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ABSTRACT

Low-rise structures composed of shear walls are commonly used in the Cnitcd

States. The seismic response behavior of these structures however, is not adequately

understood. This is mainly because I) the low-rise walls have significant coupling

effect on deformations due to bending and shear; the bending and shear deformations

must be separated through experimental and analytical studies, 2) for strong ground

motions, the response of the structure is highly nonlinear; for nonlinear analysis. the

hysteresis loops of a typical wall must be established on the basis of separated bending

and shear deformations, and 3) the configurations of low-rise buildings arc usually

unsymmetric, for which the effect of interacting ground motion is significant and the

multicomponent seismic input must be considered in the response behavior studies.

Thc aforcmentioned items were not investigated previously and are studied in thIS

research project.

A technique of calculating inelastic deformation of low-rise shear walls is

presented with consideration of coupling effect for bending and shear deformations.

axial deformation, and the deformation due to base rotation. An interaction surface

of moment-shear-bending curvature-shear strain is dcveloped from which the

load-deformation behavior can be determined for a given moment to shear ratio.

The hysteresis loops are established on the basis of experimental data and

analytical results for bending, shear and axial forces. Eleven hysteresis rules arc

comprehensively formulated for bending and shear cyclic and earthquake-type

load-deformation relationships, with all possible combinations of large and small

amplitUde loops. The accuracy of the hysteresis rules for the monotonic and cyclic

response is assured by comparisons with experimental data.
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Response studies of low-rise symmetric and unsymmetric buildings with isolated

shear walls arc performed. The peak base shear, displacement, ductility, and excursion

ratio are investigated for their sensitivity to the structural config­

urations and the interacting earthquake motions. Various earthquakes

such as 1940 El centro, 1952 Taft, and 1985 Mexico are used to study

the elastic and inelastic response behavior of these structures.

The sensitivity of the code response parameters R and Cd for these two buildings

is also studied. The response modification factor, R, is found to be dependent on the

building configuration, earthquake ground motion, orientation of ground motion,

number of components of the earthquake ground motion, and the damage level in the

building. For the two buildings studied, the R value of 4.5 recommended in NEHRP

is consistent with the calculated values for the 1940 EI Centro and 1952 Taft ground

motions. The calculated R value for the 1985 Mexico earthquake is much lower. The

deflection amplitude factor, Cd, increases with damage index. The Cd value of 4

recommended in :'-iEH RP is slightly larger than the calculated values.

The response of box-type structures is shown to be different from the response

of buildings with isolated shear walls because of the influence of the shear wall's axial

stifTness. The inOuence of the wall's axial hysteresis loops on the lateral hysteresis

loops of a box-type structure is studied. The comparison of calculated and

experimental response from shaking table tests for a RIC box structure is good.
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I. INTRODUCTION

A. OBJECTIVE

Structures composed of shear walls have large translational stiffness of which the

overall lateral deformation can be attributed more to shear deformation than bending.

The calculated period of such a structure is usually below the point at which the

ca1<.:ulated response spectrum is in nearly constant acceleration that may he changed

to a constant velocity. A common index value, which is used to determine the design

force level in a given structure, is the fundamental period. For reinforced concrete

structures the calculation of these periods is typically made for the uncracked state of

the structure. Some experiments on slender walls showed that effective stiffness is

much less than uncracked stiffness (42, 44, 46, 49, 53). The change in structural period

can signific.antly influence system responses which in turn will affect floor responses.

Thus a series of experimental and analytical studies of sto<;ky walls with small height

to width ratios must be conducted to formulate mathematical models for analyzing

shear wall structural systems.

For earthquake excitations, the shear wall cracks and the reinforcing bars in the

wall yield. As the structure vibrates, the cracks open and close, the concrete is loaded

and unloaded and the reinforcing bars are subject to large and small amplitude stress

reversals. Thus the behavior of the shear wall subject to a strong earthq uake is highly

nonlinear. A slender shear wall with boundary columns and a large height to width

ratio is normally idealized (49, 61, 74, 75) as I) an equivalent column for which

uncoupled flexural and shear deformation is taken into account, 2) a braced frame ill

which shear deformation is represented by deformation of diagonal clements, and

flexural deformation is represented by deformation of vertical elements, 3) short line

segments along the height with each short segment being composed of hysteretic
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segments, and 4) three vertical line elements in which the two outside line elements

represent the axial stiffness (variable) of the columns and the central line element

signifies the axial, shear, and rotational springs of the wall. Among other researchers,

Cheng and his associates have developed computer codes and then studied structural

response behavior of various structural configurations (15, 16, 21, 52). II owever

analytical information on low-rise wall systems is scarce.

For short stocky shear walls with small height to width ratios and without

boundary columns, the dominant deformation may be due to shear. The hysteretic

loops resulting from shear, because of pinching effect, arc much narrower than those

for the hysteretic loops resulting from bending. Cse of the slender wall models for

stocky walls would provide inaccurate and unsafe predictions of the response.

Buildings and earthquake motions are three-dimensional in nature. Earthquake

motions, in fact, have six components. Cheng, among others, studied the etTect of one

horizontal component coupled with a vertical seismic motion on plane structural

response (24, 25, 26). He and his associates later studied the interaction of ground

motion of two horizontal components and one vertical component on

three-dimensional buildings and frameworks (19, 20, 21, 27), and further studied the

etTect of six-component seismic input on structural responses (17, 18). I. ow-rise

buildings are normally not symmetric and arc sensitive to interactive ground motions.

Low-rise buildings actually constitute a large percentage of total building

construction. Many of these buildings arc braced by shear walls without bounJarv

columns. Thus the research is urgently needed and the results have significant impact

on structural design for improving both the safety of these buildings as well as reducing

their damage cost.



Industrial buildings, such as the auxiliary buildings at a nuclear power plant

facilities, are low-rise box-shaped shear wall systems, primarily constructed of

reinforced concrete, possibly including steel beams and columns to support floor slabs.

Structural failure could lead to loss of function of the components housed in the

building. Again, the research is urgently needed and the results may have a significant

impact on the structural design of industrial buildings, on the equipment and pIpmg

design, and on their margins of of safety.

A joint research project was developed with the experimental work preformed at

the \:ational Cheng-Kung University (\:CKC), Taiwan, and the analytical studies

conducted at the Lniversity of \1issouri-Rolla (L\1R). The analytical studies include

the development of a nonlinear stiffness model that has clements representing

deformations due to bending, shear, and bond slip at the base of the wall. The stiffness

model is used to calculate the monotonic load-deformation behavior. The dynamic

response is based on the hysteresis loops and the stiffness model. The hysteresis loops

are modelled from experimental and analytical work for cyclic and earthquake-type

load-deformation relationships. The accuracy of the calculated behavior is assured by

comparisons with experimental test data. Also included are response studies of

low-rise buildings with isolated shear walls for investigating response behavior

influenced by the following parameters: 1) the amount of structural damage, 2) the

configuration of the building system, 3) the different records of earthquake ground

motion, and~) the number of components of the earthquake ground motion.

The response of hox-type structures is also studied. The response differs from the

response of buildings with isolated shear walls because of the influence of the shear

wall's axial stiffness. The influence of the wall's axial stiffness on the response of a

box-type structure is investigated. The analytical results are compared favorably with

the experimental data from the shaking table tests.
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B. OVERVIEW

A brief description of the contents is gIven below. In Chapter I I the static

experimental studies performed by Sheu, et al (72) are studied. A method is developed

to separate the bending and shear deformations of isolated shear walls. The ratios of

bending to total deformation of various walls are observed. Failure ductilities and

excursion ratios are investigated. The ratios of vertical to horizontal expansions or the

walls are obtained. Furthermore, the results of dynamic experiments performed by

Bennett, Anderson, Endebrock, et al (3, 30, 31, 33, 34, 35) are compared with the

analytical results. The experimental accelerations arc integrated for velocities and

displacements of which the spectra of the accelerations arc analyzed. Carrection

methods to remove experimental errors from the acceleration test data are :llso

included.

In Chapter II I a method IS presented to calculate the monotonic

load-deformations of shear walls that considers the coupling behavior of shear and

bending deformations. Comparisons between calculated and experimental

load-deformation responses for 27 shear walls arc made. The 27 shear walls represent

various reinforcement ratios, boundary clements, and height to width ratios.

In Chapter IV bending and shear hysteresis models for low-rise shear walls are

developed. These semi-empirical hysteresis models are based on the experimental

results of live 0iCKU shear walls and the analytical monotonic load-deformation

relationships. The calculated and experimental responses for the five :'\C KL shear

walls are compared.

Chapter V presents the matrix formulation which is used to analyze three

dimensional structural systems subject to both static and dynamic loadings. :\ shear

wall stiffness element is developed that utilizes the bending and shear backbone curves



developed in Chapter III and the hysteresis models developed in Chapter IV.

Additionally the energies in the structure, the damage indices, the ductilities, and the

excursion ratios are calculated.

In Chapter VI the response of low-rise buildings with isolated shear walls are

studied. These studies consist of two buildings (symmetric and nonsymmetric) subject

to various earthquake ground motions (1940 EI Centro, 1952 Taft, and 1985\1exico)

using both one and two horizontal components of ground motion. The responses of

elastic (undamaged) and nonlinear (damaged) buildings are examined. The nonlinear

response is calculated at three different intensities of ground motion to determine the

response at various damage levels. The response parameters examined are the base

shear, displacement, ductility, excursion ratio, and the damage index. Additionally the

sensitivity of two building code parameters R and Cd are studied.

In Chapter VII the calculated response of two box-type structures is compared

with the experimental response. One of the structures is subject to static cyclic loading,

the other is subject to seismic loading. The effects of the axial stiffness on the systems

stiffness are discussed.

In Chapter VI II the work is reviewed and the conclusions based on the results

are outlined.

Appendix A contains the derivation of the Fourier transform. The power

spectrum density and the frequency response function are also derived..

Appendix B contains the parabolic base line correction used (or correctmg

acceleration test data.



c. LITERATURE REVIEW

The early experimental investigations on low-rise shear walls were to determine

their strength to resist blast loadings from atomic weapons. These experimental

investigations of RIC shear walls were performed by Galletly (39), Benjamin and

Williams (9). The studies focused on the behavior of low-rise shear walls with

boundary columns subject to static monotonic loadings. Parameters studied were the

panel dimensions, reinforcements, and boundary clement proportions. i\ method to

calculate the approximate load-deformation relationships was proposed. Antebi, et al

(6) experimentally studied the behavior oflow-rise shear walls with boundary elements

subject to dynamic blast loadings for ,t,'hich an analytical method was proposed to

calculate the dynamic strength of the walls. The studies by Galletly, Benjamin.

Williams, and Antebi led to the development of design criteria for RiC shear walls

subject to blast loadings (4). According to Cardenas, "Their proposed design equations

had limited practical use due to restrictions in their applicability:' (13).

For high-rise shear walls, Oseterle, et al (37, 57, 59) studied the behavior of walls

with rectangular, barbell, and flanged cross sections under static monotonic and static

cyclic loadings. For these high-rise walls, "it was found that shear distortions within

the hinging region are coupled to the flexural rotations." (59). Oesterle recognized the

web crushing failure mechanism (60) and reported damping ratios for walls from free

vibration test (58). Additional tests on repaired walls were perform­

ed by Fiorato, et al (38).

Wang (83), Vallenas (80) and Iliya (48), with Bertero and Popov, studied the

behavior of high-rise shear walls with boundary columns. Vallenas observed that

"Excellent behavior [to static cyclic earthquake loadings] was obtained in well designed

R/C structural walls." (80). The shear deformation in several of the walls was from

43% to 87% of the bending deformati.on (80). This indicates a significant amount of
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shear deformation. Analytical models were developed to calculate the monotonic

behavior of high-rise shear walls. Additional cyclic models were investigated.

The work by Cardenas, et al (12, 13) on high-rise walls indicates that, "Results

indicate that the flexural strength of rectangular shear walls can be calculated using the

same assumptions as for reinforced concrete beams. Also, the strength of high-rise

shear walls containing minimum horizontal shear reinforcement is generally controlled

by flexure." (12). This research combined with the work of Galletly, Benjamin,

Williams and Antebi led to the development of Section 11.16, Special Provisions for

Walls, of the 1971 ACI Building Code (13), which is equivalent to Section 11.16,

Special Provisions for Walls of the 1983 ACI Building Code (I).

From the above observations, one may conclude that the research for high-rise

\..:aIls indudes walls with and with out boundary clements and that the clfect of shear

on the total deformation for some walls is significant. For low-rise walls, the effect of

shear deformations apparently should increase.

For the low-rise shear walls, Cardenas, et al (13, l-l) studied the walls with a

height to width ratio of I. In the study, boundary columns were not included, and the

amount and distribution of reinforcement were the major variables studied. "Results

indicate that low-rise rectangular walls can develop shear stresses on the order of

l(\/f~ psi." (14).

Barda, et al (7, 8) tested low-rise shear walls with nanged boundary clements

subject to both static monotonic and static cyclic loadings. The static cyclic loadings

were intended to represent the demands placed on the shear wall during a severe

earthquake. The behavior of these walls was dominated by shear. "The results indicate

that current design procedures [ACI 318-71] underestimate the strength of low-rise
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shear walls, even when the walls are subjected to reversed load." (7) Barda also

proposed a modified strength design criteria.

Paulay, et al (67) tested low-rise walls subject to static cyclic loadings with and

without boundary columns, having a height to width ratio of 0.54. One objective of

the study was to determine methods to control sliding shear deformation. "It is

postulated that with suitably arranged diagonal wall reinforcement a predominantly

flexural response mode with good energy dissipating characteristics can he achieved in

squat [low-rise] shear walls." (67). Paulay also proposed that the wall be designed

such that the wall's shear capacity is greater than the flexural strength, thus forcing the

wall to fail in flexure rather than shear.

Lmemura, et al (78, 79) have performed tests on shear walls and box-type

structures. The purpose of these tests was "to investigate the behavior of hox and

cylinder type shear walls under cyclic loading simulating earthq uake forces on walls of

atomic reactors and other structures." (78). The experimental investigations include:

I) test of flanged shear walls with and without web openings, having a height to width

ratio of about I, 2) test of ditTerent reinforcement schemes around web openings. and

3) test of box-type structures with and with out openings, having height to width ratios

of about l. Loading schemes consisted of both static monotonic and static cyclic

loadings. Uncoupled bending and shear models were used with limited success to

calcula te the monotonic load-deformation behavior.

Bennett, Anderson, Endclbrock, et al (3, 30, 31, 33, 34, 35) of the Los Alamos

0iational Laboratory (LA~L), lately tested a series of small scale shear walls and

box-type structures subject to both static and earthquake loadings. The purpose of

these tests was to demonstrate that the nonlinear behavior of a box-type R, C structure

caused the natural frequency to shift into the frequency range for which the

earthquake's energy content is significant. This may result in increased amplification



in the Door response spectra at lower frequencies and will have significant impact on

the equipment and piping design response spectra and their margins of safety.

From the above literature review, one may observe that a great deal of research

work has been developed for low-rise shear walls. Most of the work, however, has

emphasized walls with boundary elements, with the specific goals of determining the

ultimate capacity of the walls, and studying the behavior under cyclic loading. The

3forementioned work, among others, carried out in the U.s. and abroad

cannot provide adequate information to develop hysteresis rules for

isolated low-rise walls because, 1) most of the walls subjected to

cyclic loading had boundary elements, 2) the shear and bending

deformations were not separated on many of the walls without boundary

columns, and 3) the cyclic loading patterns used in the test did not

provide sufficient information to develop large and small amplitude

loops for earthquake response studies. Consequently, a joint research

project was established between the National Cheng-Kung University

(NCKU) and the University of Missouri-Rolla (UMR).

Sheu (72) at NCKU tested a series of isolated low-rise shear walls subjected to

various static monotonic, cyclic, and earthquake-type loadings as part of a cooperative

research program. These tests demonstrated that lightly reinforced, isolated low-rise

shear walls are capable of resisting earthquake loadings at large levels of damage.

UM R has incorporated experimental data from ;\1CKU and some from LA~L in the

research presented herein.



II. ANALYSIS OF STATIC AND DYNAMIC EXPERIMENTAL RESULTS

A. A?"ALYSIS OF STATIC RESULTS

The analysis of isolated low-rise shear walls tested by Sheu (72) at the :\ational

Cheng Kung University is discussed in this section. These walls are rectangular in cross

section, have a width of 100 em and a thickness of 10 em as shown in Figure l. The

height varies from 50 em to 75 em, whi<:h gives height to width ratios from 0.50 to 0.75.

The horizontal and vertical reinforcements consist of evenly spaced D to through D 19

bars I as shown in Table 1. The steel stress-strain curves are shown in Figure 2.

Concrete strengths vary from 210 kg/cm2 to 330 kg/cm2.

A 30 cm x 30 em cap clement is cast at the top of the wall as shown in Figure 1.

Loads are applied at the center line of this clement. A 30 em x 55 em rigid base is cast

at the base of the wall. This base is bolted to the test bed. Both the cap clement and

the rigid base are heavily reinforced.

Four difTerent loading patterns are used. Walls SWla and SW4a arc subject to

a one sided cyclic loading as shown in Figure 3. Walls SW3 and SW6 are subject to

an earthquake loading as shown in Pigure 4. Walls SW5 and SW 11 are suhject to a

two sided cyclic loading. The loading pattern for wall SW5 is shown in Figure 5. Walls

SW4, SW1O, SWI2, SW13, SW14, SW15, SW16, SW19 and SW20 are subjected to a

monotonically increasing load. A typical monotonic loading pattern for \\!all SW-t is

also shown in Figure 5.

010 '" #3 reinforcing bar.

016 ~ #5 reinforcing bar.

o 13 ~ #4 reinforcing bar.

D 19 ~ #6 reinforcing bar.
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Table I. \iCKU SHEAR WALLS

Vertical Ilorizontal

4DlO

4DlO

4 DI3

4D13

4 D13

4 DI3

4 DIO
4DlO

0.78 4 DlO 0.57 4770 0.50 monotonic

0.43

0.43

0.77

0.77

0.77

0.77

0.76
0.79

0.76 none 0.00 4770 0.50 monotonic

0.76 8 D 10 1.14 4770 0.50 monotonic

0.79 6 DIO 0.57 4770 0.75 monotonic

0.76 6 DIO 0.57 4770 0.75 monotonic

0.76 none 0.00 4770 0.75 monotonic

0.76 6 DlO 0.57 4770 0.75 monotonic

6DlO

6DlO

6 DI3

6 DI3

6 D13

6 DI3

6 Dl3
2 D19

3DlO

2 D16

3D13

6D13

6 DI3

2 Dl9

3 DIO

6D13

6 DI3

6 DI3

275 40.5

278 43.6

270 38.9

272 40.5

278 38.9

288 43.6

275 30.5

265 25.3

100x50xl0

100x50xl0

100x50xl0

100x50xl0

100x50xl0

100x50xl0

100x50xl0

100x50xl0

Wall W x II x T _f_~__f_~r Ba_r_s PX_~- _Ba_r_s_ P?:'l~ Loading

0.57 4930 0.50 cyclic (2)

0.57 4930 0.50 cyclic (3)

1.03 4900 0.50 monotonic

1.03 4900 0.50 cyclic (2)

1.03 4900 0.50 cyclic (4\

1.03 4900·0.50 cyclic (3)

0.57 4770 0.50 monotonic
0.57 4770 0.50. cyclic (5)

SWla

SW3

SW4

SW4a

SW5

SW6

SWlO

SWll

SWII lOOx50xlO 270 28.2

SW 16 100x75xl0 270 29.6

SW19 IOOx75xlO 250 24.6

SW20 lOOx75xlO 210 22.4

SW13 100x50xl0 330 40.2

SW14 100x50xl0 320 38.4

SW15 100x75xlO 265 26.0

~otes:

(I) All units are kg, em.

(2) One sided cyclic loading as shown in figure 3.

(3) Earthquake loading as shown in Figure 4.

(4) Two sided cyclic loading as shown in Figure 5.

(5) Two sided cyclic loading, with each cycle at a larger load level than the

previous cycle.
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The experimental displacements of the 50 cm high walls are measured with the

gauges shown in Figure 6. Gages 2, 3,4,5,6, 7, 16 and 20 are used to measure vertical

deformations 5 cm from the edge of the wall. Gauges 8 and 9 are used to measure the

change in diagonal distance across the width of the wall. Gauges lO, 11, 12, 13, 14,

and 15 are used to measure the horizontal deformation of the wall. The experimental

displacements of the 75 cm walls are measured with similar gauges.

J. Separation of Bending and Shear Deformation in Shear Walls. To analyze the

shear wall test data, one important issue is to determine what portion of the

deformation is due to shear and what portion of the deformation is due to hending.

Theoretically, the bending deformation is due to the difference in longitudinal strains

on different sides of the wall. Thus the bending deformation can be determined from

the longitudinal displacement gauges. Shear deformation is due to the accumulation

of shear strains over the height of the wall. Thus the 'shear deformation can he

calculated from the diagonal strain gauges. The total deformation can be measured

directly from the displacement gauges at edge of the wall. If the bending and shear

displacements were determined correctly. the total will equal the bending plus shear

displacements.

a. Theoretical Curvature Distribution. Curvature, ¢. m a shear wall. is the

change in slope (de) over the change in length (dz). or

1J = de
dz

(~.I )

where I is the longitudinal axis of the wall. The units of curvature are raJians length.

For a given wall cross section. there exists a unique moment-curvature relationship.

The moment-curvature relationship is typically nonlinear, consisting of an elastic

17
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range, a gradual yielding, and a plastic plateau. An analytical method to calculate the

moment-curvature relationship is presented in Chapter II I.

Examine the typical shear wall in Figure 7 subject to a lateral load. The bending

moment in the wall varies linearly with the height of the wall as shown in the

accompanying figure. For a given point on the wall's longitudinal axis, the moment

is known. For that moment the curvature is determined from the moment-curvature

relationship. Plotting the curvatures for different points on the wall's height yields the

theoretical curvature distribution as sketched in Figure 7. ~ote that the theoretical

curvature is small at the top of the wall and is very large at the base of the wall.

The bending deformation of the shear wall is determined hy

12.2)

where cP(z) is the variation of curvature along the wall's height. Thus if the curvature

in Figure 7 is known, the bending deformation may he determined.

The curvature in Equation 2.1 may be approximated by

cP = de ;: lie (2.3)
dz liz

where lie is the change in rotation over the length liz. Rotation is determined by

taking the difference between longitudinal deformations at opposite sides of the wall

and dividing hy the width. For the 50 cm high :\CKL' walls, the 10ngilUJin<l1

deformation <lt gauges 2 and 5 in Figure 6 is 152 and (55, <lnd the distancl.: hetwlTI1 tllesl.:

gauges is 90 em. Thus the angle of rotation in the wall under these two gauges is

81 = 155 - 152
90

19
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Elongation of the gauges is positive deformation. Gauges 2, 3, 4, 5, 6 and 7 are 12.5

cm long, while gauges 16 and 20 are 6.25 cm long. Dividing the rotation by the gauge

length yields the average curvature under the gauge.

¢ I =..!L = <55 - <52 rad/cm
12.5 90 x 12.5

(2.5)

Similarly the rotations and curvatures under the other gauges are calculated.

Consequently let 82 and ¢2 represent the rotation and curvature under gauges J and

6; 83 and ¢3 represent the rotation and curvature under gauges 4 and 7; and 04 and

¢4 represent the rotation and curvature under gauges 16 and 20.

The total deformation is determined at a point 43.75 cm from the base of the So

cm tall wall. This corresponds to the location of the lateral deformation at gauges 10

and 13. Thus the bending displacement is also calculated at this same point.

The bending displacement of this wall may be determined by Equation

However, since the average curvature distribution, rather than the exact curvature

distribution is known, an approximation of the bending displacement is obtained.

Thus the bending displacement at a point 43.75 cm from the base of the wall. is given

by

6b ~Lh
Z 1>(1) dz ~ 6.25 x 1>1 x 12.5 + 18.75 x 1>2 x 12.5

+ 31.25 x ¢3 x 12.5 + 40.625 x ¢4 x 6.25
(2.61

b. Observed Curvature Distribution of?\'C KU Shear Walls. The experimentally

measured curvature distributions for ~CKU walls SWla, SW3, SW4, SW-la, SW5 anJ

SW6 arc presented in Figure 8. These curvature distributions correspond to a point

near the ultimate load. Recall that the theoretical curvature distribution had its

maximum curvature at the base of the wall, and the curvature decreased as the height

21
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increased. :\ote that the curvature distribution for wall SWla also has the maximum

at the base of the wall, </>4. However, the curvature distribution for the upper sections

is reversed, </>3 is less than </>2 and </>2 is less than </> I.

Wall SW3 also has a similar inverted curvature distribution. For wall SW4 the

curvatures </>2 and </>3 are approximately equal, when </>3 should be greater than ¢>2.

For wall SW4a the curvature of the hottom segment, </>4, is less than the curvature in

the segment above it, ¢>3. For wall SW6, </> 1 is greater than both ¢>2 and ¢>3. Only

wall SW5 has a curvature distribution similar to the expected curvature distribution.

The experimentally observed crack patterns on the face of :\CKU walls SWla

and SW4a are shown in Figure 9. These crack patterns correspond to a point near the

walls ultimate load. The load and cycle that the crack was first observed is represented

in the figure by 'Load (Cycle #)', where the load is in tons, and the cycle numbers are

on the loading diagram, Figure 3. As the'wall is loaded, a Oexural crack opens up at

the base of the wall, and is labeled 'A' in Figure 9. For wall SWla, this crack is formed

during cycle 6, at a load near 12 tons. The crack formed in wall SW4a at a load near

8 tons during cycle 6. T\ear the same load, a diagonal shear crack forms and is labeled

'B' in the accompanying figure. ror wall SWla, this crack formed at a load near 12

tons. This crack formed in wall SW4a at a load near 10 tons. A Ocxural crack also

formed in wall SW 1a at 12 tons during cycle 6 as shown by curve 'C' in the figure.

As the loading progresses, additional Oexural, shear, and Oexural-shear cracks form.

Cardenas, et al (14) observed similar crack patterns in low rise shear walls without

boundary elements.

Both walls SWla and SW4a have diagonal shear cracks under gauge 5. As these

cracks form, they have a vertical component of deformation. Thus gauge 5 has a

deformation due to shear. The deformation of gauge 5 is used to calculate the

curvature </> I. Therefore, the experimentally measured curvature </> 1 is influenced by

)")...... )
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Figure 9. Surface Cracks for l"CKU Walls SWla and SW4a (Ref. 72)
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shear deformation. Hence bending and shear deformations are coupled. Deformation

across the diagonal shear cracks are responsible for the inverted curvature

distributions.

The curvature distribution is also very sensitive to the crack location. Examine

the curvature of the bottom segment, cP4. In wall SW 1a, the flexural cracks at the base

of the wall occur under gauge 16. and 4J4 is relatively large. In wall SW4a, the llexural

cracks occur above gauge 16, and the curvature cP4 is relatively small. I lad the crack

in wall SW4a beena few centimeters lower, it would have occurred under gauge 16 and

cP4 would be larger.

Recall the bending defonnation In Equation 2.6. Substituting till: g~lUgl:

deformations for the curvatures yields

_ 6.25(<55 - <52) + 18.75(<56 - <53) + 31.25(57 - <54) + -iO.625(JI6 - ~20)
Jb = (2.7)

90

Assume a crack is 0.25 em wide, and occurs under gauge 16, the bending deformation

due to the crack is 0.1128 em. Assume the same crack is a little higher in the wall,

under gauge 7, the bending deformation due to the crack is O.OS68 em. The bl:nding

displacenients ditTer by 30%, due to a small ditTerence in crack location.

<.:. Equivalent .\1oment Diagr;lm for the IIin!!ing Region of Shear W~dls. Since

I) the moment and she;lr arc strongly coupled, 2) the curvature is inf1uenced by the

Jiagonal shear cracks, and 3) the curvature is very sensitive to the crack location, then

an average curvature over the hinging region is used to calculate the bending

deformations, as shown in Figure 10. Thus the average curvature in the 50 em \:CKU

walls is
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A, = 155 + 156 + 157 + 15 16 -«52 - <53 - £54 - £520
o/ave . 90

and the bending deformation is

2
c5b = 43.75 A,

2 o/ave

(2.8)

(2.9)

The hinging region is the region of the wall where shear and bending deformations are

strongly coupled. Assuming the diagonal shear cracks are from 30° to 60° above the

horizontal, the height of the hinging region is between 0.6w (w tan 30°) and 1.75w

Since an average curvature over the hinging region is used, an equivalent moment

diagram over the hinging region is also used as shown in Figure 10. Thus the

curvatures are directly related to the moments. The analytical model developed in

Chapter III and Chapter V uses the equivalent moment diagram to generate an

equivalent curvature over the hinging region.

d. Determining Shear Deformation. For pure shear, the shear deformation can

be related to the diagonal gauges 8 and 9. Assume the right side of the wall has a shear

displacement of 6sr, also assume that the deformation of gauges 2 through 7. 16 and

20 is zero. From Figure 11, the shear deformation of the right side is

<58 b-- = cosy =-
bsr C '

bsr = ..£..<58
b

(2.10)

I., 2
where c = ,J a .... + b and the variables a and b are shown in Figure 11. Elongation of

gauges 8 and 9 is positive deformation. The shear deformation on the left side, (lsi is

- 69 b
~=cosy=c'

"~
LI

(2.11 )



~-- b --k

Figure 11. Pure Shear Displacement by Diagonal Distance \1easurement

a

1
Figure 12. Effect of Vertical Deformation on Diagonal Gauges
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Ayeraging the shear deformation at both sides yields

(2.12)

Consider the effects of vertical deformation on the diagonal gauges as shown in

Figure 12. For gauge 8 and vertical deformation of the right side of the wall

68 a
--= cosp=-
l5vr c'

68 = ~6vrc (2. I3)

where 6yr = 62 + 63 + 64. For gauge 9 and vertical deformation of the left side of the

wall

<59 a
byl = cos P= c' 69 = ~6vlc (2.14)

where 6yl = 65 + 66 + 67.

The accuracy of the shear deformation can be explored by considering several

theoretical deformations. Consider the case of vertical deformation, by = bvl = Jvr.

The deformations of the diagonal gauges 8 and 9 are equal. Thus the calculated shear

deformation in Equation 2. 12 is zero in the presence of pure vertical deformation.

Consider the case of pure bending as shown in Figure 13, where 6vl = - Jvr. The

deformations of gauges 8 and 9 are

<58 - ~t5vr = ~6YIc c' 69 a-(5v1c (2.15)

and the shear deformation in Equation 2.12 is

c(~6vI- ~t5vI)
Js = c c = 0

2b

Thus the calculated shear deformation is zero in the presence of pure bending.

29

(2.16)
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Consider the case of pure bending with a diagonal crack, where the wall rotates

through an angle e, as shown in Figure 14. The bending deformation in the wall is

ea. Diagonal gauge 8 has a horizontal displacement of ea. The center of rotation of

the wall is at the base of the diagonal crack, which is directly under point A in the

figure. Thus the vertical deformation of gauge 8 is -O(ea) or - a02. For small

rotations 0 < 5~' e2 < < e. Thus the vertical deformation of gauge 8 is negligible.

Therefore elongation of gauge 8 is

08 = ..£.Oac (2.17)

Diagonal gauge 9 has a horizontal displacement of Oa, a vertical displacement of 8b

and is elongated by

b a
~9 = - -Oa + -8b = 0c c

Thus the shear 'displacement from Equation 2.12 is

c( bc8a - 0)
0S = _c_(~_8_-_<5_9_) = = Oa i= 0

2b 2b 2

(2.18)

(2.19)

The diagonal distance gauges are misinterpreting a portion of the bending deformation

and labeling it as shear deformation. This was recognized by \1a, et al (54) who used

diagonal gauges to measure shear distortion in R;C T beams.

Since the shear deformation as calculated by the diagonal gauges 1S prone to

error, in the presence of diagonal cracking, the shear deformation is determined by

subtracting the bending deformation from the total deformation. Thus

<5s = 0t - Jb (2.20)

where 0t = lSI] - blO and 6b is calculated by Equation 2.9. This definition of shear
2

deformation is used in this study.

':)1
.J ~



e.. Deformations of ~CKU Shear Walls. The bending deformations for the 50

cm NCKU walls are calculated by Equation 2.9. The average curvature and bending

deformation in the 75 cm tall walls is similarly calculated. The shear deformation is

calculated by Equation 2.20. The bending, shear and total deformations for the :,\,CKC

walls are presented in Chapters III and IV for comparison with analytical methods.

The monotonic load deformation curves, or an envelope of cyclic load

deformation curves for both the bending and shear deformations, are highly nonlinear

and are presented in Section C of Chapter III. These curves are characterized by a

high initial stiffness, which decreases with the formation of cracks in the wall. Yielding

in these shear walls is a gradual process. After yielding, the walls exhibited a dw.:tilc

behavior, and failed at relatively large deformations.

The cyclic load deformation curves for shear and bending deformations are

presented in Section B of Chapter IV. Bending deformations form large stahle

hysteresis loops. The hysteresis loops for shear deformations are pinched. Both

bending and shear have nonlinear unloading curves. When the loadings are cycled at

a load level near the maximum past load, the deformations increase for each load cycle.

Whereas if the loadings are cycled at lower load levels, the deformations for each cycle

are similar. The shear and bending behavior under cyclic loading is discussed in

Chapter IV.

2. Observed Ratio of Bending to Total Deformation in ~CKL Shear Walls.

Bending deformation (at load P) as a percentage of total deformation (hending + shear

deformation at load P) is plotted for points on the backbone curve, against the total

deformation (bending + shear deformation at load P) as a percentage of the ultimate

deformation (bending + shear deformation at failure), in Figure 15 for the 50 em high

walls, and in Figure 16 for the 75 cm high walls. The initial shear deformation of walls
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SW5, SW4a and SWI is very erratic which may be observed in Section B of Chapter

IV. Thus the ratio of bending deformation to total deformation in these walls at low

deformations is also erratic, as can be seen in Figure 15. After deformations of 10%

or 20~/o of the ultimate deformation, the bending deformation ranges between 40(~/o to

600/Q of the total deformation for most walls.

Wall SW 11 has very large shear deformations in the last three load cycles before

failure. Prior to these three load cycles, bending deformation accounted for 30% to

40% of the total deformation. After these three load cycles, bending deformation only

accounts for 10% of the total deformation. Thus the percentage of bending

deformation in wall SWll is atypical at larger deformations.

Bending deformation in the 75 em walls is the same percentage of total

deformation as in the 50 em walls. This is because the hinging region of both walls

extends over the entire wall's height.

There is not a significant difference in the percentage bending deformation for

walls with different vertical or horizontal reinforcement ratios. This is because the

reinforcing steel contributes to both the bending and shear stiffness. lienee, increasing

the reinforcing steel for walls in this height to width range increases the bending and

shear stitTnesses by similar amounts.

It is interesting to note that the transverse reinforcing steel is omitted in walls

SWl3 and SWI9. If the traditional concept that transverse reinforcing steel resists

shear and longitudinal reinforcing steel only resists bending were true. then the shear

deformation for these two walls would be larger than walls with transverse reinforcing

steel. However the percentage bending deformation in walls SW I3 and SW 19 is similar

to the other walls. The roles of longitudinal and transverse reinforcing steel is

discussed in Section C.3 of Chapter II I.
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There is not a significant difference in percentage bending deformation for walls

with different loading patterns.

3. Observed Failure Ductility and Excursion Ratio in :\CKC Shear Walls. The

displacement definition of ductility and excursion ratio for six of the :'\CK C shear walls

at ultimate loadings is calculated below. The bending ductility is given by

(2.21 )

where bbult is the bending deformation at the ultimate load, and bby is the hending

deformation at the yield load. The yield load corresponds to an average strain of

~v = 0.0024 in the longitudinal steel reinforcing bar, where the longitudinal strain is the

<52 + 63 + 64 + 620 <55 + <56 + 67 + 616 - .larger of or.5 tor the 50 em shear walls. ('or
43.75 43.7

each bending ductility ratio, a corresponding excursion ratio exists. The excursion

ratio is given by

(2.22)

\vhere the summation is carried out for each half load cycle.

Similar to the hending ductility and excursIOn ratios, the shear ductilitv and

excursion ratio is

(2.23)

and

(2.24)
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where ~sult is the 'shear deformation at the ultimate load, ~Sy is the shear deformation

at the yield load and the summation is carried out for each half load cycle. The load,

bending displacement, and shear displacement corresponding to the yield and ultimate

point are given in Table II for NCKU walls SWla, SW3, SW4, SW4a, SW5 and SW6.

Table II. YIELD A~D FAILURE DATA FOR :\CKU SHEAR WALLS

Yield Lltimate

Wall Step Load ~b bs Step Load bh () s

SWla 370 12.01 0.485 0.270 1980 19.30 4.063 2.951
SW3 710 10.90 0.325 0.347 5050 19.30 5.709 5.777
SW4 330 15.90 0.362 0.394 640 28.46 3.237 2.751
SW4a 510 11.68 0.330 0.189 4410 27.73 3.885 2.519
SW5 1710 15.91 0.411 0.261 5870 29.23 2.647 2.660
SW6 980 17.90 0.320 OA91 5990 28.11 2.962 3.S83

:\otes:
(I) All units are ton, mrn.
(2) The load steps are shown in Figures 3, 4 and 5

The bending failure ductilities arc given in Table I I I. Values range from 6.44 for

wall SW5 to 17.57 for wall SW3. The average bending failure ductility is 10.39. The

shear failure ductilities are also given in Table III. Values range from 6.98 for wall

SW4 to 16.65 for wall SW3. The average shear failure ductility is 11.00. There is not

a significant pattern of failure ductility for any given loading history or wall

reinforcement ratio. Thus a ductility of 10 is set as the failure limit for both bending

and shear ductilities.

The hending and shear failure excursion ratios are given in Table II I. Bending

failure excursion ratios range from 7.37 for Wall SWla to 50.34 to wall SW3. with an

average value of 19.25. Shear failure excursion ratios range from 5.98 for wall SW4 to

55.71 to wall SW3, with an average value of25. The walls with an earthquake loading.
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Table III. FAILURE DUCTILITIES AND EXCURSIOi\ RATIOS rOR :\CKL
WALLS

Bending Shear

Wall Ductility Excursion Ductility Excursion
Ratio Ratio

SWla 8.38 7.37 10.93 9.96
SW3 17.57 50.34 16.65 55.71
SW4 8.94 7.94 6.98 5.98
SW4a 11.77 12.93 13.33 15.38
SW5 6.44 8.74 10.19 30.67
SW6 9.26 28.20 7.91 32.32

.\verage 10.39 19.25 11.00 25.00

walls SW3 and SW6. have failure excursion ratios that are significantly larger than the

other walls.

