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ABSTRACT

A cumulant-neglect closure scheme is developed for
determining the stationary and nonstationary response of
structural systems with hysteretic restoring force
characteristics. The method is applied for the analysis of
a hysteresis model with general strength/stiffness
degradation capabilities. This model has been used in the
past for stochastic seismic performance evaluation of
buildings. Response statistics obtained for the model
using this closure technique are compared with equivalent
linearization resylts via Monte Carlo simulation. The
study performed shows that the closure results are in
better agreement with simulation than those obtained by
linearization. This technique alsc provides information on
higher order statistics for hysteresis models. These
statistics were not pessible tc be obtained previously
using the existing approximation techniques. These higher
order statistics are valuable in the reliability analysis
and prediction of the probability of survival of

hysteretically vielding structures.
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CHAPTER 1

INTRODUCTION

1.1 General

The uncertainties inherent in most loading mechanisms
are known to create extremely complicated states of stress
which will inevitably challenge the applicability of the
basic deterministic techniques. Probability is, therefore,
a definite and integral part of any design process. Even
so, the current practice in the US overwhelmingly favors the
equivalent static response concept. However, major new
findings =~ specifically in regard to random dynamic forces
such as earthquake, wind, Qcean waves, atmospheric
turbalance and jet noise - tend to question the wisdom of

such idealogical preferences.

1.2 Background

The concurrent subject of vibration deals with the
excitation, the assocciated behavior, and the ensuing
response of the dynamic systems., In the particular area of
random vibration, one is confronted with the response of
vibratory systems, 1linear or nonlinear, resulting from

random excitation input. When neonlinearities are



encountared, they may be through geometric or physical
sources. The gecmetric non-linearities are identified by
large deformations, while physical non-linearities arise
from the non-linear nature of the material itself. In
retrospect, the most studied - and perhaps the most crucial
form of nonlinearity - is tha one resulted when the
restering force in a system is not proporticnal to the

deformation.

The next logical step after modelling the oscillating
system is to solve the governing stochastic differential
equations o¢f random motion. Numerous sclution techniques
for the response of linear systems have been developed and
documented in many books, (Rebson, 1%63:; Crandall and Mark,
1963; Lin, 1967; Clough and Penzien, 1975; Nigam, 1983 and
Yang, 1986). However, the class ¢of non-linear problems that
can be solved in exact forms are limited. If the response
is assumed to be Markovian, the Fokker-Plank~Kolmogorov
(FPK) equation can be used to derive a partial differential
equation for transition probability density function of the
response. In many cases, however, it is not possible to
solve the FPK equation in closed form. Thus,"a variety of
approximate techniques for the response analysis of
non=linear systems have been develcoped. These include,
Equivalent Linearization {Coughey, 1963; Lin, 1967; Iwan,
1973; and Spanos, 1981), Gaussian and Non-Gaussian Closure

schemes (Crandall, 1980, 1985; Wu and Lin, 1984, Ibrahim,



1985, and Ibrahim and Soundararajan, 1985), Perturbation
techrnigques (Crandall, 1963; and Lin, 1967), Functional
series representation and Functional Analysis {Ahmadi, 1982;
Jahedi and Ahmadi, 1983: and Ibrahim nd Pandy, 1989;,
Simulation Methods (Shinozuka, 1970), Stochastic Central
Difference method (To, 1986: 1988), Stochastic Averaging
method (Stratonovich, 1963; and Roberts, 198la), Finite
Element approach (Spencer and Bergman, 1985; Mohammadi and
Amin, 1988) and Egquivalent Steochastic Systems (Lin and Cai,
1987: Lin, 1988). Of all these techniques, Equivalent
Linearization is the most widely used for sclving random
vibration of Hysteretic systems. This technique can be used
for both zerov and non-zeroc mean analysis (Spanos, 1980

Baber, 1984, 1985; and Noori and Baber, 1984).

1.3 Objective of Study

Because the original nonlinear system of equationsin
Equivalent Linearization technique is replaced by an
equivalent linear system of uncoupled equaticns, this method
is incapable of displaying the effects of ncn-linearity. In
order to improve Egquivalent Linearization technique and
calculate the response of nonlinear systems more closely,
other approximation techniques, such as Non-Gaussian closure
method have been developed. Ibrahim and Soundararajan

(1985), and Wu and Lin (1984) developed a Non-Gaussian



closure scheme for determining the response statistics of
non-linear systems under external and/or parametric
excitation. This technique can be used for both single or
multi-degree of freedom systems, possessing the non-
linearity in the restoring force, damping or inertia terms.
However, the technigue as presented was only applied <to
systems with polynomial type non-linearities. The objective
of this study is to extend the Cumulant-Neglect Closure
scheme for the response analysis of nonlinear systems with
general hysteretic behavier. This will result in
information which is useful in random vibration and

reliability analysis of the hysteretically vielding systems.

1.4 summary of the Contents

The response of a SDOF hysteretic system subjected to
zero mean Gaussian white noise excitation is studied in this
report. In cChapter 2, first the development of general
hysteresis models are bYbriefly discussed, and then the
histery and the mathematical formulation of the so-called
smocoth hysteresis model is presented. Approximate solution
techniques for nonlinear randem vibraticen problems are
reviewed in Chapter 3. The focus of this chapter is on the
mathematical development of a Non-Gaussian solution method
using Ito-differential formula. Application of the proposed

solution technique of Chapter 3 to the smooth hysteresis



systems is given in Chapter 4. Chapter 5 contains the
numerical studies of Chapter 4. Two studies related to
Non-Gaussian random vibration analysis are presented in
Chapter 6. The first study is the application of the Non-
Gaussin solution technique proposed by Crandall {1980} to a
SDOF system having a tangent hyperbolic restoring Iforxce.
The second study is 2 procof of the equivalence of Eguivalent
Linearization and Ito-differential approch by assuming
Gaussian response. <Conclusion, remarks and suggestions are

given in Chapter 7.



ChapTER II

HYySTERESIS MODELS

2.1 General

Analytical modeling of any structure subject to dynamic
loadings requires the compelete Xknowledge of force-
displacement relaticnships. When subjected to high random
excitations, the structure may go through numerous cycles of
inelastic response. These responses can be accompalined by
strength and/or stiffness deteroration in form of hysteresis
loops action (Newmark and Rosenblueth, 1971:; Vanmarcke and
Veneziano, 1973; Bertero, Popov and Wang, 1974; Sozen, 1974:
Atalay and Penzieen, 1977; Gosain and Jirsa, 1977; Sues, Wen
and Ang, 1983; Keshavarzian and Schnobrich, 1%83; and
Vielsack, 1987). Because of the practical signiticace of
this type o©f Dbehavior, specifically in  Earthquake
engineering and base isolation system design, modelling and
analysis of these systems have been the subject of extensiva
studies over the past two decades. This chapter discusses
briefly the development of general hystersis models by
focusing, in specific, on the history and the mathematical

formulation of the so-called smcoth transitional model.



2.2 Existing Models

In recent years, varicus types of piecewise linear and
smoothly varying hysteresis models have been developed by
many researches. Ozdemir (1976), Baber and Wen (1981,
1982), Baber and Nocri (1985, 1986), Noori and Baber (1984),
Noori, Choi and Davoodi {1986), Noori, Davoodi and Choi
(1986) and Choi (1986) reviewed much of this work. The two
important factors invelved in developing analytical models
for hysteretic systems are; 1) capability of models in
representing the inelastic, hysteretic, degrading and loop
pinching behavior, and 2) compatibility of modals with the

existing approximate sclution techniquas.

2.2-1 Bilinear Model

The bilinear model of classical plasticity which
exhibits a sharp transition from elastic to plastic state is
perhaps the simplest and most widely wused model for
inelastic behavior of structural elements under both random
and deterministic cyclic loadings. The model consists of
linear s3pring elements and coulomb slip selement (Iwan,
1966). Caughey (1960a, 1960b) studied the behavior of a
single dagree of freedom system with bilinear hysteresis
characteretics under deterministic and randem excitation.

Using an equivalent 1linear system, based on Krylov and



Bogoliubov assumption, he showed that bilinear hysteresis
are bheneficial for small or moderately large inputs. He
further concluded that bilinear mecdels are not useful for
increasing the effective damping in structures subjected to

high random excitation.

For bilinear hysteretic systems subjected to staticnary
Gaussian white noise, Iwan and Lutes (1967) used electronic-
an2log techniques to determine response statistics. They
showed that the probability distribution of the response is
strongly influenced by the excitation level and is, in
general, non-Gaussian. Brown {196%) used an analog computer
simulation and equivalent linearizatiocn technigque to analyze
the response and failure criteria of a bilinear hysteretic
single degree ©f freedom system. By applying the technique
of stochastic averaging, Roberts (1978) obtained the joint
distribution of the displacement and velocity of a bilinear
single degree of freedom system. Tansirikongke?! and
Pecknold (1980) used bhilinear hysteresis model for studying

the earthquake response of multi-degrae of freedom systens.

Using an analytical technique based on ecuivalent
linearization, Asanc and Iwan (1984) studied a single degree
of freedom bilinear system subjected to non-stationary
random excitation. Most recently, Mohammad Yar and Ha wmond
(1987) developed a differential equation for true bilinear

hysteretic systens. They showed that for properly chosen



pararmeters, their model is capalable of simulating Caughey's
bilinear model {1960a, 1960b). Further studies on Bilinear
hysteretic models are reported by: Caughey (1963), Takeda,
Sozen and Nielsen (1970), Kobori, Minai and Suzuki (1974),
Iyengar and Dash (1978), Kelly and Tsai (1985) and Cape~chi

and Vestroni (1985).

2.2-2 Elasto-Plastic Model

Ancothe: popular model used in the nonlinear analysis of
structures is Elasto-plastic mocdel which is a limiting case
of a bilinear model. The restoring force diagram of this
model is characterized Ly a constant £force during its
plastic deformation. This model was used by Bycroft (1960)
for studying the response of systems subjected tec stationary
white noise excitaticn. Penzien and Liu (1969) used
recorded and simulated ground motion data and obtained the
response statistics of an elasto-plastic model. Ditlevsen
(1986) studied the plastic movement process of a SDOF linear
elasto-plastic model subjected to stationary Gaussian
process excitation. Other studies on elasteo-plastic model
are reported by Karnopp and Sharton (1966), Kaul and Penzien
{1974), Vanmarke (1976), Chopra and Lopez (1979), Yamada and

Xawanura (1980) and Grossmayer {1981).



2.2-3 Smooth Hysteresis Model

The bilinear models are not capable of representing the
actuz. behavior of many structures, =uch as steel or
concrete bu‘ldings, observed in practice (Newmark and
Rosenblueth, 1971: Bertero, Popov and Wang, 1%974; Sozen,
1974; Park and Paulay, 1975; Atalay and Penzien, 1977;
Higashi, Ohkubo and Ohtsuka, 1977; Matsui and Mitani, 1977;
Minai and Wakabayashi, 19277: Mitani, Makine and Matsui,
1977: Sues, Wen and Ang 1983; and Iwan and Cifuentes, 1986).
In an effort toc simulate a smooth transition from elastic
into plastic range, researchers have developed smooth
hysteresis models. Ramberg-0sgood model (1%43) and Bouc
model (1967) are the most popular models of this class of

hystereses.

Ramberg-Osgood model is an algebric model based on three
parameters: Young's modulus and two secant yield strength.
This model when coupled with Masing's rule for unloading and
reloading gives a continous transition from elastic to

inelastic stage.

The majocr iimitations inheritive ta the modals based on
Ramberg-0s¢ood formulation are; 1) the difficulty in
intreducing stiffness and strength degradation, and 2) the
problems with adoptability for randem vibration analysis.

In 1967 Bouc introduced a differential eguation for smooth

10



hysteresis mcdels which was later generalized by Wen (1976)
and Baber and Wen (1979). A wide range of hysteresis
behavior, including bilinear hysteresis, can be obtained by

esing Wen's model.

Wen (1976) modified Bouc's model and developed an
approximate method for general random response analysis of
a single degree of freedom system under filtered Gaussian
shot noise excitation. Pivovarov and Vinogradov (1987) used
Bouc's model to reoresent the non-linear hysteresis behavior
in a vibrating cable. They showed that within socme range of
load parameters, Bouc model is capable of representing the
nen-linear effects of a vibrating stranded cable. Hoshiya
and Maruyama (1987) developed an identification method, the
extended Kalman filter incorporated with a weighted global
iteration, identifying parameters on the hysteretic

restoring force systems of Bouc's (1967).

Based on the emivalent linearization technique,
Mohammadi and Amin (1988) used z steochastic finite element
approach to obtain the dynamic response of framed structures
supported on hysteretic media. Using Wen's model (1976)
they developed a hysterstic beam element with one yield
region at each end. Another smooth hysteresis model was

presented by Iwan (1977) Iwan's model was based on the

11



behavior of an infinite number of bilinear systems.

2.2-4 Degrading Hysteresis Model

The experimental results show that the stiffness and/or
the strength of structures detericrates when subjected to
severe cyclic loads (Celebi and Penzien, 1973; Bertero and
Popov, 1977; Sozen, 1974; and Chang and Lee, 1987). Baber
and Wen (1981) used hysteretic energy dissipation as an
index of re~ponse severity and duration to control stiffness
and/or strength degradation on dynamical systems using
Bouc’s model. They used this model to study MDOF shear beam
and discrete hinge structures subjected to random
excitations (Baber and Wen, 1979, 1982). Ang and Wen (1982)
used Baber and Wen's model to study the structural damage
under earthquake excitations. Sues, Wen and Ang (1983)
modified the hysteresis model of Baber and Wen for sisenic
performance evaluation of buildings. They used maximum
deformation in each c¢yecle during leading as a measure of

degradation for the next cycle.

constatinou and Tadjabaxsh (1985) used rate independent
hysteresis model of Wen (1976) to model a hysteresis damper
for base isclation systems. Su, Ahmadi and Tadjabaksh
(1987) showed that this base isclation system is relatively

effective for high amplitude and high freguency earthquakes,

12



but it is not suitable for earthquakes with considerable
energy at low frequency. Mostagel and ahmadi (1988) studied
a nonlinear base isclation system based on a friction type

isolator in parallel with a hysteresis element.

2.2-~5 Pinching Model

0f the available hysteresis models, loop pinching models
are the ones best suited to repressent more complex forms of
yielding behavior encountered in practice (Celebi and
Penzien, 1973; Sozen, 1974; Bertere and Popov, 1977; Aoyanma,
Umeura and Minamino, 1977; Atalay and Penzien, 1977; Matsui
and Mitani, 1977: Grossmayer, 1981; and Yamada and Kawamura,
1980). However, many of these models are developed
empirically and they require several variables for
describing the hysteresis behavior (Bancn, Biggs and Irvine,
1981; stanton and McNiven, 1983; Saatcioglu, Derecho and
Corley, 1983; and Filippou, Popov and Bertero, 1983).
Recently Baber and Noori (1985) and Noori and Baber (1984)
developed several general hysteretic models capable of
pinching, stiffness and strength degradation behavior. They
also proposed a mathematical approach for constructing such
general hysteresis with a wide range of deterioration
characteristics. These models incorparate a slip~lock
element in series with smooth hysteresis of Baber and Wen's

(1979). Cheoi (1986) s8studied the 2ero and non-zero mean

13



randoem vibration of a SDOF system having the type of
degrading hysteresis which was developed by Noori and baber

{1c84).

