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ABSTRACT

Composite action in a masonry wall is obtained when two independent
wythes are connected together by metal ties and the cavity between the
two wythes is grouted. For the two wythes to act together under the
action of internal and/ér external ldéds, it is important that the collar
joint is strong enough to resist thé sheariﬁg stresses induced in it. A
guasi three-dimensional finite element model has previously been proposed
by researchers at Clemson University for predicting shear stresses in the
collar joint. This quasi three-dimensional model has previously been used
in the analysis of single story and multi;tory composite walls that are
subjected fo only vertical loads. The behavior of coﬁposite masonry walls
which act as shear walls and are subjected to horizontal in-plane lcads
is a subject, on the other hand, that has recieved little attention. This
research presents the results of analyses of composite walls subjected
to horizontal in-plane loads using the previously developed quasi three-
dimensional model. It is shown that the distribution of horizontal shear
stress in the collar joint is very similar to that of the vertical shear
stress due to vertical loads, indicating that the horizontal stiffness
which is smaller than the vertical stiffness of the wall has.little in-
fluence on the sﬁear stresses in the collar joint. Some additional re-
sults for two story composite masonry walls are also presented.

A computational procedure based on the principle of superposition
to estimafe creep strains in composite masonry walls is developed. This
development is based on the assumption that creep vs. time relationship

in masonry can be uniquely defined by a specific creep (i.e., creep per

e

Corg e,






iii

unit stress) vs. time curve. Experimentally obtained specific creep vs.
time curves for various components of composite masonry walls subjected
to uniaxial compressive loads are utilized to establish relationships
between the components of creep strain increments and existing stresses.
These relatiénships are used in conjunction with the principle of super-
position to compute creep strains in composite masonry walls., In addi-
tion, the effects of creep strains on stress changes is also investigated.
It is shown that although substantial additional strains occur in a com-
posite wall due to creep, their effect on the corresponding stresses is
minimal.

A procedure utilizing the initial strain approach to estimate
stresses in the collar joint of composite walls due to differential tem-
peratures on the inside and outside wythe faces in a wall is developed.
It is shown that the shear stresses and strains in the collar joint do
not undergo any substantial changes due to realistic temperature vari-
ations; however, it is observed that the normal stresses change signif-
icantly due to temperature variations.

Variable-node-number isoparametric elements are also developed in
this research for an accurate prediction of stresses in composite masonry
walls. The locations of optimal stress points, where the calculated
stresses are more accurate, are also determined for one specific
variable-node-number element which is used to model the collar joint-
wythe interface.

In order to determine an accurate behavior at the interfaces of the
brick and block wythes in composite masonry walls, an interface element
is proposed in the collar joint, it is shown that the interfaces in a

composite masonry wall act as perfectly bonded joints., A procedure for
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accurate estimation of stresses at the interfaces of composite walls in-
volving stress discontinuities is suggested.

In an effort to develop a cracking analysis procedure for composite
masonry walls, an empirical Mohr-Coulomb type of failure criterion, based
on a nonuniform state of stress in the joint, is proposed. This failure
criterion is developed using a few experimentaliy available failure ex-
pressions that assume a uniform state of normal and shear stress in the
joint. It is shown that the failure of any concrete block-mortar joint
can be described by a single expression which is dependent on the values
of elastic modulii of the concrete block and joint mortar.

Failure loads in composite masonry walls of various heights are de-
termined using the failure criterion developed in this research. The
failure loads estimated analytically are.compared with those obtained by
assuming uniform failure shear stress given in the literature. The above
comparison indicates that the prediction of failure loads in composite
walls using average shear stress not only overestimates the Strength of

walls but also produces very unrealistic results.
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CHAPTER I

INTRODUCTION

Background

A composite masonry wall consists of a wythe of brick and.another
wythe of concrete block. If the cavity (i.e., the collar joint) between
the two wythes remains hollow, then the structural properties of each
wythe are independent of each other. On the other hand, if the cavity
between the two wythes is parged or grouted, as shown in Figure 1.1, the
two wythes are bonded together and react as a single unit. The>mechanica1
properties of this complex structural assemblage are dependent upon the
constituents of the wall, i.e., concrete block, brick and grout.

In recent years, composite masonry construction has become extremely
popular to engineers and architects. Combosite masonry structures si-
multaneously serve several functions of prime importance, such as, (1)
permitting overall economy of design, (2) permitting an unusual amount
of flexibility for the Architect, {3) providing a complete, self-
sufficient structural system, (&) proving capability of supporting all
design loads, (5) providing acoustical insulation, (6) making building
fireproof and (7) creating weather resistant enclosures.

" Brick is one of the oldest building materials known to man and until
the beginning of the twentieth century masonry, in its various forms, was
the principal building material. Since then, however, new bui}ding ma-
terials, such asvstructu;al steel, reinforced concrete, etc., have been
developed. Theories and progressive building codes were established for

these new materials. However, it was:@not until recent years that any
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progress had been made in the development of theory and design codes for
structural masonry.

Because of the increased popularity of structural masonry, extensive
theoretical and experimental research has been directed towards its de-
velopment during the last three decades. The standards for the design
and construction of brick masonry and concrete masonry have been developed
from research performed on masonry comnsisting of only brick or concrete
block. On the other hand, although a considerable portion of all non-
residential masonry construction is composite, there exists no thorough
design standard for structural members composed of both clay brick and
concrete block masonry. Most standards (105,108) have included pro-
visions for the design of such composite members, which are based on
limited experimental.data. |

The interaction of the block wythe with the brick wythe in a composite
masonry wall under internal stresses and external loads is a subject that
needs special attention. As-a result of this interaction, shearing
stresses are created in the collar joint, and their magnitudes at the
block-collar joint interface and brick-collar joint interface are impor-
tant for predicting possible failure of the wall.

In composite congtruction, the floor slab usually rests on the in-
terior (block) wythe of the éomposite wall as shown in Figure 1.2. The
vertical and horizontal in-plane loads are transferred from the floor
directly on the inner concrete block wythe. Some percentage of these
loads is transferred to the outer brick wythe through shear stresses in
the collar joint. Significant amounts of shear stresses develop as a
result of the loads applied only on the block wythe. Shear stresses may

also be caused due to moisture and thermal strains in a composite wall
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without necessarily any applicatioﬂ of external loads. The temperature
difference between the exterior brick wythe, which is exposed to a con-
tinuously changing weather, and the climatically controlled interior
block wythe may cause large shear stresses in the collar joint. Simi-
larly, the expansion of the brick wythe and contraction of the block wythe
due to moisture variation in a composite wall could also cause consider-
able amount of shearing strains and stresses in the collar joint. The
creep strains under'sustained loads may alsc become important for con-
sideration in the estimation of stresses in a composite wall where only
the interior block wythe is subjected to external loads.

Determination of the correct magnitude of shear stresses in the
collar joint due to external locads, creep, moisture_and temperature is
extremely important because the failure in composite masonry walls is
essentially due to delamination of the wythes caused by the collar joint
shear stresses. Previous investigators involved in analytical research
in the area of composite masonry (3-8, 13-16, 19, 20) were primarily
concerned with an understanding of the load transfer mechanism and overall
behavior of the wall instead of an accurate prediction of the shear
stresses in the collar joint. The experimental research (%, 26, 31, 65,
94) in this field focussed its attention only towards obtaining an average
value of the collar joint shear stress. An extensive review of the lit-
erature by the writer revealed that no attempts had been made to develop
- a procedure for an accurate prediction of the collar joint shear stresses
in composite masonry walls.

Researchers engaged in the theoretical investigations of the behavior
of jointed rocks (38, 40-42) consider a joint of two dissimilar materials

to be very weak in shear. Although the planes of weakness in composite



masonry walls are expected to exist along the block wythe-collar joint
and brick wythe-collar joint interfaces, the shearing strength of these
interfaces are, however, not known. Page (71), on the other hand, has
modelled the mortar joints in single wythe brick masonry by using the
joint element developed by Goodman et al. (42), which is based on the
assumption that the mortar joints are planes of weakness. Unfortunately,
there exists no evidence of any research that has been conducted previ-
ously or is being performgd presently‘in composite masonry regarding the
behavior of the interfaces, except the one being reported in this work.
In the past, researchers have modelled the interfaces in composite
masonry walls assuming that the two dissimilar materials are perfectly
bonded together and there exists no plane_of.weakness along an interface.
The finjite element model baséd on the above mentioned assumption could
produce too high shear stresses in the collar joint at the block wythe-
collar joint interface near the region of load application as the loads
are applied only on the inner block wythe of the wall. This numerical
problem arises due to the stress.discontinuity at the top of the wall near
the block wythe-collar joint interface which develop as a result of the
applied loads. A similar situation was investigated by Whitcomb et al.
(93) in the area of composite laminates using the finite element method.
The investigators demonstrated the numerical problem in that research and
suggested a procedure to overcome the difficulty. This suggested proce-
dure can be utilized in the analysis of composite masonry walls to de-
termine the magnitude of shearing stresses in the collar joint at the
interface when the two dissimilar materials are considered perfectly
bonded together. A review of the analytical research in the area of

composite masonry walls indicates that the exact behavior of the block



wythe-collar joint or brick wythe-collar joint interface has not been
determined as yet and a sclution proceduge for correct estimation of
collar joint shear stresses at the interface has not been suggested.

Failure of composite masonry walls occurs either at the brick
wythe-collar joint or block wythe-collar joint interface. Brown and
Cousins (26) observed that the failure in their composite wall test
specimens rarely occured on both interfaces. They also observed that the
cracks in the collar joint spread very quickly and the failure of a
specimen was abrupt! For analytical prediction of failure loads in com-
posite masonry walls, which generally fail at the block wythe-collar joint
interface, Mohr-Coulomb type of failure criterion must be available.
Mohr-Coulomb failure criterion is defined by the shear bond strength and
the coefficient of friction. Very limited information regarding this type
of failure criterion for block wythe-mortar joint interfac, is available
in the literature. Thus, for a maﬁerial that is widely used in con-
struction, sufficient information is not available for the development
of an appropriate design and construction standard.

It is pfoposed herein to investigate the behavior of composite
masonry walls subjected to vertical and horizontal in-plane loads. The
effect of the creep strains and temperature variations on the collar joint
shear stress are also studied. In addition, a procedure té détermine the
correct shear stress distribution in the collar joint at the interface
is suggested. Improved failure criterion for the block-coliar joint
interface is proposed and a procedure to determine wall failure loads
using the proposed failure criterion ?s described. Failure loads in

composite masonry walls of various heights are determined following the



suggested procedure in which the failure plane is assumed to be at the

interface between the block wythe and collar jeint.

Previous Research

A considerable amount of theoretical and experimental research has
been conducted in- the past at Clemson University to determine the shear
stress distribution and average failure shear stress in the collar joint
of composite masonry walls. A quasi three-dimensional finite element
model which was developed to overcome the shortcomings of the three-
dimensional models was pfoposed by Anand‘and Young (19). The three-
dimensional model requires a large amount of computer time and the results
are difficult to evaluate due to the complexity of the model. The model
proposed by‘Anand and Young incorporates some positive aspects of the
three-dimensicnal models without the associated restrictions. The ori-
ginal work of Apand and Young contains an extensive and in-depth review
of all the previous research déaling with composiﬁe masonry walls (19).

The original quasi three-dimensional model of Anand and Young was
further improved by Anand and Stevens (13). The improved model can pre-
dict the complete state of stress in the collar joint under the assumption
that the magnitude of the normal as well as shear stress components in
the out-of-plane direction of the wall are negligible or zero.

As in the original model (19), out-of-plane displacements were not
permitted in the improved model (13). These displacements may have sig-
nificant effects on the stresses in a composite wall. It has further been
shown by Anand et al. (16) that the quasi three-dimensional model cannot
correctly reproduce stresses that are obtained by the use of a plane
strain two-dimensional model. They have ‘also suggested load factors to

correlate the results of the two models.



In the above mentioned references, the variation of stresses in the
collar joints of composite masonry walls due to only vertical loads on
the block wythe waé investigated. However, no attempts were made to de-
velop a solution procedure using a two-dimensional finite element model
to accurately predict the collar joint shear stresses at'the interface.

Grimm amd Fowler (46) used an elementary mechanics of materials ap-
proach to determine shear stresses in the collar joint of a wall. Only
a few additional theoretical and experimental studies have been under-
taken by other researchers to investigate thg behavior of collar joints
in composite masonry walls (31, 74-76, 83, 94, 97, 98).

The previously developed quasi three-dimensional model was used by
Anand and Gandhi (7) to examine the long term effects of creep and
shrinkage in composite masonry walls. The method employed by these in-
vestigators is based on the assumption that the réte of creep is inde-
pendent of the age at loading. An in-depth review of the previous
research dealing with the determination of inter-laminar shear stresses
due to creep strains in fibrous composites, which may be adopted for the
study of the creep behavior in composite masonry, can be found in Refer-
ence (7).

The effects of creep in composite masonry was further studied by
Anand and Dandawate (4, 5). They developed a numerical methoa°logy based
on the principle of superposition to predict the creep behavior in masonry
walls which did not depend on the assumption made earlier by Anand and
Gandhi (7). They also used the previously developed quasi three-
dimensional finite element model to p;edict the creep behavior in com-

posite masonry walls. They did not attempt to investigate the creep
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behavior of composite walls by modelling the cross-section of a wall using
two-dimensional plane strain finite elements.

The presence of large shear stresses in a collar joint due to the
imposed loading, temperature chénges, and or moisture and creep effects
cén cause failure of the wall. Anand and Stevens (15) were the first
investigators who proposed cracking models for composite masonry walls.
They defined cracking in their model based on a simple shear failure
criterion. Their analyses modelled the existence of ladder type re-
inforcement in the bed joints across the.two wythes using a quasi three-
dimensional model. The concept of shear friction was utilized to monitor
the growth of shear cracks within the collar joint. An extensive review
of the literature concerning crack modelling in the related fields of
geology, reinforced concrete and masonry can be found in Reference (15).

In an effort to improve the results obtained in Reference (15), a
two-dimensional finite element model for cracking analysis of composite
walls was later proposed by Anand and Yalamanchili (17). This model was
based on the double-node technique ‘for which a simple shear failure
criterion was utrilized to define the onset and spread of cracking. Re-
cently, Anand and Yalamanchili (18) -expanded their two-dimensional
cracking model into a quasi three-dimensional model that is capable of
predicting cracking in composite walls subjected to vertical as well as
horizontal loads. The double node technique was utilized once again and
the onset of cracking was based on a simple shear étress criterion.

In all of the above mentioned analytical research, the failure in a
composite masonry wall is assumed to initiate and propagate in the collar
joint at the interface. In masonry construction, the failure at an

interface can normally be defined'by a Mohr-Coulomb type of failure
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criterion. On the other hand, very little information is available in
the literature on the behavior of block-mortar interfaces. Only Hamid
et al. (48) and Hegemier et al. (50) have proposed a Mohr-Coulomb type
of failure criteria for a block wythe-mortar joint interface. The mag-
nitudes of the shear bond stremgth at an interface presented by them are
the average values obtained by dividing the failure shear force by the
total area of the interface. No consideration is given in their results
for the fact that the actual shear stress distribution at the interface
is not uniform.

Experimental research in composite masonry walls has been mainly
directed towards obtaining average values for the collar joint shear
strength. Browﬁ and Cousins (26) performed a series of tests in which
the failure shear stress was determined for 16 in x 16 in reinforced and
unreinforced composite wall specimens with 3/8 inch collar joints.
Failure shear stress for reinforced and unreinforced composite walls with

2 inch collar joints, on the other hand, was determined by McCarthy et

al. (65).

Proposed Research

In the research presented in this work, the finite element method
is used once again to investigate the behavior of composite masonry walls
subjected to vertical and horizontal in-plane loads, and due to creep
strains and temperaﬁure variations. A solution procedure using two-
dimensional plane strain finite elements is proposed to compute correct
stresses in the collar joints of composite masonry walls. An improved
failure criterion for the block wythe-collar joint interface is proposed

and a failure analysis procedure is presented. Failure loads in composite
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masonry wélls of various heights using the proposed failure criterion and
method of analysis are determined.

The various phases of the research performed are summarized below.
The effect of horizontal in-plane loads on the behavior of composite
- masonry walls is investigated. The previously developed, improved, quasi
three-dimensional finite element model is used in this investigation.

The behévior of composite masonry walis subjected to creep strains
and temperature variations is studied using the two-dimensional finite
element models in which the cross section of a wall is analyzed by em-
ploying linear quadrilateral elements.

Three types of variable-node-number isoparametric serendipity ele-
ments are developed in an effort to estimate thé collar joint shear
stresses more accurately at the interface. The locations of the optimal
stress points within the elements are also determined.

An interface element is developed to model the block wythe-cellar
joint interface in composite masonry walls. The constitutive relation-
ships for the interface element are derived from the experimental results
available in the literature. For a better understanding of the behayior
of the interface in composite walls, the composite masonry wall specimens
that were tested at Clemson University are investigated analytically.

A procedure is proposed to determine correct shear stresses in the
interfaces of composite masonry walls using a two-dimensional finite el-
ement model. This procedure is considered especially useful when only
the inner block wythe is loaded and the shear stresses in the block-collar
joint interface near the region of load application are of interest.

An improved Mohr-Coulonb type failure criterion for the block

wythe-collar joint (mortar) interface is developed. Empirical equationms
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are proposed for cbtaining failure criteria.for masonry oﬁce the material
properties for the masonry units and mortar are known. In Addition, a

finite element procedure for cracking analysis of composite masonry walls
in a two-dimensions is proposed. Failure loads in composite masonry walls
of various heights are determined using the failure criterion developed
in this research. The failure loads estimated analytically are compared
with those obtained by assuming uniform failure shear stress given in the

literature.



CHAPTER II
EFFECTS OF HORIZONTAL AND VERTICAL LOADS

ON COMPOSITE MASONRY WALLS

Composite mas§nry walls carry substantial loads in many practical
applications. Figure 1.2 shows a floor slab which has been placed on the
concrete block wythe of a composite wall. The slab can transfer hori-
zontal as well as vertical loads to the block wythe some of which are then
distributed through the collar joint to the brick wythe.

In all of the previously reported analytical and experimental re-
search, only vertical loads acting on the block wythe have been consid-
ered. In many cases, however, the composite walls may be subjected to
in-plane horizontal loads on one wythe due to wind and earthquakes. It
is not obvious whether the shear stress distribution in the collar joint
due to the vertical loads could also be assumed for the horizontal loads.
The effects of the horizontal in-plane loads acting on the composite walls
are studied in this chapter in which the previously developed quasi three-
dimensional finite element model has been utilized. The results obtained
from this analysis are compared with those due to the vertical loads.
Although the development of the quasi three-dimensional model has previ-
ously been presented elsewhere (13, 19, 20), some important features of

the model are given in the next section for completeness.

Description of the Quasi Three-Dimensional Medel

Since the compcsite walls to be studied are subjected to the hori-
zontal in-plane loads, these cannot be analyzed by considering only a

cross section of the wall, as was possible when the loads were vertical
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(13, 19, 20). Thus, either a complete three-dimensional finite element
model must be utilized, which could be very complicated and time consum-
ing, or a quasi three-dimensional model could be used.

In this development, a new "composite” element is created. In this
new element, the brick and block wythes are each modelled as plane stress
elements which are joined together by a cellar joint shear element to form
the composite element which has eight nodes (four for each wythe) as shown
in Figure 2.1. As each node has two degrees of in-plane displacement
freedom, the total degrees of freedom for the composite element are equal
to sixteen. The shear stresses that act in the collar joint shear element
are shown in Figure 2.2,

The stiffness matrix of the proposed composite element is formed by
combining the stiffness matrices of the two wythe elements with the collar
joint stiffness matrix. Detailed expressions for these matrices are de-
rived in the following sections. It should be noted that the following
assumptions have been made in this development: (1) All materials are
considered as elastic, homogeneous and isotropic; (2) Displacements are
assumed to varyilinearly between nodes in an element; (3) Out-of-plane
bending effects in the wall are ignored; and (4) The steel reinforcement

in the collar joint as well as two wythes is neglected in the model.

Stiffness Matrix of a Wythe Element
Determination of stresses, strains and displacements in the wythes
due to in-plane loads can be accomplished by a standard plane stress fi-
nite element analysis. The governing matrix equation relating forces and
displacements in an element is given by

{P} = [k] {U} (2.1)
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where {P} is a column matrix of force-components in the x and y directions
at the nodes of an element, [k} is the in-plane stiffness matrix for an
element, and {U} represents the corresponding displacement components at
the nodes. A more detailed development of the in-plane stiffness matrix
may be found in standard finite element texts. Quadrilateral elements,
each consisting of four triangular elements, are utilized in subdividing
the wythe faces into & finite element mesh. As each node has two degrees
of freedom, Equation 2.1 yields an 8 x 8 stiffness matrix, {k], for each

wythe element.

Stiffness Matrix of a Collar Joint Element

The collar joint element stiffness provides the interaction between
the two plane stress elements representing‘the masonfy wythes. Stiffness
matrices for the front wythe, [kg¢l, and the back wythe, [ky], can be de-
veloped using Equation 2.1, Shear deformation of the collar joint element
is composed of displacements in the x and y directions only. Sincé these
displacements vary linearly between the nodes of the wythe mesh , the
stiffness properties of the collar joint element are also based on a
linear displacement field in the x-y plane. Thus, the strain-displacement
relations in the collar joint element may be written in terms of the nodél

displacements as

ey = oufex = (ujtuptugtug-ui-uj-up-up)/éb, (2.2)
sy T ov/ey = (VpHvitvotv,-vivy-vpvy)/oh, (2.3)
xy = du/aytav/ex = (uk+u1+uo+up-ui-uj-um-un)/ah
(v Vv tVeTY TV ] TV "V ) /4D, (2.4)
0
yzx = oujfezteyix = (ui+uj+uk+u1-um-un-uo—up)/At and (2.5)
0 s .
yzy = 6v/62+¢yf5¥ = (vi+Vj+Vk+VI-Vm'Vn'Vo*Vp)/4t (2.6)
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in which u and v are the displacements in the x and y direction, respec-
tively, subscripts refer to the specific element nodes, and t, h, and b,
are the thickness, height, and leungth, respectively, of the collar joint
element shown in Figure 2.1. Note that displacement, w, in the =z direc-
tion is not allowed in this model.

The shearing strains ypy and yzy in these equations are defined as
the average relative displacement between the two wythes divided by the
distance between the two wythes. Thus, the medjium resisting shear across
the two wythes may be considered as a shear segment connecting the
centroids of the two elements facing each other. The shear strain, Yxy >
on the other hand, is defined by the sum of the quantities cbtained by
dividing the average relative y-displacements of the nodes on the two
x~faces of the comﬁosite element by the 1engthlof the element in the x-
direction and the average relative x-displacements of the nodes on the
two y-faces by the height of the element. The two normal strains, ¢4 and
ty, can be defined similarly.

Equations 2.2 - 2.6 may be written in the matrix form as

{:} = (8] {0}, (2.7)
where
{e} = lex ey »xy v2x ?zyrr (2.8)
and
- - - 1 1 1 9|
-1 1 9 1 ¢ -L o Lo 1 o =2 o
—bo b b b b b b 1
-1 -1 1 o 1 -1 b A
o+ 0 5 9 g r 9% ° T Py h
gl=d{-lzl -1 1 1 1 1 -1 -1-1 -1 1 1 1 1 -1
Bl %% % 3 % 5 » b n b nh b h b h b
19 1l o L o Ll g 2L g 2 o=z o =zL o
t t t t t t t t
s 1 o 1 o 1 o 1.4 o =zt ozl o =L
L‘O? t T t t 3 £ € ]

(2.9}



and {U} = [uj vi uj vy... up vp]T. (2.10)

The stress-strain relations, in this case, may be given by

£ oy ) L v 0 Q 0 fexw
Oy v 1 0 0 a €y
_ E 1-v
fooportls o 2 o o | Jup aw
1-v
Tax 0 0 0 wu 0 Yzx
1-v
\TZYJ l—o 0 0 0 T Yzy
_ N

which yields the material property matrix, [D], as

1 v o o o0 |

v -1 0 0 0

E -
== 0o o =X 0o o |- (2.12)
1~

0o 0 0 - (;
-

i o 0 o o -

As in the case of the in-plane stiffness matrix for an element, the
force-displacement relations for the collar joint shear element may be
given by Equation 2.1, in which the element stiffness matrix [k} is defined
as

fk] = j[B)Z[D)iB]av. (2.13)
Carrying out the matrix multiplication above using Equations 2.9 and 2.12

leads to the collar joint shearing element stiffness matrix, {kgyl.

Stiffness Matrix of a Composite Element
The superposition of the two 8 x 8 wythe element stiffness matrices
and the 16 x 16 collar joint shear elemernt stifness matrix results in a

16 x 16 composité element stiffness matrix, written symbolically as,
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[k] = lf[B}T[D]IB]dv.

vo

[kgl o]

_ | l8xs 8x8 + [kgpl (2.14)
(o] [kpl 16 x 16
8x8 8x8

in which [kgl and fkp| are the plane stress stiffness matrices of the front
and back wythes, respectively; and [kg}] is the stiffness matrix of the

collar joint.

Calculation of Displacements, Stresses and‘Strains

Using the stiffness matrix of a composite element given in Eguation
2.14, the stiffness matrix for a finite element model of the total
structure can be assembled by the standard methods ieading to the equi-
librium equations which are solved for the nodal point displacements.
Normal and shearing strains in the wythe elements are obtained by using
the standard strain-displacement relations of 2-D quadrilateral elements,
whereas the corresponding strains in the collar joint elements are cal-
culated by using Equations 2.2 - 2.6. The in-plane stresses in the wythe
elements are calculated from the in~p1ane'strains by using the standard
plane stress constitutive relations. The normal and shearing stresses-
in the collar joint, on the other hand, are calculated from the corre-

sponding strains using Equation 2.12.

Analysis of One Story Composite Masonrvy Walls

Two 10 ft. high walls, one 20 ft. long and the other 12 ft. long,
are analyzed to investigate the influence of the longitudinal stiffness
of the wall on the stresses énd'straiqs using the model described in the

previous section. Each composite wall is made of an 8 in. thick wythe
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of concrete block that is attached to a 4 in. thick wythe of clay brick
through a 2 in. thick grouted collar joint. The effects of only the
horizontal in-plane loads due to earthquakes are examined in this example.

To compute the horizontal earthquake load, it is assumed that the
composite shear wall supports a vertical load on the block wythe which
is transmitted to it from a 12 ft., wide and 14.5 in. thick concrete slab.
A live load of 100 psf is added to the dead load of the slab té compute
the total vertical load that acts on the block wythe. The horizontal
in-plane load is obtained following the procedure outlined in ANSI
A58.1-1982 (107). It is assumed that the structure is in an earthquake
zone 2 and can be designed as a class II building. It is further assumed
that the block wythe is reinforced whereas the collar joint and brick
wythe are unreinforced. Performing the nécessary calculations in ANSI
for the above given vertical loads leads to a uﬁiform horizontal load
intensity on the block wythe of 1,0 k/ft. This load is shown in Figure
2.3 along with the finite element mesh which has been employed in this
study.

It is not guite clear if the above wentioned horizontal loads which
are generated due to the earthquake acceleration on the mass of the floor
slab would act with a uniform intensity on the block wythe. The actual
distribution of this load would depend upon the aspect ratio of the floor
slab and the relative stiffness of the shear wall to the longitudinal
wall. It could be surmised, however, that the center of the wall would
resist much larger horizontal load. Accordingly, a lecad distribution that
is parabolic in shape, and leads to the same total load, has also been

assumed in these analyses. The maximum horizontal load intemsity in this
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case is equal to 1.57 k/ft., at the center of the wall. The load intensity
is zero at the ends.