4. Observed Ratios of Horizontal to Vertical Expansion in 7\CKU Shear Walls.

The average vertical strain of the 50 cm high T"CKU walls is JctermincJ by

cv=
<52 + 33 + 34 + 320 + 35 + <56 + b7 + b 16

2x43.75
(2.25)

and the average horizontal strain is given by

- (310 + 311 + 312 + <513 + 314 + 315)
1:11 = (2.26)

3 x 100

where positive strain indicates expansion. Recall that elongation is positive gauge

deformation, and that gauges 10 through 15 are mounted on the \vall such that

expansion of the wall yicids a negative gauge deformation as shO\vn in Figure 6. Thus

Equation 2.26 has a negative sign to yield positive strains for expansion. The

horizontal ~train is plotted against the vertical strain in Figure 17 for "iC KL walls

SWla, SW3, SW4, SW4a, SW5 and SW6. The vertical strain is typically 2 to S times
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larger than the horizontal strain. \:ote that the vertical strain includes the strain

caused by base rotation.

The vertical expansion is not restrained, except by the weight of the wall. The

horizontal expansion is restrained by the heavily reinforced horizontal elemcnts at the

top and bottom of the wall and by the rcinforcing steel. this restraint and its

contribution to the strength and stiffness is discussed in Scctions A.I, A.5 and C.3 of

Chapter III.

B. A::\ALYSIS OF DY~AMIC RESULTS

The two story model box structure, 3011, was dynamically tested on a shak.ing

table by Bennett, Anderson, Endelbrock, et al (3,30,31,33,34,35) ofehe Los :\lamos

:\ational Laboratory and is shown in Figurc 18. Thc box structure is 18" wide, 10"

deep, has two 7.75" high stories, and 1" thick walls. The box structure is made of micro

concrete, with an ultimatc stress of 2.89 ksi at £0 = 0.0033, an initial modulus of 2750

ksi, and a tensile strength of 0.42 ksi. Two layers of OS' hail screen are used for the

reinforcemcnt. The reinforccment ratio is p = 0.554~/o. The hail screen consists of

0.042'"1jJ wires OS' on center, each way, with a yield point of 42.7 ksi at 1: = O.OOI66~,

and an ultimatc stress of 53.1 ksi at £ =0.04.

The box structure is attached to a uniaxial shaking tahle. The direction of motion

coincides with the structurc' s weak axis, as shown in Figure 18. Accelerations are

measured at the ground, second noar, and roof with Endeyco Model 2221 \124

accelerometers. These accelerometers have a frequency range from 2 hz to 8000 hz.

Acceleration data were recorded for 2048 points with a time step of 0.000 I seconds.

Additional weights of 0.23 k were added to both the roof and sccond noor.
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1. Integration of Experimental Accelerations. The experimentally measured

acceleration record A(t) consisted of ~ data points, with a time step of ilt. Assume

that the acceleration is linear between data points at times to to t I, yielding

Integrating the acceleration yields the velocity

J (A(t,) - A(tO») "
V(t) = A(t)dt = V(tO) +A(tO)t + 2ilt to.

And integrating the velocity yields the displacement

Evaluating the integrals at time t = ilt yields the velocity and displacement

(2.27)

(2.2S)

(2. 2Y)

(2.30)

(2.31)

Equations 2.30 and 2.31 are used to determine the velocity and displacements elt the

base of the structure. To determine the relative displacement hetween noors, one rna\'

substitute the relative acceleration A~t) - Ag(t) into Equations 2.30 :.Ind 2.31 for the

acceleration, where Af{t) is the absolute acceleration of the 110or, and "g(t) is the

absolute acceleration of the base of the structure or ground.



2. Error Corrections for Experimental Accelerations. The relative acceleration

and acceleration power spectral densiti for the roof of LANL box 3D II are shown

in Figure 19. The acceleration is integrated with Equations 2.30 and 2.31 to obtain the

velocity and displacement as shown in Figure 20. Note that both the velocity and

displacement increase with time. The velocity for a structure should fluctuate around

zero. and should approach zero at large values of time. Thus there are errors in the

experimental acceleration.

Recall that the accelerometers used for this test have an allowable frequency

range from 2 hz to 8000 hz. Examine the acceleration PSD in Figure 19 and note that

the low frequency signal content is very strong. This low frequency signal is below the

threshold for which the accelerometers are accurate. Thus the accelerometers have

introduced low frequency noise into the acceleration record. Other common sourccs

of error may be the digitizing equipment, cable noise. cross axis sensitivity. etc.

Assume the acceleration has the form

1\(t) = cos wt

Integrating twice yields the displacement

-I
O(t) = -2 cos wt

w

(2.32)

(2.33)

:\ote that the displacement is inversely proportional to thc sq uare of the frc4 uencl'.

Thus displacements are extremely sensitive to low frequency noise. Several schemes

to remove the low frequency noise from the acceleration test data arc discussed below.

2 The power spectral density (PSD) is a measure ofa signal's frequency content, and

is calculated by Equation A.18 of Appendix A.

43



2

z
o

.... 0 ~1fW"+flI++-+f+++-+-+-+-++«
0::::
Lo.J
....I
Lo.J
(,.)
(,.)
« (a)

0.200.150.10

TI ME (SECONOJ

0.05
-2 +-------,~---_,._----_r_---___,
0.00

-2
10

-4
....... 10
N
-:I:

(\,i'"
~
'-"

0 -6c.n
a.. 10

(b)

400300200

FREOUENCY (HZ)

100

10-
8
i-----~-----r-----,.-------,
o

Figure IlJ. LA:--:L Box 3DII Roor Acceleration and PSD: (a) Accckration, (h)
Acceleration PSD

44



2 3
f(tJ=31.0 5t-18. 7 6t +6 8.57 t

8-U
LLJ
(I')

.........
z
'-'

"'>-
t-

U
0......
LLJ
>

0
0.00 0.05 0.10

TIME (SECONOJ

0.15 0.20

-
0.8

1z
'-'

t-
Z
LLJ

0.4=:E
LLJ
U
-<......
Cl.
(I')

0 (b)

0.0
0.00 0.05 0.10 0.15 0·20

TIME (SECOND)

Figure 20. L:\:\!L Box 3Dll Roof Velocity and Displacement: (a) Velocity, (b)
Displacement



a. Minimum Velocity Correction for Acceleration Test Data. Earthq'uake ground

accelerations are recorded by strong motion accelerographs. One difficulty in

integrating the earthquake ground acceleration is that the base line of the accelerogram

is not known. Berg and Housner (10) developed a parabolic base line correction (B LC)

that minimizes the kinetic energy of the ground motion. This parabolic base line

correction is given by Equation B.12 of Appendix B.

The relative acceleration between the ground and the roof of LA);L box 3D II IS

base line corrected. The new base line is sketched on the velocity in Figure 20. The

corrected acceleration and acceleration PSI) are shown in Figure 21, while the velocity

and displacement are shown in Figure 22, and the maximum values are given in Table

IV. The acceleration PSD before the BLC was applied is also shown in hgurc 21.

\:ote that the BLC reduced the frequency content of the acceleration below 30 hz. The

resulting velocities and displacements are well centered about the origin.

Table IV. MAXIy[UM RESPO);SE OF LA);L BOX 3011 AFTER BLC

Maximum @ Time Minimum @ Time

Acceleration 1.28044 .0172 -1.75686 .0211
Velocity 0.80933 .0194 -0.75967 .0586
Displacement 0.00179 .0328 -0.00167 .0756

Note: All units are inch, kip. second and g.

The frequency range that is modified by the base line correction is a function of

the length of the record. There is no guarantee that the BLC will remove all of the

noise, or that the BLe will only remove noise from the acceleration. For box ~l)ll's

acceleration records, the BLC reduced the frequency content below 30 hz. If the

structure responds to frequencies below 30 hz, the BLC removes the structure's

response in addition to the noise.
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b. Filtering Correction for Acceleration Test Data. Another method to remove

low frequency noise is by digital filters. A 28 hz high-pass filter is used to remove the

errors from the relative roof acceleration of LANL box 3D II. The filtered acceleration

and acceleration PSD are shown in Figure 23, while the velocity and displacement are

shown in Figure 24, and the maximum values are given in Table V. The acceleration

PSD before filtering is also shown in Figure 23. :\'ote that the low frequency noise

below 28 hz has been removed. The velocity appears to be well centered. I lowever the

displacement in Figure 23 has a positive permanent set for t>O.lO second. Thus while

the high-pass filter removes the noise from a specific frequency content it does not

guarantee that the resulting displacements will be well centered.

Table V. MAXIMUM RESPONSE OF LANL BOX 3DII AFTER 2S lIZ
HIGH-PASS FILTER

Maximum @ Time Minimum @ Time

Acceleration 1.26388 .0172 -1.76708 .0211
Velocity 0.76648 .0194 -0.74841 .0586
Displacement 0.00152 .0685 -0.00141 .0755

~ote: All units are inch, kip, second and g.

c. Combined Corrections for Acceleration Test Data. As discussed in the

previous section, the base line correction removes low frequency noise, but the

frequency content of the noise removed is a function of the length of the record. The

filter can remove noise in a specific range, but it does not guarantee that the resulting

displacements will be well centered. Similar problems are addressed when correcting

the earthquake ground accelerations. The current trend in correcting earthquake

ground accelerations is to use a combination of linear base line corrections and
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high-pass filters (28). Thus the base line corrections and the high-pass filters used in

the previous sections are combined. Define the relative acceleration between floors as

A'relative = [(Afloor - BLC = A'floor) - (Aground - BLC = A' ground) ] (2.34)

where BLC denotes that the signal is base line corrected. The relative acceleration is

corrected by

tVrelative - (28 hi Iligh-Pass Filter) - BLC = A"relative

The corrected relative acceleration A" relative is integrated with Equations 2.30 and

2.31 to yield the velocity and displacement. The corrected acceleration and

acceleration PSD for the roof of LA~L box 3DII, are shown in Figure 25, while the

velocity and displacement are shown in Figure 26 and the maximum values are given

in Table VI. By comparing the acceleration PSD before .and after corrections. it can

be seen that the low frequency noise has been removed. :'\ote that the velocities and

displacements are well centered about the origin.

Table VI. MAXIMUM RESPOf\SE OF LA:"L BOX 3DII :\FITR
COMBINED FILTER CORRECTIO"l A:\D BLC

Maximum @ Time Minimum @ Time

Acceleration 1.26382 .0172 -1.76695 .0211
Velocity 0.76585 .0194 -0.75081 .0586
Displacement 0.00144 .0685 -0.00152 .0755

:\ote: All units are inch, kip, second and g.

d. Theoretical Accuracy of Corrections for Acceleration Test Data. Before

accepting the corrected acceleration, one must know if the correction method removes

only the low frequency noise and yields the actual acceleration, or does the correction
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method yield a modified acceleration? To answer this question, an elastic and a

nonlinear two-degrees-of-freedom models are analyzed. The calculated response from

each model was contaminated by adding low frequency noise. The noisy acceleration

was then corrected, and compared to the original calculated response.

• Elastic Structure. The two-degrees-of-freedom structure is shown in Figure 27.

The elastic natural frequencies are 77.5 hz and 200 hz. The elastic structure is analyzed

with the experimental base acceleration from LA:\L box 3011, which is also shown in

Figure 27. The calculated acceleration PSO for the roof and the roof's displacements

are shown in Figure 28. A low frequency noise signal of

Anoise(t) = 0.01 sin(6n:t) (2.36)

is added to the roof relative acceleration. The acceleration PSD and the displacement

of the roof's response with noise are also shown in Figure 28. As previously

discussed. the displacements are very sensitive to low frequency noise.

The corrections in Equation 2.35 are applied to the noisy signal. The corrected

acceleration PSO and the displacements are compared with the calculated values in

Figure 29 and in Tahle VI I. :\ote that the corrected displacements compare very

favorably with the calculated displacements. From the PSD it can he seen that the

corrected acceleration has less of a low frequency content than the calculated value.

But since the calculated response had a very small low frequency content to hegin with.

this has a small efTect on the displacements.

• :'-Ionlinear Structure. The same two-degrees-of-freedom structure shown in

Figure 27 is used for the nonlinear structure with the bilinear hysteresis model. The

nonlinear structure is subjected to the same base excitation as the clastic structure.

The calculated roof acceleration PSO and displacement are shown in Figure 30.
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Table VII. COMPARISON OF CALCULATED, l\:OISY A0fD CORRECTED
RESPONSE FOR AN ELASTIC STRUCTLRE

Noise +
Calculated Calculated Corrected
Response Response Response

Peak Acceleration -2.4947 -2.4859 -2.4971
@ time 0.0566 0.0566 0.0566

Peak Vclocity -1.5917 1.8741 -1.5978
@ time 0.0844 0.1164 0.08-14

Peak Displacement -0.00333 0.04901 -0.00339
@ time 0.0749 0.2044 0.U7-19

:\ote: All units are inch. kip, second and g.

Similar to the clastic case the low frequency noise in Equation 2.36 is added to the

calculated relative acceleration of the roof. The resulting noisy acceleration PSI) and

displacements are shown in Figure 30 for comparison. The noisy signal is corrected

with Equation 2.35 and compared to the calculated response in Figure 31, and Table

VII 1. The comparison between corrected and calculated response is poor. The

corrected acceleration has less low frequency content than the calculated acceleration.

While the calculated displacement was dominated by permanent set, the corrected

displacement has none.

From the above observations, it becomes apparent that for the clastic response.

where the natural frequency of the structure is well above the region that has noise, the

corrections presented in this chapter do not significantly alter the structures response.

For nonlinear response which are characterized by low frequency response (permanent

set) the corrections outlined in this chapter will alter the structures response. The

corrected displacements will not be similar to the true displacements.
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Table VIII. COMPARISON OF CALCULATED, l\"OISY A0ID CORRECTED
RESPONSE FOR A NONLINEAR STRUCTURE

Noise +
Calculated Calculated Corrected
Response Response Response

Peak Acceleration -2.0326 -2.0287 -2.0402
~~. time 0.0212 0.0212 0.0212

Peak Velocity -0.8056 1.0069 -0.8047
@ time 0.0195 0.1494 0.0195

Peak Displacement -0.00204 0.04886 -0.001~9

@ time 0.1471 0.2047 0.1960

:\ote: All units are inch, kip, second and g.



III. MONOTONIC RESPONSE BEHAVIOR OF ISOLATED SHEAR WALLS

An analytical model for calculating the monotonic response of isolated reinforced

concrete shear walls is presented in this chapter with comparisons of analytical and

experimental results. The monotonic response is of interest because it contains I) the

cracking, yield and ultimate loads, and 2) the stiffness at each of these load levels. The

monotonic response is also used as the basis for the cyclic loading hysteresis models in

Chapter IV.

\1any investigators have tested and calculated the ultimate strength of shear

walls. These investigations have led to the ultimate loads in the ACI code (1). Gosh

(40) calculated the bending displacements of slender walls with various <.:ross sections

by using a linear strain distribution, realistic material stress-strain models, and

equilibrium. Hsu, \10 and Mau (46, 47), developed an analytical model for low-rise

walls with pure shear deformation, based on the Vecchio-Collins (81,82) shear softened

stress-strain concrete model. Vallenas (80) calculated the monotonic response of

high-rise walls by combining bending and shear deformations which are cakulated

independently, without the coupling effect. His bending model consists of a finite

element solution with plane stress concrete elements that utilize the endochronic

theory. A multilinear model is used to calculate shear deformations.

The proposed analytical model has coupled bending and shear deformations, that

are presented as a series of interaction surfaces. For a given wall geometry, the

relationship between bending and shear can be determined. Thus separate bending and

shear backbone curves are extracted from the interaction surfaces. Together, they

define the monotonic load deformation response.
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A. \10MENT-SHEAR INTERACTION SURFACE

Both the longitudinal strain and shear strain influence the principal strains at a

point in a shear wall. Principal stresses at this point are related to the principal strains

through a stress-strain model. Principal stresses are rotated to longitudinal and shear .

stresses on the wall's cross section. Thus the magnitude of the longitudinal stress, at

a point, is dependant on both the longitudinal strain and the shear strain. Since the

bending moment is a function of the longitudinal stress distribution, bending moment

is dependant on both the longitudinal strain and the shear strain. Similarly, the shear

is dependant on both the shear strain and the longitudinal strain. Conversely, the

longitudinal strain distribution is a function of both the moment and shear. Shear

strain is also a function of both the moment and shear. In this section, the longitudinal

strain distribution and the shear strain as a function of moment and shear are

calculated. Also, the base rotation due to bond slip as a function of moment and shear

is calculated. These rclationships are represented as a series of interaction surfaces.

1. Assumed Strain Distribution. In Chapter II, the concept of an equivalent

moment in the hinging region of the wall is developed. The low-rise wall in Figure 32

has a hinging region that extends over the walls height. Thus the equivalent moment

and shear on this wall are given and do not vary over the walls height. Also, the

moment to shear ratio is known for this wall.

Assume that the longitudinal strain distribution is linear across the width of the

wall as shown in Figure 32a. The longitudinal strain distribution is descrihed by

specifying the extreme fiher compressive strain. l:2' at coordinate x2 and by specifying

the tensile strain, l: 1, at coordinate xI as shown in Figure 32b. The origin of the x

coordinate system. x = 0, is chosen at the centroid of the wall. The bending curvature

is the slope of the longitudinal strain distribution, and is given by
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(3.1 )

The longitudinal strain at point x, is given by

(3.2)

The shear strain is designated y, and is shown in Figure 32c.

The horizontal expansion of the wall is restrained by the elements at the top and

bottom of the wall, and the horizontal reinforcing steel. Actual values of the

horizontal and vertical expansion for ;,\;CKU shear walls are compared in Figure 17.

While the horizontal expansion is not zero, it is much less than the vertical expansion.

Thus the horizontal expansion of the wall is neglected.

The strains acting on a differential element are shown in Figure 32d. These

strains consist of a longitudinal strain cx' and the shear strain y. The principal strains

acting on this element are determined by \1ohr's circle, Figure 33a. The radius of

\1ohr's circle is given by

Ymax
2

(3.3)

The principal tensile strain. Cpt' is

the principal compressive strain, cpe' is

Cx
C =--Rpc 2

Go

(3.-4)

(3.5)
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Figure 33. \1ohr's Circle for Concrete Strain: (a) \1ohr's Circle For Concrete Strain
(b) Principal Strains on an Element
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and the orientation or'the principal compressive strain, {3, is given by

1 ( Y ){3=-atan -
2 ex

(3.6)

These principal strains and their orientation on a differential element are shown in

Figure 33b. Cracks will form on the wall, perpendicular to the principal tensile strain,

at angle {3 with the base of the wall. For a typical low-rise shear wall, {3 will be between

{3 = 30° to {3 = 60°. This is consistent with experimentally observed crack distributions

in Chapter I I.

2. Concrete Principal Stress-Strain \1odel. The Hognestad stress-strain model is

shown in Figure 34. This model was developed for members subject to uniaxial

compression. Since a biaxial state of stress exist in a shear wall. Ilognestad's

stress-strain model cannot be used without modification (46).

Vecchio and Collins tested a series of 30 R/C panels (81,82). From the biaxial

stresses and strains that exist in the panels, principal stresses and strains were

determined. A shear softened concrete principal stress-strain model \'v'as developed.

Similar to the I [ognestad model, the Vecchio-Collins model shown in r:igure 34

has a parabolic loading branch. Both the ultimate compressive stress. f~ . and the

strain. eo' are softened by the term ~ to account for the biaxial state of strain in the

panels. Thus the parabolic loading ~ranch goes from the origin to (I:? f~ '), and
A i

is given by

(3.7)
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Vecchio and Collins' loading branch is in very good agreement with their experimental

data. For the uniaxial case, A. = 1, the loading branch and the Hognestad stress-strain

model are identical.

Vecchio and Collins also used a parabolic curve for the unloading branch of their

stress-strain model. This branch begins at the terminus of the loading branch,

continues to (2£0,0), and is given by

At strains larger than 2eo' the compressive stress is zero. Few experimental strains

were observed between eo and 2eo' Thus the unloading branch is not strongly

supported by test data. For uniaxial compression, y = I, the unloading branch

underestimates the compressive stress, as can be seen by comparing it to the llognestad

model.

\!tost of the panels used by Vecchio and Collins to develop the shear softening

term y were loaded in pure shear. The bending in a shear wall subjects an clement to

combined shear and longitudinal stresses. Thus a modified shear softening term is used

in this study.

ept
..l = .85 + .653 ~ 1.0epc

(3. (J)

For uniaxial compression, A. = I. The shear softening term implies a Poisson's ratio of
ept

11 = -e- = 0.23. This is a reasonahle value for concrete.
pc
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Several different concrete tensile stress-strain models have been proposed, (41) as

shown in Figure 35. The stepped stress-strain model and the discontinuous model were

proposed to model the tensile stress in RiC slabs, subject to bending, Vecchio and

Collins used the gradual unloading model, to model the tensile stress-strain behavior

in their shear panels. Each of theses models has at least one discontinuity when the

concrete cracks. A discontinuous tensile stress-strain model will cause the shear and

bending backbone curves to be discontinuous. Whereas, the cracking in a shear wall

is observed to be a more gradual process.

The graded tensile stress-strain model is proposed in this study to provide a

smooth transition between cracked and uncracked concrete. This stress-strain model

is based on the following assumptions: I) 25% of the concrete cracks at a strain of

0.25t:cr' 2) 25~/o of the concrete cracks at a strain of 0.50tcr' 3) 25(~/o of the concrete

cracks at a strain of O.75tcr and, 4) 25% of the concrete cracks at a strain of t cr' Each

portion of the concrete behaves linearly before and after cracking. Before cracking the

2f'
loading curve has a slope of Ec' where Ec = __c_ is the modulus of elasticity for

to

concrete. After cracking, each portion unloads to a ~;train of 25l:cr' The graded tensile

model is defined as

If" :s; 0.25 then apt = Ec l:pt

If 0.25 :s;.,,:s; 0.50 then apt = f~r (0.0631 + .74761f)

If 0.50 :s;.,,:s; 0.75 then apt = f~r (0.1907 + .49241(1)

If 0.75 :S;.,,:S; 1.00 then apt = f~r (0.3845 + .2340,,)

If 1.00:s; " :s; 25 then apt = f~r (0.6443 - .025R,,)

(3.10)

If 25 :s; Yf then apt = 0

f ' tcr pt
where £cr = -- and." = --.

Ec £cr
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· Once the principal concrete stresses are determined, they are rotated by Mohr's

circle for stresses to longitudinal and shear stress as shown in Figure 36. The radius

of \1ohr's circle for stress is

apt - ape
R = 2 = 'max (3.11 )

where 'max is the maximum shear stress. The longitudinal stress, ax' on the wall is

given by

apt + ape
ax = 2 + R cos(2fJ) (3.12)

Shear stress 'x' acting on the wall's cross section, perpendicular to the longitudinal

stress, is given by

'x = R sin(2fJ)

Thus the concrete longitudinal and shear stresses at point x are determined.

(3.13)

3. Steel Stress-Strain \tlodel. For a longitudinal steel reinforcing bar at x, the

bar's longitudinal strain, ex' is determined from Equation 3.2. Several different steel

stress-strain models, ranging from a simple elasto-plastic model, to the more

complicated, Ramberg-Osgood model, can be used to determine the stress. Ilowever,

for lightly reinforced shear walls, the shape of the backbone curve is very sensitive to

the shape of the steel-stress strain model. Thus if available, the actual stress-strain

curve for a given steel bar is used. The experimentally measured steel stress-strain

curve for the DI3 steel bar used in :\fCKU wall SW6 is shown in Figure 37. Between

data points, the longitudinal steel stress, fsx ' is interpolated by
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Figure 36, .\1ohr's Circle for Concrete Stress: (a) \ltohr's Circle For Concrete Stress
(b) Principal Stresses on an Element
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(3.14)

where i is chosen such thatei:::;; Iex I :::;; ei+ l' The term Iex I is used to address the case

when ex is negative and sgn(ex)' yields a steel stress with the same sign as ex'

4. Stress Distribution on a Wall Cross Section. The strain distribution for

:\CKU wall SW6 is shown in Figure 38, for the case el = .007921 em/em,

£2 = -.001299 em/em, and y = .0014 radians. The properties for wall SW6 are given

previously in Chapter II. At the extreme compression fiber. (x = 50) the principal

concrete compressive strain is epc = -.001604 cm/cm, the principal concrete tensile

strain is ept = .000305 cmlcm, and the angle of principal strain is p= 66.43 0
• The

principal compression strain is close to the ultimate strain. eo = .0020 em/em. Thus

this strain distribution corresponds to a p'oint near the ultimate load. The shear

softening term, for the strains at this point is A. = 1.00. The principal compressive stress

is apc = 276.7 kgjcm2 and the principal tensile stress is apt = 11.8 kgjcm2. Rotating

the principal strains through angle P. yields longitudinal and shear stresses of

ax = 230.6 kgjcm2 and LX = 105.8 kg/cm2, respectively.

As the coordinate x decreases, the longitudinal strain decreases. principal

compressive strain decreases3, principal tensile strain increases, the angle of principal

stress decreases, and the shear softening term increases. Initially, the angle of principal

3 Compressive strain has a negative sign. Thus the absolute value of the compressive

strain is decreasing, while the numerical value of the strain is increasing.
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stress decreases
4

faster than the principal compressive stress decreases
5

, resulting in

an increasing shear stress. At x = 48 em, the shear stress has reached a maximum of

LX = 108.6 kg/cm2. To the left of this point, the principal stress decreases faster than

the angle of principal stress decreases, resulting in a decreasing shear stress.

Pure shear strain exists at the neutral axis, x= 35.915 em. The principal strains

at this point are l:pc = -.00070, l:pt = .00070, and the angle of principal strain is f3

= 45°. The shear softening term, at the neutral axis, is 1 = 1.503. The principal

stresses at this point are ape = 148.6 kg/cm2 and apt = 8.86 kg/cm2. Rotating the

principal strains through angle f3 yields longitudinal and shear stresses of

ax = 69.9 kg/cm2 and LX = 78.7 kg/cm2, respectively. To the left of the neutral axis,

the longitudinal strains are tensile. However, the longitudinal stresses are in

compression. This is because the shear strain influences both the principal strains, and

the orientation of the principal strains. Given the same longitudinal strain distribution,

for lower values of shear strain, the longitudinal stress in this region would be zero, or

in tension.

5. Equilibrium of Forces. For a given longitudinal strain distribution and shear

strain, the forces acting on the concrete are determined by integrating the stresses

across the wall's cross section. Similarly, the forces on the steel bars are determined

by summing all of the individual bar forces. Thus the axial load, P, in the wall, due to

the assumed strain distribution is

4 At constant principal stresses, as the angle of principal stress decreases from

f3 =66.43° to f3 =45°, the shear stress, LX' increases.

5 At a constant angle of principal stress, as the principal compressive stress decreases,

the shear stress, 'x' decreases.
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(3.15)

Likewise the moment, M, and shear, V, acting on the wall, due to the assumed strain

distribution are given by

\1 = fax x dA + I (fsx - ax) X As
A steel bars

V = f 'x dAshear
A

(3.16)

(3.17)

where fA dA is the cross sectional area of the wall, induding steel bars and boundary

elements if applicable. For a rectangular wall, f dA = thickness fX 2 dx. The shear
A Xl

area, fA dAsheaf' includes the web, the area of square boundary columns, and a

portion of the area of flanged boundary elements. As is the area of the steel bars at

coordinate x. For the stress distribution in Figure 38, Equations 3.15 through 3.17

yield a moment of M = 1539 Ton em, a shear of V= 23.38 Ton, and the sum of axial

force is P = -0.02 kg.

\1any models, including the ACI strength equations, calculate a separate shear

resistance due to both concrete and steel. The proposed analytical model includes the

effects of steel reinforcing bars in an indirect manner. When the concrete is suhject to

shear, it expands. If this expansion is restrained, the strength and stiffness of the

concrete increases. As concrete expands, its reinforcing steel goes into tension, and

provides a clamping force that resists expansion. For lightly reinforced shear walls, as

the amount of reinforcing steel is increased, the clamping force increases, and hath.

shear strength and stiffness also increase. Thus the reinforcing steel has a vcry large
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influence on the shear strength of a shear wall, that is not obvious when inspecting

Equation 3.17.

Low-rise shear walls are restrained against expanding horizontally by the

horizontal elements at the top and bottom of the wall, and by the horizontal

reinforcing steel. Thus the' low-rise shear wall expands along its longitudinal axis, and

the longitudinal bars provide the clamping force that resists shear. As the height to

width ratio of the wall increases, the restraint against horizontal expansion due to the

horizontal boundary clements decreases. Examine a typical beam; with a height to

width6 ratio of 20. For this beam, the boundary provides negligible restraint against

horizontal expansion. Thus the beam expands across it's width, and the horizontal

steel, (stirrups) goes into tension and provides the clamping force that restrains the

concrete, increasing the shear strength and stiffness. Since horizontal expansion is not

included in the proposed analytical model, the use of the model for members with a

large height to width ratio and a significant amount of shear is discouraged.

The intergration of concrete stress in Equations 3.15 to 3.17 is divided into two

parts, one on each side of the wall's neutral axis. Each of the two parts is then

integrated numerically with Romberg integration7.

6 Shear walls are typically vertical elements, and the height to width ratio is used to

gauge its slenderness. A beam is typically a horizontal element, thus the span to

depth ratio is used to gauge its slenderness. Both the height to width and span to

depth ratios are identical. For this discussion, assume the beam is oriented

vertically. Thus horizontal expansion of the beam is expansion in the direction of

the beam's depth.

7 Romberg integration (II) is a numerical technique that I) uses the trapezoidal rule

to solve an integral with I, 2, 4, 8, ... 2n segments, and 2) uses the Richardson

extrapolation process to improve each of the solutions. Convergence is determined

by comparing the difference between successive solutions. An efficient algorithm

reuses the results of the 2n- 1 segment integral when evaluating the 2n segment
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Once the wall's forces have been calculated for a given strain distribution, the

axial force, P (Equation 3.15), is compared to the applied axial load, Papplied8. If

these two forces are equal, then the assumed strain distribution is accepted. If these

forces differ, by a significant amount, then the strain distribution is modified. and the

wall forces are recalculated. This iterative process is repeated untill P ~ Papplied'

~umerically, the strain distribution is modified by varying the tensile strain

q. For the first iteration, if P> Papplied' then t I is decreased by the larger of

O.IO£{ or 0.0001. Likewise, if P < Papplied' then t I is increased by the larger of

0.10£1 or 0.0001. Denote the initial value of£1 as £i' and its accompanying ax.ial force

Pi' This new strain, £I, for the second iteration is denoted l:j' The wall forces for the

new strain l:j are calculated, and the new axial load is denoted Pi' If the new axial force

Pj i= Papplied' another estimate of l: I is made

The wall forces are recalculated with the new value of l: I' If P ~ Papplied' then the

strain distribution is accepted. Otherwise, set the strain and axial loads for the last two

iterations equal to £i' Pi and £i' Pj. Then another estimate of £ I is made by Eq uation

3.18. This process is rcpeated until! P ~ Papplied'

The moment and shear on a wall is calculated at a given shear strain, }'. for

various values of compressivc strain, l:2' ranging from 0 to ahout 2£0' Each time the

compressive strain, £2' is increased, the previous solution's tensile strain. l: I' is used as

integral. This minimizes the number of times the concrete stresses, a X and r x' in

Equations 3.15 to 3.17 are cvaluated.

8 For most low-rise shear walls, the applicd axial load in negligible. Thus for all of

the walls analyzed in this chapter, Papplied = O.
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an initial estimate of the current tensile strain. As the compressive strain is incrcascd

for successive solutions, the moment in the wall increases for each solution. At some

compressive strain, the moment will begin to decrease, due to crushing of the concrete.

This denotes failure, and no further solutions are carried out at this shear strain. The

shear strain is increased, the compressive strain is reset to zero, and anothcr set of

solutions is obtained. Values of the shear strain range from 0 to about 2e o'

Recall the curvature, 4J, is the slope of the longitudinal strain distribution as givcn

in Equation 3.1. Thus the set of solutions for various longitudinal strain distributions

and shear strains, Y, constitute the moment - shear - curvature and the moment - shear

. shear strain interaction surfaces.

The moment· shear - curvature interaction surface for :\CKU wall SW6 is shown

in Figure 39. Examining Figure 39, point A (V = 0, \1 = 1723 Ton em, et> = .000262

rad/cm) corresponds to the failure curvature for pure bending, point B (V = 24 Ton,

M = 1560 Ton em, 4J = .000124 rad/cm) corresponds to the failure curvature, where the

moment to shear ratio is ~ = 65 em, and point C (V == 52.4 Ton, M =0, </> = 0)

corresponds to the failure curvature for pure shear. f-or low values of shear, the

moment· curvature relationship is very ductile. As shear increases, the moment ­

curvature relationship becomes more brittle, failing at 1) lower values of curvature,

and 2) lower values of moment. f- or low values of constant moment, at low values

of shear, the curvature is independent of shear. At a larger value of moment, held

constant, the curvature will increase with increasing shear. Thus the curvature is

strongly influenced by both moment and shear.

The moment - shear· shear strain interaction surface for NCK U wall SW6 is

shown in f-igure 40. Point A (V == 0, M = 1723 Ton em, y = 0) corresponds to the shear

strain at failure for pure bending, point B (V= 24 Ton, M = 1560 Ton em, y = .001803

rad) corresponds to the shear strain at failure for a moment to shear ratio of
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~ = 65 em, and point C (V = 52.4 Ton, M = 0, y = .005000 rad) corresponds to the

shear strain at failure for pure shear. For low values of moment, the shear - shear

strain relationship is very ductile. As moment increases, the shear - shear strain

relationship becomes more brittle, failing at I) lower values of shear strain, and

2) lower values of shear. For low values of constant shear, at low values of moment,

the shear strain is independent of the moment. At larger values of shear, held constant,

the shear strain will increase with increasing moment. Thus the shear strain is strongly

influenced by both moment and shear.

6. Yield and Failure Interaction for Shear and Bending. Both the ultimate load

surface and the yield surface of the moment to shear interaction surfaces are of interest

and are shown in Figure 41. For ~CKU wall SW6, point A (\1 = 1723 Ton em. V= 0)

represents the ultimate load for pure bending. point B (M = 1560 Ton em. V= 24 Ton)

represents the ultimate load for a wall with a moment to shear ratio of 65 em, and

point C (M = 0, V= 52.4 Ton) represents the ultimate load for pure shear. If the

ultimate moment, at zero shear, is denoted by Muo and the ultimate shear. at zero

moment, is denoted by Vuo' then this failure surface can be described by

( )2 ( )2-.::L + -2L = 1°
Vuo . \'luo.·

This equation is within 3~/o of the calculated ultimate load for 0:CKC wall SW6.

(3.19)

The yield point of a wall is the load where the first steel bar yields. Point D

(\1 = 1195 Ton em, V= 0) in Figure 41 represents the yield point for pure bending,

point E (M= 1112 Ton em, V= 17.1 Ton) represents the yield point for a wall with a

moment to shear ratio of 65 em and point F (M = 0, V= 51.9 Ton) represents the yield

point for pure shear. If the yield moment, at zero shear, is denoted by \1yo and the
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yield shear, at zero moment, is denoted by Vyo' then this yield surface can be described

by

( ).., ( )2~ .. + 2.L = 1.0
Vyo Myo

This equation is within 9% of the calculated yield point for T\CKL' wall SW6.

(3.20)

7. Shear Bending Influence Angle, l/J. There are several ways to quantify the

significance of bending and shear deformations in a given wall. One is to examine the

ratio of bending deformation to total deformation, as discussed in Chapter I I. This

method has the advantage of being very simple. Cnfortunatcly, as shown in Figures

15 and 16, the percentage of bending deformation often varies with the load level.

Another method to quantify the significance of bending and shear deformations

III a given wall is to locate a normalized moment to shear ratio on a normalized

interaction diagram. This is represented by the angle l/J in Figure 41. Let

(3.21 )

Point A in Figure 41 has a shear bending influence angle l/J = 0, which represents pure

bending. For point C, l/J = 90
0

, which represents pure shear. Point B has a shear

bending inf1uence angIe of

l/J = atan( 1 1723 Ton em) = 26.8 0

65 cm 52.4 Ton

which indicates that bending has a stronger influence than shear.
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8. Base Rotation \1 ode!. At the base of the shear wall, the steel reinforcing bars

have a very high tensile stress. As these bars transfer their stresses to the boundary

element
9

, they slip or pull out of the boundary element, with a deformation of bi. This

deformation allows the wall to rotate as a rigid body about it's base, causing additional

lateral deformation at the top of the wall.

This mechanism for deformation may be understood by exammmg Figure 42.

For a given point on the moment - shear interaction surface, the strain distribution and

force in each bar is known. Thus steel bar i, has an axial load of TO or an axial stress

of (J0' and an axial strain of £0 at the base of the wall.

The actual bond stress distribution between the steel bar and the concrete in the

boundary element is a function of the stress in the bar, the strain in the har, the

concrete strength, and the degree to which the concrete around the steel bar is

confined. However, a simple, constant bond stress distribution between the har and·

concrete may be assumed (80), because the deformation due to bond slip is a small

portion of the total deformation. Thus the constant bond stress, U, is

rr;
U = 9.5...j+ ~ 800 psi

where d is the diameter of the steel bar, in inches, and f~ is in psi.

Summing the forces on a section of the bar that has a length 7.,

(3.23)

TO = Tz + Uzn:d (3.24)

The stress in the steel bar as a function of length is determined by dividing h!uation

3.24 by the area of the steel bar,

9 Typical boundary clements at the base of the wall are pile caps, mats, and footings.
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4Cz
°z=oO---

d
(3.25)

At the end of the development length, zc' the stress in the bar, 0z' is zero. Solving

Equation 3.24 and 3.25 for the development length yields

(3.26)

Since the stress-strain curve for the steel bar is known, the steel bar's strain

distribution is determined. A typical bar force distribution, bar stress distribution and

bar strain distribution is shown in Figure 42. The strain distribution is integrated along

the development length, to determine the pull out, (5j, of bar i,

where ez is the variation of strain along the bar's aXIs.

(3.27)

The strain distribution,

ez' consist of discrete values. Thus the integral in Equation 3.27 is evaluated

numerically.

The rotation of the base of the wall due to bar i, shown in Figure 43, is given by

(3.28)

where xNA is the coordinate of the neutral axis. Similarly, the rotation for hars i + I

through n are calculated. The base rotation for bars i and i + I may not he compatihle,

{;Ii 1= 0i+ I, because the bond strcss distribution has heen ovcr simplified. A rational

method to resolvc this incompatibilty, yet rctain the simplicity of this approach, is to

use a weighted average of the bond slip for each bar. Thus the base rotation of the

entire wall, 0br' is given by
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(3.29)

Recall the stress distribution example for ;\iCKU wall SW6, Figure 38. Five bars..
are on the tensile side of the neutral axis. The force, bond slip and rotation angle for

each bar is

Bar xna - xi To b· e· Toei1 1

I 80.92 6477 .03506 .000433 2.806
2 62.92 6477 .03498 .000556 3.601
3 44.92 6477 .03489 .000777 5.031
4 26.92 6477 .03487 .001295 S.392
5 8.92 2164 .00389 .OOO..B 6 0.944
~ 28,072 20..78...

where the units are kg, em and each bar has a diameter of 1.27 cm and an area of

1.29 cm2. The base rotation angle, ei' varies from 0.000436 rad to 0.001295 rad for

two adjacent bars. The weighted average base rotation is e= 20.78 = 0.00074 rad.
28,072

Calculating the base rotation of the wall for each point on the moment .. shear

interaction surface, determines the moment .. shear - base rotation interaction surface.

