field displacements, which may

be significant if they are obtained by integrating accelerograms, to be kept track of

more easily. To accomplish this when foundation interaction is included, decompose

{u2(t)} into another pseudo-static part, {uS2 (t)}, and the remaining (dynamic) part,

(2.8)

This pseudo-static part is computed from

[

Kdd Kdi ] { U~2(t) } _ [0 0] { U~l(t) } (2.9)
KI; K ii + k ii Uf2(t) KI; K ii u{f(t) '

where the right hand side is the displacement term in Equation 2.5. The pseudo-static

solution

(2.10)

ca?- be interpreted as the response of a massless structure to the earthquake with

foundation interaction included. Substitution of Equation 2.5 into Equation 2.7 and
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using Equations 2.8, 2.9 and 2.10 results in

where

(2.11)

(2.12)

and where a damping term has been neglected from the right hand side.

The total solution is obtained as

(2.13)

from Equations 2.2, 2.3, 2.9, 2.10 and 2.1l~2.12.

The formulation for the response of a dam with water in contact with the up-

stream face also employs a superposition of pseudo-static and dynamic components.

Earthquake loading to the dam and water is again expressed in terms of free-field mo-

tions, defined as those occurring with both the dam and water absent. The pseudo­

static response {uS (t)} of the dam is taken to be that from Equations 2.2, 2.3, 2.9

and 2.10, which were derived without water. The associated response of the water is

that due to the motion {uS(tn along the boundary at the dam and to the earthquake

excitation of the reservoir floor and sides; it is a dynamic response computed con-

sidering interaction between the water and foundation, which, however, is assumed

not to affect the free-field motions at the dam-foundation interface. The dynamic

component of the dam response is generated by removing the applied forces in the

pseudo-static solution. As a simplification for the dynamic problem, interaction be-
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tween the dam and the water through the foundation is neglected (following [23,22]);

this neglect is consistent with the above assumption in the pseudo-static solution.

To include water compressibility, a frequency domain solution is most conven-

ient. In the frequency domain, to obtain a response r(t) to an excitation p(t), the

Fourier components of r( t), defined as

r(w) =1: r(t) exp(iwt)dt, (2.14)

where w = frequency, are obtained frequency by frequency from the Fourier transform

of the equations of motion. The right side of these equations contains the Fourier

components of p(t), defined as

p(w) = i:p(t) exp(iwt)dt.

The function r(w) is transformed to the time domain by

1 100

r(t) = -2 r(w) exp (-iwt) dw.
1r -00

(2.15)

(2.16)

The Fourier components of the dam response are obtained by superposing

pseudo-static and dynamic solutions

(2.17)

The pseudo-static solution {uS(w)} is frequency dependent since {u{f (w)} is, and is

found from

{US(w)} = {uS1 (w)} + {uS2 (w)}

{u~l(w)} = -[Kddt 1[KdiHu{f(w)}

{ufl(W)} = {u{f (w)}

{
U~2(W)} [0 0] {
Uf2(W) I(E Kii

(2.18)

(2.19)

(2.20)

(2.21 )
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The forces required to constrain the dam motion during the earthquake to the

pseudo-static motion {US (w)} are

(2,22)

where a viscous term has been omitted and where _w2
{ uS(w)} is the Fourier trans-

form of {uS(t)}; {RS(w)} = vector of water forces on the dam generated by the

pseudo-static accelerations _w2 { uS(w)} of the dam (water-foundation interaction in­

cluded); and {RC(w)} = similar vector generated by the free-field accelerations at

the reservoir floor and sides (stationary dam, water-foundation interaction included).

Removal of the forces {fS(w)} from the dam-water-foundation system produces the

dynamic response {uD(w)} of the dam from the solution of

[

Kdd - iWCdd ~ w2M dd - w2kLu(w)

K T . CT 2MT 2MA T( )di - ZW di - W di - W di W

(2,23)

where [M(w)] is the frequency dependent, added mass matrix of the water,

Computational details for [M(w)], {RS(w)} and {RC(w)} follow [22,23], which

employ a finite element discretization of the pressure wave equation for the water, A

transmitting boundary is used at the upstream end of the water mesh to represent

an infinite reservoir, and a partially absorbing boundary based on one-dimensional

wave propagation is applied along the reservoir floor and sides to approximately

model water-foundation interaction, Also, the response {uD(w)} is expressed in terms

of eigenvectors of the dam-foundation system (generalized coordinates), which are

assigned appropriate values of modal damping to represent viscous effects as well

as foundation radiation, Thus, the damping matrix [C] in Equation 2,23 need not
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be formed. The added mass matrix [M(w)] is computed directly for the generalized

coordinates.

2.2 Free-field Motions

The" free-field motions are assumed to result from plane body waves incident to the

canyon at various angles. For an actual canyon geometry and an arbitrary angle of

incidence, solution for the free-field motions would be very difficult. Therefore, for

simplicity, it is further assumed that the canyon is straight and of unvarying cross

section and that the incident waves propagate normal to the axis of the canyon.

These assumptions reduce the free-field problem to a two-dimensional one (Figure

2.2). Thus, incident SH waves produce the stream component of the excitation, and

incident P and SV waves produce the perpendicular components, vertical and cross­

stream. No variations in the free-field motions in the direction of the stream result

from this procedure; any must be arbitrarily imposed.

Solution of the free-field problem is carried out by the direct boundary element

method in an infinite two-dimensional half-space as described in Chapter 3. A fre­

quency domain solution is employed. While foundation mass was omitted in section

2.1, it is, of course, included in the free-field problem.

In order to assess the effect of nonuniformity in the free-field motions on the dam

response, the case of unifor~ free-field motion is also examined. This requires that

some calibration be performed between the uniform excitation and the incident wave

excitation, which is accomplished using a half-space with a horizontal free-surface

(Figure 2.3). The motion used for the uniform excitation case, which is applied as

a free-field motion everywhere along the canyon, approximately coincides with that

occurring at point Q in Figure 2.3 (at the intersection of the canyon centerline and the
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horizontal free surface) due to the incident wave in the calibration half-space. Thus,

account is taken of reflections of the incident waves. For the results presented in

Chapter 4, six excitations are employed as listed in Table 2.1: three for stream motion

(U-S, SHO and SH60) and three for cross-stream-vertical motion (U-CV, SVPO and

P60) where the vertical motion is approximately half that of the cross-stream. A single

specification of ground motion (scaled amplitude-wise according to the factors given

in the table) is used for all stream motions, the horizontal and vertical components

of case U-CV, the P and SV waves in case SVPO, and the P wave in case P60. With

reference to the calibration half-space, it would have been desirable to impart different

frequency contents to the horizontal and vertical components of motion, but this is

not possible for an excitation like P60, where a single incident wave produces both

components, so no differences were employed.

2.3 Time domain results

To establish results in the time domain, the time history of the excitation (incident

wave or uniform, free-field motion) is specified and transformed into the frequency

domain. For the incident wave excitation, the free-field problem is then solved fre­

quency by frequency as described in Chapter 3 to produce the free-field motions at

the canyon surface. Once the frequency domain responses of the dam are computed

by the procedures of Section 2.1, they are transformed to the time domain by Equa­

tion 2.16. Since the resulting responses of the dam will be sensitive to the frequency

characteristics of the time history chosen for the excitation, a number of analyses for

different time histories may have to be performed before some "average" features of

the response become apparent. To avoid this process, the standard deviation (O'r)

over time of some response r( t), which for the problem being solved has a zero mean,
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is computed. The formula employed is based on

(2.24)

where Hr (w) is the transfer function (the Fourier transform r(w) of the response

divided by Fourier transform pew) of the excitation), and Sew) is the power spectral

density function for a stationary time history.

To impart earthquake~like frequency characteristics to the excitation, Sew) is

taken to be proportional to IF(wW, where \F(w)1 is the modulus of the average Fourier

transform of horizontal ground motion on rock near a magnitude 7.5 earthquake, as

taken from [37] (Figure 2.4). The function IF(w)l represents the frequency distribu-

tion of the excitation (incident SH, P, SV waves or uniform, free-field motions); no

distinction other than amplitude is made for horizontal and vertical components of

the excitation, as mentioned in Section 2.2. Thus,

(2.25)

where C = the constant of proportionality between Sew) and IF(w)1 2 and is taken as

(2.26)

where Teq is the duration of the earthquake motion.
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Angle Amplitude of Surface Amplitude

Case Type Wave of Dir. of Uniform Excitation of Incident Wave

Incid. Motion or Incident Wave with Reflection

U-S uniform - - S 1 -

SHO incident SH 0° S 1 1"2

SH60 incident SH -600 S 1 1'2

U-CV uniform - - C,V -1 (C), ! (V) -

SVPO incident SV,P 0° C,V -! (SV), i (P) -1 (C), ! (V)

P60 incident P -600 C,V 1 -0.93 (C), 0.45 (V)'2

Table 2.1 : Input excitations for Pacoima dam
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Chapter 3

Solution of the Free-Field Motions

3.1 Superposition Problem

The free-field motions of the canyon are assumed to be generated by incident plane

waves in an infinite, linear, elastic, homogeneous, isotropic half-space, and are solved

through the method of superposition. The cross section of the canyon (x-y plane) is

uniform in the z direction, and all waves propagate normal to the axis of the canyon

(z axis). In the superposition problem (Figure 3.1), the solution for an incident wave

in the half-space (case I, horizontal surface) is added to the solution for the negative

of the tractions T;, T~, T; on the (fictitious) canyon boundary from. case I applied to

the real canyon (case II, canyon present). The sum of these two problems yields the

free-field displac~ments u!l, uti, u!I of the canyon caused by an incident wave with

a traction-free surface along the canyon (TIl, Ttl, Til = 0).

