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ABSTRACT

The present study deals with the optimal design of building
structures equipped with active control systems. The controcl systems
considered are the active mass damper, the active tendon system, and a

combination of the two systems.

Optimal control algorithms have been extensively studied for
possible adoption in the structural optimization. The studies inclu&ed
the Ricatti closed-loop algorithm based on classical control theory,
non-optimal élosed-lodp eontrol +in  the frequency-domain, and
instantaneaus open-lcop, closed-locp, and open-closed-loop algorithms
in the time-domain. Although all the above mentioned algorithms were
investigatéd for- their effectiveness in structural control, the
time-domain algorithms havé been extensively studied for the combined
effect of structural optimization with optimal control. Also inciuded
in this study are a critical-mode control algorithm and the resulting
spillover effect on the uncontrolled modes, the optimal location of
controllers in conjunction with the critical-mode control algorichm,

and the time-delay in the application of the control forces.

The structural éptimization is formulated és a constrained
minimization problem for which the design variables are the floor
stiffnesses of the building and certain control parameters. The
objecti&e function is the structural weight of the building. IThe
constraints include floor drifts, floor displacements, control forces,

and natural frequencies.

i



Structural optimization can yield a safer and more economical
structure based on rational stiffness redistributicn while satisfying
a set of constraints. This study shows that active control systems ére
effective in reducing the effects of an earthquake on the safety and
serviceability of structures. The combination  of structural
optimization and active‘conﬁrol can further reduce:the control forces
;nd consequently reduce the total'structurél cost. This is achieved by
minimizing the required control energy, to determine the optimai
‘weighting matrices, while the structural responseris still bound by

the constraints imposed for structural optimization.

The critical-mode control algorithm is developed i# order. to
reduce the amoun£ of computation time which is important in the
Strpctural optim;zati$n_'-scheme. The spillover effect on the
uncontrolied modes is shown to be cohsiderable.lFof seismic structures
the prdspecﬁ of applying cr%tical-mode control is promisingvsince the

response is governed by the few lowest modes.

The critical-mode control algorithm is also used ta determine the
optimal location of a limited number of controllers. Two methods aré
investigated; the first is based on the modal shapes and the second
upon the minimization of the control ene?gy and response pefformance

indices.

The issue of time-delay is investigated in order to be utilized
in the optimal control algorithms used in the structural optimization
process. It is recognized that as control system technology advances

the affect of time-delay may become negligible.
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I. INTRODUCTION

A. LITERATURE REVIEW

Structural control implies that performance and serviceability of
a structure are controlled so that they remain within prescribed
limits during the application of environmental loads. Structural
control is achieved by using passive or active cohfrol devices. The
passive devices utilize the fact that energy dissipating mechanisms
can be activated by the motion of the structure itself.
Base-isolation of the superstructure from the foundation using
steel-reinforced rubber bearings is an example of passive controi for
earthquake resistant structﬁres. Dynamic absorbers wused in the
vibration control of machinery are mass-spring-systemé abpended to the
structure. They have been applied to tall buildings in the fdfm of
bassive tuned mass dampers, such asr the John Hancock building .in
Boston (60), and the Citicorp Center in New York (46). Passive
devices although effective in re&ucing the response, are limited ta

just one mode of vibration as pointed out by Chang and Soong (6).

Active control devices require external energy for their
operation. The devices under consideration can be classified into four
categories: 1) active mass damper, 2) active tendons, 3) appendages,

and 4) pulse centrol.



Dynamic absorbers or mass dampers can be coupled with ah ekternal
power supply and an electrohydraulic actuater to form active. mass
dampers. The actuator is operated by an active control algorithm
which can be non-optimal, sub-optimal or optimal, where the optimality
-refers to the minimization of a cosp fuﬁctional. The cost funcfionél
to be minimized is Qhe fotallenergy of the system, including the work
done by the control. forces. The dctive contr61 algorifhm is
implemented on a digital or analqg computer. Suéh active devices
produce a larger reduction in response  than passive devices. Active
mass daméers, ar ‘active tuned mass dampers as .they are sometimes

" called, can be used for wind or earthquake excited structures.

" Active ‘tendons; or cables, are ‘a second category of active
control sfstems for civil engineering structufes. The tendons can be
tensioned using hydraulic rams. Ipternal forces are generated that are
used to adjﬁst the deformations of the structure. Displa;ement and
velocity sensors are used to monitor‘ the response due to external
excitations. If the response exceeds certain limits the controller
determines the required adjustments withl the aid of the control
algorithm, and activates the hydraulic actuators which tension the
tendons. The feasibility of using active tendons to control seismic
structures was tested experimentally by Soong, Reinhorn and Yang

(15,53).

A third category of active control systems for tall buildings is
that of appendages. Appendages are attachments to the top of the
building that resemble aircraft wings with variable geometry. The

appendages are movable and their position is computed based omn current



deformation measurements. Simulation studies by Soong and Skinner for
structures equipped with appendages have shown substantial reductions

in the displacements of tall buildings under wind gusts (54).

Pulse control is a fourth class of active structural control.
Pulses are thrusts applied over a shortrperiod of time in‘the form of
either air and gas jets or tendon prestressing. These thrusts are
applied using éulse generators located at various positions in the
structure. The pulses are applied to the structure at discrete
time-intervals and their intensity is computed by a control algorithm
based on response measurements. Pulse control experiments have been

carried out by Masri, Bekey and Caughey using jets (35).

The application of control theory to aircraft and satellite
systems. has been extensive. The problems that are identified and
.solvéd range from stochastic control of aircraft in turbulence (22),
to spacecraft attitude control (31). Several sfudies and ekperiments
of active control have been carried out in the aerospace field. The
experiments were performed to actively damp vibrational motion of
flexible structures. Schaechter has performed an experiment émploying
a pinned-free flexible beam (49). The experiment demonstrated active
dynamic controi, adaptive control, and associated hardware
requirements and mechanization difficulties. Hallauer, Skidmore, and
Gehling, studied the modal-space active damping of a plane grid,
theoretically and experimentally (21). Meirovitch et al., studied the
nonlinear control of an experimental beam (39). The above studies are

examples of laboratory implementations to either validate theoretical



control concepts, or determine the reason for difficulties and

,
ineffectiveness in control strategies.

In the field of active cbntfol'as applied to civil engineering
'structures, the effort has been concentrated in the development of
optimal control algorithms. Recently sdme experimental work has also
been done; . Abdel-Rohman, Quintang and Leiphoiz have examined the
active control of flexibie‘structurgs in terms of‘closed-loop control,
and a combination of closed-loop and open-loop contrel (2). The
classical Ricatti approach was used. The weighting matrices were found
by trial and er:or,{and‘the equations of motion were approximated by a
limited number of modes. Abdel-Rohman and - Le;pholz presented a
general approach that solves the optimal control problem (1). In their
approadh a quadratic performaﬁce‘index is migimized an& constraints
are imposed on the strﬁctufe's déflectiéns, accelergtions, and -on the
magnitude of fhe‘control forces. A deterministic excitation waS'dsed*

for simulation studies.

Basharkah and Yao attempted to find an optimqm gain matrix in the
application of active control to civil engineering structures (4). The
technique was based upon a stochastic approach and meodal amalysis in
order to reduce the di#placement response of building structures to
earthguakes. The topic of optimum gain matrices was studied by Cheng
and Pantelides in the context of optimum weighting matrices. The
concept of redﬁcing the control force levéls by finding the optimum
weighting matrices was formulated 4as an optimization problem to

1

minimize contxol energy {13).




Yang has studied the application of the active mass damper or
active tendon systems to tall buildings subject to earthquake
excitaticns (61). The randem vibration analysis was formulated in
terms of the transfer matrix approach, thus obtaining the frequency
response of the structur; directly. vParamet;ic studies of the
efficiency of the nopfoptimal control law were carried out in terms of
the control parameters of normalized feedback and loop gains. Yang and
Samali applied the transfer matrix approach ﬁo tall buildings in
along-wind mdtion (65). The active tendon or active mass damper
systems were‘investigated. The random wind flow was assumed staticnary
in time and non-homogenous in space. The standard‘deviations.of the

response and of the control forces were computed for a range of the

contrel parameters of normalized feedback and loop gains.

Cheng and Pantelides presented an algorithm for optimal design of
structural systems equipped with active téndéﬁ and/or activé mass
damper systems (9,10) whigh is given in Chapter IV. The structure was
subjected to a stochastic earthquake excitation and a non-optimal
control law was used. The analysis was performed - in the
frequency-domain using the transfer matrix method. The structural
optimization was carried out using structural weight as the objective
function, and the standard deviations of the dispiacement response and
of the control forces as constraihts. It was observed that the
optimum structure with the active control system can effectively

reduce the response.



Mgirovitch and Silverberg studied the control of structures
subject to _seismic excitatiom, using the independent wmodal-space
éontrol method (fMSC) (42).-In this method the structure is controlled
by controlling individual modes independently of one Vandther

"(37,41,44). In the fMSC one first :designs modal controls so as to
control the lower modes.. These modal‘controlé‘do not represent actual
controlg because - they are-lderived in the modal domain, so an
expression is formulated to rélat? the modal controls fo the actual
vcdntrols. An optimél IMSC closed-lcop control scheme was applied to a
three-story structure §ubjected to a real accelerogram. The results

were satisfactory.

