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PREFACE 

The National Center for Earthquake Engineering Research (NCEER) is devoted to the expansion 
and dissemination of knowledge about earthquakes, the improvement of earthquake-resistant 
design, and the implementation of seismic hazard mitigation procedures to minimize loss of lives 
and property. The emphasis is on structures and lifelines that are found in zones of moderate to 
high seismicity throughout the United States. 

NCEER's research is being carried out in an integrated and coordinated manner following a 
structured program. The current research program comprises four main areas: 

• Existing and New Structures 
• Secondary and Protective Systems 
• Lifeline Systems 
• Disaster Research and Planning 

This technical report pertains to the second program area and, more specifically, to secondary 
systems. 

In earthquake engineering research, an area of increasing concern is the performance of secon
dary systems which are anchored or attached to primary structural systems. Many secondary 
systems perform vital functions whose failure during an earthquake could be just as catastrophic 
as that of the primary structure itself. The research goals in this area are to: 

1. Develop greater understanding of the dynamic behavior of secondary systems in a 
seismic environment while realistically accounting for inherent dynamic complexities 
that exist in the underlying primary-secondary structural systems. These complexities 
include the problem of tuning, complex attachment configuration, nonproportional 
damping, parametric uncertainties, large number of degrees of freedom, and non
linearities in the primary structure. 

2. Develop practical criteria and procedures for the analysis and design of secondary 
systems. 

3. Investigate methods of mitigation of potential seismic damage to secondary systems 
through optimization or protection. The most direct route is to consider enhancing 
their performance through optimization in their dynamic characteristics, in their 
placement within a primary structure or in innovative design of their supports. From 
the point of view of protection, base isolation of the primary structure or the applica
tion of other passive or active protection devices can also be fruitful. 
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Current research in secondary systems involves activities in all three of these areas. Their 
interaction and interrelationships with other NCEER programs are illustrated in the accompany
ing figure. 
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In dealing with nonlinear structural systems, random vibration problems are quite intricate and 
the technique of Monte Carlo simulation has been widely used. In this report, ARMA systems are 
reviewed from a perspective of applicability to Monte Carlo simulation in nonlinear random 
vibration. It is shown that, with the advent of super computers, ARMA systems can be a potent 
weapon in addressing structural problems of extremely large dimensions and complexities. 
Their applicability to earthquake engineering is briefly reviewed. 

iv 



ABSTRACT 

Autoregressive moving average CARMA) systems for synthesizing realizations of stochastic 
processes are discussed in context with the technique of Monte Carlo simulation. Strictly autore
gressive CAR) or strictly moving average CMA) systems are considered as special cases of the 
ARMA systems. Their applicability in wind, ocean, and earthquake engineering is briefly reviewed. 
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SECTION 1 

INTRODUCTION 

In designing structural systems reliably, effects of adverse natural environments must often be 
considered. The flight of an airplane encountering gust, the motion of a ship in a confused sea, and 
the shaking of a building induced by wind or an earthquake are typical examples. An exact deter
ministic prediction of the loads generated by these natural phenomena often requires precise global 
models of the atmosphere, the seas, and the ground motions. In this regard, many concurrent factors 
must be considered which render the exact physical modeling practically impossible. Thus, the 
designer is led to use either simplified detern1inistic representations or realizations of stochastic 
processes. In the latter case, the natural loads are described by means of stochastic processes whose 
characteristics such as probability densities and power spectra have been estimated from available 
data. Then, the response of linear structural models to these natural loads can be determined by 
means of linear random vibration analysis. However, reliability concerns dictate the use of 
improved nonlinear models for predicting structural responses to natural loads. The corresponding 
random vibration problems are quite intricate, and lend themselves to limited analytical treatments. 
To overcome this difficulty, the technique of Monte Carlo simulation can be used. That is, one can 
first synthesize many records of the random loads and then proceed to use a code of nonlinear deter
ministic analysis to compute the structural response to individual load records. Finally, a statistical 
analysis of the produced population of structural response records can be performed. Clearly, the 
Monte Carlo technique is quite versatile. However, it can be quite costly computationally when 
applied to major structural problems. Therefore, it is desirable to discuss pertinent simulation algo
rithms from the perspective of increased computational efficiency of the Monte Carlo technique. 