As a wall with the horizontally applied loads can be assumed to be
in a state of antisymmetry about an axis through the midpoint along its
length, only half the length of the wallis considered in the analyses.
The wall is considered pinned at the base and the antisymmefric condition
can be modelled by pfoviding horizontal reollers at the midpoint of the
wall. The finite element mesh consists of 280 quadrilateral elements and
342 nodal points which yield a half-bandwidth of 44 in the assembled
stiffness matrix. A relatively fine mesh is utilized near the top of the
wall as it is known from the previous experience that large stress changes
in the collar joint occur near the top of a wall. It is further assumed
that the materials of the composite wall ﬁehave linearly elastic. The
values of the elastic modulus and Poisson's ratio utilized in the analysis
are based on the formulas recommended by the Brick Institute of America
(108) and American Concrefe Institute (105), and ultimate strengths of
the various material components measured in the laboratory. These cal-
culations may be found in Appendix A of Ref. (8) and lead to elastic
modulus values of 1040 ksi and 2000 ksi for the bleck and brick wythes,
and. 1600 ksi for the collar joint, respectively. The corresponding values

for the Poisson’'s ratioc are 0.25, 0.25, and 0.20 (8).

Results and Discussion

- Because the strength of a collar joint is critical in the composite action
of a wall, shear stresses in the collar joint at three different lo-
cations, defined by Section A-A, B-B, and C-C in Figure 2.3, are presented
and discussed. In addition, the normal strains and normal stresses in

the brick wythe and block wythe, as well as in the collar joint, are
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investigated along the length of the wall. The above menticned stresses
and strains are shown for the uniform as well as parabolic lcads for the

20 ft. and 12 ft. walls.

Collar Joint Shear Stress z.,

The horizontal loads acting only on the block wythe are transferred
to the brick wythe through the collar joint primarily in tﬁe top portion
of the wall as in the case for the vertically applied loads (19). This
load transfer produces horizontal shear stresses in the collar joint which
are functions only of the x-displacements of the individual wythes as the
proposed model does not have the capability to compute the out-of-plane
displacements in the z-direction.

The shear stress distribution in the collar joint due to a uniformly
distributed loads of 1 k/ft is shown in Figure 2.4. It can be noted that
the shear stress is the same at all points along the length of the wall
and it has a maximum value of 16 psi at the top which drops to zero within
10~12 inches. A similar phenomenon4was cbserved in a composite wall
subjected to vertical leoads in an earlier investigation (19) which indi-
cates that the shear stiffness of the collar joint is much more predomi-
nant than thé total stiffness of wall in the load transfer mechanism
between the two wythes. The difference between the vertical and hori-
zontal stiffness in a composite wall is of relatively little significance.
As the horizontal shear stress distribution is the same for both the 20
ft. and 12 ft. long walls, it can be surmized that the horizontal shear
stress in the collar joint is independent of the wall length.

The horizontal shear stress in the collar joint due to a parabolic
distribution of the horizontal earthquake load is shown in_Figure 2.5.

As the maximum load intensity is at section A-A near the center of the
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wall, the maximum shear stress also occurs at this section with a value
of 25 psi. This magnitude is approximately 1.57 times larger than that
due to the uniform load. It is of interest to note that the ratio between
the maximum horizontal shear stress due to the parabolic load to that due
to uniform load is the same as the corresponding ratio between the loads
at any point along the length of the wall. This indicates once again that
the stiffness of the collar joint relative to the longitudinal stffness
of the total composite wall is of major importance in transferring the
load across the collar joint. As can be seen in Figure 2.5, the shear
stress magnitudes at Sections B-B and C-C are smaller than at Section A-A
in this case, and the values for the 20 ft. wall are almost identical to

those for the 12 ft, wall.

Collar joint Shear Stress Yz

The vertical shear stress, Tyz, in the collar joint of a composite
wall is a function only of the relative vertical displacements between
the nodes of the two wythes as is obvious from the strains given in
Equation 2.6. Due to antisymmetric behavior of the wall about its center
line along the length, the maximum vertical displacements in a wall occur
near the wall end Section C-C and are zefo at the center line‘Seqtion A-A,
Thus, the vertical shear stresses are also largest at Section C-C and are
zero at Section A-A. As the vertical displacements in the two wythes
become equal at approximately 15 in. from the top at all sections, Tyz
vanishes to zero at this height. It should be noted that, for a fixed
height of the wall, the vertical displacements of the wythes are larger
for a 12 ft. wall than for a 20 ft. wall, thus, leading to larger magni-
tudes of maximum yz for a 12 ft. wall as can be seen in Figures 2.6 and

2.7.
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The maximum value of 7y, for a uniformly loaded wall is equal to 2
psi for a 12 ft. wall and 1.5 psi for a 20 ft. wall at Section C-C as shown
in Figure 2.6. The corresponding values for a parabolically loaded wall
are 0.5 psi and 0.25 psi, respectively. The smaller values for the
parabolic loading are due to the fact that the load intensities at
Sections B-B and C-C are much smaller in this case. A comparison of Tyz
with 7y, suggests that the maximum horizontal shear stress is approxi-
mately 8 times larger than the maximum vertical shear stress for the
uniform load. For parabolic loading, however, the horizontal shear stress
is much larger at the center line of the wall (Section A-A) where the

vertical shear stress is zero.

Collar Joint Shear Stress Ixy

The collar joint shear stress Txy for the uniform and parabolic loads
is shown in Figures 2.8 and 2.9. Although at first glance, these dis-
tributions appear to be rather difficult to grasp, a little effort can
lead to a hetter understanding of this shear stress variation if one notes
that rxy in the collar joint is a function of the horizontal and vertical
displacement gradients.

It can be anticipated that the value of the shear stress wyy at the
£op of the wall due to the uniform horizontal load would be the same af
all sections. In addition, as the load is transferred uniformly to the
support at the bége, Txy should be uniform at this place along the length
of the wall. These phenomena can be observed in Figure 2.8 for the 20
ft. and 12 ft. walls with an approximate magnitude of txy 88 7 psi. At
Section A-A near the center of the 20 ft. wall, the shear stress increases
from 7 psi at the top to approximately 11 psi at 2/3rd the height. This

can be attributed to the fact that-most of the acting horizontal load is
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transferred from the block wythe to the collar jéint in the top 10 inches.
At Section C-C near the end of the wall, on the other'hand, the shear
stress reduces with height as this section could be construed as the top
or bottom vertical fibers of a vertical cantilever beam subjected to a
uniformly distributed horizontal load applied at the free end. These
fibers in a beam naturally must have zero shear stress. At the bottom
of the wall, however, the shear stress increases again due to a uniform
horizontal load transfer at this boundary. These phenomena are cbserved
for both the 20 ft. and 12 ft. long walls.

In the case of the parabolic load distribution, the shear stress =y
at the top of the wall at various sections is a function of the intensity
of the applied horizontal‘load. The maximum shear stress has a magnitude
of 11 psi and it cccurs at Section A-A as shown in Figure 2.9. "xy at
the bottom of the wall, on the other hand, is approximately equal to 7
psi for all sections as was the case for the uniformly distributed hori-

zontal load.

Vertical Normal Strains and Stresses in the Wall

The normgl strains, zy, in the block wythe, brick wythe and collar »
joint at the bottom of the 20 ft. and 12 ft. walls are plotted in Figure
2.10. It can be seen in this figure that the normal strains in each
component of the composite wall are equal. This is due to the fact that
most of the load transfer from the block wythe to the brick wythe through
the collar joint occurs in the top short distance of the wall. It is also
for this reason that the shape of the load intensity does not have any
effect on the strain distribqtion at the bottom of the wall, and the
normal strains for the uniform and parabolic horizontal loads are the

same.
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The resisting couples provided by a 12‘ft. and a 20 ft. wall, in-
dividually mus£ equal to the acting couple at the base of the wall due
to the horizontal in-plane load. Since the intensity of loads in both
the walls are the same, it is obvious that the stresses, and accordingly,
strains, that are created in the 12 ft. wall must be larger than those
in a 20 ft. wall. This can be seen in Figure 2.10 from which it is also
evident that the strain variation along the length of the wall is not
linear. This shape can be attributed to the large length to height ratio
of the wall, making the wall behave like a very deep cantilever beam
subjected to end loads.

Although the normal strains in the three components of the composite
wall are the same, the corresponding stresses are different due to dif-
ferent moduli values. These normal stregses are shéwn in Figure 2.11
where the maximum value of 40 psi occurs in the brick wythe for a 12 ft.

wall.

Conclusions
The results presented in the previous éection for single story shear
walls subjected to horizontal loads due to an earthquake, lead to the
following conclusions:

1. The horizontal shear stress, g5, in the collar joint is
maximum at the top of the wall and reduces to zero within a
distance of approximately 10 in.

2. The vertical shear stress, Tyzs though much smaller than
1¢z» reduces to zero within the top 15-20 in.

3. The shear stress, tyy, in the collar joint varies approxi-
mately uniformly from top to bottom at the center line of the
wall length and its magnitude is roughly equal to 2/3rd of the
maximum horizontal shear stress, vy, for a uniform load.

4. Vertical normal stresses are the largest at the base near the
ends of the wall. The only shear stress present at these loca-
- tions is Txy-
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5. The horizontal load transfer from the block to the brick occurs
within a distance from the top of the wall which is shorter than
the distance within which the vertical load transfer occurs.
This phenomenon is also due to the smaller horizontal stiffness
of the wall compared to its vertical stiffness.

6. Failure criteria based upon the presence of the three shear
stresses in the collar joint at the top of the wall, and the
nocrmal stresses and shear stress %y at the bottom of the
wall, must be developed for a better prediction of the wall
failure.

Analysis of a Two Story Composite Shear Wall

As a composite masonry wall could also be used as shear wall in a
two-story structure, it is of interest to estimate shear stresses in the
collar joint due to vertical (gravity) and horizontal (earthquake) loads.
The composite shear wall, in this case, is assumed to he made of an 8 in.
thick wythe of concrete block that is attached to a4 in. thick brick
wythe through a 2 in. thick grouted collar joint. The wall is 20 ft. high
and is subjected to vertical and horizontal loads from the floor slab at
10 ft. and 20 ft. heights, repectively. |

Tt is assumed that the composite wall is a 20 ft. long end-wall for
a two-story covered area of the size 20 ft. x 60 ft. The 60 ft. long sides
are provided with columns in the middle on which rest beams each 30 ft.
long. The floor slabs at each level thus behave as 20 ft, x 30 ft. two-way
slabs as far as the vertical loads are concerned, and one 20 ft. side of
each slab rests on the concrete block wythe of the composite masonry wall.
The vertical load at the roof level is based on a 5 in. concrete slab with
2 in. covering and no live loads whereas at the 10 ft. level, it is based
on a 10 in. concrete sliab, 2 inch floor finish and a live load of 100 psf.
As the slab is supported on all four sides, the total load on the com-
posite wall is calculated from the appropriate tributary area. This leads

to the total vertical loads on the block wythe of 8 kips and 24.8 kips
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at the roof and first floor levels, respectively. Assuming a parabolic
distribution for the vertical loads yields the corresponding maximum load
intensities at the center of the wall of 0.63 k/ft and 1.95 k/ft.

The borizontal earthquake loads that act on the composite masonry
wall at each floor level are computed using the base shear formula given
in ANST A58.1-1982 (107). It is assumed in this calculation that the
shear wall supports the horizontal load due to a tributary area of 20 ft
x 30 ft. It is further assumed that the building is located in earthquake
zene 3 and has an importance factor of one. Since the collar joint is
unreinforced, even if the composite wall itself is reinforced, the value
for the numerical coefficiént, K, in the base shear formula is taken as
four. Performing s;andard calculations for the base shear magnitude and
dividing the total load for the two floors appropriately leads to hori-
zontal loads of 50.5 kips and 42 kips at the roof and first floor levels,
respectively. These loads further yield the corresponding uniform hor-
izontal load intensities on the block wythe of 2.52 k/ft and 2.10 k/ft.
As for a one story composite wall, a load distribution that is parabolic
in shape has also been assumed in this analysis. The maximum horizontal
load intensities at the center of the wall in this case are equal to 3.97
k/ft at the roof level and 3.30 k/ft at the first floor level and are zerc
at the ends.

As in the case of a single story wall, a wall with the horizeontally
applied loads can be assumed to be in a state of anti symmetry about an
axis through the midpoint along its length, only half the length of the
wall is considered in the analysis. The wall is considered pinned at the
base énd the antisymmetric condition canibe modelled by providing hori-

zontal rollers at the midpoint of the wall. Similarly, for the vertically
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applied loads, only half the length of the wall with vertical rollers at
the center line can be considered due to symmetry. These boundary con-
diti@ns along with the finite element mesh used in the analysis are shown
in Figure 2.12. It should be noted that the loads at each floor level
are applied only on the block wythe. The finite element mesh consists
of 768 quadrilateral elements and 882 nodal points leading to a half-
baﬁdwidth of 44 in the assembled stiffness matrix. A relatively fine mesh
is utilized near the points of load application as it is known frem the
previous experience that large stress changes in the cellar joint occur
near these points. The values for the elastic modulus and Poisson's ratio
utilized in the analysis are based upon the formulas recommended by the
Brick Institute of America (108) and the American Concrete Institute
(105), and ultimate‘strengths of the vari&us materiéi components measured
in the laboratory. These calculations may be found in Appendix A of
Reference (8) and lead to modulii values of 1040 ksi and 2000 ksi for the
block and brick wythes, and 1600 ksi for the collar joint, respectively.

The corresponding values for the Poisson's ratio are 0.25. 0.25 and 0.20.

Results and Discussion

Shear stresses in the collar joint at two different locations, de-
fined by Sections A~A and C-C in Figure 2.12, are shown and discussed.
In addition, the normal strains and normal stresses in the brick and block
wythes, and collar joint are investigated along the length of the wall.
The above mentioned stresses and strains are shown for a uniform as well
as a parabolic horizontal load distribution at these sections. In addi-
tion, the shear stress distribution in the collar joint due to vertical

loads is also presented.
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Collar Joint Shear Stress 1y,

The horizontal shear stress distribution in the collar joint due to
the uniformly distributed horizontal loads of 2.1 k/ft at the 2nd floor
level and 2.52 k/ft at the roof level is shown in Figure 2.13. It can
be noted that the shear stress magnitude near the roof level is very much
higher compared to its value at the 2nd floor level (40 psi vs. lé psi)
although the load intensity at the roof is only slightly larger than at
the 2nd floor level. This phenomenon can be attributed tc the fact that
the load in the block wythe at the 2nd floor level can be transferred to
the brick wythe through the collar joint in a region both above and below
the slab. On the other hand, the load at the roof level can be transferred
to the brick wythe only below the roof slab. Since‘the stiffness of the
collar joint at the 2nd floor level to resist the hérizontal in-plane
loads is double that at the roof level, smaller displacements, strains
and stresses are caused at this level. The shear stresses in the collar
joint drop to zero within a distance of 10-12 inches from the slab level,
a phenomenon similar to the one observead in the analysis of a single story
composite wall. This indicates that the shear stiffness of the collar
joint is much more predominant than the total stiffness of the wall in
the load transfer mechanism between the two wythes.

The horizontal shear stress distribution in the collar joint at the
two levels due to a parabolic distribution of the horizontal loads is
shown in Figure 2.14. As the maximum load intensity at each level is at
Section A-A near the center of the wall, the maximum shear stresses also
occur at this section with a value of 60 psi at the roof level and 25 psi
at the 2nd floor level. These magnitudes are approximately 1.57 times

larger than those due to the uniform loadg It is of interest to note that
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the ratio between the maximum horizontal shear stress due to the parabolic
load to that due to the uniform load at each level is the same as the
corresponding ratio between the loads at any point along the length of
the wall. This indicates once again that the stiffness of the collar
jeint in transferring the load across the collar joint is of major im-
portance instead of the total longitudinal stiffness of the composite
wall. It can be seen in Figure 2.14 that the shear stress magnitudes at
Sectien C-C dre much smaller—than at Section A-A in this case. This is
so because the horizontal load intensity varies parabolically at each
floor level and has a much smaller magnitude at Section C-C.

It should be noted here that the vertical loads from the slab at each
of the two'lévels act symmetrically with respect to the center line along
the length of the wall and, thus, do not.cause any ﬁorizontal shear
stresses in the collar joint irrespective of the shape of the assumed load

distribution.

Collay Joint Shear Stress zyz

The variation of the vertical shear stress due to the vertical slab
loads, which are assumed to be distributed parabolically, is shown in
Figure 2.15. The maximum values for this stress are 6.5 psi and 9.5 psi
at the roof and 2nd floor levels, respectively. It can be noted, as in
the case of the horizontal loads, that although the loads at the 2nd floor
level are approximately three times larger than those at the roof level,
the corresponding shear stresses are only one and one-half times larger.
This phenomenon again can be attributed to the fact that the load transfer
at the 2and floor level occurs both above and below the slab whereas at

the roof this transfer takes place only below the slab level.
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If the maximum shear stress magnitudes-in Figures 2.14 and 2.15 are
normalized with respect to the corresponding maximum lcad intensities,
some interesting results can be observed. The normalized horizontal shear
stresses due to the earthquake loads are approximately 50% larger than
the corresponding normalized vertical shear stresses. This is so because
the wythe stiffness in the vertical directio; is much larger than in the
horizontal direction, which in turn reducgs the vertical load transfer
to the brick wythe. Hence, the shear stresses in the collar joint are
smaller in.this case.

Because of the antisymmetric behavior of the composite wall about
its center line along the length when subjected to in-plane horizontal
loads, the maximum vertical displacements occur near the wall end Section
C-C and are zero at the center line Sectioﬁ A-A. Thus, the vertical shear
stresses are the largest at Section C-C and are zero at Section A-A. As
the vertical displacements in the two wythes become equal to each other
at approximately 20 inches away from the slab, Tyz, vanishes at this
height.

The vertical shear stress distribution in the collar joint due to
the horizontal loads is shown in Figure 2.16. It is obvious in this
figure that the maximum shear stress Tyz OCCUTS at the roof level. Its
value for a uniform horizontal load assumption is equal to 3.7 psi at
Section C-C. This stress reduces to 0.7 psi at this section if a
parabolic load assumption is made. The smaller value for the parabolic
load is due to the fact that the load intensity at this section is much
smaller in this case. A comparison of yz with ry, suggests that the
maximum horizontal shear stress is approximately 11 times larger than the

maximum vertical shear sttfess for the uniform horizontal load. For
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parabolic loading, however, the horizontal shear stress is much larger
at the center line of the wall (Section A-A) where the vertical shear

stress is zero.

Collar Joint Shear Stress Xy

The collar joint shear stress Xy for the uniform and parabolic hor-
izontal loads is shown in Figure 2.17. It can be seen that the value of
the shearing stress ryy at the top of the wall due to the uniform hori-
zontal load is the same at all points along its length. At Section A-A
near the center of the wall, Xy increases from 17 psi at the top to 30
psi just above the second floor level. This can be attributed to the fact
that Section A-A of the wall could be construed as the neutral axis of a
cantilever wall fixed at the base and subjected to a uniform horizontal
load at the roof level. Shear stress tyy at the neutral axis in a beanm
is naturally maximum. Similarly, Section C-C could be regarded as the
top {or bottom)} fiber in the cantilever wall where the shear stress is
zero. This can also be seen in Figure 2.17 where xy at Section C-C just
above the second floor level is approximately zero. As additional hori-
zontal load intensity is applied at the second floor level, shear stress
Xy takes a sudden jump and its magnitude becomes equal to 45 psi and 12
psi just below the second floor level at Sections A-A and €C-C, respec-
tively. The total horizontal in-plane load along the length of the wall
is transferred uniformly to the foundation and produces a uniform Xy of
32 psi in the collar joint at the wall base.

If the horizontal lecad is assumed to have a parabolic load distrib-
ution along the length of the wall, the shear stress ryy at the roof level
will be proportional to the load intensity at any point. This is the case

in Figure 2.17 where Txy is equal to 28 psi at Section A-A and 5 psi at
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Section C-C. These values remain approximately constant up to just above
the second floor level where an additional horizontal load with a
parabolic distribution is applied. This produces a sudden increase of
shear stress which becomes equal to 48 psi and 8 psi at Section A-A and
Section C-C, respectively. As in the case of uniform load distribution,
the magnitude of the collar joint shear stréss txy 4t the bottom of the
wall becomes equal at all sections along its length. This magnitude is
equal to 32 psi which is the’same as for the uniform load. Although the
shear stress «yy in the collar joint is not zero due toc a non-uniform
vertical load along the length of the wall, its magnitude is relatively

small and can be neglected.

Vertical Normal Strains and Stregses at the Wall Base

The vertical normal strains and stresses are computed at the base
of the wall due to the combined action of the vertical and horizontal
loads. It is found that the normal strains in the block wythe are the
same as those in the collar joint and brick wythe., This is due to the
fact that most of the load transfer from the block wythe to the brick
wythe through the collar joint occurs in the top short.distance of the
wall. It is also for this reason that the shape of the lcad intensity
does not have any effect on the strain distribution at the wall base, and
the normal strains for the uniform and parabolic horizontal loads are the
same.

The normal stresses at the base in various materials of the composite
wall are shown in Figure 2.18. The maximum stresses, on the compression
side of the center line of the wall, in the brick wythe, collar joint,
and block wythe are 210 psi,'170 psi and 105 psi, respectively. [t is

evident from this figure that the stress variation along the length of
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the wall is nonlinear. This shape can be attributed to the large length
to height ratio of the wall, making the wall behave like a very deep

cantilever beam.

Conclusions
The results presented in the previous section for a two story wall
subjected to horizontal and vertical locads, lead to the following con-
clusions:

1. The maximum horizontal shear stress =y, in the collar
joint for a two-story wall subjected to horizontal loads
(assuming a parabolic load distribution) occurs near the center
line of the wall at the roof level. This shear stress reduces
to zero at a distance of approximately 20 inches from the top
of the wall. The horizontal shear stress at the second floor
level, on the other hand, is much smaller.

2. The vertical shear stress, gz, in the collar joint due to
all loads is rather small. 1ts maximum value due to vertical
loads occurs at the center line of the wall. The corresponding
maximum vertical shear stress due to the horizontal locads is
much smaller and it occurs at Section C-C where its value due
to the vertical loads is small. This suggests that Section A-A
at the center of the wall length is a more critical sectionm.

3. The shear stress, tyy, in the collar joint is quite signi-
ficant just below the second floor level. It appears, therefore
that two locations, one at the roof level and the other just
below the second floor level, are critical for the failure of a
collar joint.

4, As the quasi three-dimensjonal model used in this research pre-
dicts higher shear stresses in the collar joint (16), and does
not take the out-of-plane displacements into account, the
results presented are not accurate; however, the analysis
provides sufficient information to understand qualitatively the
behavior of the wall subjected to horizontal loading. a 3-D
model must be developed for further investigation of the beha-
vior of composite walls subjected to horizontal loads.



CHAPTER III

CREEP MODELLING IN COMPOSITE MASONRY UNDER PLANE STRAIN

If load is applied to a specimen, which first undergoes an instan-
taneous deformation and subsequently a furtﬁer slow deformation with time
without an increase in load, the specimen is said to creep. The phenom-
enon of creep has been investigated extensively in the last few years,
both analytically and experimentally, for metals as well as for concrete
{24, 28, 35, 36, 43, 49, 67). As a result of these investigations, var-
ious analytical techniques have been proposed in the literature for the
prediction of creep (24, 35), and several expressions to estimate creep
in concrete have become available. On the other hand, creep in masonry
has primarily been estimated by performing laboratory tests on masonry
wall specimens (91, 92). These tests have been the basis from which se-
veral design formulas for computation of creep have been proposed (59,
85, 91). It should be noted that the previously cited creep predictions
in masonry specimens have not been utilized in any form to estimate the
amount of load redistribution in composite masonry walls.

The purpose of this phase of the research is to extend the numerical
technique proposed in Reference (6) to problems of creep in composite
masontry walls which are in a state of plane strain. New relationships
for components of incremental creep strains in terms of existing stresses
at an instant, equivalent stress, and equivalent creep strain are devel-
oped for plane strain and are utilized in the incremental solution tech-
nique using the finite element method.. Creep behavior for the individual

materials in a composite wall is derived from experimentally obtained

5

?.
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specific creep curves available in the literature (91, 92). It is shown
that the proposed numerical technique can be used sﬁccessfully to estimate
stress and strain changes due to creep in the cross-section of a long

composite wall. In particular, the effect of creep on load transfer from

the lecaded block wythe to the unloaded brick wythe is studied.

Various Methods for Predicting Creep

The amount of creep that occurs in a member depends on the intensity
of the applied loads, the time of application of the load, temperature,
humidity, velume to surface ratio and many other factors, especially ce-
ment content. Several strategies have been suggested for obtaining ana-
lytical solutions of problems involving creep, and the initial strain
approach is used most widely in the creep analysis. Briefly, this method
involves solving a problem for stresses and strains due to loads and
calculation of initial creep strain incrementsrfrom these results., These
initial strains are then used to compute equivalent load increments from
which incremental displacements, strains and stresses due to creep are
calculated in the whole wall. As these incremental stresses could have
appreciable magnitude and could affect the creep behavior, the problem
should be treated as a case of variable stress. Some researchers (24,
35) have also suggested the prediction of creep under the influence of
variable stress using history integrals. However, as a closed form sol-
ution to such integrals could be complicated, other methods have been
suggested in the literature (24, 43). One of these metheds, that can
account for the effect of stress changes on subsequent creep, is based

on the principle of superposition which is used in this study.
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Principle of Superposition

It is assumed under this principle that each increment in stress
produces a resulting deformation which continues for an indefinite length
of time. Thus, creep-~time curves are required for various ages at which
stress changes occcur. Gradual variation of stress can be treated as a
series of small finite increments and a summation can be applied. For
increasing stress and slightly decreasing Stress, the principle of
superposition is in good agreement with‘the experimental data; however,
for complete unloading, the recovery is overestimated (35}. Neverthe-
less, this is not a serious handicap since complete unleoading is normally
not important in a practical situation. Bazant et al. (24) have shown
that the predictionlof creep by an application of the principle of
superposition is in good agreement with the experimental results for
concrete, provided (1) the material is linearly viscoelastic, (2) the
magnitude of the applied stress is not larger than 40% of the material
strength, i.e., the stress is within the service range, (3) the strains
do not decregse with time, (4) the material undergoes no significant
drying during creep, and (5) the stresses due to the applied loads do not
change considerably at any instant of time.

The principle éf superposition states that if a structure is sub-
jected to various stresses at different times, then the respénse due to
each stress is independent of the responses generated by any other stress
(28, 36). This is explained below.

Suppose a structure is subjected to a stress cp at time tp = 0, then
the creep strain :;pf(t) due to this stress is given by

socr(t) = croJ(‘l'_., tg) (3.1)
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where J(t, tp) is creep compliance defined és the creep strain per unit
stress, also known as the virgin specific créep curve. The specific creep
curve which predicts creep due to the stress gy starts'at time tg = 0 as
shown in Figure 3.1(a). If the structure is then subjected to a stress
increment Asj at time t1 > tp, the creep strain increment A:1%*(t), due
to Acj alone, at any time t > ty is given by

Ae1CT(t) = Aoy J(t, t7), (3.2)
in which J(t, t3} is the creep compliance or the virgin specific creep
curve that starts at time t1 as shown in Figure 3.1(b). Hence, the total

creep strain at time t > t| is cumulative and is given by

CT(t) = socr(t) + Aslcr(t) (3.3)
or
eCT(t) = op J(t, tg) + Aoy J(t, tq) (3.4

as shown in Figure 3.1(c). If there are (n-1) stress changes in n time
intervals, the total creep strain :©T(t) is, then, given by
n-i
CT(t) = socr(t) +i§iAsicr(t) (3.5)

or

(3.6)

CT(t) opJ(t,tg) +?§|‘Aai~1(t,ti)-
If the stress is a continuously changing function, then the total creep
at any time t can also be written as

sCT(t) = agd(t, tg) + §J(t, 7)(de/dr) dr, (3.7)
in which + defines the time when ds is applied on the structure. Equations
3.1 to 3.7 describe thg principle of superposition to predict uniaxial
creep strain due to a changing uniaxial stress. However, since the

masonry walls under consideration are in a condition of plane strain and

are, consequently, subjected to stresses in two directions, the above
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equations must be modified. Incremental creep strain expressions for

plane strain are developed in the following section.