The topic of controlling only -a' few mocdes pf: vibration of a
fleﬁible ‘dYnamic system  has received considerabie atféntion. .Martin;
and‘ Soong have‘ showed ‘thaﬁ modal lcontrpl theory. can be applied
fruitfuliy to affect direct ;ontfél‘of specific structural modes (34).
~Balas has pfesen#ed thé feedback control of N modes of a flexible
system and has tfeated Ehe problem of coqtrbl spillover into the
uncontrolled modes (3). Meirovitch and dz ﬁave  presented an
independent'modal-space control scheme for the control of positional,
attitude, and elastic motions for a discretized modelv of a
distributed-parameter flexible spacecraft (40). The control scheme was
demonstrated for non-optimal and optimal pfoportional control laws as
well as for on-off control; Recently, a stochastic independent
modal-space estimation and control method was -presented by Oz and

Meiroviteh (45). The method is capable of estimating and controlling




all the modes of a distributed-parameter system in a noisy

environment.

Yaﬁg and Lin have studied an optimal ocpen-loop critical-mode
control algorithm for tall buildings under stationary earthquake
excitétions (63). The control systems considered were the active
tendon or the active mass‘dampe; systems. The critical-mode control
was found tq.be superior'td the global control, insofar as the amount
of on-line computations Q#s concerned. The spillover effect, resulting
from the excitation of the uncontrolled modes by the control'forces,
was found to be negligible under certain conditions. It was also
observed that the optimal critical-mode control‘ is likely to be as
.effective as the optimal global control, since the response of tall
buildings under earthquake excitations is usually qominated by a few
lowest modes. Yang and Lin have also appliéd the optimal open-loop
¢ritical-mode algorithm to.buildings exﬁited by an earthquake modelled
as a non-stationary random process (64). It was shown that the
building response and the required activé ,control forces computed

based on the stationary earhquake model are conservative.

In this study Chaptér IX p?esents the derivation of a
7 critical-mode optimal control algorithm based on the- inﬁtantaneous
closed-loop control. The algorithm is used to evaluate the spillover
effect on the residual modes, and to study the problem of optimal

location of a limited number of controllers.



The concept of thé instantaneous optimal control was introduced
by Saridis and Lobbia in their search for simplified éptimal
stochaStic controi algorithms (48).'Ins£ead of minimizing an integral
performance index it was prbposed té minimize a sequence of
single-stage. processes. | “Thus the optimal;ty of'lthe control is
achieved ‘at eagh instant of time. The>ben§fit of ins;antaneous optimal
control algorithms was the.Simplicity of the derived.control law as
compared to the traditional control law based on the integral

performance index.

The concept of instantaneous optimél control algori;hms was
recently adopted by Yang, Akbarpour and Gaemmaghahi for analysis of
seismic structﬁfes (62). -In .their approach ‘instead of an integrai
pétformance index, a time-varying performance ipdex is minimized. The
optimal open;loop; closea-loop, and open-closed-ioop'algorithms were,
developed.‘The instantaneous naturé of these algoritﬁﬁ; éllowed:the
consideration of the on-line measuremént of the'eartﬁquake éxcitation
for the open-loop and open;closedfloop algorithms; The resulting

optimal control laws are simpler than the classical Ricatti approach.

The instantaneous optimal oéen-loob algorithm was used by Cheng
and Pantelides for the structural optimization of seismic_structures
equipped with an active mass damper or active tendon system (11),
which is given in Chapter VI. The objective function to be minimized
was structural weight and constraints were imposed on the maximum
floor displacements and maximum control forces. It was found that

structural optimization combined with active control produces an




efficient "and economical design, while Xkeeping the control forces

within a practical range.

Recently Kobori, Kanayama and Kamagata, presented an épproach on
"dynamic intelligent” building systems to control earthquake motions
(27). A combination of open4loop and closed-loop control was proposed.
It was suggested that open-locp control will remove the natural period
of the structure "froﬁ . the ;eismic spectral peak period, and
closed-loop control will reduce the inertia force created by the
seismic excitation. The algorithm was applied to an experimental three

degree-of-freedom model.

Recently, Lin, Chung, Soong and Reinhorn have  made an
experimental study of a ;tandardized model under base excitation
supplied by the earthquake simulator at. SUNY/Buffalo (32). The Ricatrti
closed-loop and the instaﬁtaneous control.algofithms w;re tested, and

comparisons were made betweén analytical and. experimental results.

Time-delay in the application of active control is an important
problem in the implementation of structural control. The problem was
considered in an experimental stud§ of the active tendon system
carried out by Chung, Reinhorﬁ, and Soong (15). The time-delay for the
single degree-of-freedom experimental model was incorporated in the
elements of the gain matrix of the optimal control algorithm. Another
interesting problem in the implementation o¢f active control is the
determination of optimal controller locations when, due to practical
and economic considerations only a limited number of them are

available. Soong and Chang have developed a minimum control energy



criterion within the framework of modal control to address the problem
(52). Simulations for a three-story structure showed that the
arrangement that . satisfied the minimum control energy criterien also

produced the minimum response.

-The use of structural optimization - techniques as an ordered
approach to design decisions has been exteﬁsively developed in the
past two decades. Structural optimization 'with.‘the aid of the
electronic computer,  can relieve the designer ffom‘ repetitive
calculations and reanalysis. Many types of optimization problems can
be- identified. | An efficient structural optimization ‘pfogram
ODRESB-3D, was develbped- by Truman and Chéng, based oﬁ optimalitf
criteria (1&,55,56). The procedure can be. used for design and
Asensitivify analysis of three-dimensional reinforced concrete and

steel buildings, subject to multi?cpmponent earﬁhduake excitations.
‘Multiple: constraints are included in ‘the optimization - such as
dishlacement,-stress, frequency AAd drift constraints. The algorithm
vincludes several analysis capabilities inclgding static, modal
analysis and the ATC-03 anaiysis procedures. The modal analysis wag-
used to study multi-component excitations, and the ATC-03 provisions
were used to study the effects of the ATC-03 parameters such as soil
profilé, geograpﬁiq location, pldan and vertical irregularities? and

ATC-03 stability function.

Geometric non-linearities such as . the P-A effect can also be
taken into account in the optimization of tall Dbuildings as
demonstrated by Cheng and Botkin (7). Recently Cheng and Juang have

developed an optimization algorithm designated as ODSEWS-2D-II, for
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structural design of two-dimensional structures with various building
codes including UBC, Chinese-TJ-11-78, ATC-3-06 Tentativg Provisions
and others. The objective is to obtain the minimum weight or minimum
cost of a structural system subject to static, earthquake and wind
forces (8,23). Included are studies on the assessment of ATC-3-06
parameters, the effect of soil-structure interaction of the ATC-3-06
provisioﬁs, the effectiveﬁess of variqus‘bracing systems in designing
aseismic structures, the effect of the P-A forces and the vertical
ground excitations on the optimum design, the comparison of various
seismic code provisions, the comparison of minimum weight and minimum
cost design, and - the influence of story drift constraint and

displacement constraint on optimum design.

A method fbr vibration control of large space structures by
integrating the structural and control design has been presented by
Khet, Eastep and Venkayya (25). The onective was to reduce the
structural response under an initial disturbance. The cost function
was the weight of the structure, with a constraint on the damping

parameter of the closed-lcop system.

Recently, Cheng and Pantelides presented an algorithm for
combining structural optimization and active control of structural
systems (12,13). The algorithm is based on optimal instantaneous
algorithms for structures subject to seismic and wind excitations. The
optimal weighting watrices in the Iperformance index wére found by
minimizing the control energy of the control system. The critical-mode
control algorithm for the instantaneous optimal closed-loop scheme was

derived, and the spillover effect was demonstrated for earthquake

11



excited structures. For wind excited structures, the reduction ‘of
floor displacements and enhancement of human comfort was shown. The
objective of structural optimization is to yield é safer and more
economical structure based on a rational étiffness redistribution
while satisfying a set of constraints. Active control is effective in
fedn;ing the earthquake effects on the safety and serviceability of
the'structure. The combination,of structural optimization and active
control can further reduce the control forces, and a more economical

structure-control system can be produced. -

B. QBJECTIVE

The safety and serviceébility  of seisﬁici structures can be
_improved by using -active- control devices. At ‘the design‘rgtage the
building can be designed'with the presence of the coﬁtrol systém in
mind. However in order to achieve economy df both:strﬁctural material
and control energy, the combined structure-control. system shouid be

optimized.

The main objective of this study is to inﬁegrate the design of a
structural system -with the active control system in an optimal manner.
Earthquake excitation is considered in the form of ground acce}eracion
or power spectral density of ground acceleration. Wind forces are
generdted using wind design spectra. Two active control systems are
considered, the active mass damper and active tendon systems. Both
freqﬁency-domain and time-domain control algorithms are considered.
From previous studies by Cheng and Juang (8), and Cheng and Truman

(14), it is known that structural weight is a reliable objective
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function for member resizing and is used iﬁ this study. The design
variables are the structural stiffness and control parameters. The
constraints include displacements, qatural frequencies, drifts, and
control forces. The optimization algorithm uses an interior penalty

function strategy and Powell's search algorithm (47).

Other objectives in thisrsﬁudy'are: 1) to study the fundamental
concepts of the Ricatti optimal closed-loop algorithm for the passive
mass damper, active mass damper, and active tendon systems, 2) to
discuss the assumptions inherent in the Ricatti optimal closed-loop
algorithm and comparé the simulations with experimental results, 3) to
derive the non-optimél closed-loop contrel in the frequency;domain
based on the transfer matrix concept for the combined active mass
damper and active tendon systems, &) to derive the instantaneous
optimal <contrel algori;hms in  the time-domain for open-loop,
closed-loop andl open4close&-loop strategies, 5) to investigate the
Iimportance of the weighting matrices in the performancé index and to
derive optimal weighting matrices by the minimization of <c¢ontrol
énergy, 6) to study the influence of time-delay and methods of
compensating for it, 7) to derive the critical-mode optimal control
algorithm and study the spillover effect on the uncontrolled modes, 8)
to utilize ;he critical-mode optimal control algorithm with the modal
and performance index methods in order to determine optiﬁal locations
of controllers, 9) to compare the various optimal control algorithms,
10) to study the effect of wind-induced excitations on the controlled

structure, and 11) to illustrate by numerical examples the design

13



procedures of the numerical optimization technique, and the benefits

of using a combined optimum structure-control design.