The solutions for the displacements and stresses in case I for incident SH, P

and SV waves are given in Appendix B. For case II, the solutions are computed

numerically by the direct boundary element method as outlined ill the remainder of

this chapter. All solutions are carried out in the frequency domain; that is, time

variations are e-iwt• Response quantities are to be interpreted as complex amplitudes

of the e- iwt variations; for simplicity, the notation for the w dependence is omitted.
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3.2 Basic Equations (case II)

The problem outlined above is two-dimensional: antiplane shear for an incident SH

wave and plane strain for incident P and SV waves. For case II, the equations of

motion (without body forces) and boundary conditions are [16]

in nc (3.1 )

TIl = _T1 on rz z

T;I = 0 on the horizontal surface

radiation condition at infinity

for antiplane shear and

TII = _T1
}

X x on r
TIl = _TI

y y

T
II = 0 }x on the horizontal surface

TII = 0y

radiation condition at infinity

for plane strain, where

nc = domain of half-space with canyon present

r = surface of canyon

p = density

w = frequency (radians per second)

(3.2)

(3.3)

(3.4)
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J.t = shear modulus

,.\ = Lame constant

and u and T denote displacement and surface traction, respectively.

To form the boundary integral equation, the weighted residual method and

Green's theorem (twice) are applied to the equations of motion. The weighting func-

tions, Wz , W y ,W z , in the weighted residual method are chosen to satisfy

(3.5)

Tz = 0 on the surface }
(3.6)

radiation condition at infinity

for the antiplane shear problem, and

(3.7)

or

Tz = 0 } on the horizontal surface
Ty = 0

radiation condition at infinity

(3.8)

(3.9)
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TX=O} on the horizontal surface
Ty = 0

radiation condition at infinity

(3.10)

for the plane strain problem, where nh is the half-space without the canyon and

Dz(X - Xs, Y - Ys) is the Dirac delta function in the z direction at point (xs., Ys), etc.

for Ox and Dy • The above weighting functions can be viewed as displacements that are

due to the Dirac delta functions, which can be interpreted as line loads or sources.

For this reason, the notation Wx , W y , W z is replaced by u x , U y , U z • Restricting the

point (xs, Ys) to be outside the domain nc results in the following integral equations:

(3.11)

for antiplane shear, and

(3.12)

for plane strain, where U~I, u~ and U~I are the unknown case II displacements at the

canyon surface; T;I, T~I and T~I are the case II tractions on the canyon defined in

Equations 3.2 and 3.4; U z and Tz are the displacements and tractions at the (fictitious)

canyon boundary from the solution of Equations 3.5 and 3.6 in nh
, and U x , U y , Tx

and Ty are displacements and tractions at the (fictitious) canyon boundary from the

solution of Equations 3.7 and 3.8 or Equations 3.9 and 3.10 in nh . (Note that Equation

3.8 is the same as Equation 3.10.) Because the source solutions satisfy the traction­

free condition on the half-space surface, the domain of integration in Equations 3.11

and 3.12 is only the surface of the canyon.
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It is more convenient to place the source point (xs, Ys) on the boundary rand,

to avoid the singularity there, relocate the boundary inward and around the point

(Figure 3.2). Equations 3.11 and 3.12 become

(3.13)

and

(3.14)

The final step is to take the limit of the above integrals as 'rs --+ 0, so that the

relocated boundary approaches the true canyon boundary r. The results are

(3.15)

and

(3.16)

The above formulations are merely statements of the Reciprocal Theorem and

involve the solution of the case II problem in nc as one set of loads and displacements,

and the solution in nh for the line sources as the other set of loads and displacements.

There are four main terms present in Equations 3.15 and 3.16: tractions T;/, T~I, T~I

applied to the canyon which are obtained analytically in nh (see Section 3.1), the

displacements u~, U~I, U~I caused by these tractions (see Section 3.4 for the boundary

element solution in nC
), and the displacements U x , U y , U z and tractions Tx , Ty , Tz at
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the fictitious boundary of the canyon caused by the line sources and obtained by

solving Equations 3.5 to 3.10 in Oh (see Section 3.3).

3-.3 Solution of the Source Problem

The solution of Equations 3.5 and 3.6 for the displacements U z and tractions Tz in the

antiplane shear problem (SH case) is obtained through the method of images. A line

load and its image in an infinite full-space are placed symmetrically about the plane

y = 0 at points (x", y,,) and (x", -y,,). The displacements and stresses from these two

line loads are then added together, yielding the surface y = 0 (the fictitious surface

of the half-space) traction free. A summary of the method of images for an antiplane

shear line load is given in Figure 3.3, and results appear in Appendix C.l.

The method of images does not work completely in the plane strain (P or SV)

case, as only one of the two tractions on the fictitious half-space surface can be elim­

inated when superposing the image solution. Therefore, a superposition procedure is

necessary: case A in the full-space, where the line load and its image (actually, the

negative image) are applied so that T:(x, y = 0) for 8z , 8- z and T:(x, y = 0) for

8y , 8_ y on the fictitious half-space surface become zero, and case B in the half-space,

where the nonzero tractions Tt"(x, y = 0) for 8x , 8- x and T:(x, y = 0) for 8y , 8_ y are

removed from the surface; i.e., T!(x,y = 0) = -T:(x,y = 0) and T:(x, y = 0) = 0

for 8z , 8- z and T:(x, y = 0) = -T:(x, y = 0) and T!(x, y = 0) = 0 for 8y , 8_ y • Cal­

culation of the displacements and stresses of case A is performed analytically, while

those of case B are conveniently obtained through a spatial Fourier transform. The

procedure for line load 8z is summarized in Figure 3.4; that for 8y is similar.

The inverse Fourier transform from which the displacements and stresses of case

B in the plane strain problem are computed has the form [12]:



24

where

(3.17)

(3

- either the displacement or stress response from case B

- shear wave number = wiGs = 1/Ls

- shear wave speed = Jp,/p

- shear wavelength

- spatia.l Fourier transform parameter

- (L s / transform wavelength)

- spatial Fourier transform of

g((3,y)

Tf(x, y = 0) for Ox, o-x or T:(x, y = 0) for Oy, O_y

- transfer function for displacement or stress due to

Tx(x,y = 0) = exp (i(3Ks x) for Ox, o-x or

Ty(x,y = 0) = exp (i(3Ksx) for Oy, O_yo

The transfer function g(f3, y) can be expressed as

g((3, y) = g((3, y)/SR

where

(3.18)

(3.19)

and a = V!P - 1 (negative root if (3 < 1, positive root if 13 > 1), I = viP - X2

(negative root if (3 < X, positive root if f3 > X), X = Cs/Gp , and Cp = P wave speed

= Jp, +2p,)/p. Expressions for h((3, Ys) and g((3, y) are contained in Appendix D.l.
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The inverse Fourier transform (Equation 3.17) is integrated numerically, noting

that the integrand is either even or odd in the integration parameter 13; therefore, only

the 13 ~ 0 portion need be considered (Appendix D.2). Further, the integrand is either

real or imaginary for 13 greater than f3s (transform wavelength = shear wavelength;

note f3s = 1.0). The upper limit of integration, f3max, is chosen to produce a negligible

truncation error and is selected to be that given by a transform wavelength equal to

1/6 the sum of the depth of the source point and the depth of the response point;

I.e.,

6.0Cs
f3max = ( + ).w Y Ys

The sampling increment 1::113 of the integrand varies and is finer near f3p (trans-

form wavelength = P wave wavelength; note j3p = 0.612 for Poisson's ratio (v) =

0.20), f3s, and f3r (transform wavelength = Rayleigh wavelength; note f3r = 1.0977 for

v = 0.20) because of rapid variations of the integrand there. Up to 13' = f3r + 0.0081,

the sampling points (total of 256) are specified individually based on v = 0.20; for

v =J 0.20, they are adjusted to fit the different values for f3p and f3r. Beyond 13', the

spacing of the sampling points increases with 13 as 1::113 = 13/150.