Creep Laws for Multiaxial Stress
The creep strain compenents in multiaxial applications are determined
from the flow rule, usually associated with a yield locus as in
plasticity, using the concept of effective stress and effective strain

(36). The effective stress 7 and effective strain 7 in terms of corre-

sponding quantities in the three principal directions are defined as (56)

7= (1/92)(f(o1=09)2 + (s9= 03)2 + (a3-01)2), (3.8)
and
P = (y2/3)(Sle1me9)2 + (9= e3)2 + (e3-61)2). (3.9)

For plane strain, ¢ = 0, for which Equation 3.9 reduces to

P= (2/3)e12 + e92-sy e, (3.10)
If Aey ST, Aeycr, and Ayxycr are defined as the normal and shear incremental
creep strain components in the x-y plane and at¢Y is the corresponding
incremental equivalent c¢reep strain, then the creep strain increments,
Aaijcr, like the plastic strain increments, at any stress level may be
given by (56)

Asijcr = (3/2)(Aicr/5)sij (3.11)
in which A#®T is the incremental equivalent creep strain and Sij is the
deviatoric stress tensor. Equation 3.11 is given explicitly for the plane
strain condition below.

Using the standard definition of the deviatoric stress tensor sjj
(56), its elements can be expressed for plane strain in terms of the

cartesian stresses oy, oy, 7z, and tyy as
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(1/3)(20x=0y=0,) gy 0
Sij = XY (1/3)(26y'0x'az) 0 (3.12)
0 0 (1/3)(20z-0y-ay)

The values of syy, syy and Sxy from Equation 3.12 can be substituted into
Equation 3.11 to yield relations between incremental creep strains and

existing stresses for the plane strain case as

cr

i

Asy (AECI/ZE)(ZG'X‘O‘Y‘JZ) .

cr

1

Asy (AECI/ZE)(ZGY'JX'JZ) and (3.13)
Ayxycr = (3/2)(A§°f/5)1xy.

These incremental creep strains are the initial strains frem which in-

cremental loads are computed to calculate creep strains in composite

masonry walls. Az¢T in the above expressions is obtained from the spe-

cific creep vs. timé curves (8) which for the materials in a composite

wall are shown in Figure 3.2. Details of the method to compute initial

strains are given below.

Method of Analysis
Masonry walls subjected to in-plane loads lead to a condition of
either plane stress or plane strain. A plane strain 2-dimensional finite
element model could be used for the analysis of long composite masonry
walls in order to understand the overall elastic behavior of these walls,
As the procedure for a 2-dimensional finite element analysis is well known
in the literature, no attempts are made here to give the details of such
an analysis. Creep analysis using the principle of superposition, on the
other hand, is not commonly known and is described in the following par-
agraphs. For further details of this method, the reader should consult

References (6, 35).
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Creep Analysis for Plane Strain Condition

The necessary steps for the initial strain approach used in con-
junction with the principle of superposition are given bslow.

Step 1. It is assumed that the stresses gy, Tys Tz and Xy due to
the applied loads and the corresponding strains are known before the
creep analysis is performed. The total time, t, for which the creep
analysis is carried out is divided into small intervals, At. Specific
creep curves shown in Figure 3.2 are assumed to be piecewise linear within
these time intervals.

The equivalent stress 7y at time t = 0 is calculated from the known
stresses using Equation 3.8. Hence, the specific creep curve, which
predicts creep strains due to this equivalent stress, starts at time t =
0 and is shown as curve A in Figure 3.3. Let ACp be the specific creep
strain increment for a time interval Aty. The incremental eqivalent creep
strain for At; is given by

ATgCT = ACqy &g ' (3.14)
where it is assumed that the equivalent stress sy remains constant during
this time step. The components of strain increments in different di-
rections are calculated using Equations 3.13 for the plane strain condi-
tion. These strains are, therefore, considered as initial strains during
the first time interval.

Step 2. Equivalent joint loads are calculated from these initial
strains. A method to calculate these equivélent loads is described in
Reference (7). Some important features of the method to calculate
equivalent joint loads are also given in the next chapter. These loads
are then applied on the structure which is solved to yield incremental

displacements.
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Step 3. Incremental strains are calculated using the incremental
displacements found in step 2, from which the corresponding initial creep
strains are subtracted to yield the stress causing strains which are
utilized to calculate the incremental stresses in different directions.
These incremental stresses are added to the stresses due to loads to yield
new stresses at the end of the time interval Atj. These total stresses
are used in Equation 3.8 to calcualte a new equivalent stress, 7.

Step 4. It is assumed that the incremental stresses calculated in
step 3 begin to act in the system at the end of the first time interval
At and remain acting for an indefinite periocd of time, thus contributing
to creep in the structure. The specific creep curve which predicts creep
due to these stress increments starts at time At; and is shown as curve
B in Figure 3.3. Since no mathematical interpretation can be given to an
expression for the incremental equivalent stress, in contrast to that for
the total equivalent stress given by Equation 3.8, a different approach
must be used in the calculation of creep contribution from these incre-
mental stresses.

To compute the initial strains for the second time interval, At,,
it is necessary to consider (1) the instantaneous elastic stresses and
(2) the incremental stresses from the time interval Aty. The incremental
equivalent creep strain for the time ipterval Aty dge to the elastic
stresses is given by

ATgCT = Gy (ACl-ACO), {3.15)
in which AC; is the specific creeplstrain in Curve A at the end of time
(At{ + Aty) ag shown in Figure 3.3. The contribution from the incremental
stresses, on the other hand, is given py:

A'E]_br = (§1-7g) (AC]_'), (3.16)
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1
where AC; is the specific creep increment for the time interval Aty on
Curve B.
Thus, by the principle of superposition, the total incremental

equivalent creep strain in the time interval At; is given by

AECI = AE‘OCI + AEICI’ _ (3'17)
or
AFCT = 73(AC1-ACy) + (31-79) (ACy ). (3.18)

Equations 3.13 are used once again to calculate individual components of
the incremental initial strains for the time interval Aty in which stress
levels at the end of the first time interval At; are utilized. Steps 2
and 3 are then repeated to yield the incremental as well as total values
of displacements, strains and stresses. It should be noted, however, that
the incremental values are algebraically added to those existing at the

end of the previous time interval.

Step 3. The procedure described in step 4 for calculation of the
equivalent creep strain can be generalized as follows: For the nth time
interval, there are (n-1l) stress increments that contribute to the total
incremental equivalent creep strain. Hence, Equation 3.17 generalizes
to

n=i

ATCT = AFgCT + FAF;CT (3.19)

or

AFCT = Eo[ACn‘AC(n - 1)]

n=l - H '
+2Fit5(1 - DIAC (n-i+1)7AC (n - i) (3.20)
The steps described above to compute creep strain increments, and the
corresponding changes in stresses due to sustained loads, are carried out
as long as the incremental creep strains during a time interval are sig-

nificant. It should be emphasized that this procedure does not take into
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account any unloading due to the external loads. A computer program is
developed to incorporate the above described methodology and is utilized
to compute creep strains in composite masonry walls; some results of these

analyses are given in the following section,

Example Problems

Creep Analysis of a Single Wythe Wall

In order to verify the validity of the proposed creep model and the
correctness of the computer coding of the solution procedure, a single
wythe brick wall is analyzed. This is‘a long wall and its héight is 8
ft. The cross secticn of the wall is analyzed considering it to be under
the condition of plane strain. Vertical rollers are provided at the two
sides.of the cross section as shown in Figure 3.4. The vertical rollers
inhibit the strain in the horizontal direction énd thus make the
elasticity and creep equations simple to work out by hand calculations.
The material pfopérties of brick masonry are calculated on the basis of
their strengths measured in the laboratory and formulas given in Reference
(108). The elastic modulus and Poisson's ratio of brick masonry are
computed as 2000 ksi and 0.25, respectively.

The wall is subjected to a uniformly distributed vertical load of
0.03125 k/in over its entire width. It is shown by.Anand and Yalamanchili
(17) that the failure in composite masonry initiates at the above men-
tioned magnitude of the load intensity. As the dimensions of the wall
and the intensity of load are known, the elastic stress as well as the
incremental stresses due to creep in the wall can be calculated from basic
principles. These calculations are presented in Appendix A. A comparison
of the analytical results with those obtained by the computer program are

also given. For the computer solution, the problem is modelled by linear
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quadrilateral elements. It is shown that the results obtained by using
the computer program are in good agreement with those obtained from the

analytical solution.

Creep Analysis of a Composite Wall

A composite wall shown in Figure 3.5 is analyzed., The wall is 10
ft. high and its cross section consists of an 8 in. concrete block wythe
connected to a 4 in brick wythe through a 2 in. thick grouted collar
joint. It is assumed that the extermal loads due to dead weight of the
slab and the live loads act only on the concrete block wythe at the top
of the wall. It is further assumed that the diaphragm action of the floor
slab provides a lateral support at the top of the wall.

The creep behavior of the individual wythes has been taken from the
available literature and is shown in Figure 3.2. In addition, the creep
behavior of the grouted collar joint is assumed to follow that of the
concrete block wythe. Numerical values corresponding to creep curves in
Figure 3.2 are provided as data at every 10 day interval in the computer
program. As the wall is very long; it is in a state of plane strain and
thus only a unit length of the cross section need be analyzed.

It is known from working with the previous models (6-8) that most
of the load transfer from the loaded wythe to the unlcaded wythe occurs
near the top of the wall. Consequently, a relatively fine finite element
mesh is provided near the top of the wall as shown in Figure 3.5. The.
total number of quadrilateral elements and nodal points used in the
analysis are 350 and 390, respectively. The block wythe is subjected to
a load of 20 kips per foot. That leads to a uniform pressure of (.21 ksi
which is 20% of the concrete block wythe.strength measured in the labo-

ratory. The material properties for various constituents of the composite
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wall are computed based on their laboratory compressive strengths as

prescribed in References (105, 108) and given in Table 3.1,

Table 3.1, Material Properties

Material Elastic Modulus, E (ksi) Poisson's Ratio
Concrete Block 1,040 0.25
Brick 2,000 0.25
Grout 1,600 0.20

Before the creep analysis is carried out, it is desirable to check
whether the conditions for which the principle of superposition is ap-
plicable are satisfied (24): (1) As required, both the brick and the
block masonry are assumed to be linearly viscoelastic within the range
of the applied locads (8); (2) The maximum load permitted by the Brick
Institute of America on a brick wall is equal to 20% of the brick masonry
strength (108) which is within the 40% strength limit necessary for ap-
plication of the principle of superposition and (3) As no unloading is
considered, strains always increase with the time as required. As all
three of these conditions are satisfied in this example, the abplicability

of the previously outlined superposition procedure is valid.

Results and Discussion
The wall is initially analyzed for the instantaneocusly applied lcads,
after which the effect of creep in the wall due to sustained loads is

examined for up to 300 days at which time most of the creep should have
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occured, as is obvious from Figure 3.2. Starting from zero days, this
total time is discretized into 10 intervals of five days each, seven in-
tervals of 10 days each, and nine interval of 20 days each to yield a total
of 26 time steps to obtain the complete solution. Some typical results
for various régions of the composite wall are plotted in Figures 3.6
through 3.11, in which the results for an elastic analysis are labeled
as zero days, whereas those for the creep analysis are indicated by the
respective number of days after the load application.

Figure 3.6 shows the shear strain in the collar joint at various
times. It is evident that due to the leoad transfer from the loaded block
wythe to the unloaded brick wythe near the very top of the wall, the
maximum shear strain occurs in the top 6 inches of the wall. The magni-
tude of this maximum shear strain is approximately five times greater than
the average shear strain in the colldr joint. As the materials creep with
time, the shear strain in the collar joint also increases, and its mag-
nitude at 300 days is approximately twice as much as at the time of load
application. The rate of strain increase is large in the beginning and
slows down appreciably with time. However, the shape of the shear strain
diagram remains essentially the same. As far as the shear stress vari-
ations are concerned, Figure 3.7 shows no substantial changes due to
creep. The slight increase in stress during the early period of creeb
and eventual decrease during the later time period is due to different
creep behavior of the concrete block and brick wythes, as shown in Figure
3.2. |

Normal vertical strains in the collar joint at various heights are
shown in Figure 3.8. As the load from the loaded block wythe transfers

to the unloaded brick wythe in the toﬁ six inches of the collar joint,
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the normal strains in £he collar joint remain essentially constant below
six inches from top of the wall. With time, these normal strains increase
due to creep and become approximately twice their elastic values. The
normal stresses in the collar joint, as shown in Figure 3.9, on the other
hand, are similar to the normal strains only at the time of instanteneous
load application. Due to different creep displacements at different times
in the wythes at various heights, the normal stresses in the collar joint
decrease by approximately 30% during the first 20 days; however, most of
this stress decrease is regained during the next 280 days. The final
normal stresses are‘slightly‘smaller than those at time t = 0, indicating
that there is stress reliefiin the collar joint due to creep. This is
also substantiated in Figure 3.7 where shear stress. in the collar joint
at 300 days is smaller than that at zero days.

Another phenomenon of interest to investigate is the out-of-plane
bending deflections of the wall due to eccentrically applied slab loads
on the block wythe and their influence on the vertical normal strains at
different heights of the wall. The wall is assumed to be laterally sup-
ported at the top and bottom. The horizontal out-of-plane defections of
the collar joint are shown in Figure 3.10. The maximum value of this
deflection at zero days, which occurs at approximately 2/3rd the height
from the bottom of the wall, is less than 1/100th of an inch. The de-
flection increases with time due to creep and value nearly doubles after
300 days. It is evident from this figure that most of the creep de-
flections occur during the first 20 days.

The vertical normal strains across the width of the wall at various
heights are shown in Figure 3.11. Obviou§ly, the normal strains directly

below the load are larger than those below the unloaded portion near the
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top of the wall. As the load gradually transfers out to the unloaded
brick wythe, the normal strains in both the wythes should become equal
leading to uniform vertical movement of the whole width of the wall with
no further load transfer through the collar joint. This phenomenon has
previously been observed in walls which have been assumed to be contin-
uously supported laterally along their whole height (7). However, due
to the ocut-of-plane wall deflection shown in Figure 3.10, and its asso-
ciated curvature and bending stresses, the compressive normal strains
reduce in the brick wythe for the top 1/3rd height of the wall, and they
increase near the bottom of the wall. Once again, the final strains after
300 days are approximately twice their values at the time of the load
application.

"It may also be of interest for the réader to find out the amount of
computational effort that was needed to perform this creep analysis.
Computations were carried out on a VAX-11/780 and a total of 26 time steps
were needed to complete the creep analysis up to 300 days., CPU time re-
guired per time step for the above problem with 390 nodes was 57.2 sec-

onds.

Conclusions
From the example problem presented, it is clear that the proposed
technique for creep analysis can be implemented successfully to estimate
creep strains (and the corresponding stress changes) in masonry walls
using the principle oflsuperposition. The results of the elastic and creep
analysis of a 1oﬁg composite wall under a condition of plane strain lead
to the following conclusions:

1. All strains do increase substdptially due to creep during the
- first 300 days, most of these during the first month after the
"load applicaticn.
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2. The shear stresses in the collar joint remain almost constant
with the elapse of time. Normal stresses in the collar joint
reduce between 10% and 30% at various times.

3. The out-of-plane deflections, though rather small, double due
to creep within 300 days. These deflections tend to produce
different strain distributions along the height of the wall.

4. The results presented here are based on the specific creep
curves shown in Figure 3.2. Similar curves for other materials
must be available if the technique presented in this chapter is
to be used for walls of those materials.
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CHAPTER 1V
ESTIMATION OF TEMPERATURE STRESSES IN

COMPOSTTE MASONRY WALLS

It is reported in the literature (46, 63, 85), that strains and
stresses in masonry due to temperature variations may not be insignificant
in magnitude compared to those due to the external loads. In composite
masonry walls, in particular, the effects of temperature variations may
even be more important, especially on the shearing stresses in the collar
joint. It is therefore, important that the effects of temperature strains
be included in the a_nalysis and design of composite masonry walls. In
this research, a two-dimensional finite element model based on a plane
strain condition is utilized to study the above mentioned effects. The
initial strain approéch is utilized to estimate stresses in the collar
joint of composite walls due to differential temperatures on the inside
and cutside wythe faces in a wall. Coméutational techniques are presented
in detail to investigate the effects of temperature on composite masonry
wallis under a state of plane strain. The theory and development necessary
to determine equivalent ncdal loads for thermal strains are also given.
Analyses are then carried out for typical examples to show the signif-

icance of temperature strains on the stress distribution.

Temperature Strains

Many studies have been carried out to measure the thermal expansion
in brick and block masonry due to the increase in temperature. A detailed

review of this literature can be found in Reference (45).
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The thermal strains in this study have been considered as time in-
dependent, thus yielding their maximum value based upon the assumed tem-
perature variaticns in the wall. As the strains due to temperature are
independent of the stresses caused by the externally applied loads, these
could be considered as initial strains in the time independent stréss
analysis (104). For example, initial strains {:;} in an isotropic mate-
rial with a coefficient of thermal expansion =z, due to an increase in
temperature At may be defined as

{eid = fexdis tyis fzis> Yxyis Yyzios sziJT (4.1)
and given by

{e} = [sAt, aAt, aat, 0, 0, ofT. - (4.2)

Elastic Analysis due to External Loads

In a composite masonry wall, the external loads are transmitted from
a floor directly to the inner concrete block wythe. Part of these loads
get transfarred to the outer brick wythe through the collar joint, thus,
causing shearing stresses in it.

Determination of stresses and displacements in a composite masonry
wall under the plane strain condition due to in-plane loads can be easily
accomplished by using the cross sectiopal model of the wall together with
a standard plane strain finite element analysis. A detailed development
of the in-plane stiffness matrixland a step by step procedure to obtain
the displaceménts, strains and stresses may be found in standard finite

element texts (101).

Apalysis for Thermal Strains
Initial strains in a given structyral system generally cause addi-

tional deformations and stress redistribution. In a finite element
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analysis, their effect can be incorporated (1) by determining the addi-
.tional equivalent loads that must be applied to the structural system and
(2) by computing the additional stresses in the system from the stress
producing strains (which are the strains due to the equivalent loads minus
the initial strains). These additional stresses and strains are added
to those due to the external loads to yield the corresponding total values
due to the external lcads and thermal strains. Before describing the
finite element analysis procedure for temperature in detail it is desir-
able to present a method for computing the joint loads in an element due

to initial strains.

Joint Loads in an Element due to Thermal Strains

Total strains {e} in a structure are equal to the sum of the strains
due to the external loads and initial strains and are given as

{e} = [Cl{o} + {ei} (4.3)
in which

fe} = lexs eys 225 vxy»> vyzs vzxlt and (4.4)
{0} = loxs 9ys 925 Txy> Tyzs Tuxll- (4.5)
{e;} is defined in Equation 4.1 and [C] is a matrix of elastic
coefficient. Equation 4.3 can be inverted to get an expression for the
stresses {¢} as
e} = DJCfe}-Les]). (4-6)
As prescribed in the previous section, the cross-section of the wall is
‘assumed to be in a state of plane strain, for which 1y, = 1y; = 0 and &3
= = 0. Thus, the stresses may again be given by Equation 4.6 in which
the individual matrices can be defined as

fe} = Io'xs dy: Txy]T; (4.7)

{9}1 = [fx: Ey’ )’xle: » (4.8)
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fei} = lexis tyis vxyilt (4.9)
and
-_(l‘v) v 0 ]
D : (1-v)
- — v -y 0 . .10
0] (1+v)(1-2v) . (4.10)
1-2v
0 4]
2

To compute equivalent joint loads for the initial strains, let {p}
ﬁe an 8x1 load vector which defines forces at the nodes of a linear
quadrilateral element in equilibrium, that produces stresses {¢} in the
element. If the element is subjected to a sef of virtual nodal dis-
placements {u*} that produce virtual element strains {s*}, the principle
of virtual work, then yields

(1 {p} = ()T (e} av. (4.11)
The virtual strains may be expresses in terms of the virtual nedal dis-
placements by

(<"} = (8] {u”} (4.12)
where [B] is the strain-displacement transforma£ion matrix. Substituting

Equation 4.12 into Equation 4.11, eliminating [u™}T and utilizing

Equation 4.6 yields

{p} = JiBIT(IDI{e} -D{e3}) @V (4.13)
or
tp} +BITDHez} Qv = BIT[DI{e} V. (4.14)

The second term on the left hand side of Equation 4.l14 yields the equiv-
alent joint load vector {p;} for the initial strains and may be defined
as

(o1} = BTz} dv. (6.15)
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As the wall is assumed to be in a state of plane strain, {¢;} in Equation
4,15 for the thermal strains can be expressed as

{s1} = (1 + Waat, «at, 0T, (4.16)

Thermal Analysis

As mentioned in an earlier section, thermal strains are considered
time independent in this study. Their influenée on displacements,
strains, and stresses is easily obtained by considering these strains as
initial strains, for which an elastic analysis for the equivalent joint
loads due to therhal strains is performed. It should again be noted that
the additional stresses due to these strains are calculated by using
Equation 4.6.

To obtain the initial strains in an element, tﬁé temperature at the
centroid of the element must be known. The temperatures at the inner face
of the block wythe and the outer face of the brick wythe of a wall may
be taken as the room temperature ana atmospheric temperature, respec-
tively. To find the temperature at any point within the wall, one needs
a temperature profile across the cross section through the three different
materials, némely, concrete block, grout and clay brick. The literature
gives very little information about thevabove mentioned temperature pro=
file. It has been reported by Glanville and Kobak (39), however, that
the temperature profile from the exterior to the interior of a wall can
be assumed to be a step function. A heat transfer analysis and subsequent
structural analysis indicates that this assunption does not introduce
serious error (39). On the basis of heat flow analysis under steady state
conditions for intersecting walls, Rahman and Suter (77) used a parabolic
temperature profile across the masonry wall intersection. Based upon the

above mentioned information, a parabolic temperature profile, as shown
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in Figure 4.1 has been assumed across the thickness of the wall in this
study. This temperature profile may be expressed as

T(x) = (x/w-1)2(T{-Ty) + T3 ' (4.17)
where {T1| > |[Tp|, w is the wall thickness and x is the distance from
the wall interior where temperature = Ty. Similarly, if lT2{>|Tl|, the
parabolic temperature profile may be given by

T(x) = (x/w)?(T2-T1) + Tq. (4.18)
Using the above temperature profiles, the temperatures at the centroids
of various elements across the wall thickness can be obtained for dif-
ferent combinations of interior and exterior temperatures. The temper-
ature changes, which are responsible for causing initial strains in the
elements; are calculated by subtracting ambient, stress free temperatures
at the centroids. These temperature changes are multiplied by the coef-
ficient of thermal expansion to yield the initial strains in each element
from which equivalent joint loads can be calculated using Equation 4.15.
The thermal strain analysis can be carried out using these joint loads

as described in Chapter III for the creep strains,

Example Problems

Analysis of a Single Element Problem

A 2 in x 2 in continuum is modelled by one linear quadrilateral el-
ement. This single element problem is analyzed for thermal gradient to
verify the validity of the proposed model and the correctness of the
computer coding. A plane strain condition is assumed in this analyeis.
Applied boundary conditions do not allow the specimen to deform in the
horizontal direction. This is shown in Figure 4.2. The applied boundary
conditions make the problem simple and the solution can also be obtained

by han&-calculations. The elastic modulus and the Poison's ratio of the
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material for this probiem are assumed to be 2000 ksi and 0.25 respec-
tively. The coefficient of thermal expansion is considered to be
4.0%1075 in/in-deg.F. The specimen is subjected to a uniformly distrib-
uted load of 1.0 kip/in. The elastic stresses as well as the total
strains and stresses due to different temperatures on the two sides of
the specimen can be calculated from the basic principles. using hand cal-
culations. These calculations are presented in Appendix B. A comparison
of analytical results with those obtained by the computer program shows

that they are in good agreement with each other.

Analysis of a Composite Wall

In order to estimate the effect of thermal strains on stresses and
strains in the collar joint of a composite wall, the cross-section of a
long composite wall similar to that analyzed for creep strains in Cﬁapter
IIT is analyzed. The material properties, boundafy conditions, gecmetry,
externally applied loads and the finite element mesh of the composite wall
for this analysis are the same as those for the wall analyzed in Chapter
III. Linear quadrilateral elements are used tormodel the wall under plane
strain condition.. The finite element mesh is shown in Figure 3.5. The
effect of a slab has been ignored in the modelling because it can be shown
that the glab resistance to vertical displacement is relatively small and
can be neglected.

A wide range of values for the coefficient of thermal expansion of
block, grout and brick is quoted in the literature. This is possible
because there is no standard for measuring the coefficient of thermal
expansion for masonry materials or masonry (59). The values for the co-
efficient of thermal expansion that are available in the literature are

shown iﬁ Table 4.1. Based upon the information summarized in this table,
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the coefficients of thermal expansion for the block and brick masonry,
and grout have been chosen as 5.0x10'6in/in-deg.F, 3,2x10'5in/in-deg.F,

and 6.0x1070in/in-deg.F, respectively, in this study.

Table 4.1. Values of Coefficient of Thermal Expansion {(a« x 106
in/in-deg.F) for Brick, Block and Mortar as Available
in the Literature.

Reference Brick Block Wortar
Grimm and Fowler (46) 3.4% 4.3% .-
Jessop (59) 2.78-3.89 3.33-7.22 7.22
Rahman and Suter (77) - 5.5% --
Grimm (45) 2.2 (clay) -- 4.94

3.3(surface clay)
Spalding (86) -- 5.5 -
Lanczner (61) 3.11% --’ -
Plummer (73) 2.2(fire clay) -- --

3.3(surface clay)

*
Masonry

It is assumed that the stress-free temperature at the time of con-
struction of the composite wall is 60°F. In order to estimate additional
stresses and strains that are caused in the collar joint of the composite
wall under investigation, three different sets of inside-outside temper-
atures are considered. These are 80°, 80°F for a uniform temperature
increase of bpth'wythes, 80°, 110°F for a 30 degree higher temperature
on the outside than the inside, and 70°, -10°F representing a heated inside
environment on a cold winter day. Thé témperatures at the‘centroids of

various elements across the width of the wall are obtained by using one
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of the appropriate Equations 4.17 or 4.18. Subtraction of the stress-free
temperature of 60°F from the element temperatures yields the temperature
changes which are utilized to compute equivalent nodal loads in the
thermal analysis described earlier.

The resulting shear strains and shear stresses in the collar joint
due to the three temperature combinations are shown in Figures 4.3 through
4.6 in which the corresponding values are also plotted for the external
loads. Note that the stresses have been taken from collar joint elements
adjacent to the bfick wythe as these gave larger values than those near
the block wythe. It is evident from Figure 4.3 that the shear strainm
distribution due to the external loads is different from that due to the
temperature changes. This is quite obvious as the external loads afe
applied only on the block whythe whereas the temperature changes lead to
equivalent loads that are applied on both wythes in the horizontal and
vertical directions. It can also be noted that the shear strains in the
collar joint due to the temperature changes can be positive or negative
depending upon the temperature increase or decrease in the two wythes,.

As the temperature change produces only normal initial strains (and
no initial shear strains), the stress causing shear strains are the sanme
as the final strains in the thermal analysis. This leads tec shear
stresses in the collar joint due to the thermal loads which are propor-
tional to the final shear strains. Thus, the shapes of the shear strain
distribution shown in Figures 4.3 and 4.4 is similar to that of the shear
stress distributions shown in Figures 4.5 and 4.6.

It can be seen in Figure 4.5 that the largest value of the shear
stress due to the temperature change alone is equal to =20 psi which oc-

curs at the top of the wall for a temperature combination of 70°, -10°F.
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The maximum shear stress in the collar joint due to the external loads
alone, on the other hand, is equal to 46 psi and it occurs at approxi-
mately 2 in. from the top of the wall. The maximum shear stress due to
the combined effect of the external loads and temperature changes occurs
for a temperature combination of 80°, 110°F at about 2 in. from the top
and has a value of 50 psi. This indicates that the increase in shear
stresses in the collar joint due to the specified temperature changes is
only 4 psi which is approximately 8% of the stress due to external loads.

The normal vertical strains in the collar joint due to the external
loads and temperature changes are shown in Figures 4.7 and 4.8. It is
séen that the vertical strains are compressive due to the external loads
as well as due to 70°, -10°F temperature combination whereas they are
tensile due to increases in temperatures fo 80°, 80°F or 80°, 110°F. The
temperaturé strains are of the order of one to two times larger than those
due to the external loads. These strains are mostly uniform in the whole
height of the wall except at the top where the strains due to the external
loads are zero and, due to the temperature changes, are approximately 20
to 50% 1argep than their average values.