A brief discussion of the contents of each Chapter in this

dissertation is.given below.

fn‘Chaptér II the structural coﬁtrolrsysfems'are categorized.into
three classifications. First, according tﬁ whether they argrpassive ar
active. Secondly, the active control systems are categorized in terms
of imﬁlementation strategy into open-ldOp,y closed-lpop; and
open-closed-loop _control. Finally the active'>§ontrol §y5tems are
‘cléssified according :to the oﬁtimaliéy of the control scheme as

optimal, subQOptimal, and non-optimal control algorithms.

Chapter III gives a' brief discussion of the assumpfion; inhereﬁt
in the Ricatti optimal closed-loop algorithm. The fundamental concepts
.far,the active tendon, active mass damper, ‘and passive mass damper are
discussed. The Ricatti’optimal closed-loop algorithm is derived uéing
both the active tendon and active mass. damperl systems. Comparisons
with éxperimenfal results are made and numerical simulations are

presented.

In Chapter IV ;ﬁe non-optimal closed-loop control based on the
transfer matrix concept is described. The statistics of the response
for both the active tendon, active mass damper and a combination of
the two systems are derived. The active tendon and active mass damper
control forces are described in terms of the feedback and loop gains.

Numerical examples demonstrate power spectral density comparisons of

14




the response for the active tendon, active mass damper and combination

of the two systems.

The instantaneous optimal control algorithms for open-loop,
closed-loop, and cpen-closed-loop strategies are derived in Chapter V.
. The algorithm for a combined active tendon and active mass damper
system is proposed. The solution of the motion equations in
state-space using modal decomposition is described in detail. The
importance of the weighting matrices in the performance index is
emphasized, and numerical examples illustrate the resulting variations
of the control forces and the response. Simulation of the response
under earthquake and wind excitations is demonstrated with the aid of
numericai examples, and a comparison is wmade with the Ricatti

closed-loop algorithm.

The structural opfimization formulation for ‘both optimal and
non-optimal control algorithms is described in detail in Chapter VI.
The design variables, objective function, and constraints pertaining
to the contrel algorithms derived in Chapters III, IV, and V are
outlined. The numerical optimization algorithm is described, and
numerical applications of the structural optimization with the active

control systems are demonstrated.

In Chapter VII the topic of minimization of control energy is
discussed in the context of optimal weighting matrices used in the
performance index. Numerical examples illustrate the concept as

applied to an instantanecus closed-loop-algorithm.
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Chapter VIII deals with the topic of time-delay. The general
considerations for the time-delay problem are ocutlined. Compensation
methods for a single-degree of freedom and a multiple-degree of

freedom systems are suggested.

In Chapter IX the critical-mode optimal control algorithm is
derived for the instantaneocus optimal closed-loop control. The control
spillover effect is demonstrated both thecretically and numerically.
The critical-mode algorithm is then used. to study the problem of
optimal location of a limiged number of controllers for an earthquake

excited structure.

In Chapter X the work is reviewed, and the conclusions based on

the results are gutlined.

Appendix A contains the derivation of the power spectral density
of filtered white noise for earthquake excitations. This is used in
Chapter IV in conjunction with the non-optimal closed-loop control

algorithm.

Appendix B contains the derivation of artificial wind loads based
on wind design spectra used with the optimal control algorithms of

Chapters III, and V.

Appendix C contains the development of the various expressions
for the performance indices used in the optimal control algorithms of

Chapters III, V and IX.
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Appendix D describes the optimality conditions and optimal
control solutions for the optimal control algorithms of Chapters III,

V and IX.

Appendix E contains the derivations for the motion equations and
transfer matrix relations for the non-optimal closed-loop control

presented in Chapter IV.

Appendix F contains the computer programs for the optimization
algorithm of Chapter VI, and the control algorithms described in

Chapters III, IV, and V.
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II. PROTECTIVE SYSTEMS FOR EARTHQUAKE HAZARD MITIGATION

A. PASSIVE ANb ACTIVE CONTROIL SYSTEMS

The dynamic response of structures to earthquake and wind
excitations can exceed tolerable limits for human comfort, structural
stability and structural integrity. Passive and active control systems
have been developed in order'to reduce the effect of Qind excitations
and earthquake ground motion on the structure. Passive control system
applications exist in many parts of the world (46,60). Active contrel
systems have been tested in the laboratory and the results are very

promising (15,35,53,54).

Passive control systems are mechanical devices that do not
require external energy for their operation. They redirect the energy
transmitted by the ground motion te structural elements which can
dissipate it in such a way that the rest of the structure responds
with minimum deformations. The same concept is applied for wind
forces. Examples of passive control systems are rubber and lead-core
base isolators, limited-slip bolted joints and passive tuned mass

dampers.

Active control systems require an outside energy source. Control
forces are applied in order to minimize the effect of the seismic
excitation or to correct the position of the structure. Active contrel
systems include active tendons, active mass dampers, appendages, and

pulse control by means of jets.
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Passive cpntrol systems have their shortcomings. Base isolators
are not suitable for high-rise buildings because large overturning .
moments can cause uplift of the foundation pads. “Another shortcoming
is that large sidesway at the foundation level may render the
structure unstable. Tuned mass damperS are efficient in tall
buildings; their operation, however, is limited to one mode of
vibration only. Extensive studies have been performed on experimental
applications of active control systems iIncluding active tendons,

appendages, 4and pulse control.

B. ACTIVE CONTROL IMPLEMENTATION SCHEMES

There are three active control schemes or strategies by which the
active control law can be implemented to a structure
1. Open-loop disturbance-compensated control
2. Closed4loop.control

3. Open-closed-loop disturbance-compensated control

In the open-loop disturbance-compensated scheme shown in Figure
1, the control law requires information abgut the earthquake
excitation. The diagram for implementation of this scheme using an
active tendon is shown in Figure 2. An accelerometer piaced at the
basement of the building measures the earthquake ground acceleration.
This information is used to calculate tﬁe required control force based
on the active control algorithm for open-loop control, which is then

applied to the structure.
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In the closed~loop scheme shown in Figure 3, the control law
requires measurement of the relativevdisplacements and velocities of
the structure. The diagram for this scheme is shown in Figure 4 for
the active tendon system. The sensed information is used to calculate
the required control force based on the closed-loop active control

algorithm, which is then applied to the structure.

The open-closed-loop disturbance-compensated scheme is a
combination of the open-lcop compensated and closed-loop control
schemes as shown in Figure S.‘ The diagram for implementation of this
scheme with an active tendon is shown in Figure 6. Both the earthquake
ground acceleration and sensed relative displacements and velocities
are used to calculate the required control forces based on the active

control algorithm, which are then applied to the structure.

For wind excitations it may be difficult to measure the wind
pressures on the structure and hence the closed-locop control scheme
may be the best scheme to be used. The absolute displacements and
velocities are measured and the control forces are calculated based on
the active control algerithm for wind excitations. In this study alll
three active control schemes are used for earthquake and wind

excitations.
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C. ACTIVE CONTRQI ALGORITHMS

An efficient and capable control algorithm is essential to the
application of an active control system. The control algorithm is to
be used in order to calculate the magnitude of the control forces.
These contreol forces are to be calculated in reasl-time according to
the active control law and control scheme employed in the control

algorithm. There are three types of control algorithms:

1. Optimal control algorithms
2. Sub-optimal control algorithms

3. Non-optimal control algorithms

The difference between coptimal and non-optimal cbntrdl algorithms
lies im the manner in which the control law is derivéd. Optimal
control algorithms employ a control law based on the minimization of a
performance index. The performance index, or cost functional, to be
minimized reprasents the total energy of the system including the work
done by the control forces. It is a compromise between the reduction
of the structure's response and the control energy required to achieve
this reduction. The optimal control law is, therefore, the result of ;
constrained optimization problem which. can be stated as follows: Find
the optimal control forces that minimize the performance index and
satisfy the equation of motion for the actively controlled structure.
Depending on the particular performance index that is chosen, one can
have many categories of optimal control algorithms. In this study, the

following two categories are examined
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a. Ricatti optimal control algorithm

b. Instantaneocus optimal control algorithms

In the Ricatti optimal control algorithm, an integral performance
index is minimized, following traditional concepts of optimal control
theory. However, the optimal forces are derived by ignoring the
external disturbance or by assuming that it is a white noise process.
In .the instantaneous optimal control algorithms, an instantaneocus
time-dependent performance index is minimized. The advantage of the
instantaneous optimal contreol algorithms lis that they include the
external disturbance in the derivation of the control forces. In
addition they result in  simpler expressions for the optimal. control
forces. In this study both the Ricatti optimal control algorithm and

the instantaneous optimal controcl algorithms are used and compared.

Sub-optimal control implies that the performance index does not
inclﬁde all the characteristics of the systeﬁ. For example " the
structure's response could be minimized without consideration for
minimizing the control forces. Thus a simplified control model results

at the expense of global optimality..

Non-optimal control algorithms are based on the particular
control scheme that is employed. The control forces are calculated
based on conditions other than the minimization of a performancs
index. The result is that the magnitude of the contrql forces is no
longer the minimum required. In this study only a closed-loop scheme

will be considered, using the transfer matrix approach.
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III. RICATTI OPTIMAL CLOSED~LOCP CONTROL

The classical optimal conﬁrol approach is developed in this
Chapter for seismic structures equipped with active control systems.
Both the active tendon (AT) and active mass damper (AMD) systems are
studied. The earthquake -excitation i; applied as a ground
acceleration in time function. The Chapter includes a brief
description of the earthquake excitations used. A discussion of the
fundamentals of control systems including the AT, AMD, and passive
mass damper systems is presented. The development begins  with a
closed-lcop algorithm app}ied to an initial-conditions problem. This
algorithm is extended to include external disturbances. Finally a
comparison with experimental results obtained by Chung, Reinhorn, and
Scong (15) shows good agreement between experimental and simulation

results.