Based on their proposed mathematical technique, Noori
and Baber (1984) developed a single element pinching model
which can easily be incorporated in stochastic vibration of
hysteretic. Noori, Davoodi and Chei (1986) and Noori, cChoi
and Dvoodi (1986} studied the zerc and non-zerc mean random
vibration analysis of a series model with strength/
stiffness and pinching characteristics. This model was
constructed based on the mathematical approach proposed by
Noori and Baber (1984) and Baber and Noori (1985). More
recently Noori, Saffar, Davecodi and Ghantous (1988) have
reparted the equivalent linearization of a  further
generalized hysteresis capable 0of pradicting the stiffness
degradation in the unloading cycle. This model will appear

in the literature.

The inelastic model which is used in this work jis a
smooth hysteresis model originaly proposed by Bouc (1967)
and generalized by Wen (1976) and Baber and Won (1979) to
inciude degradation. Application o©of the proposed
approximation technique to other general hysteresis is not

considered in this work but it can be easily performed.

14



2.3 Mathematical Description of Smooth Hysceresis Model

Consider a single degree of freedum system as shown in
Figure 2.1. The governing differential equation of motion

can be written as

MU + CU + q(U, t) = F(t) [2.1)
where M is mass of the system, U is the generalized
coordinate, ¢ is the total restoring force, and F(t) is the
forcing function. The restoring force q consists of two
elements which are in parallel, a linsar spring force with
spring constant K, and a hysteretic restoring force (1l-a)KZ.

g = aKU + (1-a}KZ [2.3]

After subsituting for g and dividing both sgides of <the

equation by M, equation (2.1} can be written as

U + 20wg0 + awg?2 U + (1 = a) wp? Z = £(t) (2.3]

vhere { is damping ratio, wp is the natural frequency
(K/m)"2, a is the ratio of post yield to pre-yield

stiffness, and r(t) is the forcing function per unit mass.
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The smooth hysteresis restoring force Z is described by
Z = AU - lo]iz|P=lz - yu|z|" [2.4)

where A, B, 7 and n determine the hysteresis shape.
Equation [2.4] can approximate a bilinear model when n
approaches «. The characterstic of eguation [2.4) can be

batter seen if it is divided by U

Ul
= = A - p— [Z2{"* 2z - yj2|" [2.5]
v

The nature of the hysteretic restoring force can be better
observed if one looks at egquation [2.5] in four different
regions. For the case of n=1, the resulting hysterstic
shapes, for different combinations of # and v and when U is
a constant amplitude harmonic metien , are shown in Figure
2.2. The choice for A, § and 7 are not completely
arbitrary; they have to assure that the total energy

dissipation for 2 cycle is positive.

Thera are three important quantities that define a
softening system, maximum value o¢f hysteretic force or
ultimate  hysteretic strength, initial  stiffness and
post-yield stiffness. Maximum hystertic force when U and 2

are positive for an arbitrary n is
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- [535)
max B+ 7 ’

The yield level. fy, i3 thus given by

(2.7]

fy=(l-a)K[B+7:]

The initial stiffness X; can be calculated by finding the
slcpe of total restoring force, gq, at Z=0. For the case of

n=1 Kj is given as:

K, = akK + (1-a) K A [2.8]
The post~yield stiffness (finial stiffness) is

Ky = oK (2.9]

The physical significance of a can be feund by dividing

equation [2.9] by equation ([2.8] after setting A=l.
K/K; = & [2.10)]

Hysteretic model described by equaticn [2.4] is not capable
of strenyth and/or stiffness degradation. Baber and Wen
(1979, 1981) have considered the total energy dissapation as
a measure of system deterioration. Examining a typical

hysteretic system, as shown in Figure 2.3, the differential
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energy of a system can be written as

de = (1-a) K 2 dU = {1-a) K Z U dt [2.11]
Therefcre the rate of energy dissipation is

¢ = (l1-a) KZ U [2.12]
and the total energy is

€ = (l-a) K J 20 dt [2.13]

g

Because of the nature of hysteretic systems € defined by
equation [z.13) is always positive. Degradation can then be
intreduced by medifying equation [2.4] in the following

manners;

z = (AU - v[B|U||2|(MVz + 7 O]2]|P1y/m [2.14]
where v and n are considered to be increasing fuuaction of ¢
and A is considered to be a decreasing function of ¢ The

deterioration parameters were chosen as

A = Ao - SA € [2-15"&]
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n=1ng + 5’7 € [2.15-b)
Vo= pg + 6, € [2.15~¢]

where Ay, 79 and v, are the initial values and §p, En and §,
are parameters controling the rate of degradation. Figure
2.4 illustrates the effect of degradation parameters on a
hysteresi; restoring force for a cyclic displacement input.
¥y and 1n present strength and stiffness degradation
respectively and A induces both stiffness and strength

degradation, An in depth study of smooth degrading

hysteresis model is given by Baber and Wen (1979).
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CrapTeER 111
SoLuTion TECHNIQUES AND THE PROPOSED GENERAL

APPROXIMATION METHOD FOR HYSTERETIC SYSTEMS

3.1 General

Analytic models used for the deterministic response
analysis of structures, can be easily adapted for stochastic
vibration by replacing the deterministic input excitatien
with a random process. The theory of random vibration for
linear time-invarient systems have been well developed and
documented by Crandall and Mark (1963), Robson (1963), Lin
(1967), <Clough and Penzein (1975), Nigam (1983), Yang
(1986), and Schueller and Shinozuka (1988). However, the
fundamental scolution approach for linear systems under
random excitation, such as time domain superposition or
frequency domain superposition, are not applicable for non-
linear systems, systems with random coefficients. That
would leave the use of the FPK ecquation as still the mast
powerful tool in obtaining an exact sclution to nonlinear
random vibration preoblems. However, the FPK formulation can
be applied to only a limited clazss of nonlinear problems
with special forms of nonlinearity. Hence, the lack of a
general technique for closed form solution of nonlinear
random vibration problems has risen the develcpment cf

alternative approximate sclutions. This chapter briefly
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reviews some of these technigques, and alsc focuses on the
advancement of a non-Gaussian solution methed which is
prepesed by the author for the randem vibration analysis of

hysteretic systems.

3.2 Basic Premise

Complete analysis of random vibration problems requires
statistical information on the response of the system under
study. Random vibration problems can be categorized
according to the force-displacement behavior of the systemn,
whether the system behaves linearly or nonlinearly under the
excitation; types of the excitations, i.e. external and/or
parametric, single random process, finite number of discrete
processes or continuously distributed random field, and the
behavior of the excitation and the response, i.e. stationary
or nonstationary, Gaussian or non-Gaussian nature of the
input or the response. The exciting solution technigues can
also be classified in a broader sense of exact solutions or
approximate solutions.

Puring the past twenty five vyears, researchers have
developed a number of approximate techniques for estimating
the response statistics o. non-linear saystems to random
excitatins. Two of these methods nanmely Monte Carlo

Simulation (MCS) and Equivalent Linearization (EL) are most
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widley wused for highly non-linear problems such as
hysteretic systems. Other approximate methods are:
Pertubation technique (Crandall, 1%63), Stochastic Averaging
technigue (Stratonovich, 1963), Gaussian and Non-Gaussian
techniques (Dash and Iyengar, 1982; Crandall, 1980; Wu and
Lin, 1984; Ibrahim and Soundarajan, 1985, and Davoodi, Noori
and Saffar, 1988), Winer-Hermite series approximation
(Ahmadi, 1982 and Jahedi and Ahmadi, 1983), Finite element
approach (Spencer and Bergman, 1985; Mohammadi and Amin,
1988), Stochastic Centeral Difference method (To, 1986,
1988), Eguivalent stochastic system (Lin, 1988). A good
review of nonlinear random vibration solution technique can
be found in articles by Ibrahim and Roberts (1978), Crandall
and Zhu (1983), Roberts (1984b), To (1987) ani Lin et al

(1986) .

3.2-1 Fokker-Plank-KRolmogorov Approach

The transition probability density function of a systen
whose response is a Markov process can be written as the
solution of a partial differential equation  known as
Fokker-Plank-Kolmogorov (FPK) edquation. The wmathematical
derivation of FPK equation has been given in numercus
references (Caughey, 1963a; and Lin, 1%67). The FPK
equation was developed independently by Fokker, Plank and

Kolmogorov and has two basic forms, namely the forward and
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the backward equations. 1In the forward eguation formulation

time derivatives are taken with respect to the future time

that is:
dP(Y,t) n ]
—_— =~ {aj(Y,t) P(Y,B)] +
at =1 3y,
1l = n 32
— = 2 —— [b;(¥Y,t) P(Y,t)] [3.1]
2 = i ay. 3y

and in the backward equation time derivatives are taken with

respect to the earlier time:

aP(Y,t) n IP(Y,t)
=- X a;(Y,t) +
ot inl ayY,
1 n s 3%p(Y,t)
— X =
2 el s aYiaYJ
(by;(Y.®) P(Y,%)] [3.2)

where
Y(t) = [Y Y . Y T
[ i 27 .y ,-,]

P(Y,t) = P[Y(t.,,)|¥(t)] = transition probability

a;{Y,t) = first incremental moment - or drift
coefficients
1
= lim —— E(Y,(t+it) ~ Y. (L)) [3.3]
Ar-~0 At

b;;(¥,t) = second incremental moment or diffusion

coefficients.
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1
= lim —— E{[Y,(t+At) = Y. (1))
Av=g AL

(Y (t+dt) = Y (t}]) [3.4]
The initial conditions for these equations are

= lim -—1- P(Y|Yy) = &(Y-Y,) [3.5]
t—1D At

The complete statistical description of the response of

a system c¢an be cbtained by solving its corresponding FPK
equation. However, in many cases it 1s not possible ¢to
derive a closed form solution for <the staticnary or
non-stationary probability density function. The uniquness
and the existance of FPK equation and its limitations are

discussed by Caughey (19632, 1971).

In order to overcome the diffisulty in solving the FPK
eguaticn, this technique is frequently used in conjunction
with other methods such as numerical approximatien (Spigler,
1985; Kapitaniak, 1985:) and stochastic averaging (Davies,
1983; Roberts, 1984a, 1986). It is also possible to
generate the response statistical function ofA; system, in
particular the response moments and correlation functions,
without solving FPK equation directly (Ibrahim, 1985,

Caughey and Dienes, 1962).
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3.2-2 Simulation

Numerical simulation, alse known as Monte Carlo
simulation, is essentially a deterministic technique based
on averaging many response samples. In this technique first
a large nusber, n, of sample excitations according to some
probability law are generated. Then the response of the
system subjected to each sample excitation is calculated and
processed to obtain the desired statistics. Simulation
technigue is a relatively general and simple technigue
which is applicable to both single and multi degree cof
freedon systems of any degree of complication. This
technique jis often used to inspect the accuracy of the
existing approximation techniques when exact solution is not
available. The main drawback of this method is the computer
cost which increases in proportion ¢to the number of
ensembles, n, while the statistical uncertainty in the
response statistics decreases in proportion to nt {Craandall

and zhu, 1983).

3.2-3 Pertubation
Crandall ({1963) extended the c¢lassical pertubation

method of deterministic wvibration for random vibration

problems invelving small nonlinearity. Consider, a single
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degree of freedom system whose governing dynamic equation is

given by;

L(U) + € g(U, U) - F(t) = 0 [3.6]
where L is a linear operator and g is a nonlinear function,
¢ is a small parameter and F(t) is a weakly stationary
excitation. If ¢ is small, then the solution of Equation
[3.6] can be approximated by a power zeries in terms of ¢.

U(t) = Ug(t) + € Up(t) + €2 Uy(t) + ... [3.7)

Substituting Egquation [3.7] into Equation [3.6] and equating

the terms which have the same power of €, results

L(Ug) = F(t)

L(U1) = =-g(Ug, Up) [3.8]
Equations [3.8)] form a set of linear eguations and they can
be solved using standard methods of linear random vibration
(Lin, 1967). In practice the approximation for the response

of a stochastic system is seldom carried out beyond the

first term.
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3.2-4 Equivalent Linearization

Equivalent linearization technique is perhaps the most
widely used approximation technique in random vibration
today. This technique was first developed independently by
Booton (1954) and Caughey (1963b), and later was generalized
by Foster (1968), Iwan and vang (1972), Atalik and Utku
(1976), Spanos (1978, 1979, 1981), Beaman and Hedrick (1981)

and Baber and Wen (1982).

The basic idea of equivalent linearization technique is
to replace the original nonlinear dynamic system by an
equivalent linear system. Then, the soclution of the linear
system is taken as an approximate solution to the original
nonlinear equations. The coeficients of the linear
equations are obtained by minimizing the mean square error

between the nonlinear and linear egquatiocns.

The c¢eneral problem of defining eguivalent linear
systems can be described as follows. Given an initial
nonlinear set of stochastic differential eguations

g(U,0,u,t) = F(t) [3.9]

find an equivalent system of linearized eguations of the

form
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MU + CU + KU + €(U,U,U,t) = F(t) 3.10]
by minimizing the error of linearization

€(U,0,U,t) = g(U,0,U,t] = (MU + CU + KU) [3.11]
keeping in mind that U and F are stochastic processes. The
process requires using least square minimization in the mean

square sense which results in ninimizing E[eTe] with respect to

mij, C€4ij and kij' i.e.

aE[eTe]/amij =0 [3.12a)
JEECTG]/acij =0 [3.12b]
aE[eTc]/Bkij =0 [3.12¢]

It can be shown (Atalik and Utku, 1976) that this is

equivalent to

mj§ = E[agi(.)/aﬁj] [3.13-a)
ci§ = E[dg;(.)/80y4] [3.13-b]
kij - E[agi(.)/an] [3.13-c)

provided that u are zero mean Gaussian processes and the

partial derivatives exist.

By the transformation of variables the 1linearized
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Eguaticn [3.10] can be written in the vector form as
y + Gy = a(t) [3.14)

where a(t) is a vector of possibly correlated Gaussian white
noise components, and y is the state-space vector of
response coordinates. The covariance matrix egquation for the
linear system of Equation [3.14] can be easily derived by
simple matrix manipulations

Syy * GSyy + SYYGT = W [3.15-a)

where Syy = E[ny] is the zero time lag covariance matrix
and W = 27D with D being the constant power spectral density
matrix. Since Syy is symmetric, Equation [3.15-a] can be

transformed intoc a vector form
5+ Ls=0Db [3.15~b)

and integrated for s in the transient case, or solved by

inverting L in the stationary case.

Because the egquivalent linearization methed is one cof
the simplest to implement, it has been used extensively for
studying hysteretic systems (Wen, 1976; Baber and Wen, 1979;
Baber and Noori, 1986; Noori and Baber, 1984.) Spanos

(1980) extended the equivalent linearization technique for
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the cases involving non-zero mean excitation, Noori and
Baber (1984) and Baber and Noori (1986) applied this
technique for zero and non-zero mean analysis of several
hysteretic systems. Recently Baber (1985) studied the
random vibration of hysteretic frames subjected tc non-zero
mean eXcitation using equivalent linearjization technigue.
He showed that stationary solution does not always exist.
Noori, Daveodi and <Choi (1986) applied the equivalent
linearization for studying the 2zero and non-zero nean

analysis of a new proposed hysteresis model.

It must be noted that since the linearized coficients of
the equivalent linear system are obtained based on mean
square minimization of the error, the prediction of the
second corder moment may not be reliable. An in depth review
of Equivalent Linearization technique can be found in
references given by: Baber and Wen (1979), Roberts (1981b),
Spancs (1981), Necori and Baber (1984) and Beaman and Hedrick

(1981) .