The normal stresses in the collar joint due to the external loads
and temperéture changes are plotted in Figures 4.9 and 4.10. The normal
stress is zero at the top of the wall both due to the external loads and
thermal strains. As the load transfers from the loaded wythe to the un-
loaded wythe in the top 5 to 6 in. length of the wall, the normal stress
in the collar joint becomes uniform from this height downwards. The
maximum normal stress due to the external loads is equal to 150 psi
compressive. Due to an increase in the temperature combination to 80°,

110°F, the total compressive stress in.the collar joint increases to 270
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psi whereas a temperature combination of 70°, ~10°F together with the
extefnal loads produces a tensile stress in the collar joint of approxi-
mately 135 psi.

As the grout in the collar joint is a tension-weak material, it should
be of interest to compute the largest amount of tension in the collar
joint by considering the action of only the déad loads and temperature
changes. It is estimated that half of the external loads are always
present as dead loads, which yield a compressive stress in the collar
joint of 75 psi. Combining this with a temperature combination of. 70°,
-10°F, which produces a tensile stress of 285 psi due to the temperature
change alone, leads to a maximum tengile stress in the collar joint of
210 psi due to the combined effects of the dead loads and temperature
changes. This computed tensile stress i§ not the interface tensile
stress, rather this stress exist in the grout of the collar joint away
from the interface. The average laboratory compressive strength of the
grout used in the test specimens was 2,625 psi. Considering the tensile
strength to be 10% of the compressive strength, the maximum tensile stress
of grout at failure can be assumed as 260 psi, which is larger than the

maximum value of tensile stress in the collar joint computed above.

Conclusions
The results of the elastic and thermal analysis of a long composite
wall under condition of plane strain lead to the following conclusions:

1. The shear stresses and strains in the collar joint do not under~
go any substantial changes due to the realistic temperature
variations assumed in the analysis, Particularly, the maximum
value of the collar joint shear stress only changes from 46 to
50 psi, which is well within the failure range.

2. The normal stresses in the collar joint can change from a
compressive value of 150 psi for the external loads alone to a
-tensile value of 210 psi for the dead loads and assumed
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temperature changes. Although these stresses are smaller than
the tensile failure limit stress of the grouted collar joint,
the value is quite large to give the desirable factor of safety
against a tensile failure. Accordingly, vertical tension steel
must be provided in the collar joint to inhibit tensile failure.

It can be seen in Figure 4.6 that the maximum value of the shear
stress, which occurs near the very top, is equal to 50 psi
whereas the average value in the major portion of the wall is
only 12 psi. The average failure shear stress in the collar
joint obtained experimentally, on the other hand, is approxi-
mately 60 psi; however, its distribution is unknown. It is
impossible, therefore, at this point to predict a factor of
safety against shear failure unless detailed shear stress
distributions within the collar joint can be estimated from
measured strains.



CHAPTER V
DEVELOPMENT OF VARIABLE-NODE-NUMBER

ISOPARAMETRIC ELEMENTS

In the previous two chapters, the cross-sections of composite masonry
walls have been analyzed using linear rectangular plane strain finite
elements. The horizontal displacement plots in Figure 3.10 indicate that
the displacement field in the wall caused by vertical loads only on the
block wythe contains geuneral functions of order not less than ﬁﬁree.
Hence, elements with displacement functions of order three or higher along
the vertical direction are required to model the cross section of a com-
posite wall accurately. Elements with second order displacement function
may yield correct results if the finite element mesh is very fine along‘
the vertical direction.

In composite masonry walls, when only the block wythe is loaded, load
transfer from the block wythe to the brick wythe occurs through the
shearing stresses in the collar joint. Hence, the shear stresses at the
block wythe-collar joint interface are the most critical stresses in a
composite wall. Since, one of the main objectives in this research is
to estimate the interface stresses accurately, very fine meshes are pro-
_vided along the horizontal direction in the vicinity of the interface.
Hence, it is expected that the elements with quadratic displacement
functions along the horizontal direction would to be able to correctly
model the displacement field of the wall.

The plots of collar joint shear stresses given in Chapter III and

Chapter IV show that the shear stress variation is not uniform. The
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maximum value of the shear stress occurs within the top 2 te 3 inches of
the wall. Hence, to obtain the correct magnitude of the shearing stresses
and the exact locations of their occurence, one must provide a very fine
mesh along the vertical direction at the top few inches‘of the wall if
lower order (second order) elements are used. On the other hand, a rel-
atively coarse mesh may be used if higher order elements are chosen for
modelling the wall. The analysis of the cross section of a wall modelled
by either lower order elements in a very fine mesh or regular higher order
elements in a relatively cocarse mesh becomes expensive. Hence, an al-
ternative way to model the composite walls more economically has heen
suggested in this study.

It can be stated from the above discussion that the composite masoary
walls can be modelled efficiently if one employs elements that have higher
order displacement function along the vertical direction and lower order
displacement function along the horizontal direction to discretize the
cross section of the wall. These types of elements with different dis-
placement functions in two different directions are called variable-
node-number elements. In this study, attention has been focussed towards
developing variable-node-number elements that can be used to obtain cor-
rect stresses in the collar joint through efficient medelling of the
composite walls. For the most economical analysis, the higher order
variable-node-number elements may be used to model the collar joint at
the block-collar joint and brick-collar joint interfaces and quadratic
elements may be used to model the block and brick wythes. The transition
from the higher order elements in the collar joint to the quadratic ele-
ments in the block and brick wythes can also be achieved by using

variable-node-number elements. A finite element mesh for the top portion
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of a composite masonry wall shown in Figure 5.1 demonstrates the use of

variable-node-number elements as interface and transition elements.

Variable-Node-Number Isoparametric Elements

The concept of variable-node-number isopérametric elements was first
introduced by Zienkiewicz (101) in 1970. During the last few years,
different types of variable-node~number elements have been developed by
researchers (29,30,89,95) to model their specific problemsp It has been
shown by the above researchers that the stresses and strains can be sig-
nificantly improved and the cost of analysis can be decfeased considerably
by using variable-node-number elements. For méximum accuracy, Bathe (23)
suggested that the elements should be as nearly rectangular as possible
and the noncorner nodes should in general be located at their natural
coordinate positions. The use of variable-node-number elements is most
effective for two-dimensional problems. In three-dimensional analysis,
the use of incompatible modes can in some cases decrease the analysis cost
considerably.

Three types of variable-node-number isoparametric serendipity ele-
ments are developed in this study. The elements with local coordinate
system and node numbering are shown in Figure 5.2. Elemeunt VIS010 has
cubic displacement functions along both the vertical directions and
quadratic displacement functions along the horizontal directions. It is
a ten noded element. Element VISR9 has cubic displacement function along
the right vertical side and element VISLY has cubic displacement function
along the left vertical side. Both VISRY and VISLY9 elements have quad-
ratic displacement functions along the other three sides. They are nine

noded elements.
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Derivation of the Shape Functions (N)

The shape functions for the elements VISQ10, VISRS and VISLS have
been derived using the techmique suggested by Taylor (88). In this pro-
cedure, for m-th order serendipity elements the side shape function Nij
are constructed as products of m-th order Lagrange interpolation func-
tions along the nodal edge together with first-order functions in all
other directions. The corner shape functions are then constructed by
subtracting appropriate proportions of the edge shape functions from the
basic first-order Lagrange product interpolation for the corner node to

produce zerces at the nodes of all edges joining the corners.

Element VISO10

This element is a ten noded variable-node-number isoparametric
serendipity element. The side shape functions (N9, N4, N5, Ny, Ng, and
Nig) of this type of element are available in the literature (23). They

are listed below:

No = 1/2(1-r2)(1-s),

Ny = {(1-s2)+1/16(27s3+7s2-275-7)} {1/2(1+1)},

N5 = {1/16(-27s3-952+275+9)}{1/2(1+1)},

N7 = 1/2(1-r2)(1+s), ¢
Ng = {1/16(-27s3-9s2427s49)}{1/2(1-r)} and

Nip= {(1-s2)+1/16(27s347s2-27s-7)}{1/2(1-1)}.

The corner shape functions are constructed and the steps are shown
in Figures 5.3 through 5.6. Np, Ng, Ng, and Ny shown in figures are the
basic first-order Lagrange product interpolations. The shape function
for the corner node 1 is obtained by subtracting half of the shape func-
tion of node 2, one third of the shape function of node 9 and two third

of the shape function of node 10 from the basic first-order Lagrange
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Figure 5.3 Shape Function N; of VISO10 Element
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Ng=1/4(1-1)1+s)-I/2No-2/3 Ng - I/3 N

Figure 5.6 Shape Function Ng of VISO10 Element
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product interpolation of node number 1. The shape functions for the other
corner nodes are obtained following similar procedures. The derived
corner shape functions are
Ny = 1/4(1-1)(1-8)-1/4(1-r2)(1-8)-1/96(-27s3-9524275+9)
(1-1)=2/3{(1-s2)+1/16(27s3+7s2-27s-7)}§1/2(1-1)},
N3 = 1/4(1+r)(1-8)-1/4(1-12)(1-5)-1/96(-27s3-952+427s+9)
(1+1)-2/3{(1-s2)+1/16(27s3+7s2-275-7)}{1/2(1+1)}, 5 5
Ng = 1/&(1+r)(1+s)=1/4(1-r2)(1+s)-1/48(-27s3-952+4275+49) ¢
(1+r)-1/3{(1-s2)+1/16(27s3+7s2-275-7)}§1/2(1+r)} and
Ng = 1/4(1-1) (148)-1/4(1-72) (1+s)~1/48(-2753-952+275+9)

(1-r)-1/3g(1—32)+1/1e(2733+%52—z7s-7);{1/2(1-:)}.

Element VISL9

This element is a nine noded variable-node-number iscoparametric
serendipity element. The displacement function along the vertical di-
rection of the left side of the élement is cubic. For the remaining three
sides, the displacement functions are quadratic. The shape functions for
the nodes (Np, Ny, Ng, Ng and Ng) which are located between the corner
nodes are available in the literature (23). These shape functions are

Ny = 1/2(1-r2)(1-s),

Ny = 1/2(1-s2)(1+x),

Ng = 1/2(1-r2)(1+s)}, _ (5.3)

Ng = 1/32(-27s3-952+27s+9)(1-1) and

Ng = {(1-82)+1/16(27s3+7s2-275-7)}{1/2(1-1)}}.

The shape functions for the nodes at the corners of the element are
developed and the steps are shown in Figures 5.7 through 5.10. In these
figures Np, Np, Np and Np represent the basic first-order Lagrange product

interpolations. The shape function for the corner node 1 is obtained by
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Nj = 174 (1-r)(1-s) - 1/2 Np- I/3Ng-2/3 Ng

Figure 5.7 Shape Function Ny of VISLY Element
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Ng= 1/4(l+r)(1-s)- 1/2 Ny - 1/2Ng

Figure 5.8 Shape Function N3 of VISL9 Element
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Figure 5.9 Shape Function N5 of VISL9 Element
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N7 =1/4 (I-r)l+s)- 1/2Ng- 2/3Ng-1/3 Ng

Figure 5.10 Shape Function Ny of VISLY Element
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subfracting half of the shape function of node 2, one-third of the shape
function of node 8 and two-third of the shape function of node 9 from the
basic first-order Lagrange product interpolation of nmode 1. Other corner
node shape functions are obtained by following procedures similar to this.

The derived shape functions are given below.

Ny = 1/4(1-1)(1-5)-1/4(1-22)(1-5)~1/96(-27s3-952+275+9)
(1-1)-2/3{(1-52)+1/16(27s3+7s2-27s-7)}§1/2(1-1)},

N3 = 1/4(1+r)(1-s)-1/4(1-r2)(1-s)-1/4(1-s2)(1+r),

N5 = 1/4(14r)(1+s)-1/4(1-s2)(1+r)-1/4(1-r2)(1+s) and -0

N7 = 1/4(1-1)(1+s)-1/4(1-r2)(1+s)-1/48(-27s3-952+275+9)

(1-1r)-1/3{(1-52)+1/16(27s3+7s2-27s-7)}{1/2(1-1r)}.

Element VISR9

This is a nine noded variable-node-number isoparametric serendipity
element with cubic displacement function in the vertical direction of the
right side of the element. For the other three sides of the element, the
displacement functions are quadratic. The shape functions for the nodes
(N2, N4, N5, Ny, and Ng) which are located between the corner nodes are

given in the literature (23). These shape functions are listed below.

Ny = 1/2(1-r2)(1-s), |

Ny = {(1-52)+1/16(27s34752-27s5-7)}{1/2(1+r)},

Ns = 1/32(-27s3-952-27549) (1+1), o (5.5)
N7 = 1/2(1-r2)(1+s) and

Ng = 1/2(1-s%)(1-1).

The shape functicns for the corner nodes are developed employing the
aboved mentioned shape functions for the interior nodes. In Figures 5.11
through 5.14 the steps for deriving the shape functions for the corner

nodes are given in detail. Nj, Ng, Np and Np in these figures are the basic
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Figure 5.11 Shape Function Ny of VISRY Element
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Figure 5.12 Shape Function N3 of VISRY9 Element
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first-order Lagrange product interpolations. The shape function for node
1 is obtained by subtracting half of the shape function of node 2 and half
of the shape function of node 9 from the basic first-order Lagrange

product interpolation of node 1. The shape functions of other corner

nodes are obtained by following similar procedures. The derived shape

functions for the corner nodes are
N{ = 1/4(1-)(1-8)-1/4(1-r2)(1-5)-1/4(1-s2)(1-1),
Ng = 1/&(1+r)(1—s)-1/4(1—r2)(1—5)-1/3§(1—si)+1/16(27s3
+782-275-7)}(1+1)-1/96(-2753-952427s+9) (1+r),
Ng = 1/4(2+r)(1+5)-1/6(1-r2)(1+s5)-1/6{(1-s2)+1/16(27s3 o
+752-275=7)}1(1+r)-1/48(-2753-952+275+9) (1+r) and
Ng = 1/4(1-x)(1+s)-1/4(1-r2)(1+s)-1/4(1-s2)(1-1).

Derivation of the Strain-Displacement Matrices (B)
The strain-displacement matrices for the elements VIS010, VISRS and
VIS19 have been derived following the standard procedure given in the text

(101). From the chain-rule

7 fex ayH ) 5> )
ZEL or  or | | ox %

) b= = Vi ! L)
d ox Oy s} ]

o5 ] o5 o5 | ay 3 |

in which {J] is the Jacobian matrix. Pre-multiplying both sides by the

inverse of the Jacobian matrix, [J]°1, Equation 5.7 becomes

.~ ~
a 3
ox Tor

I =t (5.8)
o 2
o] i o}

L
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From the definition of a shape function, the coordinate transforma-
tion can be expressed as

x = % Nj xj and

y=XN;y;y, 11,2, 3, ....... total number of nodes, (5.9)
where xj, yi are the glébal x and y coordinates of the nodal points. The
displacement within an element caﬁ be expressed as

u=Z Nj ug

v=ZNjwvy, 1=1,2, 3, ....... total number of nodes, (S,le
where uj, v are the nodal displacements.

Therefore, from Equation 5.7 and Equation 5.9, the Jacobian natrix

is given as

qux oy ]
— — Jin J12
ar T
[J] = = : (5.11)
(4 oy
— — Ja1 Jaz
a8 as

where
Jll = ¥ (éNi/dr) Xi,

Jig = Z (ONi/Or) Vi,

u

Ja2q z (ONifds) Xq and

L (oNj/fes) yy, i =1, 2, 3,...total number of nodes.

Ja2

From Equation 5.10, the strain-displacement relations can be given as

ex = oufox = E (oNj/ax) uj

ey = ov/ey = I (aNj/ey) vy

and
e sufay + av/fox = E{(aNj/oy) us + (aNj/ex) vi} (5.12)

where



125

oNj/ox = [1 0] 3" 1 [ oNy/or
oNj/es
oNj/oy = [0 1] (311 eNj/er
aNj/os , i =1, 2, 3, ...total number of nodes.
Therefore, the straih-displacement matrix, B, for an element can be cb-
tained from Equation 5.12. The elements of the strain-displacement ma-

trices (B) for VISO10, VISLY9 and VISR9 elements are given below.

Element VISO10

The strain-displacement matrix, B (3 x 20) for the VISOl0 element
obtained by Equation 5.12 can be explicitly expressed as

B, =11 0o} 971 JE/BZ (9s3-952-5+1)+1/2(1-s)T

1/32(1-1r)(-27s2+18s+1)+1/4(1-r2)
By,3 = (1 0] U171 jir(lfs)

-1/2(1-r2)
By,s = [1 o] (3171 J1/32(-953+952+s-1)+1/2(1-s)r

.}/32(1+r)(-2732+185+1)+1/4(1-r2)
By,7 = [1 0] [3)71 [1/2(1-s2)+1/32(2753+752-275-7)

1/32(81s2+145-27)(1+x)-s(1+1)

Bi,9 = [1 0] [J]"1 [1/32(-27s%-952+27s+9)

"

1/32(-81s2-18s+27) (1+r)

By,11 = [1 0] (J]"1 |1/32(9s749s2-5-1)+1/2(1+s)

N

1/32(1+1)(27s2+18s-1)-1/4(1-r2)

By,13 = [1 0] UF"t [-r(1+s)
1/2(1-r2)
By,15 = [1 0] UI"L |1/32(-9s3-9s2+s+1)+1/2(1+s)r

e

1/32(1-r)(2732+18§-1)-1/4(1-r2)



Bi,17

B1,19
B = [0 1) (31
2,2

By 4 = [0 1 )1 {:r(l-s)

Ba,10

By 12

By 14 = [0 1]1JT]-{:r(1+s)

By 20
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[1 o] (971 | 1/32(27s3+4952-275-9)

1/32(-81s2-18s5+27)(1-r)

i

11 0] Il t1/32(-2753+952+275-9)
1/32(1-1)(81s2-185-27)
/32(953-952-s+1)+1/2(l-s)r

1/32(1-1)(-2752+18s+1)+1/4(1-12)

~1/2(1-r2)

By, = [0 1 1371 {j/32(‘983+932+S‘1)+1/2(l-s)r
1

/32(1+r)(-27s2+185+1)+1/4(1~1r2)

By,g = [0 1] ("L 1/2(27s3-952-275+9)

1/32(81s2+14s-27) (1+r)-s(1+r)

[0 1] (351 {j/32(-27s3—952+27s+9)
1

/32(-81s2-18s+27)(1+1)

1]
<

1] (971 |1/32(9s349s2-5-1)+1/2(1+s)
1/32(1+1)(27s2+185-1)-1/4(1-r2)

1/2(1-¢2)

By 16 = [0 1] (7)1 {1/32(-983—952+5+1)+1/2(1+s)r

1/32(1-1)(27s2+18s8-1)-1/4(1-12)

By,18 = [0 1] (0171 |1/32(2753+952-275-9)
1

/32(-81s2-18s5+27)(1~1)

I
=
=

I

1/32(-27s3+4952+275-9)
1/32(1-r)(81s2-185-27)

= B2,2, B3,5 =Bz 6, B3 9 =By 10, B3,13 = B2 14, B3,17 = B2,18>
= By 1, B3,6 = B1,5, B3 10 = Bi 9, B3 14 = B1,13, B3, 18 = By 17s

= By 4, B3 7 =Bz g, B3 11 = B2 12, B3 15 = Bp 165 B3 19 =
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By,20» B3 4 = By 3, B3 g =B1,7, B3 12 = By 11, B3,16 = By, 15, 33,20

= B1,19s

and

By,2 = B1,4 = B1,6 = B1,8 = B1,10 = B1,12 = By,14 = By,16 = B1,18 = B1,20
=Bp,1 =B2,3= By 5 =Bp,7=Bz9 =By 11 =By 13=Bp 15=B217*

32’19 = 0.

Element VISLY

The strain-displacement matrix, B (3 x 18) for the VISLY9 element

obtained by Equation 5.12 can be explicitly expressed as

By,p = (10} (371 | 1/32(9s3-9s52-5+1)+1/2(1-s)r
1/32(1-1)(-2752+18s+1)-1/4(1-r2)
By,3 = [1 0] ("1 | -x(1-s)
%j-l/Z(l-rz)
B1,5 =

(1 0] 371 | 1/4(s2-s+2r-2rs)
%:1/4(1+r)(r+23)
By,7 = [10) U"! [1/2(2-s2)
| {:-s(1+r)
By,g = [1 0] [(0]"1 [ 1/4(s2+s+2r+2rs)
1/4(1+r) (r+2s)

By,31 = [1 0] (0171 | -x(1+s)

1/2(1-r2)
By,13 = [1 0] (311 [1/32(-9s3-9s2¢s+1)+1/2(1+s)r
1/32(1-1)(27s2+18s5-1)-1/4(1-r2)
By,15 = (1 0] (3171 [1/32(27s34952-275-9)

1/32(-81s2-18s+27)(1-r)
By,17 = (1 0] "1 [1/32(-27s3+952+275-9)

1/32(81s2-185-27)(1-r)



/32(1-1)(-27s2+18s+1)-1/4(1-r2)

By,p = [0 11[Jr]'{:/32(953-952-S+1)+1/2(1-s)r
1

By 4 = [0 1] [ {~r(1-s)
-1/2(1-22)

By,e = [0 HES {:/4(52‘S+2r-2r5)
1

J4(1+r) (r+2s)

By,g = [0 1] J]"1 {:/2(1-52)

By 10=1001

By 12 = [0

= Bz,2, B3 5 = Bz 6,

s(1+r)
1 (9171 |1/74(s24s+2r+2rs)
1/4(14r)(r+2s)
1] U171 {-x(1+s)
{;/2(1 -r2)
1] (91°1 /32(-953-952+s+15+1/2(1+S)r.
{;/32(1 r)(27s2+18s-1)-1/4(1-r?)
1 {3171 |1/32(27s3+9s52-275-9)
{;/32( 81s2-18s+27)(1-r1)

1] 317 |1/32(-27s349s24275-9)
1/32(81s2-185-27)(1-r)
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B3,9 = Bz,10» B3,13 = B2,14> B3,17 = B2 18,

= By 1, B3, 6 = By,s5, B3 ip = B1,9, B3 14 = By 13, B3 18 = By 17,

=Bz,4, B3,7 =3B2,8, B3 11 = B2 12, B3 15 = B2 16, B3 4 = B1, 3,

Il

By,7> B3,12 = B1,11, B3 16 = B1, 15,

=B;,4=B1,6 =B1,8=B1,10=B1,12 = B1,14 = B1,16 = B1,18 = B2,1

3 =Bz 5=

By 7 = By,9 =By 11 = By 13 = B2 15 = Bp 17 = 0.



Element VISRY
The strain~displacement matrix, B (3 x 18) for the VISRY element

obtained by Equation 5.12 can be explicitly expressed as
By,1 = {1 0] UI"! | 1/4(1-s)(2r+s)
1/4(1-r)(r+2s)

By 3 = U.O}[Jrl-j:r(l-s) :}
)

-1/2(1-r2

Byp,s =11 0][Ji'l‘f1/32(-9s3+952+s-1)+1/2(1-s)r :}
)

1/32(141)(~27s2+18s+1)+1/4(1-r2

4

By.7 = (1 0] (371 [1/32(2753-9s2-275+9) :}
)

1/32(81s2-185-27)(1+r

By,o = D»0][Jrl-Jl/32(-27s3-932+27s+9)
_1/32(-8152-185+27)(1+r)

81;11 = U0]IJrl{?/32(953+9sz-s-1)+1/2(1+s)r :}
)

1/32(1+r)(27s2418s-1)-1/4(1-r2

By,13 = [1 0] UL [-r(1+s)
| ‘{1/2(1-r2;}
By 15 = [1 0] WI"L {1/4(1+s)(2r-s)
{;/4(1-r)(2s-r;}

By,17 = [1 0] U7 [-1/2(1-s2)
-s(1-r)

By o = [0 1] WI"L [1/4(1-5)(2x+s)
1}/4(1-r)(r+23{}

By.4 = [0 1] (071 [-x(1-s)
1:1/2(1-r2;}

By,e = [0 1] (7" [1/32(-9s3+9s2+s-1)#1/2(1-5)x ;}
)

1_1/32(1+r)(-2752+185+1)+1/4(l-r2

129
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By, = [0 1] [J]71 |1/32(2753-952-275+9)
1/32(81s2-18s5-27)(1+r)

By, 10 = (0 1§ (971 [1/32(-2753-952+275+9)
{;/32( 8152-18s+27)(1+r)
By, 12 = [0 1] 171 {1/32(9s3+49s2-5-1)+1/2(1+s)r
{;/32(1+r)(2752+183-1)-1/4(1-r2)
By, 14 =

0 1] 71 }-r(1+s)
1/2(1-r 2y

By,16 = [0 1] (O} [1/4(14s)(22~s)

1/4(1 r}(2s~r)

[0 1j (3171 [-1/2(1-s2)
-s{1-r)

By,2, B3 s =By g, B3 g

i}

By 18

I

By 10> B3,13 = B2,14, B3 17 = B2,18,

o
W
—

]

B1,1, B3,6 = B1,5, B3 10 = B1,9, B3 14 = B1,13, B3 18 = By 17,
B3, 3 = By,4, B3 7 = Bz g, B3, 11 = B2,12, B3,15 = B2,16, B3 4 = By 3,

By,7, B3,12 = By 11, B3 16 = By, 15,

o]
83
o]

1]

By,2 = B1,4 = B1,6 = B1,8 = B1,10 = B1,12 = B1,14 = B1,16 = B1,18 = B2,1

= Bp,3 = Bp,5=Bp,7 =B2,9 =By 11 =B2,13 = Bz,15 = Bz 17 = 0.

Formulation of the Stiffness Matrices (k)
The stiffness matrices for the elements VIS010, VISLS and VISRY can
be formulated as (101)
[k] = {(B/T[DI[B] 4V (5.13)
where [k] = element stiffness matrix, [B] = strain-displacement matrix and
[D] = stress-strain relationship matrix. For a constant thickness, t of

the element



131

(5.14)

H

(k] = tj[B]TD)B] dA

or
(5.15)

k] = tjjIBIT[DI[B] dxdy.
The above expression can be expressed in terms of the local (r, s) co-
ordinate system as

[k) = t§[BIT[D}fB]det[]] drds. (5.16)

The above equation can be integrated by Gaussian numerical integfation

formulae to obtain the stiffness matrix.

Performance of the Elements

Two example problems have been considered to evaluate the performance
of the variable~node-number elements. At this peint, the ability of these
elements to predict the correct displacements is examined. The accuracy
of the elements in predicting correct stresses is tested after the optimal

stress points are determined. This is discussed in the next section.

Example 1

A single ten noded variable-node-number element VISO010 is tested for
vertical, horizontal and shear leoads. The vertical and horizontal di-
mensions of the element are 1 inch and 0.1 inch, respectively. The
modulus of elasticity and Poisson's ratio of the material are assumed to
be 1000 psi and 0.30, respectively. Displacements at three different
locations for each of the three loading conditions are computed. A two-
dimensional 12 noded regular cubic element having the same dimensions and
the same material properties as the variable-node-number element is ana-
lyzed for the three loading conditions. The magnitude of the loads ap-
plied on the cubic element is same as the magnitude of the loads applied

on the variable-node-number element. ‘Thé displacements in the



132

variable-node-number element are compared with the corresponding dis-
placements in the regular cubic element. The results of the comparative
study is given in Table 5.1. The comparative study shows that the dis-
placements obtained by variable*node-numbe¥ elements are in good agree-
ment with that obtained by regular cubic elements. This agreement between
the displacements indicates that the variable-node-number elements are
capable of predicting diéplacements accurately.

Table 5.1. Comparison of Displacements Obtained From General

Cubic Element and Ten Noded Variable-Nede-Number
Element (VISO10)

Loading Points Horizontal Displ.(in) Vertical Displ.(in)
10 Noded 12 Noded 10 Noded 12 Noded
a‘o‘pfi a -0.230x10"2 -0.230x10°2 -0.898x10°1  -0.898x10"1
o ¢ b -0.186x10"2 -0.187x10"2  -0.595x10"1  -0.395x10"1
X ¢  -0.220x1072  -0.220x1072  -0.287x10°1 -0.287x1071
a a  0.851xi0"3  0.851x1077  0.554x1073  0.554x1073
2% la b 0.743x1073 0.743x1073  -0.123x107%  -0.124x107%
=~ X o 0.743x1073 0.743x1073 0.123x10"%  0.124x107%
A, e -0.751x10"3  -0.751x1073 -0.291x10"2  -0.291x1072
g\t : -3 5 -2 -2
° 4 b 0.119x10 0.119x10 0.260x10 0.260x10
« b -0.119x10"3  -0.119x1073 -0.260x10"2  -0.260x10"2
Example 2

Tn this example, the combined behavior of the three types of the
variable-node-number elements (VISCO10, VISLY, VISRY) is studied. A
continuum is modelled by the above mentioned elements. The geometry of
the mesh and the lecading conditions are shown in Figure 5.15. The modulus

of elasticity and Poisson's ratio of the material are assumed to be 2000
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‘ Load Casel

12 psi /
Load Case?2

12 psi /

V{V

# y 4 L f Y y

[.OIn.