A. EARTHQUAKE EXCITATION

A real ground earthquake accelerogram record and several
artificial acceleration records are used in cthis study. The first
accelerogram is a real record of the north-scuth component of the
El-Centro earthquake, of May 1940. An artificial accelerogram known
as the EEl record is also used for simulations. Finally an impulsive
triangular acceleration was wused to test the Ricatti optimal

closed-loop algorithm.
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B. CONCEPTS FOR RESPONSE REDUCTION USING PASSIVE CONTROL

The passive mass damper (PMD) system does not require external
power; it dissipates the input energy passively, by transferring the
energy from the structure to the mass damper, the spring and the
damping devices. The configuration is shown in Figure 7 where it is
to be noted that the electrohydraulic actuator is not present. This
system 1s widely used in vibration isolation of centrifugal pachinés
or other -equipment where -the excitation 1is of known constant
_frequency. For earthquake or wind excitations, however, many frequency
components of the forcing function exist. For the PMD fo be most
effective in limiting the response over a wide range of excitation
frequencies, it 'is necessary to select the parameters of the mass,

spring, and damping of the passive system in an optimal manner.

The basic principle for the appiication of the PMD is that of the
vibration absorber early suggested by Ormonroyd and Den Hartog (43).
In the case of the vibration absorber, the frequencf of the mass
damper wy; is tuned to that of the exciting frequency w, in order to
eliminate the vibrations. The primary structure is modelled as a mass
m resonating on a spring k. The absorber is tuned to resonate such
that the motion of its mass /m; becomes relaﬁively large, and the motion
of the mass of the primary system m is minimized. For a fixed mass
ratio {mym) and a fixed spring constant k,;, the frequency response of
m is independent of the absorber's damping constant ¢, at two distinct
frequencies. The response passes through two invariant points Pl and
P2 regardless of the value of the damping constant c¢;. Den Hartog

optimized absorber performance by first choosing k; soc that Pl and P2
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are adjusted to equal height, and then by finding ¢, to make the curve
pass through one of the invariant points with a herizontal tangent. A
detailed discussion of optimal tuning and damping parameters was given
by Den Hartog (19). This optimization procedure was extended to

multiple-degree of freedom discrete undamped systems by Lewis (30).

C. CONCEPTS FOR RESPONSE REDUCTICON USING ACTIVE CONTROIL

A brief discussion of the underlying concepts for the use of
active control is given in this Section. The descriptién is
qualitative and brings out the basic features of_the aétive tendon and
‘ ;ctive mass damper and the manner in which these systems reduce the

response.

1. Active Tendon (AT). The purpose of a control system is the

reduction of the‘structufe's response under seismic or wind loads. In
crder ‘to illustrate the manner in which this is achieved, let us
consider a single degree of freedom structure equipped with an active
tendon, subjected tec a ground acceleration. As shown in Figure 4, x(/)
is the relative displacement of the structure with respect to the
ground, and m Kk, ¢ are the mass, stiffness and damping of the
structure. The ground acceleration is denoted by XEUL U lis the
actuator displacement, and 0 the angle between the tendon and the
horizontal. The movement of the actunator is regulated by the optimal
closed-loop algorithm. For closed-loop contreol, the measurement of the
displaceﬁent and velocity response is required and is obtained from

the sensors.
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The motion equation for the system of Figure 4 is
mE() +cx() + kx(t) = —m K1) —u(t) (3.1)

where u(¢) is the horizontal component of the contral force produced by
the actuator displacement, through tensioning of the tendons. Using
the Ricatti closed-loop algorithm, the feedback control force «(f) is
shown in Section D of this Chapter to be composed of two parts: 1) the
displacement feedback contrel force, ;nd 2) the velocity feedback
control force. It is also a function of #, the tendon stiffness, and

the actuator movement. Thus the feedback control force can be written
u(ty = C(C,x(t) +.C, x(2)) (3.2)

where C is a function of the tendon stiffness and angle #, and E; and
Ei are the feedback control force-gains and are positive quantitijes.
Equation 3.2 states that the. feedback control force is a cloéed-loop
active control -  force proportional to the relative displacement and

velocity of the structure. Substituting Equation 3.2 in Equation 3.1
mEY+ X +hx) = =m0 =T (Cyx(t) + C, X(1)) | (3.3)
Transferring the last term of Equation 3.3 to the left side
mi()+(c+CCYxW) +k+CChx(t) = —mi(D (3.4)
The equation of motion if nc control were present is

mEW) +cX() + kx() = —mE ) (3.5)
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Comparing Equations 34 and 3.5 for ‘the centrolled and no control case,
one can make the following observations: 1) The stiffness of the
structure has been increased from 4 to (k+EEd), 2) the damping of the
structure has bgen increased from ¢ to (c+65.,), 3) the controlled
frequency has been increased since the stiffness has increased and the
mass has not changed. it is evident that 'the consequences of using
active control are béneficlial in reducing the dynamic response of the

structure,

2. Active Mass Damper (AMD). The same single-story structure

considered fqr the active tendon system is used here, equipped with an
active mass damper of mass my, which is placed on the top floor as
shown in Figure 8. The AMD 1is connected to the structure through a
spring of stiffngss k; and a hydraulic damper cd.‘ The electrohydraulic
actuator is alsq‘connected'to‘the mass my; which produceslthe‘active

control force.

The equation of motion for the system and the Ricatti closed-loop
pptimal control result in similar expressions as those derived for the
active tendon system. T'hése results are d‘escribed in de.tail for the
general case of an N-story structure in Section E of this Chapter. The
main ceonclusions, however, are the same ones reached for the active
tendon case. The active control force improves the stiffness and
damping characteristics of the structure and effectively reduces the

response due to earthquake or wind excitations.
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The active mass damper control reduces the response more
effectively than the passive mass damper, at the expense of external
power. The parameters of mass, damping and spring constants are

selected in an optimal manner as described for the PMD.

D. ALGORITHM FOR INTTTIAL CONDITIONS

The subject of this Section is to study the response when the

external disturbance is set equal to zero and the motion is produced

by the initial values of displacement or veloccity.

1. Formulation Using Classical Approach. In order to apply the

results of classical optimal control theory, the equation of motion,
Equation 3.1, is cast into its state-form by using the state-vector,

defined as

{20} = {{f“)}} . - (36)

{x(}

The equation of motion for an NM-story shear building equipped with

active tendons at some floors as shown in Figure 9a is
[M](Z(0} + [CT (0} + (K] (x(0} = [] {0} + (8} X,(0) (3.7

In Equation 3.7, x{(s) is the floor relative displacement defined as

(0 = X0 = X0 j=1 w, N (3.8)

where Xj(f) is the floor absolute displacement and X,() the ground
displacement. Vector {u{¢)} is the control force vector of dimension

[Nxr], wherer = number of controllers. In Equation 3.7, [M], [C] and [K]
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are the mass, damping and stiffness matrices of the structure,
respectively, of dimension [N x#&], [y] is a.n[."_\’xr] matrix relating the
location of the controllers to the structure, and {é} is a vector of
coefficients for the earthquake excitation ,i}g(t). For an active tendon

system matrix [y] has the form

rl = o ‘ (3.9)

and vector {} has the form
(&) = (-m, —my, —my, ., —my) ' (3.10)

where m; is the mass of thejth floor. Rewriting Eqﬁatior; 3.7

() =— [(MT[CT{) = [T KD (e} + LM [v] ()}

I (.10
+[M] 7 {8} K(0)

Using the definition of the state-vector, Equation 3.1]1 can be written

as

{{xa}}}{ 0 % NW)}}
(%(0) T Ky =M g ] L)

(3.12)
+ [———ﬂ——J () + {———_OT——} X0
(M1 [y MY ()
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Rewritting Equation 3.12 in compact form

{H0} = (4120} + [BI )} + {C) X, (v (3-13)

where

4] { - L } , [m{—?,—-—]
~pmt g - M1 [y

caf o]
(M] (o}

For free vibrations one can set the excitation equal to zero and the

(3.14)

state-equation becomes
@0y = (A3 {=0) + (8] {u(n) : (3.15)

This case can be physically materialized when initial conditions are
imposed on {z(t)} with no external excitation. The classical control

theory has been developed based exactly on such a model.

