Civil Engineering Study
Structural Series 89-30

INELASTIC SEISMIC RESPONSE OF REINFORCED-CONCRETE
LOW-RISE SHEAR WALLS AND BUTILDING STRUCTURES

by Franklin Y. Cheng
Curators' Professor

Gregory E. Mertz
Graduate Assistant

Department of Civil Engineering
University of Missouri-Rolla
Rolla, MO 65401-0249

Report Series
Prepared for the National Science Foundation under Grant
NSF ECE 8513852






ABSTRACT

Low-rise structures composed of shear walls are commonly used in the United
States. The seismic response behavior of these structures however, is not adequately
understood.  This is mainly because 1) the low-rise walls have significant coupling
effect on deformations due to bending and shear; the bending and shear deformations
must be separated through cxperimental and analytical studies, 2) for strong ground
motions, the response of the structure is highly nonlinear; for nonlinear analysis. the
hysteresis loops of a typical wall must be established on the basis of separated bending
and shear deformations, and 3) the configurations of low-rise buildings are usually
unsymmetric, for which the effect of interacting ground motion 1s significant and the
multicomponent seismic input must be considered in the response behavior studies.
The aforementioned items were not investigated previously and are studied in this

rescarch project.

A technique of calculating inelastic deformation of low-rise shear walls is
presented with consideration of coupling effect for bending and shear deformations,
axial deformation, and the deformation due to base rotation. An intcraction surface
of moment-shear-bending curvature-shear strain is developed from which the

load-deformation behavior can be determined for a given moment to shear ratio.

The hysteresis loops are established on the basis of cxperimental data and
analytical results for bending, shear and axial forces. [ileven hystercsis rules are
comprehensively formulated for bending and shear cvclic and carthquake-tvpe
load-deformation relationships, with all possible combinations of large und small
amplitude loops. The accuracy of the hysteresis rules for the monotonic and cvelic

response is assured by comparisons with experimental data.

i1



Response studies of low-rise symmetric and unsymmetric buildings with isolated
shéar walls are performed. The peak base shear, displacement, ductility, and excursion
ratic are investigated for their sensitivity to the structural config-
urations and the interacting earthquake motions. Various earthquakes
such as 1940 El Centro, 1952 Taft, and 1985 Mexico are used to study

the elastic and inelastic response behavior of these structures.

The sensitivity of the code response parameters R and Cd for these two buildings
is also studied. The response modification factor, R, is found to be dependent on the
building configuration, earthquake ground motion, orientation of ground motion,
number of components of the earthquake ground motion, and the damage level in the
buildingl. For the two buildings studied, the R value of 4.5 recommended in NEHRP
is consistent with the calculated values for the 1940 El Centro and 1932 Taft ground
motions. The calculated R value for the 1985 Mexico earthquake i1s much lower. The
deflection amplitude factor, C4, increases with damage index. The Cd value of 4

rccommended in NEHRP is siightly larger than the calculated values.

The response of box-type structures is shown to be different from the response
of buildings with isolated shear walls because of the influence of the shear wall’s axial
stiffness. The influence of the wall's axial hysteresis loops on the latcral hysteresis
loops of a box-tvpe structure is studied. The companson of calculated and

experimental response from shaking table tests for a R/C box structure 1s good.
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I. INTRODUCTION

A. OBJECTIVE

Structures composed of shear walls have large translational stiffness of which the
overall lateral deformation can be attributed more to shear deformation than bending.
The calculated period of such a structure is usually below the point at which the
caleulated response spectrum is in nearly constant acceleration that may be changed
to a constant velocity. A common index value, which 1s used to determine the design
force level in a given structure, is the fundamental period. For reinforced concrete
structures the calculation of these periods is typically made for the uncracked state of
the structure. Some experiments on slender walls showed that effective stiffness s
much less than uncracked stiffness (42, 44, 46, 49, 53). The change in structural period
can significantly influence system responses which in turn will affect floor responses.
Thus a sernies of experimental and analytical studies of stocky walls with small height
to width ratios must be conducted to formulate mathematicul models for analyzing

shear wall structural systems.

For earthquake excitations, the shear wall cracks and the reinforcing bars in the
wall vield. As fhe structure vibrates, the cracks open and close, the concrete is loaded
and unloaded and the reinforcing bars are subject to large and small amplitude stress
reversals. Thus the behavior of the shear wall subject to a strong carthquake is highly
nonhnear. A slender shear wall with boundary columns and a large height to width
ratio 1s normally 1dealized (49, 61, 74, 75) as 1) an cequivalent column for which
uncoupled flexural and shear deformation is taken into account, 2) a braced frame n
which shcar deformation is represented by deformation of diagonal clements, and
flexural deformation is represented by deformation of vertical elements, 3) short line

segments along the height with each short segment being composed of hysteretic



segments, and 4) three vertical line elements in which the two outsile line elements
represent the axial stiffness (variable) of the columns and the central line element
significs the axial, shear, and rotational springs of the wall. Among other rescarchers,
Cheng and his associates have developed computer codes and then studied structural
responsc behavior of various structural configurations (15, 16, 21, 52). However

analvtical information on low-rise wall systems is scarce.

For short stocky shear walls with small height to width ratios and without
boundary columns, the dominant deformation may be duc to shear. The hysteretic
loops resulting from shear, because of pinching effect, are much narrower than those
for the hysteretic loops resulting from bending. Use of the slender wall models for

stockv walls would provide inaccurate and unsafe predictions of the response.

Buildings and carthquake motions are three-dimensional in nature. Earthquake
motions, i fact, have six components. Cheng, among others, studied the effect of one
horizontal component coupled with a vertical seismic motion on plane structural
response (24, 25, 26). He and his associates later studied the interaction of ground
motion of two horizontal components and one vertical componcnt on
three-dimensional buldings and frameworks (19, 20, 21, 27), and further studied the
cffect of six-component seismic tnput on structural responses (17, 18).  lLow-rise

buildings are normally not svmmetric and are sensitive to interactive ground motions.

Low-risec buildings actually constitute a large percentage of total bulding
construction. Many of these buildings arc braced by shear walls without boundary
columns. Thus the research 1s urgently needed and the results have significant impact
on structural design for improving both the safcty of these buildings as well as reducing

their damage cost.



Industrial buildings, such as the auxiliary buildings at a nuclear power plant
facilities, are low-rise box-shaped shear wall systems, primanly constructed of
reinforced concrete, possibly including steel beams and columns to support floor slabs.
Structural failure could lead to loss of function of the components housed in the
building. Again, the research is urgently needed and the results may have a significant
tmpact on the structural design of industrial buildings, on the equipment and piping

design, and on their margins of of safety.

A Joint rescarch project was developed with the experimental work preformed at
the National Cheng-Kung University (NCKU), Taiwan, and the analytical studies
conducted at the University of Missourn-Rolla (U MR). The analytical studies include
the development of a nonlinear stiffncss model that has elemenis representing
deformations due to bending, shear, and bond slip at the base of the wall. The stiffness
modecl is used to calculate the monotonic load-deformation behavior. The dynamic
response is based on the hysteresis loops and the stiffness model. Th,e hysteresis loops
are modelled from experimental and analytical work for cyclic and earthquake-type
load-deformation relationships. The accuracy of the calculated behavior is assured by
comparisons with experimental test data. Also included are response studies of
low-rise buildings with 1solated shear walls for investigating response bchavior
influenced by the following parameters: 1) the amount of structural damage, 2) the
configuration of the building system, 3) the different records of earthquake ground

motion, and 4) the number of components of the earthquake ground motion.

The response of box-tvpe structures is also studied. The response differs from the
response of buildings with solated shear walls because of the influence of the shear
wall’'s axial stiffness. The influence of the wall’s axial stiffness on the response of a
box-type structure is investigated. The analytical results are compared favorably with

the experimental data from the shaking table tests.

)



B. OVERVIEW

A brief description of the contents is given below. In Chapter II the static
experimental studies performed by Sheu, et al (72) are studied. A method is developed
to separate the bending and shear deformations of isolated shear walls. The ratios of
bending to total deformation of various walls are observed. Failure ductilitics and
excursion ratios are investigated. The ratios of vertical to horizontal expansions of the
walls are obtained. Furthermore, the results of dynamic experiments performed by
Bennett, Anderson, Endebrock, et al (3, 30, 31, 33, 34, 35) are compared with the
analvtical results.  The expenimental accelerations are integrated for velocities and
displacements of which the spectra of the accelerations are analyzed. Correction
methods to remove experimental errors from the acceleration test data are also

inciuded.

In Chapter III a method is presented to calculate the monotonic
load-deformations of shear walls that considers the coupling bechavior of shear and
bending  deformations. Comparisons between calculated and  experimental
load-deformation responses for 27 shear walls are made. The 27 shear walls represent

various reinforcement ratios, boundary elements, and height to width ratios.

In Chapter IV bending and shear hysteresis models for low-rise shear walls are
developed. These semi-empirical hysteresis models are based on the expenimental
results of five NCKU shear walls and the analytical monotonic load-deformation
relationships. The calculated and experimental responses for the five NCKU shear

walls are compared.

Chapter V presents the matrix formulation which is used to analyze three
dimensional structural systems subject to both static and dynamic loadings. A shear

wall stiffness element is developed that utilizes the bending and shear backbone curves

-



developed in Chapter Il and the hysteresis models developed in Chapter IV.
Additionally the energies in the structure, the damage indices, the ductilities, and the

excursion ratios are calculated.

In Chapter VI the response of low-rise buildings with isolated shear walls are
studied. These studies consist of two buildings (symmetric and nonsymmetric) subject
to vartous carthquake ground motions (1940 El Centro, 1952 Taft, and 1985 Mexico)
using beth éne and two horizontal components of ground motion. The responses of
elastic (undamaged) and nonlinear (damaged) buildings are examined. The nonlinear
response is calculated at three different intensities of ground motion to determune the
response at various damage levels. The responsc parameters examined are the base
shear, displacement, ductility, excursion ratio, and the damage index. Additionally the

sensitivity of two building code parameters R and Cg are studied.

In Chapter VII the calculated response of two box-type structures 1s compared
with the experimental response. One of the structures is subject to static evcelic loading,
the other s subject to setsmuc loading. The effects of the axial stiffness on the svstems

stiffness are discussed.

In Chapter VIII the work is reviewed and the conclusions based on the results

are outlined.

Appendix A contains the derivation of the Fourier transform. The power

spectrum density and the frequency response function are also derived.

Appendix B contains the parabolic basec hne correction used for correcting

acceleration test data.

[Gat



C. LITERATURE REVIEW

The early experimental investigations on low-risec shear walls were to determine
their strength to resist blast loadings from atomic weapons. These experimental
investigations of R/C shear walls were performed by Galletly (39), Benjamin and
Williams (9). The studies focused on the behavior of low-rise shear walls with
boundary columns subject to static monoﬁonic loadings. Parameters studied were the
panel dimensions, rcin-forccmcnts, and boundary clement proportions. A mecthod to
calculate the approximate load-deformation relationships was proposed. Anteb, et al
(6) experimentally studied the behavior of low-rise shear walls with boundary elements
subject tc dynamic blast loadings (or which an analytical method was proposed to
calculate the dynamic strength of the walls. The studies by Galletly, Benjamin.
Williams, and Antcbi led to the development of design critenia for R/C shear walls
subject to blast loadings (4). According to Cardenas, "Their proposed design cquations

had limited practical use due to restrictions in their applicabilitv.” (13).

For high-rise shear walls, Oscterle, et al (37, 57, 59) studied the behavior of walls
with rectangular, barbell, and flanged cross sections under static monotonic and static
cyclic loadings. For these high-rise walls, "it was found that shear distortions within
the hinging region are coupled to the flexural rotations.” (59). Oesterie recognized the
web crushing failure mechanism (60) and reported damping ratios for walils from free
vibration test (58). Additional tests on repaired walls were perform-r

ed by Fiorato, et al (38).

Wang (83), Vallenas (80) and Hiya (48), with Bertero and Popov, studicd the
behavior of high-rise shear walls with boundary columns. Vallenas observed that
“Exccllent behavior [to static cyclic carthquake loadings] was obtained in well designed
R/C structural walls.” (80). The shear deformation in several of the walls was from

43% to 87% of the bending deformation (80). This indicates a significant amount of

&



shear deformation. Analytical models were developed to calculate the monotonic

behavior of high-rise shear walls. Additional cyclic models were investigated.

The work by Cardenas, et al (12, 13) on high-nise walls indicates that, “Results
indicate that the flexural strength of rectangular shear walls can be calculated using the
same assumptions as for reinforced concrete beams. Also, the strength of high-rise
shear walls containing mimimum horizontal shear reinforcement ts generally controtied
by flexure.” (12). This research combined with the work of Galletly, Benjamin,
Williams and Anteb: led to the development of Section 11.16, Special Provisions for
Walls, of the 1971 ACI Building Code (13), which is equivalent to Section 11.16,

Special Provisions for Walls of the 1983 ACI Building Code (1).

IFrom the above observations, one may conclude that the research for high-rise
walls includes walls with and with out boundary clements and that the effect of shear
on the total deformation for some walls is significant. For low-rise walls, the effect of

shear deformations apparently should increase.

For the low-rise shear walls, Cardenas, ¢t al (13, 1d) studied the walls with a
height to width ratto of I. In the study, boundarv columns were not included. and the
amount and distribution of reinforcement were the major variables studied. “Results
indicate that low-rise rectangular walls can develop shear stresses on the order of

0T psi. * (14),

N C

Barda, ct al {7, 8) tested low-rise shear walls with flanged boundary clements
subject to both static monotonic and static cyclic loadings. The static cvelic loadings
were intended to represent the demands placed on the shear wall during a severe
carthquake. The behavior of these walls was dominated by shear. “The results indicate

that current design procedures [ACI 318-71] underestimate the strength of low-rise



shear walls, even when the walls are subjected to reversed load.” (7) Barda also

proposed a modified strength design criteria.

Paulay, et al (67) tested low-rise walls subject to static cyclic loadings with and
without boundary columns, having a height to width ratio of 0.54. One objective of
thé study was to determine methods to control sliding shear deformation. "It is
postulated that with suitably arranged diagonal wall reinforcement a predominantly
flexural response mode with good energy dissipating characteristics can be achieved in
squat [low-rise] shear walls.” (67). Paulay also proposed that the wall be designed
such that the wall’s shear capacity is greater than the flexural strength, thus forcing the

wall to fail in flexure rather than shear,

Umemura, et al (78, 79) have performed tests on shear walls and box-type
structures. The purpose of these tests was "to investigate the behavior of box und
cy['mdqr type shear walls under cyclic loading simulating carthquake forces on walls of
atomic reactors and other structures.” (78). The experimental investigations include:
1) test of flanged shear walls with and without web openings, having a height to width
ratio of about 1, 2} test of different reinforcement schemes around web openings, and
3) test of box-type structures with and with out openings, having height to width ratios
of about 1. Loading schemes consisted of both static monotonic and static cvehic
loadings. Uncoupled bending and shear models were used with limited success to

calculate the monotonic load-deformation behavior.

Bennett, Anderson, Endelbrock, et al (3, 30, 31, 33, 34, 35) of the Los Alamos
National Laboratory (LANL), lately tested a serics of small scale shear walls and
box-tvpe structures subject to both static and earthquake loadings. The purpose of
thesc tests was to demonstrate that the nonlinear behavior of 4 box-type R, C structure
caused the natural frequency to shift into the frequency range for which the

carthquake’s energy content is significant. This may result in increased ampiification



in the floor response spectra at lower frequencies and will have significant impact on

the equipment and piping design response spectra and their margins of safety.

From the above literature review, one may observe that a great deal of research
work has been developed for low-rise shear walls. Most of the work, however, has
emphasized walls with boundary elements, with the specific goals of determining the
ultimate capacity of the walls, and studying the behavior under cyclic loading. The
aforementioned work, among others, carried out in the U.S. and abroad
cannot provide adequate information to develop hysteresis rules for
isclated 1low-rise walls because, 1) most of the walls subjected to
cyclic loading had boundary elements, 2) the shear and bending
.deformations were not separated on many of the walls witheout boundary
columns, and 3) the cyclic lecading patterns used in the test did not
provide sufficient information to develop large and small amplitude
loops for earthquake respeonse studies. Consequently, a joint research
project was established betweén the National Cheng-Kung University

{NCKU) and the University of Missouri-Rolla (UMR).

Sheu (72) at NCKU tested a series of isolated low-rise shear walls subjected to
various static monotonic, cyclic, and earthquake-type loadings as part of a cooperative
research program. These tests demonstrated that lightly reinforced, isolated low-risc
shear wualls are capable of resisting earthquake loadings at large levels of damage.
UMR has incorperated experimental data from NCKU and some from LANL in the

research presented herein.



H. ANALYSIS OF STATIC AND DYNAMIC EXPERIMENTAL RESULTS

A. ANALYSIS OF STATIC RESULTS

The analysis of isolated low-rise shear walls tested by Sheu (72) at the National
Cheng Kung University is discussed in this section. These walls are rectangular in cross
section, have a width of 100 ¢m and a thickness of 10 ¢cm as shown in Figure 1. '['hc_
height varies from 50 cm to 75 cm, which gives height to width ratios from 0.50 to 0,73,
The horizontal and vertical reinforcements consist of evenly spaced D10 through DI1Y
barsl as shown in Table I. The stecl stress-strain curves are shown in Iigure 2.

Concrete strengths vary from 210 kg/em? to 330 kgjem?.

A 30 cm x 30 cm cap clement is cast at the top of the wall as shown in Figure 1.
Loads are applied at the center line of this element. A 30 cm x 35 ¢m rigid base is cast
at the base of the wall. This base is bolted to the test bed. Both the cap clement and

the rigid base are heavily rcinforced.

Four different loading patterns are used. Walls SWla and SW4da are subject to
a one sided cyclic loading as shown in Figure 3. Walls SW3 und SWé6 are subject to
an carthquake loading as shown in Figure 4. Walls SWS and SW11 are subject to a
two sided cyclic loading. The loading pattern for wall SW5 is shown in Figure 5. Walls
SW4, SW10, SWI12, SWI13, SW14, SWI135, SWI16, SWI9 and SW20 are subjected 10 a
monotonically increasing load. A typical monotonic loading pattern for wall SW4 is

also shown in Figure 5.

1

D10 #3 reinforcing bar. D13 = #4 reinforcing bar.

e

D16

(N

#5 reinforcing bar. D19 = #6 reinforcing bar.

10
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Table

[

NCKU SHEAR WALLS

Wall

WxiIxT

Vertical

[Horizontal

L .
£ Bars

pY Bars

p7

fy

Loading

SWla
SW3
SW4
SWdia
SW35
SWé
SWI10
SW1l

SWI1Z

SW13
SW14
SWI15

SW16
SW19
SW20

[00x50% [0
100x50x 10
100x30x10
100x30x10
100x30x10
100x50x 10
100x350x10
100x350x 10

100x350x10

100x30x10
100x50x 10
100x73x 10

100x75x10
100x75x10
100x75x10

270

330
320
205

270
250
210

40.5 6 DI
43.6 6DI0
3.9 6 DI3
405 6 D13
389 6DI3
43.6 6DI13
30.5 6 DI3
253 2DI19
3DILo
2 D16
31DI13
6 D13
6 DI3
2 D19
3IDLo
296 6DI3
246 6DI13
224 6DI3

[
(@ =]
tJ

40.2
38.4
26.0

0.43
0.43
0.77
0.77
0.77
0.77
0.76
0.79

4 DIoO
4 DI0
4 D13
4 D13
3 D13
4 DI13
4DI0
4 D10
0.78 4 DIO
0.76
0.76
0.79

none
g D10
6 DIO

0.76
0.76
0.76

6 D10
none

6 D10

0.37
0.57
1.03
1.03
1.03
.03
0.57
0.57

0.00
1.14
0.57

0.57
0.00
0.57

4930
4930
4900
4900
4960

4900

4770
4770

4770

4770
4770
4770

4770
4770
4770

(.50
0.30
(.30
0.30
0.50
0.30
0.30

0.30.

0.50
0. 50
0.75

0.75
0.75
0.75

cvelie (2)
cvelic (3)
monotonic
cvelie ()
cvclie ()
cvelie (3)
monaetonic
cvelie (&)

maonotonic

monotonic
Monotonic
monotonic

monotonic
monotonic
monotonic

Notes:

(1
(2)
(3)
()
(5}

All units are kg, cm.
One sided cyclic loading as shown in Figure 3.
Earthquake loading as shown in Figure 4.

Two sided cvelie loading as shown in Figure 5.

Two sided cyclic loading, with each cycle at
previous cyvcle.

4 larger load level than the
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Figure 2. Steel Stress-Strain Curves for NCKU Shear Walls: (a) Wails SWla
through SW6, (b) Walls SW10 through SW20
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The experimental displacements of the 50 ¢m high walls are measured with the
gauges shown in Figure 6. Gages 2, 3,4, 5, 6, 7, 16 and 20 are used to measure vertical
deformations § cm from the edge of the wall. Gauges 8 and 9 are used to measure the
change in diagonal distance across the width of the wall. Gauges 10, 11, 12, 13, 14,
and 15 are used to measure the horizontal deformation of the wall. The experimental

displacements of the 75 cm walls are measured with similar gauges.

1. Scparation of Bending and Shear Deformation in Shear Walls. To analvze the

shear wall test data, one important issue is to determine what portion of the
deformation is due to shear and what portion of the deformation 1s due to bending.
Theorctically, the bending deformation is due to the difference in longitudinal strains
on different sides of the wall. Thus the bending deformation can be determuned from
the longitudinal displacement gauges. Shear deformation i1s due to the accumulation
of shear strains over the height of the wall. Thus the shear deformation can be
cailculatcd from the diagonal strain gauges. The total deformation can be mcasured
directly from the displacement gauges at edge of the wall. If the bending and sheur
displacements were determined correctly, the total will equal the bending plus shear

displacements.

a. Theoretical Curvature Distnbution. Curvature, ¢, mn a shear wall, 15 the

change in slope (d8) over the change in length (dz), or

where 7 is the longitudinal axis of the wall. The units of curvature are radians fength.
For a given wall cross section, therc exists a unique moment-curvature relationship.

The moment-curvature relationship is typically nonlinear, consisting of an eclastic
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range, a gradual yielding, and a plastic plateau. An analytical method to caiculate the

moment-curvature relationship is presented in Chapter I11.

Examine the typical shear wall in Figure 7 subject to a lateral load. The bending
moment in the wall varies linearly with the height of the wall as shown in the
accompanying figure. For a given point on the wall’s longitudinal axis, the moment
is known. For that moment the curvature is determuned from the moment-curvature
relationship. Plotting the curvatures for different points on the wall’s height vields the
theoretical curvature distnbution as sketched in Figure 7. Note that the theoretical

curvature is small at the top of the wall and is very large at the base of the wall.

The bending deformation of the shear wall is determined by

h
db = J. 2 ¢(z)dz
O -

t2
tJ

where ¢(z) is the variation of curvature along the wall’s height. Thus if the curvarure

in Figure 7 s known, the bending deformation may be determined.

The curvature in Equation 2.1 may be approximated by

0 A6

qf):dz=Az

where Af 1s the change in rotation over the length Az. Rotation 1s determined by
taking the difference between longitudinal deformations at opposite sides of the wall
and dividing by the width. For the 50 cm high NCKU walls, the longitudinal
dcio;mution at gauges 2 and 3 in Figure 6 1s 62 and 85, and the distance between these

gauges i1s 90 em. Thus the angle of rotation in the wall under these two gauges 1s

_35-02

81
90

(2.4)
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Elongation of the gauges is positive deformation. Gauges 2, 3, 4, 5, 6 and 7 are 12.3
cm long, while gauges 16 and 20 are 6.25 cm long. Dividing the rotation by the gauge

length yields the average curvature under the gauge.

91 _ 85— 42

1l = =
4 125 90 x12.5

rad/cm (2.5)

Similarly the rotations and curvatures under the other gauges are calculated.
Conscquently let €2 and ¢2 represent the rotation and curvature under gauges 3 and
6; 83 and ¢3 represent the rotation and curvature under gauges 4 and 7; and A4 and

¢4 represent the rotation and curvature under gauges 16 and 20.

The total deformation i1s determined at a point 43.75 ¢m from the base of the 50
cm tall wall. This corresponds to the location of the lateral deformation at gauges 10

and 13. Thus the bending displacement 1s also calculated at this same point.

The bending displacement of this wall may be determined by Equation 2.2
Howcver, since the average curvature distribution, rather than the exact curvature
distribution 1s known, an approximation of the bending displacement 1s obtained.
Thus the bending displacement at a point 43.75 ¢m from the base of the wall, is given

by

h
ébzf () dz =625 x 1 x 12,5+ 18.75 x p2 x 12.5
o

+ 3125 x p3 x 12.5+ 30625 x p4 x 6.25

b. Observed Curvature Distribution of NCKU Shear Walls. The cxperimentally

measured curvature distributions for NCKU walls SWla, SW3, SW4, SWda, SW3 and
SWé6 arc presented in Figure 8. These curvature distributions correspond to a pont
near the ultimate load. Recall that the theoretical curvature distribution had its

maximum curvature at the base of the wall, and the curvature decreased as the height

21
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increased. Note that the curvature distribution for wall SW1a also has the maximum
at the base of the wall, #4. However, the curvature distribution for the upper sections

is reversed, ¢3 is less than ¢2 and ¢2 is less than ¢1,

Wall SW3 also has a similar inverted curvature distribution. For wall SW4 the
curvatures ¢2 and ¢3 are approximately equal, when ¢3 should be greater than ¢2.
IFor wall SWda the curvature of the bottom segment, ¢4, is less than the curvature in
the segment above it, ¢3. For wall SW6, ¢1 1s greater than both ¢2 and ¢3. Only

wall SWS5 has a curvature distribution similar to the expected curvature distribution.

The experimentally obscrved crack patterns on the face of NCKU walls SWia
and SWda are shown in Figure 9. These crack p.attems correspond to a point near the
walls ultimate load. The load and cvcle that the crack was first observed is represented
in the figure by Load (Cycle #)’, where the load is in tons, and the cycle numbers are
on the loading diagram, Figure 3. As the'wall 1s loaded, a flexural crack opens up at
the base of the wall, and is labeled "A” in Figure 9. For wall SWia, this crack is formed
during cycle 6, at a load necar 12 tons. The crack formed in wall SWda at a load near
§ tons during cycle 6. Near the same load, a diagonal shear crack forms and 1s labeled
‘B’ in the accompanving figure. [or wall SWla, this crack formed at a load near 12
tons. This crack formed in wall SWda at a load near 10 tons. A flexural crack also
formed in wall SWla at 12 tons durning cycle 6 as shown by curve 'C’ in the figure.
As the loading progresses, additional flexural, shear, and flexural-shear cracks form.
Cardenas, et al (14) observed similar crack patterns in low rise shear walls without

boundary elements.

Both walls SWla and SW4a have diagonal shear cracks under gauge 5. As these
cracks form, they have a vertical component of deformation. Thus gauge 5 has a
deformation due to shear. The deformation of gauge 5 is used to calculate the

curvature ¢1. Therefore, the experimentally measured curvature ¢1 is influenced by
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shear deformation. Hence bending and shear deformations are coupled. Deformation
across the diagonal shear cracks are rcsponsible for the inverted curvature

distributions.

The curvature distribution 1s also very sensitive to the crack location. Examune
the curvature of the bottom segment, ¢4. In wall SWla, the flexural cracks at the base
of the wall occur under gauge 16, and ¢4 is relatively large. In wall SW4a, the tlexural
cracks occur above gauge 16, and the curvature ¢4 is relatively small. [lad the crack
in wall SWda been a few centimeters lower, it would have occurr’ed under gauge [6 and

¢4 would be larger.

Recall the bending deformation i Equation 2.6 Substituting the gauge

deformations for the curvatures vields

5b = 6.25(85 — 02) + 18.75(06 — 63) + 31.25(57 — 84) + J0.625(316 — 420) :
= 50 .

1 ")
-
—

Assumg a crack 1s 0.25 cm wide, and occurs under gauge 16, the bending deformation
due to the crack 1s 0.1128 cm. Assume the same crack is a little higher in the wall,
under gauge 7, the bending deformation due to the crack 1s 0.0868 cm. The bending

displacements differ by 30%, due to a small difference in crack location.

¢. Lquivalent Moment Dragram for the Hhinging Region of Shear Walls. Since

1) the moment and shear are strongly coupled, 2) the curvature 15 influenced by the
diagonal shear cracks, and 3) the curvature 1s very sensitive to the crack location, then
an average curvature over the hinging region 1s used to calculate the bending
deformations, as shown in Figure 10. Thus the average curvature in the 50 ¢cm NCKU

walls 1s
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05+ 86+ 67+ 016 —62— 063 — 64 — 520
Pave = — (2.8)
and the bending deformation is
2
5b = 43-275 bave 29

The hinging region is the region of the wall where shear and bending deformations are

strongly coupled. Assuming the diagonal shear cracks are from 30° to 60° above the
horizontal, the height of the hinging region is between 0.6w (wtan 30°) and 1.75w

(W tan 60°).

Since an average curvature over the hinging region 1s used, an equivalent moment
diagram over the hinging region is also used as shown in Figure 10. Thus the
curvatures are directly related to the moments. The analytical model developed In
Chapter Il and Chapter V uses the equivalent moment diagram to generate an

equivalent curvature over the hinging region.

d. Determining Shear Deformation. [‘or pure shear, the shear deformation can

be related to the diagonal gauges 8 and 9. Assume the right side of the wall has a shear
displacement of dsr, also assume that the deformation of gauges 2 through 7, 16 and

20 1s zero. From Figure 11, the shear deformation of the right side s

, st = -%-68 (2.10)

where ¢ = Va2 + b2 and the variables a and b are shown in Figure 1. Elongation of

gauges 8 and 9 is positive deformation. The shear deformation on the left side, dsl s

=cosy=%, 5sl=-—%59 (2.11)

~1



Figure 11. Pure Shear Displacement by Diagonal Distance Measurement

,(/ 3q 33\2(

o7 [¢—
“+‘
<
ﬂ

- —+

31.___

Figure 12. Lffect of Vertical Deformation on Diagonal Gauges
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Averaging the shear deformation at both sides yields

o(68 — 59)
fg = —o 7 .
s = (2.12)

Consider the effects of vertical deformation on the diagonal gauges as shown in
Figure 12. For gauge 8 and vertical deformation of the right side of the wall

58

=3 =4
Svr =cosf = o 68 C6vr (2.13)

where dvr = 02 + 63 + 44. For gauge 9 and vertical deformation of the left side of the

wall

39

a ’
= -Z3vl 214
S 89 < OV (2.14)

=cosfi=

nlm

’

where ovi =55 + 56 + 7.

The accuracy of the shear deformation can be explored by considering several
theoretical deformations. Consider the case of vertical deformation, dv=29dvl=Jvr.
The deformations of the diagonal gauges 8 and 9 are equal. Thus the calculated shear
deformation in Equation 2.12 is zero in the presence of pure verticul deformation.
Consider the case of pure bending as shown in Figure 13, where ovl= - ovr. The

deformations of gauges 8 and 9 are |

58 = —Sove = <5vl, 59 = Zovl , (2.15)

and the shear deformation in Equation 2.12 is

da a
c(=ovl — =dvl)
55 = —= = < =0 (2.16)

Thus the calculated shear deformation is zero in the presence of pure bending.

29
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Consider the case of pure bending with a diagonal crack, where the wall rotates
through an angle 9, as shown in Figure 14. The bending deformation in the wall is
fa. Diagonal gauge 8 has a horizontal displacement of 8a. The center of rotation of
the wall is at the base of the diagonal crack, which is directly under point A in the
figure. Thus the vertical deformation of gauge 8 is -8{fa) or ~ a#2. For small
rotations @ <-5%, 92 < < 6. Thus the vertical deformation of gauge 8 is negligible.

Therefore elongation of gauge 8 1s

58 =242 (2.17)

Diagonal gauge 9 has a horizontal displacement of #a, a vertical displacement of b

and 1s elongated by

59=—20a+ Lop=0 (2.18)

Thus the shear displacement from Equation 2.12 1s

b
(58 — &9 c(—‘-ea——O) ]
55 = 2L 82b5)= va =%“—¢0 (2.19)

The diagonal distance gauges are musinterpreting a portion of the bending deformation
and labeling it as shear deformation. This was recognized by Ma, et al (54) who used

diagonal gauges to measure shear distortion in R;/C T beams.

Since the shear deformation as calculated by the diagonal gauges is prone to
error, in the presence of diagonal cracking, the shear deformation 1s determined by

subtracting the bending deformation from the total deformation. Thus
Js = Jt — b (2.20)

o013 =410

where ot = and &b is calculated by Equation 2.9. This definition of shear

deformation is used in this study.

w
[



e. Deformations of NCKU Shear Walls. The bending deformations for the 50

cm NCKU walls are calculated by Equation 2.9. The average curvature and bending
deformation in the 75 c¢cm tail walls is similarly calculated. The shear deformation is
calculated by Equation 2.20. The bending, shear and total deformations for the NCKU

walls are presented in Chapters 111 and 1V for comparison with analytical methods.

The monotonic load deformation curves, or an envelope of cyelic load
deformation curves for both the bending and shear deformations, are highly nonlincar
and are presented in Section C of Chapter III. These curves are characterized by a
high initial stiffness, which decreases with the formation of cracks in the wall. Yielding
in these shear walls is a gradual process. After yielding, the walls exhibited a ductile

behavior, and failed at relatively large deformations.

The cyclic load deformation curves for shear and bending deformations are
presented in Section B of Chapter 1V. Bending deformations form large stable
hysteresis loops. The hysteresis loops for shear deformations are pinched. Both
bending and shear have nonlinéar unloading curves. When the loadings are cyvcled at
a load level near the maximum past load, the deformations increase for cach load cvcle.
Whereas if the loadings are cycled at lower load levels, the deformations for cach cvcle
are similar. The shear and bending behavior under cyclic loading 1s discussed in

Chapter V.

2. Observed Ratio of Bending to Total Deformation in NCKU Shear Walls.

Bending deformation (at load P) as a percentage of total deformation (bending + shear
deformation at load P) is plotted for points on the backbone curve, against the total
deformation {bending + shear deformation at load P) as a percentage of the ultimate
deformation (bending + shear deformation at failure), in Figure 15 for the 50 ¢m high

walls, and in Figure 16 for the 75 cm high walls. The initial shear deformation of walls

32
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SW35, SWda and SW1 is very erratic which may be observed in Section B of Chapter
[V. Thus the ratio of bending deformation to total deformation in these walls at low
deformations 15 also erratic, as can be seen in Figure 15. After deformations of 10%%
or 20% of the ultimate deformation, the bending deformation ranges between 40% to

60% of the total deformation for most walls.

Wall SW11 has very large shear deformations in the last three load cvcles before
failure. Prior to these three load cycles, bending deformation accounted for 30% to
40% of the total deformation. After these three load cycles, bending deformation only
accounts for 10% of the total deformation. Thus the percentage of bending

deformation in wall SW11 1s atypical at larger deformations.

Bending deformation in the 75 cm walls i1s the same percentage of total
deformation as in the 50 c¢cm walls. This is because the hinging region of both walls

extends over the entire wall’s height.

There is not a significant difference in the percentage bending deformation for
walls with different vertical or horizontal reinforcement ratios. This is because the
reinforcing steel contributes to both the bending and shear stiffness. Hence, mcreasing
the reinforcing steel for walls in this height to width range increases the bending and

shear stiffnesses by similar amounts.

It s interesting to note that the transverse reinforcing steel 15 omutted in walls
SWI13 and SW19. If the tradiuonal concept that transverse reinforcing steel resists
shear and longitudinal reinAforcing steel only resists bending were true, then the shear
defermation for these two walls would be larger than walls with transverse reinforcing
steel. However the percentage bending deformation in walls SW13 and SWI19 is similar
to the other walls. The rotes of longitudinal and transverse reinforcing steel 1s

discussed in Section C.3 of Chapter I11.
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There i1s not a significant difference in percentage bending deformation for walls

with different loading patterns.

3. Observed Failure Ducrtility and Excursion Ratio in NCKU Shear Walls. The

displacement definition of ductility and excursion ratio for six of the NCKU shear walls
at ultimate loadings 1s calculated below. The bending ductility i1s given by

“5bult!
oby

where db,jy, is the bending deformation at the ultimate load, and by, is the bending
deformation at the yield load. The yield load corresponds to an average strain of

¢y, = 0.0024 in the longitudinal steel reinforcing bar, where the longitudinal strain is the

02+ 63+ 64+ 620 or 05+ 56+ 67+ 4616
43.75 43.75

each bending ductility ratio, a corresponding excursion ratic exists. The excursion

larger of for the 50 ¢cm shear walls. or

ratio 1s given by

ep = (up—1) (2.

where the summation is carried out for cach half load cycle.

(o)
tJ
tJ

Similar to the bending ductility and excursion ratios, the shear duculitv and

excursion ratio is

[ 85y ,
g = d:lt (2.23)
y
and
£S=Z(#S_1) (2.24)



where Js,y; is the 'shear deformation at the ultimate load, 5sy 1s the shear deformation
at the yield load and the summation 1s carnied out for each half load cycle. The load,
bending displacement, and shear displacement corresponding to the yield and ultimate

point are given in Table I for NCKU walls SWla, SW3, SW4, SW4da, SWS5 and SW6.

Table II.  YIELD AND FAILURE DATA FOR NCKU SHEAR WALLS
Yield Ultimate

Wall Step l.oad éb s Step l.oad ob 08
SWla 370 12.01 0.485 0.270 1980 19.30 4.063 2.951
SW3 710 10.90 (0.325 0.347 3050 19.30 5.709 5.777
Swd 330 15.90 0.362 0.394 640 28.46 3237 2.751
SWda 310 11.68 0.330 0.189 4410 27.73 3.885 2.319
SW5 1710 1591 0.411 0.261 5870 2923 2.647 2.660
SWé 980 17.90 0.320 0.491 5990 2811 2.962 3.885
Notes:

{13} All unuts are ton, mm.

(2) The load steps are shown in Figures 3, 4 and 5

The bending failure ductilities are given in Table 111, Values range from 6.44 for
wall SWS5 10 17.57 for wall SW3. The avcragc bending failure ductilitv 1s 10.39. The
shear failure ductilitics are also given in Table 1Il. Values range from 6.98 for wall
SWd o 16.65 for wall SW3. The average shear failure ductility is 11.00. There 1s not
a significant pattern of failure ductility f’of any given loading history or wall

reinforcement ratio. Thus a ductiity of 10 1s sct as the failure limit for both bending

and shear ductilities.

The bending and shear f{ailure cxcursion ratios are given in Table [T1. Bending
failure excursion ratios range {rom 7.37 for Wall SWla-to 50.34 to wull SW3, with an
average value of 19.25. Shear failure excursion ratios range from 5.98 for wall SW4 to

55.71 to wall SW3, with an average valuc of 25. The walls with an earthquake loading,



Table [1I.  FAILURE DUCTILITIES AND EXCURSION RATIOS FOR NCKU

WALLS
Bending Shear

Wall Ductility Excursion Ductility Excursion

Ratio Ratio
SWia 8.38 7.37 10.93 9.96
SW3 17.57 50.34 16.65 55.71
SW4 8.94 794 6.98 5.98
SWaa 1877 12.93 13.33 15.38
SW3 6.44 8.74 10.19 30.67
SWe6 9.26 28.20 7.91 32.32
Average 10.39 19.25 11.00 25.00

walls SW3 and SW6, have failure excursion ratios that are significantly larger than the

other walls.

4. Observed Ratios of Horizontal to Vertical Expansion in NCKU Shear Walls.

The average vertical strain of the 50 ¢m high NCKU walls 1s determined by

. 8024+ 83 4+384+3204+685+864+57 +616

33
v S PTERE (2.25)
and the average horizontal strain is given by
- (810 + 61 512 + o1 dld + 61
= ( + 4611 + + 4813+ +4813) (2.26)

3Ix 100

where positive strain indicates expansion.  Recall that clongation is positive gauge
deformation, and that gauges 10 through 15 are mounted on the wall such that
expansion of the wall yiclds a negative gauge deformation as shown in Figure 6. Thus
Lquanon 12.26 has a negative sign to vield positive strains for expansion. The
horizontal strain is plotted against the vertical strain in Figure 17 for NCKU walls

SWila, SW3, SW4, SWda, SWS5 and SW6. The vertical strain is typically 2 to 8 times
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larger than the horizontal strain. Note that the vertical strain includes the strain

caused by base rotation.