This interaction surface. is shown in Figure 44 for NCKU wall SW6. Point :\ (V = 0,

M = 1723 Ton cm, 0br = .001356 rad) corresponds to the base rotation at failure for

pure bending, point B (V= 24 Ton, \1 = 1560 Ton cm, ehr = .000775 raJ) corresponds

to the base rotation at failure for a moment to shear ratio of ~ = 65 em, and

point C (V = 52.4 Ton, M = 0, 0br = 0) corresponds to the base rotation at failure for

pure shear. At low values of shear, the moment .. base rotation relationship has a

ductile behavior. As the shear increases, both the failure rotation and failure moment

decrease.
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B. SHEAR A~D BEl\DIl\G BACKBONE CURVES

Isolated shear walls subject to either static or dynamic loading have a constant

moment to shear ratio. The shear walls in low-rise buildings, subject to dynamic

loading, also have a fairly constant moment to shear ratio. For a fixed moment to

shear ratio, the interaction curves can be decoupled, yielding separate moment -

<.:urvature, shear - shear strain and moment - base rotation relationships.

The deformation due to base rotation, and the bending deformation could not be

separated during the analysis of the experimental data, Chapter II. Therefore the

calculated base rotation and bending deformations will be combined 1) to be

consistent with the experimental deformations, and 2) to reduce the number of

hysteresis models used for cyclic loadings. The deformation of a low-risc shear wall

due to base rotation, <5 b r> is given by

(3.30)

where h is the height of the wall.

For low-rise shear walls, the entire wall is in the hinging regIOn. Thus the

equivalent moment on the wall is constant. Likewise the curvature distribution is

constant as shown in Figure 10. Treating the curvature distribution as a conjugate

beam, the bending deformation of a low-rise shear wall is given by

(3.31 )

The combined bending and base rotation deformation is given by
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which hereafter is referred to as the bending deformation. The bending rotation of a

unit length wall is 0u' and 0u h is the bending rotation of the wall. The relationship

between bending moment and the bending rotation is known as the bending backbone

curve.

F or an isolated, low-rise shear wall, the shear in the wall, V, is eq ual to the

applied load. Given the shear and the moment to shear ratio, then the shear strain, y,

is determined from the moment - shear - shear strain interaction surface. The

relationship between the shear, V, and shear strain, y, at a constant moment to shear

ratio is the shear backbone curve. For low-rise shear walls, with a constant moment

to shear ratio, the shear strain is constant over the height of the wall. Thus the shear

deformation os' is given by

(3.33)

For ~CKU wall SW6 at point B on the interaction surfaces, Figures 39, 40, and

Figures 44, the deformations are

6br = 0.000775 x 43.75 = 0.0339 cm

6¢J = 0.0~124 x (43.75)2 = 0.1186 cm

t\ = 0.001803 x 43.75 = 0.0789 cm

(3.34)

(3.35)

(3.36)

Thus the bending deformation is 6b = 6¢J + <5br = 0.1526 em, and the total

deformation is (it = <>b + Os = 0.2315 em. For this load level, base rotation accounts

for 14.6% of the total deformation, deformation due to curvature accounts for 51.3n~)

of the total deformation, and shear accounts for 34.1 (~/o of the total deformation.

Bending (0¢J + c)br) accounts for 65.9~/o of the total deformation.
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Experience in comparing calculated backbone curves with experimental backbone

curves has demonstrated that the proposed analytical method underestimates the

failure displacement. This is partially due to the unloading region of the concrete

stress-strain model. The Vecchio-Collins stress-strain model has a rather steep

unloading branch as shown in Figure 34, which underestimates the strength of concrete

at the high strains that are associated with larger deformations. Thus the

overconservative stress-strain model forces the analytical method to predict failure at

lower values of strain, and the failure deformation is underestimated.

In Chapter II an average failure ductility of jJ. = to is observed for the ~CK LJ

walls. This experimentally observed failure ductility is used to modify the calculated

backbone curve. Thus

(3.37)

The calculated moments and shears at failure are used with bb I fail and <5 s Ifail to

define the end point on the backbone curve. Recall that the average ductility of to is

based on a lightly reinforced isolated wall with a height to width ratio of 0.50, and a

moment to shear ratio of 65 em. Caution must be used when extrapolating this failure

ductility to other walls.

The modified bending and shear backbone curves for ~CKU wall SW6, at five

different moment to shear ratios, are shown in Figures 45 and 46. As the moment 10

shear ratio increases, I) both the bending yield point and the ultimate bending load

increase, 2) the bending rotation at failure increases, 3) the bending stiffness increases,

4) both the shear yield point and the ultimate shear decrease, 5) the shear strain at

failure decreases, and 6) the shear stiffness decreases. For the pure shear case,
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~ = 0, the shear backbone curve yields at a shear strain of bsy = 0.004834 rad. This

is a relatively large shear strain, and it is doubtful that a failure strain of 10<5 sy could

be achieved.

C. CO\1PARISON OF CALCULATED AND EXPERIMET\TAL STATIC

\10~OTOT\IC LOAD-DEFOR\1AnON RESPONSE OF ISOLATED SHEAR

WALLS

To evaluate the accuracy of the proposed analytical method, the calculated

monotonic load deformation response of 27 RiC shear walls is compared with the

experimental response. Fifteen of these walls were tested at :\CK C (72). These walls

are presented in Chapter II, Table I. The remaining twelve walls were tested by PC:\

(57, 59, 7). These walls are introduced below.

Height to width ratios for t~e 27 walls range from 0.50 to 2.40. Four wall cross

sections are investigated: 1) rectangular walls with nearly uniform reinforcement,

2) rectangular walls with extra reinforcing steel at the edge of the wall, 3) barbell cross

sections (walls with square boundary columns), and 4) walls with flanges. Web

reinforcement ratios varied from 0.28% to 0.78'% vertically and from 0 to l.l.:l(~/o

horizontally. Flange reinforcement, when used, varies from 1.47% to 6A~/o. Concrete

strengths range from 2760 psi to 7780 psi, and the yield point of the reinforcing steel

ranges from 68 ksi to 80 ksi.

\1any of the walls are subjected to cyclic loading histories. These walls are

identified in Table I and in the table given later in this section. An envelope of the

cyclic loadings is used for the monotonic response to make the comparisons below.
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I. Static \1 onotonic Bending Deformation. The bending deformation is

calculated by Equation 3.32 for NCKU walls SWla, SW3 and SW4, and compared

with the experimental deformations in Figure 47. Similarly, calculated bending

deformation for NCKU walls SW4a, SW5 and SW6 are compared with the

experimental deformations in Figure 48. The vertical axis in Figures 47 and 48 is the

applied load. The displacements from 0 to 3 nun are shown. Experimentally observed

failure displacements range from 2.65 mm to 5.71 nun.

The loads are applied at a point 65 em above the base of the walls as shown in

Figure l. The equivalent moment at the base of the wall is \1 = 65V, where V is both

the applied load and shear in the wall. The moment to shear ratio for these walls is

65 em. The gauges used to measure the bending, shear, and total deformations are

located at a height of h =43.75 em above the base of the wall.

All six of these walls have the same dimensions. Walls SWla and SW3 have a

vertical reinforcing ratio of 0.426%, while walls SW4, SW4a, SW5 and SW6 have a

vertical reinforcing ratio of0.774%. This accounts for the increase in strength between

these two sets of walls. Wall SW4 is subject to a monotonic loading, while walls SWla,

SW3, SW4a, SW5 and SW6 are subject to cyclic loadings as shown in Figures 3,4 and

5. The difference between the experimental backbone curves for these identical 10 walls

is small. Thus the practice of using an envelope of eyclic test data to represent the

monotonic response is justified.

Overall, the comparison between the calculated and experimental results is good.

However, the calculated response typically overestimates the initial bending stiffness,

and underestimates the lateral load at failure.

10 These walls have identical dimensions and reinforcing steel. The 6.7% difference in

their concrete strengths is insignificant.
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2. Static Monotonic Shear Deformation. The shear deformation for NCKC walls

SWla, SW3, SW4 are calculated by Equation 3.33 and compared with the experimental

deformations in Figure 49. Similarly, the calculated shear deformation for :\,CKC

walls SW4a, SW5 and SW6 are compared with the experimental deformations in Figure

50. The range of deformations from 0 to 3 mm is emphasized in Figure 51.

Experimentally observed failure deformations range from 2.51 mm to 5.77 mm.

Overall, the comparison between the calculated and experimental results is good.

However, the calculated response typically overestimates the initial shear stifTness,

overestimates the shear at yield, underestimates the displacement at yield. and

underestimates the lateral load at failure.

3. Static Monotonic Total Deformation. The total deformation (J t = I)b + Js)

versus applied load for NCKU walls SWla, SW3, SW4, SW4a, SW5 and SW6 is given

in Figures 51 and 52. Overall, the comparison between the calculated and experimental

results for these walls is good. However, similar to the bending and shear components

of deformation, the calculated response typically: I) overestimates the initial stifrness,

and 2) underestimates the lateral load at failure.

NCKC walls SWlO, SWII, SWI2, SWI3, SWI4, SWl5, SWI6, SWIl), and SW20

are summarized in Table I. Some of these walls have different bar arrangements than

the first group of:\CKU walls. Walls SWlO, SWll, SWl2, SWl3, and SWl4 have the

same dimensions as the first group of NCKLJ walls. Walls SWI5, SWI6, SWI9 and

SW20 are taller, with a moment to shcar ratio of 90 em, and thcir displacemellts arc

measured h = 68.75 em from the base of the wall. The total displacements are

calculated in the same manner as the first group of NC KU walls.
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The total deformation versus applied load for ~CKU walls SWIO, SWll, SWI2,

SW13, SWI4, SWI5, SWI6, SWI9, and SW20 is given in Figures 53, 54 and 55.

Overall, the comparison between the calculated and experimental results for these walls

is good. However, similar to the first group of NCKU walls, the calculated response

typically: 1) overestimates the initial stiffness, and 2) underestimates the lateral load

at failure. Also, the shorter walls tend to overestimate the load in yielding region.

Walls SWIO, SW13 and SW14 arc identical except for the horizontal reinforcing

steel. Wall SW 14 has twice as much horizontal reinforcing steel as wall SW 10. The

performance of both walls is similar, however wall SW14 has an ultimate strength

about 15% higher than wall SWlO. Wall SW13 docs not have any horizontal

reinforcing steel and it's strength is about 10~/o less than wall SWIO. Similarly, walls

SWI6, SW19 and SW20 are identical except that wall SWl9 does not have any

horizontal reinforcing steel. Wa!l SW19 failed at a load about 25% less than walls

SW16 and SW20. Both walls SWl3 and SWl9 also failed at lower displacements than

similar walls with horizontal steel. Thus while horizontal steel is not explicitly specified

in the proposed analytical model, it is essential to the performance of the shear wall.

Walls SWI5, SWI6, SWl9 and SW20 arc taller, ~ = 90 em, than the other

NCKU shear walls, ~ = 65 em. Since the moment to shear ratio has increased, the

moment capacity and bending ductility have also increased. However, the moment

arm has increased more than the moment capacity. Thus the taller walls fail at lower

values of applied load. Failure deformations for the taller walls are greater than the

lower walls.

PCA walls Rl, R2, 81, 82, 83, 84, 85, Fl, BI-I, 82-1, 83-2 and B4-3 arc

summarized in Table IX, and their cross sections arc shown in figure 56. These walls

have different cross sections from the rectangular walls tested by NCKU. Walls RI

and R2 have extra steel bars placed at the edges of the wall. Walls BI to BS have
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boundary columns with extra longitudinal steel and transverse reinforcement to confine

the concrete. Walls Fl, Bl-l, B2-1, B3-2, and B4-3 have a flanged cross section.

Table IX. PCA SHEAR WALLS

Flange Web

Wall WxHxT H Loading~ f~r P%-!L PvX Pw -!L..}}L
Rl 75x180x4 (2) 6.49 0.65 1.47 74.2 0.28 0.31 75.7 2.4 cyclic

R2 75x 180x4 (2) 6.74 0.65 4.00 65.3 0.28 0.31 77.6 2.4 cyclic

Bl 75x180x4 (3) 7.68 0.73 1.11 65.2 0.28 0.31 75.5 2.4 cyclic

B2 75x180x4 (3) 7.78 0.71 3.67 59.5 0.28 0.62 77.2 2.4 cyclic

B3 75xl80x4 (3) 6.86 0.64 1.11 63.5 0.28 0.31 69.4 2.4 cyclic
B4 75x180x4 (3) 6.53 0.68 1.11 65.3 0.28 0.31 73.2 2.4 monotonic
B5 75xl80x4 (3) 6.57 0.63 3.67 64.4 0.28 0.62 72.8 2.4 cyclic
FI 75x180x4 (4) 5.58 0.64 3.89 64.5 0.28 0.71 76.2 2.4 cyclic

BI-I 75x37.5x4 (5) 4.20 0.51 1.80 76.2 0.50 0.50 78.8 0.5 monotonic
B2-1 75x37.5x4 (5) 2.37 0.32 6.40 70.6 0.50 0.50 80.0 0.5 monotonic
B3-2 75x37.5x4 (5) 3.92 0.47 4.10 60.0 0.50 0.50 79.0 0.5 cyclic
94-3 75x37.5x4 (5) 2.76 0.37 4.10 76.5 0.50 0.00 77.6 0.5 cyclic

Notes:
(1) All units are inch, kip.
(2) The flange steel is concentrated in a 7.5"x4.0" region at the edges of the wall.
(3) A Il"x 12" boundary column at the edge of the wall contains the flange steel.
(4) A 36"X4" flange at the edge of the wall contains the flange steel.
(5) A 24"x4" flange at the edge of the wall contains the flange steel.

PCA walls RI, R2, BI, B2, B3, B4, B5, and FI are 180" tall and have height to

width ratio of 2.4. For these walls the hinging region is assumed to equal one half of

the waIrs width. The equivalent moment diagram used for these walls is shown in

Figure 56. Since the moment varies in the upper portion of the wall, the curvature

distribution is not constant. Thus the bending deformations arc calculated hy the

conjugate beam method

l '~.1.0<.
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(3.38)

where z is measured from the top of the wall.

The flanges in walls FI, BI·l, B2·1, B3-2 and B4-3 contribute more to the

moment capacity than the shear capacity. Thus the flange area included in the shear

calculation, Equation 3.17, is limited to Aflange shear = 2t2, where t is the thickness

of the flange II .

While shear is constant, the bending moment is not constant on the upper portion

of these walls. Thus the moment to shear ratio varies with height, as seen in Figure

56, and the shear strain on the wall is not constant. The shear deformation is obtained

by integrating shear strains over the height of the wall

(3.39)

The analytical backbone curves are compared to the experimental backbone

curves in Figures 57 through 61. The calculated failure ductility of walls BI, B3 and

B4 exceeded lObyield' Thus the calculated failure point is used instead of Equation

3.37. For the lightly reinforced walls without' flanges, RI, R2, Bl, B3 and B4, the

comparison between experimental and calculated values is very good. The deformation

in these walls is dominated by bending, with minimal shear influence.

II Wall Fl has a flange shear area of 3t2 and wall B3-2 has a flange shear arca of

t 2.
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For walls B2, B5 and FI the comparison is good except that the failure load is

overestimated. These walls have higher reinforcing ratios than the other PCA walls.

Thus these walls are failing at much higher load levels. Web crushing l2 (60) is the

experimentally observed failure mode for walls B2, B5, and Fl. This is a compressive

failure of the web concrete near either a horizontal or vertical boundary clement. Web

crushing has only been observed on highly reinforced walls with boundary columns or

flanges subject to large cyclic deformations. The proposed analytical model does

predict the crushing of concrete on an inclined compressive strut.

Walls 82, 85, and FI have a height to width ratio of 2.40. for walls in this range,

the horizontal expansion begins to become important. Consider the \1ohr's circle for

strain in Figure 62. Case 1 is the wall without horizontal expansion, eh = O. A

longitudinal compression strain ex and a shear strain yare present on the clement,

yielding principal compression and tensile strains epc I and ept I' For Case 2, the wall

has a horizontal expansion th > 0, and the same longitudinal and shear strains as

Case l. The principal compressive strain for Case 2 is less than Case 1,

Iepc21 < I'pc11, and. the principal tensile strain for Case 2 is greater than Case 1,
e

ept2 > ept l' Since the shear softening term -t is a function of ..J:.:. , the shearepc
softening term for, Case 2 is greater than Case 1, -t2 > ,{ I' Thus the inclusion of

horizontal expansion reduces the concrete's principal compression strength,

12 Web crushing mechanism: As the wall is loaded, inclined cracks form at the base

of the wall, and will extend throughout the hinging region of the wall. Between each

of these cracks is an inclined compression strut. These inclined compression struts

span the web. As the wall is cycled, shear resistance between the base of the wall

and the compression struts degrades. Struts on the tension side of the neutral axis

degrade first, transferring their load to struts on the compression side of'the neutral

axis. At some point, the remaining inclined web compression struts will crush,

usually at the base of the wall, and the load capacity of the wall is diminished. Web

crushing has been observed in the presence of large cyclic deformations.
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f' f'c ·c-- < -- reducing the capacity of the wall. The analytical model without
J.2 AI'

horizontal expansion, overestimates the strength of walls B2, B5 and Fl. If the

experimental model had included floors at quarter points along the wall's height, the

horizontal expansion would have been restrained, the load capacity increased, and the

comparison with the analytical model would be better.

Walls RI, R2, Bl, B3, and B4 also have a height to width ratio of 2.4, but the

shear in these walls is low. Thus the horizontal expansion is small, and these walls

compared very well with the proposed analytical model.

For walls Bl-l, B2-1, B3-2 and B4-3 the companson between calculated and

experimental results is good. However, the proposed analytical model underestimates

the failure load of wall BI-I, overestimates the yielding region of walls B2-I, B3-2 and

B4-3, and overestimates the failure ductility of walls Bl-l, B3-2 and B4-3.

These low-rise walls have height to width ratios of 0.50, with heavily reinforced,

flanged boundary elements. The relative influence of bending and shear can be

determined by comparing the shear bending influence angle I/J for different walls,

Table X. The I/J values of walls BI-I, B2-1, B3-2 and B4-3 are clearly much higher than

any of the other walls examined thus far. These walls are dominated by shear. One

variable that deserves further attention is the flange contribution to shear area.

Another is the assumption that the strain is constant across the width of the flange

(shear lag).

Hsu's pure shear model (46) also has a good comparison with walls B1-1, B2-1,

B3-2 and B4-3. Hsu assumes that the longitudinal strain across the width of the wall

is constant, a given amount of the flange steel is effective in resisting the vertical

expansion due to shear, and that the concrete tensile stress is zero. The softened
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Table X. SHEAR BENDI1\G 11\FLCENCE A~GLE, 'P

Wall Vuo Yf uo
Yf

r/J-
V

SWla 1070.4 38.306 65.0 23.3°
SW3 1072.3 38-452 65.0 23.2°
SW4 1702.0 50.068 65.0 27.6°

SW4a 1704.3 50.329 65.0 27.5°
SW5 1711.5 51.106 65.0 27.3°
SW6 1722.9 52.383 65.0 26.8 0

SWlO 1690.0 48.019 65.0 28.4°
SWll 1970.5 46.316 65.0 33.2°
SW12 1758.5 48.952 65.0 28.9°
SW13 1771.5 54.503 65.0 26.6°
SW14 1757.4 53.367 65.0 26.9°
SW15 1969.8 46.254 90.0 25.3°
SWI6 1682.2 47.399 90.0 21.5 0

SW19 1651.7 44.863 90.0 22.2 0

SW20 1585.1 39.486 90.0 24.0°
Rl 5327.9 223.270 180.0 7.6°
R2 9508.. 7 338.830 180.0 8.9°
Bl 13519.0 485.220 180.0 8.8°
B2 32554.0 840.120 180.0 12.1 °
B3 13104.0 456.010 180.0 9.0°
B4 13331.0 459.060 180.0 9.2°
B5 33010.0 737.640 180.0 14.0°
FI 43756.0 471.060 lS0.0 27.3°

B1-1 20069.0 275.000 37.5 62.8 0

B2-1 42069.0 214.660 37.5 79.2°
B3-2 31114.0 274.440 37.5 71.r
84-3 32411.0 229.780 37.5 75.1 0

Notes:
( [ ) The units of walls SWla to SW20 arc Ton em.
(2) The units of walls RI, R2, BI to B5, Fl, BI-I, B2-1, B3-2, and B4-3 ;.ire inch

kips.

concrete stress strain model, with a modified )., is used. This model's usc is limited to

walls that have negligible bending.



4. Summary of Observations. The monotonic load deformation response of

reinforced concrete shear walls is influenced by many parameters. Several of these

parameters are discussed below.

The monotonic load deformation response for shear walls with four different wall

cross sections is calculated. These are 1) rectangular walls, 2) rectangular walls with

extra reinforcing steel, 3) barbell shaped walls, and 4) flanged walls. Whenever

concrete and steel are added to the edge of a wall, the bending capacity is increased.

For taller walls, R 1, R2, B1 to B5 and F 1, the increased bending capacity is matched

by a larger moment. For low-rise walls, Bl-l to B4-3, the increased bending capacity

forces shear to dominate the behavior of the wall. Flanged cross sections provide the

additional complicating factors of shear lag, and effective flange shear area.

Vertical web reinforcing steel ratios varied from 0.28% to 0.78%. All else being

equal, as the web reinforcement increased, the walls became stronger and lost ductility.

For walls without boundary columns or flanges, the strength of the wall is sensitive to

the vertical web reinforcing steel ratio.

Horizontal web reinforcing steel ratios varied from 0 to 1.14%. All else being

equal, as the amount of horizontal web steel increases, the strength increases.

Omission of the horizontal web steel decreases the ductility. Thus while not included

in the analytical model, horizontal web steel has an important role in low-rise walls.

For taller walls horizontal expansion becomes important, and the horizontal web

steel acts as stirrups to resist shear. This behavior is not included in the analytical

model and is partially responsible for the analytical model overestimating the strength

of walls B2, B5 and Fl. Walls RI, R2, Bl, B3 and B4 are dominated by bending, thus

the influence of horizontal expansion is not as evident.
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For any given wall cross section, varying the height to width ratio can shift the

wall's behavior from pure bending to pure shear. Walls with height to width ratios

between 0.5 and 2.4 are in good comparison with the analytical model.

The shear bending influence angle, t/J, is used to determine the relative influence

of shear and bending on a wall. Calculated values of the shear and bending influence

angle ranged from 7.6° to 79.2° for the walls studied. This indicates that the proposed

model is tested over a wide range of different wall behaviors. When the bending

component is strong, t/J < 30°, the analytical model compared very well with the

experimental results. When shear dominates the response, t/J > 60°, the analytic::J.l

model has some difficulty predicting the yield load, failure load. and failure ductility.

The behavior in the high shear range, t/J > 60°, is a recommended topic for further

research.
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IV. HYSTERESIS RULES FOR ISOLATED SHEAR WALLS

Hysteresis models are used to represent the cyclic behavior of materials, elements

and building components. A good hysteresis model will capture the essential behavior

of the element (force-deformation relationship, energy dissipation) yet remain as simple

as possible to facilitate efficient numerical computation.

Many material hysteresis models have been proposed for metals, ranging from the

simple, elasto-plastic model, to the complex Ramberg-Osgood model. These models

have been extended to represent the element's behavior. Similarly, hysteresis models

have also been developed for plain concrete (71, 50). However, because of the

interaction with reinforcing steel, the plain concrete hysteresis model cannot be used

to represent the behavior of reinforced concrete elements.

The cyclic behavior of a RIC beam differs from both the steel and concrete

models. Takeda, et al (75) tested a series of cantilever beams and developed a

hysteresis model for bending. Takeda's model has a trilinear backbone curve (crack,

yield and ultimate), a one segment variable stiffness unloading curve, small amplitude

hysteresis loops and large stable hysteresis loops without pinching. Many researchers

have used Takeda's model, or modified versions of the model, to study the response

of RIC frames (70,62,63,21) and tall coupled shear walls (32, 69,51).

The Shina model (70) is a Takeda-like model that was developed to include the

pinching behavior due to bond slip in RIC beam column joints. Hiraishi (44) proposed

using this model to study the pinching behavior of R/C shear walls.

Kabeyasawa, et al (49) analyzed a tall RIC shear wall with boundary columns as

part the analytical studies for the full scale seven-story test structure. A hysteresis

model that assumes the loading and unloading paths pass through the origin was used

for both the bending and shear deformations of the wall's web. The origin orientated
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hysteresis model does not dissipate energy. Boundary columns were modeled with a

separate axial stiffness hysteresis model.

In this chapter, separate bending and shear hysteresis models are developed for

low-rise shear walls. These hysteresis models are verified by comparison with the

experimental response of five low-rise shear walls. An axial hysteresis model,

developed by Kabeyasawa, et al (49), is also discussed.

A. SHEAR A:\O BE~OI~G HYSTERESIS \10DELS

The following semi-empirical bending and shear hysteresis models are based on

:\CKL shear walls SWla, SW3, SW4a, SW5 and SW6. Walls SWla and SW4a were

subjected to one sided cyclic loading as shown in Figure 3. Walls SW3 and SW6 were

subjected to an earthquake type loading as shown in Figure 4. Wall SW5 was

subjected to a two sided cyclic loading as shown in Figure 5. The shear and bending

deformations were separated using Equations 2.9 and 2.20. The individual components

of deformation were studied. Trends were observed in the experimental data and

synthesized inco hysteresis rules. Each of these hysteresis rules is presented in detail

and discussed below.

The bending hysteresis model is shown in Figure 63, and the shear hysteresis

model is shown in figure 64. Both hysteresis models consist of eleven rules. Several

of the more prominent features of the bending and shear hysteresis models are:

• Both hysteresis models have a highly nonlinear backbone curve, without well

defined break points as shown by rules B1.1 and S1.1 In Figures 63 and 64,

respectively. Typically six to ten points are required to accurately descrihe the

backbone curve. The curve is symmetric for both positive and negative loadings.

An analytical method for calculating the backbone curve was presented in Chapter

III.
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• The unloading branch for both hysteresis models is represented by three linear

unloading segments as shown by rules B1.2, B1.3 and B1.4 in Figures 63 and rules

51.2,51.3 and 51.4 in Figure 64. Each unloading segment has an empirical stiffness

which degrades with various levels of displacement.

• When the wall is cycled at a constant load, near the ma~imum past load, the

deformations tend to increase with cach cycle. When the wall is cycled well below

the maximum past load, the hysteresis loops are stable. Thus both hysteresis

models reduce the reloading stiffness for loads near the maximum past load. The

rate of bending stiffness reduction is cycle dependent, with less stiffness on the first

cycle than on subsequent cycles. The shear stiffness reduction is cycle independent.

• The reloading curve of the shear hysteresis model is dominated by pinching. The

pinch is highly nonlinear and is represented by three linear segments, as shown by

rules 51.8, 51.9 and 51.7 in Figure 64. The stiffness of each segment is dependent

on the maximum past displacement.

• The energy absorption increases with increasing peak displacements. This is

accomplished in the hysteresis model by varying the unloading and loading

stiffness. However, the energy absorption of the shear hysteresis model is less than

the bending hysteresis model because of pinching.

Both the bending and shear hysteresis models are posed in terms of load and

displacement, because they were derived directly from experimental load-displacement

test data. However, the hysteresis models are often used in terms of moment and

rotation or shear and shear strain (see Chapter V). This is possible by directly

substituting moment or shear for load, and rotation or shear strain for displacemcnt in

the respectivc hystcrcsis models. All of the empirical stiffnesses arc normalized with

respect to the initial stiffness and cracking displacement. Thus these values are also

converted to moment-rotation, or shear-shear strain form.
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In both hysteresis models, loading, unloading and reversal are terms used to

define the state of the applied load. Loading is defined as increasing the absolute value

of the applied load as shown by load paths a-A and B-C in Figures 63 and 64. When

the absolute value of the load decreases, the wall is unloading as shown by load paths

A-B and C-D in Figures 63 and 64. A load reversal occurs when the load changes

direction from one load step to another. For example, in Figures 63 and 64 the load

path A·B is unloading from a positive load, load path B-C is loading with a negative

load, and point B is the load reversal point. Load path B-C in Figures 63 and 64 is

referred to as loading after unloading from the opposite direction (load path A-B).

Load path D-E in Figures 63 and 64 is referred to as reloading after unloading from

the same direction (load path C-D).

Both hysteresis models utilize the variable DIR, which indicates the sign of the

load (positive or negative) and the status of the current load path (loading or

unloading). Thus in Figures 63 and 64, 0 IR = I represents loading with a positive

load, as shown by load path a-A, 01 R = 2 represents unloading with a positive load,

as shown by load path A-B, DIR= 3 represents loading with a negative load, as shown

by load path B-C, and DIR = 4 represents unloading with a negative load, as shown

by load path C-O. Another variable DIRL is the value ofDIR from the previous load

step.

Both hysteresis models utilize many common variables such as P, the current

load, D, the current displacement, and K, the stiffness of the wall. The numerical values

of these common variables are not equivalent. The bending displacement, D, used in

the bending hysteresis model is quite different from the shear displacement, D, used in

the shear hysteresis model. There is an implied subscript 'b' on each variable used with

the bending hysteresis model.
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Because the calculations for a load cycle are tedious, the hysteresis rules are

intended to be used as part of a computer program. Each rule is prefaced with several

logical tests. If these tests are satisfied, the rule is executed. If the logical test are not

satisfied, the next rule is examined. The rules are examined in order, from Rule 0

through Rule II. The hysteresis rules are summarized in Table XI. The stiffnesses in

Table XI are defined in the hysteresis rules and are provided here for reference.

Table XI. SUMMARY OF HYSTERESIS RULES

Bending Shear

Rule # Stiffness Rule # Stiffness Description

BI.O SI SI.O SI Elastic Behavior
B1.1 * S1.1 * Loading on the Backbone Curve
BI.2 SI SI.2 SI l.inloading
B1.3 S2 SI.3 S2 L'nloading
BI.4 S3 SI.4 S3 Unloading
B1.5 * S1.5 * Unloading inside small amplitude loops
B1.6 SL SI.6 Sl Reloading after unloading from the same

direction
B1.7 * S1.7 * Reloading toward the cornmon point
B1.8 SR SI.8 SRI Reloading after unloading from the opposite

direction
B1.8.1 S' Reloading after unloading from the opposite

direction
B1.9 * SI.9 SR2 Reloading after unloading from the opposite

direction
Bl.1O * SI.IO * Reloading above the cornman point
Bl.ll SR Sl.ll.l SRL Reloading inside small amplitude loops

SI.l1.2 SXl Reloading inside small amplitude loops
S1.11.3 SRL Reloading inside small amplitude loops
S1.11.4 SXl Reloading inside small amplitude loops
S1.I1.5 SX2 Reloading inside small amplitude loops
S1.11.6 SRL Reloading inside small amplitude loops

Note:
* The stiffness is defined by an equation in the hysteresis rule.
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1. Loading on the Backbone Curves. In Chapter III, the bending and shear

backbone curves were developed. These curves are nonlinear, without well defined

break points. In both hysteresis models the backbone curves are represented by a

senes of piecewise linear segments. Rules B1.1 and S1.1 address loading on the

backbone curve.

When a virgin wall is loaded, the first significant change in stiffness occurs when

the first crack forms in the wall. The load and displacement at this point arc denoted

by Pc and Dc, for cracking load and cracking displacement. Thus the first point on the

backbone curve is the cracking load. When a virgin wall is loaded below the cracking

load, its behavior is elastic. Rules B1.0 and S1.0 address loading and unloading in the

clastic range.

a. Bending Hysteresis Model, Rules B1.0 and Bl.l. The bending backbone curve

is divided into a series of piecewise linear segments that join '\B points, as shown in

Figure 65. Define the first point as the bending cracking load. PB(l) = Pc. DB( I) = Dc,

where PB and OB are arrays containing the backbone curve; P and 0 signify the load

and displacement at the current point.

Assuming that the analysis begins with a virgin wall, the first time the hysteresis

model is accessed, RULE=O. RULE is a variable that contains the previous rule

number that the hysteresis model executed.

For the clastic region, rule B1.0 sets the current bending stiffness, K, to the initial

bending stiffness, SI, where

SI =.i£..
Dc
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In the elastic range, the wall can experience both loading and unloading. Once the wall

has cracked, loading continues on the backbone curve.

Thus the bending hysteresis model rules B1.0 and B1.1 are

Rule B1.0 Elastic behavior

If 1) RULE = 0, and

2) IPI < Pc

Then

K = SI

RCLE = B1.0

Rule B1.1 Loading on the backbone curve

If I) (BACKB=true or RLLE=O), and

2) DIR= 1 or DIR= 3

Then

Determine j, such that PB(j - I):::; Ipi:::; PB(j)

K = PBm - P
DB(j) - D

A = PB(j)

IR = 0

BACKB= true

RULE = Bl.I

BACKB is a logical variable that signifies whether the loading is on the backbone

curve, or on a hysteresis loop. The variable A denotes the load where the stiffness will

change, if loading continues in the same direction. The variable IR, is a counter for

the number of small amplitude loops used by rules B1.5 and B1.11, which is discussed

later. Setting IR = 0 signifies that there are no small amplitude loops currently active.
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b. Shear Hysteresis Model, Rules SI.O and SI.1. The shear backbone curve is

also similarly divided into a series of piecewise linear segments that join NS points as

shown in Figure 65. Define the first point as the shear cracking load, PS( 1) = Pc,

DB( 1) = Dc; P and D represent the shear and shear displacement, respectively, at the

current point. Similar to the bending backbone curve, RU LE = 0 the first time the

hysteresis model is accessed.

For the elastic region, rule S1.0 sets the current shear stiffness, K, to the initial

shear stiffness, SI,

Sl=~
Dc

(4.2)

In the elastic range, the wall can exp.erience both loading and unloading. Once the wall

has cracked, loading continues on the backbone curve.

Thus the shear hysteresis rules S1.0 and S1.1 are

Rule S1.0 Elastic behavior

If 1) RCLE= O,and

2) IPI < Pc

Then

K = 51

RCLE = SI.O
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Rule S1.1 Loading on the backbone curve

If 1) (BACKB=true or RULE=O), and

2) DIR= 1 or DIR= 3

Then

Determine j, such that PS(j - 1)::; IPI::; PS(j)

K = PS(j) - P
DS(j) - D

A = PS(j)

IR=O

BACKB= true

RCLE = S1.1

Similar to the bending hysteresis rules B1.0 and B1.1, BACK B is a logical variable

that designates loading on the backbone curve. The variable A denotes the load where

the stiffness will change if loading continues in the same direction. The variable IR is

a counter for the number of small amplitude loops used by rules S1.5 and S1.11, which

is discussed later.

2. Unloading in the Nonlinear Range. Typical bending and shear unloading

curves for ~CKC wall SWla are shown in Figure 66. The initial unloading range has

a high stiffness. As the load decreases, the stiffness also decreases resulting in a

nonlinear unloading curve. As the maximum displacement increases, the unloading

stiffness decreases. Insight into this nonlinear behavior is gained by exarrunmg

separate bending and shear unloading mechanisms.

F:xamine the loaded shear wall in Figure 67 to determine the unloading

mechanism for bending deformation. The wall has uniformly distributed longitudinal

reinforcing steel. On the right side of the wall concrete is in compression, while steel
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is m tension on the left side of the wall. As the load P is reduced the concrete

rebounds. From Karsan and Jirsa's (50) studies on the hysteretic behavior of plain

concrete as shown in Figure 68:

• The initial unloading range has a high stiffness.

• As the loading decreases, the stiffness of plain concrete also decreases.

• As the maximum strain increases, the unloading stiffness of plain concretc

dccrcases.

The unloading curve for plain concrete has the same general shape as the unloading

curve for bending deformation. Thus the nonlinear unloading curve for bending

deformation is partially due to the unloading behavior of concrete.

The steel stress distribution in the loaded wall is not linear. Examine nllo bars,

#1 and #2 in Figure 69a. Before unloading begins bar # I is in its plastic stagc, while

bar #2 is elastic as shown in Figure 69b. As the wall is unloaded, bar #1 rebounds to

zero stress while the wall still has a positive curvature as shown in Figurc 69c. :\otc

that bar #2 still has tensile stress and the unloading path of both bars is lincar as shown

in Figure 69b. The wall has tension on the left side and comprcssion on the right, thus

the moment still is greater than zero. Unloading the wall to zero moment comprcsscs

bar # I as shown in Figure 69d, while bar #2 is in tension and the concrete on the right

side is still in comprcssion. Since the unloading path for both bars is lincar, the

load-deformation relationship due to the stcel bars is also linear. Thus while the

rcinforcing steel unloading stress distribution is interesting, it is not the causc of thc

nonlinear unloading behavior for bending deformation.

The unloading mechanism for shear deformation is also closely related to the

unloading curve for plain concrete. Figure 70 shows a shear wall with shear

deformations. The major load resisting mechanism is the concrete struts, parallel to
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Figure 68. Hysteretic Behavior of Plain Concrete (Ref. 50)
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.-,::...--+__- Ccncre1e Strut in Compressioo

Tension and Dowel Action of Steel Across Open Crack

Figure 70. Deformation of a Loaded Shear Wall Due to Shear

142



the concrete cracks. Tensile steel at an angle to the cracks ties the struts to the base

of the wall. As the lateral load is reduced:

• The concrete compression strut will rebound. Recall the unloading curve for plain

concrete is nonlinear as shown in Figure 68. The unloading behavior of the wall's

shear deformation is similar to the plain concrete behavior.

• The bars across the cracks will rebound. As seen previously, the rebound of all the

reinforcement will be linear. Thus the walls rebound due to steel will also be linear.

Therefore, the unloading mechanism for shear deformation is primarily due to concrete

rebound.

The unloading mechanism for combined shear and bending deformations is more

complicated than the simple bending and shear mechanisms presented above. Two of

the complicating factors are:

• The same concrete must act as both the compression strut, and as a compression

element for bending. Thus the concrete is in a state of biaxial stress. Recall the

plain concrete stress-strain model as shown in Figure 68 is for uniaxial stress.

• As the wall is unloaded, the cracks close. Since concrete expands under shear

strains, the cracks will close at a larger tensile strain than they opened at. Thus.

the stress distribution in Figure 69d will be altered.

Until reliable biaxial cyclic stress-strain models are developed, and the crack closing

point can be accounted for, it is not feasible to quantitatively calculate the actual

unloading curve.