The optimal control force vector {u (1)}, is to be derived by

minimizing a standard quadratic performance index J given by

/=3 f " (@ (@) (20} + ()T [RY (u0)}) de (3.16)

9

and satisfying the state-equation, Equation 3.15. In Equation 3.16 ¢ is
the initial and /{ the final time-instant under consideration. Matrix

[Q] is a [2Nx2N] positive semi-definite matrix, and [R] is an Erxr]
positive definite matrix. The performance index, J, represents a
balance between structural response and contrel energy. When the

elements of [(] are large, the response is reduced at the expense of
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large control forces. When the elements of [R] are large, the control
forces are small but the response is not reduced/appreciably. Detailed
discussion of Equation 3.16 is given in Appendix (. Assume that-the
'system is controllable, i.e., the available <control force 1is
sufficient to bring the system from any initial state to any desired
final state. Assume also. that the system is observable, i.e., the
system response output yiélds sufficient information to determine the
state-vector at any time (. Variational calculus yields the solution

to the optimization problem. Define the Hamiltonian » as

# = S0y (010} + 300} [R] ()
(O} (T4 (=) + T8 ()}

(3.17)

where {i(f)} is the vector of Lagrange multipliers of dimension [2V x [].
The necessary conditions for optimality are given in _standard

textboois on control theory, such as Elbert (20)

3H i - -
az()y {0} {4(0} (21 {Z(f)}'i'[flx] {A(0)} (3.18)
3 _ . - )

B {0} [R] {u(0)} + [B,17 (A1) .{0} (3.19)
AN _ ~ o .
Zaor - O [4,3 (20} + [B] ()} = {20} = (O) (3.20)

with the transversality condition

(At} = (0} (3.21)

From Equation 3.20 note that this condition is the state-equation. From

Equation 3.19 the optimal control is derived as
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Wy = —[RT (817 () (3.22)

Complete derivation of Equation 3.22 is given in Appendix D. Note that
the requirement for {R] to be positive definite arises from Equation
3.22. The Lagrange multipliers [i(f)} are still not known but can be

solved for, by using the first necessary condition of Equation 1.18.
Assume a solution of the form
{dy = [Pn]{z0} , (3.23)

which when substituted in Equation 322 implies a c¢losed-loop control,

since

Wy = - (R (87 [(PO] (=)} (3.24)
= —[K(D] (z(0)} '

Substituting Equations 3.23 and 3.24 in Equation 3.18 gives

(LPO] + [P [4,) + (437 [PW] - [POI 8] [RT™ (817 [P] + [Q)) {(0)}

(3.25)
= {0}
and from Equation 3.2] we get
(PUpl{zttp} = {0} : (3.26)

For a non-zero state {z(¢)}, the non-trivial solution is
—[P(0] = (POI4]+ 417 [POI-[POILBILRT (81 [POI+(Q1 (32D

[Pp] = (0] i (3.28)

Equation 327 is the matrix Ricatti equation (MRE). There are many

efficient algorithms available for the solution of the MRE. Yaughan
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presented a solution in terms of negative exponentials (57). Davison
and Maki developed a method based on an i£erative exponential solution
(18). Both methods are more efficient than a standard Runge-Kutta
approach which requires a small integration step to ensure stability,
and thus large computational times. After the solution of the MRE is
found it is substituted in Equation 3.24 to obtain the optimal control.
Froq Equation 3.24 note that this is a proportionai type of control,
i.e. the control force vector is proportional to th response. In

practice this type of control can be achieved using a gain amplifier.

For simulation results once the optimal control is calculated,
the state-vector at time ! can be found‘ by substituting {1(#)} in
Equation 2.5 and solvipg for {z{r)}. The solution of Equation 3.15, a
vector linear differential equation is available in standard textbooks
on control theory (20). A me;hod for the solution of this type of

problem is presented in Chapter V.

2. Asymptotic Behavior of Matrix Ricatti Eguation. The Ricatti

equation solution for [P(f)] may reach steady state conditions for time
{ far away from {. This relationship between ¢ and ¢ is a basic
characteristic of the classical optimal control problem of subsection
1l of this Section, alsov known as the regulator problem. It permits the
use of steady state values in determining the control force vector.
From the results given in Equations 3.27 and 3.28 note that the MRE
requires a time-dependent solution. Moreover from Equation 3.24 it is
obvious that the gain wmatrix [K({)] is alsoc time-dependent. For an

infinite final time tr , i.e. = oo, it can be shown (20) that the
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time-dependent MRE becomes time-invariant. Setting in Equation 3.27,
[PU” = [0] produces the so-called algebraic Ricatti equation (ARE),

given by
(P LA + [T TP - [P B TRT (87 TP + (0] = (0] (3.29)

Hence the gain matrix [K] becomes time-invariant and the optimal

control is given as

[ —1 T
{u (1)) —[RY (B8] (P] (=(n} (3.30)

— [K1 (=}

It

The solution of the ARE'is simpler than that of the MRE and there are
many good algorithms available. An algorithm which is based on an
iterative technique‘was presenfed by Kleinman (26). Another algorithm
developed by Laub uses an eigenvector approach based on Schur vectors
(29). However the validity of the bound 4 — oo has-to be examined for

the particular case of earthquake excitation. It is shown in the next
Section that the assumption is Qalid if ¢ is taken to be longer than

the earthquake duration.

The advantage of the ARE over the MRE is that the gain matrix in
Equation 3.30 is constant and thus the optimal control forces can be
obtained proportional to the response {z({)}. It should be emphasized
that in a real system the closed-loop control requires the measurement
of the full state-vector, i.e., 2N sensors are required to measure the
response. When analog differentiators are used to determine the
velocities {X(¢)}, then the number of sensors is reduced to N¥. Such a
scheme was used by Chung, Reinhorn, and Soong in experiments carried

out on a reduced model at SUNY/Buffalo (15).
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E. ALGORITHM FOR EXTERNAL DISTURBANCES

In this Section the more general problem that includes the
external disturbance is studied. The state-equation to be used in this
Section is given by Equation 3.13. In the first subsection the optimal
control algorithm for the case of active tendon. controllers is
developed, and in the. second subsection the algorithm for the active

mass damper is developed. Both control systems are shown in Figure 9.

1. Formulation for Active Tendon System. The optimal control
vector {utun is to be found by minimizing the performance index of
Equation 3.16 and satisfying the state-equation given by Equation J.13.

The Hamiltonian in this case is given by

# = {0 01 (=) + ()T [R] (0}

- ) (3.31)
+ (A0} (41 (=0} + [B] (w1} + {C) (0 )

The necessary conditions for optimality are the same as those given in
Equations 3.18 —3.21, except Equation 3.20 now includes the earthquake

excitation term
L4112} + (B (D} + (C} X(0 — (20} = (0} (3.32)

Proceeding in a similar fashion as was done for the initial conditions

case, assume the relation
(@) = [P0] (a0} | | (339

and substitute Equation 3.33 into Equations 3.18, 3.19 and 332 to obtain ‘
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([P0 + [P LA + (437 (P01 - [P(OI[BILRY™' [87 [P(0] +[Q)) (=)}

. (3.34)
+{PHI(C) X, (n = {0}

Note that Equation 3.26 still holds. The earthquake excitation is
unknown before the earthquake occurs, therefore, backward solution of
Equation 3.4 subject to the final condition of Equation 3.28 is not
feasible. If we set the earthquake‘excitation X}U) equal to zero, then
Equation 334 reduces to Equation 3.25. Therefore strictly speaking the
Ricatti matrix obtained from the solution of the reduced equation,
Equation 3.25, does not correspend to the optimal closed-loop contrel
for the earthquake excitéd structure.. The Ricatti closed-loop control
is truly optimal only if the earthquake excitation is either zero or a
white noise process. " In that respect it can be considered as a
sub-optimal control. However the solution based on Equation 3.25 was
found to be effective in both.numerical simulations and experimental
results and is Qsed in this study. When compared with other optimal
control algorithms the Ricatti closed-loop control is as effective.
The external excitation is present in the algorithm since £from

Equation 3.30 the optimal control is a function of the forced response.

The asymptotic behavior of the MRE given in Equations 3.27 and 3.28
was tested for a single-story structure eéuipped with an active tendon
and subject to different excitations. It was found that typically the
elements of [P(f)] remain constant over the entire duration of the
earthquaké excitation {, and drop rapidly to zero near {4 This

asymptotic behavior is shown in Figure 10. Hence [P({)] establishes a
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steady-state in a short time starting from backwards. As a result,
the MRE can be approximated by the ARE and [P({)] replaced by [P] which
is time-invariant. This is ‘true as long‘ as { is longer than the
earthquake duration. For the simulations iﬁ this study, Equation 3.29 is
used to solve for the Ricatti matrix and Equation 3.30 to scolve for the

optimal control. The response is fouqd:using Equation 3.13.

It is to be noted that[f] is a symmetric matrix of order[2A’x2Aq
and hence a system of only [N x (N + 1}/2] non-linear equations has‘to be
soclved. The case wﬁen a certain floor is not equipped with an active
tendon is taken care of by deleting the corresponding column in the [y]

matrix.

2. Formulation for Active Mass Damper. The structural system

with the AMD is shown in Figure 9b. The state-vector is modified in
this case to include the relative displacement of the AMD with respect

to the top floor displacement x{)

xj(:) = A’_,(!)—Xg(t) =1 .. N (3.35)
xA = XA — X {0 (3.36)
Define the state-vector as

W) , .
ol = {{yw}} (337

where {zp(r)} is of dimension [(2N¥+2)x 1], N= number of floors, and {}(})}

is given by

W) = {x@, B@, a0, 10} (3.38)
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The equation of motion is given by
[Mp) (5 (0} + [Cp) (3(0} + [Kp) (A0} = {rp} uhd) + (6} K,(0 (3.39)

where [Mp], [Cp] and [Koj are the mass, damping and stiffness matrices,
respectively, ‘of the combined structure and mass-damper system of

dimension [(¥ + N x (¥ + 1)] given as

m
m
[(Mp] = _ . . ' (3.40)
mﬂ
My My
(?1 + &) =G
-G atag) -q
(Cpl = : (3.40)
~Choy (Cuoy T Ch) =Gy
—Ch Cn =<4
Cd
L 1
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Kpl = | (3.42)

_kn—l (kn—t + kn) _'kn

where k;, /m,; and ¢; are the stiffness, mass and damping of the mass
damper, respectively. The scalar ug!y) is the control force due to the

active mass damper and {yp} and {dp} are ((N + |} x 1] vectors given by

oyl = (0,0, 0, o\ =1, 1) (3.43)

(Bp} = {~m, —m, —my, . —my, —my) ' (3.49)

The state-form of Eqﬁation 3.39 is
G0} = [Ag] (20} + (B udt) + (C X, (0 (3.45)

where

{
<[t e[
L-toI kol |~ M1 (G0l Mp]™ (70}

(C4 = {———%’,———}
[MpI™' (6p)

The optimal control force uff) is to be found by minimizing the

(3.46)

performance index J,, given by
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sp = L7 (a0 (0] o) + Roui) de (47
s

and . satisfying the state-equation, Equation 3.45 where [Op] 1is a

[N+ 2) x (2N +2)] positive semidefinite weighting matrix, and Rp is a

positive scalar. Following the same procedure as for the AT case the

optimal control is found to be

wl) = —Rp' (BT (Pp] (zp0} (3.49)
where [Pp] is the solution to the following ARE
[Pp][Adl + (A [(Po] ~ [Pp] (B4 R5' (B4 [Ppl+[0p] = [0] (3.49)

Once the optimal control has been determined from Equation 3.48, the

response is obtained for simulation purposes by solving Equation 3.45.