The vertical expansion is not restrained, except by the weight of the wall. The
horizontal éxpansion is restrained by the heavily reinforced horizontal elements at the
top and bottom of the wall and by the reinforcing steel.  This restraint and its
contribution to the strength and sti{fness is discussed in Sections A.1, A.5 and C.3 of

Chapter 1L

B. ANALYSIS OF DYNAMIC RESULTS

The two story model box structure, 3D11, was dynamically tested on a shaking
table by Bennett, Anderson, Endelbrock, et al (3, 30, 31, 33, 34, 35) of the Los Alamos
National Laboratory and 1s shown in Figure 18. The box structure is 18”7 wide, 107
deep, has two 7.75” high stories, and 17 thick walls. The box structure is made of micro
concrete, with an ultimate stress of 2.89 ksi at £, = 0.0033, an initial modulus of 2750
ksi, and a tensile strength of 0.32 ksi. Two layers of 0.5” hail screen are used for the
reinforcement. The reinforcement ratio is p=0.534%. The hail scrcen consists of
0.042" ¢ wires 0.5” on center, cach way, with a yield point of 42.7 ks1 at £=0.001668,

and an ultimate stress of 53.1 ksi at e=0.04.

The box structure 1s attached to a uniaxial shaking table. The direction of motion
coincides with the structure’s weak axis, as shown in I'igure 18. Accelerations arc
measured at the ground, second floor, and roof with Endeveo Model 2221 M24
accelerometers.  These accelerometers have a frequency range from 2 hz to 8000 hz.
Acceleration data were recorded for 2048 points with a time step of 0.0001 scconds.

Additional weights of 0.23 k were added to both the roof and second floor.
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1. Inmtegration of Experimental Accelerations. The experimentally measured

acceleration record A(t) consisted of N data points, with a time step of At. Assume

that the acceleration is linear between data points at times tg to ty, yielding

Aty) — Alt
Aly) = A(to) + (-—(-ﬁ*-i)t (2.27)
At
Integrating the acceleration yields the velocity
Alt [) - 1\((0) 2
V(1) = f Alt)dt = V(tg) +A(o)t + | ———— ]t (2.28)
And integrating the velocity vields the displacement
Allg) \ 2 (Al = All) Y 3
Dty =1V = \Y e — 2.29
(1) J (t)dt = Dity) + V{t)t + ( 5 )t + TAT )t ( )
Evaluating the integrals at time t= At vields the velocity and displacement
V(D) = Vitg) + (Alt) + Altg)) 2L (2.30)
2
D(1) = D(tg) + V{tg)At + (2A(tg) + Alt)) Aé (2.31)

Lquations 2.30 and 2.31 are used to determine the velocity and displacements at the
buse of the structure. To determine the relative displacement between floors, one mayv
substitute the relative acceleration Agt) — Ag(t) into [quations 2.30 and 2.31 tor the
acceleration, where Al 1s the absolute acceleration of the floor, and f\g(t) & the

absolute acceleration of the base of the structure or ground.
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2. Error Corrections for Experimental Accelerations. The relative acceleration

and acceleration power spectral density2 for the roof of LANL box 3DII1 are shown
in Figure 19. The acceleration is integrated with Equations 2.30 and 2.31 to obtain the
velocity and displacement as shown in Figure 20. Note that both the velocity and
displacement increase with time. The velocity for a structure should fluctuate around
zero, and should approach zero at large values of ume. Thus there are errors in the

experimental acceleration.

Recall that the accelerometers used for this test have an allowable frequency
range from 2 hz to 8000 hz. Examine the acceleration PSD in Figure 19 and note that
the low frequency signal content is very strong. This low frequency signal is below the
threshold for which the accelerometers are accurate. Thus the accelerometers have
introduced low frequency noise into the acceleration record. Other common sources

of error may be the digitizing equipment, cable noise, cross axis sensitivity, ctc.

Assume the acceleration has the form

At) = cos wt (2.32)

Integrating twice vields the displacement

D)=

L coswt (2.33)
w '

Note that the displacement is inversely proportional to the square of the frequency.
Thus displacements are extremely sensitive to low frequency noise. Scveral schemes

to remove the low frequency noise {rom the acceleration test data are discussed below.

2 The power spectral density (PSD) is a measure of a signal’s frequency content, and

1s calculated by Equation A.18 of Appendix A.
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a. Minimum Velocity Correction for Acceleration Test Data. Earthquake ground

accelerations are recorded by strong motion accelerographs.  One difficulty in
integrating the earthquake ground acceleration is that the base line of the accelerogram
is not known. Berg and Housner (10) developed a parabolic base line correction (BLC)
that minimizes the kinetic energy of the ground motion. This parabolic base line

correction is given by Equation B.12 of Appendix B.

The relative acceleration between the ground and the roof of LANL box 3DI1 1s
base line corrected. The new base line is sketched on the velocity in IFigure 20. The
corrected acceleration and acceleration PSD are shown in Figure 21, while the velocity
and displacement are shown in Figure 22, and the maximum values urﬁ given in Table
[V. The acceleration PSD before the BLC was applied 1s also shown in bhgure 21
Note that the BLC reduced the frequency content of the acceleration below 30 hz. The

resulting velocities and displacements are well centered about the origin.

Table IV. MAXIMUM RESPONSE OF LANL BOX 3D11 AFTER BLC

Maximum @ Time Minimum @ Time

Acceleration 1.28044 0172 -1.75686 0211
Velocaty 0.80933 0194 -0.75967 0586
Displacement 0.00179 0328 -0.00167 0756

Note: All units are inch, kip, second and g.

The frequency range that is modified by the base line correction 1s a function of
the length of the record. There is no guarantec that the BLC will remove all of the
noise, or that the BLC will only remove noise from the acceleration.  For box 3D
acceleration records, the BLC reduced the frequency content below 30 hz. If the
structure responds to frequencics below 30 hz, the BLC removes the structure's

response in addition to the noise.
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b. Filtering Correction for Acceleration Test Data. Another method to remove

low frequency noise is by digital filters. A 28 hz high-pass filter is used to remove the
errors {rom the relative roof acceleration of LANL box 3D11. The filtered acceleration
and acceleration PSD are shown in Figure 23, while the velocity and displacement are
shown in Figure 24, and the maximum values are given in Table V. The acceleration
PSD before filtering is also shown in Figure 23. Note that the low frequency notse
below 28 hz hus been removed. The velocity appears to be well centered. Towever the
displacement in Figure 23 has a positive permanent set for t>0.10 second. Thus while
the high-pass filter removes the ‘noise from a specific [requency content it does not

guarantee that the resulting displacements will be well centered.

Table V. MAXIMUM RESPONSE OF LANL BOX 3DII AFTER 28 HZ
HIGH-PASS FILTER

Maximum @ Time Minimum (@ Time

Acceleration 1.26388 0172 -1.76708 0211
Velocity 0.76648 0194 -0.74841 0586
Displacement 0.00152 0685 -0.00141 0755

Note: All units are inch, kip, second and g.

¢. Combined Corrections for Acceleration Test Data. As discussed in the

previous section, the base line correction removes low frequency noise, but the
frequency content of the noise removed 15 a function of the length of the record. The
filter can remove noise in a specific range, but it does not guarantee that the resulting
displacements will be well centered. Similar problcrris are addressed when correcting
the carthquake ground accelerations. The current trend in correcting carthquake

ground accelerations is to use a combination of linear base line corrections and
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high-pass filters (28). Thus the base line corrections and the high-pass filters used in

the previous sections are combined. Define the relative acceleration between floors as

A'telative = [(Aﬂoor = BLC = A'fgop) — (Aground — BLC = A'gmund)] (2.34)

where BLC denotes that the signal is base line corrected. The relative acceleration 1s

corrected by

[
(o8}
~

A’ elative = (28 hz High-Pass Filter) » BLC = A" Lopvive (2.35

The corrected relative acceleration A" oq¢jve 1S Integrated with Equations 2.30 and
231 to wield fhe velocity and displacement.  The corrected acceleration and
acceleration PSD for the roof of LANL box 3DI11, are shown in Figure 25, while the
velocity and displacement are shown in Figure 26 and the maximum values are given
in Table VI. By comparing the acceleration PSD before and after corrections, 1t can
be seen that the low {requency noise has been removed. Note that the velocities and

displacements are well centered about the origin.

Table VI. MAXIMUM RESPONSE O LANL BOX 3DII AITER
COMBINED FILTER CORRECTION AND BLC

Maximum @ Time Minimum @ Time

Acceleration 1.26382 0172 -1.76695 0211
Velocity 0.76585 0194 -0.75081 .0586
Pisplacement 0.00144 0685 -0.00152 0755

Note: All units are inch, kip, second and g.

d. Theoretical Accuracy of Corrections for Acceleration Test Data.  Before

accepting the corrected acceleration, one must know if the correction method removes

only the low frequency noise and yields the actual acceleration, or does the correction
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method yield a modified acceleration? To answer this question, an elastic and a
nonlinear two-degrees-of-freedom models are analyzed. The calculated response from
cach model was contamnated by adding low frequency noise. The noisy acceleration

was then corrected, and compared to the original calculated response.

¢ Elastic Structure. The two-degrees-of-freedom structure is shown in Figure 27.
The elastic natural frequencies are 77.5 hz and 200 hz. The elastic structure is analvzed
with the experimental base acceleration from LANL box 3D 11, which is also shown in
Figure 27. The calculated acceleration ’SD [or the roof and the roof’s displucements

arc shown in Figure 28. A low frequency noisc signal of

A

Aqoiselt) = 0.01 sin(6xt) (2.36)

is added to the roof rclative acceleration. The acceleration PSD and the displacement
of the roof’s response with noise are also shown in Iigure 28. As previously

discussed, the displacements are very sensitive to low frequency noise.

The corrections in Equation 2.35 are applicd to the noisy signal. The corrected
acceleration PSD and the displacements are compared with the calculuated values in
Figure 29 and in Table VII. Note that the corrected displacements compure very
favorably with the caiculated displacements. From the PSD 1t can be seen that the
corrected acceleration has less of a low frequency content than the calculated value.
But since the caleulated response had a very small low frequency content to begin with,

this has a small cffect on the displacements.

s Nonlinear Structure. The same two-degrees-of-freedom structure shown in
Figurc 27 is used for the nonlinear structure with the bilincar hystercsis model. The
noniinear structure is subjected to the same base excitation as the clastic structure.

The calculated roof acceleration PSD and displacement are shown in Figure 30.
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Table VII. COMPARISON OF CALCULATED, NOISY AND CORRECTED
RESPONSE FOR AN ELASTIC STRUCTURE
Noise +
Calculated  Calculated Corrected
Response Response Response
Peak Acceleration -2.4947 -2.4859 -2.4971
@ time 0.0566 0.0566 0.0566
Peak Velocity -1.5917 1.8741 -1.5978
@ time 0.0844 0.1164 0.0844
Peak Displacement -0.00333 0.04901 -0.00339
@ time 0.0749 0.2044 0.0749
Note: All units are inch, kip, second and g.

Similar to the clastic case the low frequency noise in Equation 2.36 1s added to the
calculated relative acceleration of the roof. The resulting noisy acceleration PSD and
displacements are shown in Figure 30 for comparison. The noisy signal is corrected
with Equation 2.35 and compared to the calculated response in Figure 31, and Table
VIII. The companson between corrected and calculated response s poor. The
corrected acceleration has less low frequency content than the calculated acceleration.
While the calculated displacement was dominated by permanent sct, the corrected

displacement has none.

I'rom the above observations, it becomes apparent that for the clastic responsc,
where the natural frequency of the structure is well above the region that has noise, the
corrcctions presented in this chapter do not significantly alter the structures response.
For nonlinear response which are charactenized by low frequency response (permanent
set) the corrections outlined in this chapter will alter the structures responsc.  The

corrected displacemnents will not be similar to the true displacements.
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Table VIII. COMPARISON OF CALCULATED, NOISY AND CORRECTED
RESPONSE FOR A NONLINEAR STRUCTURE

- Noise +
Calculated Calculated Corrected
Response Response Response
Peak Acceleration -2.0326 -2.0287 -2.0402
@ tme 0.0212 0.0212 0.0212
Peak Velocity -0.8056 1.0069 -0.8047
{@ time 0.0195 0.1494 0.0195
Peak Displacement -0.00204 0.04886 -0.00149
(@ ume 0.147t 0.2047 0.1960

Note: All units are inch, kip, second and g.
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HI. MONOTONIC RESPONSE BEHAVIOR OF ISOLATED SHEAR WALLS

An analytical model for calculating the monotonic response of isolated reinforced
concrete shear walls is presented in this chapter with comparisons of analytical and
cxperimental results. The monotonic response s of interest because it contains 1) the
cracking, vield and ultimate loads, and 2) the stiffness at each of’t.hcse load levels. The
monotonic response is also used as the basis for the cyclic loading hysteresis models in

Chapter V.

Many investigators have tested and calculated the ultimate strength of shear
walls. These investigations have led to the ultimate loads in the ACI code (1). Gosh
(40) calculated the bending displacements of slender walls with various cross sections
bv using a linear strain distribution, realistic materal stress-strain models, and
equilibrium. Hsu, Mo and Mau (46, 47), developed an analvtical model for low-rise
walls with pure shear deformation, based on the Vecchio-Collins (81, 82) shear softened
stress-strain concrete model. Valilenas (80) calculated the monotonic response of
high-rise walls by combining bending and shear deformations which are calculated
independently, without the coupling effect. His bending model consists of a finite
element solution with plane stress concrete elements that utilize the endochronic

theorv. A multilinear model ts used to calculate shear deformations.

The proposed analytical model has coupled bending and shear deformations, that
are presented as a series of interaction surfaces. Por a given wall geometry, the
relationship between bending and shear can be determined. Thus separate bending and
shear backbone curves are extracted from the interaction surfaces. Together, they

define the monotonic load deformation response.
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A, MOMENT-SHEAR INTERACTION SURFACE

Both the longitudinal strain and shear strain influence the principal strains at a
point in a shear wall. Principal stresses at this point are related to the principal strains
through a stress-strain model. Principal stresses are rotated to longitudinal and shear
stresses on the wall’s cross section. Thus the magnitude of the longitudinal stress, at
a pount, 1s dependant on both the longitudinal strain and the shear strain. Since the
bending moment is a function of the longitudinal stress distribution, bending moment
is dependant on bo‘th the longitudinal strain and the shear strain. Similarly, the shear
1s dependant on both the shear strain and the longitudinal straiﬁ. Conversely, the
longitudinal strain distribution is a2 function of both the moment and shear. Shear
strain 1s also a function of both the moment and shear. In this section, the longitudinal
stratn distribution and the shear strain as a function of moment and shecar are
calculated. Also, the base rotation due to bond slip as a function of moment and shear

1s calculated. These relationships are represented as a scries of interaction surfaces.

I. Assumed Strain Distribution. In Chapter 1i, the concept of an equivalent

moment 1n the hinging region of the wall is developed. The low-rise wall in Figure 32
has a hinging region that extends over the walls height. Thus the equivalent moment
and shear on this wall are given and do not vary over the walls height. Also, the

moment to shear ratio is known for this wall.

Assume that the longitudinal strain distribution 1s linear across the width of the
wall as shown in Figure 32a. The longitudinal strain distribution is described by
specifying the extreme fiber compressive strain, ¢4, at coordinate X5 and by specifving
the tensile strain, ¢, at coordinate x; as shown in Figure 32b. The origin of the x
. coordinate system, x=0, is chosen at the centroid of the wall. The bending curvature

is the slope of the longitudinal strain distribution, and is given by
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FFigure 32. Assumed Strain Distribution in a Shear Wall: (a) Bending Strain

Distribution, (b) Longitudinal Bending Strain, (¢) Shear Strain

Distribution, (d} Longitudinal Bending Strain and Shear  Strain
Superimposed on an Llement
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f1-8 :
¢=W (3.1

The longitudinal strain at point x, is given by

tx = €3+ H(Xy — X) (3.2)
The shear strain is designated y, and 1s shown in Figure 32c.

The horizontal expansion of the wall 1s restrained by the elements at the top and
béttom of the wall, and the horizontal reinforcing steel.  Actual values of the
horizontal and vertical expansion for NCKU shear walls are compared in igure 17,
While the horizontal expansion is not zero, it 1s much less than the vertical expansion.

Thus the honizontal expansion of the wall 1s neglected.

The strains acting on a differential element are shown in Figure 32d. These
strains consist of a longitudinal strain £, and the shear strain y. The principal strains
acting on this element are determined by Mohr's circle, Figure 33u. The radius of

Mohr's circle is given by

2,2
yo e Y
R = \/ X __‘max (3.3

- 2 2

The principal tensile strain, Epps 1§

the principal compressive strain, Eper 1S
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and the orientation of the principal compressive strain, f, is given by

4

B= —l—atan(-‘{——) (3.6)

2 £x

These principal strains and their orientation on a differential clement are shown in
Figure 33b. Cracks will form on the wall, perpendicular to the principal tensile strain,
at angle § with the base of the wall. For a tvpical low-rise shear wall, f§ will be between
B=130° to f=60°. This is consistent with experimentally observed crack distributions

in Chapter 1.

2. Concrete Principal Stress-Strain Model. The Hognestad stress-strain model 15

shown i Figure 34. This model was developed for members subject to umaxial
compression.  Since a biaxial state of stress exist in a shear wall, Hognestad's

stress-strain model cannot be used without modification (46).

Vecchio and Collins tested a series of 30 R/C panels (81, 82). [From the baxial
stresses and strains that cxist in the panels, principal stresses and strains were

determied. A shear softened concrete principal stress-strain model was developed.

Simuilar to the Hognestad model, the Vecchio-Collins model shown in Figure 34
has a parabolic loading branch. Both the ultimate compressive stress, . , and the

strain, &

] o . o
o are softened by the term - to account for the biaxtal state of strain in the

N

ey f
panels. Thus the parabolic loading branch goes from the origin to (—0— —i——) and
A ]

is given by
2
' R “pc £o
ape = | 24— -4 3 for |€pc] ST (3.7)
)
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Hognestad o-¢ Model

Figure 34. Concrete Principal Compressi\}e Stress-Strain Model
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Vecchio and Collins’ loading branch is in very good agreement with their experimental
data. For the uniaxial case, 4 =1, the loading branch and the Hognestad stress-strain

mode! are 1dentical.

Vecchio and Collins also used a parabolic curve for the unloading branch of their
stress-strain model. This branch begins at the terminus of the loading branch,
continues to (2¢,,0), and is given by

2
| Clepe) e ‘ ,

(24— D% el

At strains larger than g, the compressive stress is zero. Few experimental strains
were observed between gy and 2ey. Thus the unloading brunch 1s not strongly
supported by test data. For uniaxial compression, y=1, the unloading branch
underestimates the compressive stress, as can be seen by compuaring it to the Hognestad

model.

Most of the panels used by Vecchio and Collins to develop the shear softening
term y were loaded in pure shear. The bending in a shear wall subjects an element to
combined shear and longitudinal stresses. Thus a modified shear softening term is used

in this study.

£

pt
pcC

1= 85+ 653 > 1.0 (3.9)

2

For uniaxial compression, A= 1. The shear softening term implies a Poisson’s ratio of

£
= (.23. This is a reasonable value {or concrete.

U=
EPC
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Several different concrete tensile stress-strain models have been proposed, (41) as
shown in Figure 35. The stepped stress-strain model and the discontinuous model were
proposed to model the tensile stress in R/C slabs, subject to bending. Vecchio and
Collins used the gradual unloading model, to model the tensile stress-strain behavior
in their‘shear panels. Each of theses models has at least one discontinuity when the
concrete cracks. A discontinuous tensile stress-strain model will cause the shear and
bending backbone curves to be discontinucus. Whereas, the cracking in a shear wall

1s observed to be a more gradual process.

The graded tensile stress-strain model 1s proposed in this study to provide a
smooth transition between cracked and uncracked concrete. This stress-strain model
1s based on the following assumptions: 1} 25% of the concrete cracks at a strain of
0.25e4., 2) 25% of the concrete cracks at a strain of 0.50e,., 3) 25% of the concrete
cracks at a strain of 0.758cr and, 4) 25% of the concrete cracks at a strain ol‘scr. Each

portion of the concrete behaves linearly before and after cracking. Before cracking the
21

(o]

loading curve has a slope of E., where £, = is the modulus of elasticity for

concrete. After cracking, cach portion unloads to a strain of 25¢,,. The graded tensile

model is defined as

E

Ifn <0.25 then o ok

pt= pt
If0.25<97 <050 then Tt = for (0.0631 +.7476y)

if0.50 <7 <0.75 then Opt = ér (0.1907 + .4924n)
(3.10)

1f0.75< 7 < 1.0 then oy =% (0.3845 + .23407)

pt
If1.00< <25 then oy =g (06443 —.0258y)
[f25<n then apt=0
f! Ept
where ¢ = ——— and y = ——.
cr E. " Eor
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Figure 35.
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Once the principal concrete stresses are determined, they are rotated by Mohr's
circle for stresses to longitudinal and shear stress as shown in Figure 36. The radius

of Mohr's circle for stress 1s

3 max (3.11)

where 7.,y 1s the maximum shear stress. The longitudinal stress, o, on the wall is

given by
) It + o, C
ax=—f-—-2——‘3——+ R cos(2f) (3.12)

Shear stress ry, acting on the wall's cross section, perpendicular to the longitudinal

stress, is given by

[
—
ad

—

7y = R sin(28) (3.

Thus the concrete longitudinal and shear stresses at point x are determined.

3. Steel Stress-Strain Model. For a longitudinal steel reinforcing bar at x, the

bar’s longitudinal strain, ¢y, is determined {rom Equation 3.2. Several different steel
stress-strain models, ranging from a simi)lc elasto-plastic model, to the more
complicated, Ramberg-Osgood model, can be used to determine the stress. However,
for lightly reinforced shear walls, the shape of the backbone curve is verv sensitive to
the shape of the steel-stress strain model. Thus if available, the actual stress-strain
curve for a given steel bar is used. The experimentally measured steel stress-strain
curve for the D13 steel bar used in NCKU wall SW6 1s shown in Figure 37. Between

data points, the longitudinal steel stress, {g,, is interpolated by



{(a)

—
T(B

{b)

Figure 36.  Mobr's Circle for Concrete Stress: (a) Mohr's Circle For Concrete Stress
(b) Principal Stresses on an Element
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Figure 37.  Incrementally Linear Stcel Stress-Strain Model
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oy —E
+1
fox = [fi+(l5x| — ¢ 8;+1 — ’-li ]sgn(ax) (3.14)

where 1 1s chosen such that g < |£x| < &4y The term st] is used to address the case

when ¢, is negative and sgn{e,), yields a steel stress with the same sign as ¢.

X

4,  Stress Distribution on a Wall Cross Section. The strain distribution for

NCKU wall SW6 is shown in Figure 38, for the case ¢y =.007921 cm'cm ,
gy = —.001299 cm/cm, and y=.0014 radians. The properties for wall SW6 are given
previously in Chapter II. At the extreme compression fiber, (x = 50) the principal

concrete compressive strain 1s tpc = —.001604 cm/cm, the principal concrete tensile

strain 1s Ept = .000305 cm/cm, and the angle of principal strain is §=66.43°. The

principal compression strain is close to the ultimate strain, ¢, =.0020 cm/cm. Thus
this strain distribution corresponds to a point near the ultimate load. The shear
softening term, for the strains at this point is A = 1.00. The principal compressive stress
18 o5 = 276.7 kg/cm2 and the principal tensile stress 1s o

P

the principal strains through angle B, yields longitudinal and shear stresses of

pt=1138 kg/cm?. Rotating

oy = 230.6 kg/cm2 and t, = 105.8 kg/cm?, respectively.

As the coordinate x decreases, the longitudinal strain decrcases, principal
compressive strain decreases™, principal tensie strain increases, the angle of principal

stress decreases, and the shear softening term increases. Initially, the angle of principal

3 Compressive strain has a negative sign. Thus the absolute value of the compressive
strain is decreasing, while the numerical value of the strain is increasing.
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Figure 38. Stress Distribution on NCKU Wall SW6 Cross Scction: (2) Longitudinal
Strain Distnibution, (b) Longitudinal Steel Stress, (¢) Longitudinal
Concrete Stress, {d) Concrete Shear Stress
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4 L . 5 o
stress decreases faster than the principal compressive stress decreases™, resulting in
an increasing shear stress. At x=48 cm, the shear stress has reached a maximum of
7 = 108.6 kg/cmz. To the left of this point, the principal stress decreases faster than

the angle of principal stress decreases, resulting in a decreasing shear stress.

Pure shear strain exists at the neutral axis, x=35.915 cm. The principal strains

at this point are £pc = —.00070, Ept = .00070, and the angle of principal strain is §

= 45°. The shear softening term, at the neutral axis, is 4=1.503. The principal
stresses at this point are Tpc = 148.6 kg/cm2 and Ipt = 8.86 kg/cmz. Rotating the
principal strains through angle § yields longitudinal and shear stresses of
oy =69.9 kg/cm2 and 7, =78.7 kg/cmz, respectively. To the left of the neutral axis,
the longitudinal strains are tensile. However, the longitudinal stresses are in
compression. This is because the shear strain influences both the principal strains, and
the orientation of the principal strains. Given the same longitudinal strain distribution,
for lower values of shear strain, the longitudinal stress in this region would be zero, or

in tension.

5. Equilibrium of Forces. For a given longitudinal strain distribution and shear

strain, the forces acting on the concrete are determined by integrating the stresses
across the wall’s cross section. Similarly, the forces on the steel bars are determined
by summing all of the individual bar forces. Thus the axial toad, P, in the wall, due to

the assumed strain distribution is

4 At constant principal stresses, as thc angle of principal stress dcercases from

B=166.43° to f=45° the shear stress, y, increases.
5 At a constant angle of principal stress, as the principal compressive stress decrecases,

the shear stress, 1y, decreases.
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P =j oxdA+ D (= o) Ag (3.15)
A steel bars
Likewise the moment, M, and shear, V, acting on the wall, due to the assumed strain

distribution are given by

.Vlzj oy X dA + Z (fsx — o) X Ag (3.16)
A steel bars

V= er dAhear (3.17)

where f\dA is the cross sectional area of the wall, including steel bars and boundarv
&
X
elements 1If applicable. For a rectangular wall, fAdA = thickness fxz dx. The shear
{

area, fAdAshear*

includes the web, the area of square boundary columns, und a
portion of the area of flanged boundary elements. A is the area of the steel bars ut
coordinate X. For the stress distribution in Figure 38, Lquations 3.15 through 3.17

vield 2 moment of M= 1539 Ton ¢m, a shear of V=23.38 Ton, and the sum of axial

forccis P= -0.02 kg.

Many models, including the ACI strength equations, calculate a separate shear
resistance due to both concrete and steel. The proposed analvtical model includes the
effects of steel renforcing bars in an indirect manner. When the concrete is subject to
shear, 1t expands. [f this expansion is restrained, the strength and stiflness of the
concrete mcreases.  As concrete expands, 1ts reinforcing steel goes into tension, and
provides a clumping {oree that resists expansion. FFor hightly retnforeed shear walls, as
the amount of reinforcing steel is increased, the clamping force increases, and both

shear strength and stiffness also increase. Thus the reinforcing steel has a very large
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influence on the shear strength of a shear wall, that is not obvious when inspecting

Equation 3.17.

Low-rise shear walls are restrained against expanding horizontally by the
horizontal elements at the top and bottom of the wall, and by the horizontal
reinforcing steel. Thus the low-rise shear wall expands along its longitudinal axis, and
the longitudinal bars provide the clamping force that resists shear. As the height to
width ratio of the wall increases, the restraint against horizontal expansion due to the
horizontal boundary elements decreases. Examine a typical beam,; with a height to
width6 ratio of 20. For this beam, the boundary provides negligible restraint against
horizontal expansion. Thus the beam expands across it’s width, and the horizontal
steel, (stirrups) goes into tension and provides the clamping force that restrains the
concrete, increasing the shear strength and stiffness. Since horizontal expansion is not
included in the proposed analytical model, the use of the model for members with a

large height to width ratio and a significant amount of shear is discouraged.

The intergration of concrete stress in Equations 3.15 to 3.17 is divided into two
parts, one on each side of the wall's neutral axis. Each of the two parts is then

integrated numerically with Romberg integration7.

6 Shear walls are typically vertical elements, and the height to width ratio is used to
gauge its slenderness. A beam is typically a horizontal element, thus the span to
depth ratio is used to gauge its slenderness. Both the height to width and span to
depth ratios are identical. For this discussion, assume the beam is oriented
vertically. Thus horizontal expansion of the beam is expansion in the direction of
the beam’s depth.

Romberg integration (11} 1s a numerical technique that t) uses the trapezotdal rule
to solve an integral with 1, 2, 4, 8, ... 2" segments, and 2) uses the Richardson
extrapolation process to improve each of the solutions. Convergence is determined
by comparing the difference between successive solutions. An efficient algorithm
reuses the results of the 20— ! segment integral when evaluating the 20 segment



Once the wall’s forces have been calculated for a given strain distribution, the

8

axial force, P (Equation 3.15), is compared to the applied axial load, Papplied If

these two forces are equal, then the assumed strain distribution is accepted. If these
forces differ, by a significant amount, then the strain distribution is modified, and the

wall forces are recalculated. This iterative process is repeated untill P = Papplied'

Numerically, the strain distribution i1s modified by varving the tensile strain

¢1- For the first iteration, if P> P,

applied: then ¢y is decreased by the lurger of

0.10¢y or 0.0001. Likewise, if P <P then ¢ is increased by the larger of

applied’

0.10£y or 0.0001. Denote the initial value of £ as ¢, and its accompanying axial force

P.. This new strain, £, for the second iteration is denoted £;. The wall forces for the

H

j.

new strain j are calculated, and the new axial load is denoted Pj‘ If the new axial force

Pj # Papplied’ another estimate of £ 15 made
Ej — Ei

£l =&+ (Papp!ied - P P —P. (3-18)
] t

The wall forces are recalculated with the new value of ¢|. If P = Papplied’ then the

strain distribution is accepted. Otherwise, set the strain and axial loads for the last two
iterations equal to ¢;, P; and & Pj_ Then another estimate of ¢ 1s made by Eguation
3.18. This process 1s repeated untill P = Pupplied'

The moment and shear on a wall is calculated at a given sheuar strain, y, for
various values of compressive strain, g9, ranging from 0 to about 2e,.  Each time the

compressive strain, ¢y, is increased, the previous solution’s tensile strain, |, is used as

g and ry, 1n

integral. This minimizes the number of times the concrete stresses, o,

Equations 3.15 to 3.17 are evaluated.
8 For most low-rise shear walls, the applied axial load in neghgible. Thus {or all of

the walls analyzed in this chapter, Papplied =1{.
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an initial estimate of the current tensile strain. As the compressive strain is increased
for successive solutions, the moment in the wall increases for each solution. At some
compressive strain, the moment will begin to decrease, due to crushing of the concrete.
This denotes failure, and no further solutions are carried out at this shear strain. The
shear strain is increased, the compressive strain is reset to zero, and another set of

solutions is obtained. Values of the shear strain range {rom 0 to about 2¢,.

Recall the curvature, ¢, s the slope of the longitudinal strain distrnibution as given
in Equation 3.I. Thus the set of solutions for various longitudinal strain distributions
and shear strains, y, constitute the moment - shear - curvature and the moment - shear

- shear strain interaction surfaces.

The moment - shear - curvature interaction surface for NCKU wall SW6 is shown
in Figure 39. Examining Figure 39, point A (V=0, M=1723 Ton cm, ¢ =.000262
rad/cm) corresponds to the ["ai[ure curvature for pure bending, point B (V=24 Ton,
M= 1560 Ton cm, ¢ = .000124 rad/cm) corresponds to the faitlure curvature, where the
moment to shear ratio is J:-//-{-=65 cm, and point C (V=324 Ton, M=0, ¢=0)
corresponds to the failure curvature for pure shear. [For low values of shear, the
moment - curvature relationship is very ductile. As shcar increases, the moment -
curvature relationship becomes more britle, failing at 1) fower values of curvature,
and 2) lower values of moment. For low values of constant moment, at low values
of shear, the curvature is independent of shear. At a larger value of moment, held
constant, the curvature will increase with increasing shear. Thus the curvature 1s

strongly influenced by both moment and shear.

The moment - shear - shear strain interaction surface for NCKU wall SWé 15
shown in Figure 40. Point A (V=0, M =1723 Ton c¢cm, y=0) corresponds to the shear
strain at failure for pure bending, point B (V=24 Ton, M=1560 Ton c¢m, y=.001803

rad) corresponds to the shear strain at failure for a moment to shear ratio of
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-%-:: 65 c¢m, and point C (V=524 Ton, M=0, y= .OOSOOO rad) corresponds to the
shear strain at failure for pure shear. For low values of moment, the shear - shear
strain relationship is very ductile. As moment increases, the shear - shear strain
relationship becomes more brittle, failing at 1) lower values of shear strain, and
2) lower values of shear. For low values of constant shear, at low values of moment,
the shear strain is independent of the moment. At larger values of shear, held constant,

the shear strain will increase with increasing moment. Thus the shear strain is strongly

influenced by both moment and shear.

6. Yield and Fatlure Interaction for Shear and Bending. Both the ultimate load

surface and the vield surface of the moment to shear interaction surfaces are of interest
and are shown in Figure 41. For NCKU wall SWé6, point A (M=1723 Ton ¢m, V=0)
represents the ultimate load for pure bending, point B (M = 1560 Ton cm, V=24 Ton)
represents the ultimate load for a wall with a moment to shear ratio of 65 ¢m, and
point C (M=0, V=524 Ton) represents the ultimate load for.purc shear. [f the
ulumate moment, at zero shear, is denoted by M, and the ultimate shear, at zero

moment, is denoted by V,,, then this failure surface can be described by

uo*

2 2
)R-
+ =1.0 _ (3.19)
(VUO i MUO . '

This equation is within 3% of the calculated ultimate load for NCKU wall SWeé.

The yicld point of a wall is the load where the first stecl bar viclds. Point D
(M=1195 Ton ¢cm, V=0) in Figure 41 represents the yield point for pure bending,
point E (M=1112 Ton cm, V=17.1 Ton} rcprescnts the yicld point for a wall with a
moment to shear ratio of 65 cm and point F (M =0, V=151.9 Ton) represents the vield

point for pure shear. If the yield moment, at zero shear, is denoted by M,,, and the

yo
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yield shear, at zero moment, is denoted by V,,, then this yvield surface can be described

yor
by

2 2
v \? M
+ =1.0 3.20
( VYO ) ( M}/O ) ( )

This equation is within 9% of the calculated yield point for NCKU wall SWé,

7. Shear Bending Influence Angle, . There are several ways to quantfy the

significance of bending and shear deformations in a given wall. One is to examine the
ratio of bending deformation to total deformation, as discussed in Chapter I1. This
methed has the advantage of being very simple. Unfortunately, as shown in Figures

15 and 16, the percentage of bending deformation often varies with the load level.

Another method to quantify the significance of bending and shear deformations
in a given wall is to locate a normalized moment to shear ratio on a normalized

interaction diagram. This is represented by the angle ¥ in Figure 41, Let

\ Myo
J = at (__)( ) (3.2
a aﬂ{ Vi Vuo

Point A in Iigure 41 has a shear bending influence angle ¢ =0, which represents pure

bending. For point C, ¢ =90°, which represents pure shear. Point B has a shear

bending influence angle of

] 1723 Ton cm) - 76.8°

b= atan( 65cm 524 Ton

which indicates that bending has a stronger influence than shear.

87



8. Base Rotation Model. At the base of the shear wall, the steel reinforcing bars

have a very high tensile stress. As these bars transfer their stresses to the boundary
elementg, they slip or pull out of the boundary element, with a deformation of ;. This
deformation allows the wall to rotate as a rigid body about it’s base, causing additional

lateral deformation at the top of the wall.

This mechanism for deformation may be understood by examining I'igure 42.
For a given point on the moment - shear interaction surface, the strain distribution and
force in each bar is known. Thus steel bar 1, has an axial load of Ty or an axial stress

of 6, and an axial strain of £q at the base of the wall.

The actual bond stress distribution between the steel bar and the concrete in the
boundary element is a function of the stress in the bar, the strain in the bar, the
concrete strength, and the degree to which the concrete around the steel bar is
confined. However, a simple, constant bond stress distribution between the bar and.
concrete may be assumed (80), because the deformation due to bond slip 15 a small

portion of the total deformation. Thus the constant bond stress, U, is
fe .
U =9.5/—— <800 psi (3.23)

where d 1s the diameter of the steel bar, in inches, and Fc’ is in pst.

Summing the forces on a section of the bar that has a length 7,
Y F,=0, Tg=T, + Uznd (3.24)

The stress in the steel bar as a function of length is determined by dividing Lquation

3.24 by the area of the steef bar,

? Typical boundary elements at the base of the wall are pile caps, mats, and footings.
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0, = ap— —=& (3.25)

At the end of the development length, Zg, the stress in the bar, o, is zero. Solving
Equation 3.24 and 3.25 for the development length vields
TO Ood

L= TN — ‘6
%= Und  aU (3.26)

Since the stress-strain curve for the steel bar is known, the steel bar’s strain
distribution is determined. A typical bar force distribution, bar stress distribution and
bar strain distribution is shown in Figure 42. The strain distribution is integrated along

the development length, to determune the pull out, §;, of bar i,

vz
51=J e, dz (3.27)
0

where &, 1s the vanation of strain along the bar's axis. The strain distribution,
£, consist of discrete values. Thus the integral in Equation 3.27 is evaluated

numerically.

The rotation of the base of the wall due to bar 1, shown in Figure 43, is given by

d 1
9‘1 - XNA ~ X (3.28)

where X~ a 15 the coordinate of the neutral axis. Similarly, the rotation for bars i+ 1
through n are calculated. The base rotation for bars t and i+ | may not be compatible,
Qi # 0i+l' because the bond stress distribution has been over simplified. A rational
method to resolve this incompatibilty, yet retain the simphicity of this approach, 1s to
use a weighted average of the bond stip for each bar. Thus the base rotation of the

entire wall, Oy is given by

30
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- (3.29)

U

Recall the stress distribution example for NCKU wall SW6, Figure 38. Five bars

are on the tensile side of the neutral axis. The force, bond slip and rotation angle for

each bar is
Bar Xna — & TO _ 5i Bi T06i
1 80.92 6477 03506 .000433 2.806
2 62.92 6477 03498 000556 3.601
3 44.92 6477 03486 000777 5.031
4 26.92 6477 03487 001295 8.392
5 8.92 2164 00389 000436 0.944
= 28,072 : 20.78

where the units are kg, cm and each bar has a diameter of 1.27 ¢m and an area of

1.29cm2.  The base rotation angle, 8;, varies from 0.000436 rad to 0.001295 rad for

20.78

53 073 = 0.00073 rad.

two adjacent bars. The weighted average base rotation is § =

Calculating the base rotation of the wall for each point on the moment - shear
interaction surface, determines the moment - shear - base rotation interaction surface.
This interaction surface. is shown in [igure 44 for NCKU wall SW6. Point A (V=0,
M =1723 Ton cm, 6y, =.001356 rad) corresponds to the base rotation at failure for
pure bending, point B (V=24 Ton, M= 1560 Ton cm, 6y, = 000775 rad) corresponds
to the base rotation at fatlure for a moment to shear ru[io‘ of -¥-=65 cm, and
point C(V=352.4Ton, M =0, 8, = 0) corresponds to the base rotation at fatlure for
pure shear. At low values of shear, the moment - base rotation relationship has a
ductile behavior. As the shear increases, both the failure rotation and failure moment

decrease.
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Figure d4.  Moment:Shear-Base Rotation Interaction Surface for NCKU Wall SWo
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B. SHEAR AND BENDING BACKBONE CURVES

Isolated shear walls subject to either static or dynamic loading have a constant
moment to shear ratio. The shear walls in low-rise buildings, subject to dynamic
loading, alsc have a fairly constant moment to shear ratio. For a fixed moment to
shear ratio, the interaction curves can. be decoupled, yielding separate moment -

curvature, shear - shear strain and moment - base rotation relationships.

