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Integrated Seismic Risk Analysis For Earth Dams

ABSTRACT

There are many sources of uncertainty involved in the seismic design or safety evaluation

of an earth dam. Even when conservative assumptions and selections of design parameters

are made, there will always be a probability that the perfonnance of the dam during its
lifetime may not be as predicted.

To evaluate the overall seismic risk of damage to or failure of earth dams an Integrated

Seismic Risk Analysis procedure was developed. The analysis combines the probabilistic
prediction of occurrence of seismic events with probabilistic prediction of the perfonnance

of a dam experiencing these events and provides estimates of seismic risk. In this research

techniques were employed to express the Seismic Hazard Analysis results in tenns of joint
occurrence of peak ground acceleration and earthquake magnitude or associated number of
equivalent cycles. Furthennore, a probabilistic procedure for the calculation of pennanent

defonnation of earth dams was developed in which the seismic event is characterized in
tenns of acceleration, number of cycles and predominant period of motion.

The application of these procedures provides estimates of relative risks, which are useful in
design and decision analysis, where trade-offs are made between the cost of increasing the

seismic resistance and the risks associated with the consequences of seismic damage. In

addition, risk-based safety evaluation enables identification of the most important

parameters, assumptions, hypotheses and safety criterion affecting the evaluation of the

safety of the dam and avoids compounding of conservatism.
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INTEGR.ATED SEISMIC RISK ANALYSIS FOR EARTH DAMS

I. INTRODUCTION

Over the past two decades, significant developments have been made in the understanding

of dynamic response of earth dams. Analytical procedures have been developed of varying

degrees of sophistication ranging from the simple application of Newton's second law to

three-dimensional finite element analyses. Notwithstanding these developments, the

estimation of the likelihood of seismically~inducedfailure, or conversely, the reliable

performance of an earth dam, during the period of its functional life remains a

challenge.(6l)

Seismic safety evaluation of an earth dam involves the identification and determination of

various parameters, including the seismic loads on the dam and the resistance to these

loads. There are many uncertainties that need to be considered for a realistic evaluation of .

the seismic risk associated with a dam. Uncertainty is introduced in the parameters

defining the seismicity and geology of the site, in the parameters describing the strength of

the foundation and dam materials, and in the methods of dynamic analysis employed for the

darn.

In the current practice of seismic safety evaluation of an earth dam, a deterministic approach

is generally followed in which conservative selections of parameters and assumptions are

made to account for the various uncertainties involved in the seismic safety evaluation of

the dam. Typically, in this type of an investigation, a minimum required factor of safety or

a limiting level of permanent strain or deformation is adopted. If it is satisfied, then the
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dam is considered to be safe. This approach can render the design of a new earth dam

economically unfeasible due to the compounding of conseIVatism. More seriously, in the

seismic safety evaluation of existing earth dams, the deterministic approach can lead to the

conclusion that most existing dams are.unsafe. A more realistic evaluation of the seismic

safety, using reasonable assumptions and parameters and accounting for their uncertainties

using probabilistic procedures, may indicate that the level of risk is acceptable to all parties

concerned.

This report describes a probabilistic approach to the seismic safety evaluation of earth

dams. The method involves the integration of the seismological and geotechnical inputs

and their uncertainties in a consistent manner to yield the likelihoods of seismically induced

damage and catastrophic failure of the dam. The application of these procedures provides

estimates of relative risks, which are useful in design and decision analysis, where trade

offs are made between the cost of increasing the seismic resistance and the risks associated

with the consequences of seismic damage. In addition, risk-based safety evaluation

enables identification of the most important parameters, assumptions, hypotheses and

safety criterion affecting the evaluation of the safety of the dam and avoids compounding of

conservatism.

II METHODOLOGY

The evaluation of the risk ofseismic damage or failure of a facility requires two analyses

hereafter referred to as the Seismic Hazard Analysis (SHA) and the Seismic Perfonnance

Analysis (SPA). The estimation of seismic risk involves the following steps which are also

illustrated in Figure 1.
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Step 1. Seismic Hazard Analysis considers the various seismic sources and the

frequency content and other characteristics of the seismic excitations that can be generated

by these sources. It yields probabilistic statements of the recurrence of levels of seismic

hazard defined in terms of ground motion parameters at the site of the facility.

Step 2. Seismic Performance Analysis considers the seismic resistance of the

facility, providing probabilistic statements regarding the perfonnance of the facility,

conditional upon a given level of seismic excitation.

Step 3. Seismic Risk Analysis integrates the results of the Seismic Hazard Analysis

and the Seismic Performance Analysis to yield the overall risk of damage or failure. Figure

2 is a schemati,c representation of the integration involved in the Seismic Risk Analysis.

The methodology described is applicable to any type of facility (70). In this research,

procedures were developed to apply this methodology specifically to earth dams. The

framework for perfonningthese procedures is illustrated in Figure 3. A matrix approach is

used to display the results of the three steps of the risk analysis.

The advantages of the matrix approach over closed-form formulations are:

1. The damage probability matrices compiled from the Seismic Performance Analysis are

in themselves useful information. They indicate the adequacy of current design practices in

.relation to expected damages for different levels of seismic excitation.

2. The integration of the results from Seismic Hazard Analysis and Seismic Performance

Analysis to obtain estimates of risk can be done in a simple manner with the use of a hand
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calculator. This makes it more convenient to repeat analyses to assess the effects of

different assumptions and different design alternatives.

3. Permits the use of simple or rigorous state-of-the-art analyses.. For example, the

Seismic Performance Analysis can be performed empirically, subjectively, using simple

analytical procedures, or using complex three-dimensional fInite element analyses.

Sections III and N describe the procedures developed for conducting the SHA and SPA.

III SEISMIC HAZARD ANALYSIS (SHA)

Damage to or failure of an earth dam can occur as the result of different failure

mechanisms, hereafter referred to as modes. For the seismic analysis of earth dams

consisting of materials that progressively lose shearing resistance during seismic

excitations, the pseudo-static analysis is no longer considered a reliable approach (24,57,

65). Seismic safety evaluation of earth dams .requires assessment of the potential for

permanent deformations; which can result in loss of freeboard and consequently, failure by

overtopping.

The first mode of failure considered is the progressive accumulation of residual

displacements during the course of the earthquake. Newmark (1965) proposed a simple

sliding-block model for the calculation of permanent deformation using a rigid-plastic

force-displacement relationship. In recent years, other analytical procedures (1,3,12, 14,

18,21,22,23,25,26,32,37,39,40,42,46.47,56,60,62, 66, 69) have been developed for

calculating permanent deformations. These have been essentially extensions of Newmark's

simple concept. A review of these methodologies indicates that the characteristics of the
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seismic excitation plays an important role in the estimation of permanent deformations in

earth dams. The peak ground acceleration, frequency content and duration, as well as the

random nature of the ground motions, affect the magnitude of the accumulated permanent

deformation.

The second mode of failure considered is associated with post-earthquake instability due to

reduction in shearing resistance of the dam and the foundation soil during shaking. The

potential for this mode of failure depends not only upon the characteristics of the soil, but

also on the severity of the seismic excitations.

In this research, a simple procedure for calculating the permanent deformations of an earth

dam was developed. The parameters selected to describe the seismic event are peak ground

acceleration, predominant period of motion, and number of equivalent cycles of seismic

load application, Neq. The selection of number of equivalent cycles as one of the

parameters is consistent with the procedures for post-earthquake instability analysis

involving the cyclic shear strength of soils.

For a specific level of peak ground acceleration, the probability of exceeding a specified

permanent deformation and the probability of post-earthquake instability will be

significantly lower for a smaller number of cycles, all other factors being the same.

Therefore, the, Seismic Hazard Analysis procedure must provide not only the annual

number of events causing acceleration to exceed a specified level, but also the distribution

of these events with respect to the number of cycles of excitation.

Current Seismic Hazard Analysis procedures typically provide only the number of events

causing acceleration to exceed a certain level (2, 15,32,45,49,73). The results from such an

5



analysis are expressed in terms of annual number of events causing acceleration A to

exceed 'a', A(A ;;:: a). The total number of events contributing to exceeding '~' will

generally cover a range of Richter magnitudes, M, due to varying site~to-sourcedistances.

It is important to identify the distribution of Richter magnitudes expected for the events

giving A(A ;;:: a). For example, if A(A ;::: a} is equal to 10, it is necessary to determine how

many of these 10 events have magnitudes between four and five, five and six, six and

seven and so forth, or more specifically how many of the 10 events will cause 0 to 5

cycles, 5 to 10 cycles and so on. The mathematical formulation that permits the calculation

of the distribution of A(a, ~M) or A(a, ~Neq)' where ~M and ~Neq are the ranges of

earthquake magnitude and number of cycles, respectively, is provided in Appendix A. The

number of earthquakes causing acceleration at a site to exceed 'a' and having magnitudes

between the minimum value of interest, Il10 and a selected value mi can be obtained through

the use of computer programs currently used in conventional probabilistic Seismic Hazard

Analysis, provided that the following input parameter modifications are made.

(a) The maximum credible magnitude mmax to be read in to the computer would be mi

and

(b) the number of events causing magnitude to exceed 1110 to be read into the computer

would be equal to

A(mJ [ 1 - e-{3(m; . rno) 1
1- e~-rno)J

where, ~ is the magnitude-frequency parameter, and 1..(1110) is the total number of events

having magnitude between Il10 and mmax'

With the use of these modified parameters the results of the computer analysis will
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correspond to t..(a, ~Mi)' the total number of events causing acceleration to exceed 'a' and

having magnitudes greater than IIlo but less than mi' By selecting various values of mi' it is

possible to generate a histogram of events t..(a, ~) for various intervals of magnitude.

To establish the joint occurrence of acceleration and number of cycles, t..(a, ~Neq)' a

relationship between Richter magnitude, M, and number of equivalent cycles, New is

required. Appendix B presents various relationships based on the research of different

investigators. Using these relationships, the distributions of t..(a, ~Neq) can be determined

from the distribution of t..(a, ~M).

111-1 Example Application of SHA

An example is presented herein to demonstrate the application of the Seismic Hazard

Analysis that provides the joint distribution of t..(a, ~M) and t..(a, ~Neq)' Figure 4 shows

the seismic sources used for the example site, which is located near Boston. Appendix C

presents the relevant seismic data used and the steps followed in the analysis. The

computer program developed by Schumacker and Whitman (1978) was used for the

Seismic Hazard Analysis. Figure 5 shows the result obtained from the application of

conventional Seismic Hazard Analysis. The plot provides the annual number of events that

cause acceleration A to exceed 'a'. However, it does not provide the magnitudes associated

with these events. Using the procedure described in the previous section (and Appendix C)

the number of events having accelerations and magnitudes between selected ranges, A(M,

~M), were computed and the results presented in a matrix form as shown in Table 1.

Table 2 shows a comparable SHA matrix with the results expressed in terms of Neq rather

than M. The relationship between M and Neq proposed by Seed et al. (1983), described in
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Appendix C, was used to calculate the results shown in Table 2.

Figure 6 shows a histogram of the number of events as a function of M and Neq for peak

accelerations exceeding O.15g. It can be seen that the magnitude, M, and the number of

cycles, New associated with an acceleration of O.15g will most likely be small. This

information is extremely useful in the analysis of permanent defonnations and evaluation of

post-earthquake shearing resistanc.e of the embankment soils.

IV SEISMIC PERFORMANCE ANALYSIS (SPA)

The objective of a Seismic Performance Analysis is to provide the probabilities of damage

and failure of an earth dam conditional upon the occurrence of a specified level of seismic

loading. As described earlier, damage or failure of an earth dam can occur during or

. shortly after a seismic event. During shaking, a section of the dam will experience .

substantial permanent deformation if the earthquake induced shear stresses exceed the

shearing resistance of the embankment or foundation materials. The dam may suffer

limited damage or may experience total failure due to overtopping, if the available freeboard

is lost. This potential mode of damage and failure is hereafter referred to as Mode 1. If the .

embankment or its foundation material are susceptible to loss of shear strength due to

application of seismic excitation, then the potential for post-earthquake instability of the

dam needs to be evaluated. This type of failure mechanism is hereafter referred to as Mode

2. Sections IV-l and IV-2 describe the procedures for the Seismic Performance Analysis

for Modes 1 and 2, respectively. The combination of the contribution of the two modes to

the overall risk is discussed in Section IV-3.

8



IV-! Earthquake-Induced Permanent Deformations, Mode!

Earthquake-induced pennanent defonnations of an earth dam can be estimated by a number

of approaches, varying in their degree of sophistication. On the one hand, Newlpark

(1965) and Makdisi and Seed (1978) developed empirical charts to estimate the permanent

deformation. On the other hand, two dimensional finite element analysis combined with

cyclic simple she~ or triaxial compression test results on undisturbed or reconstituted soil

samples have also been used to evaluate the strain potentials and pennanent deformations

within a dam subjected to seismic excitations (12,22,37,38,42,43,46,52,53,60,66).

In the development of the Seismic Perfonnance Analysis procedures described in this

report, an analytical model was developed for the calculation of pennanent defonnation that

satisfies the following criteria:

(a) The seismological input for both Mode 1 and Mode 2 analyses and the parameters

describing the output of the Seismic Hazard Analysis are consistent with each other.

(b) The pennanent defonnation model is simple enoligh to be conveniently applied in

design practice, yet accounts for all the pertinent seismic and material parameters.

(c) The model allows for the application of probability theory to estimate the likelihood of

the pennanent defonnation exceeding specified values.

(d) The model parameters can be evaluated in simple approximate ways or using rigorous

sophisticated procedures as dictated by need.

9



The following section describes the procedure that was developed to estimate permanent

deformations.

IV-I.! Procedure for Calculating Permanent Deformations

Calculation of earthquake-induced permanent deformation can be made using Newmark's

sliding block model shown in Figure 7. In this approach, a rigid-plastic response is
,

assumed, such that if the acceleration of the block representing a section of an earth dam

exceeds a limiting yield level, ~Y' then a relative displacement, Df' will be initiated

representing a permanent deformation of the dam section. An illustration of the motions of

the block and the base for a triangular base excitation is presented in Figure 7. The derived

mathematical formulation for Dr' given triangular base motion, is presented in Appendix D.

In addition, derived expressions for sinusoidal and rectangular base excitations are also

presented. Based on these derivations for Df' the following observations are made:

(a) The expression for Dr is of the form:

(1)

in which f( ) is a function that depends on the type of base motion considered, Ky is the

yield acceleration, Ka is the peak acceleration of the base, T is the period of the motion, and

Neq is the number of cycles of the base motion.