F. SINGLE DEGREE-OF-FREEDOM SUBJECT TQ INITIAIL CONDITIONS

In order to illustrate the Ricatti optimal closed-loop control,
an example with initial conditions only is presented. The structure is
similar to the one shown in Figure &4, with the following struatﬁral
properties: Structural stiffness & = 100 &ipsfin (17513 kN|m), mass
m = 4kip—sec2/in(700 Mg), and three percent of critical damping, or
equivalently, c¢ = 1.2 kip—sec/in (210 Mg/sec ). The weighting matrix [{],
is a [2x2] diagonal matrix whose diagonal elements are set equal,
il.e., Qlly= 0@22. The weighting matrix for the control forces is
just a scalar, R. The structure 1is subjected to an initial

displacement of 0.2 ir (5.08 mm). Two cases for control are considered.
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In Case 1, the elements of matrix [Q] are set to the value
o) = 02,2) = 1.0 and R = 0.0l. In Case 2, matrix [Q] is the same,
but R = 000l. The response was calculated for these two cases, and
compared te the case when no control was applied. From Figure 11, it
is obvious that the displacement response has been reduced
effectively. It is interesting to note that in Case 2, the structure
comes to rest faster than Case l; The same observations are made for
th<e yelocity response as shown in Figure 12. However, 4as can be seen
from Figure 13, Case 2 requires a larger control force than Case 1.
Thus, depending on the weighting matrices that are used, one can
achieve different reduction levels in response with the associated

control force.

G. COMPARISONS WITH EXPERIMENTAL RESULTS

[n order to ver."ify the analytical results obfained in the 1asf.
Section, they were compared to experimental results obtained at the
Naticnal Center for Earthquake Engineering Reseafch at the University
of New York at Buffalo (15). The experimental setup was a single-story
structure as shown in Figure 4 with structural and control properties
as given in Table I. This is a 1 : 4 scaled medel of a prototype
structure. The elements of the weighting matrices [J] and R are chosen

as
- | £ Q -

01 = [A1-23]. k-4 (3.50)

where & is the structure stiffness, &, is the tendon stiffness and their

values are given in Table I.
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TABLE 1. EXPERIMENTAL DATA
{ 1 lb-sec? /in = 175 Kg )
(1 1b/in = 175 N/m )

Parameter ' Quantity.
mass 16.69 lb-sec2/in
structure stiffness 7934 1b/in
tendon stiffness 2124 1b/in
tendon angle 36 degrees
natural frequency 3.47 Hz
damping factor 1.24 %
geometry scaling factor 1: 4
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Figures 14 and 15 show good agreement between analytical and
experimental results obtained under the same conditioms. The
differences are due to inaccuracies in the mathemetical model, system
and measurement noise, and interactions between the control system and

the structure,
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IV. NON-OPTIMAL CLOSED-LOOP CONTROL

In this Chapter a closed-loop control scheme usiné the transfer
matrix approdch of dynamic analysis is developed. Three active control
systems are investigated in this study: 1) an active tendon systeﬁ
installed between adjacent floors as shown in Figure 9a, é) an active
mass damper installed at the top floor of the building as shown in
Figure 9b, and 3) a combination of the active tendon and active mass
damper systems as shown in Figure 16. The effectiveness of these two
control systems in reducing the structural response uﬁder earthquake

excitations is examined.

The procédure for‘énalysis follows the transfer matrix approach
in the frequency-domain instead of the classiéal modal. approcach. The
transfer matrix approach determinés the structural response directly
without having to calculate the natural frequencies and modes. This

results in considerable simplification of the calculations.

The present closed-loop active control algorithm is not optimal.
The control forces are not determined according to the minimization of
a performance index but according to a simple closed-loop contreol law.
This implies that the magnitude of the control forces is not the
minimum possible. However, the control forces do not require on-line

computations for their regulation.

The transfer matrix approach for controlled response has been
used by Yang for earthquake excitations (61), and Yang and Samali for
wind excitations (65). Two important features are different in the

derivations presented herein. First, each floor of the structure does

-
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net have to be identicai to the others. This is required for the
optimization algoriﬁhm to be implemented. Secondly, this derivation
includes a combined active tendon-mass damper system, as shown in
Figure 16. This combined system resulted in improved performance of

the control system.

A. EARTHQUAKE EXCITATION

-

The earthquake ground acceleration is modelled as a stochastic
process and a random vibration analysis is carried out to determine
the stochastic response of buildings equipped with active centrol
. systems. It is assumed that the strong shaking portion of typical
earthquake accelerograms is stationary, 1i.e. the statistics are
time-invariant. The corresponding structural response is also
stationary. The earthquake ground acceleration, ;\}g(t), has been modelled
as 4 stationary random process with zero mean and a power spectral
density QA;mﬁ. The power spectral density function used herein is a
filtered white noise, known as the Kanai-Tajimi function (24). It is
derived based on a model of the ground as a linear filter. The
complete derivation is given‘in Appendix A. The power spectral density

of filtered white noise obtained from Appendix A is given as

2
144021 5?

- o
P () = g (4.1)
2 2
(%) 2 T w
il By
Dg @g
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In Equation 4.1 Cg = ground damping, w, = ground frequency,
o = forcing frequency, and 5t = power spectrum of white noise. With
proper selection of the gfound properties,{gand @y, Equation 4.! can be
used to represent earthquake excitations with different power spectral
density shapes. For example using § =10 m2/53c3 jrad, w, =18.85 rad] sec,
and two values fof the ground damping tg =015, or {, =065, two
different curves can be obtained as shown in Figure 17. Whean==DJS
'(Curve‘A in Figure 17), a narrow-band excijitation is obtained which can
influence the response within only a narrow rangé of frequencies. When
(g =0.65 (Curve B in Figure 17), a wide-band excitation is obtained.

It is to be noted that at the frequency w =w, resonance Occurs. AS wg

3
tends to infinity, i.e. the ground assumes infinite stiffness,

¢A;@»)::Sz, the input is not a filtered white noise anymore, i.e., it

remains a white noise process.

B. COMBINED ACTIVE MASS DAMPER AND TENDONS

The structural model chosen for the present study is an N-story
shear building equipped with a number of active tendons and an active
mass damper, as shown in Figures 16 and 18. The following assumptions
are made to simplify the analysis: 1) the mass of each floor is
concentrated at the floor level, 2) linear elasticity is provided by
massless columns between neighboring floors, 3) the structural
response is described by the displacement and shear force in each
story, &) active tendon <controllers are installed between two
neighboring flooré either above or below the jth floor, 5) an AT

controller is regulated by two sensors placed on the floors above and

I
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below it, 6) an active mass damper is placed on the top floor, and 7)
an acceleration sensor is placed at the top floor to regulate the AMD

controller.

Let &; and Y,

-1 Dbe the displacement of the jit floor, and the

resultant shear force in the columns of the jth floor, respectively, as
‘shown in Figure 18. Also let Xy, be the displacement of the AMD, and
- Yy be the force exerted on the mass of the damper my; from the elastic
spring k; and dashpot ¢;. The equations of motion of a typical floor can

be written

V=Y +mE+g X, l<sj< N=1 ' (4-.2)
Vi = kG- X )+, L </ < (N=1) | (43)

where ¥ = number of floors, W 1is the active contral force in the
horizontal direction from the jth tendon and m;, ¢;, and kj are the wmass,
damping coefficient and elastic stiffness of the ji# floor,

respectively. The equations of moticn for the Nth floor and AMD are

Yy = kg (Xyp — Xy} + ¢4 (XN+1 - Xy) ‘ (4.4
ug = mg Xy + Yy (4.5)
Yn = Yooy +myXy+cyXy+uy (4.6)
Vo = Ay (X — Xy ) +uy \ (4.7)

Note that u; is the AMD control force and that the quantities Vi Xy Xu,

Xyits> 44y and w are all functions of time. Assuming zero initial
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conditions and taking‘the Fourier transforms of Equatiohs 4.2 and 4.3

vields

(7Y, = [A(L)] {2}y, Il € L < (N=-1) (4.8)

Taking the Fourier transforms of Eqﬁations 4.4 and 4.7 yields

- ' 0 .

AT Z -0 __ 9
(Ziw = [Alx { }N—l+{gm(w)/\’~} (4.9)
Dt = [T1(Dy — L} 10
{23 n (T]{Z}w {gm(w)zv | (4.10)

in which an overbar denotes the Fourier transform of a quantity. In
Equations 4.8 through 4.10 the symbol {Z}; is the state-vector defined

in terms of the diplacement and shear force Fourier transforms as

@y == (4.11)
7 R

Detailed derivations of the above equations are given in Appendix E.