3.2-5 Wiener Hermite Expansion

The Wiener Hermite series expansion methed was first
develcped by Cameron and Martin (1947) and Wiener (1958).
In this method both the forcing function and the respcnse of

the system are expanded on the random, statistically Wiener-
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Hermite set. The zeroth order term ccrresponds to the mean
value, the first order term corresponds to the Gaussian part
and the second and higher order terms ccrrespond to the Non=
Gaussian part of the random function. The original cynamic
equaticon of the system are used to derive the unknown kernel
functions of the Wiener-Hermite expansion of the response

and the corresponding series for the forcing function.

Wiener-Hermite series expansion technique was proposed
and developed by Ahmadi (1982) in the analysis of strong
electrostatic plasma turbulence. Jahedi and Ahmadi (1983)
used a singie term expansion to analyze . he non-stationary
random vibration response of a Duffing oscillator subjected
to a modulated white noise excitation. Orabi (1986) and
Orabi and Ahmadi (1987b) improved the result of single-term
expansion by considereing the first three terms in the
Wiener-Hermite series. This technique is very useful for
analyzing systems with high nonlinearities. It could also
be used for cases of non-staticnary input excitation as well

as stationary input excitation.

3.2-6 Gaussian and Non-Gaussian Closure
In the area of stochastic dynamics, the term "closure
technique" refers to a procedure for trancating the infinite

hierarchy of governing statistical moment equations of the
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system response. The need for such a procedure arises when
cne tries to ohtain, using the avaliable solution
techniques, the mcment egquations of a nonlinear system under
the external and/or internal random loading. There are
basically two types of closure techniques available: the
first type is whén the truncation assumption is applied
directly ¢to the joint meoments of the respcnse, and the
second type is when the closure assumption is applied to the

joint probability density of the response variables.

It is philosophically <convenient to investigate
probability density function truncation techniques in terms
of Gaussian and non-Gaussiaa closures. Assaf and 2irkle
(1976) proposed a genaeral solution technique for a clags of
nonlinear probklems, discontinuous or non-polunomial type
restoring force, by assuming an appropriate density function
for the response coordinate. Ivyengar and Dash (1978}
developed a Gaussian closure technique based on the
assumption that the Jjnint probability density function of
the response variables and input variakles are Gaussian.
Beaman (1978) presented an approximation solution technique
based on the assumption that <the probability density
function of the response of a nonlinear system is goverend
by a multi-dimensional form of Gram-Charlier serjies.
Crandall (1980) introduced an approximation method by
applying a Non-Gaussian closure technigue. In outline, the

method consists of constructing a Non-Gaussian probability
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distribution with adjustable parameters for the response and
using momer.t relations derived from the equaticn of the
motion to obtain differential or algebric equations for the
unknown parameters. Neori, Saffar and Davoodi (1987)
applied Crandall's technique to a system having tangent
hyperbolic nonlinearity in the restering force. The detail
study of this work is given in Chapter 6. Davoodi, Noeri
and Saffar (1988) developed a Gaussian closure technigque
based on Ito-stochastic appreoach to study the behavior of a

single degree of freedom hysteretic system.

The second type of closure is when the truncation is
directly applied to the moments. Wu and Lin (1984) and
Ibrahim and Soundarajan {1985) independently developed a
cumulant neglect closure method based on Ito stochastic
approach. Since the proposed technique in this thesis is an
extension and generalization of the method developed by
Ibrahim and Soundararajan (1985) and Wu and Lin (1984) which
is based on Ito-calculus formulation of the governing
differential egquation of motion, a review of Itc stochastic
differential formulation for nonlinear systems is presented

in section 3.2-8.

31.2-7 Other Technigques

There are also other approximation techniques which were
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not dissussed in detail, these are Stochastic Averaging
methed, Equivalent Stochastiz System and Stochastic Central
Difference technigue. 1In this section a brief discussion of

tnese methods are presented.

Stochastic Central Difference technique (To, 1986, 1988)
for random vibration problem is basically an extensioen of
the deterministic Central Difference method. This technique
can be applied tc systems having stationary or nonstationary
random excitation. Since the formulaticn of this technique
is bhased con the Finite Element method, therefore it can
easily be implemented in the Finite Element packages

currently available.

Stochastic Averaging technigue is referred to a class of
procedures in which rapidly fluctuating terms are averaged
out to provide a simpler set of equations for slowly
fluctuating response coordinates. This technique involves a
procedure for taking into account the effect of a random
excitation multiplied by a correlated response. The ground
work of Stochastic Averaging method was done by Krylov and
Bogoliubov for deterministic excitations, and formulated for
stochastic problems Ly Stratonovich (1963). A good
discussion on this solution technique is given by Ibrahim

(1985).

Equivalent Stochastic Systems (Lin, 1388) is referred to
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a class of problems which share the same probabilistic
solution. In this technique, the nonlinear system under
study is replaced by an equivalent system whose solution is

known.

3.3 Ito-Stochastic Differential Approach
The general governing eguation of motion of most
physical systems can be written as a set of first order

differential egquations in terms of the state vector Y(t)

dy (&)

= F(Y,t) + G(Y,t) dW(t) [3.16])
at
wWhere:

Y(t) is an n-dimensional vector of system response

variables;

W(t) is an m-dimensional vector of stochastic randon

procaess, whose influence on the system is through
G(Y,t) matrix:

F(Y,t) is an n-dimensional vector representing the
linear or nonlinear deterministic part of the
model;

G(Y,t) is an n x m linear or nonlinear matrix, whose

elements can be functions of system variables and

time.
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Here it is assumed that W(t) is a mathematical Gaussian
White noise with 2ero mean and auto-cerrelation function

given as

Ry (AT) = 2D §&(7) [3.17]

where 2D is the power spectral density of the white ncise
and &6(7) is Dirac delta function. The Gaussian white noise
can be formally written as the derivative of Browian motion
process, B(t):

dB(t)
W(t) =

[3.18)
act)

Scme authors prefer to use unit Brownian motion which in

that case equation {3.18] is written as:

ab(t)
W(t) = g2

[3.19]
a(t)

where 02 = 2D and b(t) is a unit Brownian motion process.

By using equation [3.17]), Equation [3.16] can be written

in the Ito form:

dY(t) = F(Y,t) dt + G(Y,t) dB(t) [3.20]
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where B(t} 1is an m-dimensional vector, with the following

properties:
E{B;(t)} = E{dB;(t}) = 0 [3.21]
E{(dB,(t)]%) ~ 0,2 at [3.22)

where cvi2 is the wvariance parameter, which is a positive
constant. Here and throughout this work E{.} represents

expected value.

The Ito state vector differential equation, Equation
[3.20], can be used to derive a general moment eguation for
the s)..tem variables. The differential of a scalar function
¥(Y¥,t), wusing Ito differential rule (Jazwinski, 1970:
Arnold, 1974; and Ibrahim, 1987) can be written as:

av
alb(y¥,t) = {(— + 4 Trace G Q GT ¥yy)dt + ¥,T ay [3.23)
at

where
Q dt = E{[dB(t)) [dB(£))T)
VT = (34/3Y,, W/3¥5, ..., W/3Y,)
¥(Y,t) = Scalar-valued real function, ”continuously

differentiable in time and pessessing continous

second mix partial derivaties.
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Replacing the function ¥(¥,t) of Egquation

$(Y) = (yv,*', v, ..., ¥, an arbitary scalar

the response cocordintes, yields

ae(Y)

A (y) = { 1T ay +

oY,

1

3 Trace [6 @ GT #yy(¥)] at

The choice of #(.) depends on the type of the

functions to be evaluated.

suggested by Ito,

[3.23], by

function of

[3.24)

statistical

The expression given herein, and

is used if the joint moments of response

are required. Taking the expected value of both sides of

Equation

form of the moment differential equation.

3¢ (Y)
E(d$(Y)} = E([ 1T av) +
¥,
1
—~ E{Trace [G Q GT #yy(Y)] dt)
2
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Replacing the function W¥(Y,t) of Egquatien [3.23), by

$(Y) = (¥,X, ¥, ..., ¥, an arbitary scalar function of

the response coordintes, vields

2% (Y)
daé(y) = [ 1T ay +
¥y
} Trace [G Q@ GT #yy(Y)] dt [3.24]

The choice of $(.) depends on the type of the statistical
functions to be evaluated. The expression given herein, and
suggested by Ito, is used if the joint moments of response
are regquired, Taking the expected value of both sides of
Equation [3.24) and dividing it by dt vields the general

form of the moment differential equation.

a2 (Y)

E(d#(Y)) = E([ 1T av) +
Yi
1
—— E{Trace [G Q GT #yy(Y)) dt}
2
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ad(Y)

= E(] 1T [(F(¥,t) dt + G(¥,t) AB(L)])) +

1/2 E(Trace {G Q GT #yy(Y)] dt}

% (Y)
= E{]
d

17 F(Y,t)}) 4t +
% (Y)

E(( 1T G(y,t) aB(t) ]} +

i

1/2 E{Trace [G @ GT #yy(¥)] dt) [3.25]

Because of Eguation [3.21] the second term in Eguation
[3.25] makes no contribution and the moment equation can be
written as:

. 8% (Y)

Mg = E([ 1T F(Y,t)) dt +

1
—— E{Trace [G Q GT #yy,(Y)] dt) (3.26]
2

where K = K, + K, + ... + K, F(Y,t), and G(Y,t) are s
defined in Equation (3.16], and M is the time derivative of
M. Equation [3.26] can be used to write up to the Kth order
moment differential eguation of a system which is described
by Equation [3.16]. A very good treatment <for the

develcrment of moment egquations, using Ito-Differential
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approach, can be found in the thesis by Bover (1978).

If +the governing dynamic equation of the systen,
Equation ([3.16], were linear then, the moment eguations
obtained from Egquation ([3.25)] form a closed set of first
order differential egquations. However, if the governing
equations are nonlinear then the resulting moment equations
will be coupled with higher order moments. This infinite
hierarchy of the moment equations can be solved by using

proper closure techniques (Ibrahim ,1981, 1978).

In this work a brief review of the available closure
techniques is first presented. Then a new closure technique
is proposed by the author for deriving the moment egquations
of nonlinear systems with general hysteretic form of

nonlinearity.

3.4 Closure Techniques

Equation [3.26] can be used toc obtain a set of first
order differential equation of response moments of a
dynamical system subjected to external or parametric random
excitation. If the governing ecquations for the system are
nonlinear, then the resulting moment equations are coupled

with higher order moments.
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The term "“Closure Technigue"™, in stochastic dynamics,
refers to a procedure for truncating the infinite hierarchy
of governing statistical moment egquations of the system
response. From mathematical peoint of view, a closure
technigque is said to be proper if it does not violate the
moment properties and other statistical conditions. On the
other hand, an appropriate closure technique for an engineer
is the one that results into moments which are close to

experimental findings.

The problem of infinite hierarchy of moment equations

can be described in general form as:
Mi bt gi(Ml, Hz, aeaey Mi, Mi+1, .-.) [3.27]

with the initial condition Mj = aj; at time = 0, where M; is
the exact solution of Equation {3.27). Using an appropriate
technique Equation [3.27] can be approximated by:

mi = gy(my, My, ..., W{) [3.28)

with mjy = b; at time = 0, where mj is an approximated
solution. There are three criteria for choosing a closure
technique, accuracy, simpilicity and versatility. Here a
number of existing closure technigques are discussed. These
technigques have been used in studying the response analysis

of randomly excited dynamical systems. A more detail
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discussion of these closure technigues can be found in an

article by Ibrahim (1981, 1978).

3.4-1 Cumulant Neglect Closure

The jeint moment of order K of a random variable vector
Y can be expressed in terms of derivatives of its

characteristic function:

Mg = E(Y,f ¥, .. v

1 a*

= v (8) |g. = (3.29]
iK 385 ... 38K i=0

where K = K, + K, + ... + K and ¢y(f) = E{exp(if ¥, + ... +
ig ¥ )} is the characterestic function for Y. The 3jeint

cumulant of order K, Mg, is given by:

Ag(Y,X, ¥R, (.., Y] =

1 ax

Pv(8) 19. = [3.30)
ik a6 ... age 0 fi=0

Equation ({2.29] and 1[3.30] can be used to derive a
relationship between the joint cumulant of order K and the

joint moments of order K and less. The first four cumulants

are:
A1[¥4) = E{Y;)
lz[Yin] - E{Yin) - E{Y;) B(Yj)
k4
A3[YinYk] = E{Y;Yy¥y) - T E(Y;) E{¥4¥y) +

2 E(Y;) E(Y§) E(¥y)
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4
AglY;Yqyy v ] = E(finYle) - T E{Y;) E(Y4¥gY¥3) +

2 T E(Y;) E(Y4) E(¥yY¥;) -
3
LOE{Y;Y4) E{¥)Y)) -

6 E(Y;) E{(Y¥3) E{¥y) E{Y¥)) [3.31)

where the numbers above the ¥ sign indicate the numbers of

possible permutations.

Higher order moments can be written in terms »f lower
order moments by setting the corresponding cumulant egual to
zero (Ibrahim, 1984; and Wu and Lin, 1985). For example in
Gaussian closure closure assumption for the random vecter Y,
cumulants c¢orresponding to the third and higher order

moments are set egqual to zero.

3.4-2 Central Moments Closure

The joint central moment, fy, of a random process Y is

given by:
pg = E{(¥;-m) K1 (v -m,)K2 [ . (v -mEny - [3.32)
wheare my = E{Y;}. In this method the joint central moments

beyound a selected order is set equal to zero. This

technique is found tc be less accurate than cumulant neglect
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closure (Bellmanand and Richardson, 1568).

3.4-3 Mean Square Closure Technique

In this technique the higher-order moments are written as

functions of lower-order moments:

n
=T

IL2}

Mn+1 qirn Mji [3.33)

where a;, are time independent coefficients, M, = E{¥1} and
Mp+1 15 the approximated {n+l)th order moment. Equation

[3.33] is not applicable unless the lower order moments are

known.

The resulting error from the above approximation is:

e = Mn+1 -5 ain Mi [3.34)]
i=1

The mean sguare closure technique procedure requires the

minimization of Equation [3.34].

o
e = J (Mpyy - F’ain m;)? at [3.35)
o
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This technique beccmes very cumbersome for multi-dimensional

systems.

3.4-4 Ncn-Gaussian Closure Technigue

In this technique the unknown probability density
function of the response is appro«<imated by a truncated non-
Gaussian density function; like Gram-Charlier or Edgeworth
expansion series, The coefficients of the finite density
function are then calculated by using the geverning eguation
of motion for the systen. once the probability density
functien is Xnown, then any statistical moment of the
response can be computed easily. Crandall (1980) introduced
an approximate method by applying a Non-Gaussian closure
technicque. In outline, the method consists of constructing
a Non-Gaussian probability distribuion with adjustable
parameters for the response and using the moment relations
derived from the egquation of motion to ~htain differential
or algebraic equations for the unknowns parameters. Bover
{1978) and Beaman (198l1) used Ito-differential approach for
calculating the response moments of nonlinear systems. They
suggested that by assuming a Non-Gaussian density function
for the response, the higher order moments can be calculated
using the basic moment definatipn.

To the best of the author's knowledge, none of the

proposed Non=Gaussian solution techniques were applied to
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hysteretic systems. When the nonlinearity in the systenm is
hysteretic, the resulting mcoment eguations are not closed,
and they are implicilitly in terms of higher order moments.
The purpose of <this tnésis was to develop a solution
technique that can be used for analysis of hysteretic

systems.