(b) The permanent deformation, Df' can be normalized with respect to the peak acceleration

of the base, Ka, and the square of the period, T, of the base motion and the number of the

10



unifonn cycles, Neq, as shown in Equation 2.

(2)

where Do is referred to as the nonnalized pennanent deformation and is a function of only

Ky ' Ka, and type of base motion.

Figure 8 shows plots of Do versus Ky/Ka for each of the three simple base motions

considered, i.e. triangular, sinusoidal, and rectangular. It is clear that the shape of the base

motion has an important effect on the permanent deformation, especially if Ky/Ka is nearly

1.0. Recognizing that none of these motions properly depict the random nature of

earthquake-induced ground motions, a more realistic determination of the function f( ) of

Equation 2 was made by considering actual earthquake records. Table 3 summarizes the

pennanent defonnations computed by Franklin and Chang (1977) using 86 actual recorded

acceleration time-histories for the base motion in Newmark's sliding-block analysis. In

this research, their computed pennanent deformations were normalized according to

Equation 2 in order to establish the functional relationship between Do and Ky/Ka.

Table 4 presents the normalized permanent defonnation, Dn, for each of the three ratios of

Ky/Ka considered by Franklin & Chang (1977). The peak ground accelerations and the

predominant periods for these records were obtained from Chang (1978), and their number

of equivalent cycles of ground motion from Asturias & Dobry (1982). A plot of the data

from Table 4 for the three Ky/Ka values of 0.02,0.1 and 0.5 is shown in Figure 9. The

determination of the pennanent deformation function using these data is described in the

following section.
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IV-1.2 Function for Permanent Deformations

To establish the function f( ) of Equation 2 based on actual eanhquake records a third

degree polynomial was fitted to the data plotted in Figure 9, using Lagrange interpolation.

The polynomial was fitted through the median values of the plotted data points at KyIKa =

0.02, 0.1, and 0.5 thus, deemphasizing the effect of the few extreme points at the high

end, which are orders of magnitude different than the next highest values. In addition, Dn

was assigned a very small value (10-5) at KyIKa = 1.0, in order to account for the fact that

the displacement should be zero if KylKa =1.0. This value was selected in order to obtain

for f( ) in the range of 0.5 < KylKa < 1.0 (where data is lacking) a shape consistent with

that of the triangular base motion which appears to be more representative of actual

eanhquake motion than the sinusoidal or the rectangular base motions (see Figure 11). The

resulting polynomial curve is shown in Figure 10, and its mathematical expression is:

log Dn = log f(KylKa) .

= g(KylKa) = 0.22 - 1O.12(KylKa) + 16.38(KylKa)2 - 11.48 (KyIKa)3 (3)

where

IV-1.3 Comparison of the Proposed Function With Other Models

In Figure 11, the polynomial curve proposed for the calculation of seismically induced

permanent deformations is compared with the deformation functions of the triangular,

sinusoidal, and rectangular pulses. For KylKa < 0.1 these simple base motions yield
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significantly lower values of Dn than obtained based on Franklin and Chang's integration

of recorded time histories. Conversely, for KylKa > 0.1, the sine and rectangular base

motions yield significantly higher values of Dn. For KylKa > 0.1 the assumption of a

triangular pulse yields defonnations that are generally in agreement with Franklin and

Chang's data and thus with the established performance function for permanent

deformations.

Figure 11 also shows values of Dn estimated based on the results of Makdisi and Seed

(1978) for Richter magnitudes of 6.5,7.5, and 8.25. These values ofDn were obtained by

nonnalizing the displacements computed by Makdisi and Seed with respect to the peak

acceleration of the potential sliding mass of .the dam, Ka, the square of the first mode

fundamental period of the dam, T, and the number of equivalent cycles of the ground

motion, Neg. The data thus obtained plot slightly below the. proposed function. This could

be explained by the fact that the periods of the dams used to nOfr!lalize Makdisi and Seed

data are larger than the period of the motion of the dam. Nevertheless, it is noted that

Makdisi and Seed data plot within the range of data presented by Franklin and Chang.

IV-l.4 Uncertainty of the Proposed Function, g(KylKa)

There is considerable scatter in the values ofDn computed using Franklin & Chang's

(1977) data. The scatter of the resulting values of Dn for the 86 seismic records for KylKa

= 0.02, 0.1, and 0.5 is illustrated in Figure 9. This scatter is due to the random and

stochastic nature of seismic ground motions. In other words, the random nature of the

ground motions is not taken into account solely by the peak acceleration, Neq , and

predominant period. Two seismograms having essentially identical values for these

parameters can, and generally do, have very different time histories, resulting in different
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calculated permanent defonnations. To account for the resulting uncertainty in the

predicted value of Dn given by the proposed function, statistical analysis of the data shown

in Figure 9 was made. The logDn values of all the data were plotted on nonn~ probability

paper for KylKa = 0.02, 0.1 and 0.5 and is illustrated in Figure 12. It is seen that the three

sets of the data lie on nearly parallel straight lines between 10% and 99% probabilities of

not exceeding Dn. The slope of the~e lines is about 0.45. Thus, the standard deviation of

the logDn within this range is 0.45 for all 3 values of KylKa, and probability of exceeding

any given value, dn, of normalized permanent deformation can be obtained by:

P (
IOgDn - Illo!Pn logdn- IlIO!Pn)

= > = peS > s) =
O'logDn O'logDn

1 - <I>(S) (4)

where

<I> = the cumulative standard normal distribution function

S = logDn- Illo!Pn
O'logDn

and

j.llogDn = mean of logDn

= g(KylKa) as given by Equation 3

Rearranging Equation 5 gives

logDn = g(KyIKa) + So-logDn

= g(KylKa) + <1>-1 [ 1 - P(Dn > dn) ] O'logDn

14
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where S is the standard nonnal variate, and has a mean of zero and a standard deviation of

1.0. It is convenient to introduce

j: - (J
~Dn - logDn

giving

10gDn = g(KyIKa) + et>-l [ 1 - P(Dn > dn) ] ~Dn (7)

Equation 7 was used to calculate contours of Dn versus KylKa for specified probabilities of

exceeding dn: namely, 0.90, 0.70, 0.50, 0.30, and 0.10. The resulting curves are shown

in Figure 13.

An example of the application of Equations 4 through 7 follows.

Considering the following parameters:

Ka = 0.21g

Ky = 0.07g

Neq = 12 cycles

T = 0.7 second

What is the probability of Dr > 4 feet?

The value of Dn corresponding to Dr = 4 feet is

, 24/ [0.21 x 32.2 x 12 x (0.7) ] = 0.10

and K y / Ka = 0.07g/0.21g
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Entering Figure 13 with these two values yields the probability of Dr exceeding 4 feet equal

to about 5%.

The above procedure considers the uncertainty in the deformation function introduced by

the scatter in Franklin and Chang's data. Prediction of permanent deformations using the

proposed function involves additional uncertainties associated with the parameters used in

the function namely. Ka• Ky. Neq. and T.

The evaluation of Ka involves significant uncertainty and professional judgement. The

value of Ka depends upon the base motion of the dam and the dynamic response of the

dam. Makdisi and Seed (1978) described a procedure for estimating Ka. The resulting

value can vary substantially. depending upon the procedures selected, assumptions made

and the values of the material properties used. This uncertainty can be considered by

repeated Seismic Performance Analysis by varying Ka and then combining the results

using Bayesian weighted average technique described by Yegian (1979). The uncertainty

in Ka due to the uncertainty in the peak ground acceleration, A, is considered through the

SHA. For this research, the uncertainty in the number of cycles. Neq• is taken into account

by determining its probability distribution in the Seismic Hazard Analysis as described in

section III. The uncertainties in the yield acceleration Ky (or KylKJ and the predominant

period T can be considered as described in the following section.

IV-1.5 Uncertainty in Ky/Ka, T and g(Ky/Ka)

In order to facilitate the analysis of the uncertainty in the values of KylKa• T, and the nature

of the deformation function g(Kyl'Ka), Equations 2 and 6 were combined to yield

16



(8)

In this study, the probability of Dr> dp or alternatively log Dr > log dr' conditional upon

specified values for Neq and Ka, is determined by numerical integration of the joint.

probability density function of T, Kylka, and S over the region defIned by

(9)

where neq and ka are the specified values of Neq and Ka.

Appendix E presents the details of the fonnulation of the numerical integration that provides

the probability of Dr exceeding a specified value, dp given values for Neq and Ka. Details

of these calculations are discussed in Appendix C and in the Example Problem. A

computer program (NIMPED), was developed to perfonn the integration. The program

requires the following input parameters:

dr = a specified value of displacement.

ka = specified value for the peak acceleration of the dam cross-section

analyzed.

%I = specified value for the number of unifonn cycles of motion for the

darn.

~ = mean value estimate of the predominant period of the motion,T.

O'T = the standard deviation of T.

11K = mean value estimate of the yield acceleration of the cross-section of
y

the dam under consideration.

O'K = the standard deviation of Ky.y

17



~ - the standard deviation associated with the random nature of seismic"'Dn -

ground motions (as discussed in Section IV-1.4 ).

The values of Ka and J..l.r can be obtained from the peak ground acceleration by appropriate

dynamic response analysis. ,This will be illustrated in the forthcoming example.

The output of the analysis provides the probability of the pennanent defonnation exceeding

the specified value dr' The standard deviations of T and K y are obtained based on statistical

evaluations or subjective judgement of the investigator. Appendix F describes a

relationship between the coefficient of variation of K y (C.O.V'Ky)' and the coefficient of

variation of T (c.o.v'T)' for both cohesionless and cohesive soils. The formulation

suggests that c.o.v'T can be assumed .to be on the order of one half of c.o.v'K for a
y

flexible dam on a rigid foundation.

The computer program was used to develop standardized (non-dimensional) plots which

provide the exceeding probabilities without the need of a computer analysis. They are

illustrated in Figures 14 and 15. Each plot corresponds to specified values of c.o.v'T and

c.o.v'K ' with c.o.v'T equal to 1/Z(c.o.v'K)' An example of the use of these plots
y y

follows.

Given

dr = 4 feet

Ka = a.Zlg

~Ky = a.07g

Neq = 12 cycles

J..l.r = a.7 seconds
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C.o,V·K = 50%y

c.o.v·T = 25%

~Dn = 0.45

The probability of pennanent defonnation exceeding 4 feet, P[Dr > 4 feet], is obtained by

computing

Dn = 4/[0.21 x 32.2 x 12 x (0.7)2] = 0.10

and = 0.07g/0.21g = 0.33

and using Figure 15. The probability contour line on which the point plots, as shown in

Figure 16, defines the probability of displacement exceeding 4 feet. For the example

problem this probability is equal to about 20%. Note that if the uncertainty in Ky and T

were not considered, the probability of displacement exceeding 4 feet would be about 5%

as demonstrated earlier and shown by the plots in Figure 13.

The plots of Figures 13, 14, and 15 can be used to determine the complementary

cumulative distribution curve for Dr' conditional upon prespecified values of Kaand Neq.

Figure 17 shows the resulting distribution for the example. This curve can be used to

determine the probabilities of the occurrence of different damage states. For example, if a

permanent deformation greater than 4 feet is considered catastrophic because of potential

overtopping of the dam, and if deformations of less than 1 foot are considered

inconsequential then, the following damage states with their corresponding probabilities

can be defined from Figure 17.
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P[O] = P[minor or no] = P[Dr ~ I'] = 0.55

P[H] = P[heavy] = P[I' < Dr ~ 4'] = 0.25

P[C] = P[catastrophic] = P[Dr > 4'] = 0.20

The results of the Seismic Performance Analysis can be conveniently displayed in a damage

probability matrix. Table 5 shows a typical SPA matrix for Mode 1 type failure, i.e. due to

earthquake induced permanent deformation. The damage probabilities obtained from the

above example are displayed as a single column in this matrix (for the range where 0.15g ~

A < 0.2g). In order to perform the overall risk analysis, SPA computations need to be

repeated for different combinations of Neq and A to fill in the entire matrix. An example

application of the Mode I type of SPA for an earth dam will be presented in section VI.

IV-2 Post-Earthquake Instability, Mode 2

Reliable performance of an eanh darn depends not only upon its survival during a seismic

event but also its survival at the aftermat of the event. If the darn or foundation soils are

susceptible to loss of shear strength due to shaking, a post-eanhquake instability of the dam

can ensue. This type of failure mechanism (Mode 2) contributes to the overall seismic risk

of the dam. The following section describes the seismic risk estimation associated with

Mode 2.

The analsysis of the post-earthquake stability of earth dams typically is performed by

conventional slope stability analysis using the shear strenghts corresponding to the end of

the earthquake conditions (28,33.38,44, 52, 59). For the past decade, procedures have been

developed that provide estimates of post-earthquake shear strengths and pore· water
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pressures based on empirical, experimental, and analytical approaches (8, 10,34,35,44,59,

74, 75). In addition, probabilistic procedures have been developed to account for the

uncertainties in the parameters used in the slope stability analysis and to estimate the

probability of failure of a slope (5,6, 7, 8, 11,28,64,68,71, 72). Any combination of these·

existing procedures can be used to eStimate the probability of post-earthquake failure of an

earth dam.

In as much as the post-earthquake shearing resistance depends upon the peak ground

acceleration and the number of cycles of the seismic motion, it is suggested that the

probability results from Mcxie 2 analysis be presented in a matrix fonnat as shown in Table

6. The use of this matrix fonnat permits the calculation of the failure probabilities, P[F], or

the probabilities of survival, P[S] =(l - P[F]), as a function of the two seismic parameters:

acceleration, A, and number of cycles, Neq, which have density functions detennined

through the Seismic Hazard Analysis described in Section lIT. Also the use of matrix

fonnat for Mode 2 facilitates the combining of the contributions of Mode 1 and Mode 2 to

the overall seismic risk. Section VI also presents an example application of Mode 2 type of

Seismic Perfonnance Analysis.

IV-3 Combined Seismic Performance Analysis: Mode 1 and Mode 2

In section IV.1 the SPA procedure was described, which provides damage probabilities

associated with the Mode 1 type failure mechanism. The integration of this SPA matrix

with the SHA results provides the seismic risk of a dam associated with Mode 1. Similar

risk calculations using the SPA matrix obtained considering Mode 2 type of failure

provides the risk of a post-earthquake instability failure. The evaluation of seismic risk due
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to Modes 1 and 2 combined, requires the calculation of an overall (combined) damage

probability matrix.