Thus. an empirical unloading curve for both hysteresis models is developed with

the following attributes:

• The unloading stiffness decreases with the load level. This requirement precludes

the use of a single linear unloading curve.
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• The amount of rebound increases with the maximum past displacement. This is

because the rebounding mechanism is dependent on the strain level, which increases

with the maximum past displacement.

• To provide continuity \\1th the elastic case, the unloading stiffness near the

cracking load and displacement is approximately 51.

a. Bending Hvsteresis \1odel, Rules B1.2, 81.3, and B1.4. The semi-empirical

bending unloading curve is a set of three linear segments, with stiffness 51, 52, and 53

as shown in Figure 71. The limiting case for the unloading stiffnesses is shown in

Figure 72, and will be discussed later. The break points between the linear segments

of 75% PM. and 25% PM were chosen by inspection. Linear segments were fitted to

the test data for walls SWla, SW4a and SW5 as shown in Figure 66. Experimental

stiffnesses were determined, and normalized by dividing by the initial stiffness. The

shape of the unloading curves is similar for both positive and negative loadings, even

when the loading pattern is non-symmetrical. Thus, the maximum absolute value of

past displacement, in either direction, Dmax, is used to determine the unloading

stiffnesses. Dmax is also normalized by dividing by the cracking displacement. The

unloading stiffnesses, 51, 52, and 53 were obtained by curve fitting, as shown in

Figures 73 through 75.

(
0 )0.294

51 = 51 c
Dmax

52 = 51 (0.8344 Dc + 0.1656)
Dmax

53 = 51 (0.9092 Dc + 0.0908)
Dmax

1<14

(4.3)

(4.4)

(4.5)
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Note that while the test data has considerable scatter, the empirical relationships for

5 I, 52, and 53 capture the trends of the test data.

Define the load and displacement at 75% of the maximum past load as

Q3 = 75!?/0 P\1 DQ3=DM _ 25% PM
51

(4.6)

where P\1 and OM are the maximum past load and displacement in the current

direction as shown in Figure 71. PM and 0\1 may be either positive or negative. The

load and displacement at 2Y% of the maximum past load is

QI = 25% P\1 OQI = OQ3 _ 50% P\1
52

(--l.7)

and the displacement at zero load is

DO' = OQ3 _ 25% P\1
53

(4.8)

The unloading stiffnesses in Equations 4.3, 4.4 and 4.5 do not guarantee that the

sign of the zero load displacement, DO', is the same as the sign of the maximum past

displacement, OM, as shown in Figure 72. This type of behavior was not observed in

the experimental data. Thus the unloading stiffness is restricted such that DO' :2: DO

when unloading from positive loads, and DO's:; DO when unloading from negative

loads. DO is the displacement intercept of a line connecting the peak displacements

of both the positive and negative loadings, and is given by

OMpos - OM neg
DO = OM - P:Y1---___.-­

P\1pos - P\1neg
(4.9)

where (OMpos' PMpos) are the maximum past displacement and load for positive

loading, and (OM neg, P\1neg) are the maximum past displacement and load for
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negative loading. The inequalities (DO';;;::: DO: positive unloading, DO':::;DO: negative

unloading) are satisfied by limiting the unloading stiffnesses S2 and S3., Define the

limiting slope between (DQ3, Q3) and (DO, 0) as

Q3
S02 = DQ3 _ DO SI ;;;::: S02;;;::: 0 (4.10)

and the limiting slope between (DQI, QI) and (00,0) as

QI
503 = DQI _ DO 51 ~ 503 ~ 0 (4.11 )

Initially, set SC = O. This is a limiting stiffness that is determined by the small

amplitude rule, B1.5 and is discussed later.

Thus, rules B1.2, B1.3, and B1.4 are

Rule B1.2 Unloading above 75% P\1

If 1)(DIR=2orDIR=4),and

2) IP I ~ IQ31. and

3) IR= 0

Then

K = max(SI, SlJ)

A = Q3

RULE = BI.2

~50



Rule Bl.3 Unloading between 75% and 25% P\1

If I) (DIR=2orDIR=4),and

2) IQ31 2 Ipi 2 IQ II. and

3) IR=O

Then

K = max(S2, S02, SU)

A = QI

RCLE = BL3

Rule B1.4 l' nloading below 25~/o p\;f

If I) (OIR= 2 or DIR=4), and

2) IQI I 2 Ip l. and

3) IR=O

Then

K = max(S3, S03, SC)

/\=0

RCLE = B1.4

b. Shear Hvsteresis \;fadel, Rules SL2, SL3 and S1.4. The semi-empirical shear

unloading curve may be either bilinear or trilinear depending on the maximum previous

loading. When the maximum past load in the current direction is between Pc <.md

ISO~/O Pc the unloading curve is bilinear as shown in Figure 76. The first segment is

described by rule S 1.2, has a stiffness of S I, and acts over the load range of Pc. The

second segment is described by rule S1.4, has a stiffness of 53, and acts over the

remainder of the load.

When the maximum past load is greater than 150% Pc, the unloading curve is

trilinear as shown in Figure 76. The first segment is described by rule S 1.2, has a

1S 1



stiffness of 5 I, and acts over the load range of Pc. The second segment is described

by rule 51.3, has a stiffness of 52, and unloads to 50% Pc. The third segment is

described by rule 5 I .4, has a stiffness of 53, and acts over the remainder of the load.

A special case of the unloading rules is shown in Figure 77 and is discussed later.

The unloading stiffness for SI, 52 and 53 are obtained by curve fitting

experimental data for NCKU walls 5Wla, SW3, 5W4a, 5W5 and 5W6 as shown in

Figures 78, 79, and 80. The shape of the unloading curves is similar for positive and

negative loadings, even when the loading pattern is non-symmetric. Thus, the

maximum absolute value of the past displacement, Dmax, in either direction, is used

to determine SI, 52 and S3. The expressions for the unloading stiffnesses are

( )
0.343

51 = 1.467551 Dc :s; 51
Dmax

(
D' )0.3195

52=.776151 D C
max

53 = 51(.0707 + 1.369 DC) ~ 51
Dmax

(4.12)

(4.13)

(4.14)

Similar to the unloading bending stiffness, the unloading shear stiffness has been

normalized with respect to the initial stiffness and Omax has becn normalizcd with

respect to the cracking displacement.

When unloading with a positive load, 0 IR = 2, dcfinc point ':\' betwcen S1 and

52, and point 'B' between 52 and 53 as

PA=PM-Pc

PB = min(PA, ~c)

OA = OM _ Pc
51

DB = DA _ PA - PB
52
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where points 'A' and 'B' are shown in Figure 76. When unloading with a negative load,

DIR = 4, define points 'A' and 'B' as

PA=P\1+Pc

-Pc
PB = max(PA, -2-)

DA = 0\1 + Pc
51

DB = DA _ PA - PB
52

(4.16)

The displacement at zero load, DO' is

DO' = DB _ PB
53

(4.17)

Similar to the bending unloading rules, the unloading stiffnesses in Equations

4.12, 4.13 and 4.14 do not guarantee that the sign of the zcro load displaccment. DO'.

is the same as the sign of the maximum past displacement, 0\1, as shown in Figure

77. This type of behavior was not observed in the experimental data. Thus thc

unloading stiffness is restricted such that DO' ~ DO \vhen unloading from positive

loads, and DO' :::;; DO when unloading from negative loads. DO is the displacement

intercept of a line containing the peak displacements of both the positive and negative

loadings, and is given by

(

O\1pos - DM neg )
DO = 0\1 - P\1

P\1pos - P\1neg
(4.1 ~)

where (DMpos' P\;(pos) are the maximum past displacement and load for positive

loading, and (OM neg, PM neg) are the maximum past displacement and load for

negative loading. The inequalities (00':2:00: positive unloading, DO' ::;;00: negativc

unloading) are satisfied by limiting the unloading stiffnesses S2 and 53. The limiting

stiffness between points 'A' and (00,0) is

S02 = PA
DA - DO'

SI :2: S02 > 0

157
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and the limiting stiffness between points 'B' and (DO,O) is

S03 = PB
DB - DO'

SI ~ S03 > 0 (4.20)

Initially, set SU = O. SU is a limiting stiffness used by the small amplitude loops in

rules S1.5 and S1.11.

Thus, the shear hysteresis rules S1.2, S1.3 and S1.4 arc

Rule S1.2 Cnloading between P\1 and PA

If 1)(DIR=2orDIR=4),and

2) IpI> IPA I. and

3) IR=O

Then

K = max(SI, SU)

A = PA

RCLE = S1.2

Rule S 1.3 Cnloading between PA and PB

If 1)(DIR=2orDIR=4),and

2) 1PA I ~ IpI> IPB I, and

3) I R = 0

Then

K max(S2, S02, SU )

A = PB

RLLE = Sl.3
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Rule 51.4 Unloading below PB

If l)(DIR=20rDIR=4),and

2) IPB I ~ IPI, and

3) IR=O

Then

K = max (53, S03)

A=O

RCLE = Sl.4

3. Reloading after C nloading from the Same Direction. Several typical bending

and shear reloading curves for :,\CKC wall SW4a are shown in Figure 81. Initially,

these curves have a high stiffness. As the reloading progresses, the stiffness decreases.

At a point near the maximum previous load, the unloading curve and the reloading

curves intersect. The reloading mechanisms for both bending and shear deformations

are similar to the unloading mechanisms.

Consider the bending deformation of the wall in Figure 82. After unloading and

prior to reloading, the wall has 1) steel and concrete in compression at opposite edges

of the wall, 2) steel in tension in the center of the wall, and:» existing f1exural cracks.

As the lateral load, P, is reapplied from the zero loading position, the concrete on the

compression side of the wall is reloaded. Again, refer to the concrete reloading

behavior of plain concrete as shown in Figure 68. Initially, the concrete reloading

branch has a high initial stiffness. As reloading progresses, the concrete stiffness

decreases. At a load level near the previous maximum past load, the rcloading and

unloading branches intersect. This intersection is called the 'conunon point' (50). The

behavior of the bending curve's reloading branch is similar to the reloading branch for

plain concrete.
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Likewise, consider the shear deformation of a wall subject to reloading in Figure

83. Prior to reloading, diagonal cracks exist in the wall. As the wall is reloaded, the

concrete compression strut resists the applied shear. The stiffness of this strut is similar

to plain concrete upon reloading, as shown in Figure 68. As previously discussed, plain

concrete upon reloading has a high initial stiffness, which decreases with applied load.

At the common point, the unloading and loading branches intersect. Again the

behavior of the shear deformation mechanism is similar to the behavior of plain

concrete.

It can be qualitatively shown that the bending and shear deformation rcloading

curves are nonlinear, '""ith a high initial stiffness that decreases with reloading.

However, a good quantitative model is not available due to uncertainties in material

models, crack width and distribution, and the interaction between shear and bending.

Thus an empirical reloading curve is used for the bending and shear hysteresis models.

a. Bending Hysteresis \1 odel Rules B1.6 and B1. 7. The reloading curve as shown

In Figure 84 consists of two linear segments. The lower segment is defined in the

bending hysteresis model by rule B1.6, and has a stiffness SL, that was empirically

determined by examining walls SWla and SW4a as shown in Figure 85.

(
D' )0.285

SL = SI c
Dmax

(4.21)

Similar to Sl, S2 and S3, SL is a function of the maximum past displacement in either

direction and is also normalized with respect to SI and Dc. While the test data has

considerable scatter, SL captures the trend of the data.

The stiffness SL terminates at 3)1% Pc. The coordinates of this point are (DC3,

PC3). For reloading with a positive load, DIR= 1,

1C,2
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PC3 = Pc
3

DC3 = max(DO', DO) + Psi 3 (4.22)

and for reloading with a negative load, D IR = 3,

PC3 = -Pc
3

DC3 = min(DO', DOy + ~i3 (4.23)

where DO' and DO were calculated by rules B1.2, B1.3 and B1.4, Equations 4.8 and 4.9.

The loading and unloading curves were observed to intersect near 95% of the

previous maximum load. This 'common point' has the coordinates (D2,P2),

P2 = 95~/o P\1, D2 = D\1 _ 5% P\1
SI

(4.24)

where S I is the unloading stiffness for rule B1.2, Equation 4.3. If the wall is un cracked

in the current direction then the common point is eq ual to the crack point

I fl D \11 ::; Dcthen P2 = Pc, D2 = Dc (4.25)

The upper segment of the reloading curve connects the terminal end of the lower

segment and the common point, and is defined in the bending hysteresis model by rule

B1.7.

Thus the bending hysteresis model reloading rules B1.6 and B l.7 are
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Rule B1.6 Reloading below Pc after unloading from the same direction

If 1) [(OIR = 1 and OIRL= 2) or (OIR = 3 and OIRL = 4)], and

2) !pi < IPC3! , and

3) IR=O

Then

K=SL

A = PC3

RULE = B1.6

Rule B1.7 Reloading towards the common point

If 1) (OIR= 1 or OIR= 3), and

2) !pC31 :::;; IPI:::;; IP21, and

3) IR=O

Then

K = P - P2
0-02

A = P2

RULE = B1.7

b. Shear Hysteresis \1 odel, Rules S 1. 6 and S l.7. The shear reloading curve is

also represented by two linear segments. Inspecting the test data reveals that the

stiffness of the lower segment is similar to the unloading stiffness S1, acting over a load

range of 50~/o Pc. This segment is represented hy rule SJ.6 as shown in Figure 86. The

coordinates of its terminal point, for positive reloadings, are given by

pe2= 50% Pc OC2 = max(OO' 00) + PC2
, S1

lG6

(4.26)
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and rornegative reloadings, are given by

PC2= - 50% Pc DC2 = min(DO', DO) + P~2 (4.27)

where DO', DO and SI, defined by rules S1.2, SI.3 and S1.4, were expressed In

Equations 4.17, 4.18 and 4.12, respectively.

Similar to the bending hysteresis model, the common point is observed to be at

95~/o of the past maximum load. Let the coordinates (D2, P2) designate the common

point, where

P2 = 95~/o PM, (4.28)

If the wall is uncracked in the current direction, then the common point is equal to the

crack point

If IOMI :::; Dc then P2 = Pc, 02 = Dc (4.29)

The second segment, represented by rule 51.7, loads to the common point as shown in

Figure 86.

Thus the shear hysteresis model rules S1.6 and S1.7 are

Rule S1.6 Reloading below 50% Pc after unloading from the same direction

If I) [(DIR= I and DIRL=2) or(DIR=3 and DIRL=4)]' and

2) Ipi < IPC2!. and

3) IR=O

Then

K = SI

RULE = 51.6
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Rule S1.7 Reloading towards the common point

If 1) (DIR== lor DIR== 3), and

2) [50 % Pcs IPI < 195 % PMI and LAST RCLE=S1.6], or

[75 % Pcs IPI < 195 % PMI and LAST RLLE=51.9]

Then

P2 - P
K = 02 - D

A = P2

RULE = 51.7

4. Reloading after Cnloading from the Opposite Direction. Typical bending and

shear reloading curves for NCKU wall 5W6 are shown in Figure 87. The bending

deformation curve loads towards the maximum past deformation, forming large stable

hysteresis loops. The hysteresis loops for the shear deformation are pinched.

Examining the bending and shear reloading mechanisms may explain their difTerent

behavior.

For bending deformation, the state of the wall after unloading is shown in Figure

88; concrete is in compression at the old compression edge, steel is in tension in the

middle of the wall, and at the old tension edge steel is in compression, while the cracks

in the wall remain open. As the wall is loaded in the new loading direction:

• Initially the old tensile cracks are open, yielding a stiffness similar to the old

unloading stiffness 53 as shown in Region A of Figure 89.

• As the cracks on the old tension side close, the stiffness Increases as shown in

Region B of Figure 89.

• As the new tension side cracks open and bars on the new tension side yield, the

stiffness decreases as shown in Region C of Figure 89.
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Thus the bending reloading curve, A-B-C in Figure 89, has a slight pinching behavior.

Park, et al. (64) calculated a similar pinching behavior for RIC beams subject to cyclic

bending loads. The pinching observed in the bending deformation of :\,CKC walls is

minor. This is due to the presence of shear. At low load levels, the wall slides as shown

in Figure 90. This closes the old tension cracks on the wall at a lower load level than

bending deformations alone would. Thus the wall reloads on path A-C in Figure S9.

The bending reloading curve is represented by a single line connecting the reversal

point and the common point.

The shear deformation behavior upon reloading after reversal is dominated by

pinching at low load levc1s. Recall that after the wall is unloaded, the diagonal cracks

are open, as shown in Figure 91. As the wall is loaded in the new loading direction:

• The steel across the open cracks goes into compression. The stiffness of the steel

across the cracks is low compared to the concrete compression strut, resulting in a

low initial stiffness as shown in Region A of Figure 92.

• Before the old cracks close completely, cracks parallel to the new compression strut

open up. At this stage, the wall slides across the open cracks, producing a very low

stiffness as shown in Region B or Figure 92.

• As the old cracks close the stiffness increases as shown in Region C of Figure 92

because I) the sliding mechanism is inhibited, and 2) concrete rather than steel

carries the majority of the compressive loads. This point is called the crack closing

point.

Thus the shear deformation behavior for reloading after reversal is pinched.

The bending and shear behavior for reloading after reversal are dependent on

crack width, crack location and sliding across cracked surfaces. Since these values arc

very difficult to calculate, it is not feasible to quantitatively predict the loading

behavior of a shear wall. Thus semi-empirical models are used.
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a. Bending Hysteresis Model, Rules B1.8 and B1.9. The reloading curve for the

bending hysteresis models is represented by a single line connecting the reversal point

and the common point as shown in Figure 93. The reloading stiffness is given by

P2
SR= D2-DR (4.30)

where DR is the displacement of the load reversal point and (D2,P2) are the

coordinates of the common point, Equation 4.24 or 4.25. Rule ill.8 represents

reloading after reversal.

Additional considerations are:

• When reloading after a very small loop in the opposite direction, the behavior

should be similar to reloading after unloading from the same direction, rules B1.6

and B1. 7 as shown in Figure 94. Recall that the transition point between rules B1.6

and B1.7 is (DC3,PC3), Equations 4.22 and 4.23. For very small loops in the

opposite direction, reloading towards the common point (D2,P2) will generate a

smaller loop than reloading with rules B1.6 and B1.7 as shown in Figure 94. To

prevent this, the larger of the stiffnesses from the load reversal point, DR. to

(D2,P2) or (DC3,PC3) is used for the reloading stiffness. Let

S' = PC3
DC3 - DR

~4.31)

be the stiffness from the current point to (DC3, PC3). If the stiffness from the

reversal point to (DC3,PC3) is larger, rule B1.8.1 is used to load up to PC3, and

rule B1. 7 is used to load beyond PC3.

• When loading from a large displacement in one direction to a small displacement

in the opposite direction, a pinched loop may occur in the hysteresis model as

shown in Figure 95. This pinched behavior was not observed in the experimental
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test data. To overcome this problem, rule B1.9 is used to load to a point tangent

to the bending backbone curve, eliminating the potential pinched behavior.

Thus, the reloading after reversal rules B1.8 to B1.9 are

Rule 81.8 Reloading after reversal

If 1) [(DIR= 1 and DIRL=4) or (DIR=3 and DIRL=2)]' and

2) IPI < IPC3 \, and

3) IR=O

Then

K = SR

A = P2

RULE = 81.8

If (S' :2: K) and (I pi::; IPC31) Then

K=S'

A=PC3

RCLE = 81.8.1

End

If (DIR= I and DR < 0) or (DIR= 3 and DR> 0) Then Go to Rule Bl.9

Rule 8 t.9 Reloading from large to small displacements

Execute this rule after executing Rule 8

For all J, such that PB(J) > Ip\1l, j ::; NB

(
P8(J) )

K = max OB(J) _ OR ' SR

A = PB(J) or P2, whichever yields the maximum value of K.

RULE = 81.9

If A=PB(J), Then BACKB=true

1..., ~
,0
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b. Shear Hysteresis Model, Rules 51.8 and S1.9. An empirical relationship is

used to model the pinching behavior, which consists of two linear segments, and a

transition curve as shown in Figure 96. The stiffness of the first segment, SR, is based

on experimental data for ~CKU walls SW3, SW5 and SW6 as shown in Figure 97.

When the peak displacement is large in one direction and small in the other, the

reloading stiffness, SR, in both directions is similar. Thus the absolute value of the

maximum displacement in either direction, Dmax, is used to determine SR. The

empirical expression for SR is

(
D

)
1.02

SR = SI c
Dmax

(4.32)

While the test data has considerable scatter, the empirical relationship for SR captures

the general trend of the data.

Additional considerations are:

• An upper limit on the reloading stiffness, SR, is the case without pinching. The

stiffness of this upper limit, S, is the slope of the line from the load reversal point

to the common point (D2,P2) as shown in Figure 96, and is given by

S = P2 < SI
D2 - DR -

(4.33)

where DR is the displacement of the load reversal point and the common point

(D2, P2) is given by Equation 4.28 or 4.29.

• When the peak displacement in the current direction (0 \1, P\1) is large. and the

peak displacement in the previous direction is small, the reloading stiffness, SR,

may give an unrealistically low reloading stiffness. Recall the transition point

between rules S1.6 and S1.7 is (DC2, PC2), Equations 4.26 and 4.27. Define the

minimum reloading stiffness
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SR' PC2
= DC2-DR

as the slope of a line from the load reversal point to (DC2,PC2).

(4.34)

• When reloading after a very small loop in the opposite direction, pinching is

negligible and the behavior should be siinilar to reloading after unloading from the

same direction, rules S1.6 and S1.7. Let SRM be the slope of a line from

(De2,PC2) to (D2,P2) or

SRM = P2 - PC2 < SI
. D2- DC2 -

(4.35)

If the upper limit of the reloading stiffness, S, is greater than SRM, then load to

(DC2, PC2) and continue with rule S1.7. This case is similar to rule B1. 8.1.

• The first reloading segment has a stiffness SRI, where

SRI = max(SR', rnin(SR,S)) (4.36)

Assume a bilinear model is used to represent the pinching and the crack closing

point is chosen at PC2. The displacement at the crack closing point is

DC2' = DR + PC2
SRI

(4.37)

The abrupt change of stiffness at (DC2', PC2) may lead to overshooting problems

in the nonlinear analysis. Thus, a transition curve between the two segments is

used to soften the abrupt stiffness change at the crack closing point as shown in

Figure 96. The first segment has a stiffness of SRI, extends from 0 to 25% PC and

is modeled by Rule S1.8. The second segment has a stiffness of

SR3 = P2 - PC2 < SI
D2- DC2' -

130
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extends from 75% Pc to P2 and is modeled by rule S 1. 7. The transition curve has

a stiffness of

SR2 = 2
1 I

SRI + SR3

and extends from 25% Pc to 75% PC and is modeled by rule S1.9.

Thus shear hysteresis rules S1.8 and S1.9 are

Rule S1.8 Loading below 25~/1.l Pc

If I) IPI ~ 25~/0 Pc, and

2) [(DIR= I and DIRL= 3) or (DIR=4 and DIRL= 2)J

Then

K = SRI

A = 0.5 x PC2

RuLE = S1.8

If S 2: SR:"r1 Then Go to Rule S1.6, and omit the first test.

Rule S1.9 Loading between 25% Pc and 75% Pc

If 25'% Pc < Ip I ~ 75'% Pc, and

2) LAST RULE= S1.8

Then

K SR2

A = 1.5 x PC2

RLLE = S1.9
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5. Degrading Under Cyclic Loading. Typical hysteresis loops from NCKU walls

SWla are shown in Figure 98. The experimental data for bending and shear

deformation shows that when the walls were cycled at a constant load above the

common point, the peak displacement increased for each cycle. However, when the

walls were cycled at a constant load below the common point, the hysteresis loops were

stable.

The mechanism for this behavior is partly explained by examining the behavior

of plain concrete as shown in Figure 99.

• When the concrete is cycled below the common point, the maxImum strain

(displacement) does not increase.

• Once the common point has been exceeded, the next loop will be at a larger strain

level.

• As the load is increased past the common point, the loading curve intersects the

backbone curve.

• The common point for plain concrete tends to decrease as the number of cycles

increases.

The behavior of the reinforced concrete shear wall is similar to the plain concrete.

However, the load level of the common point was not observed to decrease as the

number of load cycles increased. Thus the common point is assumed to have a

constant load level for both the. bending and shear hysteresis models.

a. Bending Hvsteresis Model, Rule B1.IO. Degradation above the common point

is modeled by a transition curve between the common point and the backbone curve.

The transition curve passes through the point (aDM,PM) as shown in Figure 100. The

stiffness of the transition curve is determined by the factor a, where a is the increase

in displacement from one cycle to another. NCKU walls SWla, SW4a and SW5 were

examined to determine an appropriate value of a. The average bending stiffness
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degradation is cycle dependent, with a= 1.129 for the first cycle, and a= 1.029 for

subsequent cycles. Thus the bending hysteresis rule B1.10 is

Rule B1.10 Loading above 95% PM, not on the backbone curve

If 1) (OIR = 1 or OIR = 3), and

2) Ipi 2P2, and

3) NOT (BACKB)

Then

a = 1.129- first cycle at a given load

a = 1.029- subsequent cycles below Px

(Dx,Px) = Intersection of line through (D2,P2), with a slope of K,

and the bending backbone curve

K = 5(% P:\1
aDM - D2

A=Px

RCLE = Bl.l0

IR=O

b. Shear Hysteresis Model, Rule S1.10. Similar to the bending hysteresis model,

the degradation above the common point, (02,P2), is modeled hy a transition curve.

The transition curve is described by rule S1.10, and goes between the common point

and the backbone curve. This transition curve passes through the point (aD\1,PM)

as shown in Figure 100. The stiffness of the transition curve is controlled by the factor

a, where a is the increase in displacement from one cycle to another. :'\C KL walls

SWla, SW4a and SW5 were examined to determine an average factor IX = 1.04. For

the shear hysteresis model, the stiffness degradation factor a is not strongly dependent

on the cycle.

Thus the shear hysteresis model rule S1.10 is

1:35



Rule S1.1O Loading above 95% PM, not on the backbone curve

If 1) (DIR= I or DIR= 3), and

2) Ipi :2: P2,and

3) NOT (BACKB)

Then

a = 1.04

(Dx,Px) = Intersection of line through (D2,P2), with a slope of K,

and the shear backbone curve

K = 5% P\1
aDM - 02

A = Px

RULE S1.10

IR=O

6. Small Amplitude Loops. The following trends were observed in the :\CKC

shear wall test data.

• Small amplitude loops below the common point (02,P2) have stable hysteresis

loops as shown in Figures 101, 102, and 103, versus unstable hysteresis loops as

shown in Figure 104.

• Small amplitude hysteresis loops form inside of small amplitude hysteresis loops as

shown in Figure 101.

• Stable loops are formed with reversal, provided that the common point IS not

reached in either direction as shown in Figures 102, 103.

• Unloading in a small amplitude loop is parallel to the large amplitude loop

unloading, except in the region near the previous reversal point as shown in Figures

10 I, 102, and 103. Rules B1.5 and S1.5 model the unloading by determing if the

current point is in the region near the previous reversal point. If so, unloading
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progresses towards the previous reversal point. If not, unloading progresses

parallel to the unloading curve generated by rules B1.2, B1. 3 and B1.4 or S1. 2, S1. 3

and S1.4 as shown in Figure 105

• For the bending model reloading inside of small amplitude loops proceeds towards

the last reversal point as shown in Figure 102.

• For the shear model the pinched behavior of the shear deformation is maintained

by the small amplitude hysteresis loops. Thus, the reloading curve is a function of

both the current displacement and the reversal point as shown in Figure 103.

Rules 5 and II for both the shear and bending hysteresis models are based on these

trends.

Each time thc direction changes in a small amplitude loop the reversal load,

rcversal displacement and a flag are stored in the arrays PR, DR, and FR. A counter

I R contains the current number of reversal points stored. The flag FR contains one

of two values as shown in Figure 106. When the arithmetic value of the load changes

from increasing to decreasing, FR = 'T. When the arithmetic value of the load changes

from decreasing to increasing, FR = 'L'.

a. Bending Hysteresis Model Rules B1.5 and B1.11. Bending hysteresis model

rules B1.5 and Bl.ll are
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Rule B1.5 Unloading inside small amplitude loops

If 1) (DIR= 2 or DIR= 4), and

2) IR~l

Then

Using the last small amplitude loop reversal point CDR(I),PR(I» with

a flag FR(I) such that

[(DIR= 2 and FR(I) = L) or (DIR= 4 and FR(I)= 7)J

If CDIR= 2 and ( P > PR(I) > Q3, or

Q3 ~ P> PR(I) > Ql, or

Ql ~ P> PR(I) > 0 ) ), or

(DIR=4and( P <PR(I) <Q3, or

Q3 ~ P < PR(I) < QI, or

Q I ~ P < PR( I) < 0 »

Then

K = _P_R_C_I)_-_P_
OR(I) - 0

A = PRe!)

RULE = B1.5

If K > SI, or K ~ 0 use the next to last small amplitude loop

point that satisfies the conditions above.

Once unloading continues below A, erase the reversal point I.

Thus IR= IR-I

Else

su = _P_R_O_)-_P_
OR(!) - 0

Go to rule B1.2, B1.3, or B1.4 as applicable. Omit the test IR = O.

}CJl



Rule B1.11 Reloading inside small loops

If IR > 0

Then

Using the last small amplitude loop point (DR(I),PR(I» with a flag

FR(I) such that

[(DIR= I and FR(I)= 7) or (OIR= 3 and FR(I) = L)]

K = _P_R_(_I)_-_P_
OR(I) - 0

A ::: PR(I)

RCLE = BUI

If K > SI or K ~ 0 use the next to last small amplitude loop point that

satisfies the condition above.

Once unloading continues above A, erase the reversal point I.

Thus IR = IR-l

b. Shear Hvsteresis Model Rules S1.5 and S1.11. Cnloading inside small

amplitude shear loops is similar to the bending hysteresis model. IIowever, upon

reloading inside the small amplitude loops, the shear model maintains its pinched

shape. The reloading path with pinching is dependent on both the reversal point and

the current point. Six different reloading paths are discussed below.

If the reversal point (DR, PR) is less than 25% Pc, the reloading is from the

current point to the reversal point with the stiffness

PR(I) - P
SRL= .

OR(I) - 0

192
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where I is the last small amplitude loop point with a flag FR(I) such that (DIR= 1 and

FR(I)=7) or (DIR=3 and FR(I)=L). This case is represented by Rule S1.11.1 and

is shown in Figure 107.

If the loop reversal point is between 25% Pc and 75% Pc, there are two possible

reloading paths as shown in Figure 108 and 109. The reloading stiffness is determined

from Equation 4.40. If SRL ~ SR2, then reload to the intersection of rules S1.8 and

S1.9. Let PC2S and X I represent this point, where

PC2S = PC
2

Xl = DC2' _ PC25
" SRI

(4.41 )

DC2' and SRI are defined in equations 4.37 and 4.36, respectively. The reloading

stiffness becomes

SXI =PC25-P
" XI - 0

(4.42)

This case is defined by rule S1.11.2 and shown in Figure 108. If SRL>SR2, then

reloading proceeds with the stiffness SRL. This case is defined by rule S1.11.3 and

shown in Figure 109.

If the reversal point is between 75~/o Pc and P2, there are three possible reloading

paths as shown in Figure 110. Define the shifted reloading curve's break points as

PC75 = 1.5 x PC2

PC2S = 0.5 x pe2

. PC75 - FR(I)
X2 = DR(I) + SRM

PC2Xl =X2---
SR2

(4.43)

(4.44)

where I is the last small amplitude loop point with a flag FR( I) such that (0 IR = I and

FR(I)= 7) or (DIR= 3 and FR(I)= L), SRM is the stiffness given in Equation 4.35 and

SR2 is the stiffness given in Equation 4.39. The reloading stiffness, SRL, is calculated
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from Equation 4.40. If SRL>SRM, then the loading proceeds with the stiffness SRL.

This case is defined by rule S1.11.6. Define the displacement at 25% of the cracking

load as

x = 0 + PC25 - P
SR2

(4.45)

If (X::;;X1 and 0 IR = 1) or (X~X1 and 0 IR = 3), then reloading proceeds to the point

(X 1, PC25). The stiffness from the current point to (X 1. PC2S) is

5Xl = PCl5 - P
Xl- 0

(4.46)

This case is defined by rule 51.11.4. If(X>Xl and DIR= 1) or (X<Xl and DIR= 3),

then reloading proceeds to the point (X2, PC75). The stiffness from the current point

to (X2, PC75) is

5X2 = PC75 - P
L X2- 0

This case is defined by rule 51.11.5.

Thus, shear hysteresis Rules 51.5 and 51.11 are
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Rule S1.5 Unloading inside small amplitude loops

If 1)(DIR=2orDIR=4),and

2) lR~1

Then

Csing the last small amplitude loop reversal point (DR(I),PR(I» with

a flag FR(I) such that

[(DIR=2 and FR(I)=L) or(DIR=4 and FR(I)=7)]

If (DIR=2 and ( P > PR(I) > PA, or

PA ~ P> PR(I) > PB, or

PB ~ P > PR(I) > 0 ) ), or

( DIR=4 and ( P < PR(I) < PA, or

PA ~ P < PR(I) < PB, or

PB ~ P < PR(I) < 0 »

Then

K = PRe!) - P
DR(I) - D

A = PR(I)

RULE = S1.5

If K > SI, or K ~ 0 use the next to last small amplitude loop

point that satisfies the conditions above.

Once unloading continues below A, erase the reversal point I.

Thus IR= IR-I

Else

SC = PR(I) - P
DR(I)-D

Go to rule S1.2, S1.3, or S1.4 as applicable. Omit the test IR = O.



Rule S1.11 Reloading inside small amplitude loops

If 1) (DIR= 1 or OIR= 3), and

2) IR > 0

Then

Using the last small amplitude reversal point ( OR(I),PR(I) ) with a

flag FR(I) such that

[(DIR = 1 and FR(I) = 7) or (OIR = 3 and FR(I) = L)J

Case 1 If IPR(I) I :::; 25% Pc

K=SRL

A = PR(I)

RULE = S1.11.1

Case 2 If 1) 25% Pc < IPR(I) I :::; 75% Pc, and

2) SRL < SR2

K=SXI

A = PC25

RULE = 51.11.2

Case 3 If 1) 25% Pc < IPR(I)/ :::; 75% Pc, and

2) SRL i. SR2

K=SRL

A = PR(I)

RULE = Sl.l1.3

Case 4 If 1) SRL < SRM, and

2) [(X:::; Xl and DIR = 1) or (X 2 Xl and OIR = 3)J

K= SXI

A = pe25

RULE = S1.11.4

Case 5 If 1) SRL < SRM, and

2) [(X> Xl and OIR = 1) or (X < Xl and OIR = 3)J

K= SX2

A = PC75

RULE = S1.11.5

Case 6 If SRL 2 SRM

K = SRL

A = PR(I)

RULE = Sl.l1.6
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B. CO~PARISON BETWEEN HYSTERESIS MODELS AND EXPERIMENTAL

RESULTS

The experimental and calculated hysteresis loops for five NCKU walls SWla,

SW3, SW4a, SW5, and SW6 are compared below. These NCKU walls were presented

in Chapter II, Table I. The experimentally observed backbone curves for these walls

are used to calculate the hysteresis loops, rather than the calculated backbone curve.

Comparisons between calculated and experimental backbone curves are made in

Chapter II I.

1. Bending Deformation. The calculated and experimental bending hysteresis

loops for ~CKU walls SWla, SW3, SW4a, SW5, and SW6 are compared in Figures

Ill, 112, 113, 114, and lIS, respectively. Overall, the comparison between calculated

and experimental hysteresis loops is very good. However, several points warrant

further discussion:

a. Unloading in the :\fonlinear Range. For wall SWIa unloading from a small

displacement shown in Curve .A' of Figure Ill, the calculated unloading stiffness is

slightly larger than the experimental unloading stiffness. lJ nloading the same wall from

a larger displacement, Curve' B', the calculated unloading stiffness is also larger than

the experimental unloading stiffness. Recall that the curve fitting used to determined

these unloading stiffnesses as shown in Figures 73, 74 and 75 typically overestimated

the unloading stiffness for wall SWla.

Contrarily, for wall SW4a, unloading from both small and large displacements

shown in Curves 'A' and 'B' of Figure 113 the calculated unloading stiffness is close to

the experimental unloading stiffness. The empirical expression for unloading stiffness
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is typically close to the experimentally observed unloading stiffnesses as shown In

Figures 73, 74 and 75.

The unloading stiffness for wall SW3 at small displacements shown in Curve 'A'

of Figure 112 is close to the experimental unloading stiffness, while at large

displacements, Curve 'B', the calculated unloading stiffness is slightly higher than

experimental value.

The unloading stiffness for wall SW6 at small displacements shown in Curve'A'

of Figure 115 is close to the experimental unloading stiffness. At large displacements.

Curve 'R'. the calculated unloading stiffness is lower than experimental value.

The experimental bending hysteresis loops for wall SW5 are not symmetric. This

may be due to the influence of sliding across diagonal cracks on the vertical

displacement gauges. Unsymmetric bending hysteresis loops were not observed in

other walls with symmetric loadings. Unloading from a positive load is shown in Curve

'A' of Figure 114. where the experimental unloading curve is close to the calculated

unloading curve. However, unloading from a negative load, Curve 'B', the

experimental unloading stiffness is greater than the calculated unloading stiffness.

b. Reloading after Unloading from the Same Direction. The reloading curves for

wall SWIa at both small and large displacements are shown in Curves 'C and '0' of

Figure Ill, where the calculated results are close to the experimental work. Similar

amounts of energy were dissipated for both the calculated and experimental curves.

The calculated reloading curve for wall SW4a at small displacements shown in

Curve 'C of Figure 113 is close to the experimental reloading curve, however, more

energy is dissipated by the calculated reloading curve. At larger displacements, Curve
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'0', the calculated reloading curve and energy dissipated are similar to the experimental

values.

The reloading curve for wall SW3 shown in Curve 'C' of Figure 112 is close to the

experimental reloading curve, however, more energy is dissipated by the calculated

reloading curve.

The reloading curve for wall SW6 shown in Curve 'C' of Figure 115 is also close

to the experimental reloading curve. Again, more cnergy is dissipated by the calculated

reloading curve than the experimental reloading curve.

c. Reloading after Unloading from the Opposite Direction. The calculated

reloading curves for wall SW3 at both small and large displacements shown in Curves

'D' and 'E' of Figure 112 are reloading towards the correct common point. Recall the

calculated unloading stiffness for Curve 'B' is greater than the experimental value.

Thus the calculated reloading Curve 'E', which begins at the tcrminal point of Curve

'B', dissipates more energy than the experimental curve.

The reloading curves for wall SW6 at both small and large displacements shown

in Curves 'D' and 'E' of Figure 115 are reloading towards the correct common point.

Recall the unloading stiffness for Curve 'B' was less than the experimental value. Thus

the calculated reloading Curve 'E', which begins at the terminal point of Curve 'B',

dissipates less energy than the experimental curve.