The deformation due to base rotation, and the bending deformation could not be
separated during the analysis of the experimental data, Chapter 1I. Thercfore the
calculated base rotation and bending deformations will be combined 1} to be
consistent with the experimental deformations, and 2) to reduce the number of
hysteresis models used for cyclic loadings. The deformation of a low-rise shear wall

due to base rotation, dy, is given by

Opr = Opr h (3.30)

where h is the height of the wall.

For low-rise shear walls, the entirc wall is in the hinging region. Thus the
cquivalent moment on the wall is constant. Likewise the curvature distribution 1s
constant as shown in Figure 10. Treating the curvature distnibution as a conjugate

beam, the bending deformation of a low-rise shear wall i1s given by

h
5¢= d)f’ (3.31)

The combined bending and base rotation deformation 1s given by

b2

_g 12
)" =0, h°

—.
L)
L9
LR

~—

Gbr
Sp. = (2L
b (h+

u



which hereafter is referred to as the bending deformation. The bending rotation of a
unit length wall is 8, and 8, h is the bending rotation of the wall. The relationship
between bending moment and the bending rotation is known as the bending backbone

curve.

For an isolated, low-rise shear wall, the shear in the wall, V, is equal to the
applied load. Given the shear and the moment to shear ratio, then the shear strain, v,
15 determined from the moment - shear - shear strain interaction surface.  The
relationship between the shear, V, and shear strain, y, at a constant moment to shear
ratio is the shear backbone curve. For low-rise shear walls, with a constant moment
to shear ratio, the shear strain is constant over the height of the wall. Thus the shear

deformation &, is given by

5s=vh | (3.33)

For NCKU wall SW6 at point B on the interaction surfaces, Figures 39, 40, and

Figures 44, the deformations are

By = 0.000775 x 43.75 = 0.0339 cm (3.39)
56 =—0-&2Q-1—:'ix (43.75)% = 0.1186 cm (3.35)
g = 0.001803 x 43.75 = 0.0789 cm (3.36)

Thus the bending deformation is = 54, + 4, = 0.1526 cm, and the total
deformation is &, = dy, + 95 = 0.2315 cm.  For this load level, base rotation accounts
for 14.6% of the total deformation, deformation due to curvature accounts for 51.3%
of the total deformation, and shear accounts for 34.1% of the total deformation.

Bending (5¢ + &1yp) accounts for 65.9% of the total deformation.
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Experience in comparing calculated backbone curves with experimental backbone
curves has demonstrated that the proposed z;nalytical method underestimates the
failure displacement. This is partially due to the unloading region of the concrete
stress-strain model. The Vecchio-Collins stress-strainv model has a rather steep
unloading branch as shown in Figure 34, which underestimates the strength of concrete
at the high strains that are associated with larger deformations. Thus the
overconservative stress-strain model] forces the analytical method to predict failure at

lower valucs of strain, and the failure deformation is underestimated.

In Chapter Il an average failure ductility of u= 10 1s observed for the NCKU
walls. This experimentally observed failure ductility is used to modify the calculated
backbone curve. Thus

| fail 105b[yield

5| =108

fail yield

The calcﬁlatcd moments and shears at failure are used with dplpy and d.lgq to
define the end point on the backbone curve. Recall that the average ductility of 10 is
based on a lightly reinforcéd isolated wall with a height to width ratio of 0.50, and a
moment to shear ratio of 65 cm. Caution must be used when extrapolating this failure

ductility to other walls.

The modified bending and shear backbone curves for NCKU wall SW6, at five
diffcrent moment to shear ratios, are shown in Figures 45 and 46. As the moment 1o
shear ratio increases, 1) both the bending yield point and the ultimate bending load
increase, 2) the bending rotation at failure increases, 3) the bending suffness increases,
4) both the shear yield point and the ultimate shear decrease, 5) the shear strain at

failure decreases, and 6) the shear stiffness decreases. For the pure shear case,

eI



2000 4

1 M
_=m
vV
e T
— - - -
=== M.y35¢m
'''''' M. esem
V 65¢
s | g M.
i
=
(]
—
~ . -
— € yield point
=
Ll
=
(=]
=
OQ o 1 LI v ! T M LA v 1 T v i 1 ! 4 M R |

0.00000 0.00005 0.00010 0.0001S 0.00020 0.00025
8, BENDING AND BASE ROTATION (RAD/CM)

IYigure 45, Moment-Curvature Relationship at Various Moment to Shear Ralios for
NCKU Wall $Wé6

a7



SHEAR (TON)

-6 yield point

OV‘ 1 T 1 l 1 L b I ¥ 1 T : L ¥ L] I ¥ v T I
3.000 0.002 0.004 0.006 0.008 0.010

Y, SHEAR STRAIN (CM/CM)

Figure 46. Shear-Shear Strain Relationship at Various Moment to Shear Ratios for
NCKU Wall SWé

38



M
\’%
is a relatively large shear strain, and it is doubtful that a failure strain of 10, could

Py

= 0, the shear backbone curve vields at a shear stram of ‘Ssy = (.004834 rad. This

be achieved.

C. COMPARISON OF CALCULATED AND EXPERIMENTAL STATIC

MONOTONIC LOAD-DEFORMATION RESPONSE OF ISOLATED SHEAR

WALLS

To evaluate the accuracy of the proposed analytical method, the calculated
monotonic load deformation response of 27 R/C shear walls is compared with the
experimental response. Fiftecen of these walls were tested at NCKU (72). These walls
are presented in Chapter II, Table [. The remaining twelve walls were tested by PCA

(57, 59, 7). These walls are introduced below.

Height to width ratios for the 27 walls range from 0.50 to 2.40. Four wall cross
sections are investigated: 1) rectangular walls with nearly uniform reinforcement,
2) rectangular walls with extra reinforcing steel at the edge of the wall, 3) burbell cross
sections (walls with square boundary columns), and 4) walls with flunges. Web
reinforcement ratios varied from 0.28% to 0.78% vertically and from 0 to 1.14%
honzontally. Flange reinforcement, when used, varies from 1.47% to 6.4°%. Concrete
strengths range from 2760 pst to 7780 psi, and the yield point of the reinforcing steel

ranges {rom 68 ksi to 80 kst.

Many of the walls are subjected to cyclic loading histories.  These walls are
identified in Table | and in the table given later in this section. An envelope of the

cyclic loadings is used for the monotonic response to make the comparisons below.
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1. Static_Monotonic Bending Deformation. The bending deformation is

calculated by Equation 3.32 for NCKU walls SWla, SW3 and SW4, and compared
with the experimental deformations in Figure 47. Similarly, caiculated bending
deformation for NCKU walls SWda, SW5 and SW6 are compared with the
experimental deformations in Figure 48. The vertical axis in Figures 47 and 48 is the
applied load. The displacements from 0 to 3 mm are shown. Experimentally observed

failure displacements range from 2.65 mm to 5.71 mm.

The loads are applied at a point 65 cm above the base of the walls as shown in
Figure 1. The equivalent moment at the base of the wall 1s M = 65V, where V 1s both
the applied load and shear in the wall. The moment to shear ratio for these walls 1s
65 cm. The gauges used to measure the bending, shear, and total deformations are

located at a height of h=43.75 cm above the base of the wall

All six of these walls have the same dimensions. Walls SW1a and SW3 have a
vertical remnforcing ratio of 0.426%, while walls SW4, SW4da, SWS5 and SWé6 have a
vertical reinforcing ratio of 0.774%. This accounts for the increase in strength between
these two sets of walls. Wall SW4 is subject to a monotonic loading, while walls SWia,
SW3, SWda, SW5 and SW6 are subject to cyclic loadings as shown in Figures 3, 4 and
5. The difference between the experimental backbone curves for these idemicallo walls
1s small. Thus the practice of using an envelope of cyclic test data te represent the

monotonic response 1s justified.

Overall, the comparison between the calculated and experimental results is good.
IHowever, the calculated response typically overestimates the initial bending stiffness,

and underestimates the lateral load at failure.

10 These walls have identical dimensions and reinforcing stecl. The 6.7% difference in

therr concrete strengths 1s insignificant.
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2. Static Monotonic Shear Deformation. The shear deformation for NCK U walls

SWla,.SW3, SW4 are calculated by Equation 3.33 and compared with the cxperimental
deformations in Figure 49. Similarly, the calculated shear deformation for NCKU
walls SWda, SWS5 and SW6 are compared with the experimental deformations in Figure
50. The range of deformations from 0 to 3 mm is emphasized in Figure 51.

Experimentally observed failure deformations range from 2.5 mm to 5.77 mm.

Overall, the comparison between the calculated and experimental results 15 good.
However, the calculated response tvpically overestimates the initial shear stiffness,
overestimates the shear at yield, underestimates the displacement at vield, and

underestimates the lateral load at failure.

3. Statuc Monotonic Total Deformation. The total deformation (Jt =y + dg)

versus applied load for NCKU walls SWla, SW3, SW4, SWda, SW35 and SW6 s given
in Figures 51 and 52. Overall, the comparison between the calculated and experimental
results for these walls is good. However, similar to the bending and shear components
of‘dcfbrmat@on, the calculated response typically: 1) overestimates the initial stiffness,

and 2) underestimates the lateral load at failure.

NCKU walls SWI10, SWI1, SWI2 SWI3, SW14, SW1S, SW16, SWI9, and SW20
arc summarized in Table I. Some of these walls have different bar arrangements than
the first group of NCKU walls. Walls SW10, SW11, SW12 SWI3, and SWI4 have the
same dimensions as the first group of NCKU walls. Walls SWI5, SWI6, SWI19 und
SW20 are taller, with @ moment to shear ratio of 90 ¢m, and their displacements are
measured h=68.75 ¢cm from the base of the wall. The total displacements are

calculated in the same manner as the first group of NCKU walls.
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The total deformation versus applied load for NCKU walls SW10, SWI 1, SWI12,
SW13, SW14, SW15, SW16, SW19, and SW20 is given in Figures 53, 54 and $35.
Overall, the comparison between the calculated and experimental results for these walls
is good. However, similar to the first group of NCKU walls, the calculated response
typically: 1) overestimates the initial stiffness, and 2} underestimates the lateral load

at failure. Also, the shorter walls tend to overestimate the load in yielding region.

Walls SW10, SW13 and SW14 arc identical except for the horizontal reinforcing
steel. Wall SW14 has twice as much horizontal reinforcing stecl as wall SW10. The
perfonﬁance of both walls is similar, however wall SWI14 has an ultimate strength
about 15% higher than wall SWI10. Wall SW13 does not have any horizontal
reinforcing steel and it’s strength is about 10% less than wall SW10. Similarly, walls
SW16, SWI19 and SW20 are identical except that wall SW19 does not have any
horizontal reinforcing steel. Wall SW19 failed at a load about 25% less than walls
SW16 and SW20. Both walls SW13 and SWI19 also failed at lower displacements than
simular walls with horizontal steel. Thus while hlorizontal steel is not explicitly specified

in the proposecd analytical model, it is essential to the performance of the shear wall.

Walls SW135, SWI16, SWI19 and SW20 are taller, —%1—= 90 ¢m, than the other
NCKU shear walls, i‘t’-i = 65 ¢cm. Since the moment to shear ratio has increased, the
moment capacity and bending ductility have also increased. However, the moment
arm has increased more than the moment capacity. Thus the taller walls fail at lower
values of applied load. Failure deformations for the taller walls are greater than the

lower walls.

PCA walls RI, R2, B, B2, B3, B4, BS, F1, BI-t, B2-1, B3-2 and B4-3 are
summarized in Table IX, and their cross sections are shown in Figure 56. These walls
have different cross sections from the rectangular walls tested by NCKU. Walls R1

and R2 have extra steel bars placed at the edges of the wall. Walls Bl to BS have
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boundary columns with extra longitudinal steel and transverse reinforcement to confine

the concrete. Walls F1, B1-1, B2-1, B3-2, and B4-3 have a flanged cross section."

Table 1X. PCA SHEAR WALLS

Flange Web
Wall  WxHxT € o o7 fy sy 7py fy - Loading

RI 75x180x4 (2)  6.49 0.65 1.47 742 0.28 0.31 757 24 cvelic
R2 75x180x4 (2)  6.74 0.65 4.00 65.3 0.28 0.31 77.6 24 cyelie
Bl 75x180x4 (3)  7.68 0.73 1.1l 65.2 0.28 0.31 755 24 cyclic
B2 75x180x4 (3) 7.78 0.71 3.67 59.5 0.28 062 77.2 24 cvclic
B3 75x180x4 (3)  6.86 0.64 1.11 63.5 0.28 0.31 694 24 cvelic
B4 = 75x180x4 (3) 6.53 0.68 1.11 653 0.28 0.31 73.2 2.4 monotonic
BS 75x180x4 (3) 6.57 0.63 3.67 644 0.28 0.62 72.8 2.4 cyclic
Fl 75x180x4 (4) 558 0.64 389 645 028 071 76.2 2.4 cyclic
Bi-1 75x37.5%x4 (5) 4.20 0.51 1.80 76.2 0.50 0.50 78.8 0.5 monotonic
B2-1 75%37.5x4 (5)  2.37 0.32 6.40 70.6 0.50 0.50 80.0 0.5 monotonic
B3-2 75%x37.5x3 (5) 3.92 0.47 410 60.0 0.50 0.30 79.0 0.5 cyclic
B4-3 75x37.5x4 (5)  2.76 0.37 4.10 76.5 0.50 0.00 77.6 0.5 cyclic

Notes:
(1)  All units are inch, kip.
(2) The flange steel is concentrated in a 7.5"x4.0” region at the edges of the wall.
(3) A 127x12” boundary column at the edge of the wall contains the flange steel.
(4) A 36"x4” flange at the edge of the wall contains the flange steel.
(5) A 24"x4” flange at the edge of the wall contains the flange steel.

PCA walls R1, R2, Bl, B2, B3, B4, BS5, and F1 are 180" tall and have height to
width ratio of 2.4. Vor these walls the hinging regton is assumed to equal one half of
the wall's width. The equivalent moment diagram used for these walls 1s shown in
Figure 56. Since the moment varies in the upper portion of the wall, the curvature
distribution 15 not constant. Thus the bending deformations are calculated by the

conjugate beam method
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h
onw=1\ ¢,zdz+ 6y h _ (3.38)
b 0 7 br

where z is measured from the top of the wall.

The flanges in walls FI, Bl-1, B2-1, B3-2 and B4-3 contribute more to the
moment capacity than the shear capacity. Thus the flange area included in the shear
calculation, Equation 3.17, is limited to Aﬂange shear = 2t2, where t is the thickness

of the flange l I.

While shear is constant, the bending moment is not constant on the upper portion
of these walls. Thus the moment to shear ratio varies with height, as seen in Figure
56, and the shear strain on the wall is not constant. The shear deformation is obtained

by integrating shear strains over the height of the wall

h
5S=J y, dz | (3.39)
0

The analytical backbone curves are compared to the experimental backbone
curves in Figures 57 through 61. The calculated failure ductility of walls B1, B3 and
B4 exceeded 105yicld' Thus the calculated failure point is used instead of Equauon
3.37. For the lightly reinforced walls without’ flanges, R1, R2, Bl, B3 and B4, the
comparison between experimental and calculated values is very good. The defoermation

in these walls 1s dominated by bending, with minimal shear influence.

t Wall F1 has a flange shear arca of 3t2 and wall B3-2 has a flange shear arca of

t2,
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For walls B2, B5 and F1 the comparison is good except that the failure Joad is
overestimated. These “;alls have higher reinforcing ratios than the other PCA walls.
Thus these walls are failing at much higher load levels. Web crushing12 (60) is the
experimentally observed failure mode for walls B2, BS, and F1. This is a compressive
failure of the web concrete near either a horizontal or vertical boundary element. Web
crushing has only been observed on highly reinforced walls with boundary columns or
flanges subject to large cyclic deformations. The proposed analytical model does

predict the crushing of concrete on an inclined compressive strut.

Walls B2, BS, and F1l have>a height to width ratio of 2.40. I'or walls in this range,
the horizontal expansion begins to become important. Consider the Mohr's circle for
strain in Figure 62. Case 1 i1s the wall without horizontal expansioﬁ, £h 2,0‘ A
longitudinal compression strain ¢y and a shear strain y are present on the clement,
yielding principal compression and tensile strains €ncl and Eptl- For Case 2, the wall
has a horizontal expansion ¢y, >0, and the same longitudinal and shear strams as
Case |. The prnncipal compressive strain for Case 2 1s less Athan Case 1,

IspC2| < |€pcl |, and the principal tensile strain for Casc 2 is greater than Case |,
£

5p12>5pt1' Since the shear softening term 4 is a function of , the shear

£
pc
softening term for Case 2 is greater than Case 1, 15> 4;. Thus the inclusion of

horizontal expansion reduces the concrete’s principal compression strength,

12 web crushing mechanism: As the wall is loaded, inclined cracks form at the base
of the wall, and will extend throughout the hinging region of the wall. Between each
of these cracks is an inclined compression strut. These inclined compression struts
span the web. As the wall is cycled, shear resistance between the base of the wall
and the compression struts degrades. Struts on the tension side of the neutral axis
degrade first, transferring their load to struts on the compression side of the neutral
axis. At some point, the remaining inclined web compression struts will crush,
usually at the base of the wall, and the load capacity of the wall is diminished. Web

crushing has been observed in the presence of large cyclic deformations.
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%- < %’ reducing the capacity of the wall. The analytical model without
horizontal expansion, overestimates the strength of walls B2, B5 and Fl. If the
experimental model had included floors at quarter points along the wall’s height, the
horizontal expansion would have been restrained, the load capacity increased, and the

comparison with the analytical model would be better.

Walls R1, R2, BI, B3, and B4 also have a height to width ratio of 2.4, but the
shear in these walls is low. Thus the horizontal expansion is small, and these walls

compared verv well with the proposed analytical model.

For walls BI-1, B2-1, B3-2 and B4-3 the comparison between caiculated and
experimental results 1s good. However, the proposed analytical model underestimates
the failure load of wall Bl-1, overestimates the yielding region of walls B2-1, B3-2 and

B4-3, and overestimates the failure ductility of walls B1-1, B3-2 and B4-3.

These low-rise walls have height to width ratios of 0.50, with heavily reinforced,
flanged boundary elements. The relative influence of bcnd:mg and shear can be
determined by comparing the shear bending influence angle ¢ for different walls,
Table X. The y values of walls B1-1, B2-1, B3-2 and B4-3 are clearly much higher than
any of the other walils examined thus far. These walls are dominated by shear. One
variable that deserves further attention is the -ﬂange contribution to shear area.
Another is the assumption that the strain is constant across the width of the flange

(shear lag).

Hsu's pure shear model (46) also has a good comparison with walls B1-1, B2-1,
B3-2 and B4-3. Hsu assumes that the longitudinal strain across the width of the wall
is constant, a given amount of the flange steel is effective in resisting the vertical

expansion due to shear, and that the concrete tensile stress is zero. The softened



Table X.

SHEAR BENDING INFLUENCE ANGLE, ¥

Wall Vi Myg pe v
SWla  1070.4 38.306 65.0 23.3°
SW3 1072.3 38.452 65.0 23.2°
SW4 1702.0 50.068 65.0 27.6°
SWda 17043 50.329 65.0 27.5°
SW35 1711.5 51106 65.0 27.3°
SW6 1722.9 52383 65.0 2.8°
SWI0 1690.0 18.019 65.0 28.4°
SWII 1970.5 46.316 65.0 33.2°
SWI2 17585 48.952 65.0 25.9°
SWI13 1771.5 54.503 65.0 26.6°
SWi4 17574 53.367 65.0 2.9°
SWIS 1969. 46.254 90.0 25.3°
SWi6  1682.2 47.399 90.0 21.5°
SWI9 16517 44.863 90.0 2.2°
SW20 15851 39.486 90.0 21.0°
RI 5327.9 23270 1800 7.6°
R2 9508,7 338830 1800 3.9°
B1 13519.0 485220 1800 3.8°
B2 12554.0 840.120  150.0 12.1°
B3 13104.0 456.010 180.0 9.0°
B4 13331.0 459.060  130.0 9.2°
BS 33010.0 737.640 1800 14.0°
Kl 43756.0 47060 1800 27.3°
Bl-1 20069.0 275.000 37.5 62.8°
B21  42069.0 214.660 37.5 79.2°
B32 311140 274.440 375 717
B4-3 32411.0 229.780 37.5 75.1°

Notes:

(1} The units of walls SWla to SW?20 are Ton cm.
(2) The units of walls R, R2, Bl to B3, F1, Bl-1, B2-1, B3-2, and B4-3 urc inch
Kips.

concrete stress strain model, with a modified 2, is used. This model’s use is limited to

walls that have negligible bending.
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4. Summary of Observations. The monotonic load deformation response of

reinforced concrete shear walls is influenced by many parameters. Several of these

parameters are discussed below.

The monotonic load deformation response for shear walls with four different wall
cross sections s calculated. These are 1) rectangular walls, 2) rectangular walls with
extra reinforcing steel, 3) barbell shaped walls, and 4) flanged walls. Whenever
concrete and steel are added to the edge of a wall, the bending capacity is increased.
For taller walls, R1, R2, Bl to BS and FI, the increased bending capacity 15 matched
by a larger moment. For low-rise walls, BI-1 to B4-3, the increased bending capacity
forces shear to dominate the behavior of the wall. Flanged cross sections provide the

additional complicating factors of shear lag, and effective flange shear area.

Vertical web reinforcing steel ratios varied from 0.28% to 0.78%. All else being
equal, as the web reinforcement increased, the walls became stronger and lost ductility.
For walls without boundary columns or flanges, the strength of the wall 1s sensitive to

the vertical web reinforcing steel ratio.

Honzontal web reinforcing steel ratios varied from 0 to 1.14%. All else being
equal, as the amount of horizontal web steel increases, the strength increases.
Omission of the horizontal web steel decreases the ductility. Thus while not included

in the analvtical model, honzontal web steel has an important role in low-rise walls.

For taller walls horizontal expansion becomes important, and the horizontal web
steel acts as stirrups to resist shear. This behavior is not included in the analvtical
model and is partially responsible for the analytical model overesumating the strength
of walls B2, BS and F1. Walls R1, R2, Bl, B3 and B4 are dominated by bending, thus

the influence of horizontal expansion is not as evident.

124



For any given wall cross section, varying the height to width ratio can shift the
wall’s behavior from pure bending to pure shear. Walls with height to width ratios

between 0.5 and 2.4 are in good comparison with the analytical model.

The shear bending influence angle, ¥, ts used to determune the relative influence

of shear and bending on a wall. Calculated values of the shear and bending influence

angle ranged from 7.6° to 79.2° for the walls studied. This indicates that the pfoposcd

model is tested over a wide range of different wall behaviors. When the bending
component is strong, ¥ < 30°, the analytical model compared very well with the

experimental results. When shear dominates the response, y > 60°, the analytical

model has some difficulty predicting the vield load, failure load, and failure ductlity.

The behavior in the high shear range, ¢ > 60°, is a recommended topic for further

research.
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IV. HYSTERESIS RULES FOR ISOLATED SHEAR WALLS

Hysteresis models are used to represent the cyclic behavior of materials, elements
and building components. A good hysteresis model will capture the essential behavior
of the element (force-deformation relationship, energy dissipation) yet remain as simple

as possible to facilitate efficient numerical computation.

Many material hysteresis models have been proposed for metals, ranging from the
simple, elasto-plastic model, to the complex Ramberg-Osgood model. These models
have been extended to represent the element’s behavior. Simularly, hysteresis models
have also been developed for plain concrete (71, 50). However, because of the
interaction with reinforcing steel, the plain concrete hysteresis model cannot be used

to represent the behavior of reinforced concrete elements.

The cyclic behavior of a R/C beam differs from both the steel and concrete
models. Takeda, et al (75) tested a series of cantilever beams and developed a
hysteresis model for bending. Takeda’s model has a trilinear backbone curve (crack,
yield and ultimate), a one segment variable stiffness unloading curve, small amplitude
hysteresis loops and large stable hysteresis loops without pinching. Many researchers
have used Takeda’s model, or modified versions of the model, to study the response

of R/C frames (70, 62, 63, 21) and tall coupled shear walls (32, 69, 51).

The Shima model (70) 1s a Takeda-like model that was developed to include the
pinching behavior due to bond slip in R/C beam column joints. Hiraishi (44) proposed

using this model to study the pinching behavior of R/C shear walls.

Kabeyasawa, et al (49) analyzed a tall R/C shear wall with boundary columns as
part the analytical studics for the full scale seven-story test structure. A hysteresis
model that assumes the loading and unloading paths pass through the ongin was used

for both the bending and shear deformations of the wall’s web. The origin orientated
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hysteresis model does not dissipate energy. Boundary columns were modeled with a

separate axial stiffness hysteresis model.

In this chapter, separate bending and shear hysteresis models are developed for
low-rise shear walls. These hysteresis models are verified by comparison with the
experimental response of five low-rise shear walls. An axial hysteresis model,

devcloped by Kabeyasawa, et al (49}, is also discussed.

A. SHEAR AND BENDING HYSTERESIS MODELS

The following semi-empirical bending and shear hysteresis models are based on
NCKU shear walls SWla, SW3, SWda, SW35 and SW6. Walls SWla and SWda were
subjected to one sided cyclic loading as shown in Figure 3. Walls SW3 and SW6 were
subjected to an earthquake type loading as shown in Iigure 4. Wall §W5 was
subjected to a two sided cyclic loading as shown in Figure 5. The shear and bending
deformations were separated using Equations 2.9 and 2.20. The indi\’idual components
of deformation were studied. Trends were observed in the experimental data and
synthesized into hysteresis rules. Each of these hysteresis rules is presented in detail

and discussed below.

The bending hysteresis model is shown iﬁ Figure 63, and the shear hysteresis
model is shown in IFigure 64. Both hysteresis models consist of eleve!n rules. Several
of the more prominent features of the bending and shear hysteresis models are:

« Both hysteresis mddels have a highlv nonlinear backbone curve, without well
defined break points as shown by rules Bl.l and Si.!1 in Figures 63 and 64,
respectively, Typically six to ten points are required to accurately describe the
backbone curve. The curve is symmetric for both positive and negative loadings.
An analytical method for calculating the backbone curve was presented in Chapter

1.
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The uniloading branch for both hysteresis models is represented by three linear
unloading segments as shown by rules B1.2, B1.3 and B1.4 in Figures 63 and rules
§1.2, S1.3 and S1.4 in Figure 64. Each unloading segment has an empirical stiffness
which degrades with various levels of displacement.

When the wall 1s cycled at a constant load, near the ma)}imum past load, the
deformations tend to increase with cach cycle. When the wall is cycled well below
the maximum past load, the hysteresis loops are stable. Thus both hysteresis
models reduce the reloading stiffness for loads near the maximum past load. The
rate of bending stiffness reduction is cycle dependent, with less stiffness on the first
cycle than on subsequent cycles. The shear stiffness reduction is cycle independent.
The reloading curve of the shear hysteresis model is dominated by pinching. The
pinch is highly nonlinear and is represented by three linear segments, as shown by
rules $1.8, $1.9 and S1.7 in Figure 64. The stiffness of cach segment 1s dependent
on the maximum past displacement.

The energy absorption increases with increasing peak displacements. This is
accomplished in the hystercsis model by varying the unloading and loading
stiffness. However, the energy absorption of the shear hysteresis model is less than

the bending hysteresis model because of pinching.

Both the bending and shear hysteresis models are posed in terms of load and

displacement, because they were derived directly from experimental load-displacement

test data. However, the hystcresis models are often used in terms of moment and

rotation or shear and shear strain (see Chapter V). This is possible by directly

substituting moment or shear for load, and rotation or shear strain for displacement in

the respective hysteresis models. All of the empirical stiffnesses are normalized with

respect to the initial stiffness and cracking displacement. Thus these values are also

converted to moment-rotation, or shear-shear strain form.
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In both hysteresis models, loading, unloading and reversal are terms used to
define the state of the applied load. Loading is defined as increasing the absolute value
of the applied load as shown by load paths O-A and B-C in Figures 63 and 64. When
the absolute valuc of the load decreases, the wall is unloading as shown by load paths
A-B and C-D in Figures 63 and 64. A load reversal occurs when the load changes
direction from one load step to another. For example, in Figures 63 and 64 the load
path A-B is unloading from a positive load, load path B-C is loading with a necgative
load, and point B 1s the load reversal pownt. Load path B-C in Figures 63 and 64 1s
referred to as loading after unloading from the opposite direction (load path A-B).
Load path D-E in Figures 63 and 64 is referred to as reloading after unloading from

the same direction {load path C-D).

Both hysteresis models utilize the variable DIR, which indicates the sign of the
load (positive or negative) and the status of the current load path (loading or
unloading). Thus in Figures 63 and 64, DIR=1 represents loading with a positive
load, as shown by load path O-A, DIR=2 fepresents unloading with a positive load,
as shown by load path A-B, DIR =3 represents loading with a negative load, as shown
by load path B-C, and DIR =4 represents unloading with a negative load, as shown
by load path C-D. Another variable DIRL 1s the value of DIR from the previous load

step.

Both hvsteresis models utilize many common variables such as P, the current
load, D, the current displacement, and K, the suffness of the wall. The numerical values
of these common variables are not equivalent. The bending displacement, D, used in
the bending hysteresis model is quite different from the shear displaccmcﬁt, D, used in
the shear hysteresis model. There is an implied subscript ‘b’ on each variable used with

the bending hysteresis model.
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Because the calculations for a load cycle are tediouﬁ, the hysteresis rules are
intended to be used as part of a computer program. Each rule is prefaced with several
logical tests. 'If these tests are satisfied, the rule is executed. If the logical test are not
satisfied, the next rule is examined. The rules are examined in order, from Rule 0
through Rule 11. The hysteresis rules are summarized in Table XI. The stiffnesses in

Table XI are defined in the hysteresis rules and are provided here for reference.

Table XI. SUMMARY OF HYSTERESIS RULES
Bending Shear
Rule # Suflness Rule # Stiffness Description
B1.0 SI S1.0 S1 Elastic Behavior
Bl.1 * S1.1 * Loading on the Backbone Curve
B1.2 S1 S1.2 Sl Unloading
B1.3 S2 S1.3 S2 Unloading
B1.4 83 514 S3 Unloading
B1.5 * SL.5 * Unloading inside small amplitude loops
Bl.6 SL SL.6 S Reloading after unloading from the same
direction
B1.7 * SL.7 * Reloading toward the common pomnt
Bl.8 SR S1.8 SR1 Reloading after unloading from the opposite
direction
B1.8.1 § Reioading after unloading from the opposite
‘ direction
B1.9 * S1L.9 SR2 Reloading after unloading from the opposite
direction
BL1O * St1.10  * Reloading above the common point
Br.11 SR Si.11.1 SRL Reloading inside small amplitude loops
S1.11.2 §SXI1 Reloading inside small amplitude loops
S1.11.3 SRL Reloading inside small amplitude loops
S1.11.4 SXI1 Reloading inside small amplitude loops
SLILS SX2 Reloading inside small amplitude loops
S1.11.6 SRL Reloading inside small amplitude loops
Note:
* The stiffness is defined by an equation in the hystercsis rule.
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1. Loading on the Backbone Curves. In Chapter IIl, the bending and shear

backbone curves were developed. These curves are nonlinear, without well defined
break points. In both hysteresis models the backbone curves are represented by a
series of piecewise linear segments. Rules Bl.l and Sl.1 address loading on the

backbone curve.

When a virgin wall is loaded, the first significant change in stiffness occurs when
the first crack forms in the wall. The load and displacement at this point are denoted
bv Pc and Dec, for cracking load and cracking displacement. Thus the first point on the
backbone curve is the cracking load. When a virgin wall is loaded below the cracking
load, its behavior is elastic. Rules B1.0 and S1.0 address loading and unloading in the

clastic range.

a. Bending Hyvsteresis Model, Rules B1.0 and Bl.l1. The bending backbone curve

is divided Into a series of piecewise linear segments that join NB points, as shown in
Figure 65. Define the first point as the bending cracking load, PB(1)}= Pc, DB(1) = D,
where PB and DB are arrays containing the backbone curve; P and D signify the load

and displacement at the current point.

Assuming that the analysis begins with a virgin wall, the first time the hysteresis
model is accessed, RULE=0. RULE is a variable that contamns the previous rule

number that the hysteresis model executed.

{‘or the elastic region, rule B1.0 sets the current bending stiffness, K, to the initial

bending stiffness, SI, where

Sl =—C (4.1
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In the elastic range, the wall can experience both loading and unloading. Once the wall

has cracked, loading continues on the backbone curve.

Thus the bending hysteresis model rules B1.0 and BI.1 are

Rule B1.0 Elastic behavior
If 1)RULE= 0, and

2} [Pl < Pc
Then

K = §I

RULE = B1.O

Rule Bl.1 Loading on the backbone curve
If 1) (BACKB=true or RULE=0), and
2) DIR=1 or DIR=3
Then
Determine j, such that PB{j — 1) < |P| < PB(j)

PB(j) - P
" DB(j)-D

-

A = PB{))

IR =10
BACKB=true
RULE = BIl.1

BACKB 1s a logical variable that signifies whether the loading is on the backbone
curve, or on a hysteresis loop. The variable A denotes the load where the sufiness will
change, if loading continues in the same direction. The variable IR, is a counter for
the number of small amphtude loops used by rules B1.5 and B1.11, which is discussed

later. Setting IR =0 signifies that there are no small amplitude loops currently active.
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b. Shear Hysteresis Model, Rules $1.0 and S1.1. The shear backbone curve is

also similarly divided into a series of piecewise linear segments that join NS points as
shown in Figure 65. Define the first point as the shear cracking load, PS(1)= P,
DB(1)=Dc; P and D represent the shear and shear displacement, respectively, at the
current point. Similar to the bending backbone curve, RULE=0 the first time the

hysteresis model is accessed.

For the elastic region, rule S1.0 sets the current shear stiffness, K, to the initial

shear stiffness, Si,

S1 =2 (4.2)

D¢

In the elastic range, the wall can experience both loading and unloading. Once the wall

has cracked, loading continucs on the backbone curve.

Thus the shear hysteresis rules S1.0 and SI.1 are

Rule §1.0 Elastic behavior
If 1)RULE= 0, and

2) |P| <Pc
Then

K = SI

RULE = §1.0
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Rule S1.1 Loading on the backbone curve
If 1) (BACKB=true or RULE=0), and
2) DIR=1 or DIR=3
Then
Determine j, such that PS(j — 1) < | P| < PS(j)

_ Psi-P
D3(j)—-D
A=PS(})
[IR=0
BACKB=true
RULE = S§1.1

Similar to the bending hysteresis rules B1.0 and B1.1, BACKB is a logical variable
that designates loading on the bacigbonc curve. The vanable A denotes the load where
the stifiness will change if loading continues in the same direction. The variable [R is
a counter for the number of small amplitude loops used by rules §1.5 and S1.11, which

1s discussed later.

2. Unloading in the Nonlinear Range. Typical bending and shear unloading

curves for NCKU wall SW1a are shown in Figure 66. The initial unloading range has
a high stiffness. As the load decreases, the suffness also decreases resulting in a
nonlinear unloading curve. As the maximum displacement increases, the unloading
stiffness decreases. Insight into this nonlinear behavior is gained bv examuning

separate bending and shear unloading mechanisms.

[xamine the loaded shear wall in Figure 67 to determine the unloading
mechanism for bending deformation. The wall has uniformly distributed longitudinal

reinforcing steel. On the right side of the wall concrete is in compression, while steel
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is in tension on the left side of the wall. As the load P is reduced the concrete

rebounds. From Karsan and Jirsa’s (50) studies on the hysteretic behavior of plain

concrete as shown in Figure 68:

¢ The initial unloading range has a high stiffness.

¢ As the loading decreases, the s'tianess of plain concrete also decreases.

¢ As the maximum strain increases, the unloading stiffness of plain concrete
decreases.

The unloading curve for plain concrete has the same general shape as the unloading

curve for bending deformation. Thus the nonlinear unloading curve for bending

deformation is partially due to the unloading behavior of concrete.

The steel stress distribution in the loaded wall is not lincar. Examine two bars,
£1 and #2 in Figure 69a. Before unloading begins bar #1 1s in its plastic stage, while
bar #2 is elastic as shown in Figure 69b. As the wall is unioaded, bar #1 rebounds to
zero stress while the wall sull has a positive curvature as shown in Figure 69¢c. Note
that bar #2 still has tensile stress and the unloading path of both bars is' linear as shown
in Figure 69b. The wall has tension on the left side and compression on the right, thus
the moment still is greater than zero. Unloading the wall to zero moment compresscs
bar #1 as shown in Figure 69d, while bar #2 is in tension and the concrete on the right
side is still i compression. Since the unloading path for both bars 1s linear, the
load-deformation relationship due to the steel bars is also linear. Thus w_hilc the

reinforcing steel unloading stress distribution s interesting, it is not the cause of the

nonlinear unloading behavior for bending deformation.

The unloading mechanism for shear deformation is also closcly reluted to the
unloading curve for plain concrete. Figure 70 shows a shear wall with shear
deformations. The major load resisting mechanism is the concrete struts, parallel to

139



Load = P

~ Concrete in Compression

Figure 67.

Figure 68.

= =

Reinforcing Steel in Tension

Deformation of a Loaded Shear Wall Due to Bending

A

" Stress

Common Point

Nonlinegr
Unloading
Curve

Noniinear
Reloading
Curve

. Strain

Hysteretic Behavior of Plain Concrete (Ref. 50}

140



Juiproqury 191 R UOONQIISIC] $$I4IS PUR UMNG (p) FUIprO[U[) [RIMR ] 121]R UOHNQUISI(] $$241§ pUR tivalg () Wwidnei(]
uIRNG-$$aNg (q) uiprojuy) 210Jog UONINGUISI(] $S24IS PUR UIRNG (1) :FUIpROJU | 10} UOIINQUISI(] $s2NG FUIPUIE [[PAY 69 2INGL]

(p)

Y uonnquisiq
SS3IS

R a— uounqlasi(y
[ uois

(%°%)

©)

l I uolNqsia
0 SSaUS

uoNGLISIQ
uDusS
(®)

N ///F N uounquIsiq
g -l 3 _ SS9U4S
2siog  iwuog

. uoyNquistq
uIoNS

141



Ccncrete Strut in Compression

Tensian and Dowel Action of Steel Across Open Crack

Figure 70. Deformation of a Loaded Shear Wall Due to Shear



the concrete cracks. Tensile steel at an angle to the cracks ties the struts to the base

of the wall. As the lateral load is reduced:

¢ The concrete compression strut will rebound. Recall the unloading curve for plain
concrete is nonlinear as shown in Figure 68. The unloading behavior of the wall's
shear deformation is similar to the plain concrete behavior.

¢ The bars across the cracks will rebound. As seen previously, the rebound of all the
reinforcement will be linear. Thus the walls rebound due to steel will also be linear.

Therefore, the unloading mechanism for shear deformation is primarily due to concrete

rebound.

The unloading mechanism for combined shear and bending deformations ts more
complicated than the simple bending and shear mechanisms presented above. Two of
the complicating factors are:

* The same concrete must act as both the compression strut, and as a compression
element for bending. Thus the concrete is in a state of biaxial stress. Recall the
plain concrete stress-strain model as shown in Figure 68 is for uniaxial stress.

¢ As the wall 15 unloaded, the cracks close. Since concrete expands under shear
strains, the cracks will close at a larger tensile strain than they opened at. Thus,
the stress distribution in Figure 69d will be altered.

Until rehable biaxial cyclic stress-strain models are developed, and the crack closing

point can be accounted for, it is not feasible to quanttatvely calculate the actuatl

unicading curve.