Figure 18 describes an event tree of Seismic Performance Analysis that presents possible

outcomes associated with the occurences of an event with acceleration A and Neq. Note

that the joint occurrence of any given pair of values of A and Neq is in itself one of many

possible outcomes, from the Seismic Hazard Analysis. Given any pair of A and Neq,

following outcomes need to be considered

Possible outcomes for Mode I

o
H

C

Possible outcomes for Mode 2

S

F

None to little permanent deformation

Permanent deformation leading to heavy damage

Permanent defonnation leading to catastrophic damage

Safe under post-earthquake conditions

Failure due to post-earthquake conditions

Thus, overall there are six possible outcomes due to the combination of Mode I and Mode

2. The outcomes for Modes I and 2 and their combinations are schematically illustrated in

Figure 19a.

To facilitate the prediction and evaluation of the performance of the earth dam, the

following damage states are defined in terms of the above described outcomes.
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Damage State, DS

I

II

III

Description

None to minor Damage

Heavy Damage

Catastrophic Damage

Probabilistic Notation

OnS, i.e. the joint

occurrence of 0 and S

HnS, i.e. the joint

occurrence of Hand S

CuF, i.e. the occurrence

of either C or F or both

The damage states are schematically illustrated in Figure 19b in correspondence with the

outcomes in Figure 19a. If statistical independence is assumed between the Mode 1 and the

Mode 2 ou tcomes, then the probability of occurrence for each damage state is as given

below.

P( I) =
P(II) =

P(III) =

=

P( 0) P( S )

P( H) P( S )

P( 0 ) P( F ) + P( H ) P( F ) + P( C) ,

1 - {P( 0 ) P( S ) + P( H ) P( S )}

Thus the two damage probability matrices associated with Mode 1 and Mode 2- can be

combined into a single matrix which have the three damage state_s shown above and which

will describe the overall results from the SPA, 'This matrix will then be the SPA input to

the Seismic Risk Analysis.
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V INTEGRATED SEISMIC RISK ANALYSIS

In Section III the Seismic Hazard Analysis procedure was described, which provides the

expected number of annual occurrences of seismic events having a range of peak ground

acceleration !1A, and a range of number of cycles, !1Neq. The results are presented in a

matrix fonn as shown in Table2. Section IV described the Seismic Perfonnance Analysis,

which provides the probabilities of an earth dam experiencing various specified damage

states conditional upon M and !1Neq. These probabilities are displayed in a matrix form

similar to that of the results of the SHA. Table 5 shows a typical SPA matrix. The

calculation of the overall risk of damage or failure of tne dam requires integration of the

results of the SHA and the SPA. The use of matrices to display the results from the SHA

and the SPA facilitates the integration to be perfonned numerically employing either hand
,

calculator or the computer, using the following expression:

where

A(DSD = (9)

A(DS i) =
A(!1A, !1Neq) =

and

annual number of events causing damage state DSj

annual number of events having acceleration range of !1A and

number of equivalent cycles of !1Neq. (from the SHA matrix)

probability of damage state DS i occurring, conditioned on M and

!1Neq. (from the SPA matrix)

1. = I, II, III referring to damage states
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Equation 9 gives the annual number of events associated with each damage state (DS).

Next, the probability of at least one event causing a specified level of damageJo the dam

during the design life of the dam is calculated assuming a Poisson arrival process. For

example, the probability of at least one catastrophic failure occurring in t years can be

obtained from

P[Failure in t years] = 1 - e-A.(DSm)t (10)

where A(DSm) is the ~nual number o~ events causing catastrophic failure of the dam and

is calculated using Equation 9.

The following section presents a comprehensive example of the application of the

Integrated Seismic Risk Analysis described in this report.
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VI EXAMPLE APPLICATION OF INTEGRATED SEISMIC RISK

ANALYSIS FOR EARTH DAMS

To illustrate the various steps that are involved in the application of the Integrated Seismic

Risk Analysis, an earth dam located near Boston was selected for investigation.

VI-! Description of the Dam

Figure 20 shows a typical cross section of the dam~ The upstream shell consists of

medium dense to dense sands. The downstream section consists primarily of loose to

.medium dense sands and gravel with a loose sand layer near the base of the dam. The dam

is founded on glacial till overlying bedrock. A field investigation indicated a layer of loose
. \

silty sands with blow counts as low as 4 blows per foot at about 40 feet below the crest of

the dam, extending under the entire downstream shell of the dam. The hatched region is a

proposed fill that would increase the available freeboard of the dam. The following

analysis was performed for the dam with the proposed fill assumed to be already placed.

The analysis utilizes the results of the SHA example in Section Ill.

VI-2 Seismic Hazard Analysis • SHA

The SJ:IA gives the annual number of joint occurences of acceleration and magnitude and

thus of acceleration and equivalent number of cycles. The seismicity of the region of the

dam is illustrated in Figure 4 ofSection ill. Tables 7 and 8 provide the resulting annual

number of events,A(~A,~M) or A(~A, ~Neq)' for selected ranges of acceleration and
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magnitude and thus of acceleration and equivalent number of cycles.

VI·3 Seismic Performance Analysis • SPA

The overall risk of failure of the dam is affected by both Modes 1 and 2 which were

described in Section VI. Mode 2 is involved due to the fact that the loose sand layer is

susceptible to the development of excess pore water pressure during the seismic

excitations.

VI·3·1 Permanent Deformations (Mode 1)

Figure 21 indicates the procedures followed to estimate the earthquake-induced permanent

deformations of the dam. The average lateral earthquake-induced acceleration, Ka, for a

critical sliding mass was estimated by performing dynamic response analysis of the dam

cross-section. Specifically the computer program, SHAKE, was used to analyze two

idealized soil columns, one at the crest and the other near the toe of the dam. The

acceleration-time record applied at bedrock level was generated using the design response

spectrum considered appropriate for the region. The average lateral acceleration, Ka, of the

critical sliding mass shown in Figure 20 was computed using the results from SHAKE

analysis and the equation shown in Figure 21. Figure 22 shows a plot of Ka versus the

peak ground acceleration of the bedrock. From Figure 22, the values of Ka for each of the

selected acceleration ranges, shown on Table 8, were estimated and the results are tabulated

in Table 9.
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The yield acceleration, Ky' of the critical wedge shown in Figure 20 was estimated through

the use of slope stability analysis in which the lateral acceleration coefficient was varied and

the factors of safety were computed. The lateral acceleration corresponding to a factor of

safety of one defined the yield acceleration, Ky. The stability analysis was performed for .

different levels of pore water pressure buildup, in the loose sand layer, yielding different
I

values of Ky. Based on the results of these analyses the following expression for Ky was

derived.

Ky = -0.091 + 0.571 (1 - Ru)tanep for Ru < 0.7 (11)

Ky = a for Ru > 0.7

where Ru = .0.u / O'y

.0.u = the excess pore water pressure in the loose sand layer

O'y = the vertical effective stress in the loose sand layer.

Figure 23 shows a plot of Ky versus Ru corresponding to a mean value of 41=28° for the

friction angle of the loose sand. The mean values of Ky for the example. dam were

estimated from Figure 23 using values of Ru that were estimated empirically for each level

of seismic input (.0.A, .0.M) following the procedures proposed by Yegian and Vitelli

(1981). The calculated values ofRu are shown in Table 10. Table 9 presents the resulting

mean values of Ky. However, uncertainty exists in the predicted values of K y due to

uncenainties in the values of Ru and 41 used in Equation 11. To calculate the standard

deviation of Ky, O'K
y

' the Taylor series expansion of Equation 11 was used and O'K
y

was

related to the standard deviations of Ru and 41 as shown in Equation 12.

(12)
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The standard deviation of Ru was estimated from the upper and lower bound curves

developed by Yegian & Vitelli (1981). The standard deviation of tan $ was taken as 0.15

(31). Using Equation 12, the standard deviation of ICy was estimated to be constant and

equal to about 0.06 for all combination of Ka and the Richter magnitude, M.

The period of the motion, T, of the sliding mass was estimated from the dynamic response

analyses and is tabulated in Table 11. The standard deviation of T, crT' was estimated to be

0.08.

For a rigid plastic mass, permanent deformation is imminent if theyield acceleration, Ky' is

smaller than the average lateral acceleration, Ka. The probability that the permanent

deformation, Dr> will exceed a certain specified limit, dy., conditional upon the occurrence of

a seismic event, can be obtained from normalized plots such as shown in Figures 14 and

15, or the computer program NIMPED. For this example, three conditional probabilities of

exceeding the permanent deformation were obtained using the program NIMPED and the

input parameters shown in Table 11. To illustrate this example application of Seismic

Perfonnance Analysis (Mode 1), the following damage states were defined

[No or Minor Damage] =

[Heavy Damage] =

.[Catastrophic Damage] =

[~ ~ 2']

[2' < ~ ~ 10']

[~ > 10']

Table 12 summarizes the conditional probabilities for each damage state and for the varying

ranges of acceleration and equivalent number of cycles. This matrix provides the Seismic

Performance Analysis results associated with Mode 1 type failure mechanism.
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VI-3-2 Post-Earthquake Instability (Mode 2)

The results shown in Table 12 are the probabilities associated with Mode 1. However,

generation of excess pore water pressure in the loose sand layer during an earthquake may

cause reduction in the post-earthquake static shear strength of the sand. Depending upon

the magnitude of the excess pore pressure, the post-earthquake stability of the dam can be

of concern. Consequently, post-earthquake static stability analyses of the dam were made

and the values of the factor of safety were calculated as a function of the pore pressure

ratio, ru' and the friction angle <I> of the loose sand. Figure 24 shows the stability results

which suggest the following relationship between the post-earthquake factor of safety,

F.S., Ru and <1>.

F.S. =0.66 + 2(1 - Ru)tan<l> (13)

Equation 13 can be used to estimate the mean value of F.S. from the mean values of Ru and

<1>. The calculation of the probability of post-eanhquakeslope failure requires the estimation

of the standard deviation of F.S. Using the Taylor series expansion for Equation 13, the

standard deviation of F.S. can be obtained by the resulting expression:

(14)

Using the estimated mean value ofF.S. and (JP.s.' for each seismic event, the probability of

failure was calculated assuming the factor of safety to be a nonnally distributed random

variable. Table 13 provides the resulting damage probability matrix for Mode 2.
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VI·3·3 Damage Probability Matrix (Mode 1 and Mode 2 Combined)

. Assuming statistical independence between Mode 1 and Mode 2 failure mechanisms (for

each seismic event) the damage probabilities of these two modes were combined as

described in Section VI. Table 14 provides the combined damage probabilities which

assumes that the catastrophic damage from Mode 1 and failure from Mode 2 have the same

loss function thus, limiting the number of combined damage states to three.

VI-4 Integrated Seismic Risk Analysis

The results shown in the SHA and SPA matrices were integrated to provide the annual

number of seismic events that would cause a specified damage state. Equation 15 indicates

the integration expressed in terms of discrete intervals of A and Neq.

(15)

For each of the damage states, the annual number of events for Mode 1 and Mode 2 are

illustrated in Tables 15 and 16, respectively. Similar results are illustrated in Table 17,

considering the combined effect of Mode 1 and Mode 2. The annual probability of at least

one occurance of a damage state can be obtained assuming the Poisson arrival process.

Thus

P(IIl) =

P( II) =

=

1 - e-A(DSm) = 1 _e-(O.OOI06O) =1.060xlO-3 (Annual Probability)

1 - e-[A(DSrr) +A(DSm)] - P( III )

1 - e-(O.OOll04) - 1.060xlO-3 = O.043xl0-3
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PC I ) = 1 - [PC II ) + PC III)] = 0.9989

These risk estimates are based on a set of assumptions in both Seismic Hazard and Seismic

Performance Analyses. Repeated applications of the Integrated Seismic Risk Analysis

described in this example, and varying the assumptions, can reveal the importance of these

assumptions and the parameters of most concern that may require special considerations.
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TABLE 3 SEISMIC DATA ANALYZED

Cal tech Peak Grd Peak Grd Peak Grd Period Epicent. Standardized Displacement (~)
Fi le it Acceler. Velocity Displ. T Neq Earthq. Distance Us (in) for Ky/Ka

cm/s A 2 cm/s cm sec cycles Magni tude Icm 0.02 0.1 0.5
_.--._ ... -_ .. _- - - -- -- - - - - _..... - - - ---- -- ----- - - _ .... - - -- _. -- - _ ... - - - - - -. -- - _ ... - - - ---. - -- .. - - - - - - --

1 341.7 33.4 10.9 0.25 7.3 6.7 9.3 230.9 55.6 1.9
1 210.1 36.9 19.8 0.50 12.37 p 6.7 9.3 138.2 41.6 1.38
4 175.9 17.7 9.2 0.45 11.72 7.7 43 294.3 74.8 2.37
4 152.7 15.7 6.7 0.35 7.64 7.7 43 268.7 85.3 2.09
5 128.6 19.3 5.8 0.90 10.25 7.7 89.5 192.9 70.1 3.61
5 87.8 11.8 4.6 0.50 2.55 7.7 89.5 366.2 136.2 3.1
8 252.7 29.4 14.1 0.40 7.28 6.5 24 143.5 41 2.7
8 164.5 31.6 12.4 0.40 7.23 6.5 24 157.9 31.4 1.7
9 155.7 35.6 14.2 0.40 2.5 6.5 40.4 167.7 53 5.2
9 197.3 26 9.6 0.80 5.28 6.5 40.4 187 52.3 3.2

15 81.8 4.9 2.3 0.25 4.74 5.3 11.8 125.8 23.6 1.07
18 175.7 17.1 8.8 0.40 16.74 5.6 40 164.7 36.5 0.65
21 130.6 28.7 15.5 0.30 2.92 6.3 47.8 115.7 22.6 0.66
25 142.5 13.3 3.7 0.30 4.79 6 6.6 94.6 23.8 1.08
29 274.6 17 10.4 0.35 17.93 7.1 16.8 582.9 127.1 0.5

--t- 34 425.7 25.4 7.1 0.35 2.57 5.6 32.4 198.7 41.9 0.02
~ 35 269.6 11.8 3.9 0.20 3.04 5.6 34.1 363 69.8 1.45