In this regard, note that the advent of digital instruments and computers has underlined the 
discrete character of most records of structural loads and of the induced responses. Further, the digi
tal signal processing theory [1,2] has provided a mathematically sound description of the properties 
of discrete systems. For these reasons, the present article will consider only discrete-time models 
and simulation algorithms. 

1-1 





SECTION 2 

BACKGROUND ON LINEAR TIME-INVARIANT DISCRETE SYSTEMS 

An-input n-output linear time-invariant discrete system is represented by the equation 

Kk = L Hk- Z Wz· (1) 
[=-00 

The n-component vectors ~ and Kk are the eh samples of the input (excitation) and output 

(response), respectively. Further, the nxn matrix Hk is the eh sample of the impulse response 

sequence of the system. 

Of particular importance in digital signal processing is the z transform of a sequence P k 

defined as 

P(z) = L Pk z-k, (2) 
k=-oo 

wherever the series converges in the complex z plane. The value of this function on the unit circle, 
I z 1=1, yields the discrete Fourier transform of P k 

P(e jroT
) = [P(Z) ]Z=ejOlT for - 1t ~ roT ~ 1t. (3) 

The sampling period T denotes the time interval between two consecutive samples of the sequence 
Pk. Considering equations (1) and (2), it is readily shown that the z transforms of Kk, !!Jc and Hk 

satisfy the relation 

fez) = H(z) W(z). (4) 

Note that the transfer function, H(z), completely describes the system. Next, assume that the excita
tion Wz is a stationary random sequence with autocorrelations RWW<I) and spectral matrix SWW<ro) 

related by the equations 

rob 

Rww(l) = E [~w1+z] = f Sww(ro) e
jZroT dO) 

-rob 
(5) 

and 

SwwCro) = _1_ I, Rww(l) e-jZroT, 
- 2rob -Z=-oo 

(6) 

where t denotes the operator of transposition. Further, rob is the cut-off frequency which satisfies 

the Nyquist relation 

(7) 

The steady-state response of the system, Kk, is also a stationary random sequence whose spectral 

matrix is 
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(8) 

The symbol * denotes the operator of complex conjugation. Note in equations (6) and (8) that both 

the spectral matrices of the excitation and the response are periodic functions of period 2 ~ or 2rob. 
T 

Let ret) and Ik be the continuous-time target random vector process and its sampled discrete-time 

equivalent. Further, assume that the eigenvalues of SK(tXK:(t)(ro) are negligible for I co I 2:: cob so that no 

aliasing occurs. That is, the autocorrelations RK(tmt)('t) can be exactly recovered, for any lag 't, from 
the values Ryy(k), k =O,±I,±2, ... Then, it can be shown that the periodic spectral matrix Syy(ro) of 

the discrete process satisfies the equation 

1C 1C for - - ~ ro ~ -. 
T T 

(9) 

Briefly stated, digital Monte Carlo simulation requires that the excitation sequence }:!::k and the 

transfer function H(e jroT
) be chosen so that the spectral matrix Syy(ro) of equation (8) represents a 

close approximation of a given (target) expression, SK(tmt) (co), in the frequency band 

ro E [- rob' rob]. 

A computationally simple excitation process which can be generated is the bandlimited 
discrete white noise }:!::k. Its components involve sequences of independent and identically distri

buted random numbers. The corresponding spectral and autocorrelation matrices are 

(10) 

and 

(11) 

where oij and In are the Kronecker symbol and the nxn identity matrix, respectively. 