The notation [A(L)] is a matrix product defined as
(A0L)] = [d]y - (4] [4h (4.12)

where [A]; is the transfer matrix of the jth floor given by

{Z}; = [4); (£}, : (4.13)
I ! .
KCj
(4] = 7 (4.14)
(- m+iw )

L+

(—-m2 my + iw ¢)) ch

where
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P= o1 (4.15)

Ko = ki + g(w) (4.16)

In Equation 4.16, g(w) is the gain of the AT coqtroller and 1is
described in Section C of this Chapter. If a certain floor does not
have a tendon controller, g{w) = 0. In Equations 4.9 and 4.10, g,(w) is
the gain of the AMD controller and is described in Section D of this

Chapter. The notation {Z}y,, is defined as the boundary condition

e ‘
(Zinar = { zr‘} (4.17)

and matrix [T] is the transfer matrix of the AMD, given by

{ -

2
mdw

(4.18)

(7

—mdw2 | —

kd+ w Cq

The earthquake ground acceleration of Appendix A, given by
Equation 4.1 is used as the earthquake input. The structural response
and active control statistics will be stationary random processes with
zero mean. The power spectral density of the response state-vector at

the mth floor is given by
Sp(@) = H{Z P 0™ OXyw) (4.19)

where @Xg(w) 'is given in Equation 4.1 and |[{Z},, ]]2 is the magnitude of the
state-vector {Z},,, detailed derivation of which is given in Appendix E.

When the relative displacement of the mth floor to the ground is
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required, X; in Equation 4.19 should be replaced by L?;-— 1). The mean

square response vector at the ma floor level,a;, is given by

o2 = wa ]I/m“2 w_4 (Dkl;g(w) dew (4.20)

Y —o0

The mean square value of the control force from the ith AT controller,

ci , 1s given by -
el = J 12 o™ Oy w) dw a (4.21)

where # is given in Section C of this Chapter. The mean square value of

the AMD control force,aé, is given by

o = f°° iR ™ B (w) doo (4.22)

-0

where i; is given in Section D of this Chapter.

C. ACTIVE TENDON SYSTEM

In the special case when no AMD is present, the solution is

simplified considerably and the response is given by .

(Zyn = TA(N)] (7)o : (4.23)

Applying the boundary conditons

- \
(Zyw = {TN} 2 = {?L} (4.24

0

to Equation 4.23 gives
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0§ | A42uN) T az2anN)y | |7, -

The unknown quantities can be found as

= A2UN)
Xy = AN+ AN T, (4.27)

Consequently the state-vector and AT control force can De easily
obtained. The statistics of the response are still given by Equations

4.20 and &4.21.

The active tendon control force is due to: 1) the elongation of |
the tendon[}k}—;ﬂ_l) cosﬂ] resulting from the motion. of the building,
and 2) the movement of the hydraulic ram (). Let k, denote the tendon
stiffness. The active tendon control force u in the horizontal

direction is given by

u=k [(X;—X._) cos@+ U] cosd (4.28)

where u, X

s X}_l and { are functions of time: The controller

considered is an electrohydraulic servomechanism similar to that
described in reference (61). For the jth tendon controller, the
building motions are sensed by velocity sensors placed on the floor
above and below it, i.e., the jth and(;j— I}th floors

ax,_,
at

6= =L P

G = — { (4.29)
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The sensed motions are transmitted to the controller in the form of an

electric voltage V(1), which is proportional to the sensed motions
V) = pri(X;— X)) (4.30)

where prt 1is a proporticnality econstant. The displacement of "the
hydraulic rams U(r) is regulated by the feedback voltage V(f), through

the relation

, _ V([) |

in which Rl is the locop gain and R0 is the feedback gain of the
controller. The electrohydraulic mechanism is shown in detail in
Figure 19. The definitions of the loop and feedback gain‘ih terms of

the gains K,, Ky, Kp, and K,, are
Rl = K,KyKpKo | | (4.32)

RO = K, : (4.33)

A poésible arrangement for providing the feedback control force is
shown schematically .in Figure 20. Taking the Fourier transform of

Equations 4.28, 4.30 and 4.1

, fw
TrEe (Tl')
U =k cos8) cosd+
g+ (—

X~ X_) (4.34)

in which w; = fundamental frequency of the structure without control,
e, is the normalized loop gain, and r, is the normalized feedback gain

for the active tendon system,
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g = oL T, = prt—- (4.35)

The expression g{w) can ncw be established from Equation 4.34 as

i = glw)(X=X_) . (4.36)
T (([gi]) ,

glw) = k, cos8| cosf + —_— (4.37
otz

[t is important to note that & is a function of the forcing frequency

w.

‘D. ACTIVE MASS DAMPER SYSTEM

In the case where only an AMD is used, the transfer matrix
relations of Equations 4.8 through 4.10 can be used again with one
difference. In matrix[4]; of Equation 4.14 the quantity g(w) in the term
Kg is set equal to zero. Consequently the state-vector and AMD control
force can be obtained using the same general expressions. The

statistics of the response are still given by Equations 4.20 and 4.22.

The active mass damper control force 1is regulated by an
acceleration sensor on the top floor. The voltage that is proportional

to this sensed acceleration is

Vi) = prm Xy (4.38)
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where prm is a proportionality constant. The displacement of the
hydraulic rams is still given by Equation 431. Let the Fourier

transform of the AMD control force be given by

Hy = gmlw) Xy (4.39)

Taking the Fourier transform of Equations 4.31 and 4.38 combined with

Equation 4.39 yields the result

e |2
_ TiEq (w—]) _ .
tq+ ('W
Hence
2
. T4€4 (;,—l)
gnl@) =, kg - (4.41)
eq+ (o)

where kn; is a proportionality constant, t; is the normalized feedback

gain, and ¢; the normalized loop gain for the mass damper,

respectively,
Rl ' wi
¢ = G 1= prm—— (4.42)

RO
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E. COMPARISON QF RESPONSE FOR THREE CONTROL SYSTEMS

The three active contrcl system models described in this Chapter,
Ii‘e., the active tendon, active mass damper, and combined active mass
damper and tendons are examined in this example. The structural model
is an eight-story shear building, with the following properties:

m; = 314 Mg, &

;= 3x105kan, ¢ = 90Mg/sec, j=1.,8. The -earthquake

excitation used is that of Equation 4.1, of the Kanai-Tajimi spectral

density function, with the following parameters : w, = [8.85rad]scc,
{ = 0.65, .and S = 485x 107 mz/ secc’ / rad. The control parameters are:
ke = 15x 10° kNjim, 0 = 25 degrees, my = 27 Mg, k; = 957.24kN|m, c¢; = 23 Mg| sec,

and kmd==15x103thn. In addition, the normalized gains are fixed at
the following values: r, = ¢ = 8§, 7, = 4, and &y = 04. The structure is
first squected to the earthquake excitation without any active
control system (Case 1); in Case 2, the structure is equipped with
eigﬁt active. tendons, one on each floor; in Case 3 the structure is
equipped with an active mass dampér on the top floor, and in Case &
the structure is equipped with an active mass damper and two active
tendons 4at the bottom two floors. The power spectral densities of the
response for the four cases were <calculated. In Figure 21, the
spectral density of the eighth floor relative displacement is shown,
The advantage of the combined system in Case & over that of the AMD
alone of Case 3 is that the response of the higher modes is reduced in
addition to the first mode. From Figure 22, it can be seen that all
systems reduce the base shear force. Note that the vertical axis for

both of these figures is based on the logarithmic scale of base 10.
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V. INSTANTANEOUS OPTIMAL CONTROL ALGORITHMS

The difficulty §f noet knowing the earthquake ground motion
apriori has made it necessary to consider the assumption of a white
noise excitation in the derivation of the Ricatti closed-loop control
in Chapter III. The instantaneous optimal control algorithms resolve
this issue with the added advantage that the optimal control

expressions are simpler than those of the Ricatti closed-loop contrel.

This simplification was introduced in the study of discrete-time
systems by Saridis and Lobbia (48), in which they developed stechastic
algorithms. The main idea is that instead of minimizing the integral
performance index used for the Ricatti algorithm, minimization of a
sequence of single-stage  processes was proposed. The term
"per-interval" optimal controller was used, meaning that optimality
was achieved at each instant 6f time. This idea was adopted for the
case of control of earthquake-excited structures by Yang, Akbarpour |
and Gaemmaghami (62). Cheng and Pantelides extended the same concept
to the optimum design of seismic structures equippped with active mass
damper or active tendons (11,12,13). Cheng and Pantelides have also
adopted the instantaneous algorithms for optimal —controel of

wind-excited structures (12).

In this Chapter, the instantaneous optimal control algorithms are
developed for all three control schemes, i.e., open-loop, closed-loop,
and cpen-closed-lcop. In Chapter VI these algorithms are used in the

structural optimization of seismic structures. Their simplicity in
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establishing the control gain matrix is of paramount impertance in

their application to the optimization algorithm.

A. EARTHQUAKE EXCITATION

The earthquake acceleration records described in Section A, of
Chapter III are also used herein. Their use allows comparisens to be
made between the Ricatti closed-loop and instantaneous optimal control

algorithms.

B. WIND EXCITATION

Artificial wind velocities are generated for simulation. The wind
flow is assumed stationary in time and non-homogenous in space. It is
known that the wind velocity has two components, steady and turbulent
flow. The logarithmic law is used ﬁo‘obtain the steady flow component
at different floor heights, which is then adjusted for ‘different

averaging times and terrain conditiocns.

The fluctuating component is obtained from design‘ spectra for
wind which vary with heigﬁt above the ground. These design spectra
establish the autospectrum for the structure based on which the
fluctuating components of the wind velocities 4are created. These
compeonents are then correlated spatially using a transformation matrix
which is based on an experimental coherence function. From the mean -
and fluctuating velocities, the mean and fluctuating windward and
leeward pressures are obtained for each floor. These pressurés

multiplied by the tributary area of each floor constitute the
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spatially discretized time-histories of the artificial wind forces.