0.05in.

Figure 5.15 Finite Element Mesh of Three Different Types of
© Variable-Node-Number Elements
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psi and 0.25 respectively. The same continuum is also modelled by regular
quadratic elements. The vertical displacements at the top along the
horizontal direction are plotted for both the loading cases and are shown
in Figure 5.16. The results obtained by variable-node-number elements
qompletely coincide with the results‘obtained by quadratic elements. This
shows that the newly developed elements are capable of predicting the

displacements accurately.

Optimal Stress Points

In finite elements, there exist unique points at which the stresses
have higher accuracy than at any other points. These points are called
optimal stress points. The étresses at these points have the same degree
of accuracy as the nodal displacements. The reasons fof the presence of
optimal stress points and a procedure to determine the locations of such
points for general isoparametric elements are discussed by Barlow (22).
It has been shown in this research that Barlow's procedure to locate the
optimal stress points can be used for variable-node-number elements also.

In this study, the main objective behind developing the ten noded
variable-node-number element (VIS010) was to use it for modelling the
collar joint at the interfaces of composite masonry walls. On the other
hand, the nine noded variable-node-number elements are essentially de-
veloped to serve as transition elements in the finite element mesh. For
this reason, optimal stress points have been determined only for the ten
noded (VISO10) element. The procedure and associated calculaticns for

determining the optimal stress points for VISO10 element are given below.
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VISO10 Element

The displacement function, ¢, for this element contains polynomial
terms up to a complete quadratic with three additional cubic and one ad-
ditional fourth order terms and thus

$a = oc1+<x2r+oc3s+a4r2+o<5IS+«6SZ+a7I23+a8r52+m933+o¢10r53 ) (5.17)
where «'s are the coefficients and r, s are the non-dimensional co-
ordinates measured from the center. The suffix a is used to denote the
displacement field which can be exactly represented, in ali respects, by
the function. The above displacement function can be written in the form

[ug.vgl = {1,r,s,rz,rs,sz,rzs,rsz,s3,rs3][au,avl (5.18)

Tt has been stated in Chapter III that the displacement field of |
composite masonry walls supported at the bottom and horizontally re-
strained at the top is cubic. Since, VIS010 elements will be used to
discretize the composite mdsonry walls, these elements will model a cubic
displacement field of the form

[ub,vb]f=[l,r,s,rz,rs,sz,r3,rzs,rszts3[[ﬁu,ﬁv[ (5.19)
where f's are the coefficients and suffix b is used to denote the dis-
placement field which is required to be represented.

The nodal displacements |uy,vs] in the element field may be derived
in terms of a«'s, by inserting the relevant nodal co-ordinates in Equation
5.18. This can be written in the form

[a,val = [A] foysoy] (5.20)

where



=
N

1-1 -1
1 0 -1
11 -1
1 1-1/3
1 1 1/3
11 1
10 1
1-1 1
1-1 1/3
1113

1

1

Similarly in the required

[ubsvbl = [B] {ﬁu’ﬁvl-

where

{B]

|1

1/3

~1/3

-1
-1/3

1/3

1/9
1/9
1
1
1
/9

1/9

-1/3
1/3

1

0

1
1/3

-1/3

1

- 1/9

1/9

-1/9

-1/9

-1/27

1/27

1/27

-1/27

field from Equation 5.19

11
0 o0
1 -1
1-1/3
1 1/3
101
0 o
1 -1
1 -1/3
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1
1/9

1/9

-1

-1

~1

-1/3

1/3

1
1/3

~1/3

1/9

1/9

-1
-1/9

-1/9

-1/27

1/271.

1
0
-1

-1/27

1/27

~1/27

1/27

1

1/27

~1/27
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(5.21)

(5.22)

(5.23)

If the element is capable of representing the nodal displacements in the

field to a good degree of accuracy then the values of the two nodal dis-

placemeiits in Equations 5.20 and 5.22 may be approximately equated
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[A] {ay,ayl = [B] [By,fyl (5.?4)
which gives
syl = fA]” 48] [Bus Byl (5.25)

where

[AI"1[B] = 00 0 0 1 0 0 0 0 0
(5.26)

0 0 0 06 0 00 0 1 O
6 0 ¢ 0 0 0 0 0 0 1

60 0 0 0 0 0 0 0 0 O
L .

The derivatives of the displacements, required in the calculation

of the strains, are

ou v rbr as au av
ax axX ox ox or ar
= (5.27)
ou ov or as anu av
ay oy ay oy 38 as
— - L I —
where
[u,v] = [ug,val or [uy,vy].

The Jacobian of r and s with respect to x and y is independent of the
strain field and is function of element geometry only. The strains, and
hence the stresses, in the two fields are equal when the derivatives of
the displacements, with respect to the non-dimensional coordinates are

equal. The derivatives of the displacements are
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Cau,  avg,
&t 01 0 2rs 0 2rs s2 0 s3 ay
ar ar .
= ’ (5.28)
ou v
_* @ 0 0 1 0r2s r22rs 3s2 3rs?2| | o
oS o)}
and
._Ou av N ' '
_ﬁP __P 0102rs 0 3r22rs s2 0© fu
ar ar
= ' (5.29)
Al v
b b 001 0r2s 0 12 2rs 3s2 By
a8 o8

Equating Equations 5.28 and 5.29 and substituting for [«;,ay] from Equation

5.25 yields
0102rs 01 2rs s2 0 fu
001 0r 2s0 12 2rs 3s2 By
[0102rs 0312 2rs s2 0 fu
. (5.30)
001 0r2s O r2 2rs 3s2 By
The above equation is satisfied for all values of g's, only when
r = £1/J3. (5.31)

Hence, if the element is used to represent a.general cubic displacement
field, the stresses at any point along the two lines within the element
drawn at r = £1//3 will have the same degree of accuracy as the nodal
displacements. It should be noted that the displacement function of the
element in the vertical direction is cubic and hence the optimal stress
locations afe independent of s when the element is used to represent a

cubic displacement field.

Examples
Several examples are now presented which demonstrate the importance

and use of optimal stress locations. In these examples, cantilever beams
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are modelled by quadratic and cubic-quadratic (VISO10)} elements. The
beams are subjected to axial loads, tranverse loads at the free ends,
uniformly distributed vertical loads and moments at the free ends.

In the first example, it is shown that the stresses anywhere within
the element is correct when the order of the displacement function of the
element is more than or equal to the order of the displacement field of
the problem. The rest of the examples show that the stresses are correct
only at the optimal stress locations when the order of the displacement
function of the element is less than the order of the displacement field
of the problem. Other than the first.example problem which is modelled
by quadratic elements, all the other example problems are modelled by ten

noded variable-node-number element (VISO10).

Example 1

A cantilever beam, 10 inches long and 2 inches deep is analyzed using
a mesh of 5 quadratic isoparametric plane stress elements as shown in
Figure 5.17. The beam is subjected to an end moment and an axial load
separately. TFor both the loading cases, stresses are calculated at 30
different locations within each element. The locations of these points
in the local coordinates (r,s) are r = -0.77459, -0.57735, 0.0, 0.57735,
0.77459 and s = 0.0, 6.2, 0.4, 0.57735, 0.77459, 0.9.

The normal and shearing stresses within each element at all the 30
locations are compared with the corresponding stresses based upon single
beam theory, The stresses for both the lcad cases obtained by finite
element analysis are in excellent agreemént with those obtained by beam
theory. A cantilever beam subjected to pure bending and axial loads
produces quadratic and linear displacement fields repectively. The

quadratic element which is used to model the beam has terms of a complete
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Figure 5.17 Finite Element Mesh of the Cantilever Beam

(b)




142

quadratic polynomial in its displacement function. Therefore, the rep-
resentation of the beam by quadratic elements is exact in all its attri-
butes and hence, in this situation optimal stress locations are not
necessary to find the correct stresses, rather the stresses are correct

everywhere within the element.

Example 2

Shearing stresses in a4 cantilever beam subjected to a concentrated
leoad at its free end are computed using a mesh of 8 rectangular 10 noded
variable-node-number elements (VIS010). Stresses are calculated at many
arbitrary points within each element. In Figures 5.18 and 5.19, the shear
stress variation along the horizontal axis at s = 0.77459 and 0.9 are
plotted, respectively. These stresses are wildly oscillatory and hence
it is important to know the optimal stress locations for such elements
to predict the acceptable stresses.

The shearing stress distributions along the horizontal axis of the
beam at s = 0.77459 and 0.9 are computed from beamrtheory and are plotted
on the shearing stress distribution curves at s = 6.77459 and 0.9 obtained
from finite element analysis. The theoretical curves intersect with the
finite element curves at two points in each element. At a distance suf-
ficiently away from the support, these intersection points within each
element are at r = x1/,/3 (locationlof optimal stress points determined
earlier). This shows that the stresses obtained by a mesh of VISO10 el-
ements at r = +1/./3 for any value of s are same as those given by beam
theory at those locations. The cantilever beam subjected to a concen-
trated load at the free end has cubic displacement fields in both the

horizontal and vertical directions. VISOl0 elements have a cubic dis-

placement function along the vertical direction and a quadratic
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displacement function along the horizontal direction. Therefore, VISO10
elements can represept the displacement field in the vertical direction
exactly and hence optimal stress locations are independent of s. On the
other hand, the order of the displacement field im the horizontal direc-
tion is more than the order of the displacement polynomial of the element.
Therefore, theloptimal stress locations are dependent upon r and it is

necessary to know the locations of optimal stress points for accurate

prediction of stresses.

Example 3

A cantilever beam in this example is modelled by 8 rectangular 10
ncded variable-node-number isoparametric elements as shown in example 2.
The beam in this case‘is subjected to uniformly distributed locads over
its entire length., Shear stress distributions along the horizontal axis
at s = 0.0 and 0.77459 are obtained by beam theory and finite element
analysis and are plotted. These are shown in Figures 5.20 and 5.21. The
shear stresses are extremely oscillatory; however, acceptable values of
stresses exist at the optimal stress locations.

It is now known that the optimal stress locations for VISO10 elements
are at ¥ = +1//3 and independent of s. Figures 5.20 and 5.21 show that
at a distance sufficiently away from the support, the computed shear
stresses (finite element solution) are indistinguishable from the the-

oretical stresses (beam theory solution) at the optimal stress locations.

Efficiency of VISOl0 Element in Modelling
Composite Masonry Walls

The performance of 10 noded variable-node-number elements (VIS010)
when used to model composite masonry walls is studied. In this study,

composite walls with 2 inch collar joints are modelled and only the



146

PeOT PoInqrIisI(
LjuroyTup v 03 poyoalqug weog Iead[TlUER)

B 10J Q°Q = S Suoie : SS9I1§ IEPOYS JO UOTIRTIIBA (Q7°G °9Indrg

JaquinN juswa|l

ue

8 . ° 9 °* ¢ ** ¢ *° ¢ = 2
,L 0 o) o) o) o) o) o)
T/‘Vﬂ/ ! L T 1 1
fi09y] woag
Juawa|g 8yl
J ‘ul O . O=S D Ssaig JDAYS
opo -
1's8 L 9 s v g 2 1, Ol 0SIA P3pON OI-8
%
4 L S S W O N W V. N N A Y. AV SO S S 2
sdij 9°6 =M

Q
O

Q
q-

O
7

ISy ‘2 SSALS JDAYS



147

pPeOT POINqGTIISIQ
KjuwroyTun ® 01 peloalfqng weeg ioAl[TIUR)

e

ut 2

sdid 9'6 =M

® I0J 6S¥/L°0 = S 3UOTB 2 $S9I3g IBAYS JO UOTIRTIBA g S oI1nSIjg
JoquinN  juswsa|3
8 - L - 9 -+ ¢ y - ¢ -+ 2 | .
4072
0 o lalal sl o [N o]
uﬂuﬁ.ﬁﬁl} _ ¥ T _ T 00
|O.¢..
K103y} wpag
juswa|l 8jiuld |
—408-
) 1 Ob g 6SpLL0 =S
’ | }D SS3J44S 1DBYS
9 ¢ 2 / |
8 ¢ s v “ OIOSIA P3PON OI-8
X A A7 A3 A /%4

~ !5){ ‘2 $S944S JDAYS



148

shearing stresses in the collar joints are considered to evaluate the
performance of the elements. The results obtained using a mesh of VISO10
elements are compared with that obtained using a mesh of linear elements.
The objective here is to see how efficiently a coarse mesh of VIS010 el-
ements can reproduce the results obtained by a very fine mesh of linear
elements. The effect of mesh refinement on the collar joint shear
stresses is also studied. Lastly, the effectiveness of VISQO10 element
in providing the vertical flexibility in the loaded block wythe is exam-
ined.

A composite masonry wall modelled by linear elements is shown in
Figure 5.22. 1In this model, a very fine mesh at the top of the wall along
the vertical direction and a relatively coarse mesh in the horizontal
direction are provided. This mesh is defined as Mesh 1. Other finite
element meshes, Mesh 2, Mesh 3, Mesh 4 and Mesh 5 of VISOl0 elements are
shown in Figures 5.23 through 5.26. In Mesh 6 two-dimensional cubic el-
ements are used to model the block wythe while the rest of the wall is
modelled by VIS010 elements. The geometry of this mesh is same as that
of Mesh 5.

The shearing stresses in the collar joint obtained from various
meshes are plotted and are shown in Figures 5.27, 5.29, 5.30. Figure 5.27
shows the plots of shearing streéses in the collar joint obtained using
Mesh 1 and Mesh 2. The stress distribution within the top few inches of
the wall obtained by Mesh 2 is in good agreement with that obtained by
Mesh 1. This is mainly because, in the top 4 inches of the wall, both
the meshes provide the same number of degrees of freedom in both hori-
zontal and vertical directions. The two distributions of shearing

stresses are different at a distance of six inches from the top of the
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wall., The mesh of linear elements predicts higher shear stresses than
that predicted by the mesh of VISOl0 elements. The shear stress is a
function of both the horizontal and the vertical deflections, In the
collar joint, the horizontal deflections cause negative shear stresses
which are subtracted from the positive shear stresses caused by the ver-’
tical deformations to get the final shear stresses. The horizontal dis-‘
placements within the top few inches of the wall obtained by using Mesh
1 and Mesh 2 are shown in Figure 5.28. Mesh 1 predicts less horizontal
displacemenﬁs than that predicted by Mesh 2. The liﬁear elements of Mesh
1 cannot exactly represent the cubic displacement field of the wall and
consequently, they predicts less negative shear stress than those pre-
dicted by Mesh 2 of eleménts having displacement functions of 3rd order.
At a distance of 6 inches from the top of the wall, the load intensity
on the entire width of the wall becomes almost uniform. Hence, the ver-
tical displacements obtained by using Mesh 1 are almosf same as the ver-
tical displacements obtained by using Mesh 2. This results in equal
positive shear stresses in both the cases. The negative shear stresses
in Mesh 1 being less than that in Mesh 2 cause larger total shearing
stresses in ﬁesh 1. However, the difference in shearing stresses between
these two cases is not significantly different.

In Figure 5.29, shearing stresses in the collar joint obtained using
Mesh 2, Mesh 3 and Mesh 4 are plotted. All these meshes consist of 10
noded variable-node-number elements. Among these three meshes, Mesh 2
is the finest and Mesh 4 is the coarsest. The plots show that for a
coarser mesh, the magnitude of the peak shearing stress decreases and its
location moves downwards, away from the top of the wall. The plots in

Figure 5.29 show that Mesh 2 predicts the highest magnitude of peak stress
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and Mesh 4 predicts the lowest magnitude of peak stress. The shear stress
distribution obtained by Mesh 3 is very close to that obtained by Mesh
2.. This indicates that a very coarse mesh of VIS010 elements can be used
to model the composite masonry walls without any loss of ac¢curacy in
stresses.

The effecti#eness of VISO10 elements in modelling the block wythes
in composite masonry walls is studied comparing the shearing stresses in
the collar joint obtained from Mesh 5 of VISO10 elements with that ob-
tained from Mesh 6 in which the block wythe is modelled with cubic ele-
ments. The Mesh 5 and Mesh 6 are same in fineness; the only difference
is in the type of elements used in two cases. The shearing stresses in
the collar joint are shown in Figure 5.30. The shearing stresses obtained
by Mesh 5 are in good agreement with thosebobtained by Mesh 6. This shows
that the displacement field produced in the block wythe by the vertical

loads can be modelled correctly by VISO10 elements.



CHAPTER VI

INTERFACE BEHAVIOR IN COMPOSITE WALLS

In general, the interface of two dissimilar materials is weak in
shear. Hence, there may exist planes of weakness in the composite masonry
walls at the block wythe-collar joint and brick wythe-collar joint
interfaces. The behavior of interfaces in composite masonry may be as-
sumed to be similar to the behavior of the joints in rocks. For numerical
modelling of jointed rocks, a special joint/interface element was first
developed by Goodman et al. (42). Page (71) used Goodman's joint element
to model the mortar joints in single wythe brick masonry. The concept of
"interface element" may be used in composite masonry walls for modelling
the interfaces. Before arriving at a decision about the type of interface
element to be used for modelling the interfaces in composite masonry
walls, it is important to understand clearly the behavior of the inter-

faces and to review the characteristics of the existing joint elements.

Dilatancy

Dilatancy means volumetric change accompanying deformation. The term
dilation is used to mean thickening of a joint undergoing shear deforma-
tion at constant normal stress. Dilaténcy should not be confused with
lateral strain caused by the Poisson's effect. Poisson's ratio is an
elastic property that relates normal strains in one direction to normal
strains in another. Dilatancy, on the other hand, relates normal strains
to shearing strains. Typically, joints (specially natural rock joints)
have some roughness. Their shear strength is due to overriding and

fracturing through the asperities. Overriding creats a dilation. It is
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the characteristic of rough joints in shear. Dilatancy properties of
discontinuities are governed by the roughness of the adjacent surfaces.
When joints are very smooth, their dilation may be insignificant. If a
dilatant joint is subjected to transverse restraint during shearing,
there will be an increase in the shear stiffness of the joints, and, more
importantly, an increase in the normal stress on the joint. For .a given
point, at a given starting normal stress, the normal stress increase due
to a shear displacemeﬁt certainly depends on how stiff the medium adjacent
to the joint is.

In composite masonry walls, the brick and block faces are smooth at
the brick wythe-collar joint and block wythe-collar joint interfaces re-
spectively. Hence, the dilation in these joints is not expected to be
significant. The coarse aggregates of graut in two inch thick collar
joints may cause a little dilation in the interfaces. This dilation
cannot affect the shearing stiffpness and the state of normal stress at
the interface because both the brick and the block wythes have very little
transverse stiffness and also these wythes are not horizontally re-
trained. For the above mentioned reasdns, in the numerical modelling of
the interfaces in composite masonry walls, the effects of dilatamcy have

been ignored.

History of Joint/Interface Elements

In the past few years, many two and three-dimensional joint/interface
elements have been proposed. These elements have been developed to model
the joints in rocks and the interfaces in soil-structure problems. HMost
joint elements are planar and are assumed to have zero thickness when
deriving a stiffness matrix. The rotational stiffness and the effect of

dilation have also been introduced in some joint/interface elements. The



162

chronology of development of the joint/interface elements, including the

pertinent characteristics of each, is described in Table 6.1.

Table 6.1. Chronology of Development of Joint/Interface
Eiements
Date Reference Characteristics of Joint Element
1968 Goodman, R. E. Two-dimensional linear element,

1970

1970

1971

1971

1971

1972

1872

1972

1973

et al. (42)
Mahtab, M.A. (6&)

Zienkiewicz, 0.C.

et al. (103)
Heuze, F.E.
et al. (354)

Noorishad, J. (70)

Heuze, F.E. and
Goodman, R.E. (53)

St. John, C.M.
(87)

de Rouvray, A.L.
and Goodman, R.E.
(80)

Goodman, R.E.,
and Dubois, J.
(40)

Ghaboussi, J.
et al. (38)

no thickness.
Three-dimensional, no thickness.

Two-dimensicnal, iscoparametric
formulation, essentially like a
solid element, no thickness.

Two-dimensional, strain soften-
ing considered, no thickness.

Two-dimensional, fluid flow
problems, no thickness.

Two-dimensional, strain soften-
ing considered, dilation consi-
dered, no thickness.

Two and three-dimensional, no
thickness.

Two-dimensional, strain soften-
ing and dilation considered, no
thickness and no explicit coupling
between opening and reclosing
tendencies.

Two-dimensional, strain soften-

ing and dilation considered, no
thickness, no explicit coupling
between opening and reclosing
tendencies, iteration by load
transfer.

Two-dimensional, axi-symmetric,
dilation considered, relative
displacement as independent
degree of freedonm.
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1974
1975
1975
19786
1976
1976

1877

1977

1978

1978

1978

1979

1979

1981

Gale, J.E. et al.
(37)

Ngo, D. (68)

Schafer, H. (82)

Sharma, H.D. et al.

(84)

Hilber, H.M. and
Tayler, R.L. (55)

Desai, C.S. (32)

Goodman, R.E. and
St. John, C. (41)

Wilson, E.L. (95)

Hittinger, M. and
Goodman, R.E. (58)

Herrmann, L.R.
(51)

Buragohain, D.N.
and Shah, V.L.(27)

Heuze, F.E. (52)

Pande, G.N. and
Sharma, K.G. (72)

Xiurun, G. (99)

Two-dimensional, fluid flow
problems, no thickness.

Two-dimensional quadratic
element, no thickness.

One and two-dimensional bond

elements for reinforced concrete.

Two-dimensional quadratic
element.

Two-dimensional, fluid flow
problems.

‘Axisymmetric, modified form of

Goodman's element (42).

Two-dimensional, strain soften-
ing and dilation considered,
rotational stiffness, no
thickness.

Two and three-dimensional
elements, relative displacements
as independent degrees of free-
dom.

Two-dimensional quadratic
element, strain softening and
dilation considered, rotational
stiffness and no thickness.

Similar to Goodman's elements,
constraint condition used.

Curved isoparametric, relative
displacements as independent
degrees of freedom.

Two-dimensional, dilation consi-
dered, rotational stiffness and
no thickness.

8-noded isoparametric, relative
displacement as an independent
parameter.

Two-dimensional, dilation consi-
dered, no thickness.
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1981 Van Dillen, D.E. Two and three-dimensional,
and Ewing, R.D. dilation considered.
(90)
1981 Desai, C.S. (33) Two and three-dimensional, with

thickness, material model for
dynamic case.

1983 Katona, M.G. (60) Element derived from virtual
work principle, constraint
condition.
1985 Mehlorn, G. and One and two-dimensional contact
Kauser, M. (66) elements for reinforced
concrete.
1985 Beer, G. (25} Shell to shell interface element,‘

relative displacement as
independent degree of freedom.

Proposed Thin Interface Element

If the interfaces in composite masonry walls are assumed to act as
planes of weakness then they can be represented by a thin layer of
isoparametric continuum elements (interface elements), the shear stress-
strain properties of which are typically derived from laboratory tests
on the interfaces. The interface element proposed in this research is
similar to that developed by Desai and co-workers (33,34). This type of
interface element has also been used successfully by Haggblad and Nordgren
(47) to solve nonlinear soil-structure interaction problems.

The proposed interface element is essentially a solid element of
small finite thickness. This element represents a thin‘layer of material
between the block wythe and collar joint or the brick wythe and collar
joint., Figure 6.1 shows schematically the proposed thin layer interface

element for simulation of the interface behavior. The proposed interface
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element is like a solid 10 noded variable-node-number isoparametric
(VIS010) element. The thickness of this element can be determined fol-
lowing the procedure suggested by Desai, et al. (34). The aspect ratio
of this type of interface element is generally very high but it does not
create numerical problems. It has been shown by.Pande and Sharma (72)
that even on small word length machines, aspect ratios of thousands ap-
parently do not create numerical problems. They have concluded that on
accurate machines, it is possible to adopt very small thickness of
interfaces without numerical ill-conditioning. Regarding the mid-side
nodes of the proposed interface element along the thickness direction,
it is felt that although the thickness of the interface element may be
very small, sharp variations in the strains of adjacent continuum elements
can take place and a linear interpolation of strains is required. Hence,
the mid-side nodes along the thickness direction have been retained in

the proposed interface element.

Constitutive Matrix, [C]
The constitutive relations for the interface element are defined
differently from the constitutive relations for any other solid element.

The constitutive matrix [C] is expressed as

[C} = |[Canl  [Cnsl
(6.1}
Csnl  [Cssl
where [Chp] = normal component, [Cgg] = shear component and [Cpg], [Cgp)

represent coupling effects between normal and shear behavior. In the
present research these effects are neglected because it is difficult to
determine the coupling terms.from laboratory tests. The normal behavior

of the interface element is evaluated just as for the adjacent solid
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elements. The shear part [C54), of the interface constitutive relationship
matrix can be obfained by using the results of direct shear tests for
various interfaces. The procedure is outlined in detail elsewhere
(34,47). TYor linear elastic behavior of the interface, the constitutive
matrix [C] for two dimensional case can be expressed as
IC] =1C; €2 O
C2 C1 0
0 ¢ G , (6.2)

where for plane strain case

Cq E(1-v}/(1+v)(1-2v)
Co Ev/{1+v)(1-2v)

and for plane stress case,

Cy E/(1-v2)

i

Co Ev/(1-v2)
where

E is the elastic modulus, v is Poisson's ratio and G is the shear modulus

of the interface.

Determination of the Shear Modulus, G
It is mentioned earlier that the shear component, G, of the
constitutive matrix is determined from the results of direct shear tests.
But, there are no appropriate and sufficient results available from the
direct shear tests for the brick wythe-collar joint or block wythe-collar
joint interfaces to determine the value of G. Hence, a aifferént approach
is followed for determining the value of G of the interface using the test
results of Williams and Geschwindner (94). Some important features of

the test procedure and the results are discussed below.
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The specimens were constructed consisting of two brick wythes and
one solid concrete block wythe in a symmetrical arrangement as shown in
Figure 6.2. These wythes were joined together by 3/8 inch collar joint
filled in with either mortar or grout. The load was applied through the
centroid of the assembly and the horizontal displacements in the faces
of the brick wythes and the vertical displacements of the top of the block
wythe were recorded, The failure load was considered to be the load which
caused the initial collar joint failure. It was reported that for S-type
of mortar in the collar joint without any reinforcement, the average value
of the shear bond strength of the test triplets was 54.5 psi. A plot of
shear bond stress vs. vertical displacement of the top of the block was
also presented. A part of this plot for the specimen having Type S mortar
as the collar joint material is reproducea in Figure 6.3.

In order to compute the shear modulus G, one needs a plot of shear
bond stress vs. shear strain of the interface or a plot of shear stress
vs. vertical displécement of the interface due to the shear load corre-
sponding to the shear bond stress. In this research, the shear medulus
G for the interface is computed from the shear stress-vertical displace-
ment relationship. A detailed procedure for obtaining the vertical dis-
placement of the interface {for the specimen in which Type S mortar is
used as the collar joint material) from the measured vertical displacement
of the top of the middle block wythe is stated below.