Given the target matrix and the white noise input, an appropriate transfer function H(e jroT) can 
be determined by several procedures. This is the subject of the ensuing sections. 
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SECTION 3 

AUTOREGRESSIVE (AR) SYSTEMS 

The rth sample, t, of the response of an-input n-output autoregressive system of order m, 

AR(m), can be computed from the m previous ones and from the corresponding value of the excita
tion in the following manner 

,.. m,..,.. A 

Ir = - L Ak Ir-k + Bo !fr. (12) 
k=1 

The symbols Ak and Eo denote nxn matrix coefficients. The transfer function of this system is 

H(z) = [In + ! Ak z-k r Bo. (13) 

The unknown parameters Ak and Bo should be selected in such a manner that the output spec

tral matrix Syy(c.o) as defined by equations (8) and (11) represents a good approximation of the tar

get expression Syy(ro). It has been shown [3] that a meaningful measure of the error involved in this 

modeling is 

(14) 

where tr(A) and A-I denotes the trace and inverse of an arbitrary matrix A. The minimization of e 
with respect to the elements of the matrix Ak yields the following linear system of equations (Yule
Walker equations) [4-7] 

m A 

Rh(l) + L AkRyy(k-l) = 0 for 1=1, .. ,m. (15) 
- k=1 -

The parameter Bo is obtained by specifying that the total energy of the target and the AR processes 
are equal. Specifically, it is found that 

A At 1 [ mAl Bo Bo = - Ryy(O) + L Ak Ryy(k) . 
2rob - k=1 -

(16) 

Note that this equation is nonlinear in the unknown coefficient Eo. Further, it can be shown 

[4] that there exists an infinite number of solutions Eo. The response of the corresponding AR sys
tems has identical response spectral and autocorrelation matrices [4]. Thus, any solution of equation 
(16) is a bonafide parameter Bo. For the sake of simplicity, the matrix Eo can be assumed to be 

lower triangular. Thus, it can be conveniently computed through the Cholesky decomposition of 
equation (16) [4,8,9]. 

Note that equations (15) and (16) could also be obtained by postmultiplying the input-output 
relation (12) by rf-l and E, taking mathematical expectations, and postulating the equality of the 
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autocorrelations of the AR and target processes [8-13], A posterior analysis [4,14] can be per
formed to show that the assumed autocorrelation matching is indeed achieved. 

Further, it can be proved [14] that the AR system whose parameters are computed from equa
tions (15) and (16) is stable. That is, its response to a bounded excitation is bounded. 

The quality of the AR approximation can be assessed by a visual comparison of the behavior 
of the components of the target and AR spectral matrices. A quantitative measure of the agreement 
between the target curves and their AR counterparts has also been introduced [4] as 

Em = det [BoBt] - exp 12~b I tr [log Syy(ro) ] dro J (17) 

Finally, it should be noted that obtaining a reliable AR approximation of a target process can 
become a quite delicate task if the trace of the logarithm of the target spectral matrix is not integr
able in the domain [ - Wb, Wb] [4,11]. 

Some extensions of traditional AR approximations are advantageous. First, by allowing 
parameters Ak and Bo to vary with time, an autoregressive modeling approach to the simulation of 

nonstationary processes can be formulated [15-17]. Second, by allowing the summation involved in 

equation (12) to include samples [,.-k.s-l •.• v-p lagged in all directions [18,19], records of values of a 

multidimensional field [,..s ..... v can be synthesized. Recently, a multivariate AR modeling technique 

was suggested [20-22] that considers each of the correlated components of the vector process r as a 
time-invariant linear combination of a series of independent processes. This representation leads to 
computational savings in the determination of the AR model of the process r which involves only a 
series of univariate approximations as opposed to a multivariate one. Note however that this 
improvement is achieved at the expense of the matching between the AR and target autocorrela
tions at lags 1,2, ... 
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SECTION 4 

MOVING AVERAGE (MA) SYSTEMS 

A moving average system is characterized by a finite length impulse response sequence. 

Specifically, a MA(m) approximation, r,.', of the target process is expressed by means of the equa

tion 

m 

r,.' = L B z' !f,.-l (18) 
/=-m 

where !f,. designates a bandlimited white noise sequence characterized by Eq. (10) and (11). The 

transfer function of the MA system is readily computed as 

m 
H(e jroT) = L B{ e-j /roT (19) 

i=-m 

The corresponding response spectral matrix is 

SY'Y'(co) = H*(e jroT) Ht (e jroT). (20) 

In the context of Monte Carlo simulation, SY'Y'(co) must be a close approximation of the target 

expression S[(t)K:Ct)(co). Assume that the latter matrix can be decomposed in the form 

S[(t)[(t)(co) = Q*(co) Qt(co). (21) 