Thus, an empirical unloading curve for both hysteresis models is developed with
the following attributes:
¢ The unloading stiffness decreases with the load level. This requirement precludes

the use of a single linear unloading curve.
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¢ The amount of rebound increases with the maximum past displacement. This is
because the rebounding mechanism is dependent on the strain level, which increases
with the maximum past displacement.

e To provide continuity with the elastic case, the unloading stiffness near the

cracking load and displacement is approximately SI.

a. Bending Ivsteresis Model, Rules B1.2, B1.3, and Bl.4. The semi-empirical

bending unloading curve is a set of three linear segments, with stiffness S1, S2, and S3
as shown in Figure 71. The limiting case for the unloading stiffnesses is shown in
Figure 72, and will be discussed later. The break points between the linear segments
of 75% PM and 25% PM were chosen by inspection. Linear segments were fitted to
the test data for walls SWla, SW4a and SW3 as shown in Figure 66. Experimental
stiffnesses were determined, and normalized by dividing by the initial stiffness. The
shape of the unloading curves is similar for both positive and negative loadings, even
when the loading pattern is non-symmetrical. Thus, the maximum absolute value of
past displacement, in either direction, Dmax, ts used to determine the unloading
stiffnesses. Dmax is also normalized by dividing by the cracking displacement. The
unloading stiffnesses, SlI, SZ, and S3 were obtained by curve fitting, as shown in

Figures 73 through 75.

0.294
Dc
| = Si 4.3
S S (Dmax) (4.3)

§2 = §I (w +0. 1656) (4.)
max

$3=SI (wD—C + 0.0908) (4.5)
Dmax
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Note that while the test data has considerable scatter, the empirical relationships for

S1, 82, and $3 capture the trends of the test data.

Define the load and displacement at 75% of the maximum past load as

25% PM

Q3= 75% PM DQ3 =DM - ST

(4.6)

where PM and DM are the maximum past load and displacement in the current
direction as shown in Figure 7]. PM and DM may be etther positive or negative. The

load and displacement at 25% of the maximum past load is
p p

Ql = 25% PM DQI = DQ3 - —59%‘4— 4.7)
and the displacement at zero load is
DO’ = DQ3 — E’S-}P—“ (4.8)

The unloading stiffnesses in Equations 4.3, 4.4 and 4.5 do not guarantee that the
sign of the zero load displacement, DO, is the same as the sign of the maximum past
displacement, DM, as shown in Figure 72. This type of behavior was not observed in
the experimental data. Thus the unloading stiffness 1s restricted such that DO’ = DO
when unloading from positive loads, and DO’ < DO when unloading from negative
loads. DO is the displacement mtercept of a line connecting the peak displacements

of both the positive and negative loadings, and is given by

DMpos — DMpeg

PMpos - PMneg

DO =DM - PM

(4.9

where (DM M_,.) are the maximum past displacement and [oad for positive

poss PMpos

loading, and (DMneg, PMneg) are the maximum past displacement and load for
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negative loading. The inequalities (DO'=D0: positive unloading, DO'<DO: negative
unloading) are satisfied by limiting the unloading stiffnesses S2 and $3. Define the

limiting slope between (DQ3, Q3) and (D0, 0) as

Q3

S02 = ———re
DQ3 -D0

SI>S$02>0 (4.10)

and the limiting slope between (DQI1, Q1) and (DO, 0) as

Ql

S03 = ——0——
DQl - Do

S1>503>0 (4.11)

Iniially, set SU=0. Ths is a limiting stiffness that is determined by the small

ampiitude rule, B1.5 and 1s discussed later.

Thus, rules B1.2, B1.3, and B1.4 are

Rule B1.2 Unloading above 75% PM
If  1)(DIR=2or DIR=4), and

2} IP| 2 1Q3], and

3) IR=0
Then

K = max{S1, SU)

A=Q3

RULE = BI.2
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Rule Bi.3 Unloading between 75% and 25% PM
If 1y (DIR=2 or DIR=4), and

2) {Q3[=[P[=]Qil,and

3) IR=0
Then

K = max(82, 502, SU)

A = Ql

RULE = BL3

Rule B1.4 Unloading below 25% PM
1If 1(DIR=2or DIR=4), and

2) |1Q1} = |P|,and

3) IR=0
Then

K = max{S3, S03, SU)

A=0

RULE = Bl4

b. Shear Hysteresis Model, Rules S1.2, S1.3 and S1.4. The semu-empirical shear

unloading curve may be either bilinear or trilincar depending on the maximum previous
loading. When the maximum past load in the current direction is between Pc and
150% Pc the unloading curve is bilinear as shown in Figure 76. The first segment is
dcsc?ibed by rule S1.2, has a stiffness of S1, and acts over the load range of Pc. T

sccond scgment is described by rule $1.4, has a stiffness of S$3, and acts over the

remainder of the load.

When the maximum past load is greater than 150% Pc, the unloading curve is

trilincar as shown in [igure 76. The first segment is described by rule S1.2, has a
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stiffness of S1, and acts over the load range of Pc. The second segment is described
by rule S1.3, has a stiffness of S2, and unloads to 50% Pc. The third segment is
described by rule §1.4, has a stiffness of $3, and acts over the remainder of the load.

A special case of the unloading rules is shown in Figure 77 and is discussed later.

The unloading stiffness for S1, §2 and S3 aré obtained by curve fitting
experimental data for NCKU walls SWla, SW3, SW4a, SW3 and SW6 as shown in
Figures 78, 79, and 80. The shape of the unloading curves is simular for positive and
negative loadings, even when the loading pattern is non-svmmetric. Thus, the
maximum absolute value of the past displacement, Dmax, in either direction, is used

to determine S1, S2 and S3. The expressions for the unloading stiffnesses are

Dc 0.343
S1=1.4675 S[( ) < Sl 4.12)
Dmax
De 0.3195
§2 = 7761 51( ) (4.13)
Dmax .
S3 = SI(.O'/’O’/’ 4+ 1309 e ) <8I (4.14)
Dmax

Similar to the unloading bending stiffness, the unloading shear stiffness has been
normalized with respect to the imtial stiffness and Dmax has been normalized with

respect to the cracking displacement.

When unloading with a positive load, DIR =2, define point "A” between §1 and

S2, and point ‘B” between S2 and S3 as

PA = PM — Pc DA=DM—%—
(4.15)
PB = min(PA, %‘*‘-) DB = DA — -’15‘—23‘3-
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where points ‘A" and ‘B’ are shown in Figure 76. When unloading with a negative load,

DIR =4, define points ‘A" and ‘B’ as

PA=PM+ Pc DA=DM+—§—%—
(4.16)
PB = max(PA, —2C.) DB = DA — E‘s—éﬂ;‘
The displacement at zero load, DO is
PB .
DUV =DB - — 4.17
53 (4.17)

Similar to the bending unloading rules, the unloading stiffnesses in Equations
4.12, 4.13 and 4.14 do not guarantee that the sign of the zero load displacement, DO,
1s the same as the sign of the maximum past displacement. DM, as shown in Figurc
77. This type of behavior was not observed in the experimental data. Thus the
unloading stiffness is restricted such that DO’ > DO when unloading from positive
loads, and DO’ < DO when unloading from negative loads. DO is the displacement
intercept of a line containing the peak displacements of both the positive and negative

loadings, and is given by

DM ,s— DM

DO = DM — PM pos neg (1.15)
P'leos - PMneg

where (_DMPOS, PMpos) are the maximum past displacement and load for positive

loading, and (D PM_.,) are the maximum past displacement and load for

Mnc:gv neg
negative loading. The inequalities (DO =DO0: positive unloading, DO'<DO0: negative
unloading) are satisfied by limiting the unloading stiffnesses S2 and $3. The limiting

stffness between points “A” and (D0,0) is

PA

§02 = —— 2
DA — DO

SI>S02>0 (4.19)
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and the limiting stiffness between points ‘B” and (D0,0) is

PB
$03 =~ —
3 5B Do 512303>0

(4.20)

Initially, set SU=0. SU is a limiting stiffness used by the small amplitude loops n

rules S1.5 and S§1.11.

Thus, the shear hysteresis rules S1.2, S1.3 and S1.4 are

Rule §1.2 Unioading between PM and PA
If 1Y(DIR=2or BDIR=4) and

2) |P| > |PAl, and

3) IR=0
Then

K = max(Sl, SU)

A = PA

RULE = S22

Rule §1.3 Unloading between PA and PB
If BD{(DIR=2orDIR=4) and
2) [PA] =z Pl > | PBI, and

3y [IR=0
Then
K = max(52, S02, SU )
A =PB
RULLE = 513
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Rule §1.4 Unloading below PB
If 1)(DIR=2or DIR=4), and
2) {PB| = |P[, and
3) IR=0
Then
K max (83, S03)
A=10
RULE = S1.4

I

-~

3. Reloading after Unloading from the Same Direction. Several tvpical bending

and shear reloading curves for NCKU wall SWda are shown in Figure S1. Initially,
these curves have a high stiffness. As the reloading progresses, the stiffness decreases.
At a point near the maximum previous load, the unioading curve and the reloading
curves ntersect.  The reloading mechanisms for both bending and shear deformations

are simular to the unloading mechanisms.

Consider the bending deformation of the wall in Figure 82. After unloading and
prior to reloading, the wall has 1) steel and concrete in compression at opposite edges
of the wall, 2} steel in tension in the center of the wall, and 3) exisung flexural cracks.
As the lateral load, P, is reapplied from the zero loading position, the concrete on the
compression side of the wall is reloaded. Again, refer to the concrete reloading
behavior of plain concrete as shown i Figure 68. Initially, the concrete relouding
branch has a high initial stiffness. As reloading progresses, the concrete stiffness
decreases. At a load level near the previous maximum past load, the reloading and
unloading branches intersect. This intersection s called the ‘common point” (50). The
behavior of the bending curve’s reloading branch is stmilar to the reloading branch for

plain concrete.
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Likewise, consider the shear deformation of a wall subject to reloading in Figure
83. Prior to reloading, diagonal cracks exist in the wall. As the wall is reloaded, the
concrete compression strut resists the applied shear. The stiffness of this strut is simlar
to plain concrete upon reloading, as shown in Figure 68. As previously discussed, plain
concrete upon reloading has a high initial stiffness, which decreases with applied load.
At the common point, the unloading and loading branches intersect. Again the
behavior of the shear deformation mechanism is simular to the behavior of plain

concrete.

It can be qualitatively shown that the bending and -shear deformation reloading
curves are nonlinear, with a high inital stiffness that decreases with reloading.
However, a good quantitative model i1s not available due to uncertamties in matcrial
models, crack width and distribution, and the interaction between shear and bending.

Thus an empirical reloading curve s used for the bending and shear hysteresis models.

a. Bending Hysteresis Model Rules B1.6 and B1.7. The reloading curve as shown

in Figure 84 consists of two linear segments. The lower segment is defined in the
bending hysteresis model by rule B1.6, and has a suffness SL, that was empincally

determined by examuning walls SWla and SWda as shown in Figure 85.

o \0.285
SL:SI( De ) (4.21)

Dmax

Similar to 81, S2 and §3, SL is a function of the maximum past displacecment in either
direcuion and is also normalized with respect to SI and Dc. While the test data has

considerable scatter, SL captures the trend of the data.

The stiffness SL terminates at 33% Pc. The coordinates of this point are (DC3,

PC3). For reloading with a positive load, DIR =1,
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PC3 = 332 DC3 = max(D, D0) + ﬂs%— (4.22)

and for reloading with a negative load, DIR =3,

—-Pc
3

DC3 = min(DO’, DOJ + £E3 (4.23)

PC3 =
SL

where DO’ and DO were calculated by rules B1.2, B1.3 zmd Bl.4, Equations 4.8 and 4.9.

The loading and unloading curves were observed to intersect near 95% of the

previous maximum load. This ‘common point” has the coordinates (DD2,P2),

5% PM

P2 = 65% PM, D2=DM — 3]

(4.24)

where S1 is the unloading stiffness for rule B1.2, Equation 4.3. If the wall is uncracked

in the current direction then the common point is equal to the crack point

If{DM| < Dcthen P2 = P, D2 =Dc (4.25)

The upper segment of the reloading curve connects the terminal end of the lower
segment and the common point, and is defined in the bending hysteresis model by rule

Bi.7.

Thus the bending hysteresis model reloading rules B1.6 and B1.7 are
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Rule BI.6 Reloading below Pc after unloading from the same direction
If 1)[(DIR=1and DIRL=2) or (DIR=3 and DIRL=4)], and
2) |P| < |PC3], and |
3) IR=0
Then
K=SL
A = PC3
RULE = Bl.6

Rule B1.7 Reloading towards the common point
If 1) (DIR=1or DIR=1) and
2) IPC3[ < |P| < |P2], and

3) IR=90
Then
P-P2
K =
D-D2
A= P2
RULE = Bl.7

b. Shear Hysteresis Model, Rules S1.6 and S1.7. The shear reloading curve is

also represented by two linear segments. [nspecting the test data reveals that the
stiffness of the lower segment is similar to the unloading stiffness S1, acting over a load
range of 50% Pc. This segment is represented by rule S1.6 as shown in Figure 86. The

coordinates of its terminal point, for positive reloadings, are given by
— Q/ - ¢ PCZ
PC2= 50% Pc DC2 = max{D0’, DO) + BT (4.26)
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and for negative reloadings, are given by

PC2= —50% Pc DC2 = min(D0’, DO) + _I_’_S(:l_z (4.27)

where DO, DO and Sl, defined by rules S1.2, S1.3 and S1.4, were expressed in

Equations 4.17, 4.18 and 4.12, respectively.

Similar to the bending hysteresis model, the common point is observed to be at
95% of the past maximum load. Let the coordinates (D2, P2) designate the common

point, where

P2 = 95% PM, D2 =DM ~ =

If the wall is uncracked in the current direction, then the common point is equal to the

crack point

If IDM| < Dc then P2 = Pc, D2 =Dc (4.29)

The second segment, represented by rule S1.7, loads to the common point as shown in

Figure 86.

Thus the shear hysteresis model rules S1.6 and S1.7 are

Rule $1.6 Reloading below 50% Pc after unloading from the same direction
if 1) [(DIR=1and DIRL=2) or (DIR=3 and DIRL=4)], and

2} |P] < |PC2{, and

3) IR=0
Then

K = SI

RULE = Sl.6 .




Rule S1.7 Reloading towards the common point
If 1){(DIR=1orDIR=23), and
2) [50 % Pc< |P| < |95 % PM/| and LAST RULE=S51.6], or
[75% Pc< |P| < |95 % PM| and LAST RULE=S1.9]

Then
p2-p
K D2-D
A= P2
RULE = S1.7

4. Reloading after Unloading from the Opposite Dircction. Typical bending and

shear reloading curves for NCKU wall SW6 are shown in Iigure 87. The bending

deformation curve loads towards the maximum past deformation, forming large stable

hysteresis loops. The hysteresis loops for the shear deformation are pinched.

Examining the bending and shear reloading mechanisms mayv cxplain their different

behavior.

For bending deformation, the state of the wall after unloading is shown in Figure

88; concrete is in compression at the old compression cdge, steel is in tension in the

middle of the wall, and at the old tension edge steel 1s in compression, while the cracks

in the wall remain open. As the wall is loaded in the new loading direction:

e Initially the old tensile cracks are open, vielding a stiffness similar to the oid

unloading stiffness 83 as shown in Region A of Figure 89.

s As the cracks on the old tension side close, the stuffness increases as shown in

Region B of Figure §9.

e As the new tension side cracks open and bars on the new tension side yicld, the

stiffness decreases as shown in Region C of Figure 89.
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Thus the bending reloading curve, A-B-C in Figure 89, has a slight pinching behavior.
Park, et al. (64) calculated a similar pinching behavior for R/C beams subject to cyclic
bending loads. The pinching observed in the bending deformation of NCKU walls is
minor. This is due to the presence of shear. At low load levels, the wall slides as shown
in I'igure 90. This closes the old tension cracks on the wall at a lower load level than
bending deformations alone would. Thus the wall reloads on path A-C in Figure 89.
The bending reloading curve is represented by a single line connecting the reversal

point and the common point.

The shear deformation behavior upon reloading after reversal is dominated by
pinching at low load levels. Recall that after the wall is unloaded, the diagonal cracks
are open, as shown in Figure 91. As the wall is loaded in the new loading direction:
® The steel across the open cracks goes into compression. The stiffness of the steel

across the cracks is low compared to the concrete compression strut, resulting in a
low initial stiffness as shown in Region A of Figure 92.

e Before the old cracks close completely, cracks parallel to the new compression strut
open up. At this stage, the wall slides across the open cracks, producing a very low
stiffness as shown in Region B or Figure 92.

* As the old cracks close the stifTness increases as shown in Region C of Figure 92
because 1) the sliding mechanism is inhibited, and 2) concrete rather than steel
carries the majority of the compressive loads. This point is called the crack closing
point.

Thus the shear deformation behavior for reloading after reversal is pinched.

The bending and shear behavior for reloading after reversal are dependent on
crack width, crack location and sliding across cracked surfaces. Since these values are
very difficult to calculate, it is not feasible to quantitatively predict the louading

behavior of a shear wall. Thus semi-empirical models are used.
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a. Bending Hysteresis Model, Rules B1.8 and B1.9. The reloading curve for the

bending hysteresis models is represented by a single line connecting the reversal point

and the common point as shown in Figure 93. The reloading stffness is given by

R
SR = e | (4.30)

where DR is the displacement of the load reversal pomnt and (D2,P2) are the
coordinates of the common point, Equation 4.24 or 4.25. Rule BIL.§ represents

reloading after reversal.

Additional considerations are:

e When reloading after a very small loop in the opposite direction, the behavior
should be similar to reloading after unloading from the same direction, rules B1.6
and B1.7 as shown in Figure 94. Recall that the transition point between rules B1.6
and B1.7 is (DC3,PC3), Equations 4.22 and 4.23. For very small loops in the
opposite direction, reloading towards the common point (D2,P2) will generate a
smaller loop than reloading with rules B1.6 and B1.7 as shown in Figure 94. To
prevent this, the larger of the stiffnesses from the load reversal pomnt, DR, to

(D2,P2) or (DC3,PC3}) 1s used for the reloading stiflness. Let

3= DCIS)E}DR | 2
be the stiffness from the current point to (DC3, PC3). If the suffness from the
reversal point to (DC3,PCJ) is larger, rule B1.8.1 1s used to load up to PC3, and
rule B1.7 is used to load beyond PC3.

¢  When loading from a large displacement in one direction to a small displacement
in the opposite direction, a pinched loop may occur in the hysteresis model as

shown in Figure 95. This pinched behavior was not observed in the experimental

174



Load

Load

4
- - —_———
el (02, F2)
/s Ruie
// BL7 p
RuleBLS
/ (DC3, PC3) *
/ISR 7
v/ Rule BL#.8.1 >
—a

- Bending Dispiacement

Figure 94. Bending Hysteresis M odel, Ruie B1.8.1

3T/ /
o DR 7
J —-
/ Bending
Displacement
(02,p2) 7 %, ¢ P

Rule BLIO v/’
/
M4

Figure 95.

(DM, P

Ruie BI1.9

Bending Hysteresis Model, Rule B1.9

175



176

test data. To overcome this problem, rule B1.9 is used to load to a point tangent

to the bending backbone curve, eliminating the potential pinched behavior.

Thus, the reloading after reversal rules B1.8 to B1.9 are

Rule B1.§8 Rcloading after revérsal
If DIDOIR=1and DIRL=4) or (DIR=3 and DIRL=2)], and
2) {Pl < |PC3}, and
3y IR=0
Then
K = SR
A= P2
RULE = BL.8
If (S = K) and (|P| < [PC3|) Then
K=¢%
A=PC3
RULE = Bl1.8.1

End
If (DIR=1and DR <0) or (DIR=3 and DR > 0) Then Go to Rule B1.9

Rule B1.9 Reloading from large to small displacements

Execute this rule after executing Rule 8
For all J, such that PB(J) > |PM|,j< NB

‘- ( PB(J) SR)
- ™\ DBU)- DR

A = PB(J) or P2, whichever viclds the maximum value of K.

RULE = B19
If A=PB(J), Then BACKB=true




b. Shear Hyvsteresis Model, Rules S1.8 and S1.9. An empirical relationship is

used to model the pinching behavior, which consists of two linear segments, and a
transition curve as shown in Figure 96. The stiffness of the first segment, SR, 1s based
on experimental data for NCKU walls SW3, SW3 and SWé as shown in Figure 97.
When the peak displacement is large in one direction and small in the other, the
reloading stiffness, SR, in both directions is similar. Thus the absolute value of the
maximum displacement in either direction, Dmax, is used to determine SR. The

empirical expression for SR is

1.02
SR = SI( Dc ) | (4.32)
Dmax

While the test data has considerable scatter, the empirical relationship for SR cuptures

the general trend of the data.

Additional considerations are;
e An upper limit on the reloading stiffness, SR, is the case without pinching. The
stiffness of this upper limit, S, is the slope of the line from the load reversal point

to the common point {D2,P2) as shown in Figure 96, and s given by

P2

= ——
> D2-DR

SI (4.33)

where DR 1s the displacement of the load reversal point and the common point
(D2, P2) is given by Equation 4.28 or 4.29.

*  When the peak displacement in the current direction (DM, PM} 1s large. and the
peak displacement in the previous direction is small, the reloading stiffness, SR,
may give an unrealistically low rcloading stiffness. Recall the trunsition point
between rules $1.6 and 51.7 1s (DC2, PC2), Equations 4.26 and 4.27. Define the
minimum reloading stiffness
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. PC2
SR = ==t (4.34)

as the slope of a line from the load reversal point to (DC2,PC2).

» When reloading after a very small loop in the opposite direction, pinching is
negligible and the behavior should bé similar to reloading after unloading from the
same direction, rules S1.6 and S1.7. Let SRM be the slope of a line from

(DC2,PC2) to (D2,P2) or

_ P2-PC2
SRM = >—== < Sl (4.35)

If the upper limit of the reloading stiffness, S, 1s greater than SRM, then load to
(DC2, PC2) and continue with rule S1.7. This case is simlar to rule B1.8.1.

» The first reloading segment has a stiffness SR1, where

SR1 = max(SR’, min(SR,S)) {4.36)

Assume a bilinear model is used to represent the pinching and the crack closing

point is chosen at PC2. The displacement at the crack closing point 1s

. PC2
DC2 = DR + == (4.37)

The abrupt change of stiffness at (DC2’, PC2) may lead to overshooting problems
in the nonlinear analysis. Thus, a transition curve between the two segments is
used to soften the abrupt stiffness change at the crack closing point as shown in
Figure 96. The first segment has a stiffness of SR1, extends from 0 to 25% PC and

1s modeled by Rule S1.8. The second segment has a stiffness of

_ P2=-PC2
SR3 = === < 51 (4.38)
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extends from 75% Pc to P2 and is modeled by rule S1.7. The transition curve has

a stiffness of

—_—

SR1 SR3

and extends from 25% Pc¢ to 75% PC and is modeled by rule S1.9.

Thus shear hysteresis rules S1.8 and S1.9 are

Rule S1.8 Loading below 25% Pe¢
If 1P| < 25% Pc, and
2) [(DIR=1and DIRL=3) or (DIR=4 and DIRL=2)]

Then
K = SRI
A= 0.5%xPC2
RULE = S1.8

IfS = SRM Then Go to Rule S1.6, and omit the first test.

Rule S1.9 Loading between 25% Pc and 75% Pc
If 25% Pc < |P] < 75% Pc¢, and
2) LAST RULE=51.8

Then
K = SR2
A= 15xPC2
RULE = S1.9

ie1



5. Degrading Under Cyclic Loading. Typical hysteresis loops from NCKU walls

SWia are shown in Figure 98. The experimental data for bending and shear
deformation shows that when the walls were cycled at a constant load above the
common point, the peak displacement increased for each cycle. However, when the
walls were cycled at a constant load below the common point, the hysteresis loops were

stable.

The mechanism for this behavior is partly explained by examining the behavior

of plain concrete as shown in Figure 99.

* When the concrete is cycled below the common‘poim, the maximum strain
(displacement) does not increase.

* Once the common point has been exceeded, the next loop will be at a larger strain
level.

¢ As the load s increased past the common point, the loading curve intersects the
‘backbone curve.

* The common point for plain concrete tends to decrease as the number of cycles
1ncreases.

The behavior of the reinforced concrete shear wall is similar to the plain concrete.

However, the load level of the common point was not observed to decrease as the

number of load cycles increased. Thus the common point is assumed to have a

constant load level for both the bending and shear hysteresis models.

a. Bending Hvsteresis Model, Rule B1.10. Degradation above the common point

1s modeled by a transition curve between the common peint and the backbone curve.
The transition curve passes through the point (aDM,PM) as shown in Figure 100. The
stiffness of the transition curve is determined by the factor «, where « is the increase
in displacement from one cycle to another. NCKU walls SWla, SWda and SW35 were

examined to determine an appropriate valuec of a. The average bending stiffness
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Figure 98. NCKU Wall SW1a, Typical Bending and Shear Degrading Stiffness Under
Cyclic Loading Curves
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Figure 99. Degrading Stiffness Under Cyclic Loading of Plain Concrete (Ref. 50)
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Figure 100. Bending and Shear Hysteresis Models, Rules B1.10 and S1.10

184



degradation is cycle dependent, with a=1.129 for the first cycle, and «=1.029 for

subsequent cycles. Thus the bending hysteresis rule B1.10 is

Ruije B1.10 Loading above 95% PM, not on the backbone curve
If 1)(DIR=1 or DIR=3), and
2) |P| =P2, and
3) NOT (BACKB)
Then
a = 1.129- first cycle at a given load
a = 1.029- subsequent cycles below Px
(Dx,Px) = Intersection of line through (D2,P2), with a siope of K,

and the bending backbone curve

g _ 3% PM
aDM — D2

A =P,

RULE = BL.10

[R=0

b. Shear Hysteresis Model, Rule SI.10. Similar to the bending hvsteresis model,
the degradation above the common point, (D2,P2), is modeled by a transition curve.
The transition curve is described by rule S1.10, and goes between the common point
and theé backbone curve. This transition curve passes through the point (aDM,PM)
as shown in Figure 100. The stiffness of the transition curve is controlled by the factor
«, where « is the increase in displaccment from one cycle to another. NCKU walls
SWia, SWda and SW3 were examined to determine an average factor a = 1.04. For
the shear hysteresis model, the stiffness degradation factor a is not strongly dependent

on the cycle.

Thus the shear hysteresis model rule S1.10 is
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Rule S1.10 Loading above 95% PM, not on the backbone curve
If 1D(DIR=1or DIR=3), and
2) |P| 2P2, and
3} NOT (BACKB)
Then
a =104
(Dx,Px) = Intersection of l_ine through (D2,P2), with a slope of K,

and the shear backbone curve

K = 3% PM
aDM — D2

A =P,
RULE = SL.10
IR=0

6. Small Amplitude Loops. The following trends were observed in the NCKU

shear wall test data.

Small amplitude loops below the common point (D2,P2) have stable hysteresis
loops as shown 1n Figures 101, 102, and 103, versus unstable hysteresis loops as
shown in Figure 104,

Small amplitude hysteresis loops form inside of small amplitude hysteresis loops as
shown in Figure 101.

Stable loops are formed with reversal, provided that the common point is not
reached in either direction as shown in Figures 102, 103.

Unloading in a small amplitude loop 1s parallel to the large amplitude loop
unioading, except in the region near the previous reversal point as shown in Figures
101, 102, and 103. Rules B1.5 and S1.5 model the unloading by determing if the

current point is in the region near the previous reversal point. If so, unloading
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Figure 101. Shear Displacement of NCKU Wall SW3, Steps 2830 to 3330
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Figure 102. Bending Displacement of NCKU Wall §W3, Steps 3330 to 5050
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progresses towards the previous reversal point. If not, unloading progresses
parallel to the unloading curve generated by rules B1.2, B1.3 and B1.4 or §1.2, S1.3
and S1i.4 as shown in Figure 105

¢ For the bending model reloading inside of small amplitude loops proceeds towards
the last reversal point as shown in Figure 102.

» For the shear model the pinched behavier of the shear deformation is maintained
by the small amphtude hysteresis loops. Thus, the reloading curve 1s a4 function of
both the current displacement and the reversal point as shown in Figure 103.

Rules 5 and 11 for both the shear and bending hysteresis models are based on these

trends.

Each time the direction changes in a small amplitude loop the reversal load,
reversal displacement and a flag are stored in the arrays PR, DR, and FR. A counter
[R contains the current number of reversal points stored. The flag FR contains one
of two values as shown in Figure 106, When the arithmetic value of the load changes
from increasing to decreasing, FR="7". When the arithmetic value of the load changes

from decreasing to increasing, FR="L".

a. Bending Hysteresis Model Rules BL.5 and Bl.11. Bending hysteresis model

rules B1.5 and Bl.il are
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Figure 106. Rcversal Point Flags for Small Amplitude Hysteresis Loops
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Rule B1.5 Unloading inside small amplitude loops
If 1)(DIR=2or DIR=4), and
2) IRz1
Then
— Using the last small amplitude loop reversal point (DR(I),PR(I)) with
a flag FR(I) such that
[(DiR=2 and FR(I)=L) or (DIR=4 and FR(I)=7)]
If (DIR=2and/( P > PR(I) > Q3, or
Q3= P> PR(I)> Ql, or
QI =P>PR(I)> 0 ) ), or
( DIR=4 and ( P < PR(I) <Q3, or
Q3 <P <PR(I)<Ql, or
Ql<P<PR(I)< 0 })

Then
PR(I)— P
~ DR(I)-D
A = PR(D)
RULE = BL.S

If K>SI, or K<0use the next to last small amplitude loop
point that satisfies the conditions above.

Once unloading continues below A, erase the reversal point I.

Thus IR =1R-1
Else
o .
Sy = R(I}-P
DR(I)- D

Go to rule B1.2, B1.3, or B1.4 as applicable. Omut the test [R=10.
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Rule Bl.11 Reloading inside small loops

If IR>0

Then
Using the last small amplitude loop point (DR(I),PR(I)) with a flag
FR(I) such that
[(DIR=1 and FR(1)=7) or (DIR=3 and FR(I)=1)]

_ PR()-P

" DR()-D
A = PR(])
RULE = BI.11

If K > Si or K < 0 use the next to last small amplitude loop point that
satisfies the condition above.
Once unloading continues above A, erase the reversal poimnt [.

Thus IR=1IR-1

b. Shear Hvsteresis Model Rules SL.5 and S1.11. Unloading inside small

amplitude shear loops is similar to the bending hysteresis model. However, upon
reloading mside the small amplitude loops, the shear model maintains its pinched
shape. The reloading path with pinching is dependent on both the reversal point and

the current point. Six different reloading paths are discussed below.

If the reversal point (DR, PR} is less than 25% Pc, the reloading is from the

current point to the reversal point with the stiffness

PR(I) - P

SRL = —/—————
DR()-D

(4.40)



where [ is the last small amplitude loop point with a flag FR(I) such that (DIR=1 and
FR(I)=7) or (DIR=3 and FR(I)=L). This case is represented by Rule S1.11.1 and

is shown in Figure 107,

[f the loop reversal point is between 25% Pc and 75% Pc, there are two possible
reloading paths as shown in Figure 108 and 109. The reloading stiffness is determined
from Equation 4.40. If SRL < SR2, then reload to the intersection of rules S1.8 and

S1.9. Let PC2S and X1 represent this point, where

PC25=P—2C- X1=DC2 - 2823 (d.41)

SR1

DC2" and SR1 are defined in equations 4.37 and 4.36, respectivelv. The reloading

stiffness becomes

PC25 - P

M=Xi-p

(4.42}

This case is defined by rule S1.11.2 and shown in Figure 108. If SRL:>SR2, then
rcloading proceeds with the stiffness SRL. This case 1s defined by rule S1.11.3 and

shown in Figure 109.

If the reversal point is between 75% Pc and P2, there are three possible reloading

paths as shown in Figure 110. Define the shifted reloading curve’s break points as

: PC75 — FR(I)
75=1. X2 = DR(I -
PC75= 1.5 x PC2 2 D+~ (3.43)
. PC2
= 0.5 x PC X1 =X2——== 4.44
PC25 = 0.5 x PC2 T (4.44)

where [ is the last small amplitude loop point with a flag FR(I) such that (DIR=1 and
FR(I)=7) or (DIR=13 and FR(I}= L), SRM 1s the stiffness given in Equation 4.35 and
SR2 is the stiffness given in Equation 4.39. The reloading stiffness, SRL, is calculated
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Figure 107. Shear Hysteresis Model, Rule S1.11.1
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Figure 108. Shear Hysteresis Model, Rule S1.11.2
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Figure 109. Shear Hysteresis Model, Rule S1.11.3
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from Equation 4.40. If SRL>SRM, then the loading proceeds with the stiffness SRL.
This case is defined by rule S1.11.6. Define the displacement at 25% of the cracking

load as

X =
D+ SR2

If (X<X1 and DIR = 1) or (X=X1 and DIR =3), then reloading proceeds to the point

(X1, PC23). The stiffness from the current point to (X1, PC25) is

PC25 - P
Xl=—rmrr——ro 4.4
SXI Xl-D (4.-46)

This case is defined by rule S1.11.4. [f (X>X1 and DIR=1) or (X<XI and DIR=3),
then reloading proceeds to the point (X2, PC75). The stiffness from the current point

to (X2, PC75) is

PC75~P (4.47)

X2==7"p

This case is defined by rule S1.11.5.

Thus, shear hysteresis Rules $1.5 and S1.11 are
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Rule $1.5 Unloading inside small amplitude loops
If 1Y{(DIR=2or DIR=4) and
2) IR>1
Then
Using the last small amplitude loop reversal point (DR(I),PR(I)} with
a flag FR{I) such that
[(DIR=2 and FR(I)= L) or (DIR=4 and FR(I)=7)]
If (DIR=2and( P > PR(I) > PA, or
PA = P> PR(I) > PB, or
PB>P>PR()> 0 ) ) or
(DIR=dand( P <PR(I) <PA, or
PA < P < PR(I} < PB, or
PB<P<PR(I)< 0 ))

Then
_ PR()-P
" DR()-D
A = PR(I)
RULE = SLS

If K >8I, or K<0use the next to last small amplitude loop
point that satisfies the conditions above.

Once unloading continues below A, erase the reversal point [.

Thus IR = [R-1
Else

PR(I)- P

su = SR -P

DR(l)- D

Go to rule 1.2, S1.3, or §1.4 as applicable. Omit the test IR=0.
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Rule §1.11 Reloading inside smail amplitude loops
If 1)(DIR=1 or DIR=3), and

2)IR>0

Then

Using the last small amplitude reversal point ( DR(I),PR(I) ) with a

flag FR(I) such that
[(DIR=1 and FR(I)=7) or (DIR =3 and FR(I)=L)]

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

If [PR(D| < 25% Pc

K=SRL

A = PR()

RULE = S1.11.1

If 1)25% Pc < |PR()| < 75% Pc, and

2) SRL < SR2

K =5X1

A = PC25

RULE = SI.11.2

If  1)25% Pec < |PR(I)| < 75% Pc, and
2) SRL = SR2

K=SRL

A = PR(I)

RULE = SIL.11.3
If 1) SRL <SRM, and _
) [(X <Xl and DIR = 1) or (X = X! and DIR = 3) ]
K= $X1
A = PC25
RULE = SIL.11.4
If 1) SRL <SRM, and
2) [(X > X1 and DIR = 1) or (X < X1 and DIR = 3)]
K= SX2
A = PC75
RULE = S1.11.5
If SRL > SRM
K = SRL
A = PR(I)
RULE = S1.11.6

H
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B. COMPARISON BETWEEN HYSTERESIS MODELS AND EXPERIMENTAL

RESULTS

The experimental and calculated hysteresis loops for five NCKU walls SWla,
SW3, SWda, SWS5, and SW6 are compared below. These NCKU walls were presented
in Chapter 11, Table [. The experimentally observed backbone curves for these walls
are used to calculate the hysteresis loops, rather than the calculated backbone curve.
Comparisons between calculated and experimental backbone curves arc madc i

Chapter I1I.

1. Bending Deformation. The calculated and experimental bending hyvsteresis

loops for NCKU walls SWla, SW3, §Wda, SW3, and SW6 are compared in Figures
111, 112, 113, 114, and 115, respectively. Overall, the comparison between calculated
and experimental hysteresis loops is very good. However, several points warrant

further discussion:

a. Unloading in the Nonlinear Range. For wall SWla unloading from a small

displacement shown in Curve ‘A’ of Figure 111, the calculated unloading stiffness is
slightly larger than the experimental unloading stiffness. Unloading the same wall from
a larger displacement, Curve ‘B, the calculated unloading stiffness is also larger thém
the experimental unloading stiffness. Recall that the curve fitting used to determined
these unloading stiffnesses as shown in Figures 73, 74 and 75 typically overestimated

the unloading stiffness for wall SWla.

Contrarily, for wall $W4a, unloading from both small and large displacements
shown in Curves ‘A" and 'B" of Figure 113 the calculated unloading stiffness is close to
the experimental unloading stiffness. The empirical expression for unioading stiffness
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is typically close to the experimentally observed unloading stiffnesses as shown in

Figures 73, 74 and 73.

The unloading stiffness for wall SW3 at small displacements shown in Curve ‘A’
of Figure 112 is close to the experimental unloading stiffness, while at large
displacements, Curve ‘B, the calculated unloading stiffness is slightly higher than

experimental value.

The unloading stiffness for wall SW6 at small displacements shown in Curve 'A’
of Figure 113 is close to the experimental unloading stiffness. At large displacements,

Curve ‘B’, the calculated unloading stiffness is lower than experimental value.

The experimental bending hysteresis loops for wall SW5 are not symmetric. This
may be due to the influence of sliding across diagonal cracks on the vertical
displacement gauges. Unsymmetric bending hyvsteresis loops were not observed in
other walls with svmmetric loadings. Unloading from a positive load is shown in Curve
‘A’ of Figure 114, where the experimental unloading curve is close to the calculated
unloading curve. However, unloading from a negative load, Curve 'B’, the

experimental unloading stiffness is greater than the calculated unloading stiffness.

b. Reloading after Unloading from the Same Direction. The reloading curves for

wall SWla at both small and large displacements are shown in Curves ‘'C" and ‘D" of
Figure 111, where the calculated results are closc to the cxperimental work. Similar

amounts of cnergy were dissipated for both the calculated and expertmental curves,

The calculated reloading curve for wall SW4a at small displacements shown in
Curve 'C" of Figure 113 is close to the experimental reloading curve, however, more

energy is dissipated by the calculated reloading curve. At larger displacements, Curve
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‘D', the calculated reloading curve and energy dissipated are similar to the experimental

values,

The reloading curve for wall SW3 shown in Curve ‘C” of Figure 112 is close to the
experimental reloading curve, however, more energy is dissipated by the calculated

reloading curve.

The reloading curve for wall SWé6 shown in Curve ‘C of igure 115 is also close
to the experimental reloading curve. Again, more cnergy is dissipated by the calculated

reloading curve than the experimental reloading curve.

¢. Reloading after Unloading from the Opposite Direction. The calculated

reloading curves for wall SW3 at both small and large displacements shown in Curves
‘D" and 'E’ of Figure !12 are reloading towards the correct common point. Recall the
calculated unloading stiffness for Curve "B’ is greater than the experimental value.
Thus the calculated reloading Curve ‘L', which begins at the terminal point of Curve

‘B’, dissipates more energy than the experimental curve.

The reloading curves for wall SWé at both small and large displacements shown
in Curves ‘D" and 'E’ of Figure 115 are reloading towards the correct common point.
Recall the unloading stiffness for Curve 'B” was less than the experimental value. Thus
the calculated reloading Curve ‘E’, which begins at the terminal point of Curve B,

dissipates less energy than the experimental curve.

The reloading curves for wall SW35 as shown in Figure 114 are similar to the
experimental reloading curve except the calculated reloading curves are svmmetric, and

the calculated reloading curves do not pinch near Point ‘E’.
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d. Degrading Under Cyclic Loading. The experimental degrading stiffness factor,
«, for wail SWla at both small and large displacements as shown by Points ‘'E’ and 'F
of Figure 111 are similar to the calculated values, except that the calculated a 1s larger

than the experimental value for the first cycle at “F".