In the collar joint, two narrow strips are considered as the inter-
faces with finite thicknesses. The displacement configurations of the
specimen at different levels of load transfer from the loaded block wythe
to the unloaded brick wythe is shown in Figure 6.4. When the load is

applied on the block wythe, the block wythe deforms vertically by an
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amount bh causing a shearing‘stréin defined by the angle bch at the block
wythe-collar joint interface. This shearing strain depends upon the
characteristics of the interface. Due to the sheéring strain in the
block-collar joint interface, the vertical load on the block wythe par-
tially transfers out to the collar joinp as shear load. This shear load
causes shear deformation in the collar joint and vertical deformation dj
in the brick wythe-collar joint interface. The shear deformation in the
collar joint and the vertical deformation dj yields total deformation c¢i
on the block side of the collar joint. Because of the joint deformation
in the brick-collar joint interface, the shear load is transfered from
the collar joint to the brick wythe. The shear load is assumed to act
uniformly over the entire height of the brick wythe which is supported
at the bottom. This shear load causes vertical displacement ek in the
brick wythe. It is obvious from the boundary conditions of the specimen
that the total deformation ¢i in the collar joint and ek in the brick
cause the block wythe to deform vertically by the same amount. Hence,
the total vertical displacement at the top of the block wythe is ap, which
is the sum of the two interface displacements; the collar joint shear
deformation and the brick deformation. Thus, subtracting the collar joint
shear and brick deformations from the total block deformation, one can
obtain the total interface deformation. If the load-deformation behavior
for both the interfaces is assumed to be the same, then the total inter-
- face deformation may be divided by two to get the deformation of one
interface. The shear strain at the interface can be obtained by dividing
the interface deformation by the assumed thickness of the interface.
Following the above procedure, the sbear modulus of the joints cor-

responding to different assumed interface thicknesses are computed. Only
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S-type mortar as the collar joint material ié considered and the nonlinear
shear stress-vertical displacement curve is approximated as linear. It
is shown that the joint deformation of the composite triplet specimen does
not depend upon the thickness of the interface.

The solid load-bearing comcrete blocks of Williams and Geshwindner's
specimen (94) are constructed of normal weight concrete and its elastic
modulus and Poisson's ratio are assumed to be 1600 ksi and 0.25, respec-
tively. The compressive strength of brick is 20,800 psi and that of
mortar is 1420 psi. The modulus of elasticity of brick and mortar are
computed based on their comﬁressive strengths following the procedure
prescribed in References (108,81) and the values are found to be 2000 ksi
and 1420 ksi respectively. The Poisson's ratio of mortar is assumed as
0.2. |

For computing the shear modulus of the interface, four arbitrary
joint thicknesses and an arbitrary average shear stress level of 18 psi
are considered. Calculations for estimating the magnitude of the shear
modulus of the interface are given below.

(1) Vertical deformation of the brick wythe, Apg, (assuming uniform
shear distribution along the height of brick wythe):

Apy = WL/2AE + WL'/AE : (6.3)
where |

W = total shear force acting on brick wythe

18x15.625 lbs = 281.25 1bs.,

H

L = length of the brick wythe on which shear force acts
= 15.625 in.,

A = area of cross-section. For plane strain case, thickness
L, 2
is assumed to be 1. Hence, A = 3.625 in’,

E = modulus of elasticity and

L'= length of the block wythe from the bottom of the
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collar joint to the top of the support
= 3 inches.
Hence, Apy = (281.25x15.625)/(2x3.625x2000,000)
+(281.25%3)/(3.625%2000,000)
= 0,000419 inches.
(2) Shear deformation of the collar joint:
The shear modulus of the collar joint,
G = E/2(1+v} = 1420,000/2(2+0.2) = 591,667 psi. (6.4)
The shear strain, v can be obtained from the shear stfess, T
and the shear modulus, G as
y = /G = 18/591,667 = 0.0000304
Assume interface thickness = (0.002 inchés, then
collar joint thickness = 0.375-0.002-0.002 = 0.371 inches.
Hence, the shear deformation, di can be obtained as
dy =y x 0.371 = 0.0000112 1inch. |
Assume 1interface thickness = 0.06 inches.
Collar joint thickness = (.375-0.006-0.006 = 0.255 inches.
The shear deformation, ds can be obtained as
d2 =y x 0.255 = 0.0000077 inches,
Assume interface thickness = 0.1 inches.
Collar joint thickness = 0.375-0.1-0.1 = 0.175 inches.
The shear deformation, di3 can be obtained as
dy =y x 0.175 = 0.00000532 inches.
Assume interface thickness = 0.1875 inches.
Collar joint thickness = 0.375-0.1875-0.1875 = 0.
The shear deformation d, is given by
dg =y x 0 = 0.
(3) Total deformation of the block, é7qtz] at the top corresponding to 18

psi shear stress can be obtained from Figure 6.3 and is
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dTotal = 0.0087 inches.
(4) The joint deformations, 54 assuming identical behavior of block-
wythe collar joint and brick>wythe-collar joint interfaces can be
obtained for different éssumed interface thicknesses from the above

information and are given as

0.00413 inches

i

Interface thickness 0.0020 in., 81

0.00413 inches

1]
i

0.0600 in., 69

0.00413 inches

]
fl

0.1000 in., 63

0.00414 inches.

it

0.1875 in., 34
The joint deformations are the same for all the four interface
thicknesses. This is due to the fact that the shear deformation in the
collar joint is very small compared to the total deformation in the block.

Although the vertical deformations for all the four thicknesses of the
interface are the same, the shearing strains will not be the same as it

is a function of the joint thickness. Thus, the shearing modulus of
elasticity will be differént for interfaces with different thicknesses.
The shearing modulus of an interface of the specimen whose thickness is
assumed to be equal to half of the collaf joint thickness is determined
next.

Thickness of the interface = 0.1875 inches.

Shearing strain = ¢.00414/0.1875 = 0.02208,

Shearing modulus = 18/0.02208 = 815 psi.
The shearing modulus of the joint will remain constant for all stress
levels because the average shear stress vs. vertical displacement curve
of the specimen is approximated to be linear and the material is assumed

to be linear elastic.
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The magnitude of the shearing modulus of elasticity of the interface
of Williams and Geschwindner's test specimen appears to be very low when
compared against the shear modulus of the collar joint material. The
shear modulus, Gg of the collar joint material (Type S mortar)} computed
from the medulus of elasticity of mortar is about 726 times larger than
the interface shear modulus, Gjt- Page (71) and Ali and Page (2} pre-
sented shear stress vs. shear strain curves for mortar joints in single
wythe clay brick and solid concrete block masonry; respectively. The
normal stress vs. normal strain curves were derived indirectly from prism
tests and the shearing stress vs. shearing strain curves were derived from
brickwork couplets with sloping bed joints by subtracting brick defor-
mations from total deformations measured on a gage length encompassing
several bricks and joints. It was observed that the varying ratio of
shear to normal stress did not have any significant influence on the shear
stress vs. shear strain curves for masonry. For the mortar joints in clay
brick masonry the shearing modulus, Gg, is calculated from the modulus
of elasticity obtained from the normal stress vs. normal strain curve
given by Page (71). Also, the shearing modulus, Gjt, of the mortar joint
is obtained from the shear stress vs. shear strain curve. It is observed
that Gg is about 1.§ times larger than Gjt' Also, the shearing modulus,
Gg of mortar in the joints of solid block masonry is derived from the
normal stress-strain curves given by Ali and Page (2). The magnitude of
shearing modulus, Gjt of mortar joint in solid block masonry computed from
the shearing stress-strain curve is found to be almest same as Gp. The
stress-strain curves for mortar joints presented by Page (71) and Ali and
Page (2) are nonlinear and the initial linear portion of the curves are

considered to find the elastic and shear modulus. Hence, the above
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mentioned relationships between Gp and G;¢ are valid only when the mag-
nitude of stress in the mortar is very low.

The joint behavior in the above mentioned three experiments are fouﬁd
to be extremely different from one another. In one extreme, the joint
is as strong in shear as the mortar in a continuum and in the another
extreme the joint is very weak in shear. Hence, it was felt that further
investigation should be conducted to arrive at a conclusion about the
behavior of the interfaces in composite masonry walls. The experiments
in composite masonry that has been conducted at Clemson Uﬁiversity are

considered for further investigation.

Behavior of Interfaces in Composite Masonry Walls

Composite masonry wall specimens with 3/8 inch and 2 inch collar
joints were tested at Clemson University (79). These specimens were
subjected to vertical loads only on the block wythe. A typical test
specimen is Showg in Figure 6.5. The specimen consisted of a 48 in x 48
in block wall and a 40 in x 40 in brick wall connected together by a 2
in or a 3/8 in thick collar joint. The entire top course of the block
and the outside cavities of the blocks from top to bottom were grouted.

Normal strains at variocus locations in the middle length of the wall
were measured. The locations of the strain gages are shown in Figures
6.6 and 6.7. The solution of the three-dimensional behavior of the com-
posite masonry wall specimen is achieved by analyzing the cross section
of the specimen using a two-dimensional plane strain finite element pro-
gram. This is discussed in the next paragraph. The modulus of elasticity
of block masonry, mortar and brick masonry are determined from the

compressive strengths of masonry units and mortar following the procedure
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given in References (105), (81) and {108), respectively. The magnitudes
of elastic modulus for block masonry, mortar and brick masonry are found
to be 1075 ksi, 2480 ksi and 2950 ksi, respectively. The modulus of
grouted block masonry is taken as 1600 ksi. Normal strains are computed
at various locations considering (1) block wythe-collar joint and brick
wythe-collar joint interfaces are very weak in shear (using interface
elements assigning the shear modulus obtained from Williams and
Geschwindner's test) and (2) block wythes and collar joints as well as
brick wythes and collar joints are perfectly bonded together. The ana-
lytically computed normal strains are compared with experimentally meas-
ured normal strains to understand the behavior of the interface.

The strain gauges were located in the middle length of the test
specimen and hence, to obtain normal strains theoretically at those lo-
cations where the strain gauges were located, the middle portion of the
specimen which was ungrouted is modelled by two-dimensiopal plane strain
finite elements. Also, in order to estimate the normal strains in the
ungrouted portion of the specimen for a specific magnitu&e of total load
on the entire length of the wall specimen, it is necessary to know the
portion of the total load that acts on the ungrouted portion of the wall.
During the test, a uniform vertical displacement was applied over the
entire length of the specimen. As the stiffness along the length of the
specimen is nonuniform, loads experienced by it at differént'sections
along the length due to the uniform vertical displacement at the top is
also expected to be nonuniform. The portion of the total load that écts

on the ungrouted portion of the wall specimen is determined next.
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Load Fractions for Plane Strain Models

Composite Masonry Wall Specimen

with 3/8 inch Collar Joint

The load fractions for this specimen are determined for two types
of interface behavior. For the first case, the two materials at the
interfaces are assumed to be perfectly bonded together. The grouted
‘portion of blocks along with bricks at one end of the wall specimen may
be considered as the sum of two simple geometric shapes as shown in Figure

6.8. In shape 1, the vertical displacement, A due to axial force P is

given by

A = PL/AE (6.5)
where

L = length in inch,

A = cross sectional area of the.block of shape 1 in square inch,

E = elastic modulus of the grouted block in psi and

P = axial force in pounds.

Sustituting the values of the parameters yields

A = (Px48)/(7.625x4.0x1600)

P x 9.83 x 1074 (in). ‘ (6.6)

Shape 2 is analyzed by the finite element method as a plane strain problem
for a total axial load of 5.814 kips. The vertical displacement at the
top is found to be 0.0042 inches. The ungrouted portion of the specimen,
as shown in Figure 6.9, is also analyzed by the finite element method
considering a plane §train condition and, for a total load of 49.37 kips,
the vertical displacement is found to be 0.0053 inches.

The load that is necessary to produce a ve;tical displacement of
0.0053 inches in shape 2 is (5.814 x 0.0053)/0.0042 = 7.3368 kips. Also

from Equation 6.6, the load that is necessary to produce a vertical



183

 al® —Collar Joint
1= Brick
X
Block |
/“ o —
@ o <+
/,_,.‘L
. 'Z:‘g%/—gs-ls/\e
7-5/8—" -
° ! 3/8 Collar
B i Joint
-Brick
t :'
Block Block |
® L
Y QO
& &
23 S
_Y
) -t - A 3-13/16
47-5/8 7.5 /8/' 3%3_5 s

Note: All dimensions are in inches

Figure 6.8 The Grouted Block and Part of Brick Wythe at the End
of the Specimen with 3/8 in Cellar Joint



134

AN

40

- Collar Joint
/—Brick

¥

L3-5/8 inches
3/8
7-5/8

Figure 6.9 Ungrouted Portion of the Specimen with 3/8 in
Collar Joint



185

displacement of 0.0053 inches in shape 1 is (0.0053 x 104)/9.83 = 5.39

' kips. Therefore, the total load on the grouted portion of the blocks at
the two ends of the walls is 2 x (7.3368 + 5.39) = 25.45 kips. Thus, the
vertical load necessary to produce a uniform vertical displacement of
0.0053 inches at the top of the wall specimen over the entire length is
74.82 (=25.45 + 49.37) kips. It caﬁ be derived from the above mentioned
computations that for & uniform vertical displécement, the load experi-
enced by the ungrouted portion of the wall specimen is 0.659
(=49.37/74.82) times the total locad experienced by the specimen when the
interface materials are considered to be perfectly bonded together.

A second case in which the interfaces are assumed to be extremely
weak in shear is considered in the estimation of lqad distribution between
the grouted and the ungrouted portion of the composite masonry wall
specimen. The block-collar joint and the brick-collar joint interfaces
in shape 2 and in the ungrouted portion of the wall are modelled by
interface elements. An interface thickness of 0.1875 inches and a shear
modulus of 815 psi obtained from Williams and Geschwindner's test (94)
are used. for the interface element. Following exactly the same procedure
that is adopted in the case of interfaces where the materials are assumed
to be perfectly bonded together, it is obtained that for a uniform ver-
tical displacement at the top of the wall specimen along its entire lenggh
the load experienced by the ungrouted portion of the specimen is 0.605
times the total load experienced by the.entire specimen.

Composite Masonry Wall Specimen
with 2 inch Collar Joint

First, it is assumed that the two different materials at the inter-

faces are perfectly bonded together. Figure 6.10 shows the grouted
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portion of blocks along with bricks at one end of the specimen which may
be treated as the sum of two simple geometric shapeé, shape 3 and shape
4. Using Equation 6.5, the vertica1>di3p1acement A, in shape 3 due to
axial load P can be computed as

(P x 483/(7.625 x 4.0 x 1600)

\ .
P x 9.83 x 10°% (in). (6.7)

Shape 4 and the ungrouted portion of the wall spe;imen as shown in Figure
6.11 are analyzed by plane strain finite elements for total vertical loads
of 5.814 kips and 49.37 kips, respectively, and the corresponding vertical
displacements at the top are found to be 0.0039 and 0.0050 inéhes.

The total load necessary to produce a vertical displacement of 0.005
inches in shape 4 is 7.4538 (=5.814 x 0.005/0.0039) kips. Also, from
Equation 6.7, the total load that is necessary to produce a vertical
displacement of 0.005 inches in shape 3 is 5.08 (=0.005 x 10%4/9.83) kips.
Therefore, the total vertical load on the two grouted ends of the specimen
is 25.06 (=(7.4538 + 5.08) x 2) kips. Thus, it is observed that for a
uniform vertical displacement of 0.005 inches at the top of the specimen
over its entire length, a total vertical load of 74.45 (= 49.73 + 25,06)
kips is necessary. Hence, for a uniform vertical displacement, the load
experience by the ungrouted portion of the specimen is 0.663 (49.37/74.45)
times the total load experienced by the specimen when the two materials
at the interfaces are perfectly bonded together.

Interfaces are also considered to be very weak in shear for esti-
mating the part of total loads that acts on the ungrouted portion of the
wall specimen. Shape 4 and the ungrouted portion of the specimen are
analyzed using interface elements to model the interfaces. The interface
thickness is assumed to be 0.1875 inches and the shear modulus is taken

as that derived from Williams and Geschwindner's test. Following the
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procedure as mentioned above for the case of interfaces where the mate-
rials are perfectly bonded together, it is found ?hat for a uniform ver-
tical displacement at the top along the length of the specimen, the load
experienced by the ungrouted portion is equal to 0.606 times the total

load experienced by the wall specimen.‘

Two-dimensional Analysis of Composite Wall Specimens

The ungrouted portions of the composite masonry wall specimens with
2 inch and 3/8 inch collar joints are analyzed by a 2-D finite element
method considering plane strain condition. The experimental failure
loads for a composite wall specimen with 2 inch and 3/8 inch ceollar joints
were found to be 210 kips and 150 kips, respectively. Hence, at an ar-
bitrary load level of 80 kips, the wall specimens are neither expected
to undergo any permanent deformation nor be influenced by the nonlinear-
ities due to cracks. At this load level, the composite masonry wall
specimens are assumed to behave linearly elastically. In order to obtain
strains analytically in the specimens corresponding to an 80 kips total
load, a 53 (=80 x 0.663) kip load is applied on the ungrouted portion of
the wall specimen with a 2 inch collar joint and a 52.7 (=80 x 0.659) kip
load is applied on the ungrouted portion of the composite wall specimen
with 3/8 inch collar joint when the two dissimilar materials at the
interfaces in both the specimens are considered to be perfectly bonded
together.

When interfaces are considered very weak in shear, 48.48 (=80 x
0.606) kip and 48.40 (=80 x 0.605) kip loads are experienced by the middle
portion of the specimen with 2 inch and 3/8 inch collar joints, respec-
tively, for a total load of 80 kips on the entire specimen. In this case,

interface elements are used to model the weak interfaces. The interface
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thickness is considered as 0.1875 inches fér both the composite masonry
wall specimens. The shear modulus of the joint elements is assigned a
value of 815 psi, which is derived from Williams and Gesghwindner's test
(94). The normal strains obtained from these analyses are compared with
the experimentally obtained normal strains.
Comparison of Analytical Results with
Experimental Observations

The normal straiﬁs obtained experimentally and the normal strains
computed analytically for composite wall specimens with 2 inch and 3/8
inch collar joints are plotted and shown in Figures 6.12 through 6.19.
The normal strains shown in Figures 6.12 and 6.15 for composite wall
specinmens with 3/8 inch collar joints indicate that the magnitude of
normal strains obtained experimentally‘agfee better with the normal
strains computed analytically when the interface materials are considered
perfectly bonded together. Figures 6.13 and 6.14 also show the normal
strains in the specimen with 3/8 inch collar joints. In Figure 6.13, the
experimentally obtained normal strains are equally comparable with both
the analytically computed normal strains obtained considering that the
interfaces are very weak in shear and the interface materials are per-
fectly bonded together. It can be observed in Figure 6.14 that the ex-
perimentally observed normal strains in the blocks at the interface below
the top two inches of the specimen are almost equal to the normal strains
computed analytically considering that the interfaces are very weak in
shear. However, within the top two inches of the specimen, the normal
strains obtained analytically considering that the interfaces are very
strong in shear are close to the experimental normal strains. Thus, ex-

amining the plots of the normal strains obtained analytically and
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experimentally in a composite masonry wall specimen with 3/8 inch.collar
joint, it can be concluded that the block-collaf joint and the brick-
collar joint interfaces behave more like perfectly bonded joints rather
than planes of weakness.

Figures 6.16 through 6.19.show the plots of normal strains measured
experimentally and theoretically in a combosite wall specimen with 2 inch
collar joint. 1In Figure 6.16, the experimentally determined normal
strains are in better agreement with the theoretically computed normal
strains obtained by considering that the interfaces are very weak in
shear. However, it is also observed that the experimentally measured
strains do not show any evidence of stress concentration (which is ex-
pected) in the block at the interface. The strain d;stribution, obtained“
analytically by considering interfaces as strong joints shows a very large
strain in the block at the interface due to stress concentration. At this
point, this particular normal strain differs considerably from the ex-
perimentally measured strain. In Figure 6.18, it is shown that the the-
oretical strains in the block at the interface that are obtained by
considering the interfaces as very strong joints are almost the same as
the experimentally determined strains except at one point in the block
at the top of the collar joint where a stress concentration is expected.
The distributions of normal strains in the specimen along the width and
in the brick along the height measured experimentally are very similar
. to the distributions of the corresponding normal strains obtained the-
oretically by analyzing the composite masonry wall specimen considering
the interfaces to be very strong in shear. These are shown in Figures
6.17 and 6.19, respectively. From the above mentioned plots, it is clear

that the block- collar joint and the brick-collar joint interfaces behave



like strong joints in which dissimilar materials at the interface are

assumed to be perfectly bonded together,

Conclusions

1. The shearing modulus of elasticity of the interfaces of the
composite masonry wall specimen obtained from Williams and
Geschwindner's test (94), differ considerably from the shearing
modulus of elasticity calculated from the shear stress
vs. strain diagrams given by Page (71) and Ali and Page (2).
This indicates that if one decides to model the interfaces of a
particular wall by interface elements, it would be necessary to
determine experimentally the values of shearing modulus of the
interfaces for that particular wall.

2. The behavior of the interface in composite masonry walls has
been evaluated by comparing the theoretical results with
experimental observations. It is concluded from the comparison
that the interface behaves like perfectly bended joints. Hence,
interface elements are not considered appropriate for modelling
block wythe-collar jeoint interfaces, and are not used in this
research. ~
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CHAPTER VII
STRESSES AT THE INTERFACE OF LOADED WYTHE

AND COLLAR JOINT

In this chapter, a procedure is described to esﬁimate correct
stresses at the block-collar joint interface when the interface in a
composite masonry wall is considered to‘be perfectly bonded together.

In composite walls, generally the inner block wythe is lcaded and hence,
a stress discontinuity exists at the top free end in the block-collar
joint interface. It is shown here that for composite walls involving
stress discontinuities the finite element procedure can be used to obtain
reasonably correct solutions using the reéommendations suggested by
Whitcomb et al. (93). It is further shown that the suggested procedure
can also be used in conjunction with the variable-number-node elements
those are developed in Chapter V to obtain correct stresses in composite

walls.

Stress Discontinuities

To illustrate the stress discontinuity at a point, consider the
problem of uniform.pressure on part of a semi-infinite plane as shown in
Figure 7.1(a). The exact solution of this problem is known and is given
in Ref. (93). The boundary condition on the shearing stress is yx ¥ 0
along y = 0. However, if the points (+a,0) are approached along x =
+da, then from the exact solu#ion rxy(ia,o) = +p/=. Therefore, due to
stress discontinuities at the points (+a,0), xy * Tyx- The numerical

procedure is based on the assumption of a symmetric stress tensor every-

where in the continuum including the points with stress discontinuities.
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Therefore, these procedures cannot account for an unsymmetric stress
tensor at these points, and this leads to difficulties. Whitcomb et al.
(93) have studied how the finite element method calculates the stresses
near stress discontinuities. BSome important features of this study are
given next.

The relevant domain of the problem shown im Figure 7.1(a) was ide-
alized by eight noded iscoparametric elements. Three neshes: coarse, me-
dium and fine were used. The medium mesh was obtained by subdividing each
element of the coarse mesh into four elements. Similarly, the fine mesh
was obtained by subdividing each element of the medium mesh into four
elements. Figure 7.1(b) presents the normalized shear stress distrib-
ution Txy ON the line x = a for 0 < y < a. The finite element solutions
with the three meshes agreed very well with the exact solution except in
the immediate neiborhood of point A. It was observed that the region of
disagreement was confined to the two elements nearest the discontinuity.
Examining the distribution of Tyx On the line y = 0, it was observed that
region of disagreement of the finite element results with the exact re-
sults was confined to two elements on either side of point A. Based on
the above obéervations, it was concluded that for a problem involving
stress discontinuities, the finite element solutions are accurate every-
where except very near the stress discontinuities. HoweVer,vthe region
of inaccuracy is limited to about two elements and such a region can be

made very small by progressive mesh refinement.

Finite Element Solutions of Composite Masonry
Walls with Stress Discontinuities

Composite masonry walls with two inch collar joints are modelled by

finite elements assuming materials at the interfaces are perfectly bonded
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together. Figures 7.2 and 7.3 show two finite eiement meshes, Mesh G and
Mesh GG of composite walls, respectively, modelled by quadratic
isoparametric elements. The Mesh GG in Figure 7.3 is relatively coarser
than the Mesh G shown in Figure 7.2. The composite walls are also mod-
elled by ten noded variable-number-node elements (VISO10) and the meshes
are designated by G10 and GG1l0 and are shown in Figures 7.4 and 7.5. It
is attempted to show that the very coarse mesh of VISO010 elements can also
be used to predict correct stresses at the interfaces of composite masonry
walls.

The normalized shear stresses in the 0.1 inch thick elements in the
collar joint at the block-collar joint interface along the height of the
wall with Mesh G and Mesh GG are shown in Figure 7.6. It is obserxved in
these analyses that the shear stresses in the top th elements at the
interface near the region of stress discontinuity are oscillatory. Tt
is also noticed that the shear stress distribution predicted by Mesh G
agrees well with that predicted by Mesh GG everywhere within the interface
except in the top two elements. A similar situation was observed by
Whitcomb et al. (93) in composite laminates subjected to stress discon-
tinuities. Hence, the procedure suggested by Whitcomb et al.(93) to ob-
tain accurate solutions by the finite element method for problems
involving stress discontinuities can also be used for composite masonry
walls. Further, since the refinement of the mesh from G to GG did not
alter the predicted shear stress distribution, the Mesh G may be consid-
ered as the optimum mesﬁ for accurate prediction of shear stresses in the
collar joint at the interface. The normalized value of the maximum shear
stress in the collar joint at the block wythe-collar joint interface

predicted by Mesh G is §.32.
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In Figure 7.7, normalized shear stresses in the collar joint elements
of thicknesses 0.05 and 0.1 inches at tﬁe block-collar joint interface
along the height of the wall are shown. Mesh G is used in these analyses.
The shear stress distributions in two cases are absolutely indistin-
guishable everywhere in the collar joint at the interface along the height
of the wall except in the top two elements. This indicates that even for
very small widths of elements at the interface the results are disturbing
only in top two elements of the interface. Hence, by neglecting the re-
sults of the top two elements, correct shear stresses in the collar joint
at the interface could be obtained irrespective of the widths of the el-
ements used at the interface when a reasonably fine mesh is employed for
the finite element solution.

It should be noted at this point thatrin Figure 7.6, the maximum
predicted shear stress, neglecting the top two elements, is almost the
same as the predicted shear stress if the results of only the top most
element are neglected. On the other hand, the shear stress distributions
in Figure 7.7 indicates that when the widths of collar joint elements at
the interface are very small, the maximum shear stress neglecting the top
two elements is considerably different from the maximum shear stress when
the results of only the top most element is neglected. Moreover, in this
case where the elements at the interface are very thin, the shear stress
distribution is extremely unsmooth within the top two elements. There-
fore, in general, for a very fine mesh of quadratic isoparametric elements
used in modelling a composite wall, accurate solutions can be obtained
if the results of the top two elements are disregarded.

The shear stress distributions in the collar joint elements at the

block-collar joint interface‘obtained:by‘using Mesh G10 and Mesh GG10 are
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shown in Figure 7.8. Ten noded variable-number-node elements (VIS010)
are employed in the finite element meshes. The collar joint elements at
the interfaces are 0.1 inch thick. In Mesh GG10 only oné layer of very.
thin elements is provided at the top of the wall. The rest of the wall
is modelled by a coarse mesh along the vertical direction. This is done
to examine the possibility of getting accurate stresses by disregarding
the results of only one element at the top of the wall in the interface
when VIS010 elements are used in a very coarse mesh. The shear stress
distributions obtained from Mesh G10 and Mesh GGl0 agree very well with
each other. In Mesh G10, when the results of the top two elements are
discarded the maximum normalized shear stress is 0.323. This magnitude
remains unchanged if the results of only one element at the top are dis~
regarded. On the other hand, the maximum.normalized shearing stress from
mesh GG10, disregarding the results of its only layer of very thin element
at the top, is 0.32. A comparison of maximum stress in Figure 7.6 with
that in Figure 7.8 indicates that the maximum shear stress obtained by
mesh G disregarding the results of the top two elements is same as the
maximum shear stress obtained by mesh GG10 disregarding the results of
only one eleﬁent at the top. This is shown in Figure 7.9. The above
agreement between the stresses obtained from two different meshes indi-
cates that accurate stresses can be obtained from a mesh of VISOI0 ele-
ments when the thickness of the elements in the collar joint at the
interface is 0.1 inch and the results of the top most element are neg-
lected.