. The complete derivation of the wind forces is given in Appendix B.

C. INSTANTANEQUS OPEN-LOQP DISTURBANCE-COMPENSATED ALGORITHM

In addition to the simplicity of the instantanecus optimal
control algorithms, their instantaneous nature is advantageous because
of their ease of implementation in real-time. In the present algorithm
the earthquake excitation is assumed to be measured by accelerometers
installed at the basement of the building. The structural and control
: system‘ for this type ‘of contfol are shown in Figure 2. The
accelerometer is used to measure the earthquake ground acceleration in
real-time. Thﬁs at any instant of time(, the ground excitation record,
X;U), at the basement of the building is available up to that time
instant. Thus the dhly measurement required for instantaneous
open-loop control is that of the excitation as pointed out by Yang et
‘al. (62). Experimental evaluation of the instantanecus algorithms was
carried out by Lin, Soong and Reinhorn (33). In this Section the
cptimal control is derived, based on the measurement of the excitation

for both the active mass damper and active tendon systems.

1. Active Tendon System (AT). The optimal control{qu} is to

be derived by minimizing instead of the integral performance index
J of Eqguation 3.16, an instantaneous time-dependent performance index

Jp() defined as

L = (@) (91 (20} + (0} [(R]{m0) | (5.1)
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and satisfying the state-equation of Egquatien 3.13. The performance
index J, (1) is minimized at every time instant !, for all ¢ in the
interval 0<i¢=¢ , where /4 is the earthquake duration. Detailed

discussion of Equarion 5.1 is given in Appendix C.

First consider the sclution of Equation 3.13, assuming the optimal
control{u%”} has been derived, and the earthquake excitation.fﬂn has
been measured upto and including time (. The res?onse{zﬂﬂ can be found
analytically as follows. Let the state vector be expressed in terms of

the modal transformation matrix [7,] of the plant matrix [4,]
{za} = [Ty, ()} ‘ (5.2) .

where [7,] is a [2N x2N] matrix constructed from the eigenvectors of

matrix 4] as
(T3 = [M, (e (M}, (Y} (M), (Y] ' (5.3)

in which {Nﬁ} and {Y;} are the real and imaginary parts of the

Jjth eigenvector of matrix (A,]. Substituting Equation 5.2 in the

state-equation, Equation 3.13, yields

(T10, ) = [A1ITI, O+ (B0} + {C} X,(0) (5.4)

- Premultiplying Equation 5.4 b},r[T',]—I yields the modal state-equatibn
as

W) = oW, 0} + (T} (5.5)

where [¢,] is the modal plant matrix defined as

o] = (T [4]1(T] (5.6)
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and the vector {I['{)} 1is made up of the control force and excitation

terms
(C) = [T (B (o} + (T (C) X0 (5.7)

The advantage of Equation 5.5 over the original state-equation,

Equation 3.13, is that now the modal plant matrix is decoupled
i |
[‘Pr]l

lo :]2

(e = | | (5.8)
) [¢:]j )

[‘Pr]N

where each sub-matrix [@,}; is a [2x2] matrix given by

Ky i ) i
[¢:Jj = [ ]. j=1,., N (5.9)
Y Hy

in which y; andviare the real and imaginary parts, respectively, of the

jth eigenvalue of matrix [4,]. The initial conditions at time ¢ =0 are
(e (0 = (0}, W () = (0}, X0 = 0 (5.10)

The soclution of Equation 5.5 is given by the integral
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W) = fo expllod(t—7] (T(}de (5.11)

where +t is a dummy variable of integration, and cxp{[e,J(t—1)] is a
[2N x 2N] exponential matrix. Making use of the initial conditions, one
can perform the integration of Equation 5.1! numericaliy by ' the

trapezoidal rule. Let! = nAt, then

n—I|

W) = Y ewlled-dadrusnac + ) (L) (512

=1

where A¢, is the time-increment. In order to simplify Equation 5.12

define the summation term as

n—=I

(A (t—A)) = Zcxp[[cp,] (n— 1 at] (T A} At (5.13)

=1

so that Equation 5.!2 can be written in the form
W) = (A - a0+ o) (4) SN G

It can be shown that the term {A({)} can be expressed in recurrent form

using previous information 4s

(A (t— A0} = exp[[o,]Af] {{A,(t =240} + (T(t — AD} (A0} (5.15)

Substituting Equation 5.14 into Equation 52 we can recover the

state-vector in physical coordinates as

G0 = 3] - a0+ rop () | (5.16
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In Equation 5.16, {A,(¢t— A1)} is known from previous measurements up to
{t—AYH, and in order to evaluate {z({)} at time !, only one measurement of
X;U) is needed. The optimal control force ﬂf(ﬂ} is obtained from the

optimal control law.

This optimal control law is derived as follows. Substitute
Equation 5.16 in the performance index of Equation 5.1, and in order to

obtain the extremum, set the variation of.@(n equal to zero

(n =0 (5.17)
The optimal control is obtained as

Wy = [G] (@1 () ' (5.18)
where | |

61 = (1507 te108) (&) + oy | ;. 519)

©,0) = - (B IQIITI{A - 80) (A1) - (81711 (€ Kyt (AL ) 5.0

Thus the optimal control forces are computed from the measured base
acceleration ﬁ;a) and previous information at (t—A¢!), keeping the
real-time on-line computational effoft minimal. The response
state-vector is obtained from Equation 5.16 after the optimal value of
the control forces is obtained from Equation 5.18. The derivative of

{z()} is then obtained from Equation 3.13.
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2. Active Mass Damper System (AMD). The development for the

active mass damper follows parallel lines to that for the active
tendon. The state-equation, Equation 3.45, can be decoupled by using

the modal transformation
(zp()} = [Tl (v} | (5.21)
where [T;] is constructed from the eigenvectors of matrix [4,]

[T = [IMy, (Y ML (Y (M) (Y (Mg (Vg ] (5.22)

Note that now [7,] is a UZNFFZ)x(ZN-+2H matrix. Minimization of the

instantaneous performance index
Ipp® = (2p(0}" [Qp] (2p(0} + Rp u3(0) (5.23)

leads to the optimal control for the active mass damper

o) Omt?) | (5.25)

le = .
(8370001 (8 (85 ) + R

Onlt) = = (837 100] (T2l (A4 (r— a0} (L) — (871001 (C) F5t0) (BL)? (.26

Note that {Ay(t{— Ay} is similar to the expression for {A,(t—A¢)} but is

of dimension [(2N + 2) x [].
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D. INSTANTANEOUS CLOSED-LQOP ALGORITHM

The control forces are regulated by the feedback response
state-vector {z(f)} alone, i.e., the only measurements required are those
of the response at time!. This can be done by placing displacement and
velocity sensors at the floor levels. The structure and control system
for this type of control are shown in Figure 4. There is a definite
advantage of this algorithm for the case of wind excitations which are

’difficult to measure for application with the open-loop algorithm.

From the open-loop case we know that the state-equation, Equation
3.13, can be solved using the trapezoidal rule given by Equation 5.16.
The pptimal tendon control force veétor{ukn} is to be derived that
minimizes the instantaneocus performance index of Equation 5.1 and
satisfies the state-equation, Equation 5.16. The Lagrangian function

is given by

LF = (20} [Q1 {20} + (0} T [R] (u(0)}

5.27
+ oy’ {{zm} ~ [T1(A (0= 80} - [T (T} (%)} G20

Substituting {I'(f)} from Equation 5.7

CLF = (20} [Q) {0} + (1)) [R] {u(0)}
o 5.28
+ (e’ { {20} = [T]{A,(t = A0} — {[B,] (u(t)} + (C} Xg([)} (%:_) } (5.28)

The necessary conditions for optimality are

JLF  _ . _
sz - O 2001 (=) + {40} = (0) (5.29)

LF  _ . mo (A
B0y ) 208 () - (837 00} (L) = (o) (5.30)
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(20)) = [7,1 A, (0 = 80) = {81 00} + (€3 Ko} (82) = () (5.31)

Solving for {ukun from Equations 5.29 through 5.31 one obtains the

optimal control
W = - (%) (R 1817 121 (2} | (5.32)

Thus the optimal control forces are computed from the wmeasured
response. The response state-vector can be derived from Equation 5.16

as

(=} = [Z0](E0) ‘ (5330)
~ 2

2] = {[m =L BR8] (0] }“ (533
oy = {mane-an s @ ko ()} (533

and the derivative of {z(¢)} can be obtained from Equation 3.13.

The derivation for the active mass damper system follows parallel

reascning with the result
. At 1 T
H = —(=—)l—=—){8 { 5.34
uy{{) ( 3 ) ( RD> {84} [Qpi{zp(n)} (5.34)

The result for the response state-vector 1is similar to that of

Equation 5.33.
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E. INSTANTANEQUS OPEN-CLOSED-LOOP DISTURBANCE-COMPENSATED ALGORITHM

This algorithm requires the measurement of the ground excitation
and the response. The structure and control system for this type of

control are shown in Figure 6. The optimal control {4 ()} is to be of

.lthe.form
{uny = [S1]{=(} + (S2(1)} (5.35)

where [S1] is a constant gain matrix, and {§2(1)} a vector containing the
measured excitation upto and including ;imet. The necessary conditions
for optimality are the same as for the closed-locop case. Combining
Equations 5.29 through 5.31 and Equation 5.35, it can be shown that

the optimal control vecter is of the form of Equation 5.35 with

| 2
(517 = - (4L) [RJ“LB,JT[UJHQ] Bty (87 ) ]“[Q] (530

(s20) = [Sl]{tm (At - 80} + (C) K0 (i‘zi)} (537)

The response state-vector can be derived from Equation 5.16 as

oy = PO (&) (5.