The experimental degrading stiffness factor, «, for wall SWda at small
displacements as shown by Point '[:" of Figure [13 is less than the calculated values for
all five cycles. The expenmental degrading stiffness factor, at larger displacements,
Point ‘F’, is simular to the calculated value for the first cycle, and slightly larger than

the calculated values for subsequent cycles.

The experimental degrading suffness factor, «, for wall SW3 at small
displacements as shown by Point ‘C’ of Figure 114 is greater than the calculated values
for all five cycles. The experimental degrading stiffness factor at larger displacements,
Point ‘D", is smaller than the calculated value for the first cycle, and similar to the

calculated values for subsequent cycles.

e. Loading and Unloading in Small Amplitude Loops. Two small amplitude

loops are at Point 'F’ in Figure 112 for wall SW3. The calculated loops have the same
shape and dissipate the same amount of energy as the experimental data. A calculated
loop with a load reversal at Point ‘G’ dissipates more energy than the experimental

loop, because the experimental loop has a slight pinch near Point 'H".

Two small amplitude loops are at Point 'F' in figure 115 for wall SW6. The
calculated loops have a similar shape and dissipate a little more energy than the
experimental loop. A calculated loop with a load reversal at Point ‘G’ has the same

shape and dissipates a similar amount of energy as the experimental loop.
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At any given point the calculated bending stiffness may be a little more or less
than the experimental stiffness. This 1s due in part to 1) scatter in the experimental
data, 2) the choice of variables used for curve fitting, and 3) uncertainties in the
separation of bending and shear displacement. Overall, the bending hysteresis model

is able to represent the general bending behavior of the wall.

2. Shear Deformation. The calculated and experimental shear hysteresis loops

for NCKU walls SWla, SW3, SWda, SWS, and SW6 are compared in Figures 116, 117,
118, 119, and 120, respectively. Overall, the comparison between calculated and
experimental hysteresis loops is good. However, several points warrant further

discussion:

a. Unloading in the Nonlinear Range. For wall SWla the calculated unloading

curves from both a small and large displacement shown in Curves ‘A" and ‘B” in Figure

116 are similar to the experimental unloading curves.

For wall SWda the experimental hysteresis loops are very erratic. The calculated
unloading stiffnesses for both smail and large displacements shown in Curves “A” and

B’ of Figure 118 are similar to the experimental data.

The unloading stiffnesses for wall SW3 at both small and large displacements

shown in Figure 117 Curves ‘A" and ‘B’ are close to the experimental values.

The unloading stifTnesses for wall SW6 at both small and large displacements
shown in Iligure 120 Curves ‘A" and ‘B’ are also close to the expernimental values.
However, the calculated unloading Curve ‘B’ is not as nonlincar as the experimental
unloading curve, thus, the calculated unloading curve dissipates less energy than the

experimental unloading curve.
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The hysteresis loops for wall 7SW5 afe very erratic.  Unloading from a positive
load shown in Curve ‘A’ in Figure 119 the experimental unlf)ading curve is similar to
the calculated unloading curve. Recall the shear deformation is determined by
subtracting the bending deformation from the total deformation. In the previous
discussion it was shown that the bending deformation is unsymmetric, with larger
positive displacements than negative displacements. In the next section, the total
deformation of wall SW5 is shown to be neariy symmetric. Thus the unsvmmetric
shear displacements shown in the figure, with larger negative displacements than
positive displacements, are reasonable given that the bending displacements are
unsvmmetric. However the lack of symmetry for the shear deformation is not as Sc‘..'cre
as the bending deformationf Thus unloading from a negative load, Curve 'B’, the

experimental unloading curve s also similar to the calculated unloading curve.

b. Reloading after Unloading from the Same Direction. The reloading curves for
wall SWla at both small and large displacements shown Curves 'C" and "2’ in Figurc
116 are close to the experimental reloading curves. Similar amounts of energv were

dissipated by both the calculated and experimental hysteresis loops.

The experimental reloading curve for wall SWda at both small and large
displacements shown Curves ‘C’ and ‘D’ in Figure 118 arc very erratic. The calculated

reloading curves are a reasonable approximation of the experimental data.

The reloading curve for wall SW3 shown in Curve 'C” in Figure 117 is closc to the
experimental reloading curve. However, the calculated hysteresis loop dissipates more

energy than the experimental data.

The reloading curve for wall SW6 shown in Curve "C” in Figure 120 1s also closc

to the experimental reloading curve.
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c. Reloading after Unloading from the Opposite Direction. The reloading curve

for wall SW3 at a small displacement shown in Curve ‘D’ of Figure 117 is reloading
towards the corrcct common point. At this small displacement, pinching is negligible.
Reloading with a larger displacement, Curve ‘E’, the calculated pinching is much less
than the cxperimental pinching. Thus the calculated hysteresis loops dissipatc more
energy than the experimental hysteresis loops.  Reloading with a negative
displacement, Curve H, the calculated reloading stiffness is greater than the

experimental reloading stiffness, causing the calculated reloading curve to be smaller.

The calculated reloading curves for wall SWé at large displacement shown in
Curve ‘D’ of Figure 120 has less pinching than the experimental data. However the

shupes of the two curves are sirmular.

The reloading curves for wall SWS5 are very erratic. The amount of pinching in
the calculated reloading curves as shown by Point "C” of b'igure 119 1s lurger than the
amount of pinching in the experimental reloading curves. Thus the calculated

hysteresis loops dissipate more energy than the experimental hysteresis loops.

d. Degrading Under Cyclic Loading. The experimental degrading stifTness tactor,

a, for wall SWla at both small and large displacements shown by Points 'E" and '}’
of Figure 116 1s similar to the calculated values, except for the first load cyele at ‘T,

where the experimental « 1s greater than the calculated «.

The cxperimental degrading stiffness factor, a, for wall SWda at small
displacements shown by Point ‘E" of Figure 118 is less than the calculated values for
all five cycles. The experimental degrading stiffness factor at larger displacements,

Point 'F’, is greater than the calculated values.
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The experimental degrading stiffness factor, «, for wall SWS$S at large
displacements for both positive and negative loadings shown by Points ‘D’ and ‘E’ of

Figure 119 is similar to the calculated values.

e. Loading and Unloading in Small Amplitude Loops. Two small amplitude

loops are at Peoint 'F’ shown in Figure 117 for wall SW3. The calculated loops have
the same shape and dissipate the same amount of energy as the experimental data. A

calculated loop with a load reversal, Curve 'G’, is smaller than the experimental loop.

The two small amplitude loops at Point 'E’ shown in Figure 120 for wall SWé
have a similar shape and dissipate a little more energy than the experimental data. A
calculated loop with a load reversal, Curve ‘F’, has the same shape and dissipates a

similar amount of energy as the experimental data.

At any given point, the calculated shear stiffness may be a little more or less than
the experimental stiffness as was discussed in the bending stiffness case. Overall, the

shear hysteresis model is able to represent the gencral behavior of the wall.

3. Total Deformation. The calculated shear and bending deformations are added

together, and compared with the measured total deformations for NCKU walls SWla,
SW3, SWda, SW5, and SWé in Figures 121, 122, 123, 124, and 1235, respectively.
Overall, the comparison between calculated and experimental hysteresis loops is verv

good.

The total energy stored in the calculated and experimental hysteresis loops is also
compared for NCKU walls SWla, SW3, SWda, SWS, and SW6 in Figures 126, 127,

126, 128, and 127, respectively. The total cnergy for step [ is determined from
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P(I)+ P(1—1)
2

Encrgy| = Encrgy;_; + [D() = D(I - )] (4.48)

. where the calculated displacement D, is used to determine the calculated energy.

The calculated hysteresis loops for wall SWla as shown in Figure 121 are the
same size and shape as the experimental hysteresis loops. The calculated hysteresis
loops dissipate a little more energy than the experimental lcops as shown in Figure 126.

Overall, this comparison 1s very good.

The calculated hysteresis loops for wall SW3 as shown in Figure 122 are the same
size and shape as the experimental hystéresis loops, except that 1) the calculated loops
do not have as large of a displacement in the negative direction, and 2) the calculated
pinching is not as severe as the experimental pinching, Thus the calculated hysteresis
loops dissipate about 10% more energy than the experimental loops as shown in

Figure 127. Except for the two items mentioned above, this comparison is good.

The calculated hysteresis loops for wall SW4da shown in Figure 123 arc the saume
size and shape as the cxperimental hystercsis loops. At small displacements the
calculated hystcresis loops dissipate a little more encrgy than the experimental [oops
as shown in Figure 126. At larger displacements the experimental loops dissipate mare

energy than the calculated loops. Overall, this comparison is good.

The calculated hysteresis loops for wall SWS shown in Figure 124 do not pinch
as much as the experimental loops. This causes the energy dissipated by the calculated
hysteresis loops to exceed the encrgy dissipated by the experimental hysteresis loops
by about 33% as shown in Figure 128. Aside from the pinching, the comparison

between these two loops is good.
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The calculated hysteresis loops for wall SW6 shown in Figure 125 are close to the
experimental hysteresis loops, with a couple of exceptions. For one loop, the
experimental unloading begins at a displacement of +4.6 mm, while the calculated
displacement is at +4.3 mm. As unloading progresses, the experimental hysteresis
loop dissipates more energy than the calculated hysteresis loop. Also, upon-reloading
the experimental hysteresis loop does not pinch as much as the calculated hvsteresis
loop. Thus, the experimental hysteresis loop dissipates more cnergy than the
calculated hysteresis loop as shown in Figure 127. Overall, the comparison between

calculated and experimental hysteresis loops is good.

C. AXIAL HYSTERESIS MODEL

The axial hysteresis model was developed by Kabeyasawa, et al (49) for shear
walls and boundary columns as part of the analytical studies for the full scale seven
story test structure. This hysteresis model as shown in [Figures 129 and 130 has the

following attributes.

1. Tensile Backbone Curve. The tensile backbone curve is biinear. The inital

tensile stiffness is

Kt = 0.90 Ec Ag (4.49)

where Ec 1s the concrete modulus of elasticity and Ag is the gross cross sectional arca

of the member. The stiffness changes at the steel yield point (Dyt, Fyv),

F
Fy = fy As, Dvt = _K_}LL’ {4.50)

where vy 1s the yield point of the steel bars and As is the arca of the reinforcing steel.

The post yield stiffness is given by



R
x O
< 4
(Dyt, Fy) _
Fy —+ T KR
FB - IBI —1;
Kt Ke :
Fy
/ o
% '’ —— Axial
Displacement
/ IDI
Kc s g
IAI

=
3( Oy, Fy) (Dmax, Fmax)
Fy +
(DJ,0) ~_| (OF FF)
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(Dyc,-Fy)

Kc
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Kt2 = 0.001 Ec Ag (4.51)

2. Compression Backbone Curve. The compressive backbone curve is linear,

which is a reasonable assumption for concrete, if compressive stresses remain below
0.50f’.. The gross compressive stress in a shear wall is usually much less than

0.50f".. Thus the compressive stiffness is given by

Kc=LEcAg (4.52)

3. Cyclic Loadings before Yielding. For cyclic loadings before the member has

vielded, a bilinear hysteresis loop is used as shown in Figure 129. Consider a member
with an initial compressive load at "'A’. As that member is loadcdw, it has a stiffness
of Kec. Once the member goes into tension, the loading stiffness becomes Kt. At point
‘B’, the load is FB. Unloading from point ‘B’, the stiffness is Ke, until point ‘'C’, which
has a load of FB ~ Fy. Further unloading continues with a stiffness of Kt to point ‘D"

Reloading from point ‘D’ continues with a stiffness of Kc.

4. Cuvclic Loadings after Yielding. For cyclic loadings after the member has

yicIded, a modified bilinear hystercsis loop is used as shown in Figure 130. Consider
a member that has vielded in tension and is at point 'E” with a load and displacement

of Fmax and Dmax. As the member is unloaded, the unloading stiffness 1s

Since the axtal hysteresis model behaves differently in compression than tension,
the following definition of loading and unjoading is used. l.oading corresponds to
applying a tensile load, or reducing a compressive load. Unloading corresponds to

reducing a tensile load or applying a compressive load.
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Dyt \2 Fmax + Fy \
Rr=Ke ( Dmax ) = ( Dmax — Dyc ) (4.33)

where Dyc = Y and a=0.90. Unloading continues to potnt 'F*, which has a load

and displacement of

F
FF = Fmax — Fy,  DF = Dmax — —Klr (4.59)

Below this point, unloading continues with a stiffness of

FF+ Fy
= ——e 455
Ks DF - Dye (4.33)
to point ‘G’, which has a displacement of
DG = Dyc + 0.20(DF — Dyc) (4.56)
and a load of
FG =FF + Ks(DG — DF) (4.57)

Bevond point ‘G’ unloading continues on a transition curve that goes from point 'y

to point '"H" on the compressian backbone curve and has the stiffness

FG+2xFy

K2 =
““=DG - 2x e

(4.38)

Further unloading and loading are on the compression backbone curve, until the
member 1s loaded beyond point ‘I°, which has the coordinates (Dve, -I'y). Loading
beyond point ‘I" has a stiffness of Kr and continues to point 'J° which has the

coardinates

FJ=0 DJ = Dye + % (4.59)
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Reloading beyond point ‘J° has a stiffness of Ks and continues back to point 'E".

. Reloading beyond point 'E’ continues on the tension backbone curve. Loading and

unloading on small amplitude loops inside the region ‘E-F-G-H-I-J-E” have a stiffness

of Kr.

5. Summarv of Axial Hystércsis Model. This model was developed primanly for

reinforced boundary columns. As additional data become available from experimental
studies of axial loads on R/C shear walls, this model may be updated. This topic is

recommended for further research.
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V. ANALYTICAL FORMULATION FOR 3-D STRUCTURAL SYSTEMS

This chapter presents the matrix formulation for analyzing 3-D structural systems
subject to both static and seismic loadings. A shear wall stifTness clement is developed
that utilizes the bending and shear backbone curves and the hysteresis models included
in Chapters IIl and IV, respectively. AdditiAonally, the input, stored and dissipated
energy i the structure, the damage index, and the ductility and excursion ratio are

presented.

A. JOINT BASED DEGREES OF FREEDOM

The structural model consists of an assemblage of elements. The point where two
or more elements connect is a called a joint. A structure is modelled by first giving the
location and orientation of each joint; the elements that connect the joints and the
orientations of the elements are then defined. .The structure’s degrees of frecdom arc
determined by the joints, their orientation, and the joint constraints. This section
discusses the location and orientation of the joinfs, the degrees of freedom assoctated

with the joints, and the joint constraints.

. Global Coordinate System. The structure is defined in the global coordinate

svstem (GCS). The GCS is a Cartesian coordinate system with three perpendicular
axes Xg, Y, and Zg. The Zg axis is defined as Xg Cross Yg (right hand rule) as
shown in Figure 131. The location of the GCS’s origin is arbitrary and is ﬁsuully taken

at the centroid of the structure’s base.

2. Joint Coordinate System. The location of a joint is defined by its coordinates

(Xg, Yg, Zg) in the GCS. At each joint, there is an individual joint coordinate svstem
(JCS). The JCS 1s defined by the axes Xj, Y}- and Zj and has its origin at the joint.
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Figure 131, Global (GCS) and Joint (JCS) Coordinate Svstem
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The orientation of the JCS may not be parallel to the GCS and is defined by two

perpendicular unit vectors V., and Vyj as shown in Figure 131. A third vector sz is

Xj?
defined as sz = in X Vy]-. The three vectors are written in matrix form as
[— ] — —
Vi cir €12 c3f |t 1
[V]:] = VYJ = C2] C22 C23 ] = [C]] ] (51)
Vi €31 €32 3] |k k

— —

where 1, ] and k are unit vectors parallel to the Xg, Yg and Zg axes, and Cjj arc the

direction cosines for vector i.

Each joint has three translational and three rotational degrees of freedom (dof).
Degrees of freedom 1, 2 and 3 arc translational corresponding to the joint’s

X-y

i axes. Degrees of {reedom 4, 5 and 6 are rotational about the joint’s

Yj, and Zj

Xj, Y]- and Z]- axes as shown in Figure 131. The orientation of the JCS determines the

ortentation of the degrees of freedom for that joint.

3. Constraint Equations. Often the deformation of one building component 15

very small relative to the deformations of other components. The component with very
small deformation may be idealized as a rigid body;. Two joints on the rigid body are
constrained, such that the deformation of one joint (the ‘slave” joint) is represented by
the deformation of the other joint (the ‘master” joint). Thus the degrees of freedom lor
the “slave” joint are transferred to the ‘master” joint, and the number of degrees of

freedom is reduced. The reduced set of degrees of freedom is referred to as the global
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degrees of freedom (Gdof)M. Transformations for a 3-D constraint and a planar

constraint are developed below.

Let joint m be the ‘'master’ joint and joint s be the ‘slave’” joint. Also, let the
orientation of both joints be identical, [Vj]m = [Vj]s. Assume that the two joints
are connected by a rigid body. Thus the forces at the slave’ joint are transferred to the

‘master” joint, and the displacements of the “slave’ joint are expressed in terms of the

‘master’ joint,

Examining Figure 132, for the typical notation, ijX represents the force at the
“master joint in the JCS X direction and Mij represents the moment at the master
joint about the JCS 7 axis. Likewise FjsX represents the force at the slave joint n the
JCS X direction and Msz represents the moment at the slave joint about the JCS Z
axis. Summing the forces acting on the slave joint about the master joint, in three

dimensions, yields the force transformation for a 3-D rigid body (84).

ijx 1 0 0 ¢ 0 0 FjSX
ijY 0 1 0 0 0 0 FjSY
F:nZ 0 0 10 0 of |F
: = a (5.2)
Mij 0 ~“Zms Yms 1 0 0 MjsX
Mij st 0 "Xms 0 ! 0 Mst
Mij ' “Yms Kms 0 0 0 l M}SZJ
or

14 Gdof are degrees of {reedom in the JCS at ‘master” and unconstrained joints. These
degrees of freedom are global in the sense that they describe the structural motion,

not that they are parallel to the GCS.
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[Fin] = [T ICF ] (53)

where [ Fim]'represents the forces acting on the master joint, and [Fjs] represents
the forces acting on the slave joint. A similar transformation for displacements can

be derived
[531 = [Tl 06500 (5.4

where [5jm] represents the displacements of the master joint, and [cijs] represents

the displacements of the slave joint.

Y. ...and 7

The distances X Zms

are in the master joint’s JCS. Recall the joint’s

ms: " ms

coordinates are defined in the GCS. Transferring the coordinates of both joints from

the GCS into the JCS and subtracting yield

Xms Xgs Xgm
Yas| = [G1 | Yes!| - 0G| Yom (5.5)
ms Zys Zgm

where the typical notation Xgm represents the global X coordinate of the ‘master” joint

m, and ng represents the global Z coordinate of the 'slave’ joint s.

Since the displacement of the ‘slave’ joint is dependent on the displacement of the
‘master’ joint, the slave joint cannot be restrained. [lowever, if the ‘master” joint is

restrained, the ‘slave” joint will also be restrained.

A rigid floor slab in a building is very suff in the plane of the floor, yet it is flexible
out of plane. Thus a planar constraint is used to treat the rigid floor slab’s diaphragm
stiffness as a rigid body. The rigid floor slab is in the _joim's Xj, Yj planc as shown in

;and Y; axes and the force in the Z; axis can

Figure 133. The moments about the X] i i
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not be transferred {rom the slave to the master joint because the floor is flexible out

of plane. Thus, the force transformation is

Fimx L 0000 0| Fx
Fimy 0 1000 0| |Fy
Bz [ | 0 0 1000 |Fg -
Misx 0 00 1 00| |Mgx
Mgy 0 000 1 0| | My
Mijmz. “Yims Xmg 0 0 0 1) MjszJ

Translation in the I\'j, Yj axes and rotation about the Zj axis are transferred to the
‘master” joint. Translation in the 7; axis and rotation about thc'.‘{j angd Yj AXCS Temain

at the ‘slave’ joint.

4. Global Degrees of Freedom. The global degrees of freedom (Gdof) arc in the
JCS, which are unconstrained degrees of f‘rccdofn at ‘'master’ and unconstrained joints.
Theseldegrees of freedom describe the structure’s motion. Once the joints have been
defined and the constraints have been identified, the global degrees of freedom are
numbered. The following items should be considered when numbering the degrees of
freedom: |
¢ The Gdof numbers determine the location of the terms in the mass and stiffness
matrices. Thus the Gdof numbering system determines the bandwidth of the
stiffness matrix. For a structure with two different GGdof numbering schemes, the
scheme with the smaller bandwidth will require less numerical calculations than the
scheme with the larger bandwidth. Thus the Gdof numbers influence the efficiency
of the numerical calculations.

¢ During the static and dynamic analysis the stiffness matnx is partitioned between

condensed, free and restrained degrees of {reedom. Identifying which degrees of
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freedom are condensed, free or restrained before the degree of freedom numbers are
chosen, prevents the unnecessary shuflling of the stiflness matrices rows and
columns.
The analyst determines the joint numbers, and the Gdof numbers are assigned in the
following order:
1) Degrees of freedom to be condensed out
From the lowest joint number to the highest joint number.
From joint dof 1 to joint dof 6, omitting constrained dof.
2) Free degrees of freedom
From the lowest joint number to the highest joint number.
From joint dof 1 to joint dof 6, omitting constrained dof.
3} Restrained degrees of freedom (KEY = 1)15
From the lowest joint number to the highest joint number.
From joint dof 1 to joint dof 6, omitting constrained dof.
d4) Restramed degrees of freedom (KEY = 2)15
From the lowest joint number to the highest joint number.
From joint dof 1 to joint dof 6, omitting constrained dof.
An example of the Gdof numbering system 1s presented in Section A of Chapter VI
Generally, if the difference between joint numbers on cach clement is minimized, the
structure’s bandwidth is alsoc mimimized. The global degree of freedom numbers for

cach joint are stored in the array {Lmj}.

15 The restrained degrees are divided into two cases: KEY=1 arc the degrees of

freedom that actually have reactions, and KEY =2 are restrained dummy degrees
of freedom. Typical restrained dummy degrees of freedom are all of the out of planc
dof in a planar frame, or rotational dof for a truss structure. The restrained dummy

degrees of freedom are not used in the analysis.
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B. SHEAR WALL ELEMENT

The rcinforced concrete shear wall element consists of a panel linking f'qur joints,
Figure 134. Nonlinear bending and shear deformations in the plane of the wall are
considered, along with nonlinear axial deformation. The bending, shear and axial
deformations are lumped into three nonlinear springs. A rigid body connects the joints
at the top of the wall with the springs, while a second rigid body connects the joints
at the bottom of the wall with the springs. Bending and shear stiffness perpendicular
to the plane of the wall are neglected. A lumped parameter formulation of the

geometric stiffness considers both in-plane and out of plane P-A effects.

I. Element Coordinate System and Degrees of Freedom. The four joints at the

corners of the element are denoted J1 through J4 as shown in Figure 135. The global

coordinates of each joint are Xgl’ Ygl’ Zgl’ through ng’ Ygd’ Zg4' The vectors

V4t and V4, are defined at the top and bottom of the wall.

—_

Vye=(Xg-Xgohi +(Yy1-Ypli + (Zg)-Zgk (5.7)

—_ — —_—

Vab = (XgaXg3)i + (Yga-Ygali +(Zga-Zgs)k (5.8)

—_—

Define a vector Vy, along with the average longitudinal axis of the wall.

.G [Xgl +Xg2 Xg3+xg4 :l_.». N [Ygl+Yg2 Yg3+Yg4]
= 1

y 2 2 2 2
Z+7Z Lo+ 72 .
gl ™ ~g2 g3 ™ “gd .
+ [ > 5 k (5.9)
The height of the wall, h, is given by
h=|Vy| (5.10
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Let « be the distance from the top of the wall to the springs and f the distance from

the bottom of the wall to the springs, then

f=h-a

Normalizing Vy, yields

V., =

Vo
Y h

The average width of the wall, w, perpendicular to V, is given bv

y

lVyxthxVy[ + fV},xVXbey|
5 :

W =

Define the vectors V,p and V.., which are pergendicular to the wall as

Vb = VepX Vg V= Vg x Vy

[f the wall is planar, V,p and V,, are parallel, or

[N

Vib® V=0

(5.11)

(5.12)

(5.14)

Equation 5.15 1s used as a check, to insure that joints J1-J4 are coplanar. Since the

wall is planar, a single unit vector perpendicular to the plane of the wall can be defined

IV,

and the vector V,, perpendicular to the length in the plane of the wall, as
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V=V, xV, (5.17)

The three unit vectors V,, Vy, and V, define the clement’s coordinate system
(ECS), denoted X, Y, Zg, with the ongin midway between joints J3 and J4. The

three unit vectors that define the orientation of the ECS are written in matrix form as

VX c ¢ c T T

R 11 %12 €13

[Vel=|Vy[=|¢ 22 23 i 1=0Cd ] (5.18)
- €31 €32 €33 — —~
v, | k | k|

where [Ce] is the direction cosine matrix for the ECS.

The element has ten translational degrees of freedom as shown in Figure 134,
Degrees of freedom 1 and 8 are used to represent in-planc shear and bending
deformations, along with the in-planc geometric stiffness. Degrees of freedom 2, 4, 6,
and 9 represent axial deformation and bending rotations while degrees of freedom 3,
5,7, and 10 are used to represent the out-of-plane geometric stiffness. In matrix form,

these local forces and displacements in the ECS arc

[Fel= [F| Fp F3 Fg Fg Fg Fy Fg Fg Fg]

(5.19)
T
[6. 1=[8) 09 03 04 05 8¢ 87 33 9 19 ]

2. Llement Suifness Matrix in the Element Coordinate System. Let Ky, K and
K, represent the bending, shear and axial stfInesses of a unit height wall. The bending
backbone curve and hysteresis model that determine the bending stiffness, are derived

in terms of moment and unit height rotation, Equation 3.32. Similarly, the shear
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backbone curve and hysteresis model that determine the shear stiffness are derived in

terms of shear and shear strain; and the axial hysteresis model is in terms of axial load

and strain. Examining Figure 136, the force deformation relatiohship for each of the

springs is given by

Kb

M, =Ky0,= —h—(Ha —8p)=— My (5.20)

- Ks <
Va=Kgvy=—-va = vp) == Vy, (5.21)
and

- K, n
Pa = }\auu = T(Ua - Ub) = — Pb (5.22)
where Ky is the bending stiffness of a unit height wall, given by the bending

hysteresis model in Chapter 1V,

hysteresis model in Chapter 1V,

hysteresis model in Chapter [V,

is the shear suffness of a unit height wall, given by the shear

1s the axial stiffness of a unit height wall, given bv the axial

6,, 6y,  are the rotations at the top and bottom of the bending spring,

Var Vb are the shear deformations at the top and bottom of the shear

spring,

Uy, Uy are the axial deformations at the top and bottom of the axial spring,

M,, My arc the moments at the top and bottom of the bending spring,

Vg,

Vs

P,. P are the axial forces at the top and bottom of the axial spring,

dl

Vy  are the shears at the top and bottom of the shear spring,

1s the relative unit rotation for bending,

is the relative unit shear deformation, and
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uy, is the relative unit axial deformation.
Fixing the bottom of the shear wall and applying a positive load to degree of frcedom
1, the sign convention yields a posftivc moment and shear at end ‘A’ of the springs.
Fixing the bottom of the shear wall and applying a positive load to degrees of frecdom
2 and 4, yield a positive axial load at end ‘A" of the spring. Rewriting Equations 5.20

through 5.22 in matrix form yields

M, I 0 0
My, -1 0 0
M M
v, o t of| ° ’ -
= v, | = [A]] Vv, (5.23)
Vi 0 -1 0
P, P,
P, 0 0 I
Py 0 0 -1
and
Ba
b
M 9
a u | va ,
v, [ =0s1]| vy [ =[s11[A{] (5.24)
Vv
b
P'd uu
Uy
U,

where [ S1] is the unit length spring stiffness matrix

Ky 0 0
[SI]-—-% 0K, 0 (5.25)
0 0K,
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From summation of forces and moments in Figure 136 the relation between the

spring and element forces are determined.

ZFxtopzorpl_Va' F1=V,
Y My =0=M a = WFg+ Py —aV,, F4=M7a+%‘-—%-va
D Miz=0=My +wFy - Py —aV,, F2=—xa+za+f;va
ZFxbm:O:FS'va Fg=vy
ZMj4=0=Mb_wF6+—‘§-Pb+ﬁvb, | F6=-‘-g-,‘-’-+—?-+%vb
ZMj3=O=Mb+wF9—%Pb+ﬁvb, 119=-:§-9+%*l-~\€-vb

Rewriting Equations 5.26 to 5.31 in matrix form

(5.26)

(5.27)

(5.28)

(5.30)

(5.31)



Fy 0 0 2w 0 0 O
) -2 0 22 0 w0
F3 0 0 0 0 00]||M, M,
Fg4 2 =2a 0 w O[] My My,
Fs 6 6 0 o0 00 Va vV,
[F.]= = 2—1- = [Ay] (5.32)
Fg W10 2 0 28 0 wi|Vy Vi
F 0 ¢ 0 0 0 P, P,
Fg 60 0 0 2w 0 0 Py Py,
L A L B
Fg 0 -2 0 =280w
Flo 00 0 0 00O
Substituting Equation 5.32 in Equation 5.23
M,
CF.1=C[A710A ] v, - (5.33)
Pa
The shear wall’s stiffness in the ECS 1s given by
- T ‘ c
[K.] —[A2][A1][5[][[A2][A1]] (5.34)

Recall that bending and shear stiffness perpendicular to the wall are neglected. Thus
the stiffness terms associated with degrees of freedom 3, 5, 9 and 10 are vero. To

prevent a singular stiffness matrix, the out of plane dof must be restrained when

analyzing a planar frame.



3. Element Stiffness Matrix in Global Degrees of Freedom. The transformation

of degrees of freedom from the ECS to Gdof consists of two steps. First, the degrees
of freedom at each of the four joints are rotated from the ECS to each of the JCS, at
joints J1 through J4. Second, the constraint transformation moves degrees of freedom
from each of the 'slave’ joints to the ‘master’ joints. The degrees of freedom at the

master joints are the Gdof.

Recall the transformation between the global forces and forces in a rotated

coordinated system is given by

[Frotated]d = LCI[Fgiopar] | (5.35)

where [ Fgrareqd is the force in the rotated coordinated system, [C] is the direction
cosine matrix of the rotated coordinated svstem, and [Fglobal] is the force in the
global coordinate system. The rotated coordinate system may be the JCS, the ECS or
some other coordinate system that ts not parallel to the GCS. Solving for the globul

forces yieldsl6
. 4T
[FgIObal] =L[CT [Frotated] = [€T [Frotated] (5.36)

Thus rotating the element forces at a joint i, [Fg;], to global forces at joint i,

[ng], is achieved by

[Fgl=[C I [Fg] | - (5.37)

and rotating‘the global forces at joint i, [ng], to joint forces, [I'-'j--‘], at joint 1 is

achieved by’

16 . . . . .
The transformation matrix [C] is orthogonal. Inverting an orthogonal matrix is

equivalent to the transpose.



[F;i] =[P ] = [GILC 1 [F] = [CiCa 1Fy] (5.38)

where [ C; ] is the direction cosine of the JCS for joint i. At joints J2 and J3, the wall
does not have translational degrees of freedom parallel to the ECS X axis
(Fyax, Fyox), thus a transformation matrix, A3,7is used to create dummy degrees of

freedom at these joints.

Fjix| |[1000000000 {.
Fiiy| [0100000000 || F
Fniz| (0010000000 || Fy
Fiox| [0000000000 || Fy
-
Fep Froy{ {0001000000 F4
F F 0000100000 || F
2} _|Fnz)_ o al[R] 659)
Fe3 Fjsx| [0000000000 Fg
| Feq| | Fyzy| [0000010000 || Fy
F3z] 0000001000 Fg
Fiax| 0000000100 || Fg
Figy| [00000000 10 [|Fg
Flaz| |[0000000001 |~ -

where the typical notation [Fo1]=[Fj1x Fjpy F“Z]T represents the forces on
joint J1 in the ECS. Rotating the forces at cach of the walls four joints {rom the ECS

to the JCS yields



r - i . I 1 “ r- -1
Fi [CJICe] 0 0 0 Fel Fei
F o [cpel]l o 0 F F
J2 J2%e e2 e2
- - ~[A4] (5.40)
F13 0 0 [CBCe :[ 0 Fe3 Fe3
T , .
| P 0 0 0 [CJ4(’C ] | Fea | Fea

where [ Fj] represents the X, Y, and Z forces acting on joint J1 in the JCS.

Recall the constraint transformation cquation [Tms]i for an individual slave

joint 1 Equation 5.2 or 5.6 has the form

[1] o]
XYzl (1]

[Tms]i =

(5.4h

The second column of [T, ] pertains to rotational degrees of freedom at the slave
joint. Since [Fji] for the wall element only contains translational degrees of freedom,

the second column is omitted. Thus for shear walls the constraint equations become

[T'ms]i =

L]
[XYZ]

(5.42)

The modificd constraint [T’ .. ] generates rotational degrees of freedom at the master

joints.

[XYZ]; is used. (Tombining the transformation for all four joints yiclds

J
N
rD

For unconstrained joints, a dummy constraint transformation with a zcro

-1 el 1 T S
Fiim [Tmslt 0 0 0 Fy Fry

F 0 [Tpsly © 0 Fj F1s

J2m _ msJ2 2 =[A5] J2 (5.43)
Fi3m 0 0 [Tmls © Fj3 Fy3

F 0 0 0 T F -
| Flam) | L nm]dg | Fya | | Fya |



where [F]m] = [F]mx ij\[ ijz M]mX Mij M}IHZJT at master joint |.

Substituting Equation 5.39 into 5.40, and Equation 5.40 into 5.43 yields

- -
Fj Im

FJ2m

| =TA510ALI0A;10F,] (549
I:J3m

I Fyam

Substituting Equation 5.33 for [ F, ] yields the transformation from internal wall forces

[Ma Va Pa]T to forces acting on ‘master’ joints at global degrees of freedom

Film "
A
Fy
M _ra] v, (5.45)
1:'J3m
Pa
_FMm"

where [A]=[A5][A410A3][A51[A(]. Similarly, the transformation for the

deformations of the springs is given by

éJ lm
83.
912m
v |=Ca]! (5.46)
‘513m
Uy
_‘5J4m_

where [5jm] = [5ij ‘Sij ‘5ij Hij Hij Gij]T for ‘master” joint j.

Recall {Lm]-} is a vector containing the degree of freedom numbers for joint |.

For element e, the vector {Lm,} that contains the global degrees of freedom 1s
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r{Lmji}
L

{Lmg} = tLmy2) (5.47)
{Lmj3}

“{Lm‘m}

The vector of Gdof numbers is used later in the assembly of the global stiffness matrix.

The stiffness matrix is transformed from the spring stiffnesses Equation 5.25 to

the global degrees of freedom by

[Keg]=L[AILsIILAT" (5.48)

If any two degrees of freedom, from opposite ends of the wall (top vs. bottom } are

constrained to the same degrees of freedom, then those two degrees of freedom are

eliminated.

4. Geometric Stiffness Matrix. The P-A forces are modeled by a lumped

parameter geometric stiffness matrix. In the plane of the wall, the wall is idealized as
a rigid bar joining degrees of freedom 1 and 8 with an axial load N as shown in ffigure
137. The axial load, N, is positive when the wall is in compression. Perpendicular to
the plane of the wall, the wall is idealized as two rigid bars as shown in Figure 137,
The first rigid bar joins degrees of freedom 3 and 10 with —I;— axial load. The second
joins degrees of freedom 5 and 7 with —;—I- axial load. Thus the clement geometric

stiffness matrix is



h
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(b)

Figure 137. P-A Forces for the Shear Wall Element: (a) In Plane Deformation, (b) Out
of Plane Deformation
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=T = S = T = R = S < B < S = T~ S =
_- 0 o 9o o

v

o o o o 9«

RO~ T =

[G.] = —% (5.49)

o o O o o 9o O
<o O o
(o o = N = = B ]

(=2 B = N = o B o e = T > Y <
<
<

o
L R N = = T == L e R = =t

The geometric stiffness is transferred from element to global degrees of freedom by the

transformation

[Gegd = [AsILALITA3ILGI[[A5IAI0A31]T (5.50)

C. UNBALANCED ELEMENT FORCES

The incremental displacements of the umit length springs for the shear wall

element are given by

A0 Adyim
u
AS
Avy {=-La]T J2m (5.51)
B Ad13m
Auu
_A514m ‘

and the incremental spring forces are given by
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AV, |=| 0K, 0 |]av, (5.52)
a 0 0K, ||Au,

where Ky, K, and K, represent the stiffness tangent to the hysteresis model at the
beginning of the load step. [or the bending hysteresis model in igure 138 with the
load step beginning at Point A, Ky, is the stiflness tangent to the hysteresis model
at the beginning of the load step. Let the forces and displacements at the beginning

of the load step be

M, 8,
Vg and vu (53.33)
P u
ado 4o
Thus the forces and displacements at the end of the step are
M, M, AM, 8y 84 Ad,
Vol =| Vil +|Av, and | vy | =|v,| +]Av, (5.54) -
P P AP u u Au
a ]y a1y a uj, u g u

Consider a onec degree of freedom structure with bending displacement only.
Examining the bending hysteresis model, Figure 138, assume that Point A is on the
loading curve and has a unit displacement and moment of 8,5 and M,y An
imcremental moment of AM = Mai - M, 1s applied to the structure. The tungent
stiffness at Point A, Ky, 15 used to determine that the structure displaces to Point B,
which has a unit displacement and moment of ', | and M, . However, the stullness
changed during the load step, and the structure should have displaced to Point B.

Point B has a unit displacement and moment of 6,,; and M,. During the second

257



$
§
=

8uo gul eul eu2

Figure 138. Unbalanced Force

258

By2 Rotation

v



load step, an incremental moment of AM =M, 5 — M, is applied to the structure.
The tangent stiffness at Point B’, Ky, is used to determine that the structure displaces
to Point C’, which has a unit displacement and moment of 8°;9 and M. Loading
from Point B, with the same stiffness, would displace the structure to Point C, which
has a unit displacement and moment of 6,5 and M,5. The calculated solution
A-B-C" 15 diverging from the true solution A-B-C because the calculated solution

overshot the loading curve in the first step.

There are several techniques to correct for overshooting. The simplest s to
reduce the size of the load step. However, expenience has shown that very small load
steps are required for convergence, lcading to excessive solution times. Another
technique to correct for overshooting is to locate the points where the stiffness
changes, and reanalyze the structure with different load steps. For large structures,
several elements may change stiffness in a single load step, leading to e¢xcessive solution
times. A third technique is to determine the unbalance force which is applicd as a load

in the next load step (62, 21).

Returning to the example in Figure 138, from the hysteresis model, the moment
at a displacement of 8";; should have been M’,;. Let this moment be the internal
moment on the structure, and label this point B”. At a displacement of &' the
external force acting on the structure is M, , which exceeds the internal force
M’ The unbalanced force is U=M,; —M";|. An incremental load of
AM =M, 5 -M | +U=M,;5-M';| s applied to the structure, yielding an
mcremental displacement of 8,5 — 6",;. From the hysteresis model, with the current
mternal moment and displacement of M’y and 6’|, and an incrementai
displacement of 8,5 — 8',;;, the incremental internal moment is M5 - M7, | = AM.
Thus the new internal moment and displacement are M a2 and Buz» and the internal

moment has loaded from B” to C. The external force has a load increment of
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AM -U= MaZ—Mal and loads from B’ to C. Thus the calculated and true

solutions converge.

For the shear wall element, the unbalanced forces are determined for bending,

shear and axial springs and are applied to the global degrees of freedom by

[ ] -
UJImc
M, M,
U2me .
=[Al}| Va| —| Va (5.3%)
Us3me p pr
. a a
_L‘Mme_ - 1

where Ujjme is the unbalanced force from element ¢, acting on the master joint J1;
M’,, V', and P, are the internal forces from the hysteresis models at displacements
841> Vup and uy,y; (the displacements are determuned from ECquation 5.54); and
M, V, and P, are the external forces acting on the element as given in [.quation 5.52.