3.5 The Proposed Closure Technique

As it was menticned before, many approximate techniques
for neonlinear random vibration problems have been developed.
Most of these techniques are not applicable for systens
having hysteresis nonlinearity, specially when the resulting
moment edquations are in implicit terms of higher order
moments. The technigque that is proposed in this thesis is
for calculating the implicit higher order moments in terms
of lower order moments. This was dcone by assuming a joint
density function for the response variables and calculating
the desired moments by using the basic moment definatioen.
The proposed approach was also suggested independently by
Assaf and Zirkle (1976), Beaman and Hedrik (1981) and Bover
(1978), but was not applied to highly nonlinear systems such
as hysteretic systems.

The approximated density function which was used in this

work is a multi-dimensional Edgeworth expansion.

46



1 3p(Y)

PY(Y) = P(Y) = — T XA (. *
31 Kk tm aYk 3Yl ay,
1 %P (Y)
— = A - ... [3.36]
&t wuma ™ ey, 9y, 9y, 0y,

where X is the 3joint cumulant and P(Y) is a multi-

dimensional Gaussian density function:

(2m)~N/2 1

3] n
P(Y) = ——————— exp{ - T =
[A] 28] i1 jm
cof(4);; (Yy-m) (¥;-mj)} (3.37]

where
Y(t) = (Y, (8), Yp(t), ..., ¥, ()17
|A] = Determinant ¢f the covariance matrix

cof(A)ij = cofactor of the covariance elemeant, Cjy

m, = E(Y,)

In order to close the moment equations for Gaussian and
Non-Gaussian cases, the cumulants of the response behind the
second and forth order are set equal to zero. - The moments

are caculated by using the basic defination:

@
E{g(¥)} = J g(¥) PY(Y) ay [3.38]

@

where g{¥) is a nonlinear, ncn-peclynomial function of the
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response variables and E{g(Y)} is the implicit higher order
moment. In Chapter 4, the application of the proposd
sclution technigque to a SDOF BBW hysteretic model is
demonstrated, and the numerical studies are presented in

Chapter 5.
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CHaPTER IV

REspoNsE oF a SDOF GENERAL HYSTERETIC SYSTEM

4.1 General

The process of the analysis of most engineering problems
consists of three stages: study of the parameters or
functions which are input to the system: study of the
mathematical model representing the system, and the analysis
of the system response tc the input. 1In the particular area
of structural dynamics these stages are: 1) Modeling the
excitation, 2) Modeling the behavior of the system geometry
when subjected to a given excitation, and 3) Obtaining the
response of the system. 1In the previous chapter some of the
existing solution techniques for ocbtaining the response of
nonlinear systems were discussed. In this chapter the
excitation models adopted in the random vibration of dynamic
systems and used in this work are briefly reviewed.
However, the main body of this chapter is devoted ¢to
presenting the formulation of the proposed approximation
technique. This is done by applying this Ito-based method
to the analysis of a SDOF smooth hysteresis model and by

deriving the corresponding response statistics of the model.
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4.2 Excitation Model

Dynamic loads ~ such as base excitations of a building
during an earthquake, wind 1loads on tall buildings, oc¢ean
wave forces on offshore o0il driliing platforms and acoustic
loads on aircraft studies -~ are examples of exteremly
complex loadings that canncot be described as a definite
functions of time. Due to the uncertainty involved, these
classes of excitations have to modeled as random time

functions, known as random processes.

Cne of the major elements in random vibration analysis
of structures is the modeling of excitations, an extensive
review of which is given by Crandall and Zhu (1983). The
particuler model used herein is a stationary white noise

process with the following properties;

E(F(t)} = © (4.1]

E(F(t) F(t+r)) = 2xDé(T) (4.2]

where E(.) denotes the expected value; &6(7) is the Dirac
delta function and 2%xD represents the constant powver
spectral density of the input. The important mathenmatical
characteristic of a white noise process is that its energy
is uniformly distributed over the entire frequency range.

Although the assumption of constant spectral excitation is

50



nct realistic and is just a mathematical idealization, when
the excitation spectrum varies slowly in the neighborhood of
system's natural frequency, this assumption 1leads to
meaningful results. Bycroft (1960} was one of the first who
suggested the use of Gaussian white noise process for
modeling the eartquake excitations. Excitations modeled as
stationary white noise have been used by many other
researches (Liu and Davies, 1988; Pacla, 1988; Bruckner and
Lin, 19837; 3un and Hsu, 1987:; Crandall, 19562; Caughey,

1%60) .

Other types of models for random vibration analysis are
non white stationary and temporaly modulated excitations.
Nen-white stationary excitationa can be introcduced by adding
one or more linear filters between the system and the white
Gaussian input (Housner and Jennings, 1964; Lutes and
Lilhand, 1979). This type of excitation may result in mcre
complicated system of equations than the original cnes. ‘fhe
problem gets even more complicated for non~-linear systens
and/or parametric excitatiens. Temperaly modulated
excitation can be introduced by aither multiplying the white
noise input by a deterministic temporaly varying function
before passing it through the filters or multiplying the
filtered white noise by a temporal factor before passing it
through the systen. Lin and Yong (1%87) used an
evolutionary Kanai-Tajimi model, a one dimensicnal elastic

model and a cna dimensiznal Maxwell medel ta mnodel the
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ground accelaration during an earthquake,: and they compared
their results to 1985 Mexico earthgquake. These excitation
mecdels can be numericaly generated by using MCS or a more
recent technique called Autoregressive-Moving Average (ARMA)
modeling (Marple, 1587). For further studies on available
models the reader can refer to Levv, Kozin and Moorman
(1971), and Spanos (1880). Non white noise and temporaly
modulated excitations are not considered in this study. 1If
needed, filtering can easily be incorporated into the model

(Ibrahim, 198%5).

4.3 Formulation of the Moment Equations for BBW Hysteretic
Model

The nonlinear cystem to be studied here is a single
degree of freedom (SDOF) system, with = lirear wviscous
damper and a hysteretic restoring force ::e¢ment as shown in
Figqure 3.1. The governing eguation of motion for the system

shown is:
U+ 20ugl + owg? U + (1 - a) wg? 2 = £(t) [4.3]

where U is the displacement of the mass with respect to a
fixed datum; ©, is the natural frequency of the system in
the linearly elastic range; f(t), a zero mean Gaussian white
noise, is the forcing function per unit mass; Z is the BBW

hysteretic restoring force model as prop-.:»d by Bouc(1967)
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and extended by Baber and Wen [1981, 1979] to incorporate
stiffness and/or strength degradation, and a is the post-
yield teo pre-yield stiffness ratia. This model can
represent a wide variety of hysteretic, deteriorating types
of behavier with a considerable range of cyclic energy
dissipation (Baber and Wen, 1982, 1981, 1979: Mohammad Yar
and Hammond, 1987; and Park, Wen and Ang, 1986). This model
has also been utilized for the stochastic seismic
performance evaluation of structures (Sues, Wen and Ang,
1981y and for modelling base isolation mechanisms in the
response of structures to random excitation (Ccnstantinou

and Tadjbaksh, 1985).
The BEW model is written in the form
z = (A0 = »([U]|2{ (M"Lz + 5 ©iz|P])/m (4.4]

in which B, v and n determine the hysteresis shape; A
defines the tangential stiffness, and V¥ and n are the
deterioration control parameters. The parameters A, v, and
7, may be varied as a function of the enerqgy dissipation
€(t), to introduce system degradation. Detalled study of BBW

model is reported elsewhere (Baber and Wan, 1979).

Using a ccordinate transformation Y, = u, ¥, = u, and

¥3 = 2, Equation [4.3] can be written as
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Y1=Y2

"
[\
\

£(t) - 2(wg¥, - awg¥y - (1 - @)uwy?¥y

(a¥y = vIBlYy| 1Yy ™" ey - vy Y51 ™My 0 [4.5)

S
w
1

and in the Markov vector form this nonlinear set of state
space eguations c¢an bke expresced as the stochastic

differential equation

d Y(t) = F(Y,t)dt + G(Y,t) 4B(t) [4.6]

where Y(t) is the state space vector of the system response
coordinates, F(Y,t) and G(Y,t) are the matrices of state
vector equations defining the nonlinear system of egquations
governing the system under study, dB(t) is the zero-mean
increment of Brownian motion process with mean square

differential given as:

E{[dB(t)]%} = 02 at (4.7}
for a real constant o. In *“'s equation g2 = 21D is the
power spectral density of the input Gaussian white noise as

described in Equation ([4.2].

The general moment equation of a system given by
Equations [4.3] and [4.4] can be obtained by using Eguation

[3.26). The elements of Equation [3.26] can be defined as:
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Y2
F(Y,t) = | =20ug¥, - my2¥; - (1-0)wy?Y,

(¥ = v [ Bl¥sll¥s]™ Yyy - vy, 0¥ (D)) /n

and the general moment equation of the response is:

r:‘i,j,k = $3(3-1)0%M; 5o, + iMiog 441,k -
2j¢woMy 4, x - ajmozui+1'j_l,k -
J(1 = @wp®¥g sy xe1 + AKMY 441 k-1 -
BKE( | ¥,] lyafn—l YlinjY3k} -

TKE{ | Y50y, 3 v ity k-1, [4.8]
where M; 4 y = E[¥;lyydv ¥,

In Fquation [4.8], 0° = 2%D is the power spectral density of

the input Gaussian white noise as described in Equation
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[4.2], and the index summation i+j+k varies from 1 te the

order of moments to be evaluated.

As can be seen from Equations [4.8], the right hand
sides include expected values in terms of signum functions.
These expected values cannot be expressed in terms of
Mi,j,k' _Therefcre, the approach used »y Ibrahim and
Soundararajan (198S5) and Wu-Lin (1984) for solving these
moment edqua*ions is not suitable for the case of general
hvsteresis nonlinearity. In order to solve these moment
equations, as proposed in Chapter 3, mnmulti-dimensional
Gaussian probability density functions are assumed for the
joint probability distribution of the correspending
variables in each expected wvalue. Hence, these non-classic
expected functions are evaluated using the proposed

technigque and then the moment equations are solved.

4.3-1 Gaussian Response

Equation ([4.8] can be used to derive a set of
simultaneous differential moment equations. First order
moments are derived by setting i+j+k = 1. This results in

three first order moment equations

Mooy = AMg1o = BE(|¥2|¥3) = 1E(]¥3]¥5)

: - - ow 2 - , 2
Mg1p ™ =fwgMg1o = ®Wp“Mipo ~ {(1-@)@g“Mgqy
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Mj00 = Mo10 (4.9]

And second order moments are obtained by setting

i+j+k = 2 as follows

My00 = 2M130

Mozo = 0%~ 4fwgMgzgo - 200gM110 = 2(1-m)wg?Mgyy
Mggs = 2AMgyq = 28F(|¥5]¥32) = 27E(]Y4[¥y¥5)

Mi10 = Mgag = 2(WgMi1g = @g?Magp = (1-®)wg?Migy
Mgy = Mp1y + AMyiq = BE([Yp]Y¥Y¥3) = 7E([¥3]¥¥y)
Mgyp1 = =2{wgMoy1 - @Wg?Migy - (1-0)wg®Mgon + AMgzo-

BE(|Y¥5]¥3¥3) = 1E(|Y¥3]¥;2) (4.10]

As it can be seen the set of first order and second
order moment equations are not clesed and they are coupled
with higher order moments. In order to evaluate thase
higher order moments in term of lower order moments, and
close the set of simultaneous differential moment equations,
it was assumed that the response of the system is jointly

Gaussian with a density function of the general form.

(2m) ~3/2 1 3 3
PlY(t)] exp{ = £
(al? 2]8] = jm

cof(8);; (Y;-m) (¥;-m)) [4.11]
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where

() = [, (%), Yy(%), Y3(t)IT

[Al = peterminant of the covariance matrix

cof(A)” = cofactor of the covariance elenment, Cyjr in
the determinant of covariance matrix.

m, = E{Y;) = mean value of the response coordinate Y;

~ assumed to be zerc in this study.

Since the Jjoint wnrobability density function for the
response is assumed toc be zero mean Gaussian distributed,
then Eguations {4.9) are eliminated. The expected values in
Equations [4.10] can be evaluated in closed form for this
case of Gaussian analysis. However since the closed form
derivation of the expected values with singular functions is
not possible for the case ©f nhon-Gaussian analysis, a
general numerical and iterative approach is developed for
evaluating these expected values. The evaluation procass
for these expected values is mathematically invelved and
lengthy and thus cannot he reported herein. A summary of
the final forms of these expected values and the integration
precedures that have been performed are presented in
Appendix A. The closed form derivation of I's can be done
by using the approached discussed in Appendix B. The

rasulting integro-diffaerential moment egquations were solved
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using an apprecpriate numerical integration routine.

4.3-2 Non-Gaussian Response

It is known that the response of a ncnlinear system
subjected %o a Gaussian process input are not Gaussian
distributed. In order to improve the accuracy of the
Gaussian results, a Mon-Gaussian distribution function for
the response 1is assumed. In this work, the assumed
probability density function isin the form o¢f a multi-

dimensiocnal Edgewort. expansion:

. 1 03 a3p ()
PT(Y) = P(Y) - — X X, +
34 k,m ay, ay, ay,
1 % \ 3%4P (Y)
> - ... 4.12
4! wima ™% 3y, gy, ay. oy [ .
b rhallly k l [} q

where

P*(Y) = Non-Gaussian, Multi-dimensional density function

Y = is the response vector (nxl), ¥; = U, Y, = ﬁ,
Y, =2,

P(Y) = is the correspondingmulti-dimensional saussian
density function

A = the cumulant
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The first term of Equation [4.12] is in terms of the
first and the second moments. The second term of that
Equation is in terms of third moment, and the third term is
in terms of the fourth moments and so on. Herein, it is
assumed that only moments up to the fourth order are
significant and therefore only the first three terms of

Equation -[4.12] were considered.