37 340.8 22.5 5.5 0.35 2.5 5.6 31 100.6 26.3 0.73
48 250 30 14.9 0.65 7.89 6.6 22.4 398 126.1 1.26
51 122.7 21.9 11.6 0.45 6.4 6.6 42.8 172 38.6 1.47
54 147.1 17.4 11.8 0.45 4.8 6.6 41.9 247.7 60.7 2.88
54 117 17.3 11.8 0.25 8.54 6.6 41.9 215.9 58 0.31
56 309.4 16.5 4.2 0.35 3.35 6.6 28.6 223.3 50.7 0.17
57 103.8 17 8.6 0.25 12.76 6.6 37.1 210.1 62 1.55
57 148.2 19.4 13.1 0.25 8.13 6.6 37.1 284.2 87.7 1.46
58 167.3 16.5 8 0.25 14.4 6.6 37.1 237.6 53.3 1.28
59 133.8 9.6 7.5 0.15 6.56 6.6 39.8 479.9 85.6 0.99
62 130 17.6 6.9 0.25 15.03 6.6 42.8 231.2 63.9 2.77
65 146.7 18 10.3 0.30 3.55 6.6 40 155.9 34.7 0.39
72 82.2 20.8 14.7 0.55 11.48 6.6 39.5 117.7 49.3 0.64
75 133.8 22.3 11.4 0.30 9.92 6.6 40.1 207.2 48.8 2.17
78 126.5 23.2 13.7 0.35 5.54 6.6 42.5 179.5 36.2 2.18
81 198.3 6.2 4.6 0.55 8.29 6.6 32.9 505.5 63.2 3.27
83 158.2 18.3 9 0.30 13.5 6.6 40 228.3 64.3 1. 75
86 104.6 17.4 14.8 0.45 5.47 6.6 49.4 306.8 62.2 2.36
88 209.1 23.5 5.3 0.20 8.37 6.6 34.1 276 117.5 4.62
89 139 20.7 11.6 0.15 5.12 6.6 44 181.4 44.3 0.18
98 236.4 21.8 13.2 0.20 3.34 6.6 42.7 218.9 21.3 0.14

103 120.5 5.4 2.4 0.15 14.56 6.6 45.4 605.1 161 2.95
104 103.1 6 2.3 0.20 2.34 ·6.6 52.2 180.1 36.7 1.21
105 83.1 8.3 4 0.20 12.04 6.6 38.7 338.5 55.8 1.49
106 188.6 11.6 5 0.25 6.04 6.6 36.1 204.1 53.9 4.07
107 107.3 14.3 7.3 0.45 8.36 6.6 39.8 257.9 78.3 0.94

(*) Standardized Displacement According to Franklin and Chang (1977)



TABLE 3 SEISMIC DATA ANALYZED

Cal tech Peak Grd Peak Grd Peak Grd Period Epicent. Standardized Displacement (*)
Fi le # Acceler. Velocity Displ. T Neq Earthq. Distance Us (in) for Ky/Ka

cm/s A 2 cm/s cm sec cycles Magnitude km 0.02 0.1 0.5
............. __ .------ ... _--- .. _----- ...... _-----.----- ..... -.--------_ .. --------.- ... ---_ ... _--.---

112 78.5 15.7 9.2 0.60 12.18 6.6 40.5 154.8 32.1 1.99
114 110.8 14 3.8 0.25 19.04 6.6 32.3 287.2 110.1 2.51
115 220.6 28.2 13.4 0.25 8.76 6.6 29.3 351.6 71.4 1.2
121 119.4 17.1 8.6 0.30 8.39 6.6 41.1 253.1 67.4 2.64
131 184.3 17.2 9.2 0.25 6.23 6.6 38.2 244.7 38.7 0.34
137 129 22.3 8.4 0.25 12.63 6.6 29 285.7 122.7 0.56
141 145.5 18 3.4 0.70 4.1 6.6 29.6 183.3 57.3 1. 76
142 143.5 8.6 1..7 0.20 8.47 6.6 26.8 204.5 54.2 1.29
143 119.3 4.8 2 0.15 7.14 6.6 26.6 331.8 93.2 4.25
144 277.9 12.4 8.9 0.25 9.96 6.6 23.3 254.9 72.9 6.46
145 113.9 31.5 17.5 0.40 16.16 6.6 34.9 227.7 97.3 3.23
148 112 17.5 11. 1 0.30 15.12 6.6 39.9 185 62.2 2.22
166 147.6 15 5.4 0.25 8.93 6.6 30.8 166.2 49.1 3.79
176 83.4 20.9 13.7 1.20 13.43 6.6 42.9 183 59.4 1. 19
185 67.3 4.5 2.1 0.25 18.13 6.6 75.6 440.3 128.3 6.79
186 94.7 9.7 5 0.20 13.92 6.6 54.1 405.2 54.3 1.26

~
187 55.7 3.1 0.7 0.25 11.81 6.6 72.1 498 187.3 8.67
188 114.4 17 10.8 0.30 6.14 6.6 38.9 200.5 26.4 0.34
192 98.9 19.5 7.9 1.10 12.41 6.6 40.7 110.9 33.3 0.54
198 176 20.5 7.28 0.25 5.21 6.6 34 174.5 34.1 1.92
217 108 14.7 9.94 0.45 8.77 6.6 40 294 88.1 1.6
221 165 6.66 5.91 0.15 9.37 6.6 43.3 231.7 63.5 1.73
223 69,7 4.6 2.07 0.20 6.51 6.6 65 327.4 71.4 1.86
233 243 31.5 18.3 0.30 14.42 6.6 29.3 257.6 66.5 1.68
233 197 17.8 9.46 0.20 13.51 6.6 29.3 371 89.2 2.58
236 167 13.4 6.13 0.20 8.67 6.6 34.9 372.1 77.6 1.94
239 119 17.2 9.79 0.20 16.1 6.6 38 255.9 63.5 2.48
239 161 19.1 11.6 0.30 4.76 6.6 38 297.7 54.3 1.49
241 86.8 17.9 9.22 0.25 20.35 6.6 41.8 160.7 52.4 1.42
241 138 19.6 .9.98 0.25 3.29 6.6 41.8 221.8 50.4 1. 75
244 149 18.3 9.8 0.40 2.94 6.6 41.9 191.8 45.6 1.69
246 115 16.7 8.29 0.30 7.65 6.6 35.7 198.4 57.2 1.49
251 188 18.7 9.49 0.45 3.6 6.6 41.8 189.6 34.8 0.18
253 242 19.2 11.4 0.25 3.77 6.6 42 280.2 64.5 1.44
255 123 22.5 15.8 0.35 11.27 6.6 38.9 206.4 61.5 0.69
261 97.7 18.3 12.2 0.35 11.25 6.6 39.6 200.1 56.5 0.83
262 68.3 25.7 16.5 0.35 11 6.6 39 100.8 47.4 1.46
262 93.6 27.8 13.7 0.45 5.71 6.6 39 118.6 42 1.57
265 125 18.2 12.6 0.15 8.19 6.6 39.9 200.1 51.7 0.43
266 129 21.4 11.6 0.25 10.06 6.6 40 175.6 60.2 0.74
267 '55.5 13.5 8.49 0.70 11.55 6.6 52 157.9 40.3 0.7
267 61.5 13.8 9.38 0.20 8.23 6.6 52 218.9 58.6 0.25
312 232 11.9 1.66 0.15 2.57 5.8 30.6 108.4 9.2 '0

(*) Standardized Displacement According to Franklin and Chang (1977)



TABLE 4 NON-DIMENSIONAL NORMALIZED PERMANENT DEFORMATIONS, On

( 1) (2) (3) (4) (5)
Ca l tech Standardized Displacement Displ. Permanent Deformation Normaliz. Normal ized Perm. Deform.
File #I Us(in) for Ky/Ka Factor Dr (in) for Ky/Ka Factor On (non-dimcns.) for Ky/Ka

0.02 0.1 0.5 0.02 0.1 0.5 F 0.02 0.1 0.5
-.---- .. ---- .. -._--------- . --~---- ... ------- .. ------- - -- --- -- -- *- --- ••••• -. - - _ •

1 230.9 55.6 1.9 0.275505 63.614 '15.318 0.523 61.378 1.03643 0.24957 0.00853
1 138.2 41.6 1.38 0.546901 75.582 22.751 0.755 255.800 0.29547 0.08894 0.00295
4 294.3 74.8 2.37 0.150301 44.234 11.243 0.356 164.355 0.26913 0.06840 0.00217
4 268.7 85.3 2.09 0.136220 36.602 11.620 0.285 56.264 0.65054 0.20652 0.00506
5 192.9 70.1 3.61 0.244430 47.151 17.135 0.882 420.354 0.11217 0.04076 0.00210
5 366.2 136.2 3.1 0.133829 49.008 18.228 0.415 22.036 2.22397 0.82716 0.01883
8 143.5 41 2.7 0.288650 41.421 11.835 0.779 115.884 0.35744 0.10213 0.00673
8 157.9 31.4 1.7 0.512259 80.886 16.085 0.871 74.919 1.07965 0.21470 0.01162
9 167.7 53 5.2 0.686899 115.193 36.406 3.572 24.520 4.69799 1.48476 0.14567
9 187 52.3 3.2 0.289135 54.068 15.122 0.925 262.486 0.20599 0.05761 0.00352

15 125.8 23.6 1.07 0.024770 3.116 0.585 0.027 9.541 0.32661 0.06127 0.00278
18 164.7 36.5 0.65 0.140444 23.131 5.126 0.091 185.273 0.12485 0.02767 0.00049
21 115.7 22.6 0.66 0.532234 61.579 12.028 0.351 13.512 4.55724 0.89018 0.02600
25 94.6 23.8 1.08 0.104754 9.910 2.493 0.113 24.186 0.40973 0.10308 0.00468
29 582.9 127.1 0.5 0.088813 51. 769 11.288 0.044 237.456 0.21802 0.04754 0.00019

Z 34 198.7 41.9 0.02 0.127893 25.412 5.359 0.003 52.764 0.48162 0.10156 0.00005

~
35 363 69.8 1.45 0.043584 15.821 3.042 0.063 12.907 1.22578 0.23570 0.00490
37 100.6 26.3 0.73 0.125357 12.611 3.297 0.092 41.090 0.30691 0.08023 0.00223
48 398 126.1 1.26 0.303797 120.911 38.309 0.383 328.102 0.36852 0.11676 0.00117
51 172 38.6 1.1,7 0.329857 56.735 12.732 0.485 62.606 0.90623 0.20338 0.00775
51, 247.7 60.7 2.88 0.173687 43.022 10.51,3 0.500 56.292 0.76427 0.18729 0.00889
54 215.9 58 0.31 0.215868 46.606 12.520 0.067 24.586 1.89562 0.50925 0.00272
56 223.3 50.7 0.17 0.074256 16.581 3.765 0.013 49.988 0.33170 0.07531 0.00025
57 210.1 62 1.55 0.234954 49.364 14.567 0.364 32.591 1.51466 0.44697 0.01117
57 284.2 87.7 1.46 0.214307 60.906 18.795 0.313 29.61,7 2.05436 0.63395 0.01055
58 237.6 53.3 1.28 0.137326 32.629 7.319 0.176 59.279 0.55042 0.1231,7 0.00297
59 479.9 85.6 0.99 0.058126 27.895 4.976 0.058 7.775 3.58766 0.63993 0.0071,0
62 231.2 63.9 2.77 0.201078 46.489 12.849 0.557 48.078 0.96695 0.26725 0.01158
65 155.9 34.7 0.39 0.186379 29.056 6.467 0.073 18.1,53 1.571,62 0.3501,8 0.00394
72 117.7 1,9.3 0.64 0.1,1,4157 52.277 21.897 0.284 112.384 0.46517 0.191,81, 0.00253
75 207.2 48.8 2.17 0.313643 64.987 15.306 0.681 1,7.030 1.38181 0.32545 0.01447
78 179.5 36.2 2.18 0.359060 64.451 12.998 0.783 33.799 1. 90691 0.38457 0.02316
81 505.5 63.2 3.27 0.016358 8.269 1.034 0.053 195.780 0.04224 0.00528 0.00027
83 228.3 64.3 1.75 0.178639 40.783 11.487 0.313 75.674 0.53893 0.15179 0.00413
86 306.8 62.2 2.36 0.21,/.258 74.938 15.193 0.576 45.615 1.64284 0.33307 0.01264
88 276, 117.5 4.62 0.222876 61.514 26.188 1.030 27.562 2.23186 0.95016 0.03736
89 181.4 44.3 0.18 0.260140 47.189 11. 524 0.047 6.304 7.1,8535 1.82801 0.0071,3
98 218.9 21.3 0.14 0.169647 37.136 3.613 0.024 12.434 2.98658 0.29061 0.00191

103 605.1 161 2.95 0.020421 12.357 3.288 0.060 15.51,2 0.79508 0.21155 0.00388
104 180.1 36.7 1.21 0.0291,66 5.307 1.081 0.036 3.799 1.39682 0.28464 0.00938
105 338.5 55.8 1.1,9 0.069958 23.681 3.904 0.101, 15.756 1.50294 0.24775 0.00662
106 201,.1 53.9 4.07 0.060208 12.289 3.21,5 0.21,5 28.030 0.1,3840 0.11578 0.00874
107 257.9 78.3 0.94 0.160825 1,1.477 12.593 0.151 71.515 0.57997 0.17608 0.00211
112 151,.8 32.1 1.99 0.264979 41.019 8.506 0.527 135.514 0.30269 0.06277 0.00389
114 287.2 110.1 2.51 0.149279 42.873 16.1,36 0.375 51 .910 0.82591 0.31662 0.00722
115 351.6 71.1, 1.2 0.304211 106.960 21.721 0.365 47.550 2.21,941 0.45679 0.00768



TABLE 4 NON-DIMENSIONAL NORMALIZED PERMANENT DEFORMATIONS, On

(1) (2) (3) (4) (5 )
Cal tech Standard~zed Displacement Di spl. Permanent Deformation Normal i z .. Normalized Perm. Deform.
File /I Us(in) for Ky/Ka Factor Dr (in) for Ky/Ka Factor On (non-di"~ns.) for Ky/Ka

0.02 0.1 0.5 0.02 0.1 0.5 F 0.02 0.1 0.5
~--- .... - - -- -. ------ ------ - - - - - - - . - - - - - - - - - ... - - - - - - - - •• p-- -- - - - - - - - - - - - - - - - ---