The global unbalanced joint force vector, {U}, is assembled by

Udli) = U(l) + UjppDle, for i=1106

j=J110 14
(5.56)
e=1t0 NELEM

li= Lmy(i)

where e is the element number, and NELEM is the total number of clements in the

structure,

D.  ASSEMBLY OF THE GILOBAL STRUCTURAL AND GEOMETRIC

STIFFNESS

The structural stiffness matrix is assembled by the direct clement method, where
the element’s stiffness is mapped into the global degrees of freedom. Recall {Lm} is
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a vector that contains the global degrees of freedom for element e, and [Keg] 1s the
global stiffness of element e. The structural stiffness [K ] is given by
K(linY) = K(,}j) + Keg(i,j), for i=1 to NELDOF
j=1to NELDOF
e=1to NELEM (5.57)
li=Lm(i)
lj= Lmg(j)

where NELDOF is the number of degrees of freedom for element e, and NELEM is the

total number of elements in the structure.

The axial load N, used to formulate the geometric stiffness for element ¢, can be
estimated by the analyst. Recall that the axial load, N, is positive when the clement
is in compression, and is assumed to be due to gravity loading only (21). The load is
factored by F; to reflect the vertical ground acccleration

e
24

Fy=1+ (5.58)

where Agz(t) is the vertical ground acceleration of the ground at time t, and g 1s the

acceleration of gravity.

The geometnic stiffness matrix can be formed by subtracting the geometric

stiffness from the structural stiffness and storing in the structural stiffness matrix.

K{l) = K(L,}j) + ch(i,j) - F‘Z‘Geg(i’j)v fori=1 to NELDOF
j=1to NELDOF

e=1ta NELEM (5.59)
li= Lmg(i)
lj=Lm(})
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where [Geg] is the geometric stiffness of element e, having degrees of freedom
{Lmg}. This technique uses the minimum storage. However, if either the structural

stiffness or geometric stiffness is updated, both must be reformed.

An alternate method is to form a separate geometric stiffness, F;[ G ], where

F;G(1ilj) = F;G(lilj) + F;G (i), fori=1 to NELDOF
i=1to NELDOF

e=1to NELEM (5.60)
li= Lmg(i)
lj= Lmg(j)

This technique uses more storage than the previous method, because both the
structural stiffness and the gcometric stiffness matrices arc stored separately. For
structures where the geometric stiffness is only formed once, this technique has less

calculations and yiclds faster solutions.

For the numerical examples in Chapters VI and VII, the axial load is estimated
by the analyst, and vertical ground acceleration is neglected. For static loadings, the
geometric stiffness 1s subtracted from the elements stifIness (Equation 5.59). [‘or the
dynamic analysis, a separate gcometric stiffness matrix (Equation 5.60) is used to avoid

recalculating the geometric stiffness each time the structural stiffness is updated.

E. STATIC ANALYSIS OF 3-D STRUCTURAL SYSTEMS

The nonlinear static response of a 3-D structure subject to cither monotonic or
cyclic loadings is determined in this scction. Loadings may consist of joint loads (force

control), imposed displacements (displacement control) or combination of joint loads
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and imposed displacements”. The loading is divided into increments, and applied to
the structux:e n s-teps. At the beginning of each load step, the tangent stiffness of the
structure is determined, and the structure i1s assumed to behave linearly for the duration
of the time step. Unbalanced forces, when they exist, are calculated at the end of each
load step, and added to the incremental loads for the next step. The structural stillness
is updated each step if necessary. Depending on the assumed axial loading, the
geometric stiffness may be constant throughout the analysis, or updated for each load
step. At the end of each load step, total forces and displacements are determincd by

summing the values for the previous step and the incremental values.

Either concentrated forces or moments may be applied as joint loads. In

incremental form, the forces at joint i are

T o
[AF; ] =[AFjsx AFjy AFjsz AMjsx AMjgy AM;g7] (5.61)

If joint j 1s a constrained ‘slave’ joint, the joint loads are transferred from the “slave’ to

‘master’ joints by

[AFy ] = [Ty JLAF,] (5.62)

where [ AFy 1, ] are the forces acting on "master” joint K. Ifjoint j is a master joint then

rename [A-Fjs] as [AFy 1. The incremental global joint force, {AF}, is given by

AF(li) = AF(l) + AFy (i), fori=1to6
li= Lmy (i) (5.63)
k=1 to NJOINTS

17 A Joint load and an imposed displacement can not exist at the same degree of

freedom. However, different degrees of freedom may have joint loads and imposed

displacements for the same load step.
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The stiffness matrix is formed for both free and restrained degrees of freedom.
Recall the equation of equilibium [K]{Aé} = {AF}+ {U}. Partitioning the
stif‘fness18 [ K1, displacements {A6}, load {AF} and the unbalanced force {U} matrices

between free, (f), and restrained, (r), degrees of freedom, yields

Kl [K AS AFg +{U
LKl [Kgd |} [Ase] ={{ g+ F}} (5.64)

[Keed [Kp 1| {LAs,] {AR} + {Uy)

where {Ad,} represent the support settlements or imposed displacements and {AR}

represent the reactions. Expanding Equation 5.64

[Kﬁ‘][Aﬁf] + [Kfr][Mr] = {AF{'} + {Uf} X (3.65a)

CK JLASe] + K, 1[AS, ] = {AR} + (U} (5.65b)

Rewriting Equation 5.65a vields

[Kgllasel = {AFg + (U - [K]lAs, ] (3.66)

which is solved for the free global degrees of freedom [Ad ] by Gaussian climination,
The displacements for 'master’ joint K, are extracted from the free and restramned

incremental displacements by

Ady. (i) = Ad(l), fori=1106
km (5.67)

li= Lmy (i)

yielding {Ady,}. The displacements of constrained ‘slave’ joint }, is determined from

18 . .
The structural stiffness has been softened to account for the geometric stiffness,

Equation 35.59.



]T

{Aéjs} = l:Tms {A‘skm}

Rewriting Equation 5.65b yields the reactions

{AR} = [K(1[AScd + LK J[A6. 1 - (U} -
The react'icms19 at joint j, are extracted from the incremental reactions by

ARj(i) = AR(l)) when li is a restrained dof
AR]-(E) =1{ when Il 1s a free dof,
fori=1to 6
li=Lmy(i)

yielding {AR]-}, which can be rotated from the JCS to the GCS by

T

[c1’

[Cj]

{AR]'G} = {ARj}

(5.68)

{5.69)

(5.70)

(5.71)

Transferring the reactions from the joint to the origin of the global coordinate system

yields

19 [f the joint’s dof are not restrained, their reaction is set to Zero.
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. 0 0 0
0 1 0 0
o o 1 0
4Ricod= 0 ~Z, Yy 1
zZ, 0 X, 0
~Yy Xy 0 0

<o o o ©

Lo N e N = = I

']

(ARG} (5.72)

where {ARjGO} are the incremental reactions at the global origin for joint j, and the

transformation is identical to the rigid body constraint in Equation 5.2. Summing

reactions for all restrained joints in the GCS about the global origin yieids

(8RGo} = ) 18RiGoi)

(5.73)

The summation of reactions is used by the analyst to check input loadings, determine

the overturning of a structure, and to calculate the energy balance.

Total forces, displacements, reactions and sums of rcactions for step t are

determined from

{6}y = {0} + (A4}

{F}y = {F}_y + {AF}

{R}g={R};| + (AR}

(RGot = {(Rgoh-1 + {ARGo!

(5.74)

(3.75)

(5.76)

(5.77)



F. DYNAMIC ANALYSIS OF 3-D STRUCTURAL SYSTEMS

The nonlinear dynamic response of a 3-D structure subject to multi-component
ground motions is determined in this section. The ground motions may consist of one,
two or three translational components orientated on an arbitrary axis. The structure’s
mass is ‘assumed to be lumped at the joints. Combined mass and stiffness proportional
damping is used. At the beginning of cach time step the tangent stiffness is determined,
and the structure is assumed to bchave lincarly for the duration of the time step.
Unbalanced forces, when they exist, are calculated at the end of cach time step, and
added to the dynamic loading for the next time step. Non-dynamic degrees of freedom
are condensed out by Guyan reduction. The resulting reduced dynamic equations of
motion are soived by the linear acceleration method. The displacements, velocaities and
accelerations at condensed degrees of freedom are determined. At the end of cach time
step, the total acceleration, velocity and displacement are calculated by summing the

values from the previous step and the incremental values.

1. Mass Matrix. The structure is idealized as a set of joints, connected by
elements, and the structure’s mass is assumed to be concentrated at these joints. The

mass matrix of an individual joint, in the JCS is

— -y

My 0 06 0 0 0
0O My 06 0 0 0

0 0 Mz 0 0 0

[.Vlj]': (3.78)
0 0 Ixx —lyx —Izx

0 0 0 —lyx lyy -lzy
0

0 ~lzx ~lzy 177

L -

where My is the joint’s Xi axis translational mass,
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My is the joint’s Yi axis translational mass,
Mz is the joint’s Z; axis translational mass,

Ixx is the mass moment of inertia about the joint’s Xj axis,

Iyy is the mass moment of inertia about the joint’s Yj axis,

I77 is the mass moment of inertia about the joint’s Zj axis,

lyy is the mass product of inertia about the joint’s Xj and Yj axes,
17y is the mass product of inertia about the joint’s Xi and Z]- axes, and
7y is the mass product of inertia about the joint’s Yj and Z]- axes.

[f the joint is constrained, its mass matrix is transferred to the ‘master’ joint by
T _
[Mj:]master = [TmsJ[Mj]slavc [Ts] (5.79)

where [T¢]is the constraint transformation, Equation 5.2 or 5.6. The total

structural mass matrix [ M ] is formed by the dircct element method.

M(li, k) = M(li,Ik) + Mj(i,k), for i=1to 6

k=1tob6
j=11t0 NJOINTS (5.80)
li= Lmyi)

k= Lmy(k)

where NJOINTS is the number of joints in the structure. Note that the mass is
transferred from the ‘slave’ to the ‘master” joint, and then added to the ‘master” joint’s
mass. Thus the mass at a ‘master’ joint may have both translational and rotation

terms.

2. Proportional Damping Matrix. Both mass and stiffness proportional damping

is used to represent the damping matrix
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[C]=alM]+ fLK] - BF5[G] | 58

where a and f§ are damping constants.

Consider the simple structure shown in Figure 139, with mass and stiffness

matrices
My 0 0O K} -Ki 0

[(M1=| 0 My 0, [K]= —-Kj K1+K2 - Ky (3.82)
0 0 0 0  -Ky K

where dof 1 corresponds to the roof, dof 2 corresponds to the floor, and dof 3 1s
restrained. The mass propdrtional damping force, {Fpy4}, is based on the velocity of

the floor, relative to the ground. Or,

M4y
(Fom} = [CI{8} = al MI{3} = a< Mpd; (5.83)
0

And the mass proportional damping model has a total reaction
- _ T, . Tr. -
{ZRpMm}=—{1} {Fpm}=—a{l} [MI{o} (5.84)

at the base of the structure, where {1} is a unit vector with the same number of row§
as {6}. The mass proportional damping reaction acts on the ground, not at a specific
5oint. Thus reactions of mass proportional damping forces cannot be calculated in a
manner similar to reactions due to clement forces. The simple structure in Figure {39
has parallel JCS and GCS. For the general case, the mass proportional damping forces
are rotated from the JCS to the GCS before the summation in Equation 5.84 is

preformed.
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Consider the same structure with stiffness proportional damping. The stiffness
proportional damping force is dependent on the relative velocity between floors. Both
the reactions of the dampers at the base of the structure and the summation of
reactions {ERpy} are calculate;i in a manner similar to the reactions due to element

forces, Equations 5.69 to 5.73,

For an elastic structure, the multiple degree of freedom system can be decoupled

by the orthogonality relationship yielding the damping term for mode i

2pw; = o + fool (5.85)

where p; is the damping ratio for mode i and w; 1s the natural frequency for mode 1.
One method of determining the constants « and f is by estimating the damping ratio

and natural frequency of two modes i and j, then solving

2p;w;3 1 m?’ a
= 2 (5.86)

iju)j 1 w; Jis

for x and 8. Thus

Zwimj(pi'{uj - pj“)i) . Z(pja)i - piw;) (587
o= 2 2 . = 2 2 WC
@y = o W] = wj
When p; = P =n, Equation 5.87 simplifies to
20 -
f=—— x=ww:f (5.88)

(L)j+wi’ 17]

3. Dvynamic Loading. The dynamic loading consists of three input ground

accelerations A (1), Ax(1) and A3(t) as shown in Figure 140. The orientation of the
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Figure 140. Oricntation of Ground Acceleration
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ground accelerations coincides with a rotated X', Y, Z' coordinate system. The
ground accelerations are rotated to the global Xg, Yg, Zg coordinate system. The
ground accelerations in the global coordinate system Xg, Yg, Zg are then rotated to
the joint coordinate system Xj, Yj, Zj. The resulting accelerations, in the same
coordinate system as the degrees of freedom, are premultiplied by the mass matrix to

generate dynamic loads.

Let V| and V, be two perpendicular unit vectors deﬁhing the direction of the
accelerations Ay(t) and Ay(t), and vector V3=V x V, defines the orientation of

Az(t), then the three vectors may be expressed in matrix form as

where [C123] is the direction cosine matrix of the input ground motion. The

incremental accelerations in the global coordinate system are

AA

2x AA,
Mgy % = [C133]7< 8Ay (5.90)
AAg, AAj

where the typical notation, AA| = A(tl) — Ay(10), represents the incremental ground
acceleration in the X axis. The times t0 and tl are at the beginning and end of the

time step, respectively.

The direction cosine matrix for joint j's three translational degrees of freedom is

[Cj]. The incremental translational ground accelerations in the JCS of joint j arc
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AA; AA

X gx
(A8} = £ AAjy > = [C{1< gy | (5.91)
AA;; AAy,

Since the input ground acceleration only consists of translational components, the
rotational ground acceleration is always zero. The incremental Gdof acceleration

vector {Ag} 1s assembled from

AS(M) = A5j(i), for i=1 to 3 (translational dof)

AS(H) =0, for i=4 to 6 (rotational dof)
(5.92)

j=1to NJOINTS

li= Lmj(i)

Note that for constrained joints {Aéj} is the same for both the ‘master’ and ’slave’

degrees of freedom. Only the ‘master’ joint is used in the above assemblage.

The incremental dynamic load is the product of mass and incremental

acceleration, and is given by
{AF} = — [M}{AS} (5.93)

For computational efficiency, the incremental accelerations in Equation 5.90 are

replaced by an identity matrix. The resulting unit joint translational accelerations are
A T
[Aj] =[Cj][C123] (1] (5.94)

. A
These are assembled into a Gdof unit acceleration matrix [A] by
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Alik) = Aik), fori=1t03 (translational dof)

A(li,k) =0, fori=4 to é (rotational dof)
k=1to3 (5.95)
i=1to NJOINTS
li= Lmy(i)

and the incremental dynamic loads are obtained by

AA|

{AF} =[Mcos]< AA5 (5.96)
4A3

where

[Mcos]=[ - [MICAT] | (597)

Note that [Mcos] is independent of the input acceleration’s value, and is only

calculated once.
The ground acceleration in the global coordinate system at time t is

{Ag(t)} = {Ag(t0)} + {AAg} (5.98)

The response of the ground, in the global coordinate system, is calculated by assuming
the acceleration varies linearly over the time step At, integrating the ground

acceleration to yield the ground velocity

(Vy(th)} = (V,(t0)} + -éz-t—({Ag(tO)} + {Ag(th)}) (5.99)

and by integrating the ground velocity to yield ground displacement
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2
{Dg(t1)} = (Dyg(t0}} + At{V,(t0)} + —%—(Z{Ag(tO)} + {Aglth)}) (5.100)

where {Vg} and {Dg}‘ are the ground velocity and displacement, and At =tl —t0 is

the time step.
4. Condensation. Often the number of degrees of freedom required to represent
the dynamic behavior of a structure is less than the total number of degrees of freedom.

The stiffness matrix is partitioned between condensed, ¢, free, f, and restrained,
r, degrees of freedom. Omitting the restrained degrees of frecdom, the partitioned

stiffness matrix for constrained and free degrees of freedom 1s

[K [K
[K]= el LRerl (5.101)

[Ked [Kgl
Expanding [ K J{A6} = 0 yields,
[K  J{Ad} + [ch]{Aéf} =0 (5.102a)
[KeJ{As) + [Kerl{Adg =0 (5.102b)
Solving Equation 5.102a for {Ad.} yields
{Aé ) =~ [KC;]—IEKCf]{A«Sf} » | (5.103)

ofr,

A — K]
(a0} |- [Kecd Tl (884 = [T 1{asg (5.104)
{Ad}

CHger
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where [l]fxf is an identity matrix. Equation 5.104 relates the condensed degrees of
freedom to the free degrees of freedom. Taking the derivative of Equation 5.104 with

respect to time yields the velocity and acceleration relationships.

(Ad) . ,
L p=LrI{adg (5.105)
(Adg
(A0} .
= [rl{Adg | (5.106)
{Adg

5. Equation of Motion, Recall that the incremental equation of motion for a

structure subject to ground motion is
CM 1A} + [C{AS} + [K1{AS) —~ F;LG1{AS} = {AF} + (U} (5.107)

The equation of motion is partitioned between condensed, ¢, free, f, and restrained, r.
degrees of freedom. Set the support displacements, velocities and accelerations cqual
to zero, {Ad.} = {0}, {Aér} = {0} and {Agr} = {0}. Thus the global incremental

displacement, velocity and acceleration vectors become

(A8} (Ad.) - (Ad.)
{6} = < {Adg) {8y =< (Adg (3} =< (adg (5.108)
3 0) (0}

Expanding Equation 5.107 by 1) substituting in Equation 5.108 for the displacement,
velocity and acccleration, and 2) partitioning the mass, damping and stifiness matrices

yields two independent equations.
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[M DM 1] { (48, [cCCJ[chJ {Ad} [ch][ch] {{Aéc}}
[MI0Mg] || (Ad8 [Cf‘c][‘:ff] {Adg [KfC][Kﬁ‘] {Adg}
5, [Gec LGl {{Aa } {{FC}} {{Uc}} (5.109)
[Ge10Ggl | ( {Adg {Fg {Ug
(86} i)
[wmmra]{ ..°}+[Ecm1£crd]{ } [EKchEKrfJ]{ }
{Adg Aog}

—rl[[o,C][G,f]]{ }}={AR} (Up) (3.110)
Adg

where {AR} are the incremental reactions at the restrained joints. Equation 5.109
represents the vibration of the structure, while Equation 5.110 represents the reactions
at the restrained dof. Substituting Equations 5.104 to 5.106 into Equation 5.109 and

premultipling by [T 1T yields

[MFr]{A5f} + EC;}]{Aéf} + [K;}]{Aéf} - F-,;[G}]{Aér} = {AFF} (5.111)
where
. | M..J[M
[Mfr]=l:r]T[ celtMerdlp (5.112)
CM10Mr] |
. ClLC
[cfd=Cr1t HCeelbCor) [r (5.113)
[Ce] [Ce]
. K JIK
EKfr]=[I“]T [KeellKer] [rl (5.114)



[:Gcc][Gcf:l

[G;}] =rrit [rj (5.115)
[Ge 1G]
. AF U
(aFgy=[r1t @re( )b (5.116)
{AFg {Ug

The unbalanced force is combined with the dynamic load to reduce the number of
transformations. [lereafter, {AF;} contains both dynamic loads and unbalanced

forces. For proportional damping, the damping term
* * * *
[Cl=alMg] + ﬁ([Kfr] - FitGﬁ“]) - (5.117)

is used in lieu of Equation 5.113.

Numerically the matrices in Equations 5.112 through 5.116 are condenséd one
row at a tume. For the stiffness matrix, this is equivalent to Gaussian elimination.
Thus the inversion, [KCC]"l, to determine the transformation [ "] in Equation 5.104
has an order of one. This is computationally more efficient than inverting a
¢ X ¢ matrix and performing the multiplication required above for each transformation.
However, the Gaussian elimination scheme has one drawback. The geometric stiffness
and mass matrices cannot be condensed independently. If only the geometric stiffness
matrix is updated, both the geometric and structural stiffness matrices must be

reformed and condensed together.

a. Linear Acceleration Method. The linear acceleration method was originally

developed by Newmark (56). Since then the linear acceleration method has been

presented in many different forms with numerous variations (86 ,21).
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Assume that the acceleration of the structure varies linearly over the time step
At. Let the time at the end of the time step be t = At, and the time at the beginning
of the time step is t0 =t — At =90. Thus a linear equation for accelerations between

times t0 and t is

{6p(1)} = 6{A}t + 2(B} ‘ (5.118)
[ntegrating Equation 5.118 with respect to time yields the velocity

(5p(t)} = 3{A}Z + 2(B}t + {C) (5.119)
And integrating Equation 5.119 with respect to time yields the displacement

{6} = (A} + (B} + (CJt + (D} (5.120)
From the initial conditions at time t =t0 =0

(57 (10)}

2
{8p(t0)} = (C) | (5.121)

{0(10)} = (D}

(3¢(t0)} = 2{B}, or {B} =

and from the f{inal condition at time t = At

(Op(V} — {Op(10)} _ Adp

{p(V)} = 6{A}AL + {3p(10)}, or {A}= m .

(5.122)

Substituting the constants A, B, C and D into Equation 5.120 and solving for the
incremental displacements, {Adg}, yiclds

{Adg = {op(1)} — {67(10)}

) (5.123)

A2 .
- {Af_sf}—éé‘— + {5f(10)}-4-§-- + ((10)}At
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Solving for the incremental acceleration, {ABF}, yields

{Adg = Lz{msf} - (3{5}@0)} + z"’{-{éf(w)})
At
y (5.124)

n}

Substituting the constants A, B, and C into Equation 5.119 and solving for the

incremental velocities yields

{Adg = (5p(0)} — (8¢ (10)}

(5.125)
= %L{Ab'r} + {¢(10)} At
Substituting in Equation 5.124 for {Adg vields
. 3 _ At . .
(5.126)

=4r14%) - (B}

Substituting {Aér} and {A5f} into the incremental equation of motion, L:quation 5.111,

and substituting in Equation 5.117 for proportional damping yields
* * * *
Emff]<f—2—{a\6f} - {An}) + (oL M3 + 8K ~ F5LGd (s - (8,0
1
* * *
+ [ (g1 - FL Gyl |(86g = (aFy) (5.127)

Combining terms



(1+%-)[[Kﬂ~] Fi[G}]]{AafH( 2 A—éz-)[\dfr]{aaf}

- [ Ckg) - FuLGypd (B} = (AFp) + [Mgl{{Ay) +2(By)] (5.128)
Let ¢ =__a_+___6_
0 At2
s L (5.129)
At
C2 = Cocl
c3=a —nczﬁ

Substituting ¢ through c3 into Equation 5.128 and subtracting Czﬁ[.\d;“f‘]{Bn} for

both sides of the equation vields

{ 5r}

[[xqd - 506G |B,)

[[Kff] F; [Gﬂ‘J] 400 +c(M ﬂ'

—Czﬁ[MffJ{Bn} = {AFF} + [MWJ{{A,,} +a{B,}} - czﬁ[M;r]{Bn} (5.130)

Combining terms

* * * Aé
[[Kff]—F-z-[Gq]+c2[MfrJ]({cf} - {Bn}>
= {AFF} + [MR]{{An} + c3{Bp}} (5.131)

or

[K1(as} = (AP} (5.132)
where

[K]=[Kql - F;0Gq] + oplMye] (5.133)
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{Adg)

€1

{Ad} =

— B{B,} (5.134)

(&P} = {AF(} + [MI{{A ) + e3(B, )} (5.135)

If neither the structural stiffness nor the geometric stiffness vary from step to step,
Equation $.133 is only calculated once. Equation 5.132 is solved for {Ad} by Gaussian

elimination. The incremental free displacements arec obtained by

{Ad(} = ¢} {Ad} + ¢y B{By} (5.136)

The incremental displacements are substituted into Equations 5.126 and 5.123 to vield

the incremental velocities and accelerations.

The displacements, velocities and accelerations of condensed degrees of freedom
are calculated by Equations 5.104 to 5.106. Numerically, the displacements, velocities
and accelerations are found by back substitution with the condensed stiffness matrix.
This provides a more efficient sclution than performing the multiplications in

Equations 5.104 to 5.106.

b. Reactions. Two formulations for reactions arc used. The first is the reactions

of the element {orces on restrained degrees of freedom

(A6.) |
[aR]=[[K, I[K]] {A;} - (U (5.137)

f

This is equivalent to Equation 3.69 for the case {Ad.}=0. The summation of

incremental reactions {AZRp} 15 determined by Equations 5.69 through 5.73.



The second formulation for reactions is based on Equation 5.110, and is used for

the energy balance. Solving Equation 5.110 for {AR}, with proportional damping

& {A8}
AR} =[]} M

{AR} [[“rc][ rf']] {Asf}

{Ad}

+ (o] M0 M1 ] +8[ CK o JLK 1 ] ~8F,] 06, 10G1]) (a8

f

. (A8} )
+ ([ €K A0K ] - F5{ [Gre L Ge1 ]) sy (9 (5.138)
f)

The first term is the reaction due to inertial forces. If a consistent mass
formulation were used to determine the mass matrix, [ M ] and [ M ] would be
nonzero, and reactions due to inertial forces would exist. For a lumped mass model,
_[Mrc] and [ Mgl are zero. Thus the inertial forces are not transferred to the

ground. Since the lumped mass matrix is used in this study, the first term is dropped.

The second term consists of the reaction due to proportional damping. As
previously discussed, the reactions due to lumped mass proportional damping at
specific dof are undefined. However, the summation of the incremental mass
proportional damping ZARp)\ is determined by Equation 5.84. The sum of the
incremental stiffness proportional damping, ZARy i, 18 calculated in a manner similar

to the reactions due to element forces. {LARGo}-

The third term consists of reactions due to 1) stiffness, 2) geometric stiffness and
3) unbalanced forces. The geometric stiffness is actually a load accasioned on the
structure by the so called P-A forces and is omitted. The sum of incremental reactions
due to stiffness and unbalanced forces {£AR;n} was determined in Equations 5.69

through 5.73.
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c. Total Displacements, Velocities, Accelerations and Reactions. The total

displacements, velocities accelerations and reactions are determined from

(6(1)} = {6(10)} + {AS) - (5.139)
{8(1)} = {5(t0)} + (A} (5.140)
{6(1)} = {3(10)} + (A} (5.141)
{R()} = {R(10)} + {AR} (5.142)

The initial conditions {5(0)}, {5(0)}, {5(0)} and {R(0)} are zero for a structure

subjected to an earthquake.

G. ENERGY FORMULATION

Two purposes are served by examuning the energy in a structure. [First,
conservation of energy, or an energy balance, is used to check the accuracy of the
numerical soiution. Second, the behavior of a structure can be studied by examining

the amount of energy stored in, and dissipated by the structure (26, 21).

From the conservation of energy

E;=Eq+Ey (5.143)

where E;= The energy input into the structure.
E; = The energy stored in the structure, which consist of kinetic encrgy, KE,
and clastic strain encrgy, ESE; Eg = KE + ESE

Eq= The energy dissipated by the structure, which consist of plastic strain

energy, PSE, and energy dissipated by damping, DE; E4=PSE + DE
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Thus Equation 5.143 becomes

E;=KE + ESE + PSE + DE (5.144)

Equation 5.144 is used to check the accuracy of the numerical solution. The relative

error of the solution in percent, is expressed by

E; — (KE + ESE + PSE + DE)
Re = = 100 (5.145)
. 1

1. Input Energy. Energy is transmitted into the structure by 1) the reactions
moving through a ground displacement, and 2) the geometric stiffness forces moving
through an absolute displacement. For ground motions  consisting of three

translational components, the total energy input at time t is given by
Ei = fo {ZR(1)} d{Dg} + J;) {FGf(t)} d{éf-i- 5gf} ' {5.146)

where {Dg} represents the three components of ground translation, and {ng} is a
vector of the ground translations in the Gdof. The summation of reactions at time t,
{ZR(1)}, consists of |

1} Reactions due to lumped mass proportional damping {ERpy(1)},

2) Reactions due to stiffness proportional damping {ZRp (1)},

3) Reactions due to member forces {ZR (1)}

The geometric stiffness forces for free degrees of freedom at time t, {Fdt)}, arc

determined by
(Ft} = (FGt0)} + F; [Gi {Adg (5.147)

In incremental form Equation 5.146 becomes
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Bi(t) = Ey(t0) + {{Rpy7 + (Rpid + (RGo)} (Adg) + FGR{Adr+ 46,3 (5.148)

where { } are the average summation of rcactions or geometric stiffness forces over
the time step At. Neither the summation of reactions, nor the geometric stiffness
forces are linear over time At. Thus Equation 5.148 is an approximation of the input

energy.

2. Kinetic Energy. The total kinetic energy of the structure at time t is given by

KE(t) = (51(t) + 6,0 (0} TLMEI{8((t) + d,0)) (5.149)
2 g g

3. Strain Energy. The strain energy is calculated for each individual element.
The total strain energy of the structure is the sum of all the individual element’s strain
energy. The strain energy for a given clement is a function of both the clement type
and the type of hysteregsis model used to represent the elements inelastic behavior. For
the general force - deformation relationship, shown in Figure 141, the total strain
energy is the area bounded by OAB. The total strain energy, SE, is composed of two
parts: 1) the elastic or stored strain energy, ESE, represented by the area bounded by
ABC, and 2) the inelastic or dissipated strain energy, PSE, represented by the area

bounded by OAC. Thus

SE = ESE + PSE (5.150)

The total strain cnergy per unit height, for cach of the shear wall's componcents

of deformation is given by



" A

Load
AN

/ PSE / ESE
c

Displacement

Figure 141. Strain Energy
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SEpending(t=SEbending(t0+ 0-5LM,(t) + M,(t0)1L6,,(1) — 6,(t0)]
SEshear(t) =SEgpear(t0) +0.5[V,(t) + V,(10) I vyy(t) - vy (t0) ] (5.151)
SEaxiall  =SEgxiaj(t0)  + 0.5LP,(1) + P,(t0) 1 u (1) — uy(10)]

The plastic strain energy for each component of deformation is based on each

component’s equivalent unloading stiffness, K,,, and is given by

2
M0

PSEbending(I)= m

v2()

PSEshear() = K

s €u

P2()
2Ka 2u

PSEaxiallt) =
where the equivalent unloading stiffness is chosen such that the area under the actual
“unloading curve, arca ABDEF, is equivalent to area ABC in Figure 142.

For the bending hysteresis model, the arca ABDEF is

Area = 0.875PM(DM — DQ3) + 0.5PM(DQ3 — DQI) + 0.125PM(DQI — D0’) (5.153)

where PM, DM, DQ3, DQI and DO’ are defined in Section A.2.a of Chapter IV.

The equivalent bending unloading stifIness s

2
’M
_—— 5.154
Kb €qQ  2Area ( )
IFor the shear hysteresis model, the area ABDEF is
(PM + PAYDM —DA) (PA + PB)(DA — DB)
Area = +
2 2
PB(DB — D0’)
+ 3 (5.15%)
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Figure 142. Equivalent Unloading Suffness: (a) Actual Unloading Stiffness, (b)
Equivalent Unloading Stiffness:



where PM, DM, PA, DA, PB, DB and DO’ are defined in Section A.2.b of Chapter IV.
The equivalent shear unloading stiffness is

2
K PM

5€q ™ 2Aren (5.156)

For the axial hysteresis model, the unloading stiffness is used for the equivalent
unloading stiffness. The axial unloading stiffness is given in Section C.3 and C.4 of

Chapter IV.

The strain energy and plastic strain energy, for each component of deformation
given in Equations 5.151 and 5.152 are multiplied by the wail’s height, h, to determine

the total energy in the element.

4. Energy Dissipated by Damping. The energy dissipated by damping is the

integral of damping force times the incremental relative displacement. Substituting

At{é ¢} for the incremental displacement, the energy dissipated by damping becomes

DE = JOtAt{FD(t)}Td{éf} (5.157)

This integral 1s approximated by an incremental expression for DE. The incremental

damping force in a time step for proportional damping is given by

* - * . * .
{AFp} = al Mepl{Adg + BUKp){Add — BF;L Grl{Asg (5.158)
The total energy dissipated by damping is

[ AFp .
DE(t) = DE(10) + At{ Fp(10) + T]{Aéf} (5.159)
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H. DUCTILITY AND EXCURSION RATIO

Three definitions of ductility are considered in this study. The first and most
common definition is the displacement definition as shown in Figure 143. Let the

displacement ductility be defined as

| 6max| |
ny= ~.max’ (5.160)
é
y
when .., represents the maximum displacement, rotation or strain in the structure

or element, and o, is the vield displacement, rotation or strain.

y

Cheng, et al, (26, 21} have proposed several energy based ductility definitions,
Both the vanable strain energy and the constant strain energy formulations are used
in this study. The variable strain energy definition of the ductility is shown in Figure

144 and defined as

PSE
uvse=l+—-é-s—E'— (5.161)

where PSE corresponds to the plastic strain energy for the current half cycle. The

constant strain energy definition of the ductility is shown in Figure 145 and defined as

s = | + oo | (5.162)

where CSE is the constant strain energy corresponding to displacement at vield.

For each ductility ratio, a corresponding excursion ratio exist, where the

excursion ratio is given by
s:Z(#—l) | (5.163)

and the summation is carried out for each half cycle.
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I. DAMAGE INDEX

The damage index is a parameter developed by Ang, et al, to assess the damage in a
structure (65, 66, 5). A damage index greater than 1.0 indicates total damage or

collapse. The damage index is defined as

b t
pI——max . __# j d(PSE) - (5.164)
0

dult Fydyn

where ‘Smax is the maximum displacement, d,j, is the failure displacement under
monotonic loading, Fy is the yield force, and f is a hysteretic energy cocflicient. For
R/C shear walls, Sheu (72) determined /3=0.20,1 based on NCKU walls SWla through

SWe.

In this study, the damage index is calculated independently for the bending, shear
and axial components of deformation in a shear wall. The damage index for the entire
structure is then calculated by taking a weighted average of cach individual
component’s damage index, where the strain energy, SI;, given in Equation5.[51 is

used as the weighting factor. Thus

Ysgpy —
DI=4—=___ (5.165)

ZSEi

where the summation is carried out for all the members. A sample calculation of the

damage index is included in Section B.1 of Chapter VI.
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V1. RESPONSE STUDIES OF LOW-RISE BUILDINGS WITH ISOLATED
SHEAR WALLS ‘

Low-rise R/C buildings commonly rely on isolated shear walls to resist lateral
loads. These walls arc chosen because of their strength and rigidity. The response of
a reinforced concrete shear wall buiiding to earthquake ground motions is influcnced
by several parameters: 1) the amount of structural damage, 2) the symmetry. of the
building system, 3) the type of earthquake ground motion, and 4) the number of
components of the earthquake ground motion. Numerical studies are performed to
investigate the effects of these parameters. These studics consist of two buildings
(symmetric and nonsymmetric) subject to various earthquake ground motions
(El Centro, Taft and Mexico) using both one and two components of ground motion.

Additionally the input angle of the two-component El Centro ground motion is

rotated 26° in an attempt to calculate the maximum fcsponse for various ground
motion input angles (17). The responses of elastic (undamaged) and
nonlineaf (damaged) buildings are examined. The nonlinear response is
calculated at three different in{:ensities of ground motion to

determine the response at various damage levels.

A. STATIC RESPONSE OF SYMMETRIC AND UNSYMMETRIC BUILDINGS

1. Svmmetric Building. The symmetric building used in this study is shown in

Figure 146. This two-story square building has four 30" wide shear walis, symfnctrically
placed on the building’s perimeter. All of the lateral loads are resisted by the shear
walls. Most ‘of the gravity loads in the building are carried by a separate vertical load
resisting system, with the shear walls carrying the remainder of the gravity loads. The
symmetric building’s gravity loads are summarized in Table XII. The center of mass

and the center of rigidity of a symmetric building coincide. However, to account for
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the uncertainties in the location of the gravity loads, the mass center is offset 5% of

the building’s width.

Table XII. GRAVITY LOADINGS OF THE SYMMETRIC BUILDING
Dead load
Roof Structure .........ceeeeeeeel 15 psf x 907 x 907 1215k
HVAC ... 15K + Spsfx 90" x 90" 555k
Brick Curtain Wall ....: 40 psf x 9" x 360 129.5 k
Shear Wall .......cocceee 120 psfx 6" x 1207 86.4 k
Total Roof Dead Load 3922k
Second Floor Structure .......ccoeueeeenn 50 psf x 907 x 907 405.0 k
HVAC ... S psfx 907 x 907 40.5k
Brick Curtain Wall ....: 40 psf x 13.5" x 360’ 194.4
. Shear Wall ................. : 120 psfx 3.5 x 1208 194.4 Kk
Total Second Floor Dead Load 834.3 k
Total Building Dead Load 1226.5k
Live load
Roof SNOW...orvierceerreeeneneel 25 pSE X 907 x 907 202.5k
Second Floor Occupancy ......ceeenea: 50 psf x 907 x 907 405.0 k
Total Building Live Load 607.5 k

The 30" wide shear walls are shown in Figure 147. The height to width ratios of
the first and second floor walls is 0.50 and 0.40, respectively. These walls are 8" thick
and are made of 4000 psi (f ) concrete. The walls are reinforced with 2 #3 @117 each
way for vertical and horizontal reinforcement ratios of p=0.25%. The reinforcement
steel has a yield point of 60 ksi. The shear wall has an axial working stress of about
2.5%f( under full dead plus full live loading. This axial stress is small enough to be

neglected when calculating the backbone curves.

The moment to shear ratio for the shear wall is determined by applying the UBC
design base shear to the building and then examining the bending moment and shcar
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forces in the shear wall. The 1988 Uniform Building Code (77) section 2312(e)

provides a design base shear of

v=ZlCw o =128

Ry Tzl 3

<275 (6.1)

where Z=0.40, UBC zone 4,
[=1.0, normal occupancy,
R, = 6, load bearing concrete shear wall system,
S=1.0 to 2.0, depending on soil type,
T = the period of the structure, and
W =the total seismic dead load of the structure.
-Assume that the building’s period, T, is less than 0.30 seconds, which yiclds the peak

value of C=2.75 regardless of the soil type factor, S. Thus the UBC basc shear is

40 (1.0) 2.
V=0 0(160)275

1226.5 =225k (6.2)

Distributing the base shear to the roof s mass center yields

Fp= WahV.  3922x27xV
Stwin 922X 7T+ 8IS

= 103.1K (6.3)

Distributing the base shear to the floor’s mass center yields

_ 834.3x 15x V
1 7392227 +834.3x 15

=121.9k (6.4)

These forces at the mass center are distributed to the individual walls by statics. The
forces on the shear wall closest to the mass center are shown in Figure 148. The load
at the roof'is 56.7 k and the load at the second floor 1s 67.0 k. The shear and moment
on the second and first floor walls is V=567 k, M=8§,165 in-k and V=123.7 k,

M =30,431 in-k, respectively. Thus the moment to shear ratio is M/V = 144" for the
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second floor shear wall, and M/V = 246" for the first floor shear wall. Both the moment
diagram from statics and the equivalent moment diagram used in the analysis are

shown in Figure 148.

The backbone curves for the first and second floor walls are determined by the
method presented in Chapter 111, using the moment to shear ratios determined above.
The bending and shear backbone curves are shown in Iigures 149 and 150,
respectively.  Yield occurs in the second and first floor walls at shears of 364 k and
231 K, respectively. Failure occurs in the second and first floor walls at shears of
509 k and 315 k, respectively. Using the distribution of shears between the second and
first floor walls in Figure 148, the first floor wall will fail at a shear of 315 k, while the
second floor wall has a shear of 144 k. Thus the second floor wall never vields. The
backbone cﬁrves have been modified to provide a failure ductility of 10, as discussed

in Chapter I11.