The actual integration is done in several parts. Between 13 = 0 and the first

sampling point below f3r (j3r-l::1, where 1::1 = 0.0001) and between f3r+1::1 and 13" (where

1::113 first exceeds [21l"/10Ks(x - xs)]), the integrand is approximated as a quadratic

across every 1::113 pair using the three sampling points and integrated analytically.

Between f3r - A and f3r + 1::1, care must be taken with the pole in the integrand; i.e.,

the denominator term ?R (Equation 3.18) goes to zero at 13 = f3r. This portion of

the integral is evaluated as the Cauchy principal value and includes the residue of

the integrand at the pole. Approximating the numerator as linear between f3r - 1::1

and f3r and between f3r and f3r + 1::1 and linearizing ?R about f3r permits the Cauchy
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principal value to be obtained analytically, a sufficiently accurate procedure with the

chosen value of~. Results of the integration between f3r - ~ and 13r +~ are included

in the expressions in Appendix D.2. The final part of the integration is between 13"

and f3max, where the cos (f3Ks(x - xs)) or sin (f3Ks(x - xs)) term (see Appendix D.2)

varies rapidly enough to make the quadratic approximation of the entire integrand

inaccurate (more' than 1/10 of a wavelength in ~f3, which defines 13"). Therefore,

the cos or sin term is separated out and integrated analytically with the rest of the

integrand, which is approximated as quadratic (again using the three sampling points

over each ~f3 pair). A summary of the integration scheme appears in Figure 3.5.

3.4 Solution of the Integral Equation

The displacements u~, u~, u~ in Equations 3.15 and 3.16 are linearly interpolated

within boundary elements (Figure 3.6) from discrete values at the nodes (Figure 3.6),

which become the unknowns of the problem [4]. For the antiplane shear problem,

algebraic equations in terms of the nodal displacements are generated by applying

the line source 8z to each node and performing the integration in Equation 3.15,

resulting in n equations for the n unknowns, where n is the number of nodes. For the

plane strain problem, 2n equations are generated for the 2n unknowns by applying the

line loads 8x and 8y to each node and performing the integrations in Equation 3.16.

Solution of the algebraic equations by matrix factorization yields the displacements

For a line source applied at a particular node (node s), the integration in Equa­

tions 3.15 and 3.16 over r-p for all elements not adjacent to this node is performed by

three-point Gauss quadrature. Within adjacent elements, where this integral must be

evaluated in the limit as rs -+ 0, account must be taken of the singularities that occur
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in the line load displacements and tractions. Four procedures are needed, depending

on whether the integrand contains the ukTtI term or the TkU~ term, k = x, y, z, and

whether node s is at the top of the canyon on the horizontal free surface "(nodes 1

and n, Figure 3.6) or below the horizontal free surface.

UkTl1, node s below top of canyon. The Hankel functions present in the line source

displacements (Appendix C) are expressed as the sum of singular terms (In(rs )

and for the plane strain displacements, l/rs ) and a series of nonsingular terms [2],

and are combined according to the expressions in the Appendix. This produces

Uk = st+ns wherest = a constant times In(rs ) (Appendix E, l/rs cancels) and ns

= nonsingular series; the singular term is independent of frequency w. The term

(st x T//) is integrated analytically after TlI is approximated as a quadratic, using

the three Gauss points as sampling points; (ns x TlI) is integrated by three-point

Gauss quadrature.

ukTlI, node s at top of canyon. Closed form expressions for the displacements

due to a line load at the surface of a half-space, such as in Appendix C for

a buried line load, are available only for w = O. However, an integration scheme

similar to that above can still be employed, since the singular term st is inde­

pendent of frequency wand, thus, known (constant times In(ra ), Appendix E),

and since the nonsingular part ns can be obtained at the Gauss points by ns =

Uk - st, where Uk is computed by the inverse Fourier transform (see Section 3.3).

TkUr, node s below top of canyon. Expansion of the Hankel functions in the line

load tractions along r - r~, and combination according to the expressions in Ap­

pendix C produces Tk = st +ns, where st = constant times (lira) (independent

of w). However, for the antiplane shear problem, the constant of the singular
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term is zero along r - rei thus, no contribution to Equation 3.15 from the term

Tzu;! results. Such is not the case in plane strain, where the terms to be inte­

grated are (st + ns)(rsll) and (st + ns) (1- (rsll)), and where" 1 = the length

of the adjacent element, and u~, k = x or y has been expressed in terms of the

linear interpolation functions. Except for st x 1, all terms are integrable, and

three-point Gauss quadrature is used. For st x 1, however, the constants of the

singular terms for the two adjacent elements are equal but of opposite sign, so

no contribution results except at the end of the longer element, if the adjacent

elements differ in length. No singularity occurs in this region, and analytical

integration is used.

TkU~, node s at top of canyon. The line load traction Tz is again zero, as in the

case above. For plane strain, the w = 0 solutions for Tx and Ty are also zero along

r - P except at rs = 0, where a delta function (line force) exists. Although no

closed form solutions for Tx and Ty exist for w > 0, it will be similar, but with

an added continuous nonsingular variation along the adjacent element. Thus,

noting that the line force at r s = 0 does not enter into the integrand along r - r e
,

Gauss quadrature (three points) is used where Tx and Ty are computed at the

Gauss points by the inverse Fourier transform (see Section 3.3).

The integration over rs, also in the limit as r s -+ 0, is performed analytically

using the expressions of Appendix E for rs. Results for the terms on the left side of

Equations 3.15 and 3.16 are bounded and appear in Appendix F. The limits of the rs

integrals on the right side of Equations 3.15 and 3.16 are zero, since the line source

displacements are singular only as In(rs ).
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3.5 Comparison with Previous Solutions

To verify the computer program used to generate the free-field motions, a number

of comparisons were made with previously obtained solutions (Figure 3.7). The an­

tiplane shear problem has been solved analytically [38,44) and numerically [43,34,41,

42], and exact displacements from an incident Sij wave on a semicircular canyon have

been tabled [41] for various values of the ratio of the canyon diameter to the shear

wavelength (denoted by t/JIJ = D/L IJ ). For horizontal incidence (0 =90°), results from

the boundary element program at t/JIJ = 4.0 came within 11% of the exact solution

for 23 equally spaced nodes and were within 3% for 45 nodes (Table 3.1). These

percentages were obtained by dividing the greatest difference in the two solutions by

the maximum amplitude in the exact solution. Also included in Reference [41] are

results from a numerical, boundary matching scheme, where the case II solution was

obtained using compressional and shear wave line sources in a haH-space placed inside

the (fictitious) canyon boundary, and where a least squares minimization of the error

in the generated tractions was used to define the source strengths. Although these

values were superior to the boundary element ones, their accuracy depends on the

source locations, and the presented results were from optimum locations determined

by trial.

The major set of results for the plane strain problem consists of plotted displace­

ments due to incident P, SV and Rayleigh waves on circular and elliptical canyons

obtained by the boundary matching scheme [41]. Incidentally, although this solution

technique was adequate for the present purposes, it was felt that an independent

verification was desirable, and thus, the direct boundary element procedure was im­

plemented. Good agreement to the plotted results in Reference [41] for the incident

P and SV waves was obtained (Figure 3.8). During the present investigation, a de-
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scription of an indirect boundary element method for the plane strain case applicable

to layered domains has appeared [30]. Its results, as well as those of an earlier inves­

tigation in which the free-surface condition on the half-space was only approximately

satisfied [18], showed good agreement to the results of [41].

In addition to the above check of the plane strain problem, three other tests were

performed, The first used an analytical solution for P and SV waves incident onto a

circular cavity in a full-space. The accuracy of the boundary element values (exact

values from [41]) was similar to that obtained in the SH verification study. Superior

performance of the optimized boundary matching procedure [41J was again noted.

Since this test problem did not exercise portions of the boundary element program

dealing with the horizontal surface of the half-space, in particular the inverse Fourier

transform, this part of the program was separated out and used to solve the problem of

a uniformly distributed load on the surface of a half-space between a; = ±b, Numerical

results for a viscoelastic material appear in Reference [12] and agreed about as well as

could be expected, best for the least viscous material, considering that the boundary

element computations were performed with a nonviscous material. The third test

problem (Figure 3.9) simultaneously exercised most of the program and utilized a

set of tractions Tk
B , k = x, y applied to a semicircular canyon in a half-space. These

tractions equalled those (Tt, k = x, y) along the surface of a fictitious semicircular

canyon in a half-space subjected to a concentrated line load (Px or Py) at x = 0, y = 0

and computed by the separate program for the inverse Fourier transform mentioned

above. Since the loaded region lay entirely within the fictitious canyon boundary,

perfectly accurate computations would lead to equal sets of displacements ut and

ue, k = x, y, at the location of the canyon boundary. Although numerical errors are

present in both solutions, the displacements from solution A can be considered exact,
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and the boundary element values compare well and exhibit convergence (Table 3.2).