Then, a reliable MA approximation is obtained by selecting H(e jroT) as the limited Fourier series of 
Q(co). The corresponding model parameters are readily computed as 

rob 

Bz' = _1_ f Q(co) ejiroT dco. 
2COb -rob 

(22) 

Consider first the solution of equation (21) in the scalar, single input single output case. Seek a 
function Q(co) such that 

(23) 

The everywhere nonnegative character of S[(t)[(t)(co) ensures the existence of Q(co). Further, only 

the modulus of this function is specified by equation (23). The phase can be arbitrarily chosen. In 
particular, a zero phase, real decomposition 

(24) 

can be selected [7,23-25]. The corresponding MA parameters are real as required and satisfy the 

equation 

(25) 

Note that the zero phase decomposition has also been used in connection with other simulation 

techniques [26-30]. 
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A simple solution to the general, n-input n-output, decomposition problem of equation (21) 
can be obtained by selecting Q(ro) to be lower triangular. It is readily found as the Cholesky decom
position of the spectral matrix SK(t)K(t)(ro) [31]. The corresponding MA matrix parameters B( are 
real and lower triangular. 

One-sided MA models, B( = 0 for 1<0, have also been suggested in the scalar case [24,32-34]. 
However, the design equations for the remaining non-zero MA parameters are nonlinear and can 
only be solved by some iterative scheme. A generalization of the MA approximation technique to 
the case of multidimensional and/or nonstationary processes has been investigated [35-37]. 
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SECTION 5 

AUTOREGRESSIVE MOVING AVERAGE CARMA) SYSTEMS 

The excitation-response relation of an-input n-output ARMA(p,q) system can be written as 

- p - q 
Kr = - L: A k Kr-k + L: B I .!t'r-l (26) 

k=1 1=1 

where Ak and B z are nxn real matrices. Clearly, the ARMA system represents a generalization of 

both the AR and MA systems and thus, exhibits enhanced versatility in terms of the lowest number 
of parameters which must be used in a Monte Carlo scheme associated with a target spectral matrix. 

One approach of ARMA modeling relies on postmultiplying equation (26) by ff-u and taking 

mathematical expectations. It can be shown [10,38-40] that the autocorrelations of the ARMA pro-
cess satisfy the equation 

p 
Rh(u) + L: AkRyy(k-u) = 0 for U > q. (27) 

k=1 

The next step of the modeling procedure involves the assumption that the ARMA autocorrelations 
are a close approximation of the target ones. Thus the parameters Ak are computed to satisfy equa
tion (27) for u = q+ l, .. ,q+p and with Ryy(u) = Ryy(u) [38-40]. Another approach involves a least 

squares solution of these equations for u = q+ 1, .. , N with N>q+p [10]. The computation of the 
remaining coefficients, B z for I=O, .. ,q, represents the last and arduous step of this ARMA modeling 
procedure. In the scalar case, n = 1, it has been suggested [40] to select these coefficients to ensure 
the autocorrelation matching property, Ryy(u) = Ryy(u), discussed earlier. However, the correspond

ing equations are coupled and nonlinear so that an iterative solution scheme must be used. 

An alternative ARMA modeling approach is based on the assumption that an initial reliable 
AR approximation of the target spectral matrix is available. Then, the parameters of the ARMA 
system are selected so that its transfer function 

where 

and 

D(e jroT) =In + f Ake-jkroT 

k=1 

(28) 

(29) 

N(e
jroT

) = ± B z e-
jZroT (30) 

z=o 

represents a close approximation of HAR(ejroT), Eq. (13). The two-stage least squares 2SLS or ACM 
procedure is based on the minimization of the error [4,41] 

E = 2~b -I. tr { [D(e
jroT

) H( e
jroT

) - N(e
jroT

) r [D(e
jroT

) H(ejro't) - N(e
jroT

) r } dOl. (31) 
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It is found that the ARMA parameters satisfy the following system of linear equations [4,41] 

and 

p q 
L AkRyy(k-i) - L B1RMi-l) = 0 for i=1, .. ,p 
k=0 1=0 

min(Z,p) 

2Wb Bz = L AkRrw(k-l) for I=O, .. ,q 
k=O 

(32) 