The reloading curves for wall SW5 as shown in Figure 114 are similar to the

experimental reloading curve except the calculated reloading.curves arc symmetric, and

the calculated reloading curves do not pinch near Point 'E'.
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d. Degrading Under Cyclic Loading. The experimental degrading stiffness factor,

IX, for wall SWla at both small and large displacements as shown by Points 'E' and 'F'

of Figure III are similar to the calculated values, except that the calculated IX is larger

than the experimental value for the first cycle at 'F'.

The experimental degrading stiffness factor, iX, for wall SW4a at small

displacements as shown by Point 'E' of Figure 113 is less than the calculated values for

all five cycles. The experimental degrading stiffness factor, at larger displacements,

Point 'F', is similar to the calculated value for the first cycle, and slightly larger than

the calculated values for subsequent cycles.

The experimental degrading stiffness factor, iX, for wall SW5 at small

displacements as shown by Point 'C of Figure 114 is greater than the calculated values

for all five cycles. The experimental degrading stiffness factor at larger displa(;ements,

Point '0', is smaller than the calculated value for the first cycle, and similar to the

calculated values for subsequent cycles.

e. Loading and Unloading in Small Amplitude Loops. Two small amplitude

loops are at Point 'F' in Figure 112 for wall SW3. The calculated loops have the same

shape and dissipate the same amount of energy as the experimental data. A calculated

loop with a load reversal at Point 'G' dissipates more energy than the experimental

loop, because the experimental loop has a slight pinch near Point 'H',

Two small amplitude loops are at Point 'F' in Figure 115 for wall SW6. The

calculated loops have a similar shape and dissipate a little more energy than the

experimental loop. A calculated loop with a load reversal at Point 'G' has the same

shape and dissipates a similar amount of energy as the experimental loop.
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At any given point the calculated bending stiffness may be a little more or less

than the experimental stiffness. This is due in part to 1) scatter in the experimental

data, 2) the choice of variables used for curve fitting, and 3) uncertainties in the

separation of bending and shear displacement. Overall, the bending hysteresis model

is able to represent the general bending behavior of the wall.

2. Shear Deformation. The calculated and experimental shear hysteresis loops

for :,\CKC walls SWla, SW3, SW4a, SW5, and SW6 are compared in Figures 116, 117,

118, 119, and 120, respectively. Overall, the comparison between calculated and

experimental hysteresis loops is good. Ho\Vever, several points warrant further

discussion:

a. Cnloading in the ~onlinear Range. For wall SWla the calculated unloading

curves from both a small and large displacement shown in Curves 'X and 'w in Figure

116 are similar to the experimental unloading curves.

For wall SW4a the experimental hysteresis loops are very erratic. The calculated

unloading stiffnesses for both small and large displacements shown in Curves'A' and

'B' of Figure 118 are similar to the experimental data.

The unloading stifTnesses for wall SW3 at both small and large displacements

shown in Figure 117 Curves 'A' and 'B' are close to the experimental values.

The unloading stifTnesses for wall SW6 at both small and large displacements

shown in Figure 120 Curves 'A' and 'B' are also close to the experimental values.

However, the calculated unloading Curve 'B' is not as nonlinear as the experimental

unloading curve, thus, the calculated unloading curve dissipates less energy than the

experimental unloading curve.

203



E
xp

er
im

en
ta

l

_
_
-
t
-
I
-
-
-
-
-
-
-
-

----
----

-
®

2
0 1
5

,-
... t
-

'-
'

C
l

1
0

-< 0 --
J

5
-

0

0
1

2
3

4
N 0 '-0

SH
EA

R
D

IS
PL

A
CE

M
EN

T
2

0
+

(M
M

l
t

®
I
~

1
5

,-
...

t
-

'-
'

C
l
1
0
~
-

-
...

-< 0
I

I'
ll

/
~

//
/1

1/
/1

\E
)

I
/

I
C

al
cu

la
te

d
--

J

5 o
,
.

w
rw

I
I
/
"
I

1

F
ig

ur
e

11
(1

.
C

o
m

p
ar

is
o

n
oC

C
al

cu
la

tc
d

an
d

L
xp

cr
im

cn
ta

l
S

he
ar

Il
ys

tc
rc

si
s

L
oo

ps
Co

r
:\

C
I(

[;
W

al
l

S
W

la



4
3

E
xp

er
im

en
ta

l

2
o

S
H

E
A

R
D

I
S

P
L

A
C

E
M

E
N

T
(M

M
)

-1
-2

2
0
l-

--
--

-l
'i-

--
--

T
I-

-
-
-
-
-
T

'-
-
-
j"

-
S

:i
?
ll

-
-
-
-
-
-
T

-
-
-
-
-
-
,-

-
-
-
-
-
-
-
-

I
I

r
•

1
0

,..
.

..... ....
,

0 -<
0

0 -
J

-1
0

1- -3

N I-
'

o

2
0
1
t
I
l

f2
\1

==
-=

--=
t:=

;;
I

I

1
0

,..
. ..... .....
,

0
0

«

I
0

/
d

/.
.L

I/
J
4

1
I1

I
C

a
lc

u
la

te
d

-
J

~
I

I
I

"
/

I
~

I
I

I
I

-1
0

ri
g

u
rc

11
7.

C
o

m
p

ar
is

o
n

o
f

C
al

cu
la

te
d

an
d

E
x

p
er

im
en

ta
l

S
h

ea
r

Il
y

st
cr

cs
is

L
o

o
p

s
fo

r
N

C
K

U
W

al
l

S
W

3



2
.5

E
xp

er
im

en
ta

l

2
.0

1
.0

1
.5

S
H

E
A

R
01

S
P

L
AC

EM
EN

T
(M

M
)

0
.5

o
-PI

V
W

Id
'

I
/

o.
0

W1Y-.
...1\

.<:::
o::::

..-_~
V:..J

-l~'J
:\/

~I~
+-

_
l

I
I

5
JJ

t
V

j.6
W

\:li

2
5

~
I

I
_..

-
-
;;

>
"
-
e
4
r
~
~

I
-

l
3

0
T

I
I

I
®

I

~
2

0
i

®
1 7

-e
:::

:=
-
I'

7
9

e
-

'W
'

I
7

7
t7

'/
f{

ff
j J

I
i
-
­

--
--

-1

C
l

1
5

~ o -'
I

0
+
-
-
~
A
\

,

t·.
.; .....
.

t-
'

C
al

cu
la

te
d

2S
~

I
I

..
..
7
4
1
1
1
1
~

I

O
~
.

U
«V

I
W

V
lf

Y
V

Y
V

Y
Y

I
I

I

2
0
~

-
I
~

7
"

--
t

//l
/il

iii
i-

/h
fl/

l//
1/

I
I

3
0
+

-
I

I
-

I
I

I

t-

5

C
l

1
5

I
~
L
~
U

d
7

/
A1

JIi

-'
I

0
I

><

F
ig

u
re

II
R.

C
o

m
p

ar
is

o
n

o
f

C
al

cu
la

te
d

an
d

E
x

p
er

im
en

ta
l

S
h

ea
r

II
y

st
er

es
is

L
o

o
p

s
fo

r
N

C
K

U
W

al
l

S
W

4
a



1
.5

1
.0

@

@ C
a

lc
u

la
te

d

E
xp

er
im

en
ta

l

0
.5

0
.0

S
H

E
A

R
01

S
P

L
A

C
E

M
E

N
T

(M
M

)

3
0 2
0 1
0

~ .....
.

a
0

~ 0 -
l

-1
0

-2
0

t-
,)

f-
'

N

-
1

.0
-0

.5

3
0

2
0 1
0

~ '-
'

0
0

~

@
0

i
-
'

-1
0

-2
0

h
g

u
rc

Il
l)

,
C

o
m

p
ar

is
o

n
o

fC
al

cu
la

te
J

an
d

E
xp

er
im

en
ta

l
S

he
ar

Il
ys

te
rc

si
s

L
oo

ps
fo

r
:\

C
K

l'
\V

al
l

S
W

5



4
:3

-
-
-
-
-
+

1
-

I
C

a
lc

u
la

te
d

E
xp

er
im

en
ta

l

2

S
H

E
A

R
D

1
S

P
L

A
C

E
M

E
N

T
(M

M
)

o

I
I

I
I

I
-
-
-
-

-1

C
o

m
p

ar
is

o
n

o
f

C
al

cu
la

te
d

an
d

E
x

p
er

im
en

ta
l

S
h

ea
r

H
ys

te
re

si
s

L
oo

ps
fo

r
1

\C
K

U
W

al
l

S
W

6

3
0 2
0

t-
1

0
'-

'

0 oe
(

a
0 -o

J

-1
0

-2
0

N
-2

~ w

3
0 20

t-
1

0
'-

'

0 oe
(

0
0 -o

J

-1
O

-2
0

F
ig

ur
e

12
0.



The hysteresis loops for wall SW5 are very erratic. Unloading from a positive

load shown in Curve 'A' in Figure 119 the experimental unloading curve is similar to
'2

the calculated unloading curve. Recall the shear deformation is determined by

subtracting the bending deformation from the total deformation. In the previous

discussion it was shown that the bending deformation is unsymmetric, with larger

positive displacements than negative displacements. In the next section, the total

deformation of wall SW5 is shown to be nearly symmetric. Thus the unsymmetric

shear displacements shown in the figure, with larger negative displacements than

positive displacements, are reasonable given that the bending displacements are

unsymmetric. However the lack of symmetry for the shear deformation is not as severe

as the bending deformation. Thus unloading from a negative load, Curve 'W. the

experimental unloading curve is also similar to the calculated unloading curve.

b. Reloading after Unloading from the Same Direction. The reloading curves for

wall SWla at both small and large displacements shown Curves 'C and 'I)' in Figure

116 are close to the experimental reloading curves. Similar amounts of energy were

dissipated by both the calculated and experimental hysteresis loops.

The experimental reloading curve for wall SW4a at both small and large

displacements shown Curves 'C' and 'D' in Figure 118 arc very erratic. The calculated

rcloading curves are a reasonable approximation of the experimental data.

The reloading curve for wall SW3 shown in Curve 'C' in Figure 117 is close to the

experimental reloading curve. However, the calculated hysteresis loop dissipates more

energy than the experimental data.

The rcloading curve for wall SW6 shown in Curve 'C' in Figure 120 is also close

to the experimental reloading curve.
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c. Reloading after Unloading from the Opposite Direction. The reloading curve

for wall SW3 at a small displacement shown in Curve '0' of Figure 117 is reloading

towards the correct common point. At this small displacement, pinching is negligible.

Reloading with a larger displacement, Curve 'E', the calculated pinching is much less

than the experimental pinching. Thus the calculated r,ysteresis loops dissipate more

energy than the experimental hysteresis loops. Reloading with a negative

displacement, Curve H, the calculated reloading stiffness is greater than the

experimental reloading stiffness, causing the calculated reloading curve to be smaller.

The calculated reloading curves for wall SW6 at large Jisplacement shown in

Curve '0' of Figure 120 has less pinching than the experimental data. Ilowever the

shapes of the two curves are similar.

The reloading curves for wall SW5 are very erratic. The amount of pinching in

the calculated reloading curves as shown by Point 'c of Figure 119 is larger than the

amount of pinching in the experimental reloading curves. Thus the calculated

hysteresis loops dissipate more energy than the experimental hysteresis loops.

d. Degrading Under Cyclic Loading. The experimental degrading stiffness factor,

c(, for wall SWla at both small and large displacements shown by Points 'E' and 'F'

of Figure 116 is similar to the calculated values, except for the first load cycle at 'F',

where the experimental Ct is greater than the calculated Ct.

The experimental degrading stiffness factor, Ct, for wall SW..Ja at small

displacements shown by Point 'E' of Figure 118 is less than the calculated values for

all five cycles. The experimental degrading stiffness factor at larger displacements,

Point 'F', is greater than the calculated values.
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The experimental degrading stiffness factor, ex, for wall SW5 at large

displacements for both positive and negative loadings shown by Points '0' and 'E' of

Figure 119 is similar to the calculated values.

e. Loading and Unloading in Small Amplitude Loops. Two small amplitude

loops are at Point 'F' shown in Figure 117 for wall SW3. The calculated loops have

the same shape and dissipate the same amount of energy as the experimental data. A

calculated loop with a load reversal, Curve 'G', is smaller than the experimental loop.

The two small amplitude loops at Point 'F shown in Figure 120 for wall SW6

have a similar shape and dissipate a little more energy than the experimental data. A

calculated loop with a load reversal, Curve 'F', has the same shape and dissipates a

similar amount of energy as the experimental data.

At any given point, the calculated shear stiffness may be a little more or less than

the experimental stiffness as was discussed in the bending stiffness case. Overall, the

shear hysteresis model is able to represent the general behavior of the wall.

3. Total Deformation. The calculated shear and bending deformations are added

together, and compared with the measured total deformations for ~CKC walls SWla,

SW3, SW4a, SW5, and SW6 in Figures 121, 122, 123, 124, and 125, respectively.

Overall, the comparison between calculated and experimental hysteresis loops is vcry

good.

The total energy stored in the calculated and experimental hysteresis loops is also

compared for NCKU walls SWla, SW3, SW4a, SW5, and SW6 in Figures 126, 127,

126, 128, and 127, respectively. The total energy for step I is determined from
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P(I) + P(I - I)
EnergYI = EnergYI_I + 2 [0(1) - 0(1 - I)J

. where the calculated displacement 0, is used to determine the calculated energy.

(4.48)

The calculated hysteresis loops for wall SWla as shown in Figure 121 are the

same size and shape as the experimental hysteresis loops. The calculated hysteresis

loops dissipate a little more energy than the experimental loops as shown in Figure 126.

Overall, this comparison is very good.

The calculated hysteresis loops for wall SW3 as shown in Figure 122 are the same

size and shape as the experimental hysteresis loops, except that I) the calculated loops

do not have as large of a displacement in the negative direction, and 2) the calculated

pinching is not as severe as the experimental pinching. Thus the calculated hysteresis

loops dissipate about 10% more energy than the experimental loops as shown III

Figure 127. Except for the two items mentioned above, this comparison is good.

The calculated hysteresis loops for wall SW4a shown in Figure 123 are the same

sIze and shape as the experimental hysteresis loops. At small displacements the

calculated hysteresis loops dissipate a little more energy than the experimental loops

as shown in Figure 126. At larger displacements the experimental loops dissipate more

energy than the calculated loops. Overall, this comparison is good.

The calculated hysteresis loops for wall SW5 shown in Figure 124 do not pinch

as much as the experimental loops. This causes the energy dissipated by the calculated

hysteresis loops to exceed the energy dissipated by the experimental hysteresis loops

by about 33% as shown in Figure 128. Aside from the pinching, the comparison

between these two loops is good.
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The calculated hysteresis loops for wall SW6 shown in Figure 125 are close to the

experimental hysteresis loops, with a couple of exceptions. For one loop, the

experimental unloading begins at a displacement of + 4.6 rum, while the calculated

displacement is at + 4.3 rum. As unloading progresses, the experimental hysteresis

loop dissipates more energy than the calculated hysteresis loop. Also, upon reloading

the experimental hysteresis loop does not pinch as much as the calculated hysteresis

loop. Thus, the experimental hysteresis loop dissipates more energy than the

calculated hysteresis loop as shown in Figure 127. Overall. the comparison between

calculated and experimental hysteresis loops is good.

C. AXIAL HYSTERESIS \10DEL

The axial hysteresis model was developed by Kabeyasawa. et al (49) for shear

walls and boundary columns as part of the analytical studies for the full scale seven

story test structure. This hysteresis model as shown in Figures 129 and 130 has the

following attributes.

t. Tensile Backbone Curve. The tensile backbone curve is bilinear. The initial

tensile stiffness is

Kt = 0.90 Ec Ag (4.49)

where Ec is the concrete modulus of elasticity and Ag is the gross cross sectional area

of the member. The stiffness changes at the steel yield point (Dyt. Fy),

Fy = fy As.
Fv

Dvt=--
. Kt •

(4.50)

where fy is the yield point of the sreel bars and As is the area of the reinforcing steeL

The post yield stiffness is given by

226



(Dyt, Fy) --.-- -- Kt2
'"

'A'

-~o 0
")( 0
«....J

Fy

'B'

Kc r-
Fy

Axial
Displacement

Figure 129. Axial Hysteresis :\1odcl before Tensile Yield
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Kt2 = 0.001 Ec Ag (4.51)

2. Compression Backbone Curve. The compressive backbone curve is linear,

which is a reasonable assumption for concrete, if compressive stresses remain below

0.50f'c' The gross compressive stress in a shear wall is usually much less than

0.50f'c' Thus the compressive stifTness is given by

Kc = Ec Ag (4.52)

3. Cyclic Loadings before Yielding. For cyclic loadings before the member has

yielded, a bilinear hysteresis loop is used as shown in Figure 129. Consider a member

with an initial compressive load at 'A'. As that member is loaded 13, it has a stifTness

of Kc. Once the member goes into tension, the loading stifTness becomes Kt. At point

'B', the load is FB. Unloading from point 'B', the stifTness is Kc, until point 'C', which

has a load of FB - Fy. Further unloading continues with a stifTness of Kt to point '[)'.

Reloading from point '0' continues with a stifTness of Kc.

4. Cyclic Loadings after Yielding. For cyclic loadings after the member has

yielded, a modified bilinear hysteresis loop is used as shown in Figure 130. Consider

a member that has yielded in tension and is at point 'E' with a load and displacement

of Fmax and Dmax. As the member is unloaded, the unloading stifTness is

13 Since the axial hysteresis model behaves difTerently in compression than tension,

the following definition of loading and unloading is used. Loading corresponds to

applying a tensile load, or reducing a compressive load. Unloading corresponds to

reducing a tensile load or applying a compressive load.
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(
Dyt)(X (Fmax + Fv )Kr= Kc > J

Dmax - Dmax - Dyc
(4.53)

-Fv
where Dyc = __J_ and (X = 0.90. Unloading continues to point 'F', which has a load

Kc

and displacement of

FF = Fmax - Fy,
Fy

OF = Dmax - Kr (4.54)

Below this point, unloading continues with a stiffness of

FF+ Fy
Ks=---­

DF - Dyc

to point 'G', which has a displacement of

DG = Dyc + 0.20(DF - Dyc)

and a load of

FG = FF + Ks(DG - OF)

(4.55)

(4.56)

(4.57)

Beyond point 'G' unloading continues on a transition curve that goes from point '(I'

to point 'H' on the compression backbone curve and has the stiffness

FG + 2 x Fy
Kc2=----......;..­

DG - 2 x Dyc
(4.58)

Further unloading and loading are on the compres~lOn backbone curve, until the

member is loaded beyond point T, which has the coordinates (Dye. -Fy). LoaJing

beyond point T has a stiffness of Kr and continues to point T which has the

coordinates

FJ =0 FYOJ = Dyc+--
Kr

229
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Reloading beyond point T has a stiffness of Ks and continues back to point '[',

Reloading beyond point 'E' continues on the tension backbone curve. Loading and

unloading on small amplitude loops inside the region 'E-F-G-H-I-J-E' have a stiffness

of Kr.

5. SummarY of Axial Hysteresis :Y1odel, This model was developed primarily for

reinforced boundary columns. As additional data become available from ex.perimental

studies of axial loads on RiC shear walls, this model may be updated, This topic is

recommended for further research,

no



V. ANALYTICAL FORMULATION FOR 3-D STRUCTURAL SYSTEMS

This chapter presents the matrix formulation for analyzing 3-D structural systems

subject to both static and seismic loadings. A shear wall stiffness element is developed

that utilizes the bending and shear backbone curves and the hysteresis models included

in Chapters III and IV, respectively. Additionally, the input, stored and dissipated

energy in the structure, the damage index, and the ductility and excursion ratio are

presented.

A. JOI:'\T BASED DEGREES OF FREEDO\1

The structural model consists of an assemblage of elements. The point where two

or more dements connect is a called a joint. A structure is modelled by first giving the

location and orientation of each joint; the clements that connect the joints and the

orientations of the elements are then defined. The structure's degrees of freedom are

determined by the joints, their orientation, and the joint constraints. This section

discusses the location and orientation of the joints, the degrees of freedom associated

\vith the joints, and the joint constraints.

I. Global Coordinate System. The structure is defined in the global coordinate

system (GCS). The GCS is a Cartesian coordinate system with three perpendicular

axes Xg, Yg' and Zg. The Zg axis is defined as Xg cross Yg (right hand rule) as

shown in Figure 131. The location of the GCS's origin is arhitrary and is usually taken

at the centroid of the structure's base.

2. Joint Coordinate System. The location of a joint is defined by its coordinates

(Xg, Yg' Zg) in the GCS. At each joint, there is an individual joint coordinate system

(JCS). The JCS is defined by the axes Xj, Yj and Zj and has its origin at the joint.
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The orientation of the lCS may not be parallel to the GCS and is defined by two

perpendicular unit vectors Vxj' and Vyj as shown in Figure 131. A third vector Vzj is

defined as Vzj = Vxj x Vyj' The three vectors are written in matrix form as

Vxj cll cl2 cl3

[Vj] = Vyj = C21 C22 C23 = [Cj]

VZj C31 C32 C33 k k

(5.l)

where i ,j and k are unit vectors parallel to the Xg, Yg and Zg axes, and Cij are the

direction cosines for vector i.

Each joint has three translational and three rotational degrees of freedom (dot).

Degrees of freedom I, 2 and 3 are translational corresponding to the joint's

Xj' Yj' and Zj axes. Degrees of freedom 4, 5 and 6 are rotational about the joint's

Xj' Yj and Zj axes as shown in Figure 13 I. The orientation of the JCS determines the

orientation of the degrees of freedom for that joint.

3. Constraint Equations, Often the deformation of one building component is

very small relative to the deformations of other components. The component with very

small deformation may be idealized as a rigid body. Two joints on the rigid body are

constrained, such that the deformation of one joint (the 'slave' joint) is represented by

the deformation of the other joint (the 'master' joint), Thus the degrees of freedom for

the 'slave' joint are transferred to the 'master' joint, and the number of degrees of

freedom is reduced. The reduced set of degrees of freedom is referred to as the global



14
degrees of freedom (Gdof) . Transformations for a 3-D constraint and a planar

constraint are developed below.

Let joint m be the 'master' joint and joint s be the 'slave' joint. Also, let the

orientation of both joints be identical, [vJm = [Vj]s. Assume that the two joints

are connected by a rigid body. Thus the forces at the' slave' joint are transferred to the

'master' joint, and the displacements of the 'slave' joint are expressed in terms of the

'master' joint.

Examining Figure 132, for the typical notation, FjrnX represents the force at the

master joint in the JCS X direction and MjrnZ represents the moment at the master

joint about the JCS Z axis. Likewise FjsX represents the force at the slave joint in the

JCS X direction and MjsZ represents the moment at the slave joint about the JCS Z

axis. Summing the forces acting on the slave joint about the master joint, in three

dimensions, yields the force transformation for a 3- D rigid body (84).

FjrnX 0 0 0 0 0 FjsX

FjmY 0 0 0 0 0 FjsY

FjrnZ 0 0 0 0 0 FjsZ
= l5.2)

Mjnu'X 0 -Zms Vms 0 0 MjsX

MjmY Zms 0 -Xms 0 0 \1jsY

MjrnZ -Vms Xms 0 0 0 \1jsZ

or

14 Gdof are degrees of freedom in the JCS at 'master' and unconstrained joints. These

degrees of freedom are global in the sense that they describe the structural motion,

not that they are parallel to the GCS.
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(5.3)

where [Fjm] represents the forces acting on the master joint, and [Fjs] represents

the forces acting on the slave joint. A similar transformation for displacements can

be derived

(5.4)

where Ujm] represents the displacements of the master joint, and Ujs] represents

the displacements of the slave joint.

The distances Xms' Yms and Zms are in the master joint's JCS. Recall the joint's

coordinates are defined in the GCS. Transferring the coordinates of both joints from

the GCS into the JCS and subtracting yield

Xms Xgs Xgm

Yms = [C·] Ygs ~ [Cj] YgmJ

Zms Zgs Zgm

(5.5)

where the typical notation Xgm represents the global X coordinate of the 'master' joint

m, and Zgs represents the global Z coordinate of the 'slave' joint s.

Since the displacement of the 'slave' joint is dependent on the displacement of the

'master' joint, the slave joint cannot be restrained. However, if the 'master' joint is

restrained, the' slave' joint will also be restrained.

A rigid Door slab in a building is very stiff in the plane of the Door, yet it is Dexible

out of plane. Thus a planar constraint is used to treat the rigid Door slab's diaphragm

stiffness as a rigid body. The rigid Door slab is in the joint's Xj' Yj plane as shown in

Figure 133. The moments about the Xj and Yj axes and the force in the Zj axis can

236



>-
I

><

x•2'

~ -

1
~~o 0_......

tl
.-
2

N
Eu..-

-~•-oE-

237



not be transferred from the slave to the master joint because the floor is flexible out

of plane, Thus, the force transformation is

FjmX 0 0 0 0 0 F· XJS

FjmY 0 0 0 0 0 FjsY

FjsZ 0 0 0 0 0 FjsZ
= (5.6)

\1jsX 0 0 0 0 0 MjsX

\1jsY 0 0 0 0 0 MjsY

\1 jrnZ -Yms Xms 0 0 0 MjsZ

Translation in the Xi' Yj axes and rotation about the Zj axis are transferred to the

'master' joint. Translation in the Zj axis and rotation about the X j and Yj axes remain

at the 'slave' joint.

4. Global Degrees of Freedom. The global degrees of freedom (Gdof) are in the

JCS, which are unconstrained degrees of freedom at 'master' and unconstrained joints.

These degrees of freedom describe the structure's motion. Once the joints have been

defined and the constraints have been identified, the global degrees of freedom arc

numbered. The following items should be considered when numbering the degrees of

freedom:

• The Gdof numbers determine the location of the terms in the mass and stiffness

matrices. Thus the Gdof numbering system determines the bandwidth of the

stiffness matrix. For a structure with two different Gdof numbering schemes. the

scheme with the smaller bandwidth will require less numerical calculations than the

scheme with the larger bandwidth. Thus the Gdof numbers influence the dTicicncv

of the numerical calculations.

• During the static and dynamic analysis the stiffness matrix is partitioned between

condensed, free and restrained degrees of freedom. Identifying which degrees of
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freedom are condensed, free or restrained before the degree of freedom numbers are

chosen, prevents the unnecessary shuffiing of the stiffness matrices rows and

columns.

The analyst determines the joint numbers, and the Gdof numbers are assigned in the

follO\ving order:

1) Degrees of freedom to be condensed out

From the lowest joint number to the highest joint number.

From joint dof 1 to joint dof 6, omitting constrained dof.

2) Free degrees of freedom

From the lowest joint number to the highest joint number.

From joint dof 1 to joint dof 6, omitting constrained dof.

3) Restrained degrees of freedom (K EY = 1) 15

From the lowest joint number to the highest joint number.

From joint dof I to joint dof 6, omitting constrained dof.

4) Restrained degrees of freedom (KEY = 2) 15

From the lowest joint number to the highest joint number.

From joint dof 1 to joint dof 6, omitting constrained dof.

An example of the Gdof numbering system is presented in Section A of Chapter VI I.

Generally, if the difference between joint numbers on each clement is minimized, the

structure's bandwidth is also minimized. The global degree of freedom numbers for

each joint are stored in the array {Lmj}'

15 The restrained degrees are divided into two cases: KEY = 1 are the degrees of

freedom that actually have reactions, and KEY= 2 are restrained dummy degrees

of freedom. Typical restrained dummy degrees of freedom are all of the out of plane

dol' in a planar frame, or rotational dof for a truss structure. The restrained dummy

degrees of freedom are not used in the analysis.
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B. SHEAR WALL ELEMENT

The reinforced concrete shear wall element consists of a panel linking four joints,

Figure 134. Nonlinear bending and shear deformations in the plane of the wall are

considered, along with nonlinear axial deformation. The bending, shear and axial

deformations are lumped into three nonlinear springs. A rigid body connects the joints

at the top of the wall with the springs, while a second rigid body connects the joints

at the bottom of the wall with the springs. Bending and shear stifTness perpcndiwlar

to the plane of the wall are neglected. A lumped parameter formulation of the

geometric stiffness considers both in-plane and out of plane p-~ efTects.

l. Element Coordinate Svstem and Degrees of Freedom. The four joints at thc

corners of the element are denoted 11 through 14 as shown in Figure 135. The global

coordinates of each joint are Xg1 , Ygl' Zgl' throug.h Xg4' Yg4' Zg4' The vcctors
~ -'"

Vxt and Vxb are defined at the top and bottom of the wall.

Define a vector Vy' along with the average longitudinal axis of the wall.

-'" [ Xg1 + Xg2 Xg3 + Xg4 ]-:"' [ Ygl + Yg2 Yg3 + Yg4 ]-:"'
V ,= - 1 + - J

Y 2 2 2 2

[
Zg 1 + Zg2 Zg3 + Zg4 ] ~

+ - k
2 2

The height of the wall, h, is given by

240
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Let IX be the distance from the top of the wall to the springs and p the distance from

the bottom of the wall to the springs, then

p=h-a

T\ormalizing Vy' yields

Vv'
V = -'-Y h

The average width of the wall, w, perpendicular to V y is given by

(5.11 )

(5.12)

w=
IVy x V xt x Vy I + IVy x Vxb x Vy I

2
(5.13 )

Define the vectors Vzb and Vzt, which are perpendicular to the wall as

(5.14)

If the wall is planar, Vzb and Vzt are parallel, or

(5.15)

Equation 5.15 is used as a check, to insure that joints J 1-14 are coplanar. Since the

wall is planar, a single unit vector perpendicular to the plane of the wall can be defined

as

V=z
Vzb

IVzbl

(5.16)

and the vector Vx' perpendicular to the length in the plane of the wall, as
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(5.17)

The three unit vectors Vx' Vy' and Vz define the clement's coordinate system

(ECS), denoted X e, Ye, Ze' with the origin midway between joints 13 and J4. The

three unit vectors that define the orientation of the ECS are written in matrix form as

Vx [CI I cl2 Cn

1
[VeJ = Vy = C2l Cn Cn = [CeJ (S.18)

->. C3t C32 C33
VZ

k k

where [Ce] is the direction cosine matrix for the ECS.

The element has ten translational degrees of freedom as shown in Figure 134.

Degrees of freedom 1 and 8 are used to represent in-plane shear and bending

deformations, along with the in-plane geometric stiffness. Degrees of freedom 2, 4, 6,

and 9 represent axial deformation and bending rotations while degrees of freedom 3,

5, 7, and lO are used to represent the out-of-plane geometric stiffness. In matrix form,

these local forces and displacements in the ECS are

[Fe] = [F l F2 F3 F4 FS F6 F7 FS F9 FlOJ
T

[be J=[bt b2 b3 b4 bS b6 b7 bS b9 blOJ
T

(5.19)

2. Element Stiffness \1atrix in the Element Coordinate System. Let Kh, Ks and

Ka represent the bending, shear and axial stiffnesses of a unit height wall. The bending

backbone curve and hysteresis model that determine the bending stiffness, are derived

in terms of moment and unit height rotation, Equation 3.32. Similarly, the shear
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backbone curve and hysteresis model that determine the shear stiffness are derived in

terms of shear and shear strain; and the axial hysteresis model is in terms of axial load

and strain. Examining Figure 136, the force deformation relationship for each of the

springs is given by

(5.20)

(5.21 )

and

(5.22)

where Kb is the bending stiffness of a unit height wall. given by the bending

hysteresis model in Chapter IV,

Ks is the shear stiffness of a unit height wall, gIven by the shear

hysteresis model in Chapter IV,

Ka is the axial stiffness of a unit height wall, gIven bv the axial

hysteresis model in Chapter IV,

are the rotations at the top and bottom of the bending spring,

are the shear deformations at the top and bottom of the shear

spnng,

are the axial deformations at the top and bottom of the axial spring,

\It a' \1 b are the moments at the top and bottom of the bending spring,

Va' Vb are the shears at the top and bottom of the shear spring,

Pa' Pb are the axial forces at the top and bottom of the axial spring,

eu is the relative unit rotation for bending,

Vu is the relative unit shear deformation, and
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Figure 136. Shear Wall forces and Deformations



Uu is the relative unit axial deformation.

fixing the bottom of the shear wall and applying a positive load to degree of freedom

I, the sign convention yields a positive moment and shear at end 'A' of the springs.

Fixing the bottom of the shear wall and applying a positive load to degrees of freedom

2 and 4, yield a positive axial load at end 'A' of the spring. Rewriting Equations 5.20

through 5.22 in matrix form yields

\1 a 0 0

\1 b -1 0 0
M a M a

V 0 0a
[AtJ VaVa = (5.23)

Vb 0 -1 0

Pa

Pa Pa
0 0

Pb 0 0 -1

and

()a

Ma eu
()b

= [51J T va
Va Vu = [51J[A 1J (5.24)

vh
Pa Uu

ua

uh

where [5 IJ is the unit length spring stiffness matrix

K 0 0b

[51J =_1 0 Ks 0 (5.25)
h

0 0 Ka
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From summation of forces and moments in Figure 136 the relation between the

spring and element forces are determined.

Ma Pa IX
F4=--+---Vw 2 w a

-\1 a Pa r:t.
F2=--+-+-Vw 2 w a

\1b Pb P
F6 =--+-+-Vbw., w

'-

" -\1b Pb P
('9= +---Vbw 2 w

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)

(5.3 I)

Rewriting Equations 5.26 to 5.31 in matrix form



F1 0 0 2w 0 0 0

F2 -2 0 2ex 0 w 0

F3 0 0 0 0 0 0 Ma Yl a

F4 2 0 -2ex 0 w 0 Mb Mb

1"5 1
0 0 0 0 0 0 Va Va

[Fe] = =- = [A2J (5.32)
F6

2w 0 2 0 2P 0 w Vb Vb

F7 0 0 0 0 0 0 Pa Pa

FS 0 0 0 2w 0 0 Pb Pb

F9 0 -2 0 -2P 0 w

FlO 0 0 0 0 0 0

Substituting Equation 5.32 in Equation 5.23

Ma

[Fe]=[A2][A1] Va

The shear wall's stifTness in the ECS is given by

(5.33)

(5.34)

Recall that bending and shear stifTness perpendicular to the wall are neglectcd. Thus

the stifTness terms associated with degrees of freedom 3, 5, 9 and 10 are zcro. To

prevent a singular stifTness matrix, the out of plane dof must be restrained when

analyzing a planar frame.
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3. Element Stiffness Matrix in Global Degrees of Freedom. The transformation

of degrees of freedom from the ECS to Gdof consists of two steps. First, the degrees

of freedom at each of the four joints are rotated from the ECS to each of the JCS, at

joints J I through J4. Second, the constraint transformation moves degrees of freedom

from each of the 'slave' joints to the 'master' joints. The degrees of freedom at the

master joints are the Gdof.

Recall the transformation between the global forces and forces III a rotated

coordinated system is given by

(5.35)

where [Frotated] is the force in the rotated coordinated system, [C] is the direction

cosine matrix of the rotated coordinated system, and [Fglobal ] is the force in the

global coordinate system. The rotated coordinate system may be the JCS, the ECS or

some other coordinate system that is not parallel to the GCS. Solving for the global

forces yields 16

(5.36)

Thus rotating the element forces at a joint 1, [Fei], to global forces at joint I,

[ Fgi], is achieved by

(5.37)

and rotating the global forces at joint i, [Fgil to joint forces, [FjiJ. at joint i is

achieved by

16 The transformation matrix [C] is orthogonal. Inverting an orthogonal matrix is

equivalent to the transpose.
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(5.38)

where [CiJ is the direction cosine of the JCS for joint i. At joints 12 and 13, the wall

does not have translational degrees of freedom parallel to the ECS X axis

(F12X' F12X)' thus a transformation matrix, A3, is used to create dummy degrees of

freedom at these joints.

F11X o 0 0 0 0 0 000

F11 y 0 000 o 0 0 0 0 F l

F11Z o 0 o 0 o 0 0 0 0 F2

F12X o 0 0 0 0 0 0 0 0 0 F3

Fel FJ2Y 000 I 000 0 0 0 F4

Fe2 FJ2Z 000 o 1 0 0 0 0 0 F5
= = = [A3J [FeJ (5.39)

Fe3 FJ3 X 000 0 o 0 0 000 F6

Fe4 FJ3Y 0 000 0 000 0 F7

FJ3Z o 0 0 0 0 0 1 0 o 0 Fg

FJ4X 000 0 0 o 0 o 0 F9

FJ4y 0 0 0 0 0 000 I 0 FlO

FJ4Z 000 0 o 0 0 0 0 1

where the typical notation [ Fe 1] = [F11 X F11 Y F11ZJT represents the forces on

joint J I in the ECS. Rotating the forces at each of the walls four joints from the ECS

to the JCS yields
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FJI [ CJIC~] 0 0 0 FeI Fel

FJ2 0 [ CJ2C~J 0 0 Fe2 Fe2
=

[ CJ3C~J
= [A4] (5.40)

FJ3 0 0 0 Fe3 Fe3

FJ4 0 0 0 [CJ4CJ] Fe4 lFe4

where [FJl J represents the X, Y, and Z forces acting on joint J I in the JCS.

Recall the constraint transformation cquation [TmsJi for an individual sL.J.\"c

joint i Equation 5.2 or 5.6 has the form

[

[I]

[XYZJi

[OJ]
[I]

(5.-l1 )

The second column of [TmsJ pertains to rotational degrees of freedom at the slave

joint. Since [FjiJ for the wall element only contains translational degrees of freedom,

the second column is omitted. Thus for shear walls the constraint equations hecome

= [ [I] ]
[XYZ]j

(5.-l2)

The modified constraint [1" msJ generates rotational degrees of freedom at the master

joints. For unconstrained joints, a dummy constraint transformation with a /cro

[XYZ]i is used. Combining the transformation for all four joints yields

FJlm [rmsJ I 0 0 0 FJl FJl

FJ2m 0 [1"msJ2 0 0 1712 FJ2
= = [A5 J (5.43)

FJ3m 0 0 [T'msJ3 0 FJ3 Fn
FJ4m 0 0 0 [1" ms]4 FJ4 17J4
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where [Fjm] = [FjmX FjmY FjmZ MjmX MjmY \fjmZ]T at master joint J.

Substituting Equation 5.39 into 5.40, and Equation 5.40 into 5.43 yields

FJlm

FJ2m
= [A5][A4][A3][Fe]

FJ3m

FJ4m

(5.44)

Substituting Equation 5.33 for [ Fe] yields the transformation from internal wall forces

[ Ma Va Pa]T to forces acting on 'master' joints at global degrees of freedom

FJlm
\fa

FJ2m
= [A] Va (5A5)

FJ3m
Pa

FJ4m

where [A] = [AS][A4][A3][A2][AI]. Similarly, the transformation for the

deformations of the springs is given by

°a
bJ1m

bJ2mT (5A6)va = [A]
bJ3m

lia
bJ4m

Recall {Lmj} is a v~ctor containing the degree of freedom numbers for joint j.