The stresses in the collar joint elements having a thickness of 0.05
inch at the interface are examined to investigate further the possibility

of predicting accurate stresses by disregarding the results of only one
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element in a mesh of VISO10 elements. In Figure 7.10, the normalized
shear stress distribution aleng the height of wall in the collar joint
elements at the interface having widths of 0.1 and 0.05 inch is shown.
In these analyses Mesh G10 is used. The shear stresses in the collar
joint elements with 0.1 inch thickness and the shear stresses in the
eocllar joint elements with a thickness of 0.05 inch are in good agreement
with each other everywhere along the height of the wall except in the top
two elements. The normalized maximum shear stress, neglecting the results
of the top two elements in the 0.1 inch thick collar joint element at the
interface, is 0.323, which is comparable with the normalized maximum shear
stress of 0.335 in the 0.05 inch thick collar joint element. The pre-
dicted shear stresses in the collar joint elements of 0.05 inch thickness
are extremely osciilatory in the top two elements aﬁd the maximum stress
when the results of the top most element are disregarded differs consid-
erably from the maximum stress when the results of the top two elements
are disregarded. A reasonably accurate solution is obtained when the
results of the top two elements are disregarded. Thus, the indications
are that it may not be possible to estimate correct magnitude of stresses
by disregarding the results of only one element at the top of the inter-
face. For further investigation into this subject, normalized shear
stresses in the collar joint elements having thickness of 0.05 inch for
the Meshes G, G10, and GG10 are shown in Figure 7.11. For Mesh GG10, the
maximum value of normalized shear stress obtained by disregarding the
results of the top most element is 0.35. On the other hand, the maximum
normalized sheaf'stresses cbtained from Mesh G and Mesh G10 neglecting
the‘stresses in the top two elements are 0.33 and 0.335, respectively.

A comparison of maximum stress obtained from Mesh GG10 with that obtained
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from Mesh G and Mesh G10 shows that a reasonably accurate solution cannot
be obtained if the results of only one element at the top of the wall are
disregarded.

It is also observed after a critical review of all the normalized
shear stress distribution plots that in most cases the maximum shear
stress obtained by disregarding the results of top two elements is about
7 to 10 per cent higher than the maximum shear stress obtained by disre-
garding the results of top one element. Based on this and above cited
observations, it is concluded that accurate solution for composite
masonry walls can be obtained by finite element analysis if the results

of the top two elements at the interface are disregarded.
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CHAPTER VIII
DEVELOPMENT OF FAILURE CRITERION AND

ANALYSIS OF COMPOSITE MASONRY WALLS

Current and previous studies regarding the shear stress distribution
in the collar joint of composite masonry walls indicate that when the
inner block wythe is loaded, the most critical stresses are the shear
stresses in the collar joint, particularly in the region of load appli-
cation near the top of the wall. Consequently, failure initiates in that
region and complete separation of the two wythes takes placei Recently,
the phenomenon of cracking and crack propagation in composite masonry
walls has received special attention. However, at the present there is
very little evidence that analytical models have been developed to predict
cracking in composite walls (14, 15, 17, 18).

Masonry joints have low tensile strength, high compressive strength,
and shear strength which is a function of the superimposed compression
as well as the shear bond strength between the two materials. A Coulomb
type of joint failure criterion is desirable since the failure shear
stress in this case is defined as a function of the shear bond strength;
the coefficient of friction and the associated normal stress. Several
researchers have proposed such criteria for joints Based on their exper-
imental results (48, 50) which assume a uniform distribution of shear and
normal stresses within the failure planes. This is not necessarily rep-
resentative since the distribution of normal and sheéear stress along the
joint is not uniform. 1In the experimepta}ly determined failure criteria,

the investigators ignore the effects of any localized normal stresses that
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may be caused by the shearing forces acting alone on a structure in the
absence of normal loads. Also, each of the proposed failure envelopes
is associated with a particular type of brick, block, or mortar.

The current research is ﬁoncerned with the development of an improved
joint failure criterion which takes into account the variation of stresses
within the joints. Only concrete block-mortar joints are being considered
in this research.

The proposed improved failure criterion has been developed theore-
tically utilizing the experimentally determined failure envelopes. Test
specimens, which were used to develop the experimental failure criteria,
ar; analyzed by the finite element method for different combinations of
the experimentally determined vertical and horizontal failure loads. It
is assumed in these analyses that the crack initiation and final failure
occur at the same load. Normal and shear stresses at various points along
the failure plane are plotted. A failure envelope is drawn for each
specimen assuming that there exists at least one point in the failure
plane at which failure initiates at a specific combination of the normal
and shear stresses. Thus, the actual state of stress in the failure plane
is utilized in the formulation of the failure envelope. An empirical
equation that describes the failure criterion is developed from these
envelopes which relates the shear bond strength and cocefficient of fric-
tion with the block and mortar properties.

The proposed empirical equation is utilized to analyze various
specimens, for which failure loads have previously been found exper-

imentally. It is shown that the lecads for the crack initiation and

failure estimated by the analysis agree well with those measured
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experimentally. Details of this development are presented in the next

sections.

Development of the Failure Criterion

Although various investigators have conducted experimental studies
of the joint shear failure as mentioned before, only Hamid et al. (48)
and Hegemier et al. (50) give details of the test procedures, material
properties, and failure equations. Hence, specimens from these two ref-
erences are‘utilized in the development of the improved joint failure
criterion. It is assumed in the analyses that the interface between the

block and mortar is bonded together perfectly.

Hegemier's Specimens

Test specimens used by Hegemier were triplets that consisted of three
ungrouted blocks with either two bed joints or two head joints as shown
in Figure 8.1 and 8.2 respectively. The component materials consisted
of Grade N-1 normal weight concrete block and Type S mortar, for which
the modulii of elasticity were given as 600 and 877 ksi, respectively.
A value of 0.25 for the Poisson's ratio was assumed for the two materials.
Based on a uhiform distribution of bofh the normél and shear stresses on
the net area of the block-mortar joints, Hegemier (50) developed the

failure criteria for the bed joints and head joints, respectively, as

(8.1)

A
Il

36-0.89 + and

45-0,84 o . (8.2)

T

in which + and ¢ are in psi and ¢ is considered negative in compression.

Tinite Element Analysis of Hegemier's Specimen

In order to develop a failure criterion based on the actual dis-

tribution of the normal and shear stresses in the block-mortar joints,
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Hegemier's Bed Joint Specimen

Concrete

Block

Plan

o i —— —— — ntind

T

|
I
|
l
I

|
-

I
I
|
!
I
1

t

Elevation

Figure 8.1 Bed Joint Specimen Tested by Hegemier et al. -
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Hegemier's Head Joint Specimen
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Figure 8.2 Head Joint Specimen Tested by Hegemier et al.
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the triplet is analyzed elastically using a two-dimensional plane stress
finite element program with quadratic isoparametric elements. Only ocne
quarter of the bed joint triplet and one half of the head jeint triplet
are analyzed due to the two and one axes of symmetry in the triplets,
respectively. A sufficiently fine mesh is selected in the joint and near
the endslof the model to ensure a realistic distribution of the normal
and shear stresses in the collar joint. A typical finite element mesh

used in the analysis is shown in Figure 8.3.

Triplets with Bed Joints

This modei is analyzed for three sets of AIbitrarily selected failure
load combinations obtained from Equation 8.1. These load combinations,
for loads normal and parallel to the bed joint, respectively, are based
on stresses in psi of 0 and 36, 100 and 125, and 200 and 214. In order
to utilize the plame stress finite element model with uniform thickness
in the analysis of hollgw block with bed joints, the elastic modulii of
the block material and mortar (given earlier as 600 ksi and 877 ksi) are
modified by the smearing technique to yield the corresponding values of
287 ksi and 420 ksi, respectively. The resulting normal and shear
stresses in the bed joint for the three load combinations are plotted by
different symbols as shown in Figure 8.4. A failure énvelope is drawn
using these stress points with the assumption that for each set of the
load combinations there exist at least one point on the failure envelope
at which failure initiates. This leads to a linear expression for the
failure criterion as

: = 56-0.867 o. - (8.3
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Triplets with Head Joints

'As in the case of the bed joint triplets, three sets of loads for
this analysis are arbitrarily selected using Equation 8.2, which are based
on the norhal and shear stress combinations, respectively, in psi of 0
and 45, 100 and 129 and 200 and 213. As the mortar in the head joint is
spread on the entire area, no modifications in its properties are required
for the finite element anélysis. On the other hand, due to the hollow
nature of the concrete blocks, its elastic modulus is modified as in the
case of the triplet with bed joints. The elastic modulii for the concrete
blocks and mortar used in this analysis are 287 ksi and 877 ksi, respec-
tively. The normal and shear stresses in the head joint cbtained from
the three lcading combinations are shown with different symbols in Figure
8.5, in which a linear failure envelope based on thé actual stress dis-
tribution is also drawn. The expression for the resulting failure cri-
terion is found to be

T = 65-0.875 ¢. (8.4)

Hamid's Specimen

The test set-up utilized by Hamid (48) to cbtain the strength of bed
joints is shown in Figure 8.6. Aithough Hamid conducted tests with
grouted and ungrouted blocks using Type N and S mortars, only his results
with the ungrouted blocks and Type S mortar are used in this research.
Ungrouted bed joint specimens are considered because the interfaces in
these specimens can represent the behavior of block wythe-collar joint
interface of composite masonry walls more closely than the interfaces of
grouted bed joints. The compressive strengths of half concrete blocks
tested flatwise and 2 inch mortar cubes are 2,850 psi and 3,110 psi, re-

spectively. Assuming once again a uniform state of stress in the bed
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Hamid’'s Bed Joint Specimen
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joints, the failure criterion determined experimentally by Hamid is given
by

: = 76-1.07 o. (8.5)

The test procedure shown in Figure 8.6 has two axes of symmetry; thus,
the finite element model of Figure 8.3 can once again be utilized. The
elastic modulii to be used in the analysis are obtained from the measured
comp;essive strengths of the concrete block and mortar. Using ACI 531-79
{104) and a compressive strength for the hollow block = 2,850 psi yields
a modulus value of 1,671 ksi. The elastic modulus, Ey, in ksi, for the
solid mortar material is given by (81)

8.
E, = 1,000 £' (8.6)

m
in which f'm, in psi, is the compressive strength of the mortar. Thus;
Ep in this case = 3,110 ksi. However, since the mortar is placed only
on the shell of the hollo# concrete blocks, its modulus value to be used
in the plane stress analysis must be modified to yield a value of 1,960
ksi. -

As in the case of Hegemiers's model, three sets of failure loads,
normal and parallel to the bed joint, are computed from Equation 8.5 for
the arbitrary stress combinations, in psi, of 0 and 76, 100 and 183 and
200 and 290, repectively. The resulting normal and shear stresses in the
bed joint due to these loads are plotted as before and are shown in Figure
8.7, which also shows the failure envelope based on the actual stresses.

This failure criterion can be given by the expression

= 77-1.20 . (8.7)
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Improved Failure Criterion for Concrete Block-
Mortar Joints

Shear-Compression in a Joint

The theoretical failure criteria with the shear-compression zone
based on the actual stress distributions and loads for the various cases
are given by Equations 8.3, 8.4 and 8.7. Thesé equations are of the form

T = pg-ue (8.8)
in which =g is the shear bond strength and x is the coefficient of shear
friction. The magnitudes of these parameters are found to be different
in the above equations and are assumed to be dependent upon the elastic
modulii of the block and mortar. Using a trial and error procedure, em-
pirical equations have been developed for -3 and x in terms of the material
properties which, when used in Equation 8.8, satisfy Equations 8.3, 8.4
and 8.7 very closely, thﬁs yielding a general and improved failure cri-
tericn for the concrete block-mortar joints in shear-compression zones.
These expressiecns for g and « may be given by

10 = 2E/Ep1+Eqx107243.974E,1x1073+48 . 36 9

u = 2.384Ep1x1074+0.802 (8.10)

in which E, and Ep)] are the modulii of elasticity of mortar and block in

ksi, respectively, and zp is in psi.

Shear-Tension in a Joint
Due to the lack of the sufficient information available in the 1it-
erature, it is not possible in this case to follow a procedure similar
to that used for shear-compression to derive a failure criterion for
block-mortar joints in shear-tension. Ali and Page (1) have developed
such a failﬁre criterion in which they assume that the tension bond

strength, 7y, is equal to the shear bond strength, zq. Results presented
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in Reference (81} a}so show that the tensile bond strength can be taken
as equal to the shear bond strength. This is adépted in the failure
criterion proposed in this study where it is further assumed that the
failure stress varies linearly between the shear bond strength and the
tension bond strength. Thus, the complete failure criterion, based on

Equations 8.8-8.10 can be proposed as shown in Figure 8.8.

Characteristics of the Proposed Failure Criterion

[t should be of interest to compare the magnitude of the shear bond
strength given by the proposed Equation 8.9,.for En equal to Epp, with
the ultimate beam shear stress computed by the ACI Code (106) for a spe-
cific value of the concrete strength f'.. The ultimate shear stress -g,
in psi in concrete at failure is given by z¢ = 2 JE'c. The ACI Code
specifies the modulus of the normal weight concrete in psi as

E. = 57,000 J£f',. (8.11)
Substituting for /f', from the second expression into the first gives
an expresgion for the failure shear stress of concrete in terms of its
modulus as
t¢ = E¢/28,500. (8.12)

The value of 73 and »¢, given by Equaticns 8.9 and 8.12, respectively,
are compared for the special case when f', = 4,000 psi (i.e., E, =
3,640,000 psi), and Ep = Epy; = E.. The value of 7 calculated using
Equation 8.12 is approximately equal to 130 psi, whereas 1o from Equation
8.9 equals 101 psi. These results seem justifiable based on physical
grounds since the shear bond strength in a joint represents the ultimate
shear stress value at the interface of two materials which should be less

than the corresponding ultimate shear stress in the absence of the

interface.
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The values of the elastic modulii used in the finite element analyses
of the specimens to develop failure Equations 8.3, 8.4, and 8.7 are sub-
stituted into the empirical Equations 8.9, and 8.10 to compute the values

of =g and x which through Equation 8.8 yield

+ = 56.6-0.869 o, (8.13)
: = 64.4-0.869 ¢ and ' (8.14)
= 76.9-1.20 <. (8.15)

These expressions are almost identical to Equations 8.3, 8.4, and 8.7,
respectively,‘thus, providing the validity of the empirical equations
with the experimental data.

Equations 8.8 - 8.10 are also calculated for scme typical values of
the mortar modulii and ratios of Ep/Ep] in order to estimate dependence

of the failure criterion on the modulii. These results are given below.

If Ey/Epy = 1, Ep = 3,000 ksi (i.e., E;1=3,000 ksi), then

1 = 81-1.51 «. : (8.16)

300 ksi), then

If Ep/Ep] = 1, Ep = 300 ksi (i.e., Epy

= 54-D.86 . (8.17)

If Ep/Bp) = 1, Ep = 800 ksi (i.e., Epy = 800 ksi), then
+ = 61-1.05 o. (8.18)

If En/Ep] = 2, Ep =3,000 ksi (i.e., Epy =1,500 ksi), then

r = 88-1.15 7. (8.19)
If Ey/Ep] = 2, Ep = 800 ksi (i.e., Ep] = 400 ksi), then
r = 62-0.89 o. (8.20)

A thorough study of Equations 8.8-8.10 and 8.16-8.20 reveals that, within
the practical range of values for the elastic modulii of mortar and block,
the shear bond strength increases with the modulus. However, this de-

pendence is rather weak. A four fold increase in the modulus of mortar
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(for Ep/Epy; = 1) yields a predicted increase in the shear bond strength
of eonly 33%. |

The empirical Equation 8.10 that defines the coefficient of shear
friction, u, is selected’such that g depends only on Epj. This selection
is based on the experimentally determined failure criteria of Hegemier
for the bed joints and head joints given in Equations 8.3 and 8.4, re-
spectively. The coefficients of ¢ in these equations (which represent
the coefficient of shear friction, x) are almost identical although the
values of Ep are 420 ksi and 877 ksti, respéctively. Thus, it can be
surmised that u is dependent only on Epy. Once again, although Equations
8.16-8.20 indicate a linear increase in the value of x with an increase
in Epy, the dependence of x with Ep) is rather weak. As an example, in
Equations 8&.16 and‘8.17, a ten fold incréase of Ep increases the value

of the coefficient of shear friction, u, by only 85%.

Failure Analysis Procedure

The techniques in finite element analysis for modelling progressive
cracking in brittle materials are well known. The discrete crack can be
introduced into the continuum by progressive elimination of the con-
nection between the appropriate nodes of adjacent elements (discrete
crack method). Alternatively, the effects of local cracking can be
smeared across the width of the elements in the critical region by ap-
propriate modification of their stiffness characteristics. Both the
methods have advantages and disadvantages depending on the type of problem
being analyzed. For overall load deflection behavior, the smeared
cracking method is found to render best results. In this investigation,
cracking of the block-collar joint interface is modelled using the smeared

cracking technique. The failure analysis procedure outlined in
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Reference (2) and (100) has been appropriately modified and adopted in
this research.

The displacement finite element formulation is used in the analysis
of the composite wall. The analysis is initiated by applyihg an arbitrary
-load on the block wythe. The load factor is estimated from the failure
criterion developed earlier in this chapter and the element integration
point at which failure would initiate due to cracking is determined. 1In
the analysis procedure developed, the loads can be applied incrementally,
thus allowing the program to analyze the behavior of masonry walls sub-
jected to in-plane loading from low load levels through to final failure.

Linear elastic behavior of the materials is assumed up until failure.

Crack Modelling

The cracking of the interface between the block wythe and the cocllar
joint is modelled by using a Mohr-Coulomb type of failure c¢riterion sug-
gested in this chapter. At present, failure in the interface between the
brick wythe and collar joint is not considered. In the failure analysis,
for a particular load level all the integration points in each element
are checked for possible initial failure or changes in existing state of
post failure by comparing the state of stresses with the failure crite-
rion. If no crack is identified, scaling calculations are performed to
determine the load level at which further failure develops in the wall.
The load vector is modified using the calculated scaling factor. The
material constitutive matrix at a failed integration point is modified
depending upon the type of failure. A step by step analysis procedure
is given at the end of this ‘chapter. 'Some important steps which are

adopted. from Reference (100) are described next. In this research, it



is assumed that cracking initijates in the block wythe-collar joint

interface and remain there until final failure.

Checking Integration Points for Failure

Previously Uncracked Integration Points

The shear and normal (parallel and perpendicular to the interface,
respectively) stresses at cach integration point in the joint are deter-
mined first. If the normal stress is less than zero (i.e., compressive)
at an integration point, then the point is checked for shear-compression
failure. 1In Figure 8.9(a) the failure envelope in the shear-compression
region is shown. At any integration point, if the mormal and shear
stresses are ¢ and 1, then the failure shear stress z¢ corresponding to
¢ can be obtained from the expression of the failure envelope given in
Equation 8.8. The actual shear stress « is compared against the failure
shear stress =¢ to determine the status of the integration point. The

integration point is said to have failed in shear-compression if

T2 g (8.21)
or |l-</x¢] = ¢ ‘ (8.22)
where ¢ 1s a tolerance, set equal to 0.01.

An integration point is checked for shear-tension failure if, the
normal stress o at that point in the initial analysis for a particularv
load level is greater than zero (i.e., tensile). The failure envelope
in the shear-tension region is drawn and appropriate equation for the
envelope is shown in Figure 8.9(b). The equation is similar to that for
the shear- compression failure envelope except for the slope. The
equation for the failure envelope is

1 = 19-(10/o¢p) @ (8'23)

where



TS To-po
______ 1}.
| 2
| To
| e
| |
| !
| |
| 1
O} o o
Compression —<—t—= Tension

(@)
T
To
T=To- o
. Ttb
-9
b
T} o
i
S
] .

o
| | T % %
Compression-‘—*—)Tensio

~ {b)

Figure 8.9 Failure Envelopes

239



tensile bond strength, algebraically positive and

7tb

¢ = normal stress, positive when tensile.
Other symbols have been defined previously. The failure in the shear-

tension zone is determined following a procedure similar to that outlined

for the shear-compression zone.

Previously Cracked.lntegration Points

The integration points that have failed at a particular load level
may change tﬁeir status from shear- compression failure to shear-tension
failure and vice versa during the subsequent analyses due tc the modifi-
cation of the constitutive matrix, D of the failed integration points.

If the normal stresses at the integration points which have failed
previously in shear- compression become tensile in the subsequent analy-
sis, then the status of the integration points are considered to have
changed from shear-compression failure to shear-tension failure.

The integration points which have failed in shear-tension or changed
from shear-compression to shear-tension are checked to see if the tensile
normal stresses at those integration points have changed to compressive
in the subsequent analysis. If they are éompressive, then the integration
points are considered to have changed from shear-tension fajilure to

shear-compression failure.

Scaling Procedure

If the current state of stress of an integration point is = and o and
if « is the scaling factor by which the current state of stress needs to
be multiplied to satisfy the failure criterion, then er and xs must satisfy

the expression for failure stresses. Thus,
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TE = a7
(8.24)

ogf = a0

where 7¢ and of are the failure shear and normal stresses.

Shear-Compression Zone
The expression for the failure envelope in the shear-compression zone
given in Equation 8.8 must be satisfied by the failure shear and normal

stresses. Thus,

TE T 10T TF. (8.25)
Substituting for -¢ and o¢ from Equaticn 8.24 yields
x T = ogTpa . (8.26)

From Equation 8.26 the scaling factor « can be computed and is given by
« = 7q9/(r + u c). (8.27)

7 in this expression is always considered positive and s is negative when

compressive. The above expression is valid for IT/G' > u.

Shear-Tension Zone

The expression for the failure envelope in the shear-tension zone
is given in Equatiom 8.23 and this must be satisfied by the failure shear
and normal sﬁresses as

it = wg-(10/oep)of- (8.28)
Substituting for 7y and o¢ from Equation 8.24 and rearranging yields

« = zo/{7 + (z¢/otpla] | (8.29)
where « is the scale factor, r is always considered as positive and o is

positive when tensile.



Modification of the Constitutive Matrix, D

When an integration point is identified as a failed point, the
constitutive matrix for that point is modified depending upon the type

of failure.

Uncracked Integration Points.
In two-dimensional analysis, the constitutive matrix for uncracked

integration points is given by

D11 D12 0
D] = 1§ Doq Do 0 (8.30)
0 0] Daq

where for plane strain case, By = Dpp = (1-v)E/{(1+)(1-2v)}, Dyp = Doy

Ev/{(1+v)(1-2v)} and D33 = E/2(1+v) and for the plane stress case, Dij

i

Dgs = E/(l‘vz), D12 = Dp1 = Ev/(l'vz) and D33 = E/2(1+v).

Shear-Compression Failure

If the integration point fails due to shear compression, only the
shear stiffness is reduced and normal stiffness is assumed to remain the
same. Tﬁe modified D matrix is used until the mode of failure changes

from shear-compression to shear-tension. The modified D matrix is given

below,
D1y Dy2 0
[D) =Dz Dpp O (8.31)
0 0 DaqxAIT
where
AIF = Aggregate interlock factor.



Shear-Tension Failure
Based on the magnitude of normal and shear stresses when shear-
tension failure occurs, the magnitudes of the reduction factors for the
elements of the D matrix are computed. These values are used until the
failure mode changes to shear-compression, The maximum value of the
normal stiffness reduction factor is 1.0 and the maximum value for the
shear stiffness reduction factor is equal to the aggregate interlock
factor (AIF). A linear variation is assumed between the maximum and
minimum values of the normal and shear stiffness reduction factors. This
is shown in Figure 8.10. The expressions for the reduction factors as
functions of normal stresses can be obtained from Figure 8.10 and are
given by
¢ = (¢$1°1)ofogp + 1 | ‘ (8.32)
and
y = (é17vglefoep + v0
where
¢ = normal stiffness reduction factor,
y = shear stiffness reduction factor,
$1 = 0.0001,
yo = aggregate interlock factor,
¢ = actual normal (tensile) stress,
etp = tensile bond strength.
The D matrix after modification for shear-tension failure takes the
form as
D114 D1é. O
[Pl={Da16  Daa 0 (8.33)

0 ¢ D33y
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Change from Shear-Compression t§ Shear-Tension Failure

If the status of a failed integration point changes from shear-
compression to shear-tension during successive analyses, the elements of
the D matrix are modified as'is done in the case of shear-tension failure.
The factors ¢ and y are computed based on the current state of normal
stress. Equation 8.32 is used to compute the reduction factors ¢ and .

The modified D matrix is similar to that shown in Equation 8.33.

Cﬁange from Shear-Tension to Shear-Compression Failure

The stiffness reduction factors ¢ and y calculated initially for
shear-tension failure are used until normal stress becomeé compressive
in the subsequent analysis due to the modifications in the D matrices of
the failed integration points. If the normal stress changes to
compressive, then tﬁe D matrix should be modified to take the form shown

in Equaticn 8.31 as in the case of shear- compression failure.

Soclution Procedure

Composite masonry walls subjected to in-plane vertical loads lead
to a condition of plane strain. Hence, a two-dimensional plane strain
finite element analysis procedure may be used to determineAthe failure
in composite masonry walls. The necessary steps for cracking analysis
using smeared cracking technique in conjunction with the crack modelling
proposed earlier in this section are given below.

Step 1. The analysis is initiated by applying an arbitrary load on
the block wythe. Stresses in the block wythe-collar joint interface el-
ements at each iﬁtegration points are determined. These stresses are

compared against the failure stresses.
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Step 2. A factor, a, (larger or smaller than one) is computed for
each integration point either by Equation 8.27 or by Equation 8.29. The
factor from each integration point is compared against the values from
other integration points to obtain the smallest value and the corre-
sponding integration point and element number. This yields the scaling
factor and the integration point in the element at which failure would
initiate due to cracking. All displacements, strains and stresses are
scaled using this faétor to yield the solution at the initiation of
failure.

Step 3. If failure is indicated, the stiffness coefficients appro-
priate to the failure mode are reduced to a nominal value. This reduction
procedure is described in detail in the earlier section under the heading,
"Modification of Constitutive Mafrix, D". The composite wall under this
new state is analyzed once again for the same previously scalgd loads to
allow stress re-distribution to occur. The stresses at each integration
point are checked once again against the failure criterion. If the
stresses at any integration point indicate viclation of the failure cri-
terion, the D matrix appropriate to the failure mode is modified. This
process is continued until no further stress violation occurs at any in-
tegration point for the given load level which completes the anaiysis of
the wall at that load.

Step &. The loads and stresses at the integration points in the wall
at the current state of cracking are scaled to compute the scaling factor,
as describéd in step 2, to identify the integration point that would crack
next at a new load level. Analyses are carried out as described in step

3 with ‘the modified D matrix for the newly failed integration point at
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this load level until no additional stress violations at the integration
points take place, thus, completing the solution at this load.

Step 5. The solution technique described above is carried out at
successive load levels until enough cracking at the block wythe-collar

joint interface has taken place.

Verification of the Proposed Failure Criterion
with Experimental Data

The generalized failure criterion developed earlier is verified by
its application to two cases of composite wall specimens where the failure
lcads are known experimentally. The two specimens are modelled by the
finite element technique considering plane strain condition. The speci-
mens are assumed to behave linearly. The failure is investigated fol-
lowing the procedure outlined in the previous sectibn. The results of

the investigation of the two specimens are presentad next.

Specimen of Colville et al.

This specimen, which consisted of two wythes of clay masonry inter-
connected to a single wythe of concrete block through two 3/8 in collar
joints, is shown schematically in Figure 8.11 and is described.in detail
in Reference (31). From the compressive strengths of the block and brick
masonry (using Jefferson bricks and S mortar) given in this paper, the
elastic modulii for block masonry, brick masonry and mortar are computed,
using ACI 531-79% (104), as 1085, 3180 and 104C ksi, respectively. It is
observed that the failure in the mortar collar joint occurs at the con-
crete block interface. Consequently, using Ep = 1040 and Ep) = 1085 in
Equations 8.9 and 8.10 yield 79 = 65 psi and » = 1.06. a value of 0.1

is assumed for the aggregate interlock factor (AIF).
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Colville's Test Specimen

h 4

T I Clay
f /_ Masonry
Concrete i Wythe
Masonry yd
| Wythe Collar
/ ~ Joint
T T Z \
I6ll
" Steel
0-5/ Support
Plate
L‘ é—l_ood Cell

Y rrr T4 s Vi 7ir

Figure 8.11 Schematic Test Arrangement of Colville et al.