121 253.1 67.4 2.64 0.206666 52.307 13.929 0.546 35.496 1.47363 0.39242 0.01537
131 244.7 38.7 0.34 0.135461 33.147 5.242 0.046 28.253 1.17324 0.18555 0.00163
137 285.7 122.7 0.56 0.325313 92.942 39.916 0.182 40.090 2.31832 0.99565 0.00454
141 183.3 57.3 1.76 0.187916 34.445 10.768 0.331 115.082 0.29931 0.09356 0_00287
142 204.5 54.2 1.29 0.043494 8.894 2.357 0.056 19.141 0.46469 0.12316 0.00293
143 331.8 93.2 4.25 0.016298 5.408 1.519 0.069 7.545 0.71666 0.20130 0.00918
144 254.9 72.9 6.46 0.046691 11.902 3.404 0.302 68.107 0.17475 0.04998 0.00443
145 227.7 97.3 3.23 0.735155 167.395 71.531 2.375 115.945 1.44375 0.61694 0.02048
148 185 62.2 2.22 0.230749 42.689 14.353 0.512 60.004 0.71143 0.23920 0.00854
166 ) 166.2 49.1 3.79 0.128641 21. 380 6.316 0.488 32.433 0.65921 0.19475 0.01503
176 183 59.4 1. 19 0.441986 80.883 26.254 0.526 634.995 0.12738 0.04135 0.00083
185 440.3 128.3 6.79 0.025392 11. 180 3.258 0.172 30.023 0.37238 0.10851 0.00574
186 405.2 54.3 1.26 0.083845 33.974 4.553 0.106 20.759 1.63655 0.21931 0.00509
187 498 187.3 8.67 0.014560 7.251 2.727 0.126 16.186 0.44795 0.16848 0.00780
188 200.5 26.4 0.34 0.213183 42.743 5.628 0.072 24.889 1.71738 0.22613 0.00291

--r.:::-
192 110.9 33.3 0.54 0.324455 35.982 10.804 0.175 584.681 0.06154 0.01848 0.00030
198 174.5 34.1 1.92 0.201501 35.162 6.871 0.387 22.563 1.55839 0.30453 0.01715~ 217 294 88.1 1.6 0.168847 49.641 14.875 0.270 75.512 0.65739 0.19699 0.00358
221 231.7 63.5 1.73 0.022685. 5.256 1.441 0.039 13.695 0.38380 0.10518 0.00287
223 327.4 71.4 1.86 . 0.025619 8.388 1.829 0.048 7.146 1.17383 0.25599 0.00667
233 257.6 66.5 1.68 0.344585 88.765 22.915 0.579 124.159 0.71493 0.18456 0.00466
233 371 89.2 2.58 0.135724 50.353 12.107 0.350 41.913 1. 20139 0.28885 0.00835
236 372.1 77.6 1.94 0.090735 33.762 7.041 0.176 22.801 1.48072 0.30880 0.00772
239 255.9 63.5 2.48 0.209793 53.686 13.322 0.520 30.172 1.77936 0.44154 0.01724
239 297.7 54.3 1.49 0.191215 56.925 10.383 0.285 27.154 2.09633 0.38237 0.01049
241 160.7 52.4 1.42 0.311507 50.059 16.323 0.442 43.464 1. 15174 0.37555 0.01018
241 221.8 50.4 1. 75 0.234917 52.105 11.840 0.411 11.172 4.66397 1.05980 0.03680
244 191.8 45.6 1.69 0.189670 36.379 8.649 0.321 27.594 1. 31834 0.31343 0.01162
246 198.4 57.2 1.49 0.204652 40.603 11.706 0.305 31.172 1.30254 0.37553 0.00978
251 189.6 34.8 0.18 0.156967 29.761 5.462 0.028 53.957 0.55156 0.10124 0.00052
253 280.2 64.5 1.44 0.128549 36.019 8.291 0.185 22.449 1.60448 0.36934 0.00825
255 206.4 61.5 0.69 0.347329 71.689 21.361 0.240 66.854 1. 07231 0.31951 0.00358
261 200.1 56.5 0.83 0.289261 57.881 16.343 0.240 53.009 1. 09191 0.30831 0.00453
262 100.8 47.4 1.46 0.816070 82.260 38.682 1. 191 36.234 2.27025 1.06756 0.03288
262 118.6 42 1.57 0.696780 82.638 29.265 1.094 42.609 1. 93945 0.68682 0.02567
265 200.1 51.7 0.43 0.223622 44.747 11.561 0.096 9.069 4.93423 1.27486 0.01060
266 175.6 60.2 0.74 0.299585 52.607 18.035 0.222 31.933 1.64744 0.56478 0.00694
267 157.9 40.3 0.7 0.277113 43.756 11.168 0.194 123.662 0.35384 0.09031 0.00157
267 218.9 58.6 0.25 0.261315 57.202 15.313 0.065 7.971 7.17646 1.92115 0.00820
312 108.4 9.2 0 0.051510 5.584 0.474 0.000 5.282 1.05718 0.08972 0.00008

NOTES: (1) Standardized Displacement According to Franklin and Chang (1977)
(2) Factor Converting the Standardized Displacement Into Actual Permanent Deformation From Franklin and Chang (1977)
(3) Actual Permanent Deformation From Integration of Time-Histories by Franklin and Chang (1977)
(4) F = (Neq*Ka*T A 2)
(5) Dn =Dr/F



~~
O.Og=:; A < 0.05g9u]'vaJ tJaf]

D e ent
arnag 1 - 5 5 - 10 10 - 15 15·20 20 - 25....... State e

NO/MINOR « 1')

HEA VY (l' - 4')

CATASTROPHIC (>4')

0.05g=:;A <O.lg

NO/MINOR « 1')

HEAVY (1' - 4')

CATASTROPHIC (>4')

O.lg ~A < 0.1~5g

NO/MINOR «1') 0.55

HEA VY (1' - 4') 0.25

CATASTROPHIC (>4') 0.20

O.15g ~ A < O.2g

NO/MINOR «1')

HEAVY (1' - 4')

CATASTROPHIC (>4')

O.2g ~ A < O.25g

NO/MINOR «I')

HEA VY (1 , • 4')

CATASTROPHIC (>4')

A ~O.25g

NO/MINOR «I')

HEA VY (1'.4')

CATASTROPHIC (>4')

TABLE 5 TYPICAL DAMAGE PROBABll..ITY MATRIX FOR MODE 1



~ A < O.lg O.lOg.s: A < O.l5g O.l5g ~ A < O.2g O.2g ~ A < O.25g A 2: O.25g. 'J"o~
. ~c;

4N .

~%ilge
Slqte

No Flow Failure

Flow Failure

-..t:
00

TABLE 6 TYPICAL DAMAGE PROBABILITY MATRIX FOR MODE 2
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Pe~
ANNUAL NUMBER OF EVENTS, AX 10-4<1 Q

cceJ.':I"oLJ
~ eJ"C//. 'lJC/

i/gl} . JOl}
'JllJC/e O.Og:::;A<O.05g O.05g:::;A<O.lg O.lg5A<O.15g O.15g5A<O.2g O.2g~A<O.25g A~O.25g

4.33~M<5.0 1467.50 41.22 7.87 2.67 1.07 1.25

5.0< M < 5.5 392.80 18.51 4.17 1.25 0.55 0.64

5.5.:5 M < 6.0 163.30 12.04 2.54 0.98 0.37 0.46

6.0 < M <6.5 68.19 7.22 1.86 0.73 0.36 0.44

6.5 <M <6.8 12.90 1.72 0.67 0.21 0.12 0.18

TOTAL 2113.69 80.71 17.11 5.84 2.47 2.97

TABLE 7 SEISMIC HAZARD ANALYSIS RESULTS FOR THE EXAMPLE SITE



lr)
o

Pe~
ANNUAL NUMBER OF EVENTS, AX 10-4M <1ce Oro

lJlJ} e1er. .lJl1(j
CYcfe.,. Of CJIJOI1

O.Og~A<O.05g O.05g~A<O.lg O.lg~A<O.15g O.15gSA<O.2g O.2g~A<O.25g A;::O.25ges

I.5Neq < 2 1467.50 41.22 7.87 2.67 1.07 1.25

2.$Neq < 3 392.80 18.51 4.17 1.25 0.55 0.64

3.:s Neq < 5 163.30 12.04 2.54 0.98 0.37 . 0.46

5.$ Neq < 8 68.19 7.22 1.86 0.73 0.36 0.44

8.$ Neq < 11 12.90 1.72 0.67 0.21 0.12 0.18

TOTAL 2113.69 80.71 17.11 5.84 2.47 2.97

TABLE 8 SEISMIC HAZARD ANALYSIS RESULTS FOR THE EXAMPLE SITE



lJ)

---

p.. D:l PEAK GROUND ACCELERATION
Ot/)

~~UJ

~d z 0.0g~ A < 0.05g 0.05g ~ A < 0.10g O~lOg~A < 0.15g 0.15g ~ A < 0.20g A? 0.20g
::;E;>< 0
~U ~

ky(g) ka(g) ky/ka ky(g) kig) ky/ka ky(g) ka(g) ky/ka ky(g) ka(g) ky/ka ky(g) ka(g) ky/ka

1 - 2 4.3-5.5 0.123 0.034 6.26 0.198 0.096 2.06 0.152 0.154 0.99 0.067 0.204 0.33 0 0.234 0

2-3 5.0-5.5 0.123 0.034 6.26 0.195 O.09b 2.03 0.137 0.154 0.89 0 0.204 0 0 0.234 0

3-5 5.5-6.0 0.123 0.034 6.26 0.188 0.096 1.96 0.106 0.154 0.69 0 0.204 0 0 0.234 0

5-8 6.0-6.5 0.123 0.034 6.26 0.182 0.096 1.90 0.037 0.154 0.24 0 0.204 0 0 0.234 0

8-11 6.5-6.8 0.123 0.034 6.26 0.170 0.096 1.77 0 0.154 0 0 0.204 0 0 0.234 0

TABLE 9 VALUES OF ky/ka FOR EACH ACCELERAnON AND MAGNITUDE RANGE (Example Problem)



t;

~ PORE PRESSURE RATIO, Ru

~
erCltjAt °Il O.Og~A<O.05g O.05g~A<O.lg O.lg~A<O.15g O.15g~A<O.2g O.2g~A<O.25gClgllj

lode

4.33 - 5.0 0 0.05 0.2 0.48 1.0

5.0 - 5.5 0 0.06 0.25 1.0 1.0

5.5 - 6.0 0 0.08 0.35 1.0 1.0

6.0 - 6.5 0 0.10 0.58 1.0 1.0

6.5 - 6.8 0 0.14 1.0 1.0 1.0

TABLE 10 PORE PRESSURE RATIO Ru' VS. GROUND ACCELERATION AND MAGNITIJDE



TABLE 11 INPUT PARAMETERS TO THE COMPUTER PROGRAM (EXAMPLE SITE)

Acce1. Neq Mean of Acce1. Period Dn=Dr/Ka*Neq*T .... 2
Range Range Ky (g) Ka (g) T Dr=2' Dr=10'

-----_ .... _---- ... _---_ ........ ---- .. ---_ ... - ... -----_ .... ----- .. _------------

1-2 0.2130 0.0340 0.3150 12.2739 61. 3695
2-3 0.2130 0.0340 0.3150 7.3643 36.8217

.Og-.05g 3-5 0.2130 0.0340 0.3150 4.6027 23.0136
5-8 0.2130 0.0340 0.3150 2.8324 14.1622
8-11 0.2130 0.0340 0.3150 1. 9380 9.6899

1-2 0.1980 0.0960 0.3800 2.9871 14.9353
2-3 0.1950 0.0960 0.3800 1.7922 8.9612

.05g-.1g 3-5 0.1880 0.0960 0.3800 1. 1201 5.6007
5-8 0.1820 0.0960 0.3800 0.6893 3.4466
8 -11 0.1700 0.0960 0.3800 0.4716 2:3582

1-2 0.1514 0.1540 0.4450 1.3578 6.7891
2-3 0.1369 0.1540 0.4450 0.8147 4.0735

.lg-.15g 3-5 0.1065 0.1540 0.4450 0.5092 2.5459
5-8 0.0401 0.1540 0.4450 0.3133 1.5667
8-11 0.0000 0.1540 0.4450 0.2144 1.0720

1-2 0.0670 0.2040 0.5100 0.7804 3.9020
2-3 0.0000 0.2040 0.5100 0.4682 2.3412

.15g-.2g 3-5 0.0000 0.2040 0.5100 0.2926 1. 4632
5-8 0.0000 0.2040 0.5100 0.1801 0.9005
8 -11 0.0000 0.2040 0.5100 0.1232 0.6161

1-2 0.0000 0.2340 0.5700 0.5446 2.7232
2-3 0.0000 0.2340 0.5700 0.3268 1. 6339

.2g-.25g 3-5 0.0000 0.2340 0.5700 0.2042 1. 0212
5-8 0.0000 0.2340 0.5700 0.1257 0.6284
8-11 0.0000 0.2340 0.5700 0.0860 0.4300

1-2 0.0000 0.2660 0.6350 0.3861 1. 9303
2-3 0.0000 0.2660 0.6350 0.2316 1.1582

>.25g 3-5 9·0000 0.2660 0.6350 0.1448 0.7239
5-8 0.0000 0.2660 0.6350 0.0891 0.4455
8 -11 0.0000 0.2660 0.6350 0.0610 0.3048

NOTES:
Standard Deviation of (Ky)-Sigma(Ky)-0.06

Standard Deviation of (T)-Sigma(T)-0.08

53



~NUl7J Ac Craun

~
O.Og.5 A < 0.05gqu' allan

Dec [valent
al7Jage 1 - 2 2 - 3 3 - 5 5-8 8 - 11""'- Sfa te

NO/MINOR «2') 1.0 1.0 1.0 1.0 1.0

HEA VY (2' - 10') 0 0 0 0 0

CATASTROPHIC (>10') 0 0 0 0 0

0.05g.::: A < O.lg

NO/MlNOR «2') 1.0 1.0 1.0 1.0 1.0

HEA VY (2' . 10') 0 0 0 0 0

CATASTROPHIC (> 10') 0 0 0 0 I)

0.lg.5A<0.15g

NO/MINOR «2') 0.998 0.991 0.952 0.801 0.703

HEAVY (2' - 10') 0.002 0.006 0.025 0.070 0.096

CATASTROPHIC (>10') 0 0.003 0.023 0.129 0.201

0.15g.::: A < 0.2g

NO/MINOR «2') 0.858 0.729 0.702 0.680 0.664

HEAVY (2' - 10') 0.094 0.149 0.126 0.100 0.084

CATASTROPHIC (>10') 0.048 0.122 0.172 0.220 0.252

0.2g .::: A < 0.25g

NO/MINOR «2') 0.735 0.702 0.677 0.656 0.642

HEAVY (2' . 10') 0.160 0.138 0.113 0.090 0.077

CATASTROPHIC (>10') 0.105 0.160 0.210 0.254 0.281

A 2= 0.25g

NO/MlNOR «2') 0.706 0.676 0.654 0.635 0.623

HEAVY (2' - 10') 0.153 0.126 0.101 0.081 0.068

CATASTROPHIC (>10') 0.141 0.198 0.245 0.284 0.309

TABLE 12 DAMAGE PROBABll..ITY MATRIX FOR MODE 1 (Example Problem)