(33) 

where Ao = In- The symbol Rrw(l) denotes the output-input crosscorrelation matrix of lag I of the 

AR process. These matrices can be recursively computed from the AR model as follows [4] 

and 

R rw(l) = 0 for I > 0 

Rrw(O) = 2Wb Bo 

min(m,l) A 

Rrw(-l) = - L AkRrw(k-l) for I > O. 
k=1 

(34) 

(35) 

(36) 

Various approaches have been followed in deriving equations (32) and (33). Early applications of 
these relations were concerned with the estimation, from a recorded time series, of the parameters 
of econometric models [42-44], of natural frequencies and damping ratios of MDOF vibrating sys
tems [45-49], and of soil characteristics [50]. Another formulation of this method, based on post

multiplications by ff-z and.!:f! and mathematical expectations has also been suggested [8,9,11,51]. 
This approach has been extended for the simulation of multidimensional random fields [18,19]. 

The error based derivation of equations (32) and (33) has the advantage of providing a simple 
measure of the quality of the approximation, namely the minimum value of the error 

Emin = _1_ tr [f AkRrrCk) - f BZRM-I)]. 
2Wb k=O - [=0 -

(37) 

It has been shown [14] that the system designed by this two-stage procedure is stable in the 
bounded-input bounded-output sense. Further, some matching properties between the response 
autocorrelations and excitation-response crosscorrelations of the AR and ARMA systems have been 
proved [14]. 

Another two-stage modeling approach, based on a Pade-type approximation of the AR transfer 
function and called the POM procedure, has also been suggested [4,11,12,52]. The ARMA parame
ters are selected to ensure the matching of the first p+q+ 1 samples of the impulse response 
sequences of the AR and ARM A systems. Specifically, it is found that the ARMA coefficients must 
satisfy the equations 

and 

min(l,p) 

L AkRrw(k-l) = 2Wb B[ for I=O, .. ,q 
k=0 
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min(l,p) 
~ AkRfw(k-l) = 0 forl=q+1, .. ,q+p 
k=O 

(39) 

Note that equations (33) and (38) are identical. This fact has led to the introduction of a general 
two-stage modeling procedure which incorporates as special cases both the ACM and POM tech
niques [4]. The matching properties and stability of the resulting ARMA systems have been 
analyzed in some detail [14]. 

The inverse of an ARMA transfer function is also a rational expression in e -jroT. Therefore, 
the previous methods can be applied with H;;hce jroT) in place of HAR(ejroT). The equations for the 

ARMA parameters are still linear and comparisons of the respective merits of the HAR(ejroT) and 

H;;h(e jroT) based methods is possible [4,14]. 

A two-stage MA to ARMA modeling technique has also been recently proposed [53] which 
relies on the minimization of a frequency error similar to E, Eq. (31). 

Finally, it should be noted that some of the previous techniques have been applied to problems 
of spectrum estimation and modeling. The pertinent literature can be consulted for additional 
insight [54-58]. 
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SECTION 6 

STRUCTURAL ENGINEERING APPLICATIONS 

In this section the applicability of the ARM A models for the description and simulation of 
natural processes, such as turbulent wind velocities, ocean waves kinematics, and earthquake 
ground motions, is discussed. 
6.1 Turbulence. 

The generation of time histories of turbulent wind velocities represents an important applica
tion of the modeling techniques described in the previous sections. Both MA [25,32-34] and AR 
[20-22] simulation algorithms have been successfully applied in conjunction with a variety of target 
spectra. The two-stage AR to ARMA procedures [9,12] have also been found to produce realiza
tions of turbulent wind velocities which are highly compatible with the von Karman spectrum. In 
particular, a 9-coefficient ARMA model of the trivariate velocity process whose spectral matrix is 
indistinguishable from the target expression has been obtained [9]. This method has also been suc
cessfully applied to another spectral matrix encountered in wind engineering [14]. 

A different approach, based on a continued fraction expansion of the longitudinal and lateral 
von Karman spectra, has been suggested [59]. The model parameters are computed by approximat
ing the solution of the corresponding ordinary differential equation by an ARMA transfer function. 
A spatial and temporal simulation technique of the velocity field has also been formulated [35-37] 
which involves a MA approximation of the coherence function. 