Equation [4.8] can be used to derive 34 simulatenous
first order differential equaticns of first, seccnd, third
and fourth order moments. The first and second order
moments are as given by Equations [4.9] and [4.10]. The

third order moments are:

M300 = M210

Mo30 = 30%Mp1g - 6woMg3p — 30857My 0=
3(1=a)wy2Mga1

Moo = 3MMgyp - 3BE(|¥p[¥5?) - 39E(1¥;1¥,¥52)

Ma10 = 2Myzp = 200oMy19 = 0w M30p-
(1~} Wg2Ma g,

Myg1 = 2M311+AM;10 = BE(|Yp|¥y2¥3)-
TE(|Y51¥12Y5)

Mi20 = 02M100+Mp30 = 4fWoM120"
20ug2Moq 0 = 2(1-0)wg2Myqq

Moa1 = 02Mpgy = 4fuoMgpy = 20ug2Myq ;-
2(1-a)wy?Mgyo + AMg3o - BE{|Y5|¥,2¥4)-

1E(|¥5]¥5%)
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The

Mig2 =

Mgi2 =

Mi11 =

fourth

Me00 =

Moao =
Moaq =
M310 =
M30; =
LJ

Ma20 =

M311 =

M302 =

Mysg =

Myoq =

Miio =

Mjos =

Mg1s + 2AMpyq = 28E([¥,|¥1¥32) = 29E(|¥4]Y¥1Y,¥5)
-2{ugMg1y = WMy = (1-@)wiMggs +

2AMgyy - 2BE([Y,]¥,¥42 = 29E([¥3{¥5%Y¥4)

Moa1 = 2 (WMppy = @g®My0q = (1-0)wg?Mgqy +

AMisg = BE{]Y5|Y¥ ¥o¥5) ~YE{]¥3l¥1¥,2) [4.13]

order moments are:

4M310

€0Mgz0 - 8CWgMpso — 4aug®Mizo -
4(1-2)ug*Mpyqq

4aAMg1q ~ 8BE({|X5]1X3%) - 4vE(|X3]%,x37)

Myz0 = AWM31p = Ko Myoo = (1-0)ug?Magy
Myy1 + MM3pp - BE(IX21%17%3) - YE(1X;51X3°%5)
02M300 + 2My39 = 4{WMaz0 = 20wPMayqg ~
2(1-a)0g2Mp11

M7 - AwgMayy - wgPMygy - (1-0)0gPMa0; 4
AMyp0 = BE(|X51X:%%2%3) = vE(]%3]%X;2%,2)
2My15 + 2AMyqq = 2BE(|X5]X;%X32) - 27E(]X3)X12X,X5)
30%¥110 + Moao - ¥cMyap - 3mwgPMaze -
3(1-0)wy2Myqq

02M1g1 + Mg31 - 4fUoM121 -20u02M211 -
2(1~2)wy2My 12 + AMyaq = BE(|Xp|X1X92X4) -
TE({X3]X1%23)

Moz = 20ugMi1z = @g®Magy = (1-#16g%Myo3 +
2AMy,1 - 2PE(]X,]XXpXq2) = 29E(|X3X3X52X4)

Mgi3 + 3AMyq5 = 3BE(]X5|X3X33) = 39E(|X3[X,%,X42)
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Mg3p = 302Mg13 - 6CUgMg3y = 3augiMyp; - 3(1-a)ugMopy +
AMeao - BEUIX;1X27X5) - YEUIXz]%h)
Mg13 = =2(WgMg13 = @UgeMyg3 = (1-0)ug?Mpgy +
3AMgoo — 3BE([|X31XaXa?) - 3VE(]X5]%52%%52;
Moaz = 02Mggy - 4fUoMgaz 2a0g?My1p = 2(1-2)Wg?Mgy3 +
2AMg5; -2BE{|X5[X52%X-2) - 27E{|X3]X;3X3) [4.14)]
The right hand sides of Equations [4.13] and [4.14]
contain moments which are coupled with moments higher than
the third and fourth orders. At the same time these higher
order moments cannot be expressed in terms of Mi,j,k' In
order to close the moment equations and derive the higher
order moments in terms o¢f the lower order cones, the
mathematical definitation of moment was used. This is done
in conjunction with Non-Gaussian density function of
Equation [4.12] and the technique proposed in Chapter 3 and
adapted in the Gaussian analysis. Since the assumed density
function has zero mean, therefore only the second, third,
and the fourth order moments need to be integrated. The
resulting 31 differential equations were solved using a

numerical integration subroutine.
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CHAPTER V

NUMERICAL STUDIES

5.1 General

As it was discussed in the preceeding chapters, due to
highly necnlinear nature of hysteretic systems, exact
analysis of these systems under random excitations are
difficult. This has resulted in the development of
approximate solution techniques such as equivalent
linearization and Gaussian and Non-Gaussian closures.
Historically, since the development of equivalent
linearization techniqu~, this method has been the most
extansively used in the field, specifically with regrad to
hysteretic systems. However, there are several
disadvantages associated with this technique. In
particular, the method is not capable of predicting the
respone of highly nonlinear systems, and the response
predictions are limited to Gaussian. In order to obtain
information about Non-Gaussian behavior of general
hysteretic systems, an approximate sclution technique based
on JIto calculus is presented in Chapter 3, In order to
investigate the capzrvilities of the proposed solution
technique, a SDOF system with BBW hysteretic restoring force
was considered and formulated in Chapter 4. In thus

chapter numerical studies that have been performed on the
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BBW mcdel using the proposed technique are presented .

5.2 The Goals of Numerical Studies

The numerical studies which fcllow were conducted
with several purposes in mind: (1) to investigate the
validity  of the new Ito-based sclution scheme for a
nenlinear hysteretic model with a very general form of
nonlinearity; (2) to explore any limitation inherent to this
technique, and its source, if possible; (3) to compare the
results of this anlaysis wita equivalent linearization
studies via digital Monte Carlo simulation, and to examine
possible advantages of this approach. In the studies
reported herein, both cases of nondegrading and degrading
systems have been presented. Degrading system studies were
limited, however, to the consideration of the effects of
degradation upon the co'rariance matrix response and the
energy dissipation. Stability of the response has not been

studied in this case.

5.3 Classification of Numerical Studies

Figure 2.1 shows a schematic diagram of the systen
studied in this work. The governing differential equations
of motion were previously given by Equations (4.3] and [4.4)]

and are repeated here:
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U + 28wl + aug? U + (1 - @) wg? 2 = £(t) [5.1)

2 = (AU - v(8]0]|z| (" Dz + 4 0|2z|N] )/ r5.2]

where U is the displacement of the sytem; £ is the damping
ratioc of the lirear viscous damping element; Wy is the
natural frequency of the system in the linearlv elastic
range; a is the post-yield to pre-yield stiffness ratio; 2
is the BBW hysteretic restoring force model as proposed by
Bouc (1967) and modified by Baber and Wen (1981,1979); f(%t)
is a2 zero mean Gaussian white noise forcing function per
unit mass with a power spectral density of 27aD; 8, v, and n
are hysteresis shaped parameters and A, », 1, are parameters

that control the degradation of the model.

The degradation of the system is assumed to be a

function of the dissipated hysteretic energy, that is

A=2a5 -6 ¢ [5.3=a)
n=ng+ Sﬂ € [5.3=b]
Vo= vg + g, € [(5.3-¢)

where A, fig and vy are the initial wvalues of the

corresponding variables; 6, Gn and §, are paraneters
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controling the rats of degradation and ¢ is the dissipated

energy which is calculated from the following equation:
€ = (1-¢) KZU dt [(5.4]

The numerical values of the above parameters were

chosen as:

£ = 0.0, 0.1

UO = 1.0

a = 1./21

D = 90.05, 0.1

Ag = Vo = Ny = 1.0
ﬁo = 10- o.g

n =1

6, = 0.0, 0.01, 0.02
§, = 0.0, 0.01, 0.0S
Sn = 0.0, 0.05, 0.1

where the cases of (§ = §, = 6ﬂ = 0.0}, {(§ = 0.01,
gy = 0.01, &, = 0.05), and {§, = 0.02, §, = 0.05, &, = 0.1}
are refered %o as nen-deteriorating, low-deteriorating and
high-detericrating cases respectively. Also, systems with

§ = 0.0 are referred to as undamped systens.

Equation ([4.8] is used to derive 31 simultaneous first
order differential eguation for the second, third and fourth
order moments of the response. Firgt order moments are
assumed to be zero. The resulting 31 moment eguations
- Equations [4.10], {4.13] and [4.14] - and the energy
equation, Equation [5.4], are integrated simultanecusly

using an integration subroutine. Tha results obtained Ly
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Ito's scheme are compared with Monte <Carleo Simulation
results, using 100 ensembles, and Equivalent Linearization
results. In Chapter 6 it will be shown that equivalent
linearization and Gaussian analysis using Ito approach

result in identical predicted statistics.

5.4 The Response Statistics for the SpOF BEW System

Numerical studies for the response analysis of a SDOF
BBW model were conducted for nine cases of degradation, two
levels of danmping, and two levels of excitations. The nine

cases of degradation are:

Case #1 4, = 0.0, §, = 0.0, §, = 0.0
Case #2 5§, = 0,01, §, = 0.01, 6,7 = 0.05
Case #3 §, = 0.02, §, = Q.05, 81‘! = 0,1
Case #4 5, = 0.01, §, = 0.0, 6,, = 0,0
Case #5 §, = C.02, §, = 0.0, &, = 0.0
Case *6 SA - OsO, Gv - 0101; Sn = 0,0
Case #7 &, = 0.0, §, = 0.05, &, = 0.0
Case #8 Sl L 0-0’ 8v - 0.0; Sn = 0,05
Case #9 §, = 0.0, 6, = 0.0, 6,7 = 0.1

The numerical studies were performed utilizing Equivalent
Linearization (EL} and Ito apprcach (IA). The results of
each technique were compared against Monte Carle Simulation
{(MCSs) . Ito approach was used for both Gaussian (IG) and
Non=Gaussian (ING) analysis. As it wvas observed in chapter
6, the rasults obtained by EL ware identical to the results
obtained by 1IG. This ¢£inding verified the theoretical
argqument on the identity of two approaches as postulated by
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Wy and L1 (1984) and Orabi and Ahamidi (1%87a). The
contents of <th’s section are the results of numerical
studies for the mean dissipated hysteretic energy, and the
second, third and fourth order moments of displacement,
velocity, and the restoring force. 5Study on the third order

moment has been limited to only one case.

5.4~1 RMS Displacement Respanse, Figures 5.1-5.18

As can be seen from displacement response figures, the
response statistics predicted by the ING method are
generally in good agreement with the simulated responses
generated by MCS. The following observations are warth to
be pointed ocut.

1) For high-deteriocration rates, i.e. any of

$'s>0,02 - see cases #2, #5 and #7 - when D = 0.1,
ING slightly underestimates MCS. In case of undamped
systems the results of ING and EL c¢rossover each
other at about 40 seconds.

2} In case of low and high degradation for n, cases #8
and #9, when D=0.05 and § = 0.0 ING slightly
coverestimates the simulated response. However, the
response predictions by ING are in better agressment
with MCS than those obtained by EL.

In general, as can be seen from Figures 5.1 through 5.18 in

all the studies for the RMS displacement analysis, EL
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underestimates the response while the proposed ING results
are in very good agreement with simulation. As ¢ increases
the agreement between ING and simulation is improved. The
best agreemant between ING and MCS, for all cases of
deteroration is observed when D = 0.05 and § = 0.1, except
for case #8 and case #9: that is for £ = 0.0 where the

results for D = 0.1 show a better agreement with MCs.

5.4-2 RMS Velocity Response, Figures 5.19-5.36

The results for RMS velocity response for all levels of
degradation and for undamped and damped systems show that while
ING and MCS are in good agreement, EL always underestimates
the MCS. Noting the following observations:

1) As the damping ratio increases the underestimation by
the EL is slightly improved, however in general there
is still a better agreement between ING and MCS.

2) For cases #3 and #7, wvwhen £ = 0.0 and D= 0.1, the
ING slightly underestimates the MCS results,

In all cases an increase in damping, £, or a decraease in
excitation level, D, results in a decrease in the responss

level.

5.4~3 RMS of the Restoring Porce, Pigures 5.37-5.54

As can be seen from the restoring force figures, at all
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levels of excitation, for any degradation rate and for £ = 0
or € =0.1, the ING predictions slightly overestimate the

simulated response while the linearization underestipates

the MCS largley. The following exceptions for high
degradation cases - cases I, #5, #7, and #9 - can be
noticed.

1) when D = 0,05 and £ = 0.1, the ING and EL results
are very close to each other while EL results seems
to be closer to MCS results.

2) For casa %9, when £ = 0.0 and D= 0.05 or D = 0.1,
the ING results agree well with the MCS while EL
underestimates the MCs.

In all cases an increase in damping, €, results in a
decrease in the response level, and alsc an increase in the
excitation level, D, results in an increase in the respoise

level.

5.4-4 Pourth Order Moment of the Displacemeant,

Figures 5.55-5.72

The following observations were made concerning the
fourth order moment of the displacement:
1) For constant damping if D increases E(U*) increases
severly.
2) For constant excitation level if § increases E(U*%)

decreases severaly.
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3) For non-deterorating systems, case %1, ING results
are in good agreement with MCS except when £ = 0,1
and D = 0.05 for which ING underestimates MCS.

4) For low and high deterioration rates systems, cases
$2 through #9, ING slightly underestimates MCS
results.

5) The 4increase of E{U‘}) for high deterioration when
£ = 0.0, is quite severe as compared to systems with

low levels of degradation.

5.4~5 Fourth Order Moment of the Velocity,

Figures $.73-5.90

The ING method are shown to produce results

overestimating the MCS with the following exceptions:

1) For non-deteriorating and low deterorating
systems - cases #1, 2, #4, 46, and #8 - when D = 0.1
and § = 0.0, the ING results are in good agreement
with MCS.

2) The overestimation of ING in case #9 for D = 0.08
is very small if £ = 0.0 and £ = 0.1.

3) For high deterioration -cases #3, #5, #7 and #9 -
when £ = 0.1 and D = 0.1, ING results are in good
agreement with MCS.

Morgover an increase in damping value, or decrsase in
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excitation level, results in a decrease in the response

level.

5.4=-6 Fourth Order Moment of the Restoring Force,

Figures 5.31-5.1i08

The following peints for the fourth order moment of the

restoring force were observed:

1) The ING results always overestimate MCS.

2) The response increases if damping, §, decreases or
excitation increases.

3) Discrepancy between ING and MCS decreases by
increasing £ or decreasing D, except for highly
deteriorating systems - cases #3, #5 and §7.
Noticeable exceptions are when D = 0.1 and § changes
from zero to 0.1, and also when £ = 0.0 and D changes

from 0.1 to 0.05.

5.4-7 Mean of Diasipated Hysteretic Energy,
Figures 5.109-5.126

Generaly, there is a good agremants batwesen the mean of
energy obtained by ING, EL and MCS for all cases of
degracation, damping coefficents and excitation 1levels.
There are two poeints that can be seen from Figures 5.109 to

5.126¢
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1) For £ = 0.0, ING and EL 1results have almost
coincided, slightly underestimating the MCS.

2) For £ = 0.1, EL can predict the MCS results very
closely while ING slightly underestimstes MCS.

can also be observed that increasing damping, ¢,

decreases the dissipated energy level through hysteretic

action, and increasing the excitaticn level increases the

dissipated hysteretic energy.
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CHapTeER VI

SoME EXAMPLES

6.1 General

The materials presented in this chapter may not seem to
be related to the chronology of the topics discussed in this
thesis. However, there are two objectives for presenting
these materials here. First, this discussion helps the
reader in a bhetter understanding of other approximation
techniques for nonlinear random vibration in general, and
other closure methoeds in particular. Second, this work
represents the initial effort and investigation process that
led to the formulation and develcpment of the proposed

approximation technique.

This chapter is divided into two parts. In the first
part, the Non~Gaussian closure technique, developed by
Crandall (1980), is applied to a single degree of fraedon
system with hyperbolic tangent restoring force. The
probability density functions predicted by this technique
are then compared with density functions constructad by
exact solution wvia the FPK egquation and statistical
linearization. This part of the work was published at the
early stage of this research in form of a journal paper

(Nocri, Saffar and Davoodi 1987) and saveral confarence
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papers and proceedings (Davoodi and Noori, 1988a, 1988b,
1988c). In the second part, a cemparative study is
performed between the Egquivalent Linearization and the
closure method of Ibrahim and Soundararajan (1985) and Wu
and Lin (1984). Gaussian response statistics are obtained
for three nolinear systems: a Duffing oscillator; a systen
with a set-up spring and a general hysteretic system. It is
shown that the noment equations obtained by the Itd-~based
closure technique of Ibrahim and Soundararajan and Wu-Lin
are identical to ¢the covariance equations derived from
equivalent linearization. This latter part of the work has
also been submitted for journal publication (Noeori and
Davoodi, 198%a) and has appeared in several conference
proceedings and presentations {(Noori and Daveoodi, 1988a,

1988b, 1989b).

6.2 Application of Crandall's Non—-Gaussian Closure Technique
to a System with Tangent Byperbolic Restoring Force

The nonlinear system to be studied herein is a single
degrae of freedom (SDOF) oscillator with a “softening
spring” restoring force characteristics. Figure 6.1 is a
schematic representation of this system. This type of
nonlinear system has applications in the dynamics of package

cushioning (Mindlin, 1945).