3.6 Artificial Resonances

One difficulty encountered in the boundary element solutions of the exterior prob-

lems considered here is the presence of artificial resonances. This phenomenon is

demonstrated for the antiplane shear problem of a semicircular canyon subjected to a

vertically incident SH wave (Figure 3.10). Sample displacement responses appear in

Figure 3.12 for a 17 and a 33 node discretization. The plotted results were obtained

at a constant increment of Cl7/J1J equal to 0.013. Note that the finer discretization

narrows the resonances.

The frequencies of the artificial resonances were the same as the natural fre-

quencies of the material cut out of the half-space to form the canyon, fixed at the

canyon boundary r (Figure 3.11), hereafter referred to as the interior region. These

frequencies equal the roots of I n (wR/ C IJ ), n = 0,2,4, ... , where R = canyon radius,

and are denoted by Wnm , m = 1,2,3, ... . The mode shape of the interior region

corresponding to W nm is I n (wnmr/CIJ) cos(nO), where r,O are cylindrical coordinates

(Figure 3.11).

The cause of the artificial resonances for the problem of Figure 3.10 can be seen

by examining Equation 3.15,

where a final term has been dropped (see Section 3.4). To show analytically that

this equation degenerates at a frequency equal to a natural frequency of the interior

region of Figure 3.11, express the applied tractions as a Fourier series and consider

any single term
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T;I = aj COS(j(J), j = 0,2,4, ....

Because of the axisymmetric geometry, the resulting displacements will be

U;I = bj cos(j(J), j = 0,2,4, ...

(3.22)

(3.23)

where bj is unknown. In the terms of Equation 3.21 involving integration over f - f£,

only the cos(j(J) component of the traction Tz and displacement 'U z due to the line

source will contribute; thus, one needs only consider

Tz = Cj cos(j(J), j = 0,2,4, 00.

Uz = dj cos(j(J), j = 0,2,4, ....

(3.24)

(3.25)

(3.26)

Substitution of Equations 3.22 to 3.25 into 3.21, integrating, and taking the

limit yields

(RtrCj + t) bj = Rtrdjaj for j = ° }
(R!cj + t cos(j(Js)) bj = Rfdjaj for j > 0,

an equation for bj, where I)s is () where the line source is applied. Through a rather

tedious argument not presented here, it can be shown that as W ._> Wjm for any m,

dj -+ °for j :2: 0, Cj -t (-1/(2Rtr) for j = °and Cj -+ (-l/(Rtr» cos(j()s) for j > O.

Thus, Equation 3.26 degenerates to

(3.27)

The limit solution is well behaved, but cannot be computed except in the limit. More

general treatment would reveal that the degeneracy occurs in the plane strain problem
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and for arbitrary canyon geometries, but not for solution of the interior problem and

not for source applications away from the canyon boundary r.

The degeneracy seen above as W --+ Wjm also occurs with the matrix equation

generated when U~I is interpolated within boundary elements from nodal values. The

matrix equation becomes singular and the "right hand side becomes deficient in load

to the mode associated with Wjm. However, because of the discretizations involved;

these two states are not reached at exactly the same frequency, and the occurrence

of the matrix singularity when the right hand side is not completely deficient causes

an artificial resonance in the shape cos(jO). To overcome this difficulty, responses

are interpolated within the zones of the artificial resonances, using the undisturbed

responses outside the zones. This interpolation requires that the discretization be fine

enough to narrow the resonances enough so that the true responses can be traced.

For the Pacoima dam analysis presented in the next chapter, the highest frequency

considered (12.5 Hz.) corresponded to "pIS = 6.0 in Figure 3.12 so, with a 22 node

discretization, the interpolation was easily accomplished.
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Angle () to Uz Uz Uz

node (rad.) (23 node mesh) (45 node mesh) (exact)

tr/2 (+3.522,-0.358) (+3.861 j -0.182) (+3.978 j -0.151)

511"/22 (-4.075,+0.577) (-3.928,+0.528) (-3.872,+0.530)

3'1f/22 (+3.122,-2.021) (+3.107,-2.079) (+3.07{>,-2.096)

'ifIll (-2.843,+1.218) (-2.939 j +1.531) (-2.942,+1.612)

0.00 (+2.419,-0.062) (+2.667,-0.113) (+2.73S,-0.115)

-1F/22 (-1.438,-0.848) (-1.571,-1.074) (-1.621,-1.150)

-3tr/22 (+0.595,+1.263) (+0.329,+1.291) (+0.25'7,+1.313)

-5tr/22 (-0.081,-0.786) (+0.363 j -0.795) (+0.461,-0.790)

-tr/2 (-0.343 j +1.085) (-0.320,+0.532) (-0.336,+0.387)

Table 3.1 : Displacements (real part, imaginary part) for a horizontally incident

(() = 90°) SH wave on a semicircular canyon ('1/;6 = 4.0). See Figure 3.7. Exact

solution from tables in [41].
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Load Angle 8 to Disp. UB'I-£ U;e UA'I-£

fJ fJ

(at (0,0» node (rad.) compo (9 node mesh) (17 node mesh)

x (+0.057,-0.266) (+0.059,-0.266) (+0.060,-0.266)
11'

2"

Y (-0.017,-0.152) (-0.019,-0.150) (-0.020,-0.150)

311'
x (+0.021,-0.249) (+0.024,-0.247) (+0.025,-0.247)

"8

y ( -0.058,-0.163) (-0.055,-0.158) (-0.054,-0.158)

x (+0.057,-0.216) (+0.058,-0.214) (+0.059,-0.214)
Px

11'

'4

Y (-0.079,-0.139) (-0.076,-0.136) (-0.075,-0.134)

x (+0.110,-0.179) (+0.111,-0.176) (+0.111,-0.176)
11'

8'

Y (-0.056,-0.081) (-0.055,-0.079) (-0.054,-0.078)

x (+0.134,-0.164) (+0.133,-0.164) (+0.133,-0.164)
0.00

y (0.00,0.00) (0.00,0.00) (0.00,0.00)

x (+0.020,+0.155) (+0.020,+0.152) (+0.020,+0.152)
11'

2"

Y (+0.181,-0.181) (+0.180,-0.179) (+0.180,-0.178)

311'
x (-0.053,+0.035) (-0.050,+0.034) (-0.050,+0.034)

8'

Y (+0.167,-0.205) (+0.167,-0.200) (+0.167,-0.199)

x (-0.082,-0.022) (-0.079,-0.021) (-0.078,-0.021)
Py

11'

"4

y (+0.108,-0.253) (+0.108,-0.248) (+0.108,-0.248)

x (-0.059,-0.026) (-0.057,-0.026) (-0.057,-0.025)
11'

8'

Y (+0.045,-0.300) (+0.046,-0.298) (+0.046,-0.296)

x (0.00,0.00) (0.00,0.00 ) (0.00,0.00)
0.0

y (+0.019,-0.319) (+0.020,-0.316) (+0.020,-0.316)

Table 3.2 : Displacements (real part, imaginary part) for the third test problem of the

p-sv program (see Figure 3.9), '1f;6 = 1.30,11 = 0.2.
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Free~Field Motions =: Case I + Case II

!.tIS
:: til uJJ =free-field displacements along canyon
1\
}I\ boundary = uI + uIl

Irs
\ (II Tff = free-field tractions on canyon surface
~

-- Case I : solved analytically (Appendix B)

boundary, caused by incident wave

boundary caused by TIl

boundary, caused by incident wave

boundary = _T1

Case II : solved numerically by BEM

uIl = displacements along canyon

T 1 =tractions along fictitious canyon

TIl = tractions applied to the canyon

u I =displacements along fictitious canyon
~-""'II""'I~""""/I'""I-I~II:-:::'=

':Jll I
d I

/
~

//T
_ ......u1•

Figure 3.1 : Superposition problem for free-field motions
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Figure 3.2 : Relocation of the canyon boundary around the point (X'" y,,)
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g(x, y) = response due to Oz

xz

8z(x - xS ? Y - Ys)

o
(::s, Ys)

-=IH=Ul==
::=Wa'
~

half-space

In the full-space, the line load and its image

are applied. The response g(x, y) is computed

analytically (Appendix C.l).

o oz(x-xs,Y+Ys)

(X8~ -Ys) (image)

o 8z(x - Xs,y - Ys)

(Xs,Ys)

full-space

Tz(x,y = 0) = 0_____ _ z-==.-..x--J

y

Figure 3.3 : Solution for the line load 8z in a half~space (antiplane shear)
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I\l~ III~

g(x, y)

c;:,y)
g(x, y) =: response due to Ox

=: gA(x,y) +gB(x,y)

and its negative image are applied. The re­

sponse gA( x, y) is computed analytically (Ap-

t\l\~

fJ- x (negative image)
CasEl A : In the full-space, the line load

pendix C.2) as are the Fourier components

h(j3, Ys) ·exp(-ifjK.x.) of the residual traction

T1 at the fictitious surface of the half-space
(Appendix D.l).

flAx - xs,y - y,,) =: !f:I~ exp(ij3l(,(x - x,f))d{3---
y.