For element e, the vector {Lme} that contains the global degrees of freedom is
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{LmJI}

{LmJ2}

{LmJ3}

{LmJ4}

(5.47)

The vector of Gdof numbers is used later in the assembly of the global stiffness matrix.

The stiffness matrix is transformed from the spring stiffnesses Equation 5.25 to

the global degrees of freedom by

[Keg] = [A][SI][A]T (5.48)

If any two degrees of freedom, from opposite ends of the wall (top vs. bottom ) are

constrained to the same degrees of freedom, then those two degrees of freedom are

eliminated.

4. Geometric Stiffness Matrix. The P-& forces are modeled by a lumped

parameter geometric stiffness matrix. In the plane of the wall, the wall is idealized as

a rigid bar joining degrees of freedom I and 8 with an axial load N as shown in Figure

137. The axial load, N, is positive when the wall is in compression. Perpendicular to

the plane of the wall, the wall is idealized as two rigid bars as shown in Figure 137.

The first rigid bar joins degrees of freedom 3 and 10 with ~ axial load. The second

joins degrees of freedom 5 and 7 with ~ axial load. Thus the clement geometric

stiffness matrix is
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Figure 137. P-~ Forces for the Shear Wall Element: (a) In Plane Deformation, (b) Out
of Plane Deformation
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2 0 0 0 0 0 0 -2 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 o -1

0 0 0 0 0 0 0 0 0 0

N 0 0 0 0 o -I 0 0 0
[GeJ =- (5.49)

2h 0 0 0 0 0 0 0 0 0 0

0 0 0 o -1 0 0 0 0

-2 0 0 0 0 0 0 2 0 0

0 0 0 0 0 0 0 0 0 0

0 0 -1 0 0 0 0 0 0

The geometric stiffness is transferred from element to global degrees of freedom by the

transformation

C. CNBALANCED ELEMENT FORCES

(5.50)

The incremental displacements of the unit length spnngs for the shear wall

element are given by

~8u
~15Jlm

~15J2m
~vu =_1[A]T (5.51 )

h
~15J3m

~uu

~bJ4m

and the incremental spring forces are given by
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~Ma Kb 0 0

~Va = 0 Ks 0 (5.52)

where Kb' Ks• and Ka represent the stiffness tangent to the hysteresis model at the

beginning of the load step. r or the bending hysteresis model in Figure 138 with the

load step beginning at Point A, Kbl is the stiffness tangent to the hysteresis model

at the beginning of the load step. Let the forces and displacements at the beginning

of the load step be

Ma eu

Va and (~ ~ .. )Vu ).:).)

Pa 0
Uu

0

Thus the forces and displacements at the end of the step are

\-fa \-fa ~Ma eu eu ~eu

Va = Va + ~Va and Vu = Vu + ~vu (5.54)

Pa Pa 0
~Pa Uu Uu

0
L\uu

Consider a one degree of freedom structure with bending displacement only.

Examining the bending hysteresis model, Figure 138, assume that Point A is on the

loading curve and has a unit displacement and moment of euO and MaO' An

incremental moment of L\M = Mal - MaO is applied to the structure. The tangent

stiffness at Point A, Kh l' is used to determine that the structure displaces to Point B',

which has a unit displacement and moment of e'u I and Mal' However, the stiffness

changed during the load step, and the structure should have displaced to Point B.

Point B has a unit displacement and moment of eul and Mal' During the second
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Figure 138. Unbalanced Force
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load step, an incremental moment of ~.\1 = Mal - Mal is applied to the structure.

The tangent stiffness at Point B', Kb2' is used to determine that the structure displaces

to Point C, which has a unit displacement and moment of 0'ul and Ma2. Loading

from Point B, with the same stiffness, would displace the structure to Point C, which

has a unit displacement and moment of 8u2 and Ma2. The calculated solution

A-B'-C is diverging from the true solution A-B-C because the calculated solution

overshot the loading curve in the first step.

There are several techniques to correct for overshooting. The simplest is to

reduce the size of the load step. However, experience has shown that very small load

steps are required for convergence, leading to excessive solution times. Another

technique to correct for overshooting is to locate the points where the stiffness

changes, and reanalyze the structure with different load steps. For large structures,

several elements may change stiffness in a single load step, leading to exccssivc solution

times. A third technique is to determine the unbalance forcc which is applied as a load

in the next load step (62, 21).

Returning to the example in Figure 138, from the hysteresis model, the moment

at a displacement of 0' ul should have been .\1'a I' Let this moment bc the internal

moment on the structure, and label this point 8". At a displacement of 8' ul the

external force acting on the structure is Ma I, which exceeds the internal force

M'al' The unbalanced force IS U=Mal-M'al' An incremental load of

~:v[ = Ma2 -Mal +U = Mal -M'al is applied to the structure. yielding an

incremcntal displacement of 8u2 - 0' ul' From the hysteresis model. with the current

internal moment and displacement of M'a I and 8' u I' and an incremental

displacement of 0u2 - 8' u I' the incremental internal moment is Ma2 - M' a I = ti\Jl.

Thus the new internal moment and displacement are Ma2 and (Ju2' and the internal

moment has loaded from B" to C. The external force has a load increment of
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~M - U = Ma2 - Mal and loads from B' to C. Thus the calculated and true

solutions converge.

For the sli.ear wall element, the unbalanced forces are determined for bending,

shear and axial springs and are applied to the global degrees of freedom by

Ull me
Mia

UJ2me
.\1a

= [A] Va V' (5.55)

UJ3me
a

Pa pi

UJ4me
a

where UJ Ime is the unbalanced force from element e, acting on the master joint J I;

M'a' V' a and pia are the internal forces from the hysteresis models at displacements

0uI' vul and uul (the displacements are determined from Equation 5.54); and

Ma, Va and Pa are the external forces acting on the element as given in Equation 5.52.

The global unbalanced joint force vector, {L}, is assembled by

lJ(li) = U(li) + lJjm(i)e' for i= 1 to 6

j =Jl to J4

e= 1 to ~ELEM

Ii = Lm·(i)
]

(5.56)

where e is the element number, and NELEM is the total number of clements in the

structure.

D. ASSEMBLY OF THE GLOBAL STRUCTURAL AT\D GEOMETRIC

STIFFNESS

The structural stiffness matrix is assembled by the direct clement method, where

the element's stiffness is mapped into the global degrees of freedom. Recall {Lme} is
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a vector that contains the global degrees of freedom for element e, and [Keg] is the

global stiffness of element e. The structural stiffness [K ] is given by

K(li,lj) = K(li,lj) + Keg(i,j), for i= I to NELDOF

j = I to NELDOF

e= I to NELEM

li= Lme(i)

lj = Lme(j)

(5.57)

where NELDOF is the number of degrees of freedom for element e, and :\EL[\;I is the

total number of elements in the structure.

The axial load N, used to formulate the geometric stiffness for clement e, can be

estimated by the analyst. Recall that the axial load, 1'\, is positive when the element

is in compression, and is assumed to be due to gravity loading only (21). The load is

factored by Fi to reflect the vertical ground acceleration

(5.58)

where Agz(t) is the vertical ground acceleration of the ground at time t, and g is the

acceleration of gravity.

The geometric stiffness matrix can be formed by suhtracting the geometric

stiffness from the structural stiffness and storing in the structural stiffness matrix.

K(li,lj) = K(li,lj) + Keg(i,j) - FzGeg(i,j), for i = I to 7\ELDOF

j= I to NELDOF

c= I to NELE\1

li= Lme(i)

lj= Lme(j)
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where [GegJ is the geometric stiffness of element e, having degrees of freedom

{Lme}. This technique uses the minimum storage. However, if either the structural

stiffness or geometric stiffness is updated, both must .be reformed.

An alternate method is to form a separate geometric stiffness, Fz[ G], where

FzG(li,lj) = FzG(li,lj) + FzGeg(i,j), for i = 1 to NELDOF

j = I to NELDOF

e = I to NELE:\1

li= Lme(i)

lj= Lme<D

(5.60)

This technique uses more storage than the previous method, because both the

structural stiffness and the geometric stiffness matrices are stored separately. ror

structures where the geometric stiffness is only formed once, this technique has less

calculations and yields faster solutions.

For the numerical examples in Chapters VI and VII, the axial load is estimated

by the analyst, and vertical ground acceleration is neglected. For static loadings, the

geometric stiffness is subtracted from the elements stiffness (Equation 5.59). For the

dynamic analysis, a separate geometric stiffness matrix (Equation 5.60) is used to avoid

recalculating the geometric stiffness each time the structural stitTness is updated.

E. STATIC ANALYSIS OF 3-D STRUCTURAL SYSTEMS

The nonlinear static response of a 3-D structure subject to either monotonic or

cyclic loadings is determined in this section. Loadings may consist of joint loads (force

control), imposed displacements (displacement control) or combination of joint loads
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and imposed displacements17. The loading is divided into increments, and applied to

the structure in steps. At the beginning of each load step, the tangent stiffness of the

structure is determined, and the structure is assumed to behave linearly for the duration

of the time step. Unbalanced forces, when they exist, are calculated at the end of each

load step, and added to the incremental loads for the next step. The. struc~ural stiffness

is updated each step if necessary. Depending on the assumed axial loading, the

geometric stiffness may be constant throughout the analysis, or updated for each load

step. At the end of each load step, total forces and displacements are determined by

summing the values for the previous step and the incremental values.

Either concentrated forces or moments may be applied as joint loads. In

incremental form, the forces at joint i are

(5.61 )

If joint j is a constrained 'slave' joint, the joint loads are transferred from the 'slave' to

'master' joints by

(5.62)

(5.63)

where [LlFkm] are the forces acting on 'master' joint k. If joint j is a master joint then

rename [AFjs] as [LlFkm]. The incremental global joint force, {LlF}, is given by

LlF(li) = LlF(li) + LlFkm(i), for i= I to 6

Ii = Lmk(i)

k = I to NJOINTS

17 A joint load and an imposed displacement can not exist at the same degree of

freedom. However, different degrees of freedom may have joint loads and imposed

displacements for the same load step.
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The stiffness matrix is formed for both free and restrained degrees of freedom.

Recall the equation of equilibrium [K]{6c5} = {6F} + {U}. Partitioning the

stiffness 18 [K], displacements {6J}, load {6F} and the unbalanced force {U} matrices

between free, (f), and restrained, (r), degrees of freedom, yields

(5.64)

where {6JrJ represent the support settlements or imposed displacements and {6R}

represent the reactions. Expanding Equation 5.64

(5.65a)

(5.65b)

Rewriting Equation 5.65a yields

(5.66)

which is solved for the free global degrees of freedom [6JfJ by Gaussian elimination.

The displacements for 'master' joint k, are extracted from the free and restrained

incremental displacements by .

6Jkm(i) = 6J(li), for i= I to 6

Ii = Lmk(i) } (5.67)

yielding {6bkm}. The displacements of constrained 'slave' joint j, is determine~l from

18 The structural stiffness has been softened to account for the geometric stitTncss,

Equation 5.59.
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Rewriting Equation 5.65b yields the reactions

The reactions 19 at joint j, are extracted from the incremental reactions by

(5.68)

(5.69)

~Rj(i) = ~R(1i) when Ii is a restrained dof

~R'(i) = 0 when Ii is a free dof,
J

for i= 1 to 6
(5.70)

yielding {~Rj}, which can be rotated from the JCS to the GCS by

(5.71 )

Transferring the reactions from the joint to the origin of the global coordinate system

yields

19 If the joint's dof are not restrained, their reaction is set to zero.
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1. 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0
{.1RjGO] = {.1RjG} (5.72)

0 -Zg Yg 0 0

Zg 0 -Xg 0 0

-Y Xg 0 0 0g

where {.1RjGO} are the incremental reactions at the global origin for joint j, and the

transformation is identical to the rigid body constraint in Equation 5.2. Summing

reactions for all restrained joints in the GCS about the global origin yields

(5.73)

The summation of reactions is used by the analyst to check input loadings, determine

the overturning of a structure, and to calculate the energy balance.

Total forces, displacements, reactions and sums of reactions for step tare

determined from

{F}t = {Fh-l + {.1F}

{R}t = {Rh-l + {.1R}
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F. DYNAMIC ANALYSIS OF 3-D STRUCTURAL SYSTEMS

The nonlinear dynamic response of a 3-D structure subject to multi-component

ground motions is determined in this section. The ground motions may consist of one,

two or three translational components orientated on an arbitrary axis. The structure's

mass is assumed to be lumped at the joints. Combined mass and stiffness proportional

damping is used. At the beginning ofeach ti!lle step the tangent stiffness is determined,

and the structure is assumed to behave linearly for the duration of the time step.

t; nbalanced forces, when they exist, are calculated at the end of each time step, and

added to the dynamic loading for the next time step. ?\ion-dynamic degrees of freedom

are condensed out by Guyan reduction. The resulting reduced dynamic equations of

motion are solved by the linear acceleration method. The displacements, velocities and

accelerations at condensed degrees of freedom are determined. At the end of each time

step, the total acceleration, velocity and displacement are calculated by summing the

values from the previous step and the incremental values.

l. Mass Matrix. The structure is idealized as a set of joints, connected by

elements, and the structure's mass is assumed to be concentrated at these joints. The

mass matrix of an individual joint, in the JCS is

MX 0 0 0 0 0

0 My 0 0 0 0

0 0 MZ 0 0 0
[MjJ = (5.78)

0 0 0 IXX -lyX -IZX

0 0 0 -l yX lyy -IZy

0 0 0 -IZX -IZy IZZ

where MX is the joint's Xj axis translational mass,
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My is the joint's Yj axis translational mass,

MZ is the joint's Zj axis translational mass,

IXX is the mass moment of inertia about the joint's Xj axis,

IYY is the mass moment of inertia about the joint's Yj axis,

IZZ is the mass moment of inertia about the joint's Zj axis,

IYX is the mass product of inertia about the joint's Xj and Yj axes,

IZX is the mass product of inertia about the joint's Xj and Zj axes, and

IZY is the mass product of inertia about the joint's Yj and Zj axes.

If the joint is constrained, its mass matrix is transferred to the 'master' joint by

where [TfiS] is the constraint transformation, Equation 5.2 or 5.6. The total

structural mass matrix [M] is formed by the direct element method.

M(li,lk) = M(li,lk) + Mj(i,k), for i= I to 6

k= I to 6

j = I to :\JOINTS

li= Lmj(i)

lk= Lm·(k)
- J

(5.80)

where :\fJOINTS is the number of joints in the structure. :\fote that the mass is

transferred from the 'slave' to the 'master' joint, and then added to the 'master' joint's

mass. Thus the mass at a 'master' joint may have both translational and rotation

terms.

2. Proportional Damping Matrix. Both mass and stiffness proportional damping

is used to represent the damping matrix
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[C] = a[M] + P[K] - PFz[G]

where a and Pare damping constants.

(5.81)

Consider the simple structure shown in Figure 139, with mass and stiffness

matrices

\1. 1 0 0 K I -K I 0

[\1.]= 0 M2 0 [K] = -K l Kl + K2 - K2 (5.82)

0 0 0 0 -K2 K2

where dof I corresponds to the roof, dof 2 corresponds to the floor, and dof 3 is

restrained. The mass proportional damping force, {FDM}, is based on the velocity of

the floor, relative to the ground. Or,

\1. 1«5 1

{FOM } = [C]{~} = a[M]{~} = a :\12"2

o

(5.83)

And the mass proportional damping model has a total reaction

T T·
{~RDM}=-{I} {FDM}=-IX{I} [M]{b} (5.84)

at the base of the structure, where {I} is a unit vector with the same number of rows

as {b}. The mass proportional damping reaction acts on the ground, not at a specific

joint. Thus reactions of mass proportional damping forces cannot be calculated in a

manner similar to reactions due to clement forces. The simple structure in Figure 139

has parallel JCS and GCS. For the general case, the mass proportional damping forces

are rotated from the JCS to the GCS before the summation in Equation 5.84 is

preformed.
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Consider the same structure with stiffness proportional damping. The stiffness

proportional damping force is dependent on the relative velocity between floors. Both

the reactions of the dampers at the base of the structure and the surmnation of

reactions {1:RDK} are calculated in a manner similar to the reactions due to element

forces, Equations 5.69 to 5.73.

For an clastic structure, the multiple degree of freedom system can be decoupled

by the orthogonality relationship yielding the damping term for mode i

(5.85)

where Pi is the damping ratio for mode i and wi is the natural frequency for mode i.

On~ method of determining the constants a and p is by estimating the damping ratio

and natural frequency of two modes i and j, then solving

for a and p. Thus

(5.86)

a=
2WiWlpiWj - PjWi)

2 2
Wj -wi

(5.87)

When Pi = Pj = P, Equation 5.87 simplifies to

,.,
p= ... p

w· +w·'
] 1

(5.88)

3. Dynamic Loading. The dynamic loading consists of three input ground

accelerations A let), A2(t) and A3(t) as shown in Figure 140. The orientation of the
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Figure 140. Orientation of Ground Acceleration
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ground accelerations coincides with a rotated X'. Y'. Z' coordinate system. The

ground accelerations are rotated to the global Xg• Yg' Zg coordinate system. The

ground accelerations in the global coordinate system Xg• Yg' Zg are thcn rotated to

the joint coordinate system Xj' Yj' Zj. The resulting accelerations. in the same

coordinate system as the degrees of freedom. are premultiplied by the mass matrix to

generate dynamic loads.

Let Viand V2 be two perpendicular unit vectors defining the direction of the

accelerations AI(t) and A2(t). and vector V3 = VI x V2 defines the orientation of

A3(t). then the three vectors may be expressed in matrix form as

VI

V2 = [C I23]
......
V3 k

(5.89)

where [C123] is the direction cosme matrix of the inpu.t ground motion. The

incremental accelerations in the global coordinate system are

~AI

= [C I23]T ~A2

M3

(5.90)

wherc the typical notation. ~A I = A I(t I) - A I(to), reprcsents the incremental ground

acceleration in the X' axis. The times to and tl are at the beginning and end of the

time step, respectively.

The direction cosine matrix for joint j's three translational degrees of freedom is

[Cj ]. The incremental translational ground accelerations in the JCS of joint j are
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Mjx ~Agx

{~Jj} = Mjy = [Cj] ~Agy (5.91)

~Ajz ~Agz

Since the input ground acceleration only consists of translational components, the

rotational ground acceleration is always zero. The incremental Gdof acceleration

vector {~~} is assembled from

~~(li) = ~;5j(i), for i = I to 3 (translational dot)

~b(li) = 0, for i = 4 to 6 (rotational dot)

j = 1 to ;\lJOINTS

li= Lmj(i)

(5.92)

Note that for constrained joints {~bj} is the same for both the 'master' and 'slavc'

degrees of freedom. Only the 'master' joint is used in the above assemblage.

The incremental dynamic load is the product of mass and incremental

acceleration, and is given by

(5.93)

For computational efficiency, the incremental accelerations in Equation 5.90 are

replaced by an identity matrix. The resulting unit joint translational accelerations are

(5.94)

. A
Thesc are assembled into a Gdof unit acceleration matrix [1\J by

2'74



1\ 1\

A(li,k) = Aj(i,k), for i= I to 3 (translational dot)
1\

A(li,k) = 0, for i= 4 to 6 (rotational dot)

k= 1 to 3

j = 1 to NJOINTS

li= Lmj(i)

and the incremental dynamic loads are obtained by

(5.95)

~Al

{~F} = [\icos] M2

M3

(5.96)

where

[\icos] = [ - [M][A]] (5.97)

Note that [Mcos] is independent of the input acceleration's value, and is only

calculated once.

The ground acceleration in the global coordinate system at time t is

(5.98)

The response of the ground, in the global coordinate system, is calculated by assuming

the acceleration varies linearly over the time step ~t, integrating the ground

acceleration to yield the ground velocity

and by integrating the ground velocity to yield ground displacement
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(5.100)

where {Vg} and tOg} are the ground velocity and displacement, and dt = tl - to IS

the time step.

4. Condensation. Often the number of degrees of freedom required to represent

the dynamic behavior of a structure is less than the total number of degrees of freedom.

The stiffness matrix is partitioned between condensed, c, free, f, and restrained,

r, degrees of freedom. Omitting the restrained degrees of freedom, the partitioned

stiffness matrix for constrained and free degrees of freedom is

(5.101)

Expanding [KJ{db} = 0 yields,

(5.102a)

(5.102b)

Solving Equation 5.102a for {dOc} yields

or,

{
{dOC}} [- [K ]-l[K J1= cc cf {dt5} = [r]{dO }
{dO} [ ] f f

f I [xf
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where [I] fxf is an identity matrix. Equation 5.104 relates the condensed degrees of

freedom to the free degrees of freedom. Taking the derivative of Equation 5.104 with

respect to time yields the velocity and acceleration relationships.

(5.105)

(5.106)

5. Equation of \1otion. Recall that the incremental equation of motion for a

structure subject to ground motion is

[:VI]{&6} + [C]{&~} + [K]{&b} - Fz[G]{&b} = {&F} + {u} (5.107)

The equation of motion is partitioned between condensed, c, free, f, and restrained, r,

degrees of freedom. Set the support displacements, velocities and accelerations equal

to zero, {~tSr} = to}, {&<5 r} = to} and {~~r} = to}. Thus the global incremcntal

displacement, velocity and acceleration vectors become

{&tS c}

{tS} = {&tSf}

to}

{&tS c}

{tS} = { ~tS f}

to}

(5.108)

Expanding Equation 5.107 by 1) substituting in Equation 5.108 for the displa<.:cment,

velocity and acceleration, and 2) partitioning the mass, damping and stiffness matrices

yields two independent equations.
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(5.110)

where {LlR} are the incremental reactions at the restrained joints. Equation 5.109

represents the vibration of the structure, while Equation 5.110 represents the reactions

at the restrained dor. Substituting Equations 5.104 to 5.106 into Equation 5.109 and

premultipling by [rJT yields

where

* [[K J[K fJ]EKfTJ = [rJT .. cc c [rJ
[KfcJ[KfTJ
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[
EG ][G rJ][G~] = [r]T cc c [r]
[Gfc] [Gff]

(5.115)

(5.116)

The unbalanced force is combined with the dynamic load to reduce the number of

transformations. Hereafter, {.1Fr} contains both dynamic loads and unbalanced

forces. For proportional damping, the damping term

(5.117)

is used in lieu of Equation 5.113.

~umerically the matrices in Equations 5.112 through 5.116 are condensed one

row at a time. For the stiffness matrix, this is equivalent to Gaussian elimination.

Thus the inversion, [Kcc]-I, to determine the transformation [r] in Equation 5.104

has an order of one. This is computationally more efficient than inverting a

c x c matrix and performing the multiplication required above for each transformation.

However, the Gaussian elimination scheme has one drawback. The geometric stiffness

and mass matrices cannot be condensed independently. If only the geometric stiffness

matrix is updated, both the geometric and structural stiffness matrices must be

reformed and condensed together.

a. Linear Acceleration Method. The linear acceleration method was originally

developed by Newmark (56). Since .then the linear acceleration method has been

presented in many different forms with numerous variations (86 ,21).



Assume that the acceleration of the structure varies linearly over the time step

Lit. Let the time at the end of the time step be t = ~t, and the time at the beginning

of the time step is to = t - ~t = O. Thus a linear equation for accelerations between

times to and t is

{£>f(t)} = 6{A}t + 2{B}

Integrating Equation 5.118 with respect to time yields the velocity

And integrating Equation 5.119 with respect to time yields the displacement

{bf(t)} = {A}t3 + {B}t2 + {C}t + {O}

From the initial conditions at time t = to = 0

(5.118)

(5.119)

(5.120)

{£>r(tO)} = 2{B},

{bretOn = {C}

{b~tO)} = {O}

{bf(tO)}
or {B} = 2

(5.121)

and from the final condition at time t = ~t

{Jf(t)} - {bf(tO)}
or {A} = ~

6 t

~£>f
=--

6~t
(5.122)

Substituting the constants A, B, C and 0 into Equation 5.120 and solving for the

incremental displacements, {t!J.b r}, yields

{t!J.£5 f} = {£>r(t)} - {£> f( to)}

.. ~t2 .. ~t2 .
= {~£>f}- + {£>r(tO)}-2- + {£>f(tO)}~t. 6
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Solving for the incremental acceleration, {~Jf}' yields

(5.124)

Substituting the constants A, B, and C into Equation 5.119 and solving for the

incremental velocities yields

. . .
{L\Cif} = {Cir(t)} - {Cir(tO)}

(5.125)

Substituting in Equation 5.124 for {L\Cif} yields

(5.126)

. ..
Substituting {L\Jf} and {L\Cif} into the incremental equation of motion, Equation 5.111,

and substituting in Equation 5.117 for proportional damping yields

(5.127)

Combining terms
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311 6
Let co=-+-

~t ~t2

1
cl =---

1+ 3fl
~t

c2 = cOcl

c3 = II - c2fl

(5.128)

(5.129)

Substituting Co through c3 into Equation 5.128 and subtracting c2fl [\1;TJ{Bn} for

both sides of the equation yields

[
* * ] {~bf} * {~bf} [* * ]

[Ktr]-Fz[Gtr] cl +c2[\1tr] ci -fl [Ktr]-Fi[Gtr] {Bn}

* * * *-c2fl[Mtr]{Bn} = {~Ff} + [Mtr]{{An} +ll{Bn}} - c2fl[\1ff]{Bnl (5.130)

Combining terms

(5.13\ )

or

(5.132)

where

(5.133)
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(5.134)

(5.135)

If neither the structural stiffness nor the geometric stiffness vary from step to step,

Equation 5.133 is only calculated once. Equation 5.1 32 is solved for {~c5} by Gaussian

elimination. The incremental free displacements are obtained by

(5.136)

The incremental displacements are substituted into Equations 5.126 and 5.124 to yield

the incremental velocities and accelerations.

The displacements, velocities and accelerations of condensed degrees of freedom

are calculated by Equations 5.104 to 5.106. Numerically, the displacements, velocities

and accelerations are found by back substitution with the condensed stiffness matrix.

This provides a more eflicient solution than performing the multiplications in

Equations 5.104 to 5.106.

b. Reactions. Two formulations for reactions are used. The first is the reactions

of the element forces on restrained degrees of freedom

(5.137)

This is equivalent to Equation 5.69 for the case {~£5r} = O.. The summation of

incremental reactions {&:RGO} is detennined by Equations 5.69 through 5.73.
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The second formulation for reactions is based on Equation 5.110, and is used for

the energy balance. Solving Equation 5.110 for {.1R}, with proportional damping

(5.138)

The first term is the reaction due to inertial forces. If a consistent mass

formulation were used to determine the mass matrix, [\ire] and [\irrJ would be

nonzero, and reactions due to inertial forces would exist. For a lumped mass model,

[Mrc] and [\irf] are zero. Thus the inertial forces are not transferred to the

ground. Since the lumped mass matrix is used in this study, the first term is dropped.

The second term consists of the reaction due to proportional damping. As

previously discussed, the reactions due to lumped mass proportional damping at

specific dof are undefined. However, the summation of the incremental mass

proportional damping ~ARDM is determined by Equation 5.84. The sum of the

incremental stiffness proportional damping, r.ARDK' is calculated in a manner similar

to the reactions due to element forces. {r.ARGO}'

The third term consists of reactions due to 1) stiffness, 2) geometric stiffness and

3) unbalanced forces. The geometric stiffness is actually a load occasioned on the

structure by the so called P-A forces and is omitted. The sum of incremental reactions

due to stiffness and unbalanced forces {r..1RGO} was determined in Equations 5.69

through 5.73.
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c. Total Displacements, Velocities, Accelerations and Reactions. The total

displacements, velocities accelerations and reactions are determined from

{6(t)} = {6(tO)} + {~15} (5.139)

{bet)} = {b(tO)} + {~e5} (5.140)

{;Set)} = {;S(tO)} + {L\;S} (5.141)

{R(t)} = {R(tO)} + {~R} (5.142)

The initial conditions {6(O)} , {b(O)} , {b(O)} and {R(O)} are zero for a structure

subjected to an earthquake.

G. ENERGY FORMULATION

Two purposes are served by examining the energy in a structure. First,

conservation of energy, or an energy balance, is used to check the accuracy of the

numerical solution. Second, the behavior of a structure can be studied by examining

the amount of energy stored in, and dissipated by the structure (26, 21).

From the conservation of energy

(5.143)

where Ei = The energy input into the structure.

Es = The energy stored in the structure, which consist of kinetic energy, KE.

and clastic strain energy, ESE; Es = KE + ESE

Ed = The energy dissipated by the structure, which consist of plastic strain

energy, PSE, and energy dissipated by damping, DE; Ed = PSE + DE
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Thus Equation 5.143 becomes

Ei = KE + ESE + PSE + DE (5.144)

Equation 5.144 is used to check the accuracy of the numerical solution. The relative

error of the solution in percent, is expressed by

Ei - (KE + ESE + PSE + DE)
Re = F. 100

"1

(5.145)

1. Input Energy. Energy is transmitted into the structure by I) the reactions

moving through a ground displacement, and 2) the geometric stiffness forces moving

through an absolute displacement. For ground motions consisting of three

translational components, the total energy input at time t is given by

(5.146)

where {Og} represents the three components of ground translation, and {(5 gf} is a

vector of the ground translations in the Gdof. The summation of reactions at time t,

{1:R(t)}, consists of

1) Reactions due to lumped mass proportional damping {~RDM(t)},

2) Reactions due to stiffness proportional damping {1:ROK(t)},

3) Reactions due to member forces {1:RGO(t)}.

The geometric stiffness forces for free degrees of freedom at time t, {FG~t)}, are

determined by

(5.147)

In incremental form Equation 5.146 becomes
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(5.148)

where n are the average summation of reactions or geometric stiffness forces over

the time step ~t. Neither the summation of reactions, nor the geometric stiffness

forces are linear over time ~t. Thus Equation 5.148 is an approximation of the input

energy.

2. Kinetic Energy. The total kinetic energy of the structure at time t is given by

KE(t) = +{~t<t) + ~gf(t)}T[\1~J{~~t) + ~g~t)} (5.149)

3. Strain Energy. The strain energy is calculated for each individual element.

The total strain energy of the structure is the sum of all the individual element's strain

energy. The strain energy for a given clement is a function of both the clement type

and the type of hysteresis model used to represent the elements inelastic behavior. For

the general force - deformation relationship, shown in Figure 141, the total strain

energy is the area bounded by OAB. The total strain energy, SE, is composed of two

parts: I) the elastic or stored strain energy, ESE, represented by the area bounded by

ABC, and 2) the inelastic or dissipated strain energy, PSE, represented by the area

bounded by OAC. Thus

SE = ESE + PSE (5.150)

The total strain energy per unit height, for each of the shear wall"s components

of deformation is given by
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SEbending(t)=SEbending(tO)+ O.5[Ma(t) + Ma(tO)][Ou(t) - 0u(tO)]. .
SEshear(t) =SEshear<tO) + O.5[Va(t) + Va(tO)][vu(t) - vu(tO)]

SEaxial(t) =SEaxial(tO) + O.5[Pa(t) + Pa(tO)] [uu(t) - uu(tO)]

(5.151)

The plastic strain energy for each component of deformation IS based on each

component's equivalent unloading stiffness, Keu' and is given by

V;(t)
(5.152)=

2Ks eu

P;(t)
=

2Ka eu
PSEaxial(t)

1MaC t)
PSEbending(t)= lK

b eu

PSEshear(t)

where the equivalent unloading stiffness is chosen such that the area under the actual

unloading curve, area ABOEF, is equivalent to area ABC in Figure 142.

For the bending hysteresis model, the area ABDEF is

Area = O.875P\1(DM - DQ3) + O.5PM(DQ3 - DQI) + O.125P\1(DQI - DO') (5.153)

where PM, OM, OQ3, DQI and DO' are defined in Section A.2.a of Chapter IV.

The equivalent bending unloading stiffness is

1K _ P\1
b eq - lArea (5.154)

For the shear hysteresis model, the area ABDEF is

(PM + PA)(OM -OA) (PA + PB)(OA - DB)
Area = 1 + 2

PB(DB - DO')
+ 2 (5.155)
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where PM, OM, PA, DA, PB, DB and DO' are defined in Section A.2.b of Chapter IV.

The equivalent shear unloading stiffness is

2
K = PM

seq 2Area (5.156)

For the axial hysteresis model, the unloading stiffness is used for the equivalent

unloading stiffness. The axial unloading stiffness is given in Section C.3 and C.4 of

Chapter IV.

The strain energy and plastic strain energy, for each component of deformation

given in Equations 5.151 and 5.152 are multiplied by the wall's height, h, to determine

the total energy in the element.

4. Energy Dissipated by Damping. The energy dissipated by damping is the

integral of damping force times the incremental relative displacement. Substituting

M{~f} for the incremental displacement, the energy dissipated by damping becomes

(5.157)

This integral is approximated by an incremental expression for DE. The incremental

damping force in a time step for proportional damping is given by

The total energy dissipated by damping is

DE(t) = DE(tO) + ~{FD(tO) + ~~D }~~f}
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H. DUCTILITY AND EXCURSION RATIO

Three definitions of ductility are considered in this study. The first and most

common definition is the displacement definition as shown in Figure 143. Let the

displacement ductility be defined as

(5.160)

when bmax represents the maximum displacement, rotation or strain in the structure

or element, and by is the yield displacement. rotation or strain.

Cheng, et aI, (26, 21) have proposed several energy based ductility definitions.

Both the variable strain energy and the constant strain energy formulations are used

in this study. The variable strain energy definition of the ductility is shown in Figure

144 and defined as

PSE
f.J.vse = 1+ ESE (5.161 )

where PSE corresponds to the plastic strain energy for the current half cycle. The

constant strain energy definition of the ductility is shown in Figure 145 and defined as

- 1 PSE
f.J.cse - + CSE (5.162)

where CSE is the constant strain energy corresponding to displacement at yield.

For each ductility ratio, a corresponding excursion ratio exist. where the

excursion ratio is given by

(5.163)

and the summation is carried out for each half cycle.
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I. DAMAGE INDEX

The damage index is a parameter developed by Ang, et ai, to assess the damage in a

structure (65, 66, 5). A damage index greater than 1.0 indicates total damage or

collapse. The damage index is defined as

DI = <5~ax + .~ rtd(PSE)
bult J.y 0ult Jo

(5.164)

where <5 max is the maXlmum displacement, <5 ult is the failure displacement under

monotonic loading, Fy is the yield force, and fJ is a hysteretic energy coefficient. For

RiC shear walls, Sheu (72) determined fJ = 0.20, based on ,\:CKC walls SW 1a through

SW6.

In this study, the damage index is calculated independently for the bending, shear

and axial components of deformation in a shear wall. The damage index for the entire

structure is then calculated by taking a weighted average of each individual

component's damage index, where the strain energy, SEi' given in EquationS.151 is

used as the weighting factor. Thus

(5.165)

where the summation is carried out for all the members. A sample calculation of the

damage index is included in Section B.l of Chapter VI.
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VI. RESPONSE STUDIES OF LOW-RISE BUILDINGS WITH ISOLATED

SHEAR WALLS

Low-rise RIC buildings commonly rely on isolated shear walls to resist lateral

loads: These walls are chosen because of their strength and rigidity. The response of

a reinforced concrete shear wall building to earthquake ground motions is influenced

by several parameters: 1) the amount of structural damage, 2) the symmetry. of the

building system, 3) the type of earthquake ground motion, and 4) the number of

components of the earthquake ground motion. Numerical studies are performed to

investigate the effects of these parameters. These studies consist of two buildings

(symmetric and nonsymmetric) subject to various earthquake ground motions

(EI Centro, Taft and Mexico) using ~oth one and two components of ground motion.

Additionally the input angle of the two-component El Centro ground motion is

rotated 26 0 in an attempt to calculate the maximum response for various ground

motion input angles (17). The responses of elastic (und~aged) and

nonlinear (damaged) buildings are examined. The nonlinear response is

calculated at three different intensities of ground motion to

determine the response at various damage levels.

A. STATIC RESPONSE OF SYMMETRIC AND UNSYMMETRIC BUILDINGS

1. Svmmetric Building. The symmetric building used in this study is shown in

Figure 146. This two-story square building has four 30' wide shear walls, symmetrically

placed on the building's perimeter. All of the lateral loads are resisted by the shear

walls. Most of the graviry loads in the building are carried by a separate vertical load

resisting system, with the shear walls carrying the remainder of the gravity loads. The

symmetric building's gravity loads are summarized in Table XII. The center of mass

and the center of rigidity of a symmetric building coincide. However, to account for
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the uncertainties in the location of the gravity loads, the mass center is offset 5% of

the building's width.

rTable XII. GRAVITY LOADINGS OF THE SYMMETRIC BUILDING

Total Building Live Load

Total Building Dead Load

Second Floor Structure : 50 psf x 90' x 90'
HVAC : 5 psf x 90' x 90'
Brick Curtain Wall : 40 psf x 135 x 360'
Shear Wall : 120 psfx 13.5' x 120'

Total Second Floor Dead Load

Dead load
Roof Structure : 15 psf x 90' x 90'

HVAC : 15 k + 5 psf x 90' x 90'
Brick Curtain Wall : 40 psf x 9' x 360'
Shear Wall : 120 psf x 6' x 120'

Total Roof Dead Load

121.5 k
55.5 k

129.5 k
86.4 k

392.2 k

405.0 k
40.5 k

194.4 k
194.4 k

834.3 k

1226.5 k

202.5 k
405.0 k

607.5 k

Snow : 25 psf x 90' x 90'
Occupancy : 50 psf X 90' x 90'

Live load
Roof
Second Floor

The 30' wide shear walls are shown in Figure 147. The height to width ratios of

the first and second floor walls is 0.50 and 0.40, respectively. These walls are 8" thick

and are made of 4000 psi (f~ ) concrete. The walls are reinforced with 2 #3 @ II" each

way for vertical and horizontal reinforcement ratios of p = O.25(~/o. The reinforcement

steel has a yield point of 60 ksi. The shear wall has an axial working stress of about

2.5~/of~ under full dead plus full live loading. This axial stress is small enough to be

neglected when calculating the backbone curves.

The moment to shear ratio for the shear wall is determined by applying the UBC

design base shear to the building and then examining the bending moment and shear
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forces in the shear wall. The 1988 Uniform Building Code (77) section 2312(e)

provides a design base shear of

V= ZIC WR 'w
for C = 1.2S S < 2 7S

T2/3 - . (6.1)

where Z = 0.40, UBC zone 4,

1=1.0, normal occupancy,

Rw = 6, load bearing concrete shear wall system,

S = l.0 to 2.0, depending on soil type,

T = the period of the structure, and

W = the total seismic dead load of the structure.