~ A <O.lg O.lOg ~ A < 0.15g 0.15g S A < 0.2g O.2g ~ A < 0.25g A ~0.25g'l"o4Jl

~D% YCles 1-11 1-2 2-3 3-5 5-8 8-11 1-2 2-3 3-5 5-8 8-11 1-2 2-3 3-5 5-8 8-11 1-2 2-3 3-5 5-8 8-11s ilge
lqte

No Flow Failure 1.0 .993 .981 .952 .698 .032 .849 .032 .032 .032 .032 .032 .032 .032 .032 .032 .032 .032 .032 .032 .032

Flow Failure 0 .007 .019 .048 .302 .968 .151 .968 .968 .968 .968 .968 .968 .968 .968 .968 .968 .968 .968 .968 .968

~

""

TABLE 13 DAMAGE PROBABILITY MATRIX FOR MODE 2 (Example Problem)



~~
O.Og.::: A < 0.05gqU/'o1 1 Ian

Cotnb " C e Cl em
lJled D

I - 2 . 2-3 3 - 5 5 - 8 8 . II""'- State iltnClge

as 1.0 1.0 1.0 1.0 1.0

HS 0 0 0 0 0

CIF 0 0 0 0 0

0.05g~A <O.lg

as 1.0 1.0 1.0 1.0 1.0

HS 0 0 0 0 0

CIF 0 0 0 0 0

O.lg.::: A < 0.15g

as 0.991 0.972 0.906 0.559 0.022

HS 0.002 0.006 0.024 0.049 0.003

CIF 0.007 0.022 0.070 0.392 0.975

0.15g ~ A < 0.2g

as 0.728 0.023 0.022 0.022 0.021

HS 0.080 0.005 0.004 0.003 0.003

CIF 0.192 0.972 0.974 0.975 0.976

. 0.2g ~ A < 0.25g

as 0.023 0.022 0.022 0.021 0.021

HS 0.005 0.004 0.004 0.003 0.002

CIF 0.972 0.974 0.974 0.976 0.977

A ~0.25g

as 0.023 0.022 0.021 0.020 0.020

HS 0.005 0.004 0.003 0.003 0.002

CIF 0.972 0.974 0.976 0.977 0.978

TABLE 14 DAMAGE PROBABll...ITY MATRIX FOR COMBINED MODES (Example Problem)



V1
-....j

SEISMIC RISK

Damage Pennanent Annual Number of Annual Probability
State Defonnation Events (x 10-3) Probability in 50 Years

No or Minor Less than 2 feet 221.903 0.9996 98.14%

Heavy 2 to 10 feet 0.165 0.165 x 10-3 0.81%

I

Catastrophic Greater than 10 feet 0.211 0.211 x 10-3 1.05%

TABLE 15 SEISMIC RISK RESULTS FOR MODE 1 (Example Problem)



(r)
00

SEISMIC RISK

Post-Earthquake Annual Number of Annual Probability Probability
Stability (State) Events (x 10-3) of Exceedence in 50 Years

Survival 221.259 0.999 95.0%

Failure 1.020 0.001 5.0%

TABLE 16 SEISMIC RISKRESULTS FOR MODE 2 (Example Problem)



\N
--.0 .

SEISMIC RISK (Combined)

Damage Consequence Annual Number of Annual Probability
State Events (x 10-3) Probability in 50 Years

OS No or Minor 221.174 0.9989 94.63%
Damage

HS Heavy 0.044 0.043 x 10-3 0.21%
Damage

CIF Failure 1.060 1.060 x 10-3 5.16%

TABLE 17 SEISMIC RISK RESULTS FOR COMBINED MODES (Example Problem)



SEISMIC HAZARD ANALYSIS

(S H A)

Annual Probability of
Exceeding Specnied Values of
Ground Motion Parameters

SEISMIC PERFORMANCE ANALYSIS
(S P A)

Probability of Different Damage
Levels or Failure Conditional on the

Ground Motion Parameter Values

SEISMIC RISK ANALYSIS

(S RA)

Annual Probability of
Damage or Failure

FIGURE 1 SCHEMATIC REPRESENTATION OF SEISMIC RISK ANALYSIS
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FIGURE 2 STEPS INVOLVED IN SEISMIC RISK ANALYSIS
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APPENDIX A

MATHEMATICAL FORMULATION OF SEISMIC HAZARD ANALYSIS

The mathematical formulation developed for the calculation of A(a, ~M) where ~M is the

range of magnitude selected for the desired acceleration-magnitude distribution follows.

Conventional Approach

Figure A-I shows a schematic outline of the major steps involved in a conventional Seismic

Hazard Analysis. The conditional probability, P[A ~ a IE], of acceleration A exceeding an

assumed value 'a' given that an earthquake, E, will occur is obtained from Equation A-I.

P[A ~ a IE] = P[M ~ m IE] (A-I)

where 'm' can be determined from an acceleration attenuation law. For reasons of

. simplicity in this presentation, if the attenuation law is assumed to be deterministic then 'm'

can be obtained from Equation A-2.

hence;

1

m = ~~R + 25)bjb,

A-I

(A-2)

(A-3)



The complementary cumulative distribution function for earthquake magnitude can be

expressed by Equation A-4.

P[M~mIE] = ~(m)

A(IIlo)
(A-4)

where t..{m) gives the annual number of earthquakes with magnitudes equal to or greater

than 'm' per unit area of source zone, and A{mo ) designates the annual number of

earthquakes occurring within a unit area of source zone and exceeding a minimum

magnitude of interest, mo.

Cornell and Vanmarcke (1969) proposed a magnitude-frequency relationship that considers

both upper and lower bounds on eanhquake magnitudes. Their proposed complementary

cumulative probability distribution function is given by Equation A-5.

P[M~ m IE] (A-5)

where

~ = magnitude - frequency parameter

and

mmax =maximum "credible" magnitude.

Employing the complementary distribution function of Equation A-5
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P[A ~ a IE] = P[M.~ m IE]

where

1

m = In [ :11R + 25 Jbf'

Combining Equations A-I and A-4 yields

(A-6)

~( a) = P [ A > a IE] ~( mo) (A-7)

where A(a) is the total number of events causing acceleration to exceed the value 'a' per unit

area of source. Integrating Equation A-7 over all the area sources yields

Ala) = f [1 - K(m) m.-mj1 - e-Ill m-m'~h moId I",.
.._-

Limitation of Conventional Formulation

(A-8)

Since the integration shown in Equation A-8 is performed over the entire area of source

zones having varying distances from the site of interest, the contributions to the total

number of events, A(a), come from events of different magnitudes. Typically, the

integration shown in Equation A-8 is carried out with the use of a computer program. The
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mathematical fonnulations used in currently available computer programs do not permit (in

the progress of the integration) determination of the magnitude-distribution of the events

with acceleration exceeding 'a'. To determine the distribution over M, a modification in the

conventional mathematical formulation was introduced.

Modified Seismic Hazard Analysis

The purpose of the modification introduced herein is to determine how many of A(a) events

are from earthquakes with magnitudes from mo to mi, and mi to mmax' The exact

formulation of this new approach to Seismic Hazard Analysis follows:

A(a)mo _ m
1
' = A(m)mo _ m

1
' = R(m)m m ('1 m ) - '1 . m

o - """Tl1ax ''1no - max ''1n1 - max

where

(A-9)

A(m)m
o

_ mi = number of events causing magnitude to exceed m, but ranging

between roo and mi' Thus if m >mi' A(m) =O.

=

= total number of events causing magnitude to exceed roo but less than

Ami _mmax = total number of events causing magnitude to exceed mi but less than

Further manipulation of Equation A-9 yields,

A(m)mo - mi = R(m)mo - mmax 0'1110 - mmax) - R(mi)mo - mmax (Amo - mmax)

= -K(m)m _m' ('l m )[1 - e-~(m-ffio)]
o max '''rno - max

A-4



+ K(m)m _m (Am m )[I - e-~(mi -l11o)]o max 0 - max

= K(m)m _m (Am m )[e-~(m-mo) - e-~(mi -mo)]
,0 max 0 - max (A-lO)

The solution of Equation A-9 (or Equation A-I 0) in the form that is presented requires the

use of a computer or introduction of major modifications in a currently available program.

A closer examination of Equation A-9 reveals that existing computer programs could be

used to solve Equation A-9 provided that the computer is "fooled" by reading in

appropriately modified values of certain parameters required. The resulting outcome of the

analysis is identical to that which would have been obtained from Equation A-9.

Proposed Solution

Equation A-II is selected as a substitute for Equation A-9 and

(A-ll)

where

=

=

and

Amo- mi = total number of events causing magnitude to exceed l110 but less than mi'

= K(m) '} [1 . e-~(mi-mo)]mo- mmax '''mo- mmax

To justify the validity of Equation A-II as a replacement for Equation A-8, the following

A-5



manipulations are performed on Equation A-I!.

A(m)mo - rni = [1- K(m)mo - mi (1 - e-~(m-IIlo»] [K(m)m
o

_rnmax Arno _ mmax[1 - e-~(mi-IIlo)]

= K(m) A [e-~(m-mo) -e·~(mi-mo)] (A-I2)
mo - mmax mo - mmax

It is noted that Equation A-12 and A-IO are identical. Therefore, Equation A-ll can be

used as a substitute for Equation A-9 in the Seismic Hazard Analysis. The advantage of

using Equation A-II is that its form is exactly identical to the equation used in conventional

computer programs (Equation A-9). However, the values of the parameters are quite

different. Thus, by reading in the appropriately modified values of the parameters needed

by the computer program, Equation A-ll can be solved conveniently using the computer

program coded by Schumackerand Whitman (1978).

Procedure for Modified Seismic Hazard Analysis

To obtain the number of earthquakes causing acceleration to exceed 'a' and having

magnitudes between Il10 and a selected value mi, the following parameter modifications

would be required.

(a) maximum "credible" magnitude to be read into the computer would be mi

(b) number of events causing magnitude to exceed Il10 to be read into computer program

would be equal to:

[

_1_e_-~(mi_-mo ) ].

A(m)
I

-\3(ma. - m D)-e

With the use of these modified parameters, the results of the computer analysis will

A-6



correspond to A(a)m _m.' total number of events causing acceleration to exceed 'a' and
o 1

having magnitudes greater than Il10 but less than mi. By selecting various values of mi it is

possible to generate a histogram of events A(a, ~M) for various intervals of magnitude as

shown in Figure A-2.

Since direct relationship is assumed between magnitudes and associated number of

equivalent cycles, the results obtained could be used to generate the same type of histogram

for corresponding ranges of Neq; A(a, ~eq)' This is also shown in Figure A-2.
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APPENDIXB

RELATIONSHIP BETWEEN EARTHQUAKE MAGNITUDE AND

NUMBER OF EQUIVALENT CYCLES

The application to earth dams of the Seismic Hazard Analysis described in this report

requires a relationship between equivalent number of cycles and earthquake magnitude. In

general this relationship is expressed as following

Neq = f(s,M)

where

M = earthquake magnitude

and s = acceleration or stress ratio (constant) = aav/3.peak

(B-1)

The results of the research conducted by Asturias and Dobry (1982), Haldar and Tang

(1979), Lee & Chan (1972), and data from earthquake studies do not indicate any

correlation between Neq and epicentral distance, fault to site distance, component of

motion, or near surface ground conditions. To establish the relationship between M, Neq

and s, a statistical analysis was made by Singh (1984) using the equivalent number of

cycles calculated for 57 earthquakes by Lee & Chen (1972) and for s =0.65, 0.75, and

0.85. This relationship is shown in Equation B-2.

In Neq = -1.73 + 0.46 - 3.61 Ins (B-2)

\

\
The uncertainty present in this relationship was calculated and the standard deviation of

InNeq given by Equation B-1 was estimated to be O'lnN = 0.39. Equation B-2 can
eq
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therefore be used to estimate Neq based on M and s for a desired confidnece level. Seed &

Idriss (1975) suggested that when s =0.65, the number of equivalent cycles for Richter

magnitudes of7.0, 7.5, and 8.0 is 10,20, and 30 cycles, respectively.

Haldar & Tang (1981) proposed a statistical relationship similar to Equation B-2. They

suggested that the intensity of the uniform stress be taken to be 75% of the maximum stress

(i.e. s =0.75). The relationship proposed by Haldar and Tang is:

E[Neq 1M =m] = 106.1 - 36.4m + 303m2 for m ~ 5.0

and the corresponding variance, Var (Neq 1M) = 29.1

(B-3)

The most commonly used method for calculating number of equivalent cycles is based on

an equivalent rule for recorded cycles derived from a representative cyclic strength curve of

sands, and described by Lee & Chan (1972).

Klahn et. al. (1978) have extracted the following table proposed by Seed (1976) that

provides a means of estimating the number of "significant cycles" of shaking with peak

acceleration equal to 65 percent of the maximum acceleration for a given magnitude

earthquake.
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Richter Significant Cycles
Magnitude

Lower 15% Mean Upperl5%

5.0 2 4 5

5.5 2 4 5

6.0 3 4 6

6.5 4 6 9

7.0 6 10 15

7.5 8 15 24

8.0 11 22 33

In a more recent publication Seed et. al. (1983) presented the following table that relates

Neq to magnitude, M.

Magnitude Number of represnetative cycles at 0.65 'tmax
(1) (2)

8-1/2 26

7-1/2 15

6-3/4 10

6 5-6

5-1/4 2-3

For the example application of Integrated Seismic Risk Analysis described in Section VI,

relationship proposed by Seed et. al. (1983) was used to establish the Neq intervals for each
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selected magnitude interval. These intervals are tabulated below.

TABLE FOR Neq AND M RANGES

Magnitude Range Number of Equivalent Cycles Range

4.33 - 5.0 I - 2

5.0 - 5.5 2-3

5.5 - 6.0 3-5

6.0 - 6.5 5-8

6.5 - 6.8 8 ~ 11
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APPENDIXC

SEISMIC DATA AND PROCEDURES IN SHA

In carrying out the Seismic Hazard Analysis for the example site (Boston area) the seismic

source maps proposed by Cornell and Merz (1974), and Tong et al (1975), shown in

Figure 4 was utilized and the sources used are identified as following

Seismic Sources Total # of Events/ Year Imax'(MMI) ~ax

Al 0.03809 8.3 6.53

A2 0.02191 8,3 6,53

B 6/250 =0,024 8.3 6.53

C-1 33/250 =0.132 8.7 6.8

Background (8x10-7)(R21t)/mi2 =0.00628 6.3 5,2

where R is taken to be 50 miles or 80 km., and Imax is referred to as "maximum intensity

of the interset."