T!(x,y = 0)::::: -T~A(x,y = 0) x

gB(X,y)::: -!f:I~ooh(f3,Ys).

•
( g(j3, y) exp(ij3Ks(x - xs»df3
(x,y)

Case B : In the half-space , the transfer

function g(;3, y) is computed analytically (Ap­

pendix D.l), and the response gB(x,y) to the

negative of the surface tractions T: is com-

puted by a numerical integration of the inverse

Fourier transform (Section 3.3).

Figure 3.4 : Superposition problem for line load 6x in a half-space (plane strain)
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"-2
n-3 -111::=11 r=

III -= :::-11(==-
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horizontal surface

" 111=111;:11 1

:'11\':111

8 Ilt?ll\
n-1 == ILl

. ILl

Figure 3.6 : Discretized canyon for the boundary element method
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R
--

, L.
~;4n,_

--II'~~------------

R

s~ wave, fJ = 900 §111=11\
(dlSp. amp. = 2)
(Table 3.1)

Figure 3.7: Cases involving incident waves on a semicircular canyon for which

boundary element solutions are compared to those in [41].
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Figure 3.8: Comparison of displacement amplitudes at the surface of a

semicircular canyon from the boundary element method (BEM) and from [41].

(See Figure 3.7.) (tPiJ = 2.0, uniform mesh of 33 nodes, v = 1/3)
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problem A

J

I
/

/'

=/1I==J>I=Il\
_ III::Ill

1:::=1;;;-

n h

o

problem B

Figure 3.9: Verification of the P-SV program using a comparison solution

obtained numerically (problem A). Problem B is solved by the boundary element

technique.
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R R

r--....-i-:l~ SH wave
(displacement amplitude = 1)

Figure 3.10: Semicircular canyon subjected to a vertically incident SH wave.
Artificial resonance problem.

y

t x

R R

Figure 3.11: Interior region fixed along canyon bOlmdary
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Figure 3.1 2: Sample displacement responses (node at top of canyon)

for artificial resonance problem
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Chapter 4

Results of Analysis of Pacoima Dam Subjected to

Uniform and Nonuniform Seismic Input

4.1 Free-Field Motions

The free-field motions of the Pacoima dam canyon located near Los Angeles, Califor­

nia, are computed by the boundary element method. The canyon is assumed to be

uniform in cross-section and to extend to infinity in the stream direction in an infinite,

elastic, isotropic, homogeneous medium. The shape of the canyon coincides with the

dam-foundation interface below the crest, and above, is defined using topographic

maps of the region surrounding the dam. For the upper cap.yon, the shape is taken

as the average of the topography over approximately 50 meters on each side the dam.

The final canyon is 124 meters deep and 224 meters across (Figure 4.1). To calculate

the free-field motions, the canyon boundary is discretized into 21 boundary elements

as also shown in the figure. The properties of the canyon rock are E = 13,800 MPa,

11 = 0.20 and 0 8 = 1475 (mjs) as determined from in situ tests [20].

The free-field motions in the stream (S) direction are computed independently

from those in the cross-stream (C) and vertical (V) directions. The stream motions are

produced by SH waves normally incident to the axis of the canyon which, thus, have

no variations in the stream direction. Normally, incident P and SV waves produce
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the cross-stream and vertical motions that also vary only around the canyon. Six

excitations are employed as shown in Table 2.1: uniform in the stream direction

(U-S)j incident SH wave at f) = 00 (SHO), incident SH wave at e = -600 (SH60),

. uniform in cross-stream and vertical directions (U-CV), incident SV and P waves

at f) = 00 (SVPO)j and incident P wave at f) = -600 (P60). The last column in

the table gives the sum of incident and reflected amplitudes at a horizontal, free

surface; thus, the first three cases (stream excitation) are consistent, and the last

three cases (C-V excitation) are approximately so. With this reference, amplitudes

of the stream, cross-streamj and vertical components of motion are approximately 1,

I j and !' respectively.

. Free-field motions of Pacoima canyon for the excitations listed in Table 2.1 were

computed between 0.0 Hz. and 12.5 Hz. at an increment of 0.25 Hz. Interpolation is

used within the zones of artificial resonances (see Section 3.6), which appeared near

6.50, 10.75 and 12.0 Hz. for the stream excitations and near 7.25, 8.50 and 10.50

Hz. for the C-V excitations. Figures 4.2 (stream excitation) and 4.3 (C-V excitation)

show amplitude and phase variations around Pacoima canyon for the frequencies O.Oj

1.0j 3.0, 7.0 and 11.0 Hz. The sizable differences between the uniform and nonuniform

motions which occur above 1.0 Hz. can be expected to cause significant differences

in the dam response since the fundamental frequency of Pacoima dam is in the range

from 4.0 to 5.0 Hz. (see next section). For example, the cross-stream component

of motion at 3.0 Hz. under the P60 excitation varies from an amplitude of 1.7 at

one bank to 0.3 at the other with about a 004 cycle phase difference (Figure 4.3eL

compared to an in-phase motion of amplitude 1.0 for the uniform excitation.

Computation of the free-field motions was carried out on a VAXstation II. The

CPU time for one incident SH wave for 45 frequencies was approximately 4 minutes.
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One P-SV excitation required. approximately 41 hours of CPU time. A large part of

the increase is due to the integration required. by the inverse Fourier transforms.

4.2 Discretization of Pacoima Dam, Foundation and Reser-

.
VOIr

Once t~e free-field motions of Pacoima canyon are determined, the structural response

of Pacoima dam (assumed linear) is calculated as described in Chapter 2. Pacoima

dam, its foundation, and the water are discretized by the finite element method as

shown in Figures 4.4, 4.6 and 4.5, respectively. The dam, 111 meters in height,

contains 51 8-node shell elements in its mesh. The foundation below the dam is

taken to include all of the rock within approximately 150 meters of the foundation

interface and is modeled with 280 8-node brick elements. The reservoir is modeled

as infinite with compressible water and is discretized into 306 three-dimensional fluid

elements with a transmitting boundary 180 meters from the upstream face of the

dam. Only within this distance are the free-field excitations to the water applied.

Material properties for the elements of the dam and foundation are E = 20,700 MPa

(dam concrete) and 13,800 MPa (foundation rock), v = 0.20 (dam and foundation)

and specific gravity = 2.40 (dam). A value of 5 % modal damping is chosen for the

dam-foundation substructure, and a 0.85 reflection coefficient is taken along the floor

and sides of the reservoir.

4.3 Results of Analysis

Pacoima dam is analyzed for the excitations given in Table 2.1, and the results are

presented. here. The analysis is performed in the frequency domain and then trans-
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formed into the time domain as outlined in Chapter 2. The response of the dam is

calculated for both a full and an empty reservoir.

As discussed in Chapter 2, the calculations employ eigenvectors of the dam­

foundation system as generalized coordinates. The first 20 were included; the twenti­

eth had a natural frequency of 22.0 Hz. Responses were computed at 83 frequencies,

closely spaced around the resonant peaks, in the range from 0.0 to 12.0 Hz. Fun­

damental resonances of the system occurred at 5.1 Hz. (antisyrnmetric) and 5.2 Hz.

(symmetric) without water and at 3.8 Hz. (symmetric) and 4.3 H2;. (antisymmetric)

with water. The frequencies without water agree with measured values form forced

vibration field tests at a low water level [20J.

Frequency responses of various accelerations and stresses (no gravity effects) are

shown in Figures 4.8 (stream excitation without water), 4.9 (C-V excitation without

water), 4.10 (stream excitation with water) and 4.11 (C-V excitation with water) for

the excitations given in Table 2.1. A key diagram (looking upstream) of Pacoima

dam, showing the locations of elements and nodes in the finite element mesh of the

dam for which results are presented, appears in Figure 4.7. The plots in Figures

4.8 thru 4.11 are arranged to facilitate comparison among the results for the three

stream excitations and among the results for the three C-V excitations. Both total

and pseudo-static responses are included for the incident wave excitations.

Major features of the results in Figures 4.8 to 4.11 are as follows .

• Greater response occurs with rather than without water, i.n agreement with

numerous previous studies.

• The pseudo-static component of the response is largest near the perimeter of the

dam, where it can be a significant fraction of the total response. This fraction is

small in the interior of the dam except for the stresses at low frequencies, where
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the pseudo-static component everywhere approaches infinity as the frequency

approaches zero. Thus, the importance of the pseudo-static stresses can be

quantified only in the time domain when the low frequency content of the motion

is specified.

• Responses for the stream excitations are generally smaller for the incident wave

input (SHO and SH60) than for the uniform input (U-S). Such is not necessarily

the case for the C-V excitation.