The class of ARMA systems has been found to be quite useful also in the modeling of experi
mental wind data. A series of studies [60-63] have shown that the wind velocities and pressure on a 
cooling tower can be accurately represented by low order stationary AR and ARMA processes. A 
similar conclusion has recently been drawn in connection with low buildings [64]. Nonstationary or 
nonhomogeneous ARMA models have also been suggested to represent wind profiles [17], wind 
gusts in aircraft flight simulation [65] and payload acceleration during Space Shuttle lift-off [51]. 
Finally, an AR model of wind velocity has been used to study the problem of glass cladding [66]. 

6.2 Ocean Waves 

The simulation of wave kinematics in a fully developed sea is a classical problem of offshore 
engineering. Early attempts to use digital systems for the generation of such time histories have 
focused on MA models [7,23,31,67]. Low order AR approximations have also been suggested [13]. 
However, the mathematical peculiarities of the wave elevation spectrum [11] render the computa
tion of an accurate AR approximation a quite delicate task [6,7]. Specifically, the sampling period 
must be carefully selected to avoid unwanted oscillations of the AR spectrum [7,11,14]. Recently, a 
reliable AR model obtained with the appropriate selection of T was used as the first step of the 
two-stage procedures [11,14]. It was found that the spectrum of an ARMA(7,7) model was almost 
indistinguishable from the target, Pierson-Moskowitz wave elevation expression. An ARMA(lI,lO) 
system yielded a similar matching of the velocity spectrum. An earlier, less conclusive, application 
of the two-stage ACM procedure to this spectrum had been reported [68]. A two-stage MA to 

6-1 



ARMA modeling technique recently proposed [53] has shown great promises from the standpoint 
of ARMA simulation of ocean wave elevations; it combines the robustness of the MA approxima
tions and the computational efficiency of the ARMA algorithms. In connection with the Pierson
Moskowitz expression, this new method has led to an ARMA(7,7) model whose spectrum is almost 
identical to the target one. 

Experimental data have also shown that low order ARMA models can be used to accurately 
represent the wave elevation process [69-71]. Finally, a MA approach for the simulation of a ran
dom sea according to a directional spectrum has been suggested [72]. 

6.3 Earthquake Ground Motions 

The safe design of structures in an earthquake prone region must incorporate the effects of 
possible ground motions. Various descriptions of the non stationary acceleration process have been 
suggested and in each case, the usefulness of the ARMA systems has been demonstrated on the 
basis of available seismic data. A simple model involves a stationary process modulated by a deter
ministic envelope [73-76]. Excellent AR [77] and ARMA [14] approximations of the Kanai-Tajimi 
spectrum, describing the stationary component, have been produced. Moreover, the spatial propaga
tion of the ground motions has recently been studied on the basis of a multivariate AR model [78]. 
Finally, a first order autoregression has also been suggested [79] to characterize the amplitudes of a 
random pulse train model of earthquake ground motions. 

Another analysis of experimentally measured ground accelerations has been performed by 
decomposing the records into a finite number of time segments [80,81]. It has been recognized that 
low orders stationary ARMA systems can accurately represent the ground motions in almost all 
intervals. 

Finally, AR [82-90], MA [85-88] and ARMA [15,16,91,92] models with time varying 
coefficients have been suggested to describe the non stationary character of the ground acceleration 
process. It appears from all these studies that low orders ARMA models can be used to generate 
reliable time histories of the ground acceleration during an earthquake. 
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SECTION 7 

CONCLUDING REMARKS 

ARMA systems have been reviewed from a perspective of applicability to Monte Carlo simu
lation of engineering problems. Procedures have been discussed for determining efficient simula
tion algorithms for a given spectral matrix of structural loads. It is believed that with the advent of 
digital computing, and the availability of mini and micro computers to ordinary engineering offices, 
ARMA simulation procedures can become routine analysis and design tools for complex structural 
engineering problems. Furthermore, with the gradual availability of super-computers, ARMA sys
tems offer the potential of addressing extremely large and intricate problems which were con
sidered intractable just a few years ago. 
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