The governing differential equation of motion for the
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system shown in Figure 6.1 can be written as
MU + CU + h(U) = F(t) [6.1]

in which M is considered here as unit mass, and F(t) is an

ideal white noise random process with auto-correlation

functien -
Rp(7) = 2W &(7) [6.2]
where 2V is the power spectral density. Tha nenlinear

restoring force, h(U) has the form

h(U) = ) tanh (KU/A) [6.3)

where K and )\ are paramnsterss controlling the rate of
stiffness softening, and maximunm limiting force

respectively.

6.2-1 Non-Gaussian Approach

The Non-Gaussian closure approach, as proposed by
Crandall (1980), is aprlied to the nonlinear system defined
by Equations ([6.1] and [6.3]. In ourder to evaluata rasponse
statistics the fol'owing procedure is considered. Both

sides of Equation (6.1] ars multiplied by a set of arbitary
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continuously differentiable functions ¢(U). Taking the
expected values of both sides of the resulting expression

yields
E(4U) + (C/M) E(9U) +
(1/M)} E{¢h(U}) = (1/M) E(@F(t)} (6.4]
Because of the stationary response characterestic and

following Crandall's physical argument, Egquation [6.4] can

be written as
E(3$/8U) E(U2) = (1/M) E($h(U)) [6.5]

The expected wvalue, E{ﬁz} can be evaluated by multiplying

both sides of Equation [6.1]) by 6 and taking expected values
of both sides,

E(U2) = (1/C) E(UF(t)) [6.6]

where zero mean valocity is amsumed. It can be further

shown that (Crandall, 1980)
E{(UF(t)) = W/M [6.7]

thus

77



E(U2) = W/ (CM) [6.8)

Substitution of E{U2) from Equation [6.8] into Equation

(6.5] results in

(W/C) E(d¢/dU) = E(¢h(U)} (6.9]
By using Equation [6.9] and selecting appropriate functions
for ¢(U) a wide range of relations among response statistics

can be generated.

Evaluation of the expected values in Egquation [6.9]
requires a knowledge of the probability density function for
the response. On the other hand, the same egquation can bhe
used in producing the relations between the moments of the
probability density function. The assumed density function

is approximated by a truncated Gram-Charlier expansion in

the form
1 (U=-v)2
P(U) » ——— exp[~ ———
V21 0 202
N
{1 + I (Cup/n!) Hy((U=-v¥)/0)) [6.10)
n=3y

where v and ¢ are the mean and the standard deviation of the

response, respectively, and Hu,(.) are Hermita polynomials

defined as
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zZ an ZZ
) exp(~ — ) (6.11]
2

Hp(Z) = (~1)7 exp(
az"

The differentiation and recurrence formulas for the Hermite

polynomial are

d
— Hp(Z) = n Hy.q(2) [6.12]
dz
Hpe1(Z) = 2HL(2) = nHp_q(2) [6.13)]

The coefficients C, in Equation [6.1C] can be evaluated as
Cn = E{HL[(U~¥)/0)} n=3, ..., N
where the following truncation is used
The first six coefficients are
Co = ]
Ci=¢C =0
C3 = ky/0?
€y = (Bg/0%) - 3

Cg = (u5/0%) = 10 (B3/0%)
Cg = (4g/9%) - 15 (ug/0%) + 30

79



where

B = E{(U-¥)T)

The density function of Equation ([6.10] has N unknowns
{v. o, C3, C4, +--+, CN)- 1In order to find these unknowns, N
constraints are  needed. Through the selection of
appropriate ¢ functions, Equaticn [6.%] 1s used to generate
a set of simultareous nonlinear equations. The calculations
are somewhat simpler if Hermite polynomials are selected as

¢(T) functions.

Since the nonlinear restoring force is an odd function
and since the density function, as given by Equation [6.10],
is an even function, all odd ordered moments are equal to

2ero. Substituting ¢(U) = H,(U/0) into Equation [6.9] will

result in
1) n
—— . =— E{Hp.1(U/0)} = E{$h(U)} [6.14]
c o

Setting N = 6 in Equation [6.10], and combining the
cutcome with that of Eguation [6.14) results

Wn cn-l
Hp(X) = - [6.15]
g
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whera

. . 4
X3 = [A/(v2m 6I*1)] T A, .05, D [6.16]
isl
+m
) KU U2
A; = U tanh( ) exp(- ) du (6.17=a)
A 202
-2
where
Cy c
D; =1+ 3 —— - 15 [6.18~a]
4! 6!
Ce €y
Dy = 45 ——— = 6 ——— (6.18-b]
5102 4102
Dy = i 15 Cs [6.18-C]
3 4109 6104 )
Ce
D4 = [6-18°d]
§!g6

Denoting the fact that for an even i, A; has a value of
Zero, one can construct a set of three independent
simultanecus equations by setting n = 1, 3, 5 in Equatioen
(6.15]. The anusing system can then be used to solve for
the three unknowns ¢, ¢C; and Cg. In doing 8o, the
complicated form of Ay requires the employment of a
numerical technique. Since g iz one <of the unknowns, one
cannct evaluate A; directly; a change of variables has to be

performed.
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The integrand in Equation (6.17-a)] is an even function,
thus allowing one to rewrite Equation [6.17-a] as
+0
U2
202

A = zJ ul tanh(xu/)) exp(- ) du (6.17-b]

0

In order to take ¢ out of this integral, Variable Y is

defined as
Y = U/o [6.18]

Since the argument of the hyparbelic tangent does not have a

U/06 factor ) 1s defined as

where ¢ 1is the unknown standard deviation and 2A; is a
parameter which controls ¢ and the maxinmum limiting force X.

With this change, Equation (6.17-b] is written as

+@
Aj = zan+1J vi tann(xy/)p) -
0

y2
exp({= —— ) a¥ [6.21=1a)
2
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or

a; = 2001y (6.21-b)
where
+
. Y2
B; = Jyl tanh(KY/\,) exp(- —— } Q¥ (6.21-c]
2
0
Equation [6.21-C] is evaluated numerically using

Gauss-~Laguerre quadrature (Stroud and Secrest, 1966).

Evaluatjon of )y which is needed for calculaticn of Bj
is performed through a fixed point iteration. Initially, a
small positive value is assumed for A,. Using Equation
{6.15], o, C;, and Cg are evaluated based on this current
value oi A;. A new value for )\; is obtained by substituting
the calculated value of ¢ into Equatioen [6.20]. This
approach continues until the difference bhetween the new
value of A, and the previous one is negligible. Calculation
of 0, C4, and Cg completes the analysis by this technique
and defines the probability density function given by
Equation [6.10].
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6.2-2 Statistical Linearization

In order to make a comparison between response
statistics provided by Crandall's Non-Gaussian closure
approach and those recorded from statistica) linearization,
tha following analysis is performed (Lin, 1967). The
nonlinear system of Equation [6.1] is replaced by an

equivalent linear system
MU + CU + KU = F(t) [6.22]

The coefficient, K,, of the linear system is found by
minimizing the error between Equations [6.1] and (6.22] in
the mean sguare sense. The excitatioin F(t) is assumed to
be zeroc mean stationary Gaussian white noise with
autocorrelation function as given by Edquation (6.3]. The
standard deviation of the response is given as (Clcugh and

Penzien, 1975)

oy’ = W/ (CKg) [6.23)
Detailed derivation of Ky is given in Appendix C. Since the

response is Gaussian, Eguation [6.23] is sufficient for

obtaining the probabilty density function of the rasponse.
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6.2-3 Fokker-Plank-Koclmogorov Equation

The response statistics by Non-Gaussian closure and
statistical linearization are both compared with the exact
solution via the FPK equation. The probability density
function, using FPK formulatioin, can be derived following
Caughey's approach (Caughey, 1963a). For the nonlinear
system of Eguation ([6.1], the density function of the

response is given by

U
C
P(U) = p exp [- — J h(y) ] ay (6.24]
0

where in this case h(y) = A tanh{Ky/A), and g is a constant
parameter. Substituticen of h(y) into Equaticon ([6.24]

results in

P(U) = n{cosh(KU/1)]~% [6.25]
in which
cal
a - [6.28]
WK

and 7 is a normalizing constant.
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6.2-4 Numerical Studies

Two cases of low and high nonlinearity were considered
for these studies. For both cases the maximum restoring
force was limited to 1.0. For the case of low nonlinearity
a spring constant parameter of K = (0.1, input power spectral
density ;f PSD = 0.5, and a damping coefficient of C = 0.5
were chosen. The resulting density functions presented in
Figure 6.2 show a very close agreemant between both NGC and
SL techniques and the FPK solution. The SL results show,
however, a slightly closer agreement with the FPK at P(0).
Construction of the density function for the SL case has
been based on Gaussian distribution assumption. In order to
make a more thorough comparison between the two
approximation techniques for this case two additicnal
studies were performed. In the first study, the effect of
the change in the spring constant was considered. Figure
6.3 shows the results of this investigation. For the value
of spring constant parametar in the range of X = 0.1~10.0,
and the damping kept at a constant value of 0.5, the two
approximate techniques show the same trand in predicting the
RMS of system displacement responsa. The E£L results
however, underestimate the response whereas the NGC is in
good agreement with the FPK. Beyond K = 10.0, where the
nonlinearity increases sharply, the FPK solution shows an

increase in gy For this case both NGC and SL results
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underestimate the FPK solution. Figure 6.4 demonstrates the
predicted response vs the variation of damping in the
system. Both NGC and SL are in good agreement with FPX

solution.

For the case of high nonlinearity, spring constant
parameter was K = 10.0, with input PSD of 0.1, and damping
coeffici;nt of 0.05. The corresponding density functions,
as shown in Figure 6.5, exhibit deviations of up to 31%,
with NGC technigque providing a more precise solution than
the one obtained from SL. An interesting phenomenon
observed in this investigation is the ©presence of
oscillavion in the NGC solution. This behavior is not
present i~ the FPK or SL solution. Figure 6.6 shows the
effect of variation of the spring constant on the RMS
response predicted by the approximate techniques. In this
study a constant damping of 0.05 was considered. For the
spring constant changing from K =0.1 to 7, the two
techniques show c¢lose agresment with FPK solution. SL
results slightly underestimate the rasponse. When the
spring constant increases beyond K = 7, there is a sharp
disagreement between FPK and the two approximate results. A
similar study was done for the RMS reasponse vs variation of
systenm damping. When the damping is very low, between 0.0
and 0.03, there is no good agresment between the results.

This may stem from the fact that since the system is

slightly damped, the stationarity is unlikely. However, for
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damping value greater than 0.03 both NGC and SL agree very
well with FPX results. These results are shown in Figure

6'7‘

6.3 A Comparative Study Between Equivalent Linearization and

Ito~-Gaussian Closure Technique

In this section, method of Equivalent Linearization as
extended by Atalik and Utku, Spancs and others (Section
3.2-4) and the Cumulant-Neglect closure scheme independently
developed by Ibrahim and soundararajan, and Wu and Lin
(Section 3.2-6) are utilized for the randoan vibration
analysis of three nonlinear systems: A Duffing oscillator; A
system with a set-up spring, and the general hysteretic
system of BBW. It is shown that the differntial equations
for the moments derived by this closure scheme are identical
to the covariance matrix equations cbtained from Equivalent
Linearizatjon. This comparison is made hoth analytically and
through numerical studies. Comparison is alsoc made with
Monte Carlo simulation, available exact solutions, and other

available closure techniques (Noori and Davoeodi, 198%a).

6.3-1 Duffing Oscillatorx

The first case for illustrating the proposed work is the
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following Duffing oscillator considered by Crandall (198Q)
U+ n0 + (U + €U3) = /7 £(¢) (6.27]

where f(t) is a Gaussain white noise with autocorrelation
function of Rge.7) = 26(t) and n is a damping factor. By the
coordinate transformation Y; = U and Y, = ﬁ, Equation [6.27]

can be written as

§1 = Y, (6.28-a]

Yo o= -n¥y - ¥; = €¥33 + J £(1) [6.28-b]

By choosing a function $(Y) = (Yli Yzj) the moment equaticn,

Equation {3.26], can be derived as

Mi,3 = Mo, den 7 0I5 - Mg goq “IM 4
+H3(3-1)M4 §-2 [6.29]

where M; 4 = E(Y;} ¥,3); i+j=2. Neglecting the fourth order
cunmulant, Equation [6.29] results in the following set of

differential equations for the second order moments

Mao = 2M3,

; 2

My = =Mzo =3¢Mzq° = M3, + Mg

!.402 - "5€H20H11 ‘2H11 -znu” +27)H01 [6.30]

In order to derive the corresponding covariance matrix
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equation for the linearized system, Egquation [3.13-c] is
utilized where g(.) = U + ¢U;. The state vector equation for

the system, Equation [3.14], can be written in the form

il - Yz
Yo = =n¥, = Ko¥g + v f(t) (6.31)
where K, = (3/8Y;) F(¥y + €¥;3) = 1 + 3¢E(Y;%). The

covaraince matrix equation can be easily derived as

él - 252
S, = §; + 3¢5;2 -nS, + S5 [6.32]

.

S3 = =25, - 6€51S; ~ 2153 + 27

where S, = My 4 = E{Yliyzj}. As can be seen Equations
[6.30] and [6.32] are identical and this completes the
formulation. Figures 6.8 and 6.9 present the results for
the RMS displacement of this oscillator as obtained by the
numerical solution of Eguations [6.30) (Itd Gaussian), and
by Equations [6.32] (linearization) for two cases of low and
high nonlinearities. These results have alsc heen compared
with the exact solution and Non~Gaussian results derived by
Crandall (1s80). As expected, the Itdé-Gaussian and

linearization results are identical.
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6.)J-2 A SYISTEM WITH A SET-UP SPRING

The second example studied is a nonlinear system with a

This system has been studied earlier by

set-up spring.
Crandall (1962) using a statistical linearization approach.

The equation of motion for the system is given as

U + 2fugU + 0o2(U + €sgn U) = W(t) [6.33)

A coordinate

Gaussian white noise.

where W(t) 1is a
transformation Y{ = U and ¥; = ﬁ results

il‘Y2
Yy = -Rg¥; = 2fwg¥, + W(t) [6.34]

where Ko is the equivalent linearized coefficient given by

Ke = (8/3Y1) E{wg®(Y; + € sgn Y,))
= w2 [1+2¢/ (V27 0yq)] [6.35]

As obtained by applying Equation [3.13-¢]. The
easily derived

corresponding covariance matrix can be
yielding

L]

s, = 25,

S, = -RgSy - 26wS; + S3 {6.36)
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33 = _2KESZ - 46@033
where S, = E{Yli Yzj}: i+j = 2.