Gutenberg and Richter (1954) developed the following relationship between magnitudes

and intensities

Mmax = 1 + (2/3)Imax

Col
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where Imax is the epicentral intensity for all the sources mentioned. The minimum intensity

of interest, la, was assumed to equal 5.0. Thus, based on Equation C-l the minimum

magnitude of interest, mo, was 4.33.

Seismic Hazard Analysis requires utilization of an acceleration attenuation law. In this

study, the attenuation law proposed by Donovan (l973-worldwide) was used. It is

expressed as

= 1320 eO.S8M (R + 25)-1.52 ; O'ln a = 0.84
g

(C-2)

where ag is the peak ground acceleration in gals

R is the epicentral distance in km.

O'ln ag is the standard deviation of natural logarithm ?f ago

The computer program MITRISK developed by Schumacker and Whitman (1978) was

used to compute the probabilities of joint occurrence of acceleration and magnitude or

equivalent number of cycles as descirbed in Appendix A. The results are discussed in

Seciton VI of this report.
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APPENDIXD

PROCEDURES FOR ESTIMATION OF PERMANENT DEFORMATION

Estimation of earthquake-induced permanent deformation can be made using Newmark's

sliding block model shown in Figure 7. In this approach, a rigid-plastic interface property

is assumed such that if the acceleration of the block exceeds a limiting acceleration ky, then

sliding of the block relative to the base will occur.

Sinusoidal Pulse

In Figure D-l the motions of the block for a sinusoidal excitation of the base are illustrated.

The derivation of the mathematical expression for the permanent deformation, Dr> follows.

The equations of motion for the base are:

A = ka sin(2;t)

v = ka?it[1 - cos (~)]

D = ka(2~)2[~ - sin (~)]

Solving for ty (from Equation D-l)

ty _ 1 . -iky)- --SIn -
T 21t k a

D-l

(D-l)

(D-2)

(D-3)

(D-4)



Solving for tf (using Equation D-2 and Figure D-1)

kaT [ (21ttf)1Vtf = 21t 1 - cos T J

kaT [ .(21tty),l . (21tty~ \Vtf = Vy+ ky(tf- t~ = 21t 1 - cos T~ + kasm T~tf- t)1

for the base

for the block

(D-5)

(D-6)

Considering that at time t = tf the velocity of the block and the base will be equal and they

will move together, the right hand sides of Equations D-5 and D-6 are set equal resulting:

(k
y) tf + _1 cos (21ttf) = _1V1 _(ky)2 + ky(sin-1 ky) _1

ka T 21t T 21t ka ka ka 21t
(D-7)

Equation D-7 shows that the solution for tf is implicit and is a function of ky/ka. Following

an iterative technique, values of tfrr were evaluated as a function of ky/ka as shown in

Figure D-2.

Solving Equation D-3 for the displacement of the base at t =tf gives:

for the base (D-8)

The displacement of the block at time tf can be expressed as

where

D-2

(D-9)



and dy, Vy, and ky are obtained from Equations D-I through D-3 by substituting t =tf into

Equation D-9, resulting in the following expression for the permanent deformation of the

block:

(Tty) [ ( T)2 . (21tty)~ T r (21ttY),l \ ky, \2Dr = ka 21t - ka 21t SIn T'J + kaz;t1 - cos TJ (tf- t~ - ~tf- t)1 (D-IO)

Finally, normalizing the permanent deformation of Equation D-lO, with respect to ka, and

square of period, T, results in the following expression.

D - Dr _ 4 2[ . (21tty) . (21ttf) 2 (21tty~ tf ty) ~2 \2 (tf tY)jn - -- - 1t SIn -- - SIn - + 1tCOS -- - - - -~ 1t) - - -
kaT2 T T T T T 2ka T T

where

(D-II)

dtf - dtfbase block

Note that since tyff and tfff are function of only ky/ka, the normalized permanent

deformation per cycle of motion, Dn, is also a function of only kylka.
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Triangular Pulse

Referring to Figure D-3 (a) and (b), equations of motion for the triangular pulse are as

following

For the range

For the range

For the range

o S; t S; T/4

4kat/f

2kat2(f

2kat3/3T

T/4 ~ t S; 3T/4

2ka - 4kat/f

2kat - (2katZff) - (kaT/4)

katZ - 2kat3/3T - kaTt/4 + ka'[2/48

3T/4 S; t S; T

4katff - 4ka

(2katZff) - 4kat + 2kaT

(2kat3/3T) - 2katZ + 2kaTt - 13kaT2/24

(D-12)

(D-B)

(D-14)

(0-15)

(0-16)

(0-17)

(0-18)

(0-19)

(0-20)

From Figure D-3 (a) and Equation D-13

D-4
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(D-22)

where

ky =

T =

lea =

ty =

Let

yield acceleration of the block

predominant period of the motion

peak ground acceleration

time needed for acceleration of base to reach yield acceleration

= R

then according to Equations D-21 and D-22

=
=

Consequently, the velocity of the block, Vb, at the time t> ty ~ll be

(D-23)

when the pulse reverses its direction (see Figure D-3 (a» the velocity of the base starts to

decrease and at time t ~ tf the block and, the base move together.

where V2 is defined by Equation D-16.
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(D-24)

The time after which the block and the base move together, tf' can be calculated from

Equation D-24 as following:

Dividing Equation D-25 by the quantity (kaT/8) and rearranging yields

16 (t{f)2 + (8R - 16)(tfff) + (2 - R2) = 0

Equation D-26 explicitly defmes the values of tr/T for all the values of R =kylka.

(D-25)

(D-26)

The permanent deformation between the block and the base, Dr' is obtained from Equation

D-27.

d t - dt
f base f block

(D-27)

where dtf and dtf are the displacements of the base and the block, respectively, at
base block

time t =tf ,and are calculated from the following expressions using Equations D-14 and

D-17.

(D-28)

and
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dt = d~ +itf

VIf dt
f block 7

(D-29)

= 2kat} [ 2kat~tf k.2 2k 2kat} k 2]--+ --+ Yf- -j.-tf---+-j.3T T Y" T Y

where dty is the pennanent defonnation of the block (and the base) at time t = ty ,

calculated from Equation D-14, and V tf is the velocity of the block at time tfo From Figure

D-3

= (D-30)

Substituting the right hand side of Equations D-28 and D-29 into Equation D-27, and

dividing through by kaT2, the nonnalized pennanent defonnation between the base and the

block, Dn, for triangular pulse can be expressed as an explicit function of R as following

(0-31)

The above fonnulation for the nonnalized pennanent defonnation of a triangular pulse is

valid for the range where tf ~. 3T/4. For the range where tr ~ 3T/4, Equation D-26

becomes

16 (t{f)2 - 8(4 + R)(t{f) + (R + 16) = 0 (0-32)

This equation allows the calculation of values of t{f for any given value of R. Again, for

this range the pennanent defonnation of the block can be calculated from Equation D-20 as
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following

(D-33)

The equation for pennanent defonnation of the block remains the same as the previous case

(i.e. Equation D-20). For the range where tf ~ 3T/4, the relative pennanent defonnation

normalized with respect to ka and T2 becomes

=

D-8
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Rectangular Pulse

The velocities of the base, Vb, and the block, V, for a rectangular motion can be calculated

from the acceleration curve of Figure D-4 at time t =tf as following

Vb = ky tf

V = (ka T/2) - ka(tf - T/2)

Equating Vb to V yields:

(0-35)

(0-36)

(0-37)

The permanent deformation, Dr> associated with this time (t =tf) is the difference in the area

under the velocity curves shown in Figure D-4. Thus,

(0-38)

Combining Equations D-34 and D-35 yields the following expression for Dn, the

normalized permanent deformation, for one cycle of rectangular pulse.

(0-39)
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APPENDIXE

PERFORMANCE ANALYSIS AND PROGRAM NIMPED

E-l Mathematical Formulations

An analytical model was developed to calculate the probability of exceeding any specified

value of permanent deformation. The model involves the expression

where

(E-1)

Dr = permanent deformation

Ky = yield acceleration of the cross-section of the dam

Ka = actual acceleration of the cross-section of the dam

S = random variable reflecting scatter of the available data abOut the

above relationship resulting from the inherently random nature of

seismic motions

~ . = the standard deviation of 10gDnDn

T = . the predominant period of the motion of the darn cross-section

Neq = number of equivalent uniform cycles for the motion of the dam

cross-section

T, S, Neq, Ky and Ka are random variables. X =S ~Dn is a random variable that accounts

for the uncertainty introduced into the above relationship due to the inherently random
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nature of seismic ground motions. ~D is the value of the standard deviation of the normal
n

random variate X = S ~D . Therefore, S is the standard normal variate. Treating X as
n

normally distributed is justified by probability plots of the available data, discussed in

Section IV-1.4.

The seismic performance analysis requires calculation of the probability of the permanent

deformation of the dam exceeding some pie-specified value, given the maximum

acceleration and the number of equivalent cycles of the motion of the dam (i.e., P[Dr > dr I

Ka = ka ' Neq = neq]. This can be formally calculated by performing the following

integration, provided that the probability density functions for each of the random variables

are known.

P[D,> d, Ika, ooql =fJLJr, f(SIT, ~)('It'~+(TI ~)(tl~+~~d~ (E-2)

Ir.

where

(B-3)

The region of integration is defmed by



or alternatively by

S > sl

(E-4)

S > (E-S)

This can be visualized by inspecting Figure £-1. A three-dimensional cartesian coordinate

system is uSt;d to represent the relationship between the random variables, T, S, and Ky'

and to represent their probability density functions. The surface shown represents all the

combinations of values of S, T,and Ky that give Dr = dr' All the points above the surface

represent combinations giving Dr > dr and all the points below the surface represent

combinations giving Dr < dr. The probability density functions assumed in this study for

each of these three random variables are shown below and to the left of the coordinate

system. By definition, the probability density function of Ky gives the probability of kya <

Ky < kyb ' which is equal to the area under the probability density function between kya and

kyb' Similarly, the probability of ta < T < tb equals the area beneath the probability

density function of T between ta and tb' The probability that both kya < Ky < kyb and ta <

T < tb is equal to the product of the above two areas. Furthennore, the probability that

b,oth kya < Ky < kyb and ta < T < tb ,and also Dr > dr is equal to the product of the

above two areas and the area under the probability density function of S within the region S

> sl' If these computations are performed for all the possible combinations of ranges ~ky

and ~t~ which are indicated by the grid on the three-dimensional surface, and then their
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results are summed up, the final summation is the probability that Dr > dr. This series of

computations is what the above integration represents. The integration can be performed

analytically, in which Mcy and ~t are made to approach zero in the limit. Alternatively,

the integration can be performed to a high degree of accuracy by numerical means, which

was done in this study. Specifically, integration with respect to the random variable, S,

was performed by 16 point Gauss Quadrature. The integrations with respect to T and K y

were performed by setting Mcy and ~t to reasonably small values and then performing the

above described computations and summation. A computer program was written for this

purpose. It is called Numerical Integration Methodology for the Probabilistic Evaluation of

Deformation or NIMPED for shon. The listing of the program is given in Section E-2.

The random variables T and K y were taken to be normally distributed. However, the

negative tail of each of these distributions was truncated and it was assumed that the

probability of the random variable taking on the value zero is equal to the truncated negative

area. This was necessary due to the fact that the surface defined by Equations E-4 and E-5

is not defmed for negative values of T and Ky.

It is reasonable to take the random variable S as normally distributed due to the fact that

probability plots of the available data indicated that the 10gDn is normally distributed for any

given ratio kylka. This is illustrated by the plots of 10gDn versus frequency of exceedance

in Figure 12 in Section IV-1.4. In addition, the nearly equal slopes of these plots suggests

that the standard deviation of 10gDn' or Le. ~Dn' is independent of kylka.

The calculated probability, P[Dr > dr], is conditioned upon the values of the random

variables Neq and K a being equal to two specific values, designated by neq and ka ,

respectively. A description of the calculation of the probability of the joint occurrence of
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Neq and Ka being within specified ranges is given in Section IV.

E-2 Program NIMPED

Program NIMPED 'comp~tes the probability of exceeding a specified level of earthquake

induced permanent deformation of an earth dam.

The program runs on IBM-PC or compatibles, and requires an input file named

NIMPED.DAT. To run the program just type NIMPED. The output from the program is

stored in a file named NIMPED.ODT.

User's Guide for NIMPED

The following is the format for the input data in NIMPEDDAT.

MIUKY =

SIGMAK =

KA =

NEQ =

MIUT =

(Free Format, data separated by commas or single spaces)

mean value of the yield acceleration of the cross-section of the dam,

Ky, in g's.

standard deviation of Ky' crIs." in g's.

acceleration of the cross-section of the dam, Ka, in g's.

number of uniform cycles of motion for the dam, Neq,in cycles.

mean value of the predominant period of the seismic motion, T, in

seconds.

SIGMAT = standard deviation of T, crT, in seconds.

SIGMAM = standard deviation of the function log Dn =g(KylKa),

use (Jlog D
n

' = 0.45.

DR = specified permanent deformation, probability of exceedence

of which is to be computed, dp in units of length.
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Line 2 (Free Fonnat)

NDR = Number of intervals of Ky/Ka used in the numerical integration.

(100 to 200)

RMIN = Minimum value of KylKa used in the numerical integration.

(Generally equal to zero)

RMAX = Maximum value of Ky/Ka used in the numerical integration.

(Generally equal to 1.0)

(Free Fonnat)

NDT = Number of intervals of T used in the numerical integration.

(100 to 200)

TMIN = Minimum value ofT used in the numerical integration. (Generally

equal to zero)

TMAX = Maximum value of T used in the numerical integration. (Generally

equal to the mean of T plus 3 to 4 standard deviation of T)

Oytput File NIMPED,OUI

The output of the program NIMPED consists of the listing of the following parameters and

results.

MIUKY = mean value of the yield acceleration of the cross-section of the dam,

Ky. in g's.

SIGMAK = standard deviation of Ky • cr~ .• in g's.

KA = acceleration of the cross-section of the dam, Ka• in g's.

NEQ = number of unifonn cycles of motion for the dam. Neq. in cycles.
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MIUT = mean value of the predominant period of the seismic motion, T, in

seconds.

SIGMAT = standard deviation of T, aT, in seconds.

DR = specified pennanent defonnation, probability of exceedence

. of which is to be computed, dT> in units of length.

MIUR = Mean value of KylKa .