The shear bending influence angles, ¥, Equation 3.21, for these low-ris.c shear
walls are ¥ =33.6° and ¥ = 21.5° for the second and first floor, respectively. The
relatively low shear bending influence angle for the first floor wall indicates that

bending will be the predominant component of deformation.

The JCS for each of the joints used to define the symmetric building coincide with
the GCS. The symmetric building i1s modeled with 8 shear wall elements as shown in
Figure 151. Both the second floor and the roof are considered to be rigid diaphragms.
Thus the planar constraint, Equation 5.6, is used to transfer the horizontal
translational degrees of freedom (F,, Fy) and the rotational degreces of freedom (M,)
to the diaphragm’s mass center. Vertical transiational degrees of freedom exist at the
intersection of each wall’s edge and the floor or roof slab. The model has a total of

22, non-restrained, global degrees of freedom as shown in Figure 151. Vertical degrees

of freedom, Gdof | through 16, are condensed out, and the remaining four translational
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and two rotational degree of freedom, Gdof 17 through 22, are used in the dynamic

analysis. The separate vertical load resisting system 1s not included in the model.

The full dead plus full live load case is used to generate the axial load, N, for the
geometric stiffness. Even though the shear walls do not carry all of the vertical loads,
they do stabilize the vertical load resisting system. Thus all of the gravity loads in the
building are distributed to the shear walls for the purpose of calculating the gcorx;ctric

stiffness.

The elastic natural frequency of a structure is determuned by solving the

eigenproblem
I[K - G- M| =0 (6.5)

where K is the initial stiffness, G is the geometric stiffness, w is the frequency, and M
1s the mass matrix. The fundamental period of the symmetric building is 0.155 seconds.
Thus the assumption used to calculate the UBC static forces, that the period is less

than 0.30 seconds, is valid.

A static load, based on the UBC design base shear shown in Equations 6.1 to 6.4,
is applied monotonically to the mass center of the second floor and roof parallel to the
building’s global Y axis. This load 1s increased until failure. The displacements of the

mass center at the second floor and roof are shown in Figure 152.

The structure has a gradual yielding behavior. Wall #2, the first floor wall next
to the mass center yields first at a base shear of 460 k, with the displacement of the

roof and second floor at 0.253” and 0.156", respectively. The yicld drift ratios of the

1 l )
t d t .
second and first floor are 1300 an 150" respectively
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Failure occurs at a base shear of 627 k or 2.79 times the UBC static base shear.

The displacement of the roof and second floor at the ultimate load are 2.37" and 1.43",

respectively. The failure drift ratios of the second and first floor are L and -

153 [25°
respectively.

2. Unsymmetric Building. The unsymmetric building used in this study is shown

in Figure 1583. This 'L’ shaped, two-story building has four 30" wide shear walls. All
of the lateral loads are resisted by the shear walls. Some of the gravity loads in the
building are carried by a scparate vertical load resisting system, with the shear walls
carrving the remainder of the gravity loads. The unsymmetric building’s gravity loads

are summarized in Table XI1I1I.

Table XI1I. GRAVITY LOADINGS OF THE UNSYMMETRIC BUILDING

Dead load
Roof Structure .......ccceeeeenen? 15 psf x 4500 sq ft 67.5k
HVAC ...t 10k + Spsfx 4500 sq ft 32.5k
Brick Curtain Wall ....: 40 psf x 9" x 360’ 129.5 k
Shear Wall .....cccoeeeee. : 120 psfx 6 x 1207 864 k
Total Roof Dead Load 3189k
Second Floor  Structure ............cee..2 50 psf x 4500 sq ft 2250 k
HVAC ... 5 psfx 4500 sq ft 225k
Partition .....ccccceeeevenen.l 20 psf x 4500 sq ft 90.0 k
Brick Curtain Wall ....: 40 psf x 13.5" x 360’ 194.4 k
Shear Wall .......ccceeeeos 120 psfix 13,57 x 120 194.4 k
Total Second Floor Dead Load 726.3 k
Total Building Dead Load ' 1042.2 k
Live load
Roof SNOW...ccoorieinrieenneennnt 25 psf x 4500 sqft 112.5 k
Second Floor  Occupancy ......c.........: 50 psf x 4500 sq ft. 2250 k
Total Building Live Load 3375k

Area / Floor = 5 (30" x 30")= 4500 sq ft
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The mass center and the center of rigidity for an unsymmetric building do not
coincide as shown in Figure 153. The largest eccentricity is parallel to the global Y axis
and is about 28% of the buildings width. The eccentricity parallel to the global X axis

is about 12% of the buildings width.

Similar to the symmetric building, the moment to shear ratio in the walls is
determined by applying the UBC static seismic force520 to the building and examining
the bending moment and shear forces in the shear wall. This procedure yiclds moment
to shear ratios of M/V = 144 for the second floor shear wall, and M,V = 243 for the first
floor shear wall. These values are very close to the moment to shear ratios determined
for the symmetric building. Thus for the same 30" walls shown in Figure 147, the
backbone curves in Figures 149 and 150 are used in both the symmetric and

unsymmetric buildings.

The model used for the unsymmetric building is similar to the svmmetric
building’s model. The unsymmetric building also has 8 shear wall elements, 16 vertical
degrees of freedom, 2 translational degrees of freedom at each level and one rotational
degree of freedom at each level as shown in Figure 154. All 16 of the vertical degrees
of frcedom are condensed out, leaving the 2 translational and onc rotational degrecs
of freedom at each level, Gdof 17 through 22, for the dynamic analysis. The separate
vertical load resisting system is not included in the model. The geometric stiffness of
the unsymmetric building also reflects all of the gravity loads on the structure. The

fundamental period of the unsymmetric building is 0.188 seconds.

0 Section 2312(d) 8, Item B (ii1), UBC (77) allows the static lateral force procedure to

be used for irregular structures less than 5 stories or 65 tall.
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A static load, based on the UBC base shear, is applied monotonically to the mass
center of the second floor and roof in the buildings X axis, and this load is increased
until failure. The displacements of the mass center at the second floor and roof are

shown in Figure 155.

Wall #7, the first floor wall next to the mass center, vields at a base shear of
428 k, with the displacement at the roof and second floor mass center of 0.262" and
0.156", respectively. The yield drift ratios of the second and first floors are

1 1
360 2 Tieo

respectively.

Failure occurs at a base shear of 586 k or 3.13 times the UBC static base shear.
The displacements of the roof and second floor at the ultimate load are 2.37" and 1.39",
and !

147 129°
respectively. Similar to the symmetric building, the second floor shear walls do not

respectively. The failure drift ratios of the second and first floors are

vield.

B. DYNAMIC RESPONSE OF SYMMETRIC AND UNSYMMETRIC

BUILDINGS

Elastic and nonlinear analyses of both buildings subjected to a series of seven
different ground motions, at three different load levels are performed. The seven
different ground motions used in this study are given in Table XIV. The first 10
seconds of the 1940 El Centro ground motion and the first 15§ seconds of the 1952 Taft
ground motion are used. The ground accelerations at the Secretaria de
Comunicaciones y Transportes were used as the basis for the Mexico ground motion.
This ground motion was recorded during the September 19, 1985 earthquake, and is
180 seconds long. A 10 second strong motion segment of this earthquake is used in
this study, which corresponds approximately to the 55 to 65 second range of the

original ground motion. The Mexico ground motion is included to study the behavior
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of shear walls subject to ground motions having longer periods. No attempt is made
to correlate the peak displacements resulting from the entire 180 second record, and the

10 second segment.

Table XIV. GROUND ACCELERATION RECORDS
Symmetric Unsymmetric
Case Ground Motion Building Building
' Global Axis Global Axis
A 1940 El Centro NS Y X
B 15840 El Centro NS Y X
1940 E! Centro EW X Y
C 1940 El Centro NS, rotated 26° Y X
1940 El Centro EW, rotated 26° X Y
D 1952 Taft N69W Y X
1952 Taft NeIW Y X
1952 Taft S21W X Y
1985 Mexico SOOE Y X
G 1985 Mexico SOOE Y X
1985 Mexico N9OW X Y

Penzien, et al (68) and later Cheng, et al (17) have recognized that a 3-D
building’s response to a muiticomponent ground motion may not be a maximum if the
ground motions are applied to the buildings principal axes. Thus the two-component
El Centro ground motion is rotated 26° with respect to the buildings principal axes in

an attempt to determine the maximum response.

Also shown in Table XIV is the building global axis corresponding to cach
particular earthquake component. The symmetric building typically has the stronger

of the two-components applied parallel to its global Y axis, while the unsymmetric
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building typically has the stronger of the two-components applied parallel to its global

X axis.

The three different lpading levels are accomplished by scaling the amplitude of

each ground motion. The peak ground accelerations for these three loading levels are

given in Table XV, along with the actual peak ground acceleration for the earthquake.

Table XV. PEAK GROUND ACCELERATION FOR VARIOUS LOADING
LEVELS
Load El Centro ~ Taft Mexico
Level NS EW N6IW S21wW SOOE NIOW
1 0.3143g  0.1614g  0.3114g 0.3114g  0.3425g  0.1943g
2 0.4715¢  0.2421g  0.4449g 0.4449g  0.4281g  0.2429¢
3 0.5500g  0.2824g  0.5335g  0.5335g 0.4709g 0.267lg
* 0.3143g  0.1614g 0.1778g  0.1778g  0.1712g  0.0972g
* Unfactored ground accelerations

The initial stiffness of the building is used for the elastic analysis.

[Fach building

is analyzed once for cach of the seven diffcrent ground motions at load level 3. The

response at load levels 2 and 1 is obtained by scaling the response at load level 3. For

the elastic case, damping is neglected.

For the nonlinear analysis, cach building is analyzed once for each of the seven

different ground motions, at each of the three different load levels. Thus a total of 21

nonlinear analyses per building were performed. A mass and stiffness proportional

damping of 5% critical is used for both structures.
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The time step used to solve the equation of motion varied from 0.005 seconds for
an elastic analysis to 0.00025 seconds.for a nonlinear analysis. .The energy balance is
used to verify the accuracy of the solution. The gross relative error varied from 3.5%
(unsymmetric building, ground acceleration D, load levet 1) to 0.28% (symmetric
building, ground acceleration A, load level 3) for the nonlinear analysis. The maximum

gross relative error is less than 0.25% for all of the elastic analysis.

1. Displacements, Energies, Member Forces and Deformations of the

Unsvmmetric Building Subject to Two-Component Seismic Input. The nonlinear

response of the unsymmetric building subjected to the two-component El Centro
ground motion (B) with a peak ground acceleration of 0.5500 g (load level 3) is
discussed in this section. The displacement of the unsymmetric building’s roof mass
center in the X direction is given in Figure 156. The displacements are larger in the
positive X dircction than in the negative X direction. Between 6 seconds and 9 scconds
the displacements have a permanent set in the positive X direction. This permanent
set 1s typical of nonlinear behavior. The peak displacement in the building’s X

direction is 1.56" versus 0.963” in the Y direction.

The base shear for this building is given in Figure 157. Recall that the ultumate
base shear for the unsymmetric building is 586 k. The peak base shear for this loading

is -307 k, or about 87% of the buildings ultimate load capacity.

The energy balance used to verify the accuracy of the nonlinear dynamic solution
is given in Figure 158. The input energy is approximately equal to the total encrgy
throughout the time history. The gross relative error of this solution is 0.62%,

indicating that the solution is acceptable.



¢
o
(4]
i
-

DiISPLACEMENT (INCH)

-1.0 ]

-1.5 1
3

"2-0‘ —r- T T T T T T T T T T T T T n T N 1
0 1 2 3 4 S 6 7 8 9 10

TIME (SECONDS)

Figure 156. Roof Displacement of the Unsymmetric Building at the Mass Center
(Ground Motion:B, Load Level:3)

316



700 -
600 -
500 A : | |
400: | f f ﬁ

300 4

w |

a
ol LT
—_— . LA LA (Y
< 0 ﬂﬁw 7
T J VV' M Vﬂ
[74]
w ~-100 4
4 4
@
-200 4
-300 -
- 400 -
-500 - J
-600 -
-700 AN SREEL AR I RS A L . A L A B

0 1 2 3 4 3 6 7 8 9 13
TIME (SECONDS)

Figure 157. Base Shear of the Unsymmetric Building (Ground Motion:B, [.oad
Level:3)

317



6000
5000 1
4000 -
a
x 4
T ]
u -
Z 30001
r
(<]
[ 4
tad
=
t < '
] |
2000 - f
] 3
] /§TORED
1000 4
000 - ﬁ ﬁ
i A A
0\- M "(Iv‘
] Mo T
| AN AT foon J\
0 4 \-- I\" \, ‘\‘l\l\_’,‘J US\L/'J ‘/ N _
R A 71 - 1 r v T L
0 1 2 3 4 5 6 7 8 9 10

TIME (SECONDS)

Figure 158. Energy Balance of the Unsymmetric Building (Ground Motion:B, Load
Level:3) )

318



Typical bending and shear hysteresis loops are given in Figures 159 and 160 for
wall #7. Wall #7 is the first floor wall, next to the mass center, as shown in Figure 154.
This wall suffered the most damage during the ground motion, while the walls on the
second floor remained elastic. The bending and shear hysteresis loaps for wall #7 have
several large amplitude ﬁysteresis' loops and many small amplitude hysteresis loops.
Thus the small amplitude hysteresis loops in the bending and shear hysteresis models

are important.

The peak bending displacement for wall #7 s 0.835", while the peak shear
displacement is 0.099". Thus at the peak displacement, bending deformation accounted

- for about 90% of the total deformation.

The bending displacement ductility for wall #7 i1s 7.24, and the shear displacement
ductility is 1.90. Bending and shear excursion ratios are 48.8 and 5.7, respcctivcely.

Both thé bending and shear ductility ratios are below the failure limit of 10.

The strain energy for wall #7 1s shown in Figure 161. Note that the bending
energy is about 15 times larger than the shear energy, which indicates that the energy
absorption of this wall is predomunated by bending. This 1s influenced by two factors:
1} the bending deformation of the wall is much larger than the shear dcforfnation, and
2) pinching causes the shear hysteresis model to dissipate less energy than the bending

hysteresis model.

The bending moment and shear are plotted against each other in Figure 162.
Recall that an assumed moment to shear ratio of M/V =246 is used to establish the
bending and shear backbone curves. Comparing the assumed and actual moment to
shear ratio demonstrates that 1) the assumption that the moment to shear ratio would

remain fairly constant throughout the loading history is justified, 2) the assumed
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moment to shear ratio of 246 is close to the actual moment to shear ratio, and 3) the

method used to estimate the moment to shear ratio is reasonable.

Parallel to the buildings global Y axis, wall #3 also has heavy damage. The
bending ductility and excursion ratios are 7.2 and 46.5, respectively. The shear ductility
and excursion ratios are 1.56 and 1.77, respectively. Wall #3 resists torsional forces
and lateral loads in the global Y direction. Wall #7 resists torsional forces and lateral
loads in the global X direction. While the forces in the X direction are larger than the
forces in the Y direction (ng > 5gy)' wall #3 resists more torsion than wall #7, because
wall #3 is farther from the center of rigidity. Thus walls #3 and #7 have stmilar forces.
For ground motions with the same magnitude of ground acceleration in both

directions, (i.e. Taft) the forces in wall #7 are larger than the forces in wall #3.

The damage index for the bending component of wall #7 is calculated by

Equation 5.164

o t
D= 2max  __# f d(PSE)
duit Fy duie Jo

or

-5
_2.577x10 —+ 0.20 (8.1435) = 1.532 (6.6)
3.559 x 10~

DI 3
(56644)3.559 x 10

where d,;;; = 3.559 x 103 rad, and Fy = 56644 in-k are the ultimate rotation and yield
moment from the bending backbone curve for a unit height wall, Figure 149. The
maximum unit length displacement d ., =2.577x 1073 rad and unit length
dissipated plastic strain energy f (; d(PSE) = 8.1435 in-k arc deterrmned from the
analysis. The damage index and energies for all of the walls are summarized in Table

XVI. The damage index for the building is given by Equation 5.165
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Table XVI. WALL DAMAGE INDICES OF THE UNSYMMETRIC BUILDING
(GROUND MOTION:B, LOAD LEVEL:3)

Wall DI PSE SE SE DI

Bending Component

l 0.7627 3.4906 3.4936 2:6646
2 0.0152 0.0000 0.0000 0.0000
3 1.3621 5.8674 5.8833 7.6606
4 0.0159 0.0000 0.0004 0.0000
5 0.8110 3.7702 3.7825 3.0676
6 0.0167 0.0000 0.0003 0.0000
7 1.5323 8.1435 8.1447 12.4801
8 0.0170 0.0000 0.0000 0.0000
Shear Component
l 0.2379 0.3653 0.3659 0.0870
2 0.0184 0.0000 0.0000 0.0000
3 0.2566 0.3383 0.3399 0.0872
4 0.0191 0.0000 0.0005 0.0000
5 0.2211 0.2955 0.2970 0.0657
6 0.0202 0.0000 0.0004 0.0000
7 0.3314 0.4733 0.4735 0.1569
8 0.0205 0.0000 0.0000 0.0000
Sum 22.7820 26.2697

Note: The damage indices for the axial component of deformation are zero.

Y SE;
or

. 26.2697

DI = 22.7820

= 1.1531 (6.7)

A damage index greater than | usually indicates collapse. However, before the building

can collapse, both walls parallel to the global X axis must fail. Wall #7 is the most

325



heavily loaded of these walls. As stated above, there is some concern as to whether
wall #7 failed or not. Wall #5 is the other first floor wall parallel to the global X axis.
[ts ductility and excursion ratios are well below the failure limits. Even if wall #7 does
fail, it is unlikely that wall #5 will also fail. Thus it is not likely that the building will
collapse. However, at a drift ratio of L the building has significant structural and

200
architectural damage.

2. Displacements, Base Shears, Ductilities, Excursion Ratios and Damage Indicces

of Symmetric and Unsvmmetric Buildings Subject to Different Earthquakes.

a. Maximum Base Shears and Mass Center Displacements. While the tume

history response of a dynamic system is important, often key parameters such as the
maximum base shear and displacement are sufficient to describe how a building
behaves. For the symmetric building, the base shears and mass center displacements
are selected in thc building’s Y direction. . Fér the unsymmetric building, the base
shears and mass center displacements are selected in the building’s X direction.‘ The
symmetric building is denoted B1, and the unsymmetric building s denoted B2. The
basc shears and displacements for each given ground motion, denoted A through G
(refer to Table XIV) are plotted against the peak ground acceleration (refer to Table

XV) in Figures 163 through 166.

For the symmetric building, the one-component ground motion response is
approximateiy equal to the two-component ground motion response. This can be seen
by comparing both the displacements and base shear of Bl-A with BI-B, B1-D with
B1-E, and B1-G with Bl-F for both the elastic and nonlinear cases. Vibration about
the symmetric building’s X and Y axis are essentially uncoupled, due to the small
amount of eccentricity between the mass center and the center of rigidity. Thus the

addition of a second ground motion on the symmetric building’s X axis doesn’t
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significantly affect the response on the symmetric building’s Y axis. The unsymmetric
building has a much larger eccentricity between the mass center and the center of
rigidity, which causes coupling between the X and Y axis. This coupling is responsible
for the difference in response between the one and two component ground motions for

the unsymmetric building.

For the Mexico ground motion, the elastic response of the unsymmetric building
to a one-component ground motion, B2-F, is slightly larger than the response to a
two-component ground motion, B2-G, as shown in Figures 163 and 165. This is
because the second component of the Mexico ground motion is applied such that it
" counteracts the torsion caused by the {irst component, resulting in a slight decrease in
the two-component response compared to the one-component respense. If the
orientation of the ground motion with respect to the building’s axes is varied, then an
orientation may be found where the second component of ground motion increases the
torsion caused by the first component, and the response to the two-component ground

motion will be larger than the response to the one-component ground motion.

Either the one or two component ground motion may yield the maximum
response for the unsymmetric building. Whether the one or two component ground
motion yields the maximum response depends on how the components of that specific
ground motion interact with the building. For the elastic base shear and
displacements, the one-component E! Centro ground motion, B2-A in Figures 163 and
165, has a larger response than the two-component ground motion B2-B. Contrarily,
the two-component Taft ground motion B2-E has a larger response than the
one-component Taft B2-D. It is believed that the two-component ground motion
provides a more accurate representation of the building’s actual response, since

one-component ground motions do not occur in nature.
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Recall that the two-component El Centro grourid motion was rotated 26° to
maximize the response. For the elastic analysis of the symmetric building, the response
to the rotated ground motion, B1-C, is greater than the responses with the ground
motion parallel to the buildings axes, B1-B, as shown in Figures 163 and 165. For the
elastic analysis of the unsymmetric building, the rotated response has a larger base
shear, B2-C > B2-B as shown in Figure 163, while the rotated response has smaller
displacements, B2-C < B2-B as shown in Figure 165. For the nonlinear analysis, the
response to the rotated ground motion at load‘ing level 3 is less than the response with
the ground motion parallel to the buildings axes, as can be seen by comparing BI-C
with BI-B and B2-C with B2-B in Figures 164 and 166. Additional research on the
maximum response refated to seismic input direction may be found in References 17

and 18.

For these two elastic buildings, the El Centro and Taft carthquakes have a larger
response than the Mexico earthqﬁake. Recall that the elastic natural period of the
symmetric and unsymmetric building is 0.155 and 0.188 seconds, respectively. The
majority of the EI Centro and Taft earthquake’s encrgies lie in the range between 0.2
second and 1.0 seconds. The majority of the Mexico earthquake's energy is between
I second and 3 seconds. Since the building’s natural periods are closer to the
El Centro and Taft earthquake’s, these earthquakes yield a larger response than the

Mexico earthquake.

For nonlinear structures the displacement due to the Mexico carthquake is on the
same order of magnitude as those due to the El Centro and Taft earthquakes; As a
building deforms nonlinearly, the stiffness decreases, causing an increase in the
building’s period. For the Mexico earthquake the natural period shifts toward the
region where the earthquake’s energy is the strongest. For the El Centro and Taft

earthquakes, the natural period is shifting through and out of the ranges where those
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earthquake’s energies are strongest. Thus as the loading level is increased, the
displacement due to the Mexico ground motion will increase more rapidly than those
due to the El Centro or Taft ground motions. This can be seen by comparing the slope

of B1-F with Bl-A or B1-D in Figure 166.

For nonlinear structures at higher load levels, the base shear for a given building
approaches a common value, regardless of the ground motion. This is because once
the walls have yielded, the base shear only incrcases a small amount for a
correspondingly large increase in displacement. The limiting base shear f{or each

building is its static ultimate base shear.

The energy balance diverged for the nonlinear analysis of the unsymmetric
building subject to the two-components of the Taft ground motion B2-E at load level
3. This is because the ductility demand on the ground floor walls is greater than the
maximum allowable ductility, 4= 10. When this ductility demand is exceeded, the wall
is assumed to have failed, and its stiffness is set to zero. As successive walls failed, the
structural stiffness approached zero, and the energy balance failed. This corresponds

to total collapse of the building. Thus the results for this case are omitted.

The base shear of the nonlinear unsymmetric building subject to the
two-components of the Taft ground motion B2-E for load levels | and 2 appears to be
much lower than for the one-component of the Taft ground motion B2-D as shown in
Figure 164. Contrarily, the displacement for the two-component ground motion B2-E
is greater than for the one-component ground motion B2-D as shown in Figure 166.
The distnbution of the peak shears in the ground level walls for these two ground
motions is given in Figure [67. For the one-component case, the shears in the two
walls (walls #5 and #7) parallel to the direction of loading are similar. This is because
the walls (walls #1 and #3) perpendicular to the direction of loading resist most of the

torsion forcing walls #5 and #7 to displace similar amounts. For the two-component
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case, walls #1 and #3 must resist forces from the Y direction ground acceleration in
addition to the torsional forces. These walls are more heavily loaded than under the
one-component ground motion, and consequently have a lower stiffness, resulting in
a building that has a larger torsional flexibility. The maximum torsional rotation for
the roof is 0.00172 radians for the two-component ground motion, versus 0.00058
radians for the one-component ground motion at load level 2. As torsional rotation
increases, walls #5 and #7 displace different amounts resulting in the shear distribution
shown in Figure 167. Thus the two-component ground motion’s base shear in the X
direction is less than the one-component ground motion’s base shear, even though the
actual shear in wall #7 for the two-component ground motion is larger. The largest
shear for the two-component case is in wall #3, which 1s parallel to the building's Y
axis. Also note that the walls closest to the mass center, walls #3 and #7, are the most
heavily loaded. For the nonsymmetric building, the one-component ground motion
vields an unrealstic distribution of shears in the walls. The nonlinear dynamic
response of any unsymmetric structure subject to 2 one component ground motion

should be used with extreme caution.

b. Ductilities and Excursion Ratigs. The ductility of the building can be

calculated several different ways. First consider the displacement ductlity for the
entire building. Let 6y be the yield displacement of the building’s roof mass center,
detemﬁned from the static analysis as shown in Figures 152 or 135; also, let ‘5rn be the
peak displacement of the building’s roof mass center; then the ductility of the entire

building may be defined as
Sm
#1 building = ‘%" (6.8)
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This ductility, given in Figure 168, is for various levels of peak ground acceleration.
Most of the ductilities range from 0.8 to 1.6 for the lowest load level . At the highest

load level 3, the majority of the ductilities range from 4 to 6.

Generally, the unsymmetric building has higher ductilities than the symmetric
building. For similar ground motions, the unsymmetric building has more torsion than
the symmetric building. This puts additional loads on the shear walls, increasing their
displacement and yielding larger ductilities in the unsymmetric building. Thus the

torsion in the unsymumetric building is partiaily responsibie for the higher ductilities.

The ductilities are based on the maximum displacement divided by the yvield
displacement. Since the yield displacement of the symmetric and unsy‘mmctric
buildings 1s simular, there 1s a very strong similarity between the nonlinear
displacements in Figure 166 and the building ductilities in Figure 168. Thus the
influence of the parameters discussed previously on the ductilities is similar to their

influence on the nonlinear displacements.

Ductilities are reported hercin with inclusion of the values less than 1. For the
classic elasto-plastic system, any deformation less than the vicld deformation is elastic,
and the ductility is therefore undefined. For reinforced concrete shear walls, the clastic
range ends at cracking, which 1s always less than the yield deformation. Thus
ductilities less than 1 convey the information that the wall deformation is less than

vield and that the wall behavior may be nonlinear.

Another method of calculating the ductility is to consider the displacement of an
isolated shear wall. Let 5by be the bending yield displacement, ‘Ssy be the shear yield
displacement, dt,, be the maximum bending displacement, and dp, be the maximum

shear displacement of a shear wall. Define the ductility of a shear wall as
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Spp + 0
Bl wall = s (6.9)
yb T %ys

The wall displacement ductility is shown in ‘Figure 169. These ductilities have values

simular to those based on the building ductility definition.

Plotting the wall displacement ductility versus the building displacement ductility
in Figure 170, we observe that the building displacement ductilities are only shightly
larger than the wall displacement ductilities. Thus the ductilities of the wall with the

most damage, and the building’s ductility are approximately equal.

One exception is the unsymmetric butlding subject to the two component Taft
earthquake, B2-E. For this case the maximum wall ductility occurs in wall #3, which
is perpendicular to the direction that the building’s ductility is calculated. Because of
the torsion, the displacements of wall #3 are greater than the displacements at the mass

center. Thus the ductility of the wall is larger than the ductility of the building.

The displacement ductility can also be calculated separately for the bending and

shear components of deformation in a shear wall. Define the bending ductility as

9bm
#1 bending © 7 {(6.10)
vb
and the shear ductility as
5 .
sm
H1 shear = 5 (6.11)
S

The bending ductility is given in Figure 171. The majority of the bending ductilities
at the lowest load level 1 range fr.om I to 2, while at the highest load level the bending

ductilities range from about 4.5 to 8. This is larger than the structure and wall
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ductilities, which, as previously discussed, have a majority of ductilities ranging from

4 to 6 at the highest load level.

The shear ductility is given in Figure 172. The shear ductilities at the lowest {oad
level I range from 0.5 to 1.5, while at the highest load level the shear ductilities range

from 1 to 4. The shear ductility is less than the bending, wall and structure ductility.

The excursion ratios based on the shear and bending displacement ductilitics are
given in Figures 173 and 174. The majority of the bending excursion ratios range {rom
20 to 50 for load case 3, while the shear excursion ratios are much lower. If the total
duration of the ground acceleration record is used instead of a I0 or 15 second

segment, these excursion ratios would be larger.

The ductilities and excursion ratios are also calculated by the variable strain
energy definitions and the constant strain energy definitions, Equations 5.161 and
5.162. On the average, for bending the constant strain encrgy ductilities are about 35%
larger than the displacement ductilities, and the variable strain cnergy ductilities are
about 16% larger than the displacement ductilities. The bending excursion ratios by
the three different definitions yield similar resuits. For the shear ductilities, on the
average, the variable strain encrgy ductilities are about 120% larger than the
displacement ductilities, and the constant strain energy ductilities are about 40%
larger than the displacement ductilities. The shear excursion ratios have considerable

variation, due to the difference in ductilities.

¢. Damage Indices. The damage indices are caiculated for each of the buildings

and are presented in Figure 175 for various levels of ground acceleration.

Generally, the unsymmetric building has more damage than the symmetric

building for similar ground motions. This is consistent with the observed ductilitites.
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The unsymmetric building is subjected to torsional forces in addition to the lateral
forces that the symmetric building experiences. Thus it is reasonable that the

unsymmetric building would experience more damage.

The symmetric building’s damage index for a one-component ground motion is
higher than the damage index for a two-component ground motion, compare B1-A and
B1-B. Recall that a weighted average of the elements damage indices is taken to get
the building’s damage index, where the weighting factor is strain energy in the element,
Equation 5.165. For the two-componeﬂt ground motion, the sum of energy in all the
walls 1s much larger than the one-componeht ground motion, while the sum of damage
index times energy is only slightly larger than the one-component case. Thus the
two-component ground motion has a lower damage index than the one-component
ground motion due to the weighting method. Recall that the maximum dispiacement
of the symmetric building for both the one and two component ground motions is
about equal. Thus the building has similar amounts of damage due to the one and two
component ground motions, and the damage indices should be approximately equal.
It is important to note that the two-component ground motion yields more realistic

damage indices, because one-component ground motions do not eccur naturally.

The rate at which the damage index increases with the ground acceleration is
much higher for the Mexico ground motions than the Taft or El Centro groﬁnd
motions. Recall that the displacement for the Mexico ground motion also increased

rapidly with an increase in ground acceleration.

d. Failure Criteria. Two different failure criteria have been discussed and are

evaluated in this section.

¢ Maximum Displacement Ductility. This failure criteria is based on the average

observed failure ductilities in NCKU walls which ranged from 5.6 to 17.5. An average
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ductility of 10 is used as the failure [imit. The peak ductilities for both of the buildings

are less than the failure limit.

¢ Damage Index. The damage index is based on a weighted average of the
buildings ductility, and the strain energy dissipated during the loading history. The
strain energy dissipated during the loading history is simular to the constant strain
energy excursion ratio. Thus the damage index is actually a combination of the
ductility failure criteria and the excursion ratio. Because the damage index is based on
strain energy, it is sensitive to the length of the ground motion record. The damage
index for several of the cases exceeds the failure limit of 1.0 at loading level 3. If the
entire ground motion record is used instead of a 10 or 15 second segment, the damage
indices would be larger. Thus one might conclude that the cases corresponding to [oad

level 3 have exceeded the failure limit.

The hysteretic energy coefficient § used in determining the damage index is based
on 8 shear walls (72). For reinforced concrete beams and columns, Park and Ang (65)
examined the results of 261 tests and determined expressions for f that have a
coeflicient of variation of 55% when compared to experimental results. This indicates
considerable scatter in the experimental data. As more shear wall data becomes
available, and the § value for shear walls becomes more refined, similar scatter can be
expected. Thus the damage index of 1 should not be rigidly interperted as indicating

collapse.

C. SENSITIVITY OF R AND Cp TO EL CENTRO, TAFT AND MEXICO

EARTHQUAKES

An elastic response to an earthquake ground motion requires large forces, as scen
by the elastic base shears in Figure 163. Experience has shown that ductile structures

can survive an earthquake with much lower base shears, as seen by the nonlinear base
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shears in Figure 164. The structural analyses recommended in the design codes, such
as UBC, are based on an elastic response spectrum. This elastic response spectrum is
then modified to reflect the actual nonhinear behavior of the structure by the response
modification factor, R. Common design practice considers the elastic respense due to
loadings that have been madified to account for nonlinear behavior. Thus the response

modification factor, R, is a very important code parameter.

The load-deformation response of a structure may be represented by [ligure 176.
Cﬁrve 0O-A-B-C-D represents the actual nonlinear behavior of a structure under a
specific ground motion. Point A represents the working load, point B represents the
first significant yield"21 of the structure, point C represents the maximum nonlinear
load and displacement that the structure achieved during the ground motion and point
D represents the ultimate capacity of the building. The curve O-A-B-E represents the
elastic response of the building to the same ground motion. Point E represents the

maximum response of an elastic structure. The NEHRP Recommended Provisions for

the Development of Seismic Regulations for New Buildings (53) defines the response

modification factor, R, as the ratio of the maximum elastic force (Point E) to the yield

force (Point B), or

__E | (6.12)

A second parameter Cd is defined as the ratio of the maximum nonlinear displacement_

(Point C) to the yield displacement (Point B), or

2 The first significant yield corresponds to the formulation of a plastic hinge in one

of the structure’s critical elements. This occurs at a higher load than the yield point,

which corresponds to the yielding of the first reinforcing bar in a concrete structure.
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Cg=—= ~ (6.13)

Since the first significant yield is greater than the structures yield point, then C4 is
greater than the buildings displacement ductility. The NEHRP recommends the values

of R=4.5 and Cd=4 for R/C shear walls. Simularly, the Uniform Building Code (77)

defines the response modification factor Ry, as the ratio of the maximum clastic force

(Point E) to the working stress force (Point A).

P
r - JE (6.14)

A
The UBC recommends the value of R=6 for R/C shear walls. The elastic response
spectrum 1s reduced by R, 1n Equation 6.1 to calculate the equivalent static lateral
load in the UBC code. This static load corresponds to the working load. Buildings
designed to resist this lateral load will behave nonlinecarly if the design earthquake is

experienced.

1. Respense Modification Factor, R. The response modification factor, R, from

Equation 6.12 is presented as a function of damage index in Figure 177. The point of
the first significant yield, Pp, for the symmetric building is near 540 kips as shown in
Figure 152 and near 510 kips for the unsymmetric buiidipg as shown-in Figure 156 {or
one-component static loadings. The elastic base shear, P, is given 1n Figure 163, and

the damage indices are given i Figure 175.

The E! Centro ground motion has a much higher response modification factor

than the Mexico ground motion. Recall that the Mexico ground motion has a period
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that is significantly longer than the elastic fundamental period. Thus the elastic
response is relatively small, compared to El Centro and Taft. As the building deforms
nonlinearly due to the Mexico ground motion, the fundamental period of the building
increases and shifts towards the period of the ground motion. The closer the building’s
penod 1s to the ground motion’s period, the larger the response. Note that the
nonlinear response to the Mexico ground motion is on the same order of magnitude
as the El Centro and Taft ground motions. Thus the response modification factor is
a function of both the buildings period, and the period of the ground motion. This

implies that the response modification factor is site dependant.

The angle of the earthquake input direction on the structure also influenced the
respanse modification factor, as shown by comparing Bl-B with B1-C, and B2-B with
B2-C in the figure. Thus for a given earthquake and building there exist a range of
response modification factors depending on the orientations of the seismic input. The

lower bound of this range will determine the maximum base shear.

An actual earthquake has two horizontal components of ground mection. For
unsymmetric buildings which are sensitive to multicomponent ground motions, it is

unrealistic to use the one-component ground motion to determine the response

modification factor. Symmetric buildings may or may not be sensitive
tc multicomponent ground motions, that depends on the relative
distance between and the relative locations of the mass center and the
rigidity center. For this case the response modification factor for
oné and two component ground motions is similar. However, the damage

index for symmetric buildings is component sensitive.

As the level of damage in the building increases, the response modification factor

also increases. This is because both the elastic base shear and the damage index

T
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increase with increasing magnitudes of ground motion. Thus Figure 177 can be used

to choose a response modification factor based on an acceptable level of damage.

The symmetric building at failure (DI ~ 1.0) has a higher response modification
factor than the unsymmetric building. One cause of this difference is that the elastic
base shear for the symmetric building is typically larger than the unsymmetric building
as shown by Figure 163. The differences in elastic response are due to different
fundamental periods and the unsymmetric building’s coupling of response in the X and
Y axes. Another cause is that the unsymmetric building typically has more damage
than the symmetric building. The increased damage is also due to the unsymmetric
building’s coupling of response in the X and Y axes. Thus the response modification

factor 1s a function of the building type.

Additional studies are required before the response modification factor for
reinforced concrete shear walls can be determined. These should include buildings with
a wider range of geometries, natural frequencies and shear wall height to width ratios.
A family of earthquakes records that are based on the code response spectrum should
be used. The two-component ground motions are preferred over one-component
ground motion. Additionally, the angle of the ground motion to the building should
be varied to determine the range of response modification factors for each combination

of building and ground motion.

Based on the limited study of two buildings, the response modification factor
recommended by the NEHRP, R=4.5, seems reascnable for the El Centro and Taft
ground motions. The response modification factor for the longer period ground

motion of the Mexico earthquake is close to 1.

2. Deflection Amplification Factor, C4. The NEHRP definition of the deflection

amplification factor Cd, from Equation 6.13, is presented as a function of damage
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index in Figure 178. The point of the first significant yield is determined from the static
monotonic response which is shown in Figures 152 and 155. The nonlinear
displacement, D¢, 1s given in Figure 166, and the damage indices are given in Figure

178,

The displacement ampliﬁcétion factor increases with damage index. Recall that
the damage index. consists of ) maximum displacement divided by ultimate
displacement and 2) a term containing the plastic strain energy. Since the deflection
amplification factor, Cg, consists of the maximum displacement divided by the yield
displacement, the deflection ampiification factor and the damage index are clasely
related. The deflection amplification factor Cy varies from 2 to 3 at failure (DI ~ 1).

This is slightly lower than the NEHRP suggested value of 4.

The point of the first significant yield is determined from Figures 152 and 1355.
The displacement at this point is about twice of the first yicld displacement. Shear
walls have a gradual yielding behavior. Thus the exact location of the yield point 1s
based on judgment. Modifying the location of the significant yield point will have a
larger impact on the displacements than on the load. Thus the deflection amplification
factor is more sensitive to the location of the yield point than the response modification

factor.
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VII. RESPONSE STUDIES OF LOW-RISE BOX TYPE BUILDINGS

In buildings with isolated R/C shear walls, each wall resists lateral loads by -
bending and shear. Since the floor is considered to be flexible in its plane, the vertical
displacements of the different walls in the building are incompatible, and the axial loads
in the walls are only due to gravity loadings. The building’s lateral stifTness 1s the sum

of the individual wall’s bending and shear stiffnesses.

In box type R/C buildings, the shear walls are connccted along their vertical
edges. Thus the vertical displacement of adjacent walls is compatible. External
bending moments are resisted by bending in the plane of the shear wall and by axial
loads in shear walls on both sides of the center of rigiditv. The box type building's
lateral stiffness is 1) the sum of the individual wail’s bending and shear stiffnesses and
2) the sum of the individual wall's axial stiffness times the square of the distance to the
center of rigidity. The influence of the wall’s axial stiffness on the building’s lateral
stiffness causes the behavior of box type R/C buildings to be different from the

behavior of R/C buildings with isolated shear walls.