By choosing similar $(.) functions as used for the first
case, the moment differential ecuations can be derived.
This is done by applying Equation [3.26] to the state-space

vector form ¢f the equation of motion resulting

Mao = 2Myy
Myq = Mgy = 2fugMyq - 6g2Mag = wo2€E(Yy3gn(Yy))  (6.37)

Mgy = 02 - dfugMgs - 2wg2My; -20g2€E{sgn(Y;Y;))

where Mij = S, and g2 is the power spectral density of the
input Gaussian white noise. The twc expectad values in these
equations are evaluated as E{Y;sgn(¥y)) = 2My4/( 21)* and
E(sgn{¥,¥5)} = 2Mq4/1( 2!)* Oyi]. As can be seen the two
Eguations [6.36] and [6.37] are identical in fornm.
Corresponding numerical results for the RMS of displacement
are presented in Figures 6.10 and 6.11 for two cases of low
and high nonlinearities and are compared with the availablae
exact solution and the statistical linearization (Crandall,

1962).
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6.3-3 A General Hysteretic System

The third example studied is a nonlinear SDOF systenm
with BBW hysteretic restoring force element. This is the
system that was studied in this thesis. The equation of
motion for the system is given by Equation ([4.3] and is
given here again

U+ 28wl + awglU + (1 = a)wglz = £(t) [6.38)

where the hysteretic restoring force z is described by

Equation [4.4] znd here as
z = (AU - v(8|U|[z|"~1z + qU[z|P])/m [6.39]

in which #, v, and n are shape parumeters; A is the tangent
stiffness and v and n are deterioration parameters. Detailed
study cf this model is reported elsewhera (Baber and Wen,
1981). The equivalent linearization of this model has been
studied before (Baber and Wen, 1981). The moment squations
for the Gaussian case are derived as given by Equation

[4.10]) and are given here again

ﬁzoo = 2M110
M110 = Mgap = 2fugMyig ~ GWp?Magp = (1-0)Wwg3Myq,
M1g1 ™ Mg11 + AMyjg = BE(|Y2[¥1¥3) = 1E(]¥3]¥,¥5)

Moo = 0= 4€wgMgog = 2awp2Mygg = 2(1=0)wp?Mpg)
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. _ 5 )
Mp11 = -28wgMg1y = owp“Myg; - (1-@)wg“Mggz + AMpag
-BE( (15| ¥o¥5) = YE(|¥5]¥,%)

Mgy = 2AMg17 = 28E(]Y5]Y52) - 2¥E(|Y5]Y¥,¥5) [6.40]

where M; 3 x = E(¥;l ¥;3 ¥3¥); i+j+k=2 and 0 is the PSD of
the input Gaussian white noise. The corresponding covariance

matrix for the Linearized system is

e
[
[ ]

=255

-

[}

= a.0g?8) + 2£.wgS, + (1-a)wg?S; - S,

"
w
]

—CeSy - K83 - S5

[/, 13
>
L]

2&00252 + 4&@054 + 2(1"&)”0255 + 02
§g = 0wlSy - CgS4 + (26w - Kg)Sg + (1-u)w?Sg

S¢ = ~2CgSg = 2KgSg [v.41)
where S; = Mj 4, = E(y1! v;3 y3%)1 1+3+k=2, ana

Ke=-v[BE( |U| (8/82) (12|™"12) ) + YE(U(/82) 2|™))/n
Co=[A-v(BE(|2|M 1z (a|u(/au)} + yE(|2!D) )1/ [6.42)

it can be shown that Eguations [6.41]) and ([6.40] are

identical.

Figure §.12 and 6.13 represent the RMS displacement and
velocity respectively. These statistics have been obtained
by solving the moment equations, Equatjon [6.40)}, and

covariance equations, Equation. [6.41]. The system studied
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is a nondeteriorating smooth hysteresis given by A=l,
B=y=0.5, a=1/21, n=1, v=1, {=0, and wy=l.0. This model has
teen previously studied via Fokker Plank eguation (Wen,
197€) and by other Gaussian closure techniques (Iyengar and
Dash, 1%78). A compariscn is made between the It Gaussian
and equivalent linearization results and the digitized Monte
Carlo simulation for a wide range of input power spectral

densities. This study verifies that the two technicues lead

to identical results.
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CuapTteEn VII

SuMMARY, CONCLUSION AND RECOMMENDATIONS

7.1 General

The main objective of this research was to develop an
approximation technigue for random vibration analysis of
nonlinear systems with general hysteretic behavior. This
solution technigque had to be capakle of representing the
Non-Gaussian effect of the response. This gocal was
acconmplished by extending the Cumulant-Neglect closure
method of Wu-Lin (1984) and Ibrahim and Socundarajan (1985)
to include this form of nonlinearities. In the proposed
approach, first a joint density function for the response of
the system is assumed, and then using Ito-differential
approach a set of first order differential equations for the
system moments are derived. Because of the nonlinearity in
the BBW hysteresis model and other general hysteresis, the
resulting moment equations are coupled with higher order
moments. In order to close the moment equations, the basic
mathematical defination ¢f moments was used and the higher
order moments were obtained in terms of the lower order
ones. The approach presented in this thesis can be used for
both Gaussian and Non-Gaussian response analysis of
nonlinear systens. This chapter contains a summary of

previous chapters, and also the conclusions and suggestions
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that are resulted from this study.

7.2 Summary

Chapter 2 contains a briet discussion on the
developement of general hysteresis models, and in specific
the history and <the mathematical formulation of the
so-called smooth transitional model. The models that are
discussed include: Bilinear model, Elasto-Plastic model,
Smooth hysteresis models, degrading hysicresis models and
pinching models. The mathematical formulation of the smocth
hysteresis model is based on the model originally introduced
by Bouc (1967) and later was generalized by Wen (1976) and
Baber and Wen (1979). The degradation model for the smooth
hysteresis is based on hysteretic energy dissipation

developed by Baber and Wen (1981).

In Chapter 3 a brief review of approximate solution
technigues and different closure methods for nonlinear
randem vibration problems are Dpresented. The solution
techniques discussed are: Fokker-Plank-Kolmogorov
formulation, Monte Carlo Simulation, Pertubation, Equivalent
Linearization, Wiener-Hermite Expansion, Gaussian and
Non-Gaussian closure, Central Difference, Stochastic
Equivalent Systems, and Stechastic Averaging method.

Chapter 3 alsae contains the developnent of a Non-Gaussian
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selution method which was proposed by the author for the

random vibration analysis of hysteretic systems.

In Chapter 4 the application of the proposed solution
technique tc a BBW hysteresis model is demonstrated. The
moment egquations for the response of a SDOF system subjected
to zeroc mean stationary white noise excitation are derived
by assuming a 3 dimensiecnal joint density function for the

rasponse.

Chapter 5 contains the numerical studies for the random
vibration of the BBW model using this proposed technigue. A
wide variaty o¢f @parameters were considered. The
Non-Gaussian results obtained by the proposed technigue are
compared with Eguivalent Lineraization via Monte Ccarlo
Simulation. Higher order moment of response cocrdinate for
this system are for the firt time evaluated by the new

approach and are presented.

In Chapter 6 a comparative study was performed for
different approximate solution techniques. First, the
Non-Gaussian technique developed by Crandall (1980) is used
to analyze a system with tangent hyperbolic restoring force.
Then, through studing three different nonlinear systems, it
is shown that the Equivalent Linearization results are

identical to the results obtained by Ito-differsntial
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apprecach assuming Gaussian response.

7.3 Conclusion

This study has resulted in a number of conclusicns

regrading to the Non-Gaussian Ito technique, and they are as

follows:

1)

2)

3)

4)

The results from this technique are in good agreement
with Mente Carleo simulation.

In general the Non-Gaussian Ito approach predicts the
second order moments of the response better than
Equivalent Linearization.

This technique c¢an be applied to any nonlinear
system, but the major advantage s when the
nonlinearity in the system is of non-peolyncmial type
or when it has discontinuty.

Due to the highly nonlinear nature of the smooth
hysteresis model the exact solution of systems having
this type of nonlinearity is very daifficult, if not
impossible. Equivalent Linearization has been the
most widely used approximation technique for
analyzing systens with hysteretic nonlinearity. The
advandage of this Ito Non-Gaussain approach over
Equivalent Linearization is that it not only dces
provide more accurate rasults for second order

moments of the responsse but it can also provide the
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infermation on higher order moments. Therefore, the
density function obtained by Ito Nen-Gaussian is more
accurate than the density function obtained by
Equivalent Linearization.

5) When the number of unknown moments are greater than
the number of avialable simultaneocus eguations, it is
easy to implement this approach with Equivalent
Linearization.

6} The computer run time for this solution technique,
assuming Non-Gaussian response, is much higher than
Equivalent Linearization method, while it is the same
if the response is assumed to be Gaussian.

7) The solution technique presented in this work is for
systems subjected to stationary zero mean excitation,
while Equivalent Linearization can be used for both
zero and non-zerc mean sxcltations.

B) This technigque becomes very cumberscme as the number
of independent system variables increase, This is
the case when more complicated hysteresis such as
Babar-Noori or Noori-Baber slip-lock models are

considered.

7.4 Suggestions and Recommendations

The numerical studies, as reported in Chapter 5, clearly

indicate that the proposed solution technique of Chapter 3

100



is capable of accurataly estimating the response moments of

nonlinear hysteretic systems. Although good agreements were

found for moments of up tc the fourth order, there still

exist further areas to be investigated:

1)

2)

3)

4)

5)

6)

7)

the applicability of the proposed sclutien technique
to multi degree of freedom systems,

extension of the present solution technique to the
cases of non-zZero mean input excitation,

studying the effect of higher order moments on the
response level of hysteretic systems,

using a different index for degradation of the system
instead of hysteretic energy dissipation. An
alternative is the maximum defocrmation in each cycle
during loading as a measure of degradation for the
next cycle (Sues, Wen and Ang, 1583.)

S5ince this technicque can provide better information
on the probability density function for the response
coordinates, it is strongly adviseable that the first
passage problem for hysteretic systems to be
restudied using this approach.

The Non=Gaussian statistics obtained by the proposed
technique alsc provide a ground for reliability and
risk analysis of hysteretic structures.

In a number of cases the numerical studies indicate
that the dissipated energy prediction, by the
Gaussian analysis, is in a better agreement with

gimulation than the Non-Gaussian results. In the
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8)

same studies, a cross-~over behavior is alsoc chserved
between Gaussian and Non-Gaussian response with the
Gaussian results being in better agreement with MCS
after the cross-over. One source cf this problem is
suspected to be the fact that the Non-Gausian density
function in the vicinity of the cross-over becomes
unrealizeable, i.e. becomes negative. Therefore, it
is suggested that other possible forms of expansions
to be censidered for the assumed density function
such that the density function stays realizeable at
all times.

The numerical valuaeas fcr the parameters that were
used for describing the hysteretic behavior were
chosen arbitarily. In order to model the response
behavior of real structures, it is necessary to
obtain the appropriate values for the hysteresis
shape parameters, There are many system
identification procedures avialable (Distefano and
Rath, 1974; Distefanc and Pena-Pardo, 1976; Yar and
Hammond, 1987; and Hoshiya and Maruyama, 1987.) This

is also another tak that can be investigated.
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Fig. 5.25- RMS Veloc1ty Response of a 1BV SDOF Systenm.
£=0.0,4 =0.01, 6,=006-0..
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Fig. 5.26- RIS Velocity Response of a BBW SDOF System
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Fig. 5.27- RMS Velocity Response of a BBW SDOF System.

€=0.0,6,=0.02, 6 = 0.0, &, = 0.0.
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Fig. 5.29- RYUS Velocity Response of a BBW SDOF System.
¢ =40.0, 5 =00, § =0.01, &y = 0.0.
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Fig. 5.30- RMS Velocity Response of a BBV SDOF System.

e = 0-1| 8* = 0-0, SV = 0-01, 5” = 0.0.
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Fig. 5.31- RMS Velacity Response of a BBW SDOF System.
€=0.0, 8= 0.0, § =0.05, 5, = 0.0.
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Fig. 5.32- RMS Velocity Response of a BBW SDOF Svstem.
€=0.1, § = 0.0, § = 0.05, & = 0.0.
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Fig. 5.33- RMS Velocity Response of a BBW SDOF System.
¢ =0.0, § =0.0, 5§, =0.C, 8,, = 0.03.
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Fig. 5.34- RMS Velocity Response of a DBBW SDOF System.
§=0.1, 8 =0.0, § = 0.0, & = 0.05.
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Fig. 5.35- RMS Velocity Response of a BBW SDOF System.
£§=0.0 6 =020 5§ =0.90, 6,7 = 0.1.
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Fig. 5.36- RMS Velocity Response of a BBW SDOF System.
§=0.1, 4 =006, =00, 6,=0.1.
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Fig. 5.37- RMS Recponse of the Restoring Force for a SDOF
BBW System.
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Fig. 5.38- RS Response of the Restoring Force for a SDOF

BBW System.
€=0.1, 8§ =0.C, 5, =00, § =0.0.
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Fig. 5.39- RS Response of the Restoring Force for a SDOF
BB¥ Systenm.
€=10.0, 6 = 0.01. § =0.01, &, = 0.05.
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Fig. 5.40- RMS Response of the Restoring Force for a SDOF
BBV System.
£=0.1, § =0.01, §, = 0.01, Sn = 0.05.
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Fig. 5.41- RMS Response of the Restoring Force for a SDOF
BBW System.
€= 0.0, 6; =0.02, § =0.05, § = 0.1.
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Fig. 5.42- RNS Response of the Restoring Force for a SDOF

W System.

§=0.1, 8§ =0.02, §, = 0.05, by = 0.1.
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Fig. 5.43- RS Response of the Restoring Force for a SDOF
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Fig. 5.44- R)S Response of the Restoring Force for a SDOF
BBV Svstem.

E = 0-1, SA = 0-01’ ‘v = 0-0’ an = 0-0-
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Fig. 5.45- RMS Respomse of the Restoring Force for a SDOF

BBW Systenm.
£ =0.0, § =0.02, §, = 0.0, 6y = 0.0.
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Fig. 5.46- RIS Response of the Restoring Force for a SDOF
BB¥W Systenm.
€=0.1, § =0.02, § = 0.0, §, = 0.0.
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Fig. 5.47- RIS Response of the Restoring Force for a SDOF
W System.
§=0.0, 8 =0.0, §, = 0.01, 5,’ = 0.0.
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Fig. 5.48- RMS Response of the Restoripg Force for a SDOF
BBW Systen.
€=0.1, § = 0.0, § =0.01, 5, = 0.0.
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Fig. 5.49- RMS Response of the Restoring Force for a SDOF

BBW Systen.
€200, 6 = 0.0, 5, =0.05, & = 0.0.
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Fig. 5.50- RS Response of the Restoring Force for a SDOF
BBV Svstenm.
€=0.1, & = 0.0, & = 0.05, &, = 0.0.
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Fig. 5.51- RMS Response of the Restoring Force for a SDOF

BBW System.
£=0.0, 8§ =0.0, 6, = 0.0, &, = 0.05.
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Fig. 5.52- RUS Response of the Restoring Force for a SDOF
BBW System.
€=0.1, § = 0.0, § = 0.0, &, = 0.05.
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Fig. 5.33- RMS Response of the Restoring Force for a SDOF
BBW System.
§=0.0,86 =0.0,6, =00, 5, =0.1.
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Fig. §.54- RMS Response of the Restoring Force for a SDOF
BBW System.

€= 0.1, 61 = 0.0, § = 0.0, 5y = 0.1.
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Fig. 5.55- Fourth Order Moment of the Displacement Response.
£=0.0, 5, = 0.0, 5, = 0.0, & = 0.0.
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Fig. 5.56- Fourth Order Moment of the Displacement Response.
€=10.1, 8, =0.0, § = 0.0, § =0.0.
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Fig. 5.57- Fourth Order Moment of the Displacement Response.
§=0.0,8,=0.01, 5 =0.01, §, = 0.05.
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Fig. 5.58- Fourth Order Moment of the Displacement Response.