249

A finite element analysis of the specimen is performed using these
values in which a finite element mesh similar té that shown in Figure 8.3
is utilized for the half specimen. The arbitrarily applied loads are
scaled until failure initiates at the concrete block-mortar interface.
It is found in these analyses that no additional loads can be applied once
the failure at any point on the interface has been initiated. The total
lcad at failure predicted by the finite element analysis using the values
of =5 and u given above in the failure criterion is equal to 11,400 1bs.
The failure loads determined experimentally for the two tests with failure
at the block-mortar interface are 9,410 lbs.-and }3,300 1bs. The ratios
of the theoretical to experimental failure loads for the two tests are,

therefore, 1.20 and 0.86, respectively, which is quite satisfactory.

Specimen Tested at Clemson University

A 48 in x 48 in composite masonry wall specimen with 3/8 in collar
joint, shown schematically in Figure 8.12 was tested at Clemson University
with loads applied only to the bilock wythe. The entire top course of the
block and the outside cavities of the blocks from top to bottom were
grouted. The details of the test procedure along with the compressive
strengths of the wall components are available in Reference (73). It was
found that the collar joint developed a crack at the block-collar joint
interfdace at a total load of 210 kips. The ultimate failure occured soon
thereafter at a total load of 215 kips.

In order to compare the experimental failure load given above with
that calculated using the failure criterion given by Equations 8.8-8.16,
a finite element analysis of the specimen is carried out. The elastic
modulii of the block and brick masonry, and collar joint mortar are cal-

culated, using the compressive strengtﬁs given in Refersnce (79), to yield
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values of 1,075 ksi, 2,950 ksi, and 2,480 ksi, respectively. The modulus
of elasticity of the grouted block at the tbp 8 in of the wall is assumed
to be 1,600 ksi. Substitution of Ej = 2,950 and Eyp = 1,600 into Equations
8.9 and B.10 gives 7z = 82.6 psi and x = 1.18. A value of 0.1 is assumed
for the aggregate interlock factor (AIF) in thisvanalysis.

The failure analysis of the cross-section of the specimen sheown in
Figure 8.12 is performed, utilizing the load fraction of 0,659 determined
in Chapter VI for a perfectly bonded interface, leads to a predicted
failure load of 192 kips for the entire wall specimen. The ratio of the
theoretical to the experimental failure loads, in this case, is equal to

approximately 0.9 which appears to be gquite satisfactory.

Fajlure Loads in Composite Masonry Walls

It should be of interest to determine the failure loads in composite
walls of various heights using the failure criteria developed and tested
earlier. Coﬁposite masonry walls with a 3/8 in slushed ceollar joint are
analyzed. The failure in these analyses is defined by the generalized
failure criterion developed earlier. Analysis is performed on three
composite walls of different heights.

The failure loads estimated analytically are compared with those
obtained by assuming uniform failure shear stress given in the literature.
In the later case, the block wythe-collar joint interface is assumed to
be the failure plane.

Prediction of Failure lLoads by Finite
Element Analysis

Three composite masonry walls with slushed collar joints are ana-

lyzed. In these three walls.only the heights are different and their

magnitudes are 10 ft, 15 ft and 20 ft. A representative cross section
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consists of an 8 in concrete block wythe connected to a 4 in brick wythe.
It is assumed that the external gravity loads act only on the concrete
block wythe at the top of the wall. The material properties and the
boundary conditions are same in all the three walls. The walls are sup-
ported at the bottom and it is assumed that the roof slab provides a
lateral support at the top of the wall. The material properties for
Colville's specimen (31) made of Jefferson bricks and S mortar are as-
signed to these walls whiﬁh lead to the values of the elastic modulii for
the block masonry, brick masonry and mortar as 1085, 3180 and 1040 ksi,
rgspecti%ely. Using E, = 1040 and Ep) = 1085 in Equations 8.9 and 8.10
yield =y = 63 psi and » = 1.06. A value of 0.1 is assumed for the aggregate
interlock factor (AITF).

Finite element analygis of the walls are performed under a plane
strain condition in which a very fine mesh is provided at the top few
inches of each wall. The walls are modelled by quadratic isoparametric
elements. The total number of elements and nodal points used in the an-
alyses are 440 and 1405, respectively. In these analyses the block
wythe-collarljoint interface is assumed to be perfectly bonded together,
and since there exists a stress discontinuity at the top of the wall, the
results of the top two thin elements at the interface are disregarded.
The failure analysis is performed following the procedure ou£lined ear-
lier. It is observed that the cracking initiates in the third element
from the top of the wall (results of the top two elements are neglected)
in the collar joint at the block wythe-collar joint interface due to
shear-tension at a load level of 1.22 kips per inch length of the wall.

After the initial cracking in the wall, the stiffness coefficients of the
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top two elements in the interface (results of which are ignored) are re-
duced to a negligible magnitude.

The stiffness coefficients appropriate to the failure mode at the
integration points in the initially failed element are reduced and the
wall is reanalyzed at the same load level. The reduction of the stiffness
coefficients in the failed element does not permit any substantial amount
of vertical load to transfer to the brick w&the. Thus, the initial
cracking load essentially stays within the block wythe and causes a state
of stress in the element (just below the cracked element) similar to that
which was exberienced by the previously failed element before cracking.
This causes failure in the second element. In this newly cracked element,
some integration points fail due to shear-tension and other due to
shear-compression. The stiffness coefficients at these integration
points of this newly failed element are reduced. The state of stress in
the previously failed element at each integration point is also examined
after the re-analysis and the stiffness coefficients are again modified
if the state of stress is found to have changed within the element. Be-
cause of reduction in the stiffness of the two failed elements, almost
all of the gravity load trévels downward in the block wythe, thus, causing
failure of the next element. This uninhibited failure of one element
after the other continues at essentially the initial cracking load. At
a certain distance from the top of the wall, a small amount of the load
may get transfered to the brick wythe. Due to this re-analysis of the
wall at the initial cracking load may cause less shear as well as normal
stresses in the element of interest. Nevertheless, cracking continues
in new elements at the initial cracking load since a combination of the

normal ‘and shear stresses still lies on the failure surface.
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The above cracking phenomenon is observéd during the failure analysis
of all the three composite masonry walls. The initial cracking load is
also found to be the same in all the three different walls. After the
initial cracking, the crack in the walls proceeded downwards at the same
load level. The analysis is stopped after 60 analyses at which the
cracking in the collar joint has extended as far as 7 inches from the top
of the wall. The reasons for termination of the analysis are as follows:
First, the finite element mesh below 7 inches from the top of the wall
is relatively coarse which could produce misleading resulrs. Secondly,
the analysis became expensive. For the crack to travel 7 in from the top,
60 analyses were needed for which the required CPU time on VAX 8600 was
2 hours 37 minutes and 39 seconds. One can easily postulate that if the
finite element model had a refined mesh for some additional distance from
the top of the wall, all the elements in the collar joint at the block
wythe-collar joint interface would have cracked without any substantial
increase in the value of the applied load of 1.22 k/in length. Thus, the
wall would have become unserviceable as a composite masonry wall at this
load.

Failure Loads Based on an Average
Failure Shear Stress

Several investigators (26,31,65,94) involved in experimgntal re-
search in the area of composite masonry have suggested average values of
. failure shear stress for composite masonry walls. These values are de-
rived from laboratory tests of composite masonry specimens subjected to
shear loads, in which the shear load at failure is divided by the area
of the failure surface (block wythe-c911§r joint or brick wythe-collar

joint interface) to obtain the average failure shear stress. A wide range
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of values between 50 to 95 psi for the avefage failure shear stress is
quoted in the literature.

It should be of interest fo cempare the magnitudes of the failure
loads computed by the finite element analyses with those estimated by
using the average failure shear stress. Two specimens constructed of
Jefferson brick and S mortar tested by Colville et al failed at the
block-collar joint interface. The average shear stress at failure in
these two specimens were 40.8 and 58.1 psi. The average of these two
values }s 49.45 psi which may be used to compute the failure loads in the
walls. For a 10 ft high wall the failure load computed from this average
failure shear stress is 5.93 kips per inch length of wall. For 15 ft and
20 ft walls, the corresponding failure loads are found to be 8.90 and

11.87 kips per inch.

Comparison of Failure Loads

As shown above, the failure loads for 10 ft, 15 ft and 20 ft walls
based on an average stress, are 5.93, 8.90 and 11.87 k/in. On the other
hand, failure lcad computed by the finite element analysis is found to
be the same for all the three walls and its magnitude is 1.22 kips per
inch length of the wall. A comparison of these values indicates that the
failure load prediction based on the aferage stress overestimates the
strength of the wall, and the magnitude of this overestimation increases
with an increase in the height of the wall. It should be noted here that
the failure load based on the average failure shear stress is a linear
function of the height of wall. This is unacceptable since the shear
stress distribution at the interface along the height of the wall is not
uniform. The shear stress is maximum near the top at the point of load

application and reduces to almost zero within the top 10-15 inches.
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A critical study of the failure loads predicted from the average
failure shear stress indicates that this procedure produces unrealistic
results. For the walls under consideration, the crushing strength of
block masonry is 1085 psi which leads to uniformly distributed ultimate
load of 8.26 kips per inch length. This value of block crushing strength
is less than the failure loads of 8.90 and 11.87 k/in predicted for 13
ft and 20 ft high walls computed using the average failure shear stress.
Thus, the block wythe of these walls will experience a crushing failure
before the computed failure loads could be applied. Hence, prediction
of failure loads in composite masonry walls using average failure shear
stress not only overestimates the strength of the wall but also produces

very unrealistic results.

Conclusions

1. It is apparent from the results presented in the previous sec-
tions that it may be possible to develop empirical equations
that describe the failure criteria of concrete block-mortar
joints in terms of the elastic modulii of block masonry and
mortar.

2. Equations 8.8-8.10, which define the failure criterion deve-
loped in this research , are based upon the results of only two
laboratory test programs. In order to obtain more accurate
empirical failure relationships, more Mohr-Coulomb type of
equations based on additional experimental evidence are needed.

3. It should be kept in mind that important parameters, other than
the elastic modulii of the blocks and mortar, such as surface
roughness, chemical composition, water content at the time of
testing, gradation of the block material, etc., may also play
an important role in the joint shear strength.

4. Additional experimental and analytical studies must, therefore,
be performed in mascnry to develop failure relationships which
are very much needed in the development of masonry analysis and
design.

5. Failure loads in composite masonry walls of various heights are
determined using the failure criterion developed in this
research. The failure loads estimated analytically are compa-

.red with those obtained by assuming uniform failure shear stress
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given in the literature. The later procedure leads to unrealis-
tic failure loads indicating that average shear stress should
not be utilized in determining the shear strength of a composite
masonry wall.



CHAPTER IX

SUMMARY, CONCLUSIONS AND PROPOSED FUTURE WORK

Summary

In this research, it has been attempted to investigate numerically
the behavior and fajilure of composite masonry walls. In composite masonry
construction, usually the floer slab rests on the interior block wythe
of the composite wall. As a result, the block wythe experiences a sig-
nificant amount of horizontal and vertical iﬂ-plané loads transmitted to
it by the floor slab. Failure in composite masonry walls is essentially
due to the delamination of the wythes caused by the interface shear
stresses. Hence, determination of the correct magnitudes of shear
stresses at the interfaces of composite masonry walls is.extremely im-
pertant.

The effects of horizontal and vertical in-plane loads on the behavior
of composite masonry walls are investigated using quasi three-dimensional
elements.

Shear stresses in a composite masonry wall may develop due to
moisture and thermal strains without necessarily any application of ex-
ternal loads. Creep strains under sustained loads also become somewhat
important for consideration in the estimation of stresses in a composite
wall. The behavior of composite masonry walls subjected to creep strains
and temperature variations is studied using two-dimensional finite ele-
ment models.

In this investigation, a solutionfprocedure using two-dimensional

plane strain finite elements is proposed to estimate acceptable stresses
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at the interfaces of composite walls. For accurate and economic predic-
tion of the stresses, several types of variable-node-number isoparametric
serendipity elements are developed. The locations of optimal stress
points within the elements are also determined.

In order teo investigate the behavior of the interfaces of composite
masonry walls, an interface element is intro&uced. Strains at various
locations are computed by the finite element method using fhe proposed
interface element and without using the interface element. The strains
are compared with the experimentally obtained strains to determine the
behavior of the interfaces of the composite masonry walls. It is observed
that the interfaces in composite masonry walls under realistic boundary
conditions behave like perfectly bonded joints, thus, not requiring the
use of an interface element. In addition; a procedure using the finite
element method for determining stresses in the perfectly bonded joints
of composite masonry walls involving stress discontinuities is proposed.

An improved failure criterion (Mohr-Coulomb type) for block wythe-
collar joimt (mortar) interface is developed. Empirical eéuations are
suggested for obtaining the failure criterion for a specific masonry once
the material properties of the masonry units and mortar are known. A
finite element procedure for cracking analysis of composite masonr: walls
is proposed. "In addition, failure analyses are carried out for composite
walls of variocus heights utilizing the failure criterion and procedure

developed in this research.

Conclusions
The conclusions that can be drawn from the results of this research,
described in the preceding chapters may be divided into two parts. The

first part is based on the results of the quasi three-dimensional model
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which was utilized for walls subjected to both the vertical and horizontal
loads. The second part of the conclusions are due to the two-dimensional
cross-sectional model which is capable of being subjected to only vertical
loads. 1t can also handle analyses involving thermal, creep and moisture

effects.

Conclusions from Quasi Three-dimensional Meodel

For a siﬁgle story high wall, subjected to horizontal in-plane loads,
the horizontal shear stress in the collar joint at the block wythe- collar
joint interface is maximum at the top of the wall and reduces to zero
within a distance equal to approximately the width of the loaded wythe.

The vertical shear stress, though much smaller than horizontal shear
stress, reduces to zero within the £0p 15-20 inches: Vertical normal
stresses are the largest at the base near the ends of the wall.

The horizontal load transfer from the block wythe to the brick wythe
occurs within a distance from the top of the wall which is shorter'than
the distance within which the vertical load transfer occurs. This phe-
nomenon is due to the smaller horizontal stiffness of the wall compared
to its vertical stiffness.

For a two story composite masonry wall, the maximum horizontal shear
stress due to in-plane horizontal loads occurs at the roof level. This
shear stress reduces to zero at a distance of approximately 10 inches from
the top of the wall. The horizontal shear stress at the second flcor
level, on the other hand, is much smaller.

The shear stress, xys o0 a horizontal plane in the collar joint is
quite significant just below the second floor level. It appears, there-
fore, that both locations, one at the‘roqf level and the other just below

the second floor level are critical for a failure of the collar joint.
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The vertical shear stress, Tyz in the collar joint of a two story
wall is smaller than the horizontal shear stress, ty,, for all loads.

Its maximum value due to assumed parabolically distributed vertical loads
occurs at the center line of the wall. The corresponding maximum vertical
shear stress due to the horizontal loads is much smaller.

The quasi three-dimensional model which is utilized to analyze the
composite masonry walls subjected to horizontal loads, predicts higher
shear stresses in the collar joint than those predicted by two-dimensional
plane strain finite element model (16), and does not take the cut-of-plane
displacements into account. However, the anélysis performed utilizing
this model provides sufficient information to understand qualitatively

the behavior of the wall subjected to horizontal in-plane loads.

Conclusions Using Two-dimensional Model

All strains increase substantially due to creep during the first 300
days; most of the increase occurs during first month after the load ap-
plication. The shear stresses in the collar joint remain almost constant
- with the elapse of time. Normal stresses in the collar joint reduce be-
tween 10% and 30% at various times.

The technique presented in this research for determining the stress
changes due to creep strains in composite masonry walls can be used for
walls of other materials if the specific creep curves for those materials
are available.

Normal and shear stresses in the collar joint of composite masonry
wall are computed for realistic temperature variations. It is observed
that the shear stresses and strains in the collar joint do not undergo

any substantial changes due to temperature variations.
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The normal stresses in the collar joint can change from a compressive
value for the external loads alone to a tensile value for the dead loads
and assumed temperature changes. The magnitudes of the change in stress
as well as the final tensile normal stress are significant. Hence, it
is recommended that vertical reinforcement be provided in the collar joint
to resist tensile cracking.

The variable-node-number elements can be used to model the composite
masonsy walls very efficiently. A very coarse mesh of variable-node-
number elements can reproduce the results obtained from a very fine mesh
of lower order elements, hence, reducing the cost of analysis consider-
ably.

The interfaces in composite masonry wails behave like perfectly
bonded joints. Under realistic boundary éonditions; there exists no
planes of weakness along the block wythe-collar joint or brick wythe-
collar joint interface.

It has been shown that a generalized Mchr-Coulomb type of failure
criterion based upon the material properties can be devéloped for inves-
tigating collar joint failure of composite walls. However, the failure
criterion for a block-mortar joint developed in this research is based
upon the results of only two laboratory test programs. In order to obtain
more accurate empirical failure relationships, more Mohr-Coulomb type of
equations based on additional experimental evidence are needed.

From the failure loads calculated for composite walls of variocus
heights using the proposed finite element analysis and its comparison with
those obtained by assuming uniform failure shear stress in the collar
joint, it is shown that the latter method not only overestimates the shear

strength of the wall but also produces very uhrealistic results.
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Accordingly, it is unsafe to design composite walls based on average
collar joint shear stresses determined in the laboratory.

Based upon the assumed failure criterion, the uniformly'distributed
vertical failure load intensity per inch‘length on the block wythe for
the various heights of composite masonry wall is equal to 1.22 k/in. This
magnitude of load depends upon the material properties of the wall cém-
ponents., It should be noted that a different failure criterion based on

additional experimental data could also yield a different failure load.

Proposed Future Research

From the experience gained so far in estimating amalytically the

stresses and failure loads in composite masonry walls, it is proposed that
fﬁture research be gondﬁcted using three~dimensional finite elements to
estimate the correct stresses and failure loads in the composite masonry
walls subjected to horizontal loads due to earthquake and wind loads.
In order to perform failure analysis using three-dimensional models, it
will be necessary to use a failure criterion based upon the three shear
stresses and the associated normal stresses. This type of failure cri-
terion has not been established yet.

In this research, a parabolic temperature profile is assumed across
the thickness of the composite masonry wall. The actual temperature
profile should be determined and utilized in the analysis téchnique to
estimate more realistically the effects of temperature variations.

It has been shown experimentally and analyticaliy that composite
masonry walls fail at a very low load level due to the separation of the
wythes when only the inner block wythe is loaded. It is anticipated that
the failure loads will be much higher if both the wythes are loaded si-

multaneously. This should be studied in the future.



264

The specific tasks that should be execﬁted in the proposed future
research are summarized as below. When composite masonry walls are sub-
jected to horizontal and vertical loads simultaneously, failure may occur
not only by delamination of the collar joint due to a combined action of
the vertical and horizontal shears but also due to possible failure of
the horizontal bed joints in the concrete masonry. The possibility of
this failure mode is likely to exist in composite walls which are built
with hollow concrete blocks and/or which have a minimal amount of vertical
reinforcement. Consequently, it is quite important that experimental and
analytical investigations be conducted to determine the strength of com-
posite masonry walls subjected to a combination of vertical and horizontal
in-plane loads. Tn this research, a quasi threa-dimensional finite ele-
ment model has been-utilized to determine the effects of horizontal and
vertical loads on composite masonry walls. The quasi three-dimensional
model used in this research predicts higher shear stresses in the collar
joint, and does not take the out-of-plane displacements into account. A
three-dimensional model must be developed for further investigation of
the behavior of composite walls subjected to horizontal loads. This model
should be capable of predicting failure of the bed joints in the wythes
in addition to delamination of the collar joint.

The exact temperature profile across the thickness of the composite
masonry wall should be determined in order to estimate the effects of
- temperature variations accurately.

A dynamic mesh generation scheme should be developed for two-
dimensional failure analysis utilizing the variable-node-number elements.
In this scheme, only a small portion near the top of the wall should be

modelled by a very fine mesh while the rest of the wall may be modelled



by a very coarse mesh. When a portion of the wall at the top which is
modelied by a very fine mesh cracks, that portion of fine mesh should be
replace by a coarse mesh and the coarse mesh just below the the cracke&
portion of the wall should be replaced by a very fine mesh. This process
should continue as the crack propagates. The dynamic mesh generation
scheme will reduce the failure analyéis_cost to a great extent.

Mohr-Coulomb type of equations for brick- mortar joints should be
determined experimentally in order to obtain empirical failure relation-
ships fellowing the procedure suggested in Chapter VIII. More Mohr-
Coulomb type of equations for block- mortar joint based on additional
experimental evidence should be obtained for improving the empirical
failure relationships proposed in Chapter VIII.

The relationship between the failure shear stregs and the shear bend
strength, the coefficient of friction and the associated normal stress:
for a block and/or brick-grout interface in composite masonry walls with
é in collar joint should be develped for utilization in future failure
danalyses.

Analytical procedures should be developed to predict correct inter-
face stresses and failure loads in reinforced masonry walls. Also, a
procedure should be developed for dynamic analyses of reinforced compos-

ite masonry walls.
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Appendix A

Analytical Solution of a Fully Loaded Brick Wall

For plane strain, in general, stresses can be related to strains by

oy = [E/ECI) (120 (1= )eycbvey] (A.1)
oy = [E/ECI) (120 (1 )eybrey] (A.2)
(A.3)

oy = V(6x+0'y) .
As there are no deformations along the horizontal direction in the cross
section of the wall, strains in this direction are zero, i.e., ¢y = O.

Therefore, the expressions for stresses oy and sy reduce to

Ix

(E/{ (1) (1-20) ey (4.4)

oy = Esy/{(1+v)(1-2v)}-Evey/ {(1+v) (1-2v)]}. (A.5)
Comparing Equation A.4 to Equation A.5 yiélds

oy = Esy/{(1+v)(l“2v)}"ay. {A.6)
Hence, the results of the elastic analysis obtained by the computer pro-
gram must satisfy this condition.

As the creep anélysis is assumed to be within the elastic range, the
incremental stresses due to creep, which are calculated from the stress-

causing-strain increments As,> and Acys, are given by

Acy = [E/{(1+v)(1-2v) }[(1-v)AcyS+vaeyS] (A.7)
Ary = B/ (12 S+ (1m)aey 3] (8.8
‘—\‘Tz = V(AGX{'AO'y)- (A.g)

~The stress-causing-strain increments can be expressed as

. Asxs = Asx'Asxcr (A.19)
ASYS = Asy-Asny (A.11)
where

Aeg-and Ary = the calculated final creep increments,
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Aey©F and'Acycr= the initial creep strain increments in the x and y
directions respectively.

As the wall under consideration is fully lcaded and remains loaded
at all times, there is no change in the vertical stress, i.e., Acy in
Equation A.8 must be zero, which leads to

vdeyS = ‘(I'v)AsyS. (A.12)
In addition, the horizontal strain increment, Acy, is alsolzero, for which
Equation A.10 yields

AegS = =Ap CF. - (A.13)
Substituting for Asys from Equation A.12 into Equation A.7 and simplifying
gives

Aoy = {E/(1-v2)}asS | (A.14)
which after replacement of A:yS in terms of Acy®T from Equation A.13 leads
to

Aoy = ={E/(1-v2)]AcyCL. (A.15)

For the specific wall and loads under consideration, the above for-.
mulas lead to the follewing results. The stress intensity in the y-
direction is

oy = -0.03125 ksi.

Considering ¢y = 0 and using Equation A.2, the strain component in the
vertical direction for the given problem can be obtained. The magnitude
of ey is

sy = 1.30208x1073.

The stress intensity in x-direction can be calculated by Equaﬁion AL or
Equation A.6 which yields

ox = -0.010416 ksi.

Also g, = v(crx + cry)
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= ~0.0104165 ksi.
These are the elastic stresses in a fully loaded wall which are also the
principle stresses due to the absence of any shear. Substituting these
values in Equation 3.8 yields a value for the equivalent stress ¢ as

s = 0.020896 ksi.

The incremental stress Asy in the x-direction due to creep for the
first time interval can be calculated. from Equation A.15 in which Acy®F
is the initial creep strain increment for this time interval. The value
of A:y®T can be calculated using Equation 3.13.

The first time interval under consideration is 5 days. From Figure
3.2, specific creep strain value for brick wythe for this time interval
is 2.8x1072, The incremental equivalent creep strain for this time in-

terval is given as

A:CT = 0.020896x2.8x1072>

[t

0.05850x1077.
Using the values for the elastic stresses as well as the incremental
equivalent creep strain in Equation 3.13 yields
Ae CF = 0.0291x1072
which is utiiized in Equation A.15 along with the value of E to give
Aoy = -0.062x10"2 psi.
These analytical values of the stresses from the elastic analysis
and incremental stresses from the creep analysis are compared with the

results obtained from the computer program. These comparisons are given

in Table A-I and A-II.
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Table A-I. Comparison of Results for Elastic Analysis

Stress (ksi) Computer Results Analytical Solution
oy ~0.0312498 -0.03125
Ty -0.0104116 -0.010416

Table A-II. Comparison of Results for Creep Analysis

Stress (ksi) Computer Results Analytical Solution.

Ady -0.93x10°9 0.0

Ady -0.0622x1072 -0.062x1072
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Appendix B

Analytical Solution of a Single Element Problem

Analysis Due to External Loads

The stress intensity in the y-direction is given by
oy = 2x 1/2 = 1.0 ksi. (B.1)
Also ay for a plane strain case can be obtained

by the following equation:

fregt(1=v)s (B.2)

Oy S ].

Yo (1) (L-2v) y
The strain in x-direction, &y is zero, for which Equation B.2 yields
sy = 4.16%10"% in./in. (B.3)

The stress intensity in the x-direction is given by

[(1-v)egtveg]. (B.4)
(1+v)(1-2v)

7K

Considering sy = 0, Equation B.4 yields
oy = 0.333 ksi. (B.5)

Analysis Due to Temperature Gradient

It is assumed that the inside-outside temperatures are 80°, 60°F, for
a 20°F lower temperature on the outside than inside. The stress-free
temperature is assumed to be 60°F. The temperature at the centroid of
the element is 70°F considering a linear variation of temperature from
one side to the other side of the specimen. The change in temperature
at the centroid of the element is 10°F.

The initial strain can be computed by mutiplying coefficient of
thermal expansion with the change in temperature. The initial strains
computed are given by

sxi'.-': tyi = 0.0004. (B.6)

—
L
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Equivalent Joint Loads

From Figure B.1,
(B.7)

oy = 2Fg/2 = Fy

il

oy = 2Fy/2 = Fy. (B.8)

Use of initial strains from Equation B.6 into Equation B.4 in conjunction
with Equation B.7 leads to

Fy, = 1.28 kips. (B.9)
From the symmetry of the problem,

Fy = 1.28 kips. (B.10)

y

Resulting Strains

These strains are caused by equivalent joint loads due to initial

strains
fix = @
7y = 1.28 x 2/2 = 1.28 ksi. -(B.11)

Utilizing Equation B.1ll into Equation B.2 gives
gy = 5.33 x 10754, (B.12)

Stress Causing Strains

The stress causing strains can be obtained by subtracting resulting
strains caused by the initial strains from the elastic strains due to

external loads.

0-0.0004 = -0.0004 and (B.13)

1

x

sy = 5.33x107%-4.0x107% = 1.33x107%. ' (B.14)
Change in Stresses
Substituting Equations B.13 and B.1l4 irto Equations B.4 and B.2

yields

~-0.8536 ksi. (B.15)

Ix

-0.00008 ksi. (B.16)

7y
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Figure B.1 Joint Loads



Total Strains and Stresses

Total strains are obtained by adding the values of ¢y and ty from

Equations B.11 and (B.12) to the elastic strains due to external loads,

which yields

0.0 and (B.17)

ExT
9.49%107%4. (B.18)

SyT

Total stresses are obtained by adding the values of sy and oy from

Equations B.15 and B.16 to the elastic stresses due to external loads,

which yields

oxT = -0.5206 ksi and (B.19)

oyT = +0.99992 ksi. (B.20)

Table B-I. Comparison of Results for Elastic Analysis

Stresses (ksi) Computer Analytical
or Strains Results Solution
Ty 0.3333 0.333
Ty 1.0 1.0
ex 0.0 0.0
0.4166x1073 0.416x1073




Table B-II. Comparison of Results for Tempefature Analysis

3%
L

Total Stress (ksi) Computer Analytical
or Total Strains Results Solution
oxT -0.520 -0.5206
oyt 1.0 0.9999
sxT 0.0 0.0
0.95x1073 0.949%1073
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