Assume that the building's period, T, is less than 0.30 seconds, which yields the peak

value ofC= 2.75 regardless of the soil type factor, S. Thus the CUC base shear is

v = 0.40 (l~0) 2.75 1226.5 = 225 k

Distributing the base shear to the roof's mass center yields

(6.2)

392.2 x 27 x V = 103.1 k
392.2 x 27 + 834.3 x IS

(6.3)

Distributing the base shear to the 1100r's mass center yields

F I = 834.3 x IS x V = 121.9 k
392.2 x 27 + 834.3 x IS

(6.4)

These forces at the mass center are distributed to the individual walls by statics. The

forces on the shear wall closest to the mass center are shown in Figure 148. The load

at the roofis 56.7 k and the load at the second 1100r is 67.0 k. The shear and moment

on the second and first 1100r walls is V=S6.7 k, M=8,165 in-k and V= 123.7 k,

M = 30,431 in-k, respectively. Thus the moment to shear ratio is \of/V = 144" for the

299



r
-
-
-
-
'

t1
=1

44
"

V

81
65

in
k MI

.
=

24
6"

V

30
43

1
in

k

E
qu

iv
al

en
t

M
om

en
t

(d
)

F
ig

ur
e

14
8.

U
B

C
S

ta
ti

c
S

h
ea

r
W

al
l

L
oa

di
ng

:
(a

)
S

he
ar

W
al

l
w

it
h

U
B

C
S

ta
ti

c
L

o
aJ

,
(b

)
S

he
ar

,
(c

)
M

o
m

en
t,

(d
)

E
q

u
iv

al
en

t
M

o
m

en
t



second floor shear wall, and :\if/V =246" for the first floor shear wall. Both the moment

diagram from statics and the equivalent moment diagram used in the analysis are

shown in Figure 148.

The backbone curves for the first and second floor walls are determined by the

method presented in Chapter 11 I, using the moment to shear ratios determined above.

The bending and shear backbone curves are shown in Figures 149 and ISO,

respectively. Yield occurs in the second and first floor walls at shears of 364 k and

231 k, respectively. Failure occurs in the second and first floor walls at shears of

509 k and 315 k, respectively. Using the distribution of shears between the second and

first floor walls in Figure 148, the first floor wall will fail at a shear of 315 k, while the

second floor wall has a shear of 144 k. Thus the second floor wall never yields. The

backbone curves have been modified to provide a failure ductility of 10, as discussed

in Chapter 11 1.

The shear bending influence angles, 1/1, Equation 3.21, for these low-rise shear

walls are 1/12 = 33.6
0

and "'1 = 21.5
0

for the second and first floor, respectively. The

relatively low shear bending influence angle for the first Ooor wall indicates that

bending will be the predominant component of deformation.

The JCS for each of the joints used to define the symmetric building coincide with

the GCS. The symmetric building is modeled with 8 shear wall elements as shown in

Figure 151. Both the second floor and the roof are considered to be rigid diaphragms.

Thus the planar constraint, Equation 5.6, is used to transfer the horizontal

translational degrees of freedom (Fx' Fy) and the rotational degrees of freedom ev1z)

to the diaphragm's mass center. Vertical translational degrees of freedom exist at the

intersection of each waIrs edge and the floor or roof slab. The model has a total of

22, non-restrained, global degrees of freedom as shown in Figure 151. Vertical degrees

of freedom, Gdof I through 16, are condensed out, and the remaining four translational
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and two rotational degree of freedom, Gdof 17 through 22, are used in the dynamic

analysis. The separate vertical load resisting system is not included in the model.

The full dead plus full live load case is used to generate the axial load, N, for the

geometric stiffness. Even though the shear walls do not carry all of the vertical loads,

they do stabilize the vertical load resisting system. Thus all of the gravity loads in the

building are distributed to the shear walls for the purpose of calculating the geometric

stiffness.

The elastic natural frequency of a structure IS determined by solving the

eigenproblem

(6.5)

where K is the initial stiffness, G is the geometric stiffness, w is the frequency, and \1

is the mass matrix. The fundamental period of the symmetric building is 0.155 seconds.

Thus the assumption used to calculate the UBC static forces, that the period is less

than 0.30 seconds, is valid.

A static load, based on the UBC design base shear shown in Equations 6.1 to 6.4,

is applied monotonically to the mass center of the second floor and roof parallel to the

building's global Y axis. This load is increased until failure. The displacements of the

mass center at the second floor and roof are shown in Figure 152.

The structure has a gradual yielding behavior. Wall #2, the first floor wall next

to the mass center yields first at a base shear of 460 k, with the displacement of the

roof and second floor at 0.253" and 0.156", respectively. The yield drift ratios of the

1 1
second and first floor are 1500 and 1150' respectively.
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Failure occurs at a base shear of 627 k or 2.79 times the UBC static base shear.

The displacement of the roof and second floor at the ultimate load are 2.37" and 1.4}",

respectively. The failure drift ratios of the second and first floor are 1~3 and 1~5 .

respectively.

2. Cnsymmetric Building. The unsymmetric building used in this study is shown

in Figure 153. This 'L' shaped, two-story building has four 30' wide shear walls. All

of the lateral loads are resisted by the shear walls. Some of the gravity loads in the

building are carried by a scparate vcrtical load resisting systcm, with the shear walls

carrying thc remainder of the gravity loads. The unsymmetric building's gravity loads

are summarized in Table XIII.

Table XIII. GRAVITY LOADINGS OF THE UNSYMMETRIC BLILDI:\G

Total Building Dead Load

Total Building Live Load

Dead load
Roof Structure : 15 psf x 4500 sq ft

BVAC : 10 k + 5 psf x 4500 sq ft
Brick Curtain Wall : 40 psf x 9' x 360'
Shear Wall : 120 psf x 6' x 120'

Total Roof Dead Load

Second Floor Structure : 50 psf x 4500 sq ft
BVAC : 5 psf x 4500 sq ft
Partition : 20 psf x 4500 sq ft
Brick Curtain Wall : 40 psf x 13.5' x 360'
Shear Wall : 120 psfx 13.5' x 120'

Total Second Floor Dead Load

67.5 k
32.5 k

129.5 k
86.4 k

315.9 k

225.0 k
22.5 k
90.0 k

194.4 k
194.4 k

726.3 k

1042.2 k

112.5 k
225.0 k

337.5 k

Snow : 25 psf x 4500 sqft
Occupancy : 50 psf x 4500 sq ft

Live load
Roof
Second Floor

Area / Floor = 5 (30' x 30') = 4500 sq ft
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The mass center and the center of rigidity for an unsymmetric building do not

coincide as shown in Figure 153. The largest eccentricity is parallel to the global Y axis

and is about 28% of the buildings width. The eccentricity parallel to the global X axis

is about 12% of the buildings width.

Similar to the symmetric building, the moment to shear ratio In the walls is

determined by applying the UBC static seismic forces 20 to the building and examining

the bending moment and shear forces in the shear wall. This procedure yields moment

to shear ratios of M/V = 144 for the second floor shear wall, and M/V = 243 for the first

floor shear wall. These values are very close to the moment to shear ratios detcrmined

for the symmetric building. Thus for the same 30' waIls shown in Figure 147, the

backbone curves in Figures 149 and 150 are used in both the symmctric and

unsyrnmetric buildings.

The model used for the unsymmctric building is similar to the symmetric

building's model. The unsyrnmetric building also has 8 shear wall elements, 16 vertical

degrees of freedom, 2 translational degrees of freedom at each level and one rotational

degree of freedom at each level as shown in Figure 154. All 16 of the vertical dcgrees

of freedom are condensed out, leaving the 2 translational and one rotational degrees

of freedom at each level, Gdof 17 through 22, for the dynamic analysis. The separate

vertical load resisting system is not included in the model. The geometric stifTness of

the unsymmetric building also reflects all of the gravity loads on the structure. The

fundamental period of the unsymmetric building is 0.188 seconds.

20 Section 2312(d) 8, Item B (iii), UBC (77) allows the static lateral force procedure to

be used for irregular structures less than 5 stories or 65' tall.
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A static load, based on the UBC base shear, is applied monotonically to the mass

center of the second floor and roof in the buildings X axis, and this load is increased

until failure. The displacements of the mass center at the second floor and roof are

shown in Figure 155.

Wall #7, the first floor wall next to the mass center, yields at a base shear of

428 k, with the displacement at the roof and second floor mass center of 0.262" and

0.156", respectively. The yield drift ratios of the second and first floors are

1 d 1 . I
1360 an 1160' respectlve y.

Failure occurs at a base shear of 586 k or 3.13 times the UBC static base shear.

The displacements of the roof and second floor at the ultimate load are 2.37" and 1.39",

respectively. The failure drift ratios of the second and first floors are 1~7 and 1~9'

respectively. Similar to the symmetric building, the second floor shear walls do not

yield.

B. DY~AMIC RESPONSE OF SYMMETRIC A!\iD UT\:SYMMETRIC

BUILDI~GS

Elastic and nonlinear analyses of both buildings subjected to a series of seven

different ground motions, at three different load levels are performed. The seven

different ground motions used in this study are given in Table XIV. The first 10

seconds of the 1940 EI Centro ground motion and the first 15 seconds of the 1952 Taft

ground motion are used. The ground accelerations at the Secrctaria de

Comunicaciones y Transportes were used as the basis for the Mexico ground motion.

This ground motion was recorded during the September 19, 1985 earthquake, and is

180 seconds long. A 10 second strong motion segment of this earthquake is used in

this study, which corresponds approximately to the 55 to 65 second range of the

original ground motion. The Mexico ground motion is included to study the behavior
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of shear walls subject to ground motions having longer periods. No attempt is made

to correlate the peak displacements resulting from the entire 180 second record, and the

10 second segment.

Table XIV. GROUND ACCELERATION RECORDS

Symmetric Unsymmetric
Case Ground \tt otion Building Building

Global Axis Global Axis

A 1940 El Centro 1'\S Y X

B 1940 E1 Centro NS Y X
1940 EI Centro EW X y

C 1940 El Centro NS, rotated 26° Y X
1940 El Centro EW, rotated 26° X y

D 1952 Taft N69W Y X

E 1952 Taft ~69W Y X
1952 Taft S21W X y

F 1985 Mexico SOOE Y X

G 1985 Mexico SOOE Y X
1985 Mexico l\i90W X y

Penzien, et al (68) and later Cheng, et al (17) have recognized that a 3-D

building's response to a multicomponent ground motion may not be a maximum if the

ground motions are applied to the buildings principal axes. Thus the two-component

EI Centro ground motion is rotated 26° with respect to the buildings principal axes in

an attempt to determine the maximum response.

Also shown in Table XIV is the building global axis corresponding to each

particular earthquake component. The symmetric building typically has the stronger

of the two-components applied parallel to its global Y axis, while the unsymmetric
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building typically has the stronger of the two-components applied parallel to its global

X axis.

The three different loading levels are accomplished by scaling the amplitude of

each ground motion. The peak ground accelerations for these three loading levels are

given in Table XV, along with the actual peak ground acceleration for the earthquake.

Table XV. PEAK GROCND ACCELERATION FOR VARIOUS LOADI~G

LEVELS

Load El Centro Taft \;texico

Level :'JS EW :'\i69W S21W SOOE ~90W

O.3143g O.1614g O.3114g O.3114g O.3425g O.1943g

., O.4715g O.2421g O.4449g O.4449g O,4281g O.2429g..
3 O.5500g O.2824g O.5335g O.5335g O,4709g O.2671g

* O.3143g O.1614g O.1778g O.I778g O.1712g O.0972g

* Unfactored ground accelerations

The initial stiffness of the building is used for the elastic analysis. Each building

is analyzed once for each of the seven different ground motions at load level 3. The

response at load levels 2 and 1 is obtained by scaling the response at load level 3. For

the elastic case, damping is neglected.

For the nonlinear analysis, each building is analyzed once for each of the seven

different ground motions, at each of the three different load levels. Thus a total of 21

nonlinear analyses per building were performed. A mass and stiffness proportional

damping of 5% critical is used for both structures.
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The time step used to solve the equation of motion varied from 0.005 seconds for

an elastic analysis to 0.00025 seconds for a nonlinear analysis. The energy balance is

used to verify the accuracy of the solution. The gross relative error varied from 3.5%

(unsymmetric building, ground acceleration D, load level 1) to 0.28% (symmetric

building, ground acceleration A, load level 3) for the nonlinear analysis. The maximum

gross relative error is less than 0.25% for all of the elastic analysis.

1. Displacements, Energies, Member Forces and Deformations of the

Cnsvrnmetric Building Subject to Two-Component Seismic Input. The nonlinear

response of the unsyrnmetric building subjected to the two-component EI Centro

ground motion (B) with a peak ground acceleration of 0.5500 g (load level 3) is

discussed in this section. The displacement of the unsyrnmetric building's roof mass

center in the X direction is given in Figure 156. The displacements are larger in the

positive X direction than in the negative X direction. Between 6 seconds and 9 seconds

the displacements have a permanent set in the positive X direction. This permanent

set is typical of nonlinear behavior. The peak displacement in the building's X

direction is 1.56" versus 0.963" in the Y direction.

The base shear for this building is given in Figure 157. Recall that the u1timate

base shear for the unsyrnmetric building is 586 k. The peak base shear for this loading

is -507 k, or about 87% of the buildings ultimate load capacity.

The energy balance used to verify the accuracy of the nonlinear dynamic solution

is given in Figure 158. The input energy is approximately equal to the total energy

throughout the time history. The gross relative error of this solution is O.62~/o.

indicating that the solution is acceptable.
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Typical bending and shear hysteresis loops are given in Figures 159 and 160 for

wall #7. Wall #7 is the first floor wall, next to the mass center, as shown in Figure 154.

This wall suffered the most damage during the ground motion, while the walls on the

second floor remained elastic. The bending and shear hysteresis loops for wall #7 have

several large amplitude hysteresis loops and many small amplitude hysteresis loops.

Thus the small amplitude hysteresis loops in the bending and shear hysteresis modcls

are important.

The peak bending displacement for wall #7 is 0.835". whilc the peak shear

displacement is 0.099". Thus at the peak displacement, bending deformation accounted

for about 90(~/o of the total deformation.

The bending displacement ductility for wall #7 is 7.24, and the shear displa<:cment

ductility is 1.90. Bending and shear excursion ratios are 48.8 and 5.7, respcctively.

Both the bending and shear ductility ratios are below the failure limit of 10.

The strain energy for wall #7 is shown in Figure 161. ;\late that the bending

energy is about 15 times larger than the shear energy, which indicates that the energy

absorption of this wall is predominated by bending. This is influenced by two factors:

1) the bending deformation of the wall is much larger than the shear deformation, and

2) pinching causes the shear hysteresis model to dissipate less energy than thc bending

hysteresis model.

The bending moment and shear are plotted against each other in Figure 162.

Recall that an assumed moment to shear ratio of MjV = 246 is used to establish the

bending and shear backbone curves. Comparing the assumed and actual moment to

shear ratio demonstrates that 1) the assumption that the moment to shear ratio would

remain fairly constant throughout the loading history is justified, 2) the assumed
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moment to shear ratio of 246 is close to the actual moment to shear ratio, and 3) the

method used to estimate the moment to shear ratio is reasonable.

Parallel to the buildings global Y axis, wall #3 also has heavy damage. The

bending ductility and excursion ratios are 7.2 and 46.5, respectively. The shear ductility

and excursion ratios are 1.56 and 1.77, respectively. Wall #3 resists torsional forces

and lateral loads in the global Y direction. Wall #7 resists torsional forces and lateral

loads in the global X direction. While the forces in the X direction are larger than the

forces in the Y direction (~gx > ~gy), wall #3 resists more torsion than wall #7, because

wall #3 is farther from the center of rigidity. Thus walls #3 and #7 have similar forces.

For ground motions with the same magnitude of ground acceleration in both

directions, (i.e. Taft) the forces in wall #7 are larger than the forces in wall #3.

The damage index for the bending component of wall #7 is calculated by

Equation 5.164

OJ = bmax + fJ rtd(PSE)
bult Fy bult JO

or

-5
OI = 2.577 x 10 + 0.20 (8.1435) = 1.532

3.559 x 10-5 (56644)3.559 x 10-5
(6.6)

where bult = 3.559 x 10-5 rad, and Fy = 56644 in-k are the ultimate rotation and yield

moment from the bending backbone curve for a unit height wall, Figure 149. The

maXImum unit length displacement bmax = 2.577 x 10-5 rad and unit length

dissipated plastic strain energy fJ d(PSE) = 8.1435 in-k are determined from the

analysis. The damage index and energies for all of the walls are summarized in Table

XVI. The damage index for the building is given by Equation 5.165
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Table XVI. WALL DAMAGE INDICES OF THE UNSYM;yfETRIC BUILDING

(GROUND MOTION:B, LOAD LEVEL:3)

Wall DJ PSE SE SE DI

Bending Component
1 0.7627 3.4906 3.4936 2,6646
2 0.0152 0.0000 0.0000 0.0000
3 1.3021 5.8674 5.8833 7.6606
4 0.0159 0.0000 0.0004 0.0000
5 0.8110 3.7702 3.7825 3.0676
6 0.0167 0.0000 0.0003 0.0000
7 1.5323 8.1435 8.1447 12.4801
8 0.0170 0.0000 0.0000 0.0000

Shear Component
1 0.2379 0.3653 0.3659 0.0870
2 0.0184 0.0000 0.0000 0.0000
3 0.2566 0.3383 0.3399 0.0872
4 0.0191 0.0000 0.0005 0.0000
5 0.2211 0.2955 0.2970 0.0657
6 0.0202 0.0000 0.0004 0.0000
7 0.3314 0.4733 0.4735 0.1569
8 0.0205 0.0000 0.0000 0.0000

Sum 22.7820 26.2697

Note: The damage indices for the axial component of deformation are zero.

or

01= 26.2697 =1.1531
22.7820

(6.7)

A damage index greater than 1 usually indicates collapse. However, before the building

can collapse, both walls parallel to the global X axis must fail. Wall #7 is the most
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heavily loaded of these walls. As stated above, there is some concern as to whether

wall #7 failed or not. Wall #5 is the other first floor wall parallel to the global X axis.

Its ductility and excursion ratios are well below the failure limits. Even if wall #7 does

fail, it is unlikely that wall #5 will also fail. Thus it is not likely that the building will

collapse. However, at a drift ratio of 2~ the building has sigpificant structural and

architectural damage.

2. Displacements, Base Shears, Ductilities, Excursion Ratios and Damage Indices

of Symmetric and L'nsymmetric Buildings Subject to Different Earthquakes.

a. Maximum Base Shears and Mass Center Displacements. While the time

history response of a dynamic system is important, often key parameters such as the

maximum base shear and displacement are sufficient to describe how a building

behaves. For the symmetric building, the base shears and mass center displacements

are selected in the building's Y direction. For the unsymmetric building, the base

shears and mass center displacements are selected in the building's X direction. The

symmetric building is denoted Bl, and the unsymmetric building is denoted B2. The

base shears and displacements for each given ground motion, denoted A through G

(refer to Table XIV) are plotted against the peak ground acceleration (refer to Table

XV) in Figures 163 through 166.

For the symmetric building, the one-component ground motion response IS

approximately equal to the two-component grou~d motion response. This can be seen

by comparing both the displacements and base shear of BI-A with BI-B, BI-D with

B1-E, and BI-G with B1- F for both the elastic and nonlinear cases. Vibration about

the symmetric building's X and Y axis are essentially uncoupled, due to the small

amount of eccentricity between the mass center and the center of rigidity. Thus the

addition of a second ground motion on the symmetric building's X axis doesn't
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significantly affect the response on the. symmetric building's Y axis. The unsymmetric

building has a much larger eccentricity between the mass center and the center of

rigidity, which causes coupling between the X and Yaxis. This coupling is responsible

for the difference in response between the one and two component ground motions for

the unsymmetric building.

For the Mexico ground motion, the elastic response of the unsymmetric building

to a one-component ground motion, B2-F, is slightly larger than the response to a·

two-component ground motion, B2-G, as shown in Figures 163 and 165. This is

because the second component of the Mexico ground motion is applied such that it

counteracts the torsion caused by the first component, resulting in a slight decrease in

the two-component response compared to the one-component response. If the

orientation of the ground motion with respect to the building's axes is varied, then an

orientation may be found where the second component of ground motion increases the

torsion caused by the first component, and the response to the two-component ground

motion will be larger than the response to the one-component ground motion.

Either the one or two component ground motion may yield the maXImum

response for the unsymmetric building. Whether the one or two component ground

motion yields the maximum response depends on how the components of that specific

ground motion interact with the building. For the clastic base shear and

displacements, the one-component EI Centro ground motion, B2-A in Figures 163 and

165, .has a larger response than the two-component ground motion B2-B. Contrarily,

the two-component Taft ground motion B2-E has a larger response than the

one-component Taft B2-D. It is believed that the two-component ground motion

provides a more accurate representation of the building's actual response, since

one-component ground motions do not occur in nature.
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Recall that the two-component EI Centro ground m.otion was rotated 260 to

maximize the response. For the elastic analysis of the symmetric building, the response

to the rotated ground motion, BI-C, is greater than the responses with the ground

motion parallel to the buildings axes, BI-B, as shown in Figures 163 and 165. For the

elastic analysis of the unsymmetric building, the rotated response has a larger base

shear, B2-C > B2-B as shown in Figure 163, while the rotated response has smaller

displacements, B2-C < B2-B as shown in Figure 165. For the nonlinear analysis, the

response to the rotated ground motion at loading level 3 is less than the response with

the ground motion parallel to the buildings axes, as can be seen by comparing BI-C

with BI-B and B2-C with B2-B in Figures 164 and 166. Additional research on the

maximum response related to seismic input direction may be found in References 17

and 18.

For these two elastic buildings, the EI Centro and Taft earthquakes have a larger

response than the Mexico earthquake. Recall that the elastic natural period of the

symmetric and unsymmetric building is 0.155 and 0.188 seconds, respectively. The

majority of the El Centro and Taft earthquake's energies lie in the range between 0.2

second and 1.0 seconds. The majority of the Mexico earthquake's energy is between

I second and 3 seconds. Since the building's natural periods are closer to the

EI Centro and Taft earthquake's, these earthquakes yield a larger response than the

Mexico earthquake.

For nonlinear structures the displacement due to the Mexico earthquake is on the

same order of magnitude as those due to the EI Centro and Taft earthquakes. As a

building deforms nonlinearly, the stiffness decreases, causing an increase in the

building's period. For the Mexico earthquake the natural period shifts toward the

region where the earthquake's energy is the strongest. For the EI Centro and Taft

earthquakes, the natural period is shifting through and out of the ranges where those
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earthquake's energies are strongest. Thus as the loading level is increased, the

displacement due to the Mexico ground motion will increase more rapidly than those

due to the EI Centro or Taft ground motions. This can be seen by comparing the slope

ofBI-F with BI-A or BI-O in Figure 166.

For nonlinear structures at higher load levels, the base shear for a given building

approaches a common value, regardless of the ground motion. This is because once

the walls have yielded, the base shear only increases a small amount for a

correspondingly large increase in displacement. The limiting base shear for each

building is its static ultimate base shear.

The energy balance diverged for the nonlinear analysis of the unsymmetric

building subject to the two-components of the Taft ground motion B2-E at load level

3. This is because the ductility demand on the ground floor walls is greater than the

maximum allowable ductility, J-L = 10. When this ductility demand is exceeded, the wall

is assumed to have failed, and its stiffness is set to zero. As successive walls failed, the

structural stiffness approached zero, and the energy balance failed. This corresponds

to total collapse of the building. Thus the results for this case are omitted.

The base shear of the nonlinear unsymmetric building subject to the

two-components of the Taft ground motion B2-E for load levels 1 and 2 appears to be

much lower than for the one-component of the Taft ground motion B2-0 as shown in

Figure 164. Contrarily, the displacement for the two-component ground motion B2-E

is greater than for the one-component ground motion B2-0 as shown in Figure 166.

The distribution of the peak shears in the ground level walls for these two ground

motions is given in Figure 167. For the one-component case, the shears in the two

walls (walls #5 and #7) parallel to the direction of loading are similar. This is because

the walls (walls # 1 and #3) perpendiCUlar to the direction of loading resist most of the

torsion forcing walls #5 and #7 to displace similar amounts. For the two-component
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case, walls #1 and #3 must resist forces from the Y direction ground acceleration in

addition to the torsional forces. These walls are more heavily loaded than under the

one-component ground motion, and consequently have a lower stiffness, resulting in

a building that has a larger torsional flexibility. The maximum torsional rotation for

the roof is 0.00172 radians for the two-component ground motion, versus 0.00058

radians for the one-component ground motion at load level 2. As torsional rotation

increases, walls #5 and #7 displace different amounts resulting in the shear distribution

shown in Figure 167. Thus the two-component ground motion's base shear in the X

direction is less than the one-component ground motion's base shear, even though the

actual shear in wall #7 for the two-component ground motion is larger. The largest

shear for the two-component case is in wall #3, which is parallel to the building's Y

axis. Also note that the walls closest to the mass center, walls #3 and #7, are the most

heavily loaded. For the nonsyrnmetric building, the one-component ground motion

yields an unrealistic distribution of shears in the walls. The nonlinear dynamic

response of any unsyrnmetric structure subject to a one component ground motion

should be used with extreme caution.

b. Ductilities and Excursion Ratios. The ductility of the building can be

calculated several different ways. First consider the displacement ductility for the

entire building. Let by be the yield displacement of the building's roof mass center,

determined from the static analysis as shown in Figures 152 or 155; also, let bm be the

peak displacement of the building's roof mass center; then the ductility of the entire

building may be defined as

15m
III building = -15­

y
(6.8)
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This ductility, given in Figure 168, is for various levels of peak ground acceleration.

Most of the ductilities range from 0.8 to 1.6 for the lowest load level I. At the highest

load level 3, the majority of the ductilities range from 4 to 6.

Generally, the unsymmetric building has higher ductilities than the symmetric

building. For similar ground motions, the unsymmetric building has more torsion than

the symmetric building. This puts additional loads on the shear walls, increasing their

displacement and yielding larger ductilities in the unsymmetric building. Thus the

torsion in the unsymmetric building is partially responsible for the higher ductilities.

The ductilities are based on the maximum displacement divided by the yield

displacement. Since the yield displacement of the symmetric and unsymmetric

buildings is similar, there is a very strong similarity between the nonlinear

displacements in Figure 166 and the building ductilities in Figure 168. Thus the

influence of the parameters discussed previously on the ductilities is similar to their

influence on the nonlinear displacements.

Ductilities are reported herein with inclusion of the values less than 1. For the

classic elasto-plastic system, any deformation less than the yield deformation is clastic,

and the ductility is therefore undefined. For reinforced concrete shear walls, the elastic

range ends at cracking, which is always less than the yield deformation. Thus

ductilities less than 1 convey the information that the wall deformation is less than

yield and that the wall behavior may be nonlinear.

Another method of calculating the ductility is to consider the displacement of an

isolated shear wall. Let <>by be the bending yield displacement, <> sy be the shear yield

displacement, £5bm be the maximum bending displacement, and ~ sm be the maximum

shear displacement of a shear wall. Define the ductility of a shear wall as
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15bm + 15 sm
III wall = 15 +15

yb ys
(6.9)

The wall displacement ductility is shown in -Figure 169. These ductilities have values

similar to those based on the building ductility definition.

Plotting the wall displacemcnt ductility versus the building displaccment ductility

in Figure 170, we observe that the building displacement ductilities are only slightly

larger than the wall displacement ductilities. Thus the ductilities of the wall with the

most damage, and the building's ductility are approximately equal.

One exception is the unsymmetric building subject to the two component Taft

earthquake, B2-E. For this case the maximum wall ductility occurs in wall #3, which

is perpendicular to the direction that the building's ductility is calculated. Because of

the torsion, the displacements of wall #3 are greater than the displacements at the mass

center. Thus the ductility of the wall is larger than the ductility of the building.

The displacement ductility can also be calculated separately for the bending and

shear components of deformation in a shear wall. Define the bending ductility as

<5bm
III bending:= -<5-­

yb

and the shear ductility as

<5 sm
III shear = -<5­

ys

(6.10)

(6.11 )

The bending ductility is given in Figurc 171. The majority of the bending ductilities

at the lowest load level 1 range from 1 to 2, while at the highest load level the bending

ductilities range from about 4.5 to 8. This is larger than the structure and wall
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ductilities, which; as previously discussed, have a majority of ductilities ranging from

4 to 6 at the highest load level.

The shear ductility is given in Figure 172. The shear ductilities at the lowest load

level 1 range from 0.5 to 1.5, while at the highest load level the shear ductilities range

from 1 to 4. The shear ductility is less than the bending, wall and structure ductility.

The excursion ratios based on the shear and bending displacement ductilities are

given in Figures 173 and 174. The majority of the bending excursion ratios range from

20 to 50 for load case 3, while the shear excursion ratios are much lower. If the total

duration of the ground acceleration record is used instead of a 10 or 15 second

segment, these excursion ratios would be larger.

The ductilities and excursion ratios are also calculated by the variable strain

energy definitions and the constant strain energy definitions, Equations 5.161 and

5.162. On the average, for bending the constant strain energy ductilities are about 35%

larger than the displacement ductilities, and the variable strain energy ductilities are

about 16% larger than the displacement ductilities. The bending excursion ratios by

the three different definitions yield similar reSUlts. For the shear ductilities, on the

average, the variable strain energy ductilities are about 120% larger than the

displacement ductilities, and the constant strain energy ductilities are about 40~/o

larger than the displacement ductilities. The shear excursion ratios have considerable

variation, due to the difference in ductilities.

c. Damage Indices. The damage indices are calculated for each of the buildings

and are presented in Figure 175 for various levels of ground acceleration.

Generally, the unsymmetric building has more damage than the symmetric

building for similar ground motions. This is consistent with the observed ductilitites.
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The unsymmetric building is subjected to torsional forces in addition to the lateral

forces that the symmetric building experiences. Thus it is reasonable that the

unsymmetric building would experience more damage.

The symmetric building's damage index for a one-component ground motion is

higher than the damage index for a two-component ground motion, compare BI-A and

B1-B. Recall that a weighted average of the elements damage indices is taken to get

the building's damage index, where the weighting factor is strain energy in the element,

Equation 5.165. For the two-component ground motion, the sum of energy in all the

walls is much larger than the one-component ground motion, while the sum of damage

index times energy is only slightly larger than the one-component case. Thus the

two-component ground motion has a lower damage index than the one-component

ground motion due to the weighting method. Recall that the maximum displacement

of the symmetric building for both the one and two component ground motions is

about equal. Thus the building has similar amounts of damage due to the one and two

component ground motions, and the damage indices should be approximately equal.

It is important to note that the two-component ground motion yields more realistic

damage indices, because one-component ground motions do not occur naturally.

The rate at which the damage index increases with the ground acceleration is

much higher for the Mexico ground motions than the Taft or EI Centro ground

motions. Recall that the displacement for the .\1exico ground motion also increased

rapidly with an increase in ground acceleration.

d. Failure Criteria. Two different failure criteria have been discussed and are

evaluated in this section.

• Maximum Displacement Ductility. This failure criteria is based on the average

observed failure ductilities in :\,CKU walls which ranged from 5.6 to 17.5. An average
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ductility of lOis used as the failure limit. The peak ductilities for both of the buildings

are less than the failure limit.

• Damage Index. The damage index is based on a weighted average of the

buildings ductility, and the strain energy dissipated during the loading history. The

strain energy dissipated during the loading history is similar to the constant strain

energy excursion ratio. Thus the damage index is actually a combination of the

ductility failure criteria and the excursion ratio. Because the damage index is based on

strain energy, it is sensitive to the length of the ground motion record. The damage

index for several of the cases exceeds the failure limit of 1.0 at loading level 3. If the

entire ground motion record is used instead of a 10 or 15 second segment, the damage

indices would be larger. Thus one might conclude that the cases corresponding to load

level 3 have exceeded the failure limit.

The hysteretic energy coefficient fJ used in detennining the damage index is based

on 8 shear walls (72). For reinforced concrete beams and columns, Park and Ang (65)

examined the results of 261 tests and determined expressions for P that have a

coefficient of variation of 55% when compared to experimental results. This indicates

considerable scatter in the experimental data. As more shear wall data becomes

available, and the p value for shear walls becomes more refined, similar scatter can be

expected. Thus the damage index of 1 should not be rigidly interperted as indicating

collapse.

C. SENSITIVITY OF R A:'-JD CD TO EL CE:'-JTRO, TAFT AND MEXICO

EARTHQUAKES

An elastic response to an earthquake ground motion requires large forces, as seen

by the elastic base shears in Figure 163. Experience has shown that ductile structures

can survive an earthquake with much lower base shears, as seen by the nonlinear base
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shears in Figure 164. The structural analyses recommended in the design codes, such

as UBC, are based on an elastic response spectrum. This elastic response spectrum is

then modified to reflect the actual nonlinear behavior of the structure by the response

modification factor, R. Common design practice considers the elastic response due to

loadings that have been modified to account for nonlinear behavior. Thus the response

modification factor, R, is a very important code parameter.

The load-deformation response of a structure may be represented by f'igure 176.

Curve O-A-B-C-D represents the actual nonlinear behavior of a structure under a

specific ground motion. Point A represents the working load, point B represents the

first significant yield21 of the structure, point C represents the maximum nonlinear

load and displacement that the structure achieved during the ground motion and point

D represents the ultimate capacity of the building. The curve O-A-B-E represents the

elastic response of the building to the same ground motion. Point E represents the

maximum response of an elastic structure. The :'\1EHRP Recommended Provisions for

the Development of Seismic Regulations for New Buildings (55) defines the response

modification factor, R, as the ratio of the maximum elastic force (Point E) to the yield

force (Point B), or

(6.12)

A second parameter Cd is defined as the ratio of the maximum nonlinear displacement.

(Point C) to the yield displacement (Point B), or

21 The first significant yield corresponds to the formulation of a plastic hinge in one

of the structure's critical elements. This occurs at a higher load than the yield point,

which corresponds to the yielding of the first reinforcing bar in a concrete structure.
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(6.13)

Since the first significant yield is greater than the structures yield point, then Cd is

greater than the buildings displacement ductility. The NEHRP recommends the values

of R = 4.5 and Cd =4 for RIC shear walls. Similarly, the Uniform Building Code (77)

defines the response modification factor Rw as the ratio of the maximum clastic force

(Point E) to the working stress force (Point A).

(6.14)

The CBC recommends the value of R = 6 for RjC shear walls. The elastic response

spectrum is reduced by Rw in Equation 6.1 to calculate the equivalent static lateral

load in the UBC code. This static load corresponds to the working load. Buildings

designed to resist this lateral load will behave nonlinearly if the design earthquake is

experienced.

1. Response Modification Factor, R. The response modification factor, R, from

Equation 6.12 is presented as a function of damage index in Figure 177. The point of

the first significant yield, PB' for the symmetric building is near 540 kips as shown in

Figure 152 and near 510 kips for the unsymmetric building as shown in Figure 156 for

one-component static loadings. The elastic base shear, PE' is given in Figure 163, and

the damage indices are given in Figure 175.

The EI Centro ground motion has a much higher response modification factor

than the Mexico ground motion. Recall that the Mexico ground motion has a period
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that is significantly longer than the elastic fundamental period. Thus the elastic

response is relatively small, compared to El Centro and Taft. As the building deforms

nonlinearly due to the Mexico ground motion, the fundamental period of the building

increases and shifts towards the period of the ground motion. The closer the building's

period is to the ground motion's period, the larger the response. Note that the

nonlinear response to the Mexico ground motion is on the same order of magnitude
.'

as the El Centro and Taft ground motions. Thus the response modification factor is

a function of both the buildings period, and the period of the ground motion. This

implies that the response modification factor is site dependant.

The angle of the earthquake input direction on the structure also influenced the

response modification factor, as shown by comparing BI-B with BI-C, and B2-B with

B2-C in the figure. Thus for a given earthquake and building there exist a range of

response modification factors depending on the orientations of the seismic input. The

lower bound of this range will determine the maximum base shear.

An actual earthquake has two horizontal components of ground motion. For

unsymmetric buildings which are sensitive to multicomponent ground motions, it is

unrealistic to use the one-component ground motion to determine the response

modification factor. Symmetric buildings mayor may not be sensitive

to multicomponent ground motions, that depends on the relative

distance between and the relative locations of the mass center and the

rigidity center. For this case the response modification factor for

one and two component ground motions is similar. However, the damage

index for symmetric buildings is component sensitive.

As the level of damage in the building increases, the response modification factor

also Increases. This is because both the elastic base shear and the damage index
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increase with increasing magnitudes of ground motion. Thus Figure 177 can be used

to choose a response modification factor based on an acceptable level of damage.

The symmetric building at failure (01 -- 1.0) has a higher response modification

factor than the unsymmetric building. One cause of this difference is that the elastic

base shear for the symmetric building is typically larger than the unsymmetric building

as shown by Figure 163. The differences in elastic response are due to d~fferent

fundamental periods and the unsymmetric building's coupling of response in the X and

Y axes. Another cause is that the unsymmetric building typically has more damage

than the symmetric building. The increased damage is also due to the unsymmetric

building's coupling of response in the X and Y axes. Thus the response modification

factor is a function of the building type.

Additional studies are required before the response modification factor for

reinforced concrete shear walls can be determined. These should include buildings with

a wider range of geometries, natural frequencies and shear wall height to width ratios.

A family of earthquakes records that are based on the code response spectrum should

be used. The two-component ground motions are preferred over one-component

ground motion. Additionally, the angle of the ground motion to the building should

be varied to determine the range of response modification factors for each combination

of building and ground motion.

Based on the limited study of two buildings, the response modification factor

recommended by the NEH RP, R = 4.5, seems reasonable for the El Centro and Taft

ground motions. The response modification factor for the longer period ground

motion of the Mexico earthquake is close to 1.

2. Deflection Amplification Factor, Cd. The NEHRP definition of the deflection

amplification factor Cd, from Equation 6.13, is presented as a function of damage
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index in Figure 178. The point of the first significant yield is determined from the static

monotonic response which is shown in Figures 152 and 155. The nonlinear

displacement, DO is given in Figure 166, and the damage indices are given in Figure

175.

The displacement amplification factor increases with damage index. Recall that

the damage index. consists of 1) maximum displacement divided by ultimate

displacement and 2) a term containing the plastic strain energy. Since the deflection

amplification factor, Cd, consists of the maximum displacement divided by the yield

displacement, the deflection amplification factor and the damage index are closely

related. The deflection amplification factor Cd varies from 2 to 3 at failure (0 I - 1).

This is slightly lower than the NEH RP suggested value of 4.

The point of the first significant yield is determined from Figures 152 and 155.

The displacement at this point is about twice of the first yield displacement. Shear

walls have a gradual yielding behavior. Thus the exact location of the yield point is

based on judgment. Modifying the location of the significant yield point will have a

larger impact on the displacements than on the load. Thus the deflection amplification

factor is more sensitive to the location of the yield point than the response modification

factor.
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VII. RESPONSE STUDIES OF LOW-RISE BOX TYPE BUILDINGS

In buildings with isolated RIC shear walls, each wall resists lateral loads by

bending and shear. Since the floor is considered to be flexible in its plane, the vertical

displacements of the different walls in the building are incompatible, and the axial loads

in the walls are only due to gravity loadings. The building's lateral stiffness is the sum

of the individual wall's bending and shear stiffnesses.