DISP . - Nonnalized pennanent defonnation = Dn = d!(!ca NeqT2)

TPROB = Probabilty of exceeding the value of the specified pennanent

defonnation dr'

Listing of the computer program NIMPED along with a sample input and output files

follow.
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~ PROGRAM NIMPED
~ (Numerical Integration Methodology for Probabilistic
: Evaluation of Deformations)
~**********************************************************************= THIS PROGRAM CALCULATES PROBABILITY OF EXCEEDING A CERTAIN LEVEL
~ OF PERMANENT DEFORMATION OF AN EARTH DAM USING NUMERICAL
~ INTEGRATION TECHNIQUES FOR MULTIVARIATE FUNCTION
:**********************************************************************
:**********************************************************************
C NOMENCLATURE
C
C MI~KY Ky = MEAN VALUE OF YIELD ACCELERATION
C SIGMAK STANDARD DEVIATION OF Ky
C KA Ka = AVERAGE DAM ACCELERATION
C NEQ NUMBER OF EQUIVALENT UNIFORM CYCLES
C UR Dr = ACTUAL DEFORMATION (IN UNITS OF LENGTH)
C R Ky/Ka = RATIO OF YIELD ACCELERATION TO AVG. DAM ACCELERATION
C SIGMAR = STANDARD DEVIATION OF R (=Ky/Ka)
C MIUR MEAN VALUE OF R (=KY/Ka)
C NDR NUMBER OF INTERVALS OF R CONSIDERED
C RMIN = MINIMUM VALUE OF R CONSIDERED (OF INTEREST)
C RMAX MAXIMUM VALUE OF R CONSIDERED (OF INTEREST)
C DR LENGTH OF R INTERVALS
C T PREDOMINANT PERIOD OF THE DAM CONSIDERED
C MIUT MEAN VALUE OF T
C SIGMAT STANDARD DEVIATION OF T
C NDT = NUMBER OF INTERVALS OF T CONSIDERED
C TMIN MINIMUM VALUE OF T CONSIDERED (OF INTEREST)
C TMAX MAXIMUM VALUE OF T CONSIDERED (OF INTEREST)
C DT LENGTH OF T INTERVALS
C SIGHAM STANDARD DEVIATION OF M
C DP UR/(NEQ*KA) = PERMANENT DEFORMATION NORMALIZED WITH RESPECT TO
C AVG. DAM ACCELERATION AND NUMBER OF EQUIVALENT CYCLES
C SR STANDARD NORMAL VARIATE OF R
C ST STANDARD NORMAL VARIATE OF T
C GR = A MATHEMATICAL EXPRESSION THAT RELATES NORMALIZED DEFORM. TO R
C DFT =,VALUE OF PDF FOR STANDARD VARIATE OF T (i.e. ST)
C S VARIABLE THAT PRESENTS THE UNCERTAINTY OF THE MODEL
C DISP = Dn = VALUE OF NORMALIZED DEFORMATION BEING EXCEEDED
C TPROB = TOTAL PROBABILITY OF EXCEEDENCE OF VALUE OF DISP
C**********************************************************************
C**********************************************************************
C

IMPLICIT REAL*8(A-H,0-Z)
REAL*8 MIUT,MIUR,MPROB,KA,NEQ,MIUKY

c
JR=5
JW=6
PI=4.DO*DATAN(1.DO)

C
c***********************************************************************
C THE LOOP BELOW WILL ALLOW TO INPUT AND PROCESS SEVERAL DATA SET IN
c ONE FILE (ACTIVATE THE LOOP IF MORE THAN ONE DATA SET ARE INVOVED)
C***********************************************************************
C
C DO 65 K=l,lOOOOOO
C

OPEN (5,FILE='NIMPED.DAT')
OPEN (6,FILE='NIMPED.OUT')

c



READ(JR,*,END=70) MIUKY, SIGMAK, KA, NEQ, MIUT, SIGMAT,
1 SIGMAM, UR

C
MIUR = MIUKY / KA
SIGMAR = SIGMAK / KA
DP = UR /(KA * NEQ)

C
C**********************************************************************
C IN THE NEXT FEW LINES DR AND DT, LENGTH OF INTERVALS FOR R AND T,
C RESPECTIVELY, CONSIDERED FOR INTEGRATION PURPOSES, ARE CALCULATED
C BASED ON THEIR MAX. AND MIN. VALUES.
C*************************~********************~***********************
C

READ(JR,*) NOR, RMIN, RMAX
IF(RMIN.LT.O.) RMIN = 0.0
IF(RMAX.GT.l.) RMAX = 1.0
DR = (RMAX-RMIN)jNDR

C
READ(JR,*) NDT, TMIN,TMAX
IF(TMIN.LT.O.) TMIN = 0.0
DT = (TMAX-TMIN)/NDT

C
C**********************************************************************
C TRNCATION LEFT OF T = 0.0
C**********************************************************************
C

R = 0.00
SR = (0.00 - MIUR)/SIGMAR
TRUNc = GAUSS(SR)

C
GR = 0.2232064

C

C

C

C

C

MPROB = 0.0
T = TMIN - DT/2.
DO 10 J=l, NOT
T = T + DT
ST = (T-MIUT)/SIGMAT
DFT = DF(ST)/SIGMAT

S = (DLOG10(DP) - 2*DLOG10(T) - GR) / SIGMAM

AREA = 1.00 - GAUSS(S)

MPROB = MPROB + AREA*DFT*DT
10 CONTINUE

TPROB = MPROB * TRUNC
C
C**********************************************************************
C INTEGRATE FROM R = 0 TO R = (+)INFINITY
C********************************************.**************************
C

R = RMIN - DR/2.
DO 30 I=l,NDR
R = R + DR
SR = (R - MIUR)/SIGMAR
DFR = DF(SR)/SIGMAR

C
C**********************************************************************
C GR IS PART OF THE PERFORMANCE FUNCTION. GR DEPENDS ON
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C R ALONE, AND THUS DOES NOT NEED TO BE IN THE T DO LOOP
C**********************************************************************
C

GR -11.482645*R**3 + 16.381141*R**2 - 10.121701*R
+0.2232064

C
C**********************************************************************
C INTEGRATE FROM T = 0 TO T = TMAX
C**********************************************************************
C

MPROB = 0.00
T == TMIN - DT/2.
DO 20 J=l., NOT
T = T + DT
ST = (T-MIUT)/SIGMAT
OFT = DF(ST)/SIGMAT

C
C**********************************************************************
C 'INTEGRATE' FROM S = (-)INFINITY TO
C S == THE INVERSE FUNCTION OF R,T,LOGDP
C THIS GIVES THE CUMULATIVE PROBABILITY DISTRIBUTION OF S
C CONDITIONAL UPON R AND T
C**********************************************************************
C

S = (DLOGIO(DP) - 2*DLOG10(T) - GR) / SIGMAM
AREA = 1.00 - GAUSS(S)

C
C**********************************************************************

,C CALCULATE THE CUMULATIVE PROBABILITY
C DISTRIBUTION OF S CONDITIONAL ON R ALONE
C**********************************************************************
C

MPROB = MPROB + AREA*DFT*DT
20 CONTINUE

C
C**********************************************************************
C CALCULATE THE CUMULATIVE PROBABILITY
C DISTRIBUTION OF S UNCONDITIONALLY, WHICH IS
C**********************************************************************
C

TPROB == TPROB + MPROB*DFR*DR
30 CONTINUE

C
DISP = DP/MIUT**2

C
WRITE(JW,*) , MIUKY MIUKY
WRITE(JW,*) , SIGMAK SIGMAK
WRITE(JW,*) , KA == KA
WRITE(JW,*) , NEQ = NEQ
WRITE(JW,*) , MIUT " MIUT
WRITE(JW,*) I SIGMAT == SIGMAT
WRITE(JW,*) I UR UR
WRITE(JW,*) I MIUR = MIUR
WRITE(JW,*) , DISP I DISP
WRITE(JW,*), TOTAL PROB. OF EXCEEDING TPROB. = TPROB

C
C 65 CONTINUE
C

70 STOP
END
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C
C
C
C**********************************************************************
C*****··*···*·*·····**************·************************************
C

DOUBLE PRECISION FUNCTION DF(DX)
C
C********·*************************************************************
C
C THIS FUNCTION COMPUTES THE VALUE OF PDF OF A NORMAL VARIABLE AT ANY
C POINT
C

DOUBLE PRECISION DX,PI
PI = 4.DO*DATAN(1.DO)
DF = (1.DO/DSQRT(PI*2.DO))*DEXP(-0.500*OX**2)
RETURN
END

C
C
C
C****·********·*·***··*****************·*************·*****.*******~****

C***********·***********··***·************************.*****************
C

DOUBLE PRECISION FUNCTION GAUSS(S)
C
C****************·*******************************************************
C

DOUBLE PRECISION P(8) ,Q(9),S
C
C THIS FUNCTION COMPUTES THE INTEGRAL OF THE STANDARO NORMAL
C VARIABLE FROM (-) INFINITY TO THE UPPER LIMIT OF INTEGRATION, DP.
C

c

C

c

DATA P(l) ,P(2) ,P(3),P(4) ,P(5) ,P(6) ,P(7) ,P(8)
1 /0.88347894260849D+3, 0.154967931240370+4,
1 0.13471941340976D+4, 0.72304000277753D+3,
1 0.25550049469496D+3, 0.592400101129140+2,
1 0.83765310814197D+l, 0.564189559442610+0/

DATA Q(l) ,Q(2) ,Q(3) ,Q(4) ,Q(5) ,Q(6) ,Q(7) ,Q(8) ,Q(9)
1 /0.883479942608500+3, 0.254657854580980+4,
1 0.33372213699893D+4, 0.260671201526510+4,
I 0.133356997567800+4, 0.460285123691600+3,
1 0.105500254397690+3, 0.148470122375230+2,1.00/

OATA TOL /1.0E-8/
Y=S/SQRT (2. )

IF(ABS(Y) .LT.TOL) THEN
GAUSS=0.5
RETURN

ENDIF

IF(Y.GT.8.)THEN
GAUSS=l.
RETURN

ENDIF

IF(Y.LT.-8.)THEN
GAUSS=O.
RETURN

ENOIF '£--1/



C
C APPROXIMATE WITH RATIONAL FUNCTION
C

Z=EXP(-Y*Y)
YABS=ABS(Y)
PNUM=P(8)
DO 1 I=7,1,-1

1 PNUM=P(I)+YABS*PNUM
QDEN=Q(9)
DO 2 I=8,l,-1

2 QDEN=Q(I)+YABS*QDEN
GAUSS=(PNUM/QDEN)*O.5*Z
IF(S.GT.O.) GAUSS=l.O-GAUSS

C
RETURN
END.

C**********************************************************************
C**********************************************************************

E-/J.



Example input data.
Filename = NIMPED.DAT

2.254,1.1270,6.762,12,0.7,0.175,0.45,4,
100,0,1,
100,0,4,

Example output.
Filename = NIMPED.OUT

MIUKY = 2.25400000000000000
SIGMAK = 1.12700000000000000
KA = 6.76199999999999957
NEQ = 12.00000000000000000
MIUT = 0.69999999999999996
SIGMAT = 0.17499999999999999

. UR = 4.00000000000000000
MIUR = 0.)3333333333333337
DISP = 0.10060220479792038
TOTAL PROB. OF EXCEEDING = TPROB =

s-) 3

0.18818486207860316
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APPENDIXF

RELATIONSHIP BETWEEN UNCERTAINTIES IN Ky AND T

.'. The standard deviations of T and Ky/Ka can be obtained baseq on statistical evaluation or

subjective judgement by the investigator. This appendix describes one possible

relationship between J.lK and J.lT' and between the c.o.v'K and the c.o.v'T for
y y

cohesionless soils and a similar relationship for cohesive soils where

J.lKy = mean value of Ky

J.lT = mean value of T

c.o.v·K = coefficient of variation of Kyy

c.o.v·T = coefficient of variation of T

These relationships apply to the case of an earth dam founded on a relatively rigid base

Cohesionless Soils

For cohesionless soils the following empirical relationships have been proposed among the

shear modulus, G, the shear wave velocity, Cs' the mass density, p, and the predominant

period, T, of a homogeneous soil layer of thickness H, on bedrock.

and

T = 4H/Cs

F-l

(F-l)

(F-2)



Also Seed and Idriss (1970) proposed the following relationship

G = 1000 K1...J am

where

(F-3)

K2 = constant which is a function of relative density of cohesionless soil

am = effective overburden pressure

Considering Equations F-1 through F-3 it follows that

The quantity

T =
4H...;p ()_.!.K 1 1

,J 1000 ~~m
(F-4)

4H-!P

,J 1000 ~~m

is constant for a given soil at a given location. Therefore, Equation F-4 can be written as

(F-5)

Considering the Taylor series expansion of Equation F-5, variances of T and K2, can be

related as follows

F-2



VarT = 2( 1 ) -3C 4" (K 21 Var K2 (F-6)

dividing both sides by IlT2

= (F-7)

but if IlT is replaced by the right hand side.of the Equation (F-5), it results in

or

=

=

c2
(K~ -3 Var K2

4C2(Kr
l

(F-8)

(F-9)

According to Seed and Idriss (1970) there is a relationship between K2 and relative density

Dr of cohesionless soils. A plot of their data, for small shear strains, indicates that this

relationship is nearly a straight line; therefore, K2 is linearly proportional to Dr. On the

other hand Dunn et. al. (1980) have developed a relationship between Dr and the angle of

internal friction <1>, which can be approximated as a straight line. These plots are shown in

Figures F-1 and F-2 respectively. In the range of interest, the angle of internal friction, <1>,

and its tangent are almost equal. (maximum difference is about 10% for the range

considered.) The above mentioned relationships lead to the following conclusions:

F-3



C.O.v·T = (F-lO)

For the failure wedge considered in the example problem, as well as for a wide variety of

stability problems, there exists a linear relationship between Ky and tan<j> (as shown in

Figure F-3) suggesting that C.O.V'Ky =c.o.v. tanep . From above mentioned relationships

among different parameters and their variances it can be reasonably concluded that:

C.O.v·T (F-l1)

Cohesive Soils

For a cohesive soil Equation F-3 becomes

G = c Su (F-12) .

where Su is the undrained shear strength of the soil and c is a constant. Equations F-l and

F-2 hold both for cohesive and cohesionless soils. Therefore

T

Again the quantity

=
4H{p·

iG = 4H{P(_1)
iC ~

F-4

(F-13)



is constant and the only quantity changing (involved in uncertainty) is Su' Thus,

considering the variances of both sides in Equation F-13 and following the same steps as in

cohesionless soils it can be shown that

C.O.V·T 1
~.o.v.Su (F-14)

Bolognesi (1980) has shown that for typical soil profiles, F.S. against slope instability is

approximately linearly related to SUo Hence, Ky which is related to F.S. can be assumed to

be also linearly related to SUo Thus,

C.O.V·T

F-5

(F-15)
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