A. STATIC ANALYSIS

Box section UT-B6 was tested with a cyclic static loading by Umemura, et al (78,
79) at the University of Tokyo. This box is 83 ecm wide, 80 ¢m taill and has 8 cm thick

22 13.2 cm on center,

walls, as shown in Figure 179. Remnforcing consists of 2 D6 bars
cach way, for a reforcing ratio of 0.6%. The steel stress-strain curve and the concrete

properties are also given in the figure,

22 A D6 reinforcing bar is approximately equal to a #3 reinforcing bar.
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Nine joints are used to define the three dimensional structural model as shown in
Figure 180. At the‘base, joints 1 through 4 define the corners of the box. Joints 1
through 14 define the corners of the box at the roof. Joint 10 is at the mass center of
the roof. The JCS for all of the joints is parallel to the GCS. The three dimensional
structural model consists of four shear wall elements, numbered | through 4. The
wall’s center line dimensions are used for the structural model, thus each of the shear

wall elements is 75 cm wide and 80 cm tall.

As discussed in Chapter V, each joint has 6 degrees of freedom. At the base of
the box, joint 1 through 4, all six degrees of freedom are restratned. The slab at the top
of the box is assumed to be a rigid diaphragm. A planar constraint is used to transfer
the translations in the X and Y axes and the rotation about the Z axis from joints 11
through 14, at the corners of the box, to joint 10, at the mass center. The planar
constraint at the roof reduces the number of degrees of freedom at joints 11 through
14, leaving rotational dof about the X and Y axes which are restrained and
transiational dof in the Z axis which is free to displace. None of the elements are
connected to joint 10. Thus joint 10 does not have any stiffness before joints 11
through 14 are constrained to it. As a ‘'master’ jéint, joint 10 has translational stiffness
in the X and Y axes, and rotational stiffness about the Z axis. Loading consist of
imposed displacements of joint 10 in the X direction. Thus the X translational dof of
joint 10 is restrained. The Z translational dof and the rotations about the X and Y axes
are also restrained, because these dof do not have any stiffness. The Y translational
dof and the Z rotational dof of joint 10 are free to displace. The dof are numbered in
accordance with the Gdof numbering scheme presented in Section A.4 of Chapter v,
as shown in Table XVII. None of the dof are condensed out since this is a static
analysis. All of the rotations about the X and Y axes are restrained with the restraint

option KEY = 2, which was discussed in Section A of Chapter V.

359



Figure 180. UT Box B6 Degrees of Freedom
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In the experimental study, the load is applied 86 cm above the base of the box
section. Displacements at each of the four corners are measured and averaged. For
analysis the load and displacements are assumed to be acting at the mass center of the
box, which corresponds to joint 10. Loading consists of imposed displacements of the
mass center in the global X direction (Gdof 23). P-A effects are neglected since the

only axial loads are the self weight of the box.

Bending moments about the global Y axis are resisted by walls #1 and #2 in
bending and by walls #3 and #4 with axial loads. Thus the portion of bending resisted
by a single wall is dependent on the walls stiffness relative to the stiffness of the whole
box section. One method to estimate the percentage of bending which a single wall -
resists is to take a ratio of the wall's moment of inertia to the moment of inertia for the

whole box section. Let Ig be the gross moment of inertia for the whole box section,

834 — 7%
1z

Ig = = 12275 600 cm’” ~ 7.1

and Iw be the moment of inertia for a single wall, say wall #1,

§ x 83°

Iw = = 281 250 cm”? | (7.2)

then wall #1 will resist -% = 0.124 of the total moment. Ifthc applied moment is 80P,

then wall #1 resists a moment of approximately 10P.
For loading in the global X axis, walls #1 and #2 each resists an equai portion

of the shear, while walls #3 and #4 do not resist any shear. For an applied load of P,

the shear in wall #1 s 0.5P. Thus wall #1 has a2 moment to shear ratioc of

10P

0.5P = 20 cm.
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The bending and shear backbone curves for walls #1 and #2 are determined by
the method presented in Chapter II1. If the load were applied in the global Y direction,
a similar analysis would yield the same backbone curves for walls #3 and #4. Thus the
same backbone curves are used for all four walls. Axial stiffness is determined in

accordance with the axial hysteresis model presented in Chapter IV.

The calculated response is compared with the experimental response as shown in
- Figure 181. The calculated backbone curve is very close to experimental curve for a
displacement less than or equal to 1 cm as shown by Curve A in the figure. For
displacements larger than | cm the calculated backbone curve has slightly larger loads
than the experimental curve. The calculated unloading stiffness of Curve B in the
figure is less than the experimental unloading stiffness. Thus the calculated hysteresis

loops dissipate less energy than the experimental hysteresis loops.

The low unloading stiffness is primarily due to the unloading branch of the axial
hysteresis model. The axial hysteresis loops for wall #4 are shown in Figure 182.

Recall that the unloading stiffness of the axial hysteresis model, Equation 4.53, is

Kr=Kc(

Dyt )“ - Fmax + Fy
Dmax/ — \ Dmax - Dyc

where «a=0.90. For the walls in box UT B6 this unloading stiffness is too low. The

axial unloading stiffness in Equation 4.53 is increased by setting a = 0.40.

The calculated response with a=0.40 is compared with the experimental response
in Figure 183. Overall the comparison between the calculated and experimental
response is good. The comparison between calculated and experimental backbone,
Curves A, is identical to the previous analysis. The unloading stiffness, Curve B in the
figure, is very close to the experimental unloading stiffness. This improvement over the

~ previous analysis is due to the modification of the axial hysteresis model.
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The calculated reloading loops, after unloading from the same direction as shown
in Curve C of Figure 183, are larger than the experimental loops. Similar to the
unloading in Curve B of the figure, the reloading curve is strongly influenced by the
axial hysteresis model. Curve C in Figure 184 i:cs the axial hysteresis loop for wall #4
that coincides with the calculated reloading loop in Curve C of Figure 183. This axial
hysteresis loop is very large. Reducing the reloading stiffness would reduce the size of
this axial hysteresis loop and improve the correlation between the calculated and

experimental response in Figure 183.

The calculated reloading loops, after unloading from the opposite direction as
shown in Curve D of Figure 183, do not pinch as much as the experimental loops. This
is partially due to the shear hysteresis model, which has a tendency to underestimate
pinching (Chapter 1V). However the pinching in the shear hysteresis loops for walls
#1 and #2, as shown in Figure 185, appears to be fairly severe. Another cause is the
axial hysteresis model’s stiffness flor reloading after reversal, in Curve D in Figure 184;
softening this reloading curve would increase pinching and improve the correlation

between the calculated and experimental response.

The bending hysteresis loops for walls #1 and #2 are shown in [Figure 186. Note
that the bending hysteresis model has large stable loops while the shear hysteresis
model has pinched loops. As the axial and bending stiflnesses change, the portion of
bending resisted by the wall changes. Thus the moment to shear ratio for walls #1 and
#2 is not constant as shown in Figure 187. However, the assumed moment to shear

ratio of M/V =120 is a reasonable approximation.

The axial hysteresis loops for walls #1 and #2 are shown in Figure 188. Note that
the wall yielded axially, implying that all of the steel in the wall has also yiclded. Recall
that the axial load was neglected when the moment-shear interaction surface was

calculated. If the interaction between axial tension, moment and shear were
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considered, the bending and shear stiffnesses would be reduced. For box type
buildings, it is apparent that the interaction between axial, moment and shear forces

is very important. This topic is recommended for further research.

The axial hysteresis loop for walls #3 is shown in Figure 189. Similar to wall #4,
wall #3 has yielded. However since walls #3 and #4 are on opposite sides of the center

of rigidity, wall #3 is in compression while wall #4 is in tension.

In summary, the comparison between the experimental response and the
calculated response 1s good. However, deficiencies in several of the axial hysteresis
model’s rules have been identified. Recall that the axial hysteresis model was
developed for boundary columns. Thus a different axial hysteresis model for shear
walls needs to be developed. Additionally, the interaction between axial force, bending

and shear should be considered.

B. DYNAMIC ANALYSIS

The two-story model box structure, 3D11, was dynamically tested on a shaking table
by Bennett, Anderson, Endebrock, et al (3, 30, 31, 33, 34, 35) of the Los Alamos
National Laboratory. This box structure was previously introduced in Chapter II,
Figure 18. Two layers of 0.5" hail screen are used for the reinforcement with a
reinforcing ratio of 0.54%. The hail screen consists of 0.0427¢ wires 0.5 on center,
each way, with a yield point of 42.7 ks1 at £ = 0.001668 in/in, and an ultimate stress of
53.1 kst at £ =0.04 in/in. The box structure is made of micro concrete, with an
ultimate stress of 2.89 ksi at £g = 0.0033in/in, an initial modulus of 2750 ksi, and a

tensile strength of 0.42 ksi.

The box structure is attached to a umaxial shaking table. The direction of motion

coincides with the structure’s global Y axis as shown in Figure 190. The experimental
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Figure 190. LANL Box 3D11, Degrees of Freedom



response was determined in Section B of Chapter II. The 3D structural model consists
of eight shear wall elements. The wall and floor center line dimensions are used for the
structural model. Thus the walls are 9” or 17" wide, and 7.75" or 8.25" tall, depending
on their location. The mass center and center of gravity of the structure coincide. The
second floor and roof slabs are assumed to be rigid diaphragms. Planar constraints are
used at each level to transfer the joint degrees of freedom from the corners to the mass
center. An additional weight of 0.23 k is added to both the roof and sec‘ond floor.
These weights are included with the weight of the box structure in the axial loads for

the P-A forces.

Bending moments about the structure’'s X axis are resisted by walls #5 to #8 in
bending and by walls #1 to #4 in axial tension or compression. Similar to UT box B6,
the moment to shear ratios for the walls are estimated by taking ratios of the moments
of inertia. Bending and shear backbone curves are generated by the method presented

in Chapter II.

Walls #1 and #2 have a height to width ratio of % = LIZ]—S- = 0.43. For walls with

this height to width ratio, the awal strain will not be constant over the width of the

wall due to shear lag. Gupta (43) developed an elastic stiffness reduction factor

rp= ih—s 1 for the flanges of box structures. Thus for wall #1, the effective axial

3w
stiffness for a unit length member is

E.wt
Ka = — ( ;131) ~ 2730x17l (2;‘;775 ) ~ 13290 k/in (7.3)

The stiffness reduction f{actor was derived for elastic structures, and its direct
application to nonlinear structures is inappropriate. Another method to determine the
effective axial stiffness is to loosely interpret the effective overhanging flange width
criterion for a R/C T-beam with the slab on one side, ACI 8.10.3 (1). This efTective

width criterion is calibrated to caiculate the ultimate strength of T-beams. Thus the
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applicability of the criterion for nonlinear analysis is established. The effective
overhanging flange width, we,, is the rninimurﬁ of 1) one-twelfth of the span length,
2) six times the flange thickness, or 3) one-half the clear distance between beams (1).
For wail #1, w, is the smallest of 1) -%—= 1.33 in, where 16 in. is the total height of
both stories, 2) 6 x 1 = 61in, or 3) -1-;- = 71n. Adding 0.5 in. for the-width of the web,

and multipling by two for both sides as shown in Figure 191, yields
Wo = 2(0.5 + wog) = 2(0.5+ 1.33) = 3.67 in - (7.9
Thus the effective axial stiffness per unit length of the wall is

EcWet _ 2750 x3.67 x 1
1 1

Ka= = 10092 k/in (1.5)

The tensile stiffness and yield point are similarly calculated with an effective width of

3.67 in.

Note that Gupta's effective stiffness is about 30% higher than the ACI criterion.
Assuming that wall #1 yields, it is more rational to use the criterion based on ultimate
strength (ACI) than the criterion based on elastic behavior (Gupta). Thus the axial
stiffness of wall #1 is 10092 k/in. For box 3D11 the effective width criterion is applied

to all of the walls.

Recall that the full axial stiffness was used for box UT-Be6, which had a height to
width ratio of about 1. [t is not known whether the shear lag is negligible in box
UT-B6 or not. The shear lag problem for walls is very complicated and deserves

further study.

The experimentally measured base excitation is used as the input ground motion
for the dynamic analysis and is shown in Figure 27. The analysis is performed with a
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time step of At=0.00001 second, and a duration of 0.20 seconds. Five percent mass

and stiffness proporticnal damping is assumed. Since the tests are
performed on a structural model, the magnitude and duration of the
exciting motion have been scaled in accordance with similitude

studies.

The calculated and experimental displacements for the roof are compared in
Figure 192. Overall the comparison between caiculated and experimental
displacements is good. The peak calculated and experimental displacements are
0.00173" and 0.00143", respectively. The calculated period 1s _close the the experimental
period. Beyond time 0.16 seconds, the calculated amplitude is much greater than

experimental amplitude,

The calculated and experimental accelerations are compared in Figure 193.
Overall the comparison between the calculated and experimental accelerations is good.
The peak calculated and experimental accelerations are —1.84g and |
—1.77g, respectively. Both the calculated and experimental results yield a similar
frequency spectrum as shown in Figure 194. A strong 83 hz acceleration signal is
observed in both spectra. However, the calculated acceleration is higher at 83 hz than
the experimental acceleration, which corresponds to the differcnce  in peak
displacements. Between 200 and 300 hz the calculated response is much larger than the
gxperimental response.

The calculated and experimental displacements for the second floor arc compared
in -Figure 195. Overall the companson between calculated and experimental
displacemgnts is fair. From the displacements it can be seen that experimental

response has a larger high frequency content than the calculated values.
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The calculated and experimental frequency response functions23 for the roof are
compared in Figure 196. The cal;culated and experimental first mode are at 73 hz and
65 hz, respectively. The calculated and experimental FRF for the second floor are
compared in Figure 197. Again the first mode of the calculated and experimental
response is at 73 hz and 65 hz, respectively. The calculated second mode 1s at 280 hz,

while the experimental second mode is at 210 hz.

The maximum bending moment in walls #5 and #6 1s 0.65 in-k, which is less than
the cracking moment of 4.5 in-k. The maximum shear in walls #5 and #6 is 0.175 k,
which is less than the cracking shear of 1.8 k. The peak axial loads in walls #1 and #2
is 0.39 k, which is less than the vield force of 0.89 k. Thus the response of LANL box

3DI11 is elastic.

The moment to shear ratio for walls #5 and #6 is shown in Figure 198. The
average moment to shear ratio appears to be about 3.6". A moment to shear ratio of
2” was used to develop the bending and shear backbone curves, based on the width of
walls #1 and #2 being fully effective. The analysis is based on the width of walls #1
and #2 being partially effective. The bending and shear stiffness of NCKU Wall SW6
1s insensitive to the moment to shear ratio when the loading is below the cracking load
as shown in Section B of Chapter 111, Figures 45 and 46. Simuilarly, the shear walls in
this structure are also insensitive to the moment to shear ratios when the ‘loading is
below the cracking load. Thus the assumed moment to shear ratios for the backbone
curves are not revised. If this structure is subjected to larger lateral loadings and the
walls behave nonlinearly,‘then the momént to shear ratio and the backbone curves

must be modified.

2 The frequency response function (FRF) is the ratio of a structure’s response to its
base acceleration in the frequency domain and is calculated by Equation A.38 of

Appendix A.
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VIII. SUMMARIES AND CONCLUSIONS

The objectives of this study are to develop nonlinear hysteresis models of low-rise
R/C shear walls for system analysis and to study the static and seismic response
behavior of typical low-rise buildings with isolated shear walls as well as the box type
structures. The behavior parameters studied include the separation of bending and
shear deformations, ductility factors, excursion ratios, response reduction factors, and
damage indices. The effects of multicomponeﬁt seismic input on the behavior
parametérs are also investigated. This chapter consists of the summaries of the work

along with pertinent observations and conclusions.

A. NONLINEAR SHEAR WALL ELEMENT

1. Monotonic Load-Deformation Behavior. An analytical methad for calculating

the monotonic load-deformation response of isolated shear walls is developed in
Chapter I1I. This method considers the coupling behavior between bending and shear
by combining the bending and shear strains on a differential element in the wall. The
bending strain 1s assumed to vary linearly across the width of the wall and the shear
strain is assumed to be constant over the entire wall. The horizontal expansion of the
NCKU walls having a height to width of 0.50 is found to be from 0.1 to 0.5 times th;z
vertical expansion. Thus horizontal expansion of the walls is neglected. Principal

strains are determined from the longitudinal and shear strains on the wall. The angle

of the principal tensile strain is from 30° to 60° above the horizontal. This corresponds

to the observed angle of cracking in the walls.

Principal stress-strain models are used to determine the concrete stresses on a

rotated plane. The Vecchio-Collins stress-strain model is used for compressive
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concrete stresses and a graded tensile model is used for tensile concrete stresses. The

longitudinal and shear stresses are determined from the principal stresses.

Bending and shear stresses on the wall for an assumed strain distribution are
summed to yield the moment and shear on the wall. An iterative procedure modifies
the strain distribution until the axial load on the wall equals the applied loadings. The
moment and shear on the wall, for different strain distributions, form the
moment-shear interaction surface. From these interaction surfaces one can observe
that shear reduces the bending capacity, ductility, and stiffness. Similarly, bending
reduces the shear capacity, ductility, and stiffness. A nondimensional parameter ¥ is

developed to measure the relative influence of bending and shear for a given wall with
a moment to shear ratio. For the walls studied, ¥ varies from ¢ = 7.6° to 79.2°, where

¥ =0° indicates pure bending and ¥ = 90° indicates pure shear.

The experimental curvature distributions on the NCKU walls are observed to be
irregular or inverted in some walls due to the interaction between bending and shear
in the hinging region of the wall. Thus an equivalent moment diagram that reflects the
average curvature over the hinging region is used with the analytical moment-shear
interaction surface to determine the bending, shear and total deformation of an isolated

wall subject to monotonic loading.

The experimental displacements of the NCKU walls are analyzed to separate
bending and shear deformations from the total deformations. For the NCKU walls
with a height to width ratios ranging from 0.50 to 0.75, the bending dcformation

typically ranges from 40% to 60% of the total deformation.

The monotonic load-deformation curves of bending and shear are typically linear
up to the cracking load. After the cracking load, the stiffness gradually decrcases. A

gradual yielding behavior is observed. Average observed bending and shear ducrilities
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are 10.39 and 11.0, respectively, and the average observed bending and shear excursion

ratios are 19.2 and 25.0, respectively, for five of the NCKU walls.

The calculated monotonic load-deformation curves are verified by comparison
with the experimental results of 27 shear walls. Height to width ratios for the WaHSZ4
range from 0.50 to 2.40. Four wall cross sections are investigated: 1) rectangular walls
with nearly uniform reinforcement, 2) rectangular walls with extra reinforcing steel at
the edge of the wall, 3) barbell cross sections (walls with square boundary columns),
and 4) walls with flanges. Web reinforcement ratios vary from 0.28% to 0.78%
vertically, and from 0 to 1.14% horizontally. Flange reinforcement, when used, varies
from 1.47% to 6.4%. Concrete strengths range from 2760 psi to 7780 psi, and the yield

stresses of the reinforcing steel range from 68 ksi to 80 ksi. Overall the comparison of

the calculated and experimental response is good.

The influences of several parameters on the walls" monotonic lead-defermation

behavior are:

¢ Boundary elements increase the bending capacity more than the shear capacity.
Thus low-rise walls with boundary elements are often dominated by shear
deformation.

e As the vertical web reinforcement ratio is increased, the walls gained strength and
lost ductility.

¢ The horizontal web steel reduces the herizontal expansion in the wall. Ormission
of the horizontal web steel reduces the ductility.

¢ Reducing the height to width ratio of a wall can significantly reduce the effect of

bending deformation on the wall’s behavior.

%4 NCKU and the PCA walls. The height to width ratio of the NCKU walls range

from 0.50 to 0.75, while the height to width ratio of the PCA walls range from 0.50

to 2.40.
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2. Cyclic and Earthquake-Type Load-Deformation Behavior. The semi-empirical

bending and shear hysteresis models are developed in Chapter IV. The cyclic and

earthquake-type load-deformation behaviors of five NCKU walls are studied to

determine characteristics of bending and shear hysteresis loops. Several of the more

prominent features of the bending and shear hysteresis loops are:

Both the bending and shezfr hysteresis loops have highly noniinear backbone curves
without well defined break points.

The unloading branch for both bending and shear hysteresis loops is highly
nonlinear, and the unloading stiffnesses decrease with increasing levels of peak
displacements.

When the wall is cycled at a constant load, near the maximum past load, the
deformations tend to increase with each cycle. When the wall is cycled well below
the maximum past load, the deformations do not increase with each load cycie.
The reloading curves for the shear hysteresis loops are dominated by pinching. The
degree of pinching increases for larger values of peak displacements.

The reloading curves for the bending hysteresis loops do not pinch.

The energy absorption increases with increasing peak displacements. The energy
absorption of the shear hysteresis loops is less than the bending hysteresis loops

because of pinching.

These observations have been synthesized into semi-empirical bending and shear

hysteresis models. The monotonic load-deformation relationships are also utilized in

developing these models.

The hysteresis rules are used to determine the bending and shear stiffnesses under

cyclic and earthquake type loadings. The calculated load-deformation responses and

strain energies compare favorably with the expenmental results
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3. Shear Wall Stiffness Element and System Formulation. The formulation of the

shear wall stiffness element based on hysteresis models and the system formulation are

given in Chapter V.

The shear wall stiffness element has bending, shear and axial deformations. The
bending and shear deformations are in the plane of the wall. The bending stiffness out
of the plane of the wall is neglected. The wall's geometric stiffness, however, includes
both in plane andvout of plane deformations, which is used mainly for 3D structural

systems.

The system formulation has the following attributes: 1) joint based degrees of
free'dom, 2)rigitd body and planar constraints, 3) incremental nonlinear static
solution, 4) unbalanced load correction for overshooting, 5) incremental nonlinear
dynamic solution, 6) mass and stiffness proportional damping, 7) condensation to
reduce the size of a dynamic problem, 8) energy balance, 9) damage index, and
10) ducttlity and excursion ratio for various definitions of displacement, constant

strain energy, and variable strain energy.

B. RESPONSE STUDIES OF LOW-RISE BUILDINGS WITH ISOLATED

SHEAR WALLS

Typical svmmetric and unsymmetric two-story isolated shear wall structures are
studied in Chapter VI. Both buildings are made of 30’ shear walls that have a height
to width ratio of 0.5 and 0.4 on the first and sccond floors, respéctivcly, The shear
bending influence angle is ¥ = 33.6° and ¥ = 21.5° for the second and first floor walls,
respectively.. Thus bending is the predominani component of deformation in these
buildings. The fundamental periods for the symmetric and unsymmetric buildings are
0.155 second and 0.188 second, respectively.
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A total of 14 elastic and 42 nonlinear dynamic -analyses are performed with
different ‘earthquake ground motions, numbers of horizontal ground motion

components, and intensities of ground motions.

During a typical nonlinear seismic analysis, a shear wall experiences several large
amplitude load cycles, and the remainder of the loading is on small amplitude loops.

Thus the small amplitude hysteresis loops are important.

The peak base shear, displacement, auctility and excursion ratio of the symmetric
building are not affected by the inclusion of the second horizontal component of
ground motion, because the response in the two directions is weakly coupled.
Contrarily, the unsymmetric building’s peak displacement, base shear, ductility and
excursion ratio are significantly influenced by the addition of the second component
of ground motion because the response in the two directions is strongly coupled. This
is observed for both the elastic and nonlinear responses. Whether the one-component

or two-component ground motion produces the maximum response in the
symmetric and unsymmetric buildings, depends on the interaction of the
ground motions and the relative distance between and the relative

location of the mass center and the rigidity center at each floor of

the structure.

The nonlinear analysisr of a one-component ground motion on the unsymmetric
building ytelds an unrealistic distribution of shears in the walls. Thus the nonlincar
dynamic response of an unsymmetric structure subject to a one-component ground
motion should be used with extreme caution. Since one-component ground motions

do not occur in nature, analyses with two-component ground motions are preferred.

The elastic response to the 1940 El Centro and 1952 Taft earthquakes is greater
than the response to the 1985 Mexico earthquake. However, the peak noniinear

response at higher levels of damage is similar for all three earthquakes.



For the symmetric building, the damage index decreases with the inclusion of the
second ground motion because of the method n.sed to average the damage indices in
individual walls. The total damage of the structure with two-componenis of ground
motion 1s equal to or greater than the structure’s damage with one-component of
ground motion. Typically the unsymmetric building suffers more damage than the

symmetric building as evident by ductilities and damage indices.

The studies of code parameters R and C{ indicate that the response modification
factor, R, is dependent on the building type, earthquake ground motion, orientation
of ground motion, number of components, and level of damage in the building. For
the two buildings studied, the R value of 4.5 recommended by the NEHRP (55) is
consistent with the calculated values for the 1940 El Centro and 1952 Taft
earthquakes. The calculated R value for the 1985 Mexico earthquake is close to 1.
The deflection amplitude factor, C(, increases with damage index. The Cq value of 4

recommend by the NEHRP 1s slightly larger than the calculated values.

Additional studies are required before the response modification factor for
reinforced concrete shear walls can be determined. These should include buildings with
a wider range of geometries, natural frequencies, and shear wall height to width ratios.
A family of earthquakes records that are based on the code response spectra should
be used. The two-component ground motions are preferred over one-component
ground motion. Additionally, the angle of the ground motion to the building should
be varied to determine the range of response modification factors for each combination

of building and ground motion.

C. RESPONSE STUDIES OF LOW-RISE BOX TYPE BUILDINGS

A favorable comparison between the calculated and experimental response of a

one-story box-type structure subjected to static cyclic loading is given in Chapter VII.
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The axial hysteresis mode! is shown to have a very strong effect on the structure’s
response. This is because the overturning moment of a box-type structure is resisted
by both bending in the plane of the shear wall, and axial forces in walls on opposite
sides of the building’s center of rigidity. The axial hysteresis model is based on the
7-story full scale testing structure with boundary columns; several modifications to the

model are proposed for box-type structures.

A favorable comparison betwéen the calculéted and experimental scismic
response of a two-story box-type structure subject to a scaled earthquake ground
motion is also presented in Chapter VII. This box-type structure is dynamically teéted
on a unaxial shaking table at LANL, and the accelerations at the base and each floor
were measured by accelerometers. The analytical studies include the removal of‘ errors
from the experimentally measured accelerations, and the integration of the
accelerations to yicld displacements. The calculated and experimental results of the
first mode are 73 hz and 65 hz, respectively; while the calculated and experimental

results for the second mode are 280 hz and 210 hz, respectively.
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APPENDIX A

SPECTRAL ANALYSIS

Fourier Transform. A periodic signalzs, with a period of T can be represented by

the infinite Fourier series

a
x(t) = —29- + 4y Cos wlt + 24 COs w2t>+ ajy cos w3t + -

+ by sinw1t+b2 sin wot + by sin wyt + - {A.1)

where wy = HQth_ For a signal of duration T, the signal is assumed to be repcated

every T seconds as shown in Figure 199.

The infinite series in Equation A.l consists of the summation of periodic

functions at different frequencies. The coefficients a;, and by, are the amplitude of the

periodic function at frequency w,. The amplitude of a, is 90° out of phasc with the

amplitude of b,. The resolution is the interval between frequencies wy, and wg 1, or

Aw = -?-1_1 Note that functions with larger periods have a finer resolution. The signal
in Figure 199 has a fixed length T, yielding a resolution of Aw = —2~l-:n- However, the

resolution of the signal can be improved by assuminé the record is longer, say T’, and
the signal is zero between T and T, as shown in Figure 200. The coefficients a, and

b, for the signals in Figures 199 and 200 are not equal.

To determine the coefficient a, in Equation A.l, multiply both sides of the

n

equation by cos wnt and integrate over the period.

25 . . .
For structural analysis, the signal may be an earthquake ground acccleration,

measured experimental acceleration, velocity or displacement.
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T et ag
Jo x{t) cos(wpt) dt = jo =N cos(wpt) dt

T
+j {a) cos wyt + ap cos wot + a3 COS W3t + ) cos(wpt) dt
0

T
 + J (by sinwjt + by sin wot + by sin w3t + - ) cos(wpt) dt
0 _

When n=0, w, =0, cos wyt = | and Equaticn A.2 reduces to

j x(t)(l)dt=J- —(I)dt
0 0 2
T
+J (aj cos wyt + a5 €os wot + az cos wyt + - )(1)dt
0

T
+J. (by sin @yt + by sin wst + by sin wst + - )(1)dt
0

Integrating the first term yields

Tao _ aO B ao't
2 A= =0 =

Integrating the mth element of the second term yields

T am
j ap, cos{w,t) dt = wm [ sin(m2r) - sin(0)] =0
0 m

And integrating the m'? element of the third term yields

T —-a
a.. sin t)dt = Mr cos(m2r) — 0})]=0
J, 2m o) s = BT costmde) — cos0)]

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

Substituting Equations A.4, A.5, and A.6 into Equation A.3 and solving for a() viclds
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ag== fotx(t)dt (A7)

Note that ag is twice the average of the record x(t). When n # 0, integrating the first

term of Equation A.2 yields

T aO ao . .
—=-cos(wpt) dt = [ sin(n2z) — sin(0)] =0 (A.8)
0 ? @n

[ntegrating the mth element of the second term yields
T
JO am cos(wpt) cos(wt) dt

- [2=0 - —a, L = _
—an( 3 +Tw?(sm4n7r smO)) 05 forn=m (A.9)

T
= J am% cos(2nz) cos(2mz)dz =0, forn#m
0

And integrating the mth element of the third term yields

T T b
J;) by sin{wpt) cos(wyt) dt = J;) Tm[ sm((n + m)-22 2t ) + sm((m ~n) 21-:1 ] dt

_bm / cos{n + m)2z — cos(0)  cos(m — n)2x — cos(0) ) =0 (A.10)
2 \ (n+ m)z—;t (m — n)— =L

Substituting Equations A.8, A.9, and A.10 into Equation A.3 and solving for a,, yields

Il T

a, =2 f "y cos(wnt) dt (A.11)
0 |
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To determine the coefficient b, multiply both sides of Equation A.2 by
sinwyt and integrate over the period. Performing the integrations, similar to the

procedure for aj, yields

T

by == J X(1) sin(ept) dt (A.12)
0

The Fourier transform is given by Equation A.l where the constants are defined by

Equations A.7, A.11 and A.12.

It is often convenient to express the Fourier transform in exponential form.

Recall the Euler identities

(eiwnt + e—iwnt)

Cos Wyl = %

_ (A.13)
- _ -i( iw,t —iwnt)
SN Wyt = T e —-¢
Substituting the Euler identities into Equation A.l yields
29 1 i 1 i
. t . —iw,t
M=+ ) [ Hlan = ib)ent+ Liag + ivy)e 0t (A-14

a
LetC, = -—;—(an —ib,) and Cy= —-29- then Equation A.14 becomes

o0 i oo " .
x(t) = Z Cnem’n[ + Z Cne_‘mn[ (A.15)
n=0 n=1

* . . - - .
where C,, 1s the complex conjugate of C;. Examine the following coeflicients when n

1s negative
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el(—n)t _ eiamt

(A.16)

a_p= Jx(t) cos( —nwt)dt = aj

b_n= fx(t) sin{ —nwt)dt = —by

Substituting the negative coeflicients into the second term of Equation A.14 yiclds

) : C —oo { . —0o .

. - ‘ . t t
5 Honring bt 3 Lot Tt
n= n=-— T

Thus Equation A.15 becomes

)=y Cpent (A.18)

n=—co

where the coefficients C, are defined by

Cn={an = iby) =+ fofx(t)( cos(wpt) — 1 sin(wyt)) dt = — jorx(t)e—iwntdt (A.19)

Thus a complex defimition of the Fourier transform is defined by Equations A.18 and

A.19. Note that the summation in Equation A.18 is from -oo to oo.
In Equation A.15 let the complex vector Z, be equal to Cnem’nt and the
conjugate of Z,, be Z:; = C;e"‘i“’nt. Thus Equation A.15 is

X(t) = Cg + i (Zo+7y) ' (A.20)
n=1 :

The sum of a complex vector and its conjugate are twice the magnitude of the real

component. Thus the Fourier transform is represented by
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oo oo .
X(t)=Co+ ) 2ReZ;=Cy+ ) 2Re(Cpe®n') (A.21)
n=1 n=]

where ReZ, represents the real component of the complex vector Z,. Let

2C,, = Dy, then the Fourier transform is represented by

D = -
X =—+ ) ReDyel®n' (A.22)
" n=]
where
2 (7 —lwn,t
D,=2C,= -;j x(t)e T ndt (A.23)
0

A second complex definition of the Fourier transform is given by Equations A.22 and

A.23. Note that the summation in Equation A.22 is from 1 t0 co.

The Fourier transforms presented above are for continuous functions. Signals are
digitized to facilitate numerical computation. These signals consist of N data points
with a constant time increment of At and a period ranging from t=0 to t=(N-1)At.
The discrete Fourier transform that corresponds to Equations A.1, A.7, A.1l and A.12
is

n2= 1 ag + a7 COS W7t

x(t) = Z (an COS wpt + by, sin wnt) + 3 (A.24)
=]

where
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N-1
ag = —3— z X(tyy) cos{wpty)At
m=0
5 N-1
n=7T Z X{ty) sin{wp o)At
m=0

(A.25)
b

N
and n2 = —;l The discrete Fourier transform that corresponds to Equations A.18 and

A.191s
N-l
X(t) = Z Cpe@n’ (A.26)
n=
where
N—1 _
Ch=+ ) xte " “n'm) ar (A.27)
m=

The Fourier transform that corresponds to Equations A.22 te A.23 is

n2—1 I aat
- Dn + Dyqe N2
_ 1wt 0 n2
x(t) = Z Re(D,e'n’) + Re( : ) (A.28)
n=]
where
N—1 ,
Dy=% ) xityel “n'm) Ac (A.29)
m=0

Numerically the calcﬁlations are carried out using a fast Fourier transform (FFT). The
FFT is an algorithm developed by Cooley, et al (29) that can calculate the Fourer
transform very efﬁcieptly when the number of time increments is a power of 2, ie
N =2M, Thus the signal is commonly digitized with 210 =1024, 211 = 2048 or

212 = 4096 points.
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For the Fourer coefficients in Equétions A.24 to A.28 only the first n2
coefficients are unique. Coefficients above n2 are thé complex conjugate of the
coefficients below n2. The frequency at n2 is wn2=—‘hi—”radians/second or
fa2 =?—T hertz is the Nyquist frequency. This is the highest frequency that the
Fourier transform can detect. Frequencies above the Nyquist frequency are reflected
as low frequency signals. This can be demonstrated by the sine wave in Figure 201(a).
The sine wave has a period of 2n seconds and a frequency of | radian,/sccond. Suppose

the sine wave is sampled (digitized) with a time step of 1.5z. The Nyquist frequency

. 2
B3 1.57

The resulting signal is shown in Figure 201(b), and appears to have a period of 6xn

= (.67 radians,;second, which 1s less than the frequency of the sine wave.

seconds, and a frequency of —;- radian/second. Thus the | radian/second sine wave is
reflected as a % radian/second sine wave., This is known as ailsing. To correctly

sample the sine wave, the minimum number of points is

wyp =, =% N=2 (A.30)
or two points, A and B in Figure 201(a), are required in the period of 2z. A signal with
two points per period is also shown in Figure 201(c). Note that the Nyquist criteria
is the lower l'um't of the number of point needed to describe the signal. To accurately
describe the sine wave, more points are required. When the numbe.r of points used to
sample a signal is fixed, low pass filters are used to remove the signal’s {requency
content above the Nyquist frequency. Filtering the sine wave in Figure 201 with a .67
rad/sec low pass filter will remove the | rad/sec sine wave. Sampling this filtered sine
wave with a time step of 1.5n yields a null signal. Thus the low pass filter prevents the
high frequency signal from being reflected as a low frequency signal, but it modifies the
original signal.
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Figure 201. Sine Wave With Ailsing: (a) Sine Wave, (b) Sine Wave Sampled at
At= 1.5, (c) Sine Wave Sampled at At=n
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Power Spectral Density. The frequency content of a signal may be examined by

the power spectral density (PSD). The power spectrum is the magnitude of energy in
a given frequency interval. The power spectrum is divided by the frequency interval

to yield the PSD. Define the power spectrum for a frequency, [}, as

. |
G{fy) = +DqD; (A.31)

where D, is given in Equation A.23 or A.29, andD; 1s the complex conjugate of
D,. The power spectral density is the power spectrum divided by the frequency

increment, or

G(f) DgD; 2C,C,  ai+b) ‘ a2
Af 2Af T Af T 2Af '

S(f,) =

where the Fourier coefficient Cj is given in Equation A.19 or A.27, C; is the complex
conjugate of C;, and a,, and by, are given in Equations A.11, A.12, or A.25. The PSD
is used to examine the frequency content of accelerations in Section B of Chapter 11,

and in Section B of Chapter V1I.

Frequency Response Function. For a single degree of freedom structure subject

to a cyclic forcing function, the equation of motion has the form
m¥ + cX + kx = C¢'“n’ (A.33)

where C, is the magnitude of the cyclic forcing function. The steady state solution has

the form

X(t) = H(w,))C e nt (A.34)

where the frequency response function (FRF), H{w,) is given by
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H(w,) = : (A.35)
k- mwy + iccon

Superimposing N cyclic forcing functions, the steady state response becomes

x(t) = ZH(wn)Cneiwnt (A.36)
Taking the Fourier transform (Equation A.18) of Equation A.36 vields

ZC’nei‘”n‘ = ZH(“’ n)cngi“’nt (A.37)

where C' are the Fourier coeflicients of the response and C; are the Fourier
coefficients of the forcing function. The magnitude of the FRF at frequency n is given

by

H(w,) = -E-'i (A.38)
Ca
Equation A.38 is used to calculate the FRF for elastic systems in Section B of Chapter
VII. The forcing function consists of the ground acceleration times the mass and the
response consists of the relative floor acceleration. [f the mass is omitted from the
forcing function, then the FRF is multipiied by the mass. The FRF can be examined
to determine the natural frequency and damping of the structure. The FRF for
multiple degree of freedom structures 1s also obtained by Equation A.38. However, the

shape of multiple degree of {freedom FRF is more complex than the single degree of

freedom FRF in Equation A.35.
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APPENDIX B
PARABOLIC BASE LINE CORRECTION

Given an acceleration record A(t), consisting of N data points with an

incremental time of At and having a period of 7, the parabolic function

1) = Cy + Cat + C3t° (B.1)
is subtracted from the acceleration record vielding

A1) = A@R) — Rty = A(Y) — € — Cat — C3t (B.2)

Integrating Equation B.2 yields the velocity

C C
V(1) = f (A() ~ fn)dt = V(1) - (co +Cyt+ —53-12 + -53-:3) (B.3)

The constants Cl, C5 and Cy are chosen such that the sum of the velocity squared,

(V’)z, i1s a minimum. Define the function U as the sum of the velocity squared,

NAt NAt

2
U = Z [V'(t)]2 = Z [V(t) - (CO +at+ bt2 + ct3):l (B.4)
t=0 t=0 .
wherea=Cj, b= =5 c= —3 Set Cy =0, since the term Cq does not appear in the

acceleration A'(t). Taking the partial of U with respect to a and setting equal to zero

yields
NAt

—%%- =0=2 Z(:)[V(t) ~(ar+ b2 + ct3)]( -t) , (B.5)
t=

Rearranging terms yields
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YV =a) 2+by eyt (B.6)

where the summation is carried out for N points, from 0 to NA. Taking the partial of

U with respect to b and setting equal to zero yields

NAt
% =0= ZIZO [V(t) ~(ar+oe? + ct3)]( j—t2) (B.7)

Rearranging terms yields

YV =ay ©+by e (B.8)

Taking the partial of U with respect to ¢ and setting equal to zero yields

NAt
% =0= ZIZO [V(t) - (at + bt + ct3)]( —t3) (B.9)

Rearranging terms yields

RO aZt4 + bZtS + th6 (B.10)

Rewriting Equations B.6, B.8 and B.10 in matrnx form

Vil t2 t3 tdlla
Vi2i={t3 t4 t51b (B.11)
Vil t4 t5 6]} ¢

where 2=l
13 =313

=314
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t5 =313

t6 =310

Vil =3 V(t)t
V2 = Y vl
Vi3 = T v(uoed

Equation B.11 is solved for a, b and ¢, and the corrected accelerations are given by
A’(1) = A(t) — a — 2bt — 3ct® | (B.12)

The parabolic base line correction is used to correct experimental accelerations in

Section B of Chapter 1.
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