In box type RIC buildings, the shear walls are connected along their vertical

edges. Thus the vertical displacement of adjacent walls is compatible. External

bending moments are resisted by bending in the plane of the shear wall and by axial

loads in shear walls on both sides of the center of rigidity. The box type building's

lateral stiffness is I) the sum of the individual wall's bending and shear stiffnesses and

2) the sum of the individual wall's axial stiffness times the square of the distance to the

center of rigidity. The influence of the wall's axial stiffness on the building's lateral

stiffness causes the behavior of box type RIC buildings to be different from the

behavior of RIC buildings with isolated shear walls.

A. STATIC ANALYSIS

Box section UT-B6 was tested with a cyclic static loading by Umemura, et al (78,

79) at the University of Tokyo. This box is 83 cm wide, 80 cm tall and has 8 cm thick

walls, as shown in Figure 179. Reinforcing consists of 2 D6 bars22 13.2 cm on center,

each way, for a reforcing ratio of 0.6%. The steel stress-strain curve and the concrete

properties are also given in the figure.

22 A D6 reinforcing bar is approximately equal to a #3 reinforcing bar.
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?\ine joints are used to define the three dimensional structural model as shown in

Figure 180. At the base, joints I through 4 define the corners of the box. Joints 11

through 14 define the comers of the box at the roof. Joint 10 is at the mass center of

the roof. The JCS for all of the joints is parallel to the GCS. The three dimensional

structural model consists of four shear wall elements, numbered I through 4. The

wall's center line dimensions are used for the structural model, thus each of the shear

wall elements is 75 em wide and 80 cm tall.

As discussed in Chapter V, each joint has 6 degrees of freedom. At the base of

the box, joint I through 4, all six degrees of freedom are restrained. The slab at the top

of the box is assumed to be a rigid diaphragm. A planar constraint is used to transfer

the translations in the X and Y axes and the rotation about the Z axis from joints 11

through 14, at the corners of the box, to joint 10, at the mass center. The planar

constraint at the roof reduces the number of degrees of freedom at joints II through

14, leaving rotational dof about the X and Y axes which are restrained and

translational dof in the Z axis which is free to displace. None of the elements are

connected to joint 10. Thus joint 10 does not have any stiffness before joints 11

through 14 are constrained to it. As a 'master' joint, joint 10 has translational stiffness

in the X and Y axes, and rotational stiffness about the Z axis. Loading consist of

imposed displacements of joint 10 in the X direction. Thus the X translational dof of

joint lOis restrained. The Z translational dof and the rotations about the X and Y axes

are also restrained, because these dof do not have any stiffness. The Y translational

dof and the Z rotational dof of joint 10 are free to displace. The dof are numbered in

accordance with the Gdof numbering scheme presented in Section A.4 of Chapter V,

as shown in Table XVII. None of the dof are condensed out since this is a static

analysis. All of the rotations about the X and Y axes are restrained with the restraint

option KEY = 2, which was discussed in Section A of Chapter V.
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In the experimental study, the load is applied 80 cm above the base of the box

section. Displacements at each of the four comers are measured and averaged. For

analysis the load and displacements are assumed to be acting at the mass center of the

box, which corresponds to joint 10. Loading consists of imposed displacements of the

mass center in the global X direction (Gdof 23). P-d effects are neglected since the

only axial loads are the self weight of the box.

Bending moments about the global Y axis are resisted by walls # 1 and #2 in

bending and by walls #3 and #4 with axial loads. Thus the portion of bending resisted

by a single wall is dependent on the walls stiffness relative to the stiffness of the whole

box section. One method to estimate the percentage of bending which a single wall

resists is to take a ratio of the wall's moment of inertia to the moment of inertia for the

whole box section. Let Ig be the gross moment of inertia for the whole box section,

834 - 674 4
Ig = 12 = 12 275 600 cm

and Iw be the moment of inertia for a single wall, say wall # I,

(7.1)

3
Iw = 8 ~~3 = 281 250 cm4 (7.2)

then wall #1 will resist ~; = 0.124 of the total moment. If the applied moment is 80P,

then wall #1 resists a moment of approximately lOP.

For loading in the global X axis, walls #1 and #2 each resists an equal portion

of the shear, while walls #3 and #4 do not resist any shear. For an applied load of P,

the shear in wall #1 is O.SP. Thus wall #1 has a moment to shear ratio of

lOP
O.SF = 20 em.
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The bending and shear backbone curves for walls # I and #2 are determined by

the method presented in Chapter III. If the load were applied in the global Y direction,

a similar analysis would yield the same backbone curves for walls #3 and #4. Thus the

same backbone curves are used for all four walls. Axial stiffness is determined in

accordance with the axial hysteresis model presented in Chapter IV.

The calculated response is compared with the experimental response as shown in

Figure 181. The calculated backbone curve is very close to experimental curve for a

displacement less than or equal to 1 cm as shown by Curve A in the figure. For

displacements larger than I cm the calculated backbone curve has slightly larger loads

than the experimental curve. The calculated unloading stiffness of Curve B in the

figure is less than the experimental unloading stiffness. Thus the calculated hysteresis

loops dissipate less energy than the experimental hysteresis loops.

The low unloading stiffness is primarily due to the unloading branch of the axial

hysteresis model. The axial hysteresis loops for wall #4 are shown in Figure 182.

Recall that the unloading stiffness of the axial hysteresis model, Equation 4.53, is

(
Dyt)IX (Fmax + Fy )Kr= Kc >

Dmax - Dmax - Dyc

where IX =0.90. For the walls in box UT 86 this unloading stiffness is too low. The

axial unloading stiffness in Equation 4.53 is increased by setting ex = 0.40.

The calculated response with ex = 0.40 is compared with the experimental response

in Figure 183. Overall the comparison between the calculated and experimental

response is good. The comparison between calculated and experimental backbone,

Curves A, is identical to the previous analysis. The unloading stiffness, Curve B in the

figure, is very close to the experimental unloading stiffness. This improvement over the

previous analysis is due to the modification of the axial hysteresis model.
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The calculated reloading loops, after unloading from the same direction as shown

in Curve C of Figure 183, are larger than the experimental loops. Similar to the

unloading in Curve B of the figure, the reloading curve is strongly influenced by the

axial hysteresis model. Curve C in Figure 184 is the axial hysteresis loop for wall #4

that coincides with the calculated reloading loop in Curve C of Figure 183. This axial

hysteresis loop is very large. Reducing the reloading stiffness would reduce the size of

this axial hysteresis loop and improve the correlation between the calculated and

experimental response in Figure 183.

The calculated reloading loops, after unloading from the opposite direction as

shown in Curve 0 of Figure 183, do not pinch as much as the experimental loops. This

is partially due to the shear hysteresis model, which has a tendency to underestimate

pinching (Chapter IV). However the pinching in the shear hysteresis loops for walls

# I and #2, as shown in Figure 185, appears to be fairly severe. Another cause is the

axial hysteresis moders stiffness for reloading after reversal, in Curve D in Figure 184;

softening this reloading curve would increase pinching and improve the correlation

between the calculated and experimental response.

The bending hysteresis loops for walls # I and #2 are shown in Figure 186. Note

that the bending hysteresis model has large stable loops while the shear hysteresis

model has pinched loops. As the axial and bending stiffnesses change, the portion of

bending resisted by the wall changes. Thus the moment to shear ratio for walls #1 and

#2 is not constant as shown in Figure 187. However, the assumed moment to shear

ratio of MfV = 20 is a reasonable approximation.

The axial hysteresis loops for walls # I and #2 are shown in Figure 188. Note that

the wall yielded axially, implying that all of the steel in the wall has also yielded. Recall

that the axial load was neglected when the moment-shear interaction surface was

calculated. If the interaction between axial tension, moment and shear were
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considered, the bending and shear stiffnesses would be reduced. For box type

buildings, it is apparent that the interaction between axial, moment and shear forces

is very important. This topic is recommended for further research.

The axial hysteresis loop for walls #3 is shown in Figure 189. Similar to wall #4,

wall #3 has yielded. However since walls #3 and #4 are on opposite sides of the center

of rigidity, wall #3 is in compression while wall #4 is in tension.

In summary, the comparison between the experimental response and the

calculated response is good. However, deficiencies in several of the axial hysteresis

model's rules have been identified. Recall that the axial hysteresis model was

developed for boundary columns. Thus a different axial hysteresis model for shear

walls needs to be developed. Additionally, the interaction between axial force, bending

and shear should be considered.

B. DYNAMIC ANALYSIS

The two-story model box structure, 3D II, was dynamically tested on a shaking table

by Bennett, Anderson, Endebrock, et al (3, 30, 31, 33, 34, 35) of the Los Alamos

National Laboratory. This box structure was previously introduced in Chapter II,

Figure 18. Two layers of OS' hail screen are used for the reinforcement with a

reinforcing ratio of 0.54%. The hail screen consists of 0.042"4> wires OS' on center,

each way, with a yield point of 42.7 ksi at e = 0.001668 in/in, and an ultimate stress of

53.1 ksi at e = 0.04 in/in. The box structure is made of micro concrete, with an

ultimate stress of 2.89 ksi at eo = 0.0033in/in, an initial modulus of 2750 ksi, and a

tensile strength of 0.42 ksi.

The box structure is attached to a uniaxial shaking table. The direction of motion

coincides with the structure's global Y axis as shown in Figure 190. The experimental
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response was determined in Section B of Chapter II. The 3D structural model consists

of eight shear wall elements. The wall and floor center line dimensions are used for the

structural model. Thus the walls are 9" or IT' wide, and 7.75" or 8.25" tall, depending

on their location. The mass center and center of gravity of the structure coincide. The

second floor and roof slabs are assumed to be rigid diaphragms. Planar constraints are

used at each level to transfer the joint degrees of freedom from the corners to the mass

center. An additional weight of 0.23 k is added to both the roof and second floor.

These weights are included with the weight of the box structure in the axial loads for

the P-~ forces.

Bending moments about the structure's X axis are resisted by walls #5 to #8 in

bending and by walls # 1 to #4 in axial tension or compression. Similar to UT box 86,

the moment to shear ratios for the walls are estimated by taking ratios of the moments

of inertia. Bending and shear backbone curves are generated by the method presented

in Chapter II.

Walls #1 and #2 have a height to width ratio of ~ = 7i~5 = 0.43. For walls with

this height to width ratio, the axial strain will not be constant over the width of the

wall due to shear lag. Gupta (43) developed an elastic stiffness reduction factor

rf= i~ ~ 1 for the flanges of box structures. Thus for wall #1, the effective axial

stiffness for a unit length member is

Ka= Ec wt(2h)= 2750x17xl (2X7.75)=13290k/in
1 3w 1 3x17

(7.3)

The stiffness reduction factor was derived for elastic structures, and its direct

application to nonlinear structures is inappropriate. Another method to determine the

effective axial stiffness is to loosely interpret the effective overhanging flange width

criterion for a RIC T-beam with the slab on one side, ACI 8.10.3 (1). This effective

width criterion is calibrated to calculate the ultimate strength of T-beams. Thus the
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applicability of the criterion for nonlinear analysis is established. The effective

overhanging flange width, weo' is the minimum of 1) one-twelfth of the span length,

2) six times the flange thickness, or 3) one-half the clear distance between beams (I).

For wall #1, weo is the smallest of 1) ~~ = 1.33 in, where 16 in. is the total height of

both stories, 2) 6 x 1 = 6 in, or 3) 1; = 7 in. Adding 0.5 in. ··for the-width of the web,

and multip1ing by two for both sides as shown in Figure 191, yields

We = 2(0.5 + weo) = 2(0.5 + 1.33) = 3.67 in

Thus the effective axial stiffness per unit length of the wall is

Ka = Ec we t = 2750 x 3.67 x 1 = 10 092 k/in
1 1

(7.4)

(7.5)

The tensile stiffness and yield point are similarly calculated with an effective width of

3.67 in.

Note that Gupta's effective stiffness is about 30% higher than the AC1 criterion.

Assuming that wall #1 yields, it is more rational to use the criterion based on ultimate

strength (ACI) than the criterion based on elastic behavior (Gupta). Thus the axial

stiffness of wall #1 is 10092 k/in. For box 3011 the effective width criterion is applied

to all of the walls.

Recall that the full axial stiffness was used for box UT-B6, which had a height to

width ratio of about 1. It is not known whether the shear lag is negligible in box

UT-B6 or not. The shear lag problem for walls is very complicated and deserves

further study.

The experimentally measured base excitation is used as the input ground motion

for the dynamic analysis and is shown in Figure 27. The analysis is performed with a
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time step of ~t=0.00001 second, and a duration of 0.20 seconds. Five percent mass

and stiffness proportional damping is assumed. Since the. tests are

performed on a structural model, the magnitude and duration of the

exciting motion have been scaled in accordance with similitude

studies.

The calculated and experimental displacements for the roof are compared in

Figure 192. Overall the comparison between calculated and experimental

displacements is good. The peak calculated and experimental displacements are

o.0017r and 0.00143", respectively. The calculated period is close the the experimental

period. Beyond time 0.16 seconds, the calculated amplitude is much greater than

experimental amplitude.

The calculated and experimental accelerations are compared in Figure 193.

Overall the comparison between the calculated and experimental accelerations is good.

The peak calculated and experimental accelerations are -1.84g and

-1.77g, respectively. Both the calculated and experimental results yield a similar

frequency spectrum as shown in Figure 194. A strong 83 hz acceleration signal is

observed in both spectra. However, the calculated acceleration is higher at 83 hz than

the experimental acceleration, which corresponds to the difference in peak

displacements. Between 200 and 300 hz the calculated response is much larger than the

experimental response.

The calculated and experimental displacements for the second floor are compared

111 -Figure 195. Overall the comparison between calculated and experimental

displacements is fair. From the displacements it can be seen that experimental

response has a larger high frequency content than the calculated values.
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The calculated and experimental frequency response functions23 for the roof are

compared in Figure 196. The calculated and experimental first mode are at 73 hz and

65 hz, respectively. The calculated and experimental FRF for the second floor are

compared in Figure 197. Again the first mode of the calculated and experimental

response is at 73 hz and 65 hz, respectively. The calculated second mode is at 280 hz,

while the experimental second mode is at 210hz.

The maximum bending moment in walls #5 and #6 is 0.65 in-k, which is less than

the cracking moment of 4.5 in-k. The maximum shear in walls #5 and #6 is 0.175 k,

which is less than the cracking shear of 1.8 k. The peak axial loads in walls # 1 and #2

is 0.39 k, which is less than the yield force of 0.89 k. Thus the response of LAl\L box

3011 is elastic.

The moment to shear ratio for walls #5 and #6 is shown in Figure 198. The

average moment to shear ratio appears to be about 3.6". A moment to shear ratio of

2" was used to develop the bending and shear backbone curves, based on the width of

walls # 1 and #2 being fully effective. The analysis is based on the width of walls # 1

and #2 being partially effective. The bending and shear stiffness of NCKU Wall SW6

is insensitive to the moment to shear ratio when the loading is below the cracking load

as shown in Section B of Chapter III, Figures 45 and 46. Similarly, the shear walls in

this structure are also insensitive to the moment to shear ratios when the -loading is

below the cracking load. Thus the assumed moment to shear ratios for the backbone

curves are not revised. If this structure is subjected to larger lateral loadings and the

walls behave nonlinearly, then the moment to shear ratio and the backbone curves

must be modified.

23 The frequency response function (FRF) is the ratio of a structure's response to its

base acceleration in the frequency domain and is calculated by Equation A.38 of

Appendix A.
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VIII. SUMMARIES AND CONCLUSIONS

The objectives of this study are to develop nonlinear hysteresis models of low-rise

RIC shear walls for system analysis and to study the static and seismic response

behavior of typical low-rise buildings with isolated shear walls as well as the box type

structures. The behavior parameters studied include the separation of bending and

shear deformations, ductility factors, excursion ratios, response reduction factors, and

damage indices. The effects of multicomponent seismic input on the behavior

parameters are also investigated. This chapter consists of the sununaries of the work

along with pertinent observations and conclusions.

A. NONLINEAR SHEAR WALL ELE~ENT

1. Monotonic Load-Deformation Behavior. An analytical method for calculating

the monotonic load-deformation response of isolated shear walls is developed in

Chapter III. This method considers the coupling behavior between bending and shear

by combining the bending and shear strains on a differential element in the wall. The

bending strain is assumed to vary linearly across the width of the wall and the shear

strain is assumed to be constant over the entire wall. The horizontal expansion of the

NCKU walls having a height to width of 0.50 is found to be from 0.1 to 0.5 times the

vertical expansion. Thus horizontal expansion of the walls is neglected. Principal

strains are determined from the longitudinal and shear strains on the wall. The angle

of the principal tensile strain is from 30° to 60° above the horizontal. This corresponds

to the observed angle of cracking in the walls.

Principal stress-strain models are used to determine the concrete stresses on a

rotated plane. The Vecchio-Collins stress-strain model is used for compressive
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concrete stresses and a graded tensile model is used for tensile concrete stresses. The

longitudinal and shear stresses are determined from the principal stresses.

Bending and shear stresses on the wall for an assumed strain distribution are

summed to yield the moment and shear on the wall. An iterative procedure modifies

the strain distribution until the axial load on the wall equals the applied loadings. The

moment and shear on the wall, for different strain distributions, form the

moment-shear interaction surface. From these interaction surfaces one can observe

that shear reduces the bending capacity, ductility, and stiffness. Similarly, bending

reduces the shear capacity, ductility, and stiffness. A nondimensional parameter t/J is

developed to measure the relative influence of bending and shear for a given wall with

a moment to shear ratio. For the walls studied, t/J varies from t/J =7.6° to 79.2°. where

t/J = 0° indicates pure bending and t/J = 90° indicates pure shear.

The experimental curvature distributions on the 1\:CKU walls are observed to be

irregular or inverted in some walls due to the interaction between bending and shear

in the hinging region of the wall. Thus an equivalent moment diagram that reflects the

average curvature over the hinging region is used with the analytical moment-shear

interaction surface to determine the bending, shear and total deformation of an isolated

wall subject to monotonic loading.

The experimental displacements of the NCKU walls are analyzed to separate

bending and shear deformations from the total deformations. For the NCKU walls

with a height to width ratios ranging from 0.50 to 0.75, the bending deformation

typically ranges from 40% to 60% of the total deformation.

The monotonic load-deformation curves of bending and shear are typically linear

up to the cracking load. After the cracking load, the stiffness gradually decreases. A

gradual yielding behavior is observed. Average observed bending and shear ductilities
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are 10.39 and 11.0, respectively, and the average observed bending and shear excursion

ratios are 19.2 and 25.0, respectively, for five of the NCKU walls.

The calculated monotonic load-deformation curves are verified by comparison

with the experimental results of 27 shear walls. Height to width ratios for the walls24

range from 0.50 to' 2.40. Four wall cross sections are investigated: 1) rectangular walls

with nearly uniform reinforcement, 2) rectangular walls with extra reinforcing steel at

the edge of the wall, 3) barbell cross sections (walls with square boundary columns),

and 4) walls with flanges. Web reinforcement ratios vary from 0.28% to 0.78~/o

vertically, and from 0 to 1.14% horizontally. Flange reinforcement, when used, varies

from 1.47% to 6.4(%. Concrete strengths range from 2760 psi to 7780 psi, and the yield

stresses of the reinforcing steel range from 68 ksi to 80 ksi. Overall the comparison of

the calculated and experimental response is good.

The influences of several parameters on the walls' monotonic load-deformation

behavior are:

• Boundary elements increase the bending capacity more than the shear capacity.

Thus low-rise walls with boundary elements are often dominated by shear

deformation.

• As the vertical web reinforcement ratio is increased, the walls gained strength and

lost ductility.

• The horizontal web steel reduces the horizontal expansion in the wall. Omission

of the horizontal web steel reduces the ductility.

• Reducing the height to width ratio of a wall can significantly reduce the effect of

bending deformation on the wall's behavior.

24 NCKU and the PCA walls. The height to width ratio of the NCK U walls range

from 0.50 to 0.75, while the height to width ratio of the PCA walls range from 0.50

to 2.40.
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2. Cyclic and Earthquake-Type Load-Deformation Behavior. The semi-empirical

bending and shear hysteresis models are developed in Chapter IV. The cyclic and

earthquake-type load-deformation behaviors of five NCKU walls are studied to

determine characteristics of bending and shear hysteresis loops. Several of the more

prominent features of the bending and shear hysteresis loops are:

• Both the bending and shear hysteresis loops have highly nonlinear backbone curves

without well defined break points.

• The unloading branch for both bending and shear hysteresis loops is highly

nonlinear, and the unloading stiffnesses decrease with increasing levels of peak

displacements.

• When the wall is cycled at a constant load, near the maXImum past load, the

deformations tend to increase with each cycle. When the wall is cycled well below

the maximum past load, the deformations do not increase with each load cycle.

• The reloading curves for the shear hysteresis loops are dominated by pinching. The

degree of pinching increases for larger values of peak displacements.

• The reloading curves for the bending hysteresis loops do not pinch.

• The energy absorption increases with increasing peak displacements. The energy

absorption of the shear hysteresis loops is less than the bending hysteresis loops

because of pinching.

These observations have been synthesized into semi-empirical bending and shear

hysteresis models. The monotonic load-deformation relationships are also utilized in

developing these models.

The hysteresis rules are used to determine the bending and shear stiffnesses under

cyclic and earthquake type loadings. The calculated load-deformation responses and

strain energies compare favorably with the experimental results
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3. Shear Wall Stiffness Element and System Formulation. The formulation of the

shear wall stiffness element based on hysteresis models and the system formulation are

given in Chapter V.

The shear wall stiffness element has bending, shear and axial deformations. The

bending and shear deformations are in the plane of the wall. The bending stiffness out

of the plane of the wall is neglected. The wall's geometric stiffness, however, includes

both in plane and out of plane deformations, which is used mainly for 3D structural

systems.

The system formulation has the following attributes: 1) joint based degrees of

freedom, 2) rigid body and planar constraints, 3) incremental nonlinear static

solution, 4) unbalanced load correction for overshooting,S) incremental nonlinear

dynamic solution, 6) mass and stiffness proportional damping, 7) condensation to

reduce the size of a dynamic problem, 8) energy balance, 9) damage index. and

10) ductility and excursion ratio for various definitions of displacement, constant

strain energy, and variable strain energy.

B. RESPONSE STUDIES OF LOW-RISE BCILDINGS WITH ISOLATED

SHEAR WALLS

Typical symmetric and unsymmetric two-story isolated shear wall structures are

studied in Chapter VI. Both buildings are made of 30' shear walls that have a height

to width ratio of 0.5 and 0.4 on the first and second floors, respectively. The shear

bending influence angle is if! = 33.60 <l:nd if! = 21.5 0 for the second and first floor walls,

respectively. Thus bending is the predominant component of deformation in these

buildings. The fundamental periods for the symmetric and unsymmetric buildings are

0.155 second and 0.188 second, respectively.
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A total of 14 elastic and 42 nonlinear dynamic analyses are performed with

different "earthquake ground motions, numbers of horizontal ground motion

components, and intensities of ground motions.

During a typical nonlinear seismic analysis, a shear wall experiences several large

amplitude load cycles, and the remainder of the loading is on small amplitude loops.

Thus the small amplitude hysteresis loops are important.

The peak base shear, displacement, ductility and excursion ratio of the symmetric

building are not affected by the inclusion of the second horizontal component of

ground motion, because the response in the two directions is weakly coupled.

Contrarily, the unsymmetric building's peak displacement, base shear, ductility and

excursion ratio are significantly influenced by the addition of the second component

of ground motion because the response in the two directions is strongly coupled. This

is observed for both the elastic and nonlinear responses. Whether the one-component

or two-component ground motion prqduces the maximum response in the

symmetric and unsymmetric buildings, depends on the interaction of the

ground motions and the relative distance between and the relative

location of the mass center and the rigidity center at each floor of

the structure.

The nonlinear analysis of a one-component ground motion on the unsymmetric

building yields an unrealistic distribution of shears in the walls. Thus the nonlinear

dynamic response of an unsymmetric structure subject to a one-component ground

motion should be used with extreme caution. Since one-component ground motions

do not occur in nature, analyses with two-component ground motions are preferred.

The elastic response to the 1940 El Centro and 1952 Taft earthquakes is greater

than the response to the 1985 Mexico earthquake. However, the peak noniinear

response at higher levels of damage is similar for all three earthquakes.
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For the symmetric building, the damage index decreases with the inclusion of the

second ground motion because of the method used to average the damage indices in

individual walls. The total damage of the structure with two-components of ground

motion is equal to or greater than the structure's damage with one-component of

ground motion. Typically the unsymmetric building suffers more damage than the

symmetric building as evident by ductilities and damage indices.

The studies of code parameters R and Cd indicate that the response modification

factor, R, is dependent on the building type, earthquake ground motion, orientation

of ground motion, number of components, and level of damage in the building. for

the two buildings studied, the R value of 4.5 recommended by the :"JEHRP (55) is

consistent with the calculated values for the 1940 EI Centro and 1952 Taft

earthquakes. The calculated R value for the 1985 Mexico earthquake is close to 1.

The deflection amplitude factor, Cd, increases with damage index. The Cd value of 4

recommend by the NEHRP is slightly larger than the calculated values.

Additional studies are required before the response modification factor for

reinforced concrete shear walls can be determined. These should include buildings with

a wider range of geometries, natural frequencies, and shear wall height to width ratios.

A family of earthquakes records that are based on the code response spectra should

be used. The two-component ground motions are preferred over one-component

ground motion. Additionally, the angle of the ground motion to the building should

be varied to determine the range of response modification factors for each combination

of building and ground motion.

C. RESPONSE STCDIES OF LOW-RISE BOX TYPE BUILDINGS

A favorable comparison between the calculated and experimental response of a

one-story box-type structure subjected to static cyclic loading is given in Chapter VI I.

394



The axial hysteresis model is shown to have a very strong effect on the structure's

response. This is because the overturning moment of a box-type structure is resisted

by both bending in the plane of the shear wall, and axial forces in walls on opposite

sides of the building's center of rigidity. The axial hysteresis model is based on the

7-story full scale testing structure with boundary columns; several modifications to the

model are proposed for box-type structures.

A favorable comparison between the calculated and experimental SeISmIC

response of a two-story box-type structure subject to a scaled earthquake ground

motion is also presented in Chapter VI I. This box-type structure is dynamically tested

on a unaxial shaking table at LANL, and the accelerations at the base and each floor

were measured by accelerometers. The analytical studies include the removal of errors

from the experimentally measured accelerations, and the integration of the

accelerations to yield displacements. The calculated and experimental results of the

first mode are 73 hz and 65 hz, respectively; while the calculated and experimental

results for the second mode are 280 hz and 210 hz, respectively.
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APPENDIX A

SPECTRAL ANALYSIS

Fourier Transform. .A periodic signal25, with a period of r can be represented by

the infinite Fourier series

ao
x(t) = T + al cos WIt + a2 cos wi + a3 cos w3t + ...

+ b i sin Wit + b2 sin w2t + b3 sin w3t + ... (A. I)

where wn = n 2,7t. For a signal of duration T, the signal is assumed to be repeated

every T seconds as shown in Figure 199.

The infinite series In Equation A.I consists of the summation of periodic

functions at different frequencies. The coefficients an and bn are the amplitude of the

periodic function at frequency wn. The amplitude of an is 900 out of phase with the

amplitude of bn. The resolution is the interval between frequencies wn and wn+ I' or

L1w = 2r7t. Note that functions with larger periods have a finer resolution. The signal

in Figure 199 has a fixed length T, yielding a resolution of 6w = ~;. However, the

resolution of the signal can be improved by assuming the record is longer, say r, and

the signal is zero between T and T', as shown in Figure 200. The coefficients an and

bn for the signals in Figures 199 and 200 are not equal.

To determine the coefficient an in Equation A.I, multiply both sides of the

equation by cos wnt and integrate over the period.

25 For structural analysis, the signal may be an earthquake ground acceleration,

measured experimental acceleration, velocity or displacement.
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When n = 0, wn = 0, cos wnt = 1 and Equation A.2 reduces to

J \(t)(l)dt = J-r aO (l)dt
o 0 2

Integrating the first term yields

J-r aO aO aO'
-(l)dt =+(-r-O)=-o 2 2 2

Integrating the mth element of the second term yields

J-r a
am cos(wmt) dt =.--!!!..[ sin(m2n:) - sin(O)] = 0o wm

And integrating the mth element of the third term yields

J-r -a
am sin(wmt) dt = ----!!!..[ cos(m2n:) - cos(O)J = 0o wm

(A.3)

(AA)

(A.5)

(A.6)

Substituting Equations A.4, AS, and A6 into Equation A3 and solving for aO yields
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211'ao = T x(t)dt
o

(A7)

Note that ao is twice the average of the record x(t). When n:p 0, integrating the first

term of Equation A2 yields

(AlO)

i1' aO aO
-2 cos(wnt) dt = -[ sin(n2n) - sin(O)] = 0

o 2wn

Integrating the mth element of the second term yields

= an( l' ; 0+ 4~n ( sin 4nn - sin 0)) = an ;, for n =m

= f
o

n
am ~ cos(2nz) cos(2mz)dz = 0, for n :p m

And integrating the mth element of the third term yields

fo1'bm sin(wmt) cos(wnt) dt = fo1' b~ [ sin(n + m) 2;t) + sin(m - n) 2;t ) ] dt

= -bm ( cos(n + m)2n - cos(O) + cos(m - n)2n - cos(O) ) = 0

2 (n + m) 2; (m _ n) 2;

(A8)

(A.9)

Substituting Equations A.8, A9, and AIO into Equation A.3 and solving for an yields

211'an = T x(t) cos(wnt) dt
o

-107

(A. I I )



To determine the coefficient bn multiply both sides of Equation A.2 by

sin wnt and integrate over the period. Performing the integrations, similar to the

procedure for an' yields

2 f-r
bn = 7J

O
x(t) sin(wnt) dt (A. 12)

The Fourier transform is given by Equation A.I where the constants are defined by

Equations A7, All and AI2.

It is often convenient to express the Fourier transform in exponential form.

Recall the Euler identities

. -i ( iw t -iw t)smwnt=T e n -e n

(A. 13)

Substituting the Euler identities into Equation A.I yields

00

() ao ~ [ I ( 'b ) iw t I ( .) -iw tJx t = T + i..J 2' an - I n e n +2' an + Ibn e n
n=I

Let Cn = +(an - ibn) and Co = a~ then Equation A.I4 becomes

00 00

x(t) = I Cneiwnt + I C~e-iwnt

n=O n=I

(A.14)

(A.I5)

where C~ is the complex conjugate of Cn' Examine the following coefficients when n

is negative
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-iw(-n)t iwnte =e

a_n = fx(t) cos( -nwt)dt = an

b_n = fx(t) sine -nwt)dt = -bn

(A.16)

Substituting the negative coefficients into the second term of Equation A14 yields

00 -00 -00

I +(an + ibn)e-iwnt = I ; (an - ibn)eiwnt = I Cneiwnt

n=1 n=-1 n=-1

Thus Equation A15 becomes

00

x(t) = I Cneiwnt
n=-oo

where the coefficients Cn are defined by

(A.17)

(AI8)

(A.19)

Thus a complex definition of the Fourier transform is defined by Equations A18 and

A.19. Note that the sununation in Equation AI8 is from -00 to 00.

In Equation A15 let the complex vector Zn be equal to Cneiwnt and the

. fZ b Z* C* -iw tconjugate 0 n' e n = ne n .

00

x(t) = Co + I (Zn + Z~)
n=1

Thus Equation A.15 is

(A20)

The sum of a complex vector and its conjugate are twice the magnitude of the real

component. Thus the Fourier transform is represented by
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00 00

xCt) = Co + I'2 ReZn = Co + I2 Re(Cneiwnt) (A.21)

n=l n=l

where ReZn represents the real component of the complex vector Zn' Let

2Cn = On' then the Fourier transform is represented by

x(t) = ~o + I ReOneiwnt

n=l

where

(A.22)

(1\.23)

A second complex definition of the Fourier transfonn is given by Equations A.22 and

A.23. Note that the summation in Equation A.22 is from 1 to 00.

The Fourier transfonns presented above are for continuous functions. Signals are

digitized to facilitate numerical computation. These signals consist of N data points

with a constant time increment of &t and a period ranging from t = 0 to t = (N-l)&t.

The discrete Fourier transform that corresponds to Equations A.I, A.7, A.lI and A.12

IS

n2-1

x(t) = L (an cos wnt + bn sin wnt) +
n=l

where

(A.24)
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N-I

an = ; I x(tm) COS(Wntm)~t
m=O
N-I

bn = ; I x(tm) sin(wntm)~t
m=O

(A.25)

N
and n2 = 2' The discrete Fourier transform that corresponds to Equations A.IS and

A.19 is

N-I
x(t) = I Cneiwnt

n=O

where

N-I
Cn =+ I x(tm)e(-iwntm) ~t

m=O

The Fourier transform that corresponds to Equations A.22 to A.23 is

where

N-I
Dn = ; I x(tm)e(-iwntm) ~t

m=O

(A.26)

(A. 27)

(A.2S)

(A.29)

Numerically the calculations are carried out using a fast Fourier transform (FFT). The

FFT is an algorithm developed by Cooley, et al (29) that can calculate the Fourier

transform very efficiently when the number of time increments is a power of 2, ie

N = 2M. Thus the signal is commonly digitized with 210 = 1024, 211 = 2048 or

212 = 4096 points.
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For the Fourier coefficients in Equations A.24 to A.28 only the first n2

coefficients are unique. Coefficients above n2 are the complex conjugate of the

ill . b 12Th fi 2 N 71: d' . dcoe IClents e ow n . e requency at n IS wn2 = -r- ra lans/secon or

Nfn2 = 2, hertz is the Nyquist frequency. This is the highest frequency that the

Fourier transform can detect. Frequencies above the 'Nyquist frequency are reflected

as low frequency signals. This can be demonstrated by the sine wave in Figure 201(a).

The sine wave has a period of 271: seconds and a frequency of I radian/second. Suppose

the sine wave is sampled (digitized) with a time step of 1.571:, The Nyquist frequency

IS 271: 5 = 0.67 radians/second, which is less than the frequency of the sine wave.
2 x I. 71:

The resulting signal is shown in Figure 201(b), and appears to have a period of 6n:

seconds, and a frequency of+radian/second. Thus the I radian/second sine wave is

reflected as a +radian/second sine wave. This is known as ailsing. To correctly

sample the sine wave, the minimum number of points is

Nn:
wn2 =-,-, 1= Nn:

271: '
N=2 (A. 30)

or two points, A and B in Figure 201(a), are required in the period of 271:. A signal with

two points per period is also shown in Figure 201(c). Note that the Nyquist criteria

is the lower limit of the number of point needed to describe the signal. To accurately

describe the sine wave, more points are required. When the number of points used to

sample a signal is fixed, low pass filters are used to remove the signal's frequency

content above the Nyquist frequency. Filtering the sine wave in Figure 201 with a .67

rad/sec low pass filter will remove the I rad/sec sine wave. Sampling this filtered sine

wave with a time step of 1.5n: yields a null signal. Thus the low pass filter prevents the

high frequency signal from being reflected as a low frequency signal, but it modifies the

original signal.
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Power Spectral Density. The frequency content of a signal may be examined by

the power spectral density (PSD). The power spectrum is the magnitude of energy in

a given frequency interval. The power spectrum is divided by the frequency interval

to yield the PSD. Define the power spectrum for a frequency, fn as

(A.31)

where Dn is given in Equation A.23 or A.29, andD~ is the complex conjugate of

Dn- The power spectral density is the power spectrum divided by the frequency

increment, or

S(f ) = G(fn) =
n df

(A32)

where the Fourier coefficient Cn is given in Equation A19 or A.27, C~ is the complex

conjugate of Cn' and an and bn are given in Equations All, A.12, or A.25. The PSD

is used to examine the frequency content of accelerations in Section B of Chapter II,

and in Section B of Chapter VI I.

Freguencv Response Function. For a single degree of freedom structure subject

to a cyclic forcing function, the equation of motion has the form

(A.33)

where Cn is the magnitude of the cyclic forcing function. The steady state solution has

the form

(A34)

where the frequency response function (FRF), H(wn) is given by
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(A.35)

Superimposing N cyclic forcing functions, the steady state response becomes

(A.36)

Taking the Fourier transform (Equation A.I8) of Equation A.36 yields

(.'\.37)

where C'n are the Fourier coefficients of the response and Cn are the Fourier

coefficients of the forcing function. The magnitude of the FRF at frequency n is given

by

(A.38)

Equa~ion A.38 is used to calculate the FRF for elastic systems in Section B of Chapter

VI I. The forcing function consists of the ground acceleration times the mass and the

response consists of the relative floor acceleration. If the mass is omitted from the

forcing function, then the FRF is multiplied by the mass. The FRF can be examined

to determine the natural frequency and damping of the structure. The FRF for

multiple degree of freedom structures is also obtained by Equation A.38. IIowever, the

shape of multiple degree of freedom FRF is more complex than the single degree of

freedom FRF in Equation A.35.
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APPENDIX B

PARABOLIC BASE LINE CORRECTION

Given an acceleration record A(t), consisting of N data points with an

incremental time of 6t and having a period of r, the parabolic function

(B. 1)

is subtracted from the acceleration record yielding

Integrating Equation B.2 yields the velocity

I ( C2 2 C3 3)V'(t) = (A(t) - [(tndt = Vet) - Co + CIt + T t +Tt

(B.2)

(B.3)

The constants CI, C2 and C3 are chosen such that the sum of the velocity squared,

(V')2, is a minimum. Define the function U as the sum of the velocity squared,

N& N& 2
U = I [V'(t)]2 = I [V(t) - (Co + at + bt2 + ct3) ]

t=O t=O
(B.4)

C2 C3where a = C I, b = -2-' c = -3-' Set Co = 0, since the term Co does not appear in the

acceleration A'(t). Taking the partial of U with respect to a and setting equal to zero

yields

N6t

~~ = 0 = 2I [Vet) - (at + bt2 + ct
3
)]( -t)

t=O

Rearranging terms yields
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(B.6)

where the summation is carried out for N points, from 0 to N~. Taking the partial of

U with respect to b and setting equal to zero yields

(B.7)

Rearranging terms yields

Taking the partial of U with respect to c and setting equal to zero yields

N~t

~~ = 0 = 2 2:: [V(t) - (at + bt2 + ct
3
)]( _t

3
)

t=O

Rearranging terms yields

Rewriting Equations B.6, B.8 and B.lO in matrix form

(B.8)

(B.9)

(B. 10)

Vtl t2 t3 t4

[:]Vt2 = t3 t4 t5 (B. 11 )

Vt3 t4 t5 t6

where t2 = ~)2

t3 = Lt3

t4= Lt4
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t5 = 2:t5

t6 = 2:t6

Vtl = :LV(t)t

Vt2 = :LV(t)t2

Vt3 = 2:V(t)t3

Equation B.II is solved for a, band c, and the corrected accelerations are given by

A'(t) = A(t) - a - 2bt - 3ct2 (B.12)

The parabolic base line correction is used to correct experimental accelerations In

Section B of Chapter II.
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