• Responses for the P60 C-V excitation show a large increase in the fundamental

symmetric resonance. Investigation revealed that this increase was caused by the

cross-stream component of the ground motion, which seems odd since experience

with uniform ground motion associates symmetric response with stream ground

motion and antisymmetric response with cross-stream ground motion. However,

examination of Figure 4.3e shows that the cross-stream motion from the P60

excitation, having large amplitude and being about a half cycle out-of-phase

bank to bank in the interval from 3.0 to 7.0 Hz., contains a large squeezing

component that will excite the symmetric modes. This effect can be attributed

to the near horizontal incidence of the P60 wave and thus is absent from the

SVPO excitation.

Other quantification of the effect of nonuniform seismic input can be obtained

in the time domain. Recall from Chapter 2 that the computed time domain responses

are standard deviations for a random excitation with an earthquake-like frequency

content (magnitude 7.5, near the epicenter). Contours of these standard deviations for

stress appear in Figures 4.12 (no water) and 4.13 (with water). Each figure contains

six parts (one for each of the excitations in Table 2.1), and each part contains four
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stress contours (total arch, pseudo-static (p-s) arch, total cantilever, and pseudo-static

(p-s) cantilever). All stresses plotted are maxima from the upstream or downstream

face and are normalized with respect to the total arch stress at the center crest for

the case U-S with water (= 100). Contour intervals have values of 5 to 25 by 5 and

from 30 upward by 10. A blank plot indicates that no stresses reached the 5% level.

Note that the pseudo-static stresses for the uniform excitations are zero.

Two trends seen with the frequency responses of Figures 4.8 to 4.11, the effect

of water to increase the darn response and the effect of incident waves for the stream

excitation to reduce the dam response, are again evident in the stress contours of

Figures 4.12 and 4.13. Time domain quantification of the pseudo-static component of

the response shows it to be small, reaching only the 27% level at the ends of the upper

arch (Figures 4.12e and 4.13e). Generally, the largest pseudo-static stresses occur near

the foundation interface, where the dynamic component of the response (total minus

pseudo-static) is small. The increase in amplitude of the fundamental symmetric

resonance for the P60 excitation shows up strongly. In fact, the P60 excitation with

water (Figure 4.13f) produces the largest response of any case; the arch stress at the

center crest reaches the 122% level. The completely different response generated by

the P60 excitation compared to the two other C-V ones, U-CV and SVPO, is revealed

by Figures 4.12d to 4.12f (no water), where the response to P60 is predominantly

symmetric and those to U-CV and SVPO are predominantly antisymmetric.

To condense the results, averages of the total arch stresses along the crest, ex­

pressed as a percentage of the average for case U-S with water (= 100), are computed

and presented in Table 4.1. These values are a simple quantification of the effects

of nonuniform seismic input and the presence of water: 89% (U-S), 47% (SHO), 66%

(SH60), 46% (U-CV), 48% (SVPO) and 62% (P60) without water, and 100% (U-S),
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62% (SHO), 73% (SH60), 78% (U-CV), 63% (SVPO) and 122% (P60) with water.

The responses in Figures 4.12 and 4.13 are only relative values and, as such, are

independent of the constant C in Equation 2.25. From Equation 2.26, selection of the

duration Teq permits the actual responses to the input of Figure 2.4 to be obtained.

With Teq = 15 seconds, the 100 level in Figures 4.12 and 4.13 corresponds to 13 MPa.

This, of course, indicates that cracking and/or joint opening will play an important

role in the response due to strong earthquake ground motions [13], even when reduced

responses are produced by some of the incident wave excitations.

Computation for the analysis of Pacoima dam was performed on a VAXstation

II. CPU time for the six excitations (Table 2.1) for 83 frequencies was approximately

22.5 hours for the no water case, and 34 hours for the case of the full reservoir.
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Full Reservoir Empty Reservoir

U-S 100 89

SHO 62 47

SH60 73 66

U-CV 78 46

SVPO 63 48

P60 122 62

Table 401 : Average of standard deviations of total arch stress along the crest

expressed as a percent of the average for excitation U-S with a full reservoir.



55

Y,V

z,sLx,c

Figure 4.1 Boundary element mesh of Pacoima canyon



Figure 4.2

Figure 4.2a

Figure 4.2b

Figure 4.2c
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Stream free-field motions (amplitude and
phase variations) along Pacoima canyon
for excitations given below.

Excitation U-S

Excitation SHO

Excitation SH60
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Figure 4.3

Figure 4.3a

Figure 4.3b

Figure 4.3c

Figure 4.3d

Figure 4.3e

Figure 4.3£
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Cross-stream and vertical free-field mo­
tions (amplitude and phase variations)
along Pacoima canyon for excitations
given below.

Excitation U-CV, cross-stream motions

Excitation U-CV, vertical motions

Excitation SVPO, cross-stream motions

Excitation SVPO, vertical motions

Excitation P60, cross-stream motions

Excitation P60, vertical motions
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Figure 4.8: Frequency domain responses of Pacoima dam
for excitations in the stream direction, no water.
Excitation amplitudes from Table 2.1 times 19.

Figure 4.8a Radial acceleration at node W

Figure 4.8b Radial acceleration at node X

Figure 4.8c Stream acceleration at node Y

Figure 4.8d Stream acceleration at node Z

Figure 4.8e Upstream arch stress in element A

Figure 4.8f Downstream arch stress in element B

Figure 4.8g Downstream arch stress in element E

Figure 4.8h Downstream cantilever stress in element C

Figure 4.8i Upstream cantilever stress in element D

Figure 4.8j Upstream cantilever stress in element E

Key to graphs :

total: SHO

pseudo-static: SHO

total: SH60

pseudo-static : SH60

u-S
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Figure 4.9: Frequency domain responses of Pacoima dam for exci­
tations in the cross-stream and vertical directions, no
water. Excitation amplitudes from Table 2.1 times 19.

Figure 4.9a Radial acceleration at node W

Figure 4.9b Radial acceleration at node X

Figure 4.9c Stream acceleration at node Y

Figure 4.9d Stream acceleration at node Z

Figure 4.ge Upstream arch stress in element A

Figure 4.9£ Downstream arch stress in element B

Figure 4.9g Downstream arch stress in element E

Figure 4.9h Downstream cantilever stress in element C

Figure 4.9i Upstream cantilever stress in element D

Figure 4.9j Upstream cantilever stress in element E

Key to graphs :
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pseudo-static: SVPO

total: P60

pseudo-static : P60
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Figure 4.10: Frequency domain responses of Pacoima dam
for excitations in the stream direction, with water.
Excitation amplitudes from Table 2.1 times 19.

Figure 4.10a Radial acceleration at node W

Figure 4.10b Radial acceleration at node X

Figure 4.10c Stream acceleration at node Y

Figure 4.10d Stream acceleration at node Z

Figure 4.10e Upstream arch stress in element A

Figure 4.10f Downstream arch stress in element B

Figure 4.10g Downstream arch stress in element E

Figure 4.10h Downstream cantilever stress in element C

Figure 4.10i Upstream cantilever stress in element D

Figure 4.10j Upstream cantilever stress in element E

Key to graphs :

total: SHO

pseudo-static: SHO

total: SH60

pseudo-static: SH60
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Figure 4.11: Frequency domain responses of Pacoima dam for exci­
tations in the cross-stream and vertical direction, with
water. Excitation amplitudes from Table 2.1 times 19.

Figure 4.11a: Radial acceleration at node W

Figure 4.11b: Radial acceleration at node X

Figure 4.11c: Stream acceleration at node Y

Figure 4.11d: Stream acceleration at node Z

Figure 4.11e: Upstream arch stress in element A

Figure 4.11£: Downstream arch stress in element B

Figure 4.11g: Downstream arch stress in element E

Figure 4.11h: Downstream cantilever stress in element C

Figure 4.11i: Upstream cantilever stress in element D

Figure 4.11j: Upstream cantilever stress in element E

Key to graphs :

---------------------- tot~ :SVPO

- - - - - - - - - - - pseudo-static: SVPO

---------- total: P60

- - - - - - - - - pseudo-static: P60

u-CV



90

15,..-----r-----r----r------,-----r-----,

12

-01.....- 9c
0

:;::;
(\I
'-
Q)

Q5 6
t:l
t:l
(\I

3

frequency (Hz)

Figure 4.l1a : Radial acceleration at node W

40 r------,------,n----.....,.----r----r----....,

30

-0)-c:
0

:;::; 20(\I...
Q)

a;
0
0
<U

10

frequency (Hz)

Figure 4.11b : Radial acceleration at node X



91

1r------,r------,-----,.-----r-----r-----.;--,

0.8

Ol
-;0.6

. a .
~...
Q)

Q50.4
()
()

C1S

0.2

0k-..r::::!5i;;;:;*=:=..:.--~--+--~~--~--_}° 10 12

frequency (Hz)

Figure 4.llc : Stream acceleration at node Y

1r----,-----r----.-----r----,--------,

0.8

-Cl
-;0.6
a
.~...
Q)

Q50.4
()
()

C1S

0.2--

frequency (Hz)

Figure 4.lld : Stream acceleration at node Z

... '\
I \
I \
I \
I \
I \
I ' ... ......