§=0.1, § = 0.01, § = 0.01, 6, = 0.05.
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Fig. 5.59- Fourth Order Moment of the Displacement Response.
§€=0.0,6 =0.02, &, = 0.05, 6ﬂ =0.1.
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Fig. 5.60- Fourth Order Moment of the Displacement Respomse.
€=0.1, ¢ =0.02 6, =005, &§ =0.1.
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Fig. 5.61- Fourth Crder Moment of the Displacement Responmse.
£=0.0, § =0.01, §, = 0.0, é, = 0.0.
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Fig. 5.62- Fourth Order Noment of the Displacement Response

€=0.1, § = 0.01, §, = 0.0, &, = 0.0.
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Fig. 5.63- Fourth Order Moment of the Displacement Response.
€=0.0, & =0.02, 5, = 0.0, 5, = 0.0.
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Fig. 5.64- Fourth Order Moment of the Displacement Response.
€=0.1, §,=0.02, § = 0.0, §, = 0.0.
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Fig. 5.65- Fourth Order Moment of the Displacement Response.
£€=0.0, 8 =0.0, 5 =0.01, §, = 0.0.
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Fig. §.66- Fourth Order Moment of the Displacement Response.
€=0.1, § = 0.0, §, = 0.0, §, = 0.0,
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Fig. 5.67- Fourth Order Moment of the Displacement Response.
€=0.0,6,=0.0, 6 =0.05 & =0.0.
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Fig. 5.68- Fourth Order Moment of the Displacement Response.
§=0.1, § = 0.0, §, = 0.05, 6,, = (.0.
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Fig. 5.69- Fourth Order Moment of the Displacement Response.
§=0.0,8,=00 6, =00, 5§ =0.05.
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Fig. 5.71- Fourth Order Moment of the Displacement Response.
€=0.0, 8 = 0.0, § = 0.0, &, =0.1.
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Fig. 5.72- Fourth Order Moment of the Displacement Response.
§=0.1, § =0.0, §, = 0.0, Sn = 0.1.
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Fig. 5.73- Fourth Order Moment of the Velocity Response.
€=10.0, 6 = 0.0, §, = 0.0, & = 0.0.
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Fig. 5.74 Fourth Order Moment of the Velocitg Respomnse.
£=0.1, 8, = 0.0, § = 0.0, & = 0.0.
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Fig. 5.75- Fourth Order Moment of the Velocity Response.
€= 0.0, §, =0.01, § = 0.01, & = 0.05.
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Fig. 5.76- Fourth Order Moment of the Velocity Response.

€=10.1, 5 =0.01, 5§, = 0.01, Sn = 0.05.
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Fig. 5.77- Fourth Order Noment of the Velocity Response
§=0.0, 8 =0.02, §, = 0.05, §p = 0.1.
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Fig. 5.78- Fourth Order Moment of the Velocity Response.
€=0.1, § =0.02, §, =0.05, § = 0.1.

200




EjUmwa

O- Y. Smiicion
A Nop_Lwree:
40 Non-Gaussion
D=0t k‘
LA = 4 P
{
0 U “
160 A V-l
A nal\
VA ‘\/\/\/\/W W/
0004~ T T ] I
0 10 il X §

Time(sec)

Fig. 5.79- Fourth Order Moment of the Velocity Response.
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Fig. 5.80- Fourth Order Mowent of the Velocity Response.
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Fig. 5.81- Fourth Order Moment of the Velocity Response.
§=0.0, 8, =0.02, § =0.0, é, = 0.0.
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Fig. 5.82- Fourth Order Moment of the Velocity Response.
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Fig. 5.83- Fourth Order Moment of the Velocity Responmse.
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Fig. 5.85- Fourth Order Moment of the Velocity Response.
€ =0.0, 5, =0.0, & = 0.05, § = 0.0.
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Fig. 5.86- Fourth Order Moment of the Velocity Response.

€=0.1, §, = 0.0, §, = 0.05, 6, = 0.0.
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Fig. 5.87- Fourth Order Moment of the Velocity Response.
€=0.0, 5 =00, § = 0.0, & = 0.05.
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Fig. 5.88- Fourth Order Moment of the Velocitg Response.
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Fig. 5.89- Fourth Order Moment of the Velocitg Response.
€=0.0, 5 =00, § = 0.0, 6, =0.1.
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Fig. 5.90- Fourth Order Moment of the Velocity Response.
€=0.1,8,=00, 8 =00, §=0.1.
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Fig. 5.91- Fourth Order Nomeat of the Restoring Force.
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Fig. 5.92- Fourth Order Moment of the Restoring Force.
€=0.1, § =0.0, § = 0.0, & = 0.0.
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Fig. 5.93- Fourth Order Moment of the Restoring Force.
§=0.0, 8 =001, § = 0.01, &, = 0.05.
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Fig. 5.94- Fourthk Order Moment of the Restoring Force.
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Fig. 5.95- Fourth Order Moment of the Restoring Force.
£€=100, §=0.02, §, =0.05, &, =0.1.
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Fig. 5.96- Fourth Order Moment of the Restoring Force.
§€=0.1, 5 =0.02, §, = 0.05, ép = 0.1.
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Fig. 5.98- Fourth firder Moment of the Restoring Force.
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Fig. 5.99- Fourth Order Moment of the Restoring Force.

=00, 6 =0.02 § = 0.0, 5, = 0.0.

221




EjZ*+4t

0.2 +

0.10

&%W

D

0l

w
4

\W\)
D =055 \A
O~ UL (. Smuldtion
A- el
[ T | i
10 i} X L] X
Time(sec)

Fig. 5.100- Fourth Order Moment of the Restoriﬁg Force.
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Fig. 5.101- Fourth Order Moment of the Restoring Force.
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Fig. 5.103- Fourth Order Moment of the Restoring Force
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Fig. 5.104- Fourth Order Moment of the Restoring Force.
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Fig. 5.106- Fourth Order Moment of the Restoring Force.
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Fig. 5.107- Fourth Order Noment of the Restoring Force.
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Fig. 5.108- Fourth Order Moment of the Restoring Force.
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Fig. 5.109- Mear of the Dissipated Hysteretic Energy for
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Fig. 5.110- Mean of the Diséipated Hysteretic Energy for
SDOF BBW System.
€=0.1, 8 = 0.0, § = 0.0, & = 0.0.
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Fig. 5.111- Mean of the Dissipated Hysteretic Energy for
SDOF BBV Systenm.

§=0.0, § =0.01, §, = 0.01, ép = 0.05.
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Fig. 5.112- Mean of the Dissipated Hysteretic Emergy for

SDOF BBV System.
£=0.1, § = 0.01, §, = 0.01, § = 0.05.

« 1

234




Energy

.00 i
16,00 O - U (. Smulation
O - Linearization & Gaussion
& - Non-Gayssan
11001
8.0 -
£00
0.00 -

Time{cec)

Fig. §.113- Mean of the Dissipated Hysteretic Energy for
SDOF BBW System.
€=0.0, § =0.02, 5§, =0.05, 6,7 =0.1.

235




Energy

1000 -
800 O- . . Smulgion

o~ Lnearizgiion & Gaussin D=0 /&

- Hon-Gaussion
6.00 -
400 1 Z

.
A
7
210 - ' ," =18
27
£
000 - I | T |
0 {0 ] k) {
Time(sec)

Fig. 5.114- Mean of the Dissipated Hysteretic Energy for
SDOF BBW Systen.
€=0.1, § = 0.02, 5 = 0.05, §, = 0.1.
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Fig. 5.115- Mean of the Dissipated Hysteretic Energy for
SDOF BBW System.
€=0.0, § =0.01, § = 0.0, &, = 0.0.
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Fig. 5.116- Mean of the Dissipated Hysteretic Enmergy for

SDOF BBW System.
§€=0.1, § = 0.01, 5§, =0.0, 5,' = 0.0.
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Fig. 5.117- Mean of the Dissipated Hysteretic Energy for
SDOF BBW Systenm.
£ =0.0, § =0.02, §, = 0.0, §p = 0.0.
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Fig. 5.118- Mean of the Dissipated Hysteretic Emergy for
SDOF BBV Systen.
£=0.1, § =0.02, § = 0.0, §, = 0.0.
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Fig. 5.119- Mean of the Dissipated Hysteretic Enmergy for

SDOF BBW Systens.
§=0.0, 8 =0.0, § =0.01, 8y = 0.0.
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Fig. 5.120- Mean of the D[issipated Bysteretic Emergy for
SDQF BBV System.
€=0.1, § =0.0, §, = 0.01, 6y = 0.0.
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Fig. 5.121- Mean of the Dissipated Hysteretic Energy for

SDOF BBW Systes.
¢ =00, 8§ = 0.0, 5, =0.05, 8y = 0.9.
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Fig. 5.122- Mean of the Dissipated Bysteretic Energy for

SDOF BBW Systenm.
£€=90.1, § = 0.0, &, = 0.05, Cq = 0.0.
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Fig. 5.123- Mean of the Dissipated Hysteretic Energy for
SDOF BBV Systen.
€ =0.0, § =0.0, § = 0.0, § = 0.05.
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Fig. 5.124- Mean of the Dissipated Hysteretic Energy for
SDOF BBV System.
€=0.1, § = 0.0, § = 0.0, & = 0.05.
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Fig. 5.125- Mean uf the Dissipated Hysteretic Energy for

SDOF BBV System.
§=0.0, 5 = 0.0, §, = 0.0, b = 0.1.
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Fig. 5.126- Mean of the Dissipated Hysteretic Emergy for

SDOF BBV Systenm.
E = O-l, 6A = 0-0, 6y = 0-0' 6” = 0.1.
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APPENDIX A

The expected values in Egquations [4.9] and [4.10] are

tabulated as follows

I, = E(}¥;]¥3) [Al]
I, = E(]¥3]¥y) [A2]
I, = E([Y¥y]Y42) (A3)
I, = E{{¥Yy]¥y¥3} (A4]
I = E{!Y,]¥;Y3) (AS)
Ig = E{|Y¥q]|Y¥ ¥} [A€]
I; = E(]Y3]|Y¥,¥3) [A7]
Ig = E([V4]¥5%) [a8]

In order to evaluate these Ii{’'s in terms of the response
moments the following three dimensicnal Gaussian density

function is assumed

(2')‘(312) 1 3 3
p(Y(t)] = ——— exp(- — I I
|a| ¥ 2|A] st gm
ccf(A)ij(Yi-mi)(Yj-mj)} [A9]
whare
¥(t) = [Yy(t), Ya(t), ¥3(t))17T
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|4] = Determinant of the covariance matrix.
cof(A)ij = coafactor ¢f the covariance element Cij in
the determinant of covariance matrix.

mj - E[Yi]

Using the density function in [A9] the expected values

given by Equations [Al] through [A8] ars evaluated to be

I, = Ay $(2;1.5;a) + A, #(1:;0.5:a) (A10]
I, = Ay $(2;1.5:;b) + A, $(1:;0.5:b) [Al1]
I3 = Ag #(2:0.5:a) + Ag #(2:1.5:a) +

Ay ¢(1:0.5:a) (A12]
I, = Ag #(2;0.5:b) + Ag $(2;1.5:b) [Al3]
Iz = Ay1g ¢(2:0.5;c) + Ay; $#(2:1.5ic) +

Ay, #(1:0.5;:¢) [A14]
Ig = Ag3 ¢(2:0.5:;4) + Aqq ¢(2:1.5:d) +

Ajg #(1;0.5:4) [A15]
I, = Ay 4(270.5;a) + Ay ¢#(2:1.5;a) [A16)

Ig = Ajg #(2:;0.5;b) + Ajg $(2:1.5;b) +

Azo ‘(150-5?13) [Al’]

where Aj;, a, b, c and d are functions of the response

moments and ¢(.) is the Kummer function as given by:

T(8) ac-p

$(a,8,7) = 18 (17! exp(7)] [A18]
I'(a) ar*-p
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[> ]
T(a) = Gamma function = J %' exp(-t) dt [A19]
0

for a>0

These parameters are lengthy expressions and their detailed
derivatiocns which are not reported in this paper have been
obtained using the HMAC'ms Symboliec Manipulation (MACSYMA)

available through Massachusetts Institute of Technology.
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AFPENDIX B

The expected values of Equations (4.9], [4.10), (4.13],
and [4.14] can be categorized intoc two g'roups. The first
group contains tha expected values of only two variables, Y,
and Y5, and the second group contains the expected values of

three variables Y;, Y, and Y;. In general, these expected

values are expressed as:

+x +m
E{IYi! Y,® Yj"} = J J lYs| ¥5™ vy0
-0 =
P(Yj, ¥5) dYj dyy (B1]
+x +m +o
z{lyil vyl oyy® v ] - J J J It ¥yl vy® v
-0 = =2

P(Yy, Yj, Yk) d!i de a¥y [B2]

where P(Y;, !j) and P(Y;, Yj, Yx) are either a Gaussian
distributed density function as given by Eguation [4.11] or
a Non-Gaussian density function as given by Equation (4.12].
Thae evaluaticn of the expected values in Equations [Bl] and
{B2], after subsituting for the appropriate density

functions, rsguires the calculation of the follewing

integrals:
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+1n +m
Imn 'J J lvgl ¥3® ¥y°
- =X

exp(alez + aj¥¥y + aj¥;2) avy ayy [B3]

+® +x +x
Iimn = J J J jy;] ¥yl ¥4® Y0 exp(s;¥y¥; +
-D =3 -1

saY5Vy + m3¥ Yy + sg¥y? 4

s5Yi% + sg¥y?] dy; dvy avy [B4]
a, through a; and s, through s, are constants. These
constants are in terms of the response mnmoments. The

mathematical steps leading to +these integrals are not
presented here. Closed form solution of Equations (B3] and

[B4] are obtained as follows:

1'1! ("'l/a.l)* Eln/2) (-a1}° az(r'I'zn) Al

Ton = z [BS]
(~-2a,)" %0 (n-2Q)! Q! A2
m! fwa) )-:-zo .23 A4 A6

Timn = E —_— [B6]
1nn (a‘ bz)* 2* =0 J=0 I=0 A5 A7
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where E( )

is the lowest integer number.

The detailed

derivations leading to these results are lenghty and cannot

be reported here.

given as:
m+ n -2Q
Al = [ ] !
2
(- 2Q+2)/2)
A2 = (-Bl)
n+J
A3 = E{ )
2
A4 = ™% Al (-a,)"" (n+T)!

[-by/ (2by) 3™

AS = I! J! Q! (m - 2Q - J)!

l+m+ n -2 -2I

s = |
2

¢ Lemen-20-21+2)/21

A7 = (~B2)

Bl =

B2 =

268

The variables in Equations [B5] and B[6] are

[-by/ (by?) 1!

(n + J -2I)!

] '



4a,
a?
b, = a, -
4a,
. 2a, a,
b3 - a] -
4.3‘
Equation [B5] and [B6] are
and b,<o0.
r
=0 if m+n
Inn
=[B5]) if m + n
=0 if 1 +m
I1mn
=B8] if 1 + m

valid if a,<0, B1<O, s,<0, B2<0,

= cdd

= even

+ n = odd

+ n = aven
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AppeNDIX C

The differential equation of motion is given by

MU + CU + h(U) = F(t) [c1]
where
h(U) = A tanh(Ku/}\) [c2]

Equation {C1l] ran be written in a linear form as

MU + CU + Kg(U) = F(t) [e3]
The coefficient, K, was found by mnminimizing the error
between Equation [Cl] and [C3]. The error of linearization
is

A = KgU - h(U) (ca)

The minimization can be accomplished by

dE(A2)
Kq

which results in
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E{(Uh(U))

[C6]
E{U2)

The numeratoer of Equation [C6] can be calculated numerically

by a technigque that was explained in Section 6.2.

. 20B,
E{U tanh(KU/\)} = —— [(C7]
vk
where
[+
Ky y2
By = | vy tanh( —— ) exp(- — ) ady (cs8)
Ay 2
0
and
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