92

90

":.=-r~'::::'::'~......=---=-

o!..-:=~~~~--+---r---~trr~~o 6 8 12

frequency (Hz)

60

-Clla.
~-(J)
(J)
Q)... 30....
(J)

Figure 4.11e : Upstream arch stress in element A

80 r----....,...-----.,~--......_--........,r__---...,.....--___,

60

-Clla.
~ 40-(J)
(J)
Q).......
(J)

20

frequency (Hz)

Figure 4.11£: Downstream arch stress in element B



93

50

40

cu 30
a.
~-

10

oL--=~~~~~~~::::::=~~~~~~o 2 6 10 12

frequency (Hz)

Figure 4.11g: Downstream arch stress in element E

25 r------r-----r----.,...---~---_.....--___.

- 15
Cl3a.
~-en

10en
CD.......en

5

frequency (Hz)

Figure 4.11h : Downstream cantilever stress in element C



94

30,.-----r----..-----...------,r---·'"'"!----,

~

20 1\
I \-Cl3 I \a.

~ J \-en I \en
I '\Q).... 10 \- Ien

~I 1\ "--, ~
/ I \ , ...,J ' ...~

I ' .../, 0:::::-:;;;-=
'::---" 'I

0 ,
'"0 2 6 8

frequency (Hz)

Figure 40 IIi : Upstream cantilever stress in element D

10 r------r---...,...---...,...------r---*--y-------,

2

8

o ­o

- 6
Cl3a..
~ I- I
en

4 Ien I
Q)....-en

2

frequency (Hz)

Figure 40 Ilj : Upstream cantilever stress in element E



95

Figure 4.12: Contours of the standard deviations over time of the stresses in
Pacoima dam without water for an M = 7.5 earthquake normalized
with the arch stress at the center crest for excitation U-S with
water (=100). Contours are given for: total arch stress, total
cantilever stress, pseudo-static (p-s) arch stress and pseudo-static
(p-s) cantilever stress.

Figure 4.12a Excitation U-S

Figure 4.12b Excitation SHO

Figure 4.12c Excitation SH60

Figure 4.12d Excitation U-CV

Figure 4.12e Excitation SVPO

Figure 4.12f Excitation P60
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Figure 4.13: Contours of the standard deviations over time of the stresses in
Pacoima dam with water for an M = 7.5 earthquake normalized
with the arch stress at the center crest for excitation U-S with
water (=100). Contours are given for: total arch stress, total
cantilever stress, pseudo-static (p-s) arch stress and pseudo-static
(p-s) cantilever stress.
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Chapter 5

Co·nclusions and Recommendations for Future

Work

5.1 Conclusions

The boundary element method is suitable for providing the free-field solutions for·

incident SH, P and SV waves on a two-dimensional canyon of realistic cross section

in an infinite, elastic half-space. While no claims of superiority over the method

described in [41] are made, at least the present method has verified the previous one.

Response of a typical arch dam is sensitive to the input excitation mechanism.

Results from the analysis of Pacoima dam suggest that incident waves produce the

largest responses when arriving at angles closer to horizontal. The stress levels gener­

ated by incident SH waves (used as excitation in the stream direction) may be only 60

% to 80 %of those that are due to uniform stream motion. Effects of incident P and

SV waves (-used for excitation in the cross-stream and vertical directions) are more

variable and have the potential for a significant increase, i.e., the P wave arriving at

near horizontal incidence, as compared to the uniform excitation.

In current design and analysis practice for large arch dams in seismic zones,

the free-field motions of the canyon are taken to be uniform. The results of this

thesis show that this design practice may be conservative when the excitation is in
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the stream direction. When the earthquake excitation is perpendicular to the stream

direction, the current design methods may either overestimate or underestimate the

actual stresses within the dam.

5.2 Future Work

The current study treats the earthquake as plane body waves normally incident to the

axis of a canyon which is assumed uniform in cross-section and contained in an infinite,

elastic, isotropic, homogeneous half-space. Although this idealization is rather severe,

a more general problem (other than the addition of incident Rayleigh waves, which

is straightforward) is much more complicated. Probably, the most useful, next step

would be to conduct a frequency domain comparison of the motions generated by the

present model with those recorded during actual earthquakes.

Any user of the present model in practice faces the decision of what combina­

tion of waves at what angles of incidence to use. At the start of this study, it was

anticipated that nonuniform seismic input would always reduce the dam response

compared to that under uniform excitation, and that significant benefit could still be

gained by using a worst-case specification of incident waves and angles. Such, how­

ever, is not the case, so some intelligent choice must be made. Perhaps, the results

of the comparison to actual earthquake motions mentioned above will provide some

guidelines. --

One parameter associated with the present model that deserves further study is

the amount of the canyon above the level of the dam crest to include in the boundary

element discretization. For the Pacoima canyon employed in Chapter 4, the extent

of the actual canyon above the dam was much greater than that included in the

model. It is anticipated that results would be sensitive to this parameter, and further
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investigation should be carried out.

Free-field motions generated by the current technique can also be employed in

seismic analysis of long-span bridges over deep canyons. An investigation of Pine

Valley bridge near San Diego, California, is planned for the near future.
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Appendix A

Notation for Appendices

A,An - amplitude of wave

C1 - -1/(41r(1 - /I))

C2 - (1-2/1)

Cp - P wave speed = Jp., + 2p.)/P

C6 - shear wave speed = Jp./P
H~l)(71) - first Hankel function of order 0 = Jo(71) + i Yo(71)

z - yCI

Jo(71) - Bessel function of the first kind of order 0

J1 (71) - Bessel function of the first kind of order 1

K p - P wave number = w/Cp

K6 - shear wave number = w/ C6

n - type of wave

r 6 - radial distance from application of line source

- J(x - X6)2 + (y - Y6)2)

t - time

Tx,Ty,Tz = traction components

ux, uy, U z = displacement components

X,Y,Z - coordinates of response point
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X s, Ys, Zs - coordinates of source point

10(7]) - Bessel function of the second kind of order 0

Yl(7]) - Bessel function of the second kind of order 1

a - J(f32 - 1)

negative root if f3 < 1 and positive root if f3 2: 1

f3 - spatial Fourier transform parameter

- (shear wave length I transform wavelength)

f3r - f3 with the transform wavelength equal to the

Rayleigh wavelength

X - 1\:-1 = (CsICp)

~ - small increment of f3

7] - KsTs

I - J( f32 - X2 )

negative root if f3 < X and positive root if f3 2: X

r - boundary (surface)

I\: - material constant = (CpICs)

A - Lame constant

jJ. - Shear modulus

1/ - Poisson ratio

w - frequency (radians per second)

nc - domain of half-space with canyon present

nh - domain of half-space without canyon

p density

</> - angular component from point X s, Ys

<Pi - orientation angle of element i
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C1kl - stress components, kl = xx, xy, yy, zx, zy

0, On = propagation angle of wave
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Appendix B

Incident Wave Solutions in a Half-Space

Solutions for incident waves in an elastic half-space [3]. All time variations are

harmonic at exp( -iwt).

"'=III=. II\=.
::'111=

B.l Displacements and stresses for the SH wave

u~ = 2 A cos (Ks y cos 8) exp (i K s x sine) (R1)

O';x := 2 A i {l K s sin e cos (Ks y cos 8) exp (i K s x sin e) (B.2)

a;y:= -2A{lKs case sin(Ksy case) exp(iKsx sine) (B.3)
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B.2 Displacements and stresses for P and SV waves

1, = x,Y

Z) == xx, xy, yy

(B.4)

(B.5)

where

and

(B.6)

(B.7)

(B.8)

(B.9)

(B.10)

(B.ll )
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n = 0 for the incident wave (P or SV)

n = 1 for the reflected P wave

n = 2 for the reflected SV wave

q1n ), q1n ) = x and y components of the unit vector in the

direction of propagation of the wave n

d~n), d~n) = x a~d y components of the unit vector along the direction

of particle motion for the wave n

and, for the incident P wave,

Al sin(200) sin(202 ) - /'i,2 cos2(202 )

Ao = sin(200) sin(202 ) + /'i,2 COS2 ( 202)

A 2 2/'i, sin(20o) cos(202 )

Ao = sin(200) sin(202) + /'i,2 cos2 (202 )

01 = -00

. 0 -1· 0- SIn 2 = /'i, SIn 0

and, for the incident SV wave,

Al - /I: sin(400 )
-=~-:--~~-:--:-:-'--~-~~

Ao sin(20o) sin(201) + /'i,2 cos2(20o)

A2 sin(200) sin(20t} - /1:2 cos2(20o)

Ao = sin(200 ) sin(201 ) + /'i,2 cos2(200 )

O2 = -00

- sinOt = /'i, sin 00

(B.12}

(B.13)

(B,14)

(B.15)

(B.16)

(B.17)

(B.18)

(B.19)

(B.20)

where Ocr = the critical angle for the incident SV wave beyond which the reflected

waves attenuate and become complex.
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Appendix C

Solutions for Displacements and Stresses due to

Line Load and Image in the Full-space

Reference [16].

Note: S.T.(+Ys) means similar term but with +Y8 replacing -Ys (including the

expressions for r 3 and Tf r.

(C.l)

(C.2)

(C.3)
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o-~x _ (iW(X 3- XS)) [--\Hi1)(77) +
4Cp prs

2/1- {(3(Y - ys)2r~ (x - Xs)2) ~ (H~l)(77) _ ~2H~1)(~77))

_ 2 (3(Y - Ys)2 r~ (x - XS)2) :2 (Hi1)(77) - ~Hil)(~77))

- (X ~!JXsrHP)(77) - (Y ~S Ysr~3HP)(~77)}] -. S.T.(+Ys) (C.6)

o-1y _ (i:~;~~s)) /1- {-2 (3(X - Xs)2r~ (y - Ys?) ~ (H~l)(r/) _ ~2 H~l)(~77))

+ 4 (3(X - xs)2r~ (y - YS?) :2 (Hi1)(TJ) - KHi1)(K77))

+ ((X - xsyz ~ (y - YS)2) ~3HP)(~TJ) _ 2 (oX ~SXsrHi1)(TJ)}

-S.T.(+ys) (C.7)

o-~ _ (iW(X 3- XS)) [--\H11)(77) +
4Cp prs

2/1- {- (3(Y - YIJ)2r: (x - xs)2) ~ (H~l)(77) _ K2H~1)(~TJ))

+ 2 (3(Y - YIJ)2r~ (x - XS )2) :2 (Hi1)(77) - ~Hil)(~77))

- (Y ~SYIJr(Hi1)(77) -1I:3Hi1)(II:77))}] - S.T.(-t-ys) (C.8)

u~ - Cp~;) eX - X';iY - y,))

{H~l)(77) - ~2H~1)(~77) - ~ (Hi1)(77) - ~HP)(K77))} - S.T.(+ys) (C.9)
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t71z - (iW(Y3- y,,)) [-,\HJ!)(7]) +
4Cp pr"

2Jl- {_ (3(X - X,,)2
r
; (y - y,,)2) ~ (H~l)(7]) _ 1',2H~l)(/'i,7]))

+ 2 (3(X - X,,)2 ~ (y - y,,)2) ~ (HP)(1J) _ K,H~l)(K,1J))
r" 7]

- (X ~"X"r (H~l)(7]) - K,3HP) (1',7])) }] - S.T.(+y,,) (c.n)

t7:
y

_ (iW(Y3- y,,)) [-'\H~l)(7]) +
4Cp pr"

2Jl- {(3(X - X$)2r~ (y - Y$)2) ~ (H~l)(7]) _ K,2H~1)(K,7]))

_ 2 (3(X - X,,)2 ~ (y - y,,)2) ~ (HP)(1J) _ K,H~l)(K,1J))
T" 7]

- (y~" y"rH~l)(7]) - (X ~"X"r/'i,3HP)(K,1J)}] - S.T.(+y,,) (C.13)
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·Appendix D

Evaluation of the Inverse Fourier Transform

D.I Functions h(j3, Ys) and g(j3, y)

Function h(f3, Y.) for T:(x, y = 0)

Function h(f3, Y.) for Tf(x, y = 0)

Functions 9(13, y) for Tx(x, y = 0) = exp (if3Ksx)

(DA)

(D.5)

(D.6)

(D.7)
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Cryy ({3, y) = 2i{3a (2 (32 - 1) [exp(YrKs) - exp(yaKs)] (D.8)

Functions iJ({3, y) for Ty(x,y.= 0) = exp (i{3Ksx)

D.2 Form for integration

With symmetric transfer function g({3, y)

(D.14)
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With antisymmetric transfer function g(/3, y)

iK 100

gB(x, y) = __s h((3, Ys) g((3, y) sin [(3Ks(x - x s)] d(3
1r 0

where

(D.15)

(D.16)

(D.17)
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Appendix E

Singularities in Solutions for Line Loads

111=111 :11/ :'111 ::: III -= II \:llt'=: III =.." l~'l\
111:'11';111= ::: "':=

III == /I (

References [4,36].

::. I It =111:111
J\'=J1 ,

III

Notes: st( ) denotes singular term in response quantity. ± means + when

material is on the right when facing in the positive radial direction along r - f€,

and - when material is on the left.
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Eel Antiplane shear: 8z(x - xs, Y - Ys)

. 1
st(uz ) =-- In(rs )

4Jl

st(Tz ) = 0 on r - r e

. 1
st(Tz ) =+- on rs

27rTs

E.2 . Plane strain: buried line source 8x(x - xs, y - Ys)

(1 + K
2

)
st(ux )=- C2 In(rs )

41r pP

st(uy) = 0

st(Tx ) =0 on r - r e

-1
st(TY)=±2 2 onr-fe

1r K r s

st(Tx ) = - C1 [C2 + 2 cos2 4>] on rs
r s

st(Ty) = -2 C1 cos </> sin </> on fS
r s

E.3 Plane strain: buried line source 8y(x - X s, Y - Ys)

st(ux ) = 0

(1 + K
2

)
st( uy) = - C2 In(rs )

41r pP

1
st(Tx ) =± 2 on r - re

21r K r s

st(Ty) = 0 on r - p

st(Tx ) = -2 C1 cos 4> sin 4> on fS
r s

(E.1)

(E.2)

(E.3)

(EA)

(E.5)

(E.6)

(E.7)

(E.8)

(E.9)

(E.10)

(E.ll)

(E.12)

(E.13)

(E.14)

(E.15)
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E.4 Plane strain: line source 8z(x - xs, Y - Ys) at horizontal

surface of half-space

I-v
st(ux ) = - -- In(rs )

1rJ.L

st(Tx ) = 0 on r - r~

st(Ty ) =0 on r - r~

2
st(Tx ) = -cos2 ¢> on r s

7rrs

st(Ty ) = 2.. sin ¢> cos ¢> on r s

1rrs

(E.16)

(E.17)

(E.18)

(E.19)

(E.20)

(E.21)

E.5 Plane strain: line source 8y(x - x s , y - Ys) at horizontal

surface of half-space

st(Ux ) = 0

I-v
st(uy) = - - In (rs )

1rJ.L

st(Tx ) =0 on r - r~

st(Ty ) = 0 on r - r~

st(Tc) = 2.. sin ¢> cos ¢> on r s

7rrs

st(Ty) = 2..sin2 ¢> on r s

1rrs

(E.22)

(E.23)

(E.24)

(E.25)

(E.26)

(E.27)
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Appendix F

Integrals Over rs of Line Load Tractions

/
/

(X8'Y8)/
-----r----/ ----

/'
/'

F.1 Antiplane shear: 8z(x - xs, y - Ys)

(F.l)
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F.2 Plane strain: buried line source Dx ( x - X S1 Y - Ys)

lim f Tx drs =1.0+C1 [(C2 + 1)(7r+1>i-1>j)+~(sin(21>i)-sin(21>j))]
r.--O Jr' 0 ~

(F.2)

(F.3)

F.3 Plane strain: buried line source Dy(X - XS1 Y - Ys)

(FA)

lim r Ty drs = 1.0 + C1 [( C2 + 1)( 7r + 1>i - 1>j) - -2
1

(sin (21)i) - sin (21)j))]
r.--O Jr.

(F.5)

F.4 Plane strain: line source DX(x-xS1Y-Ys) at top of canyon

~ [(7r + <PI) + ~ sin(2<Pl)] at node 1

- ~ (7r - 1>n-1 - ~ sin(21)n_1)) at node n-1
7r 2

(F.6)

(F.7)

lim I Ty drs - ~ sin2 1>1 at node 1
r. __O Jr' 7r

1 ·2). d 1-- S1n 'f'n-1 at no en-
iT

(F.8)

(F.9)
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F.5 Plane strain: line source 6y(x-X sj Y-Ys) at top of canyon

lim r Tx drs = ~ sin2 1Yl at node 1
r,-O Jr' 7l"

1 . 2 ' d- -- sm rpn-l at no e n - 1
7r

(F.lO)

(F.ll)

;. [( 7l" + 1Yl) - ~ sin (2 1Y1 )] at node 1 (F.12)

- ~ (7l" - 1Yn-l + ~ sin (21Yn-l)) at node n - 1 (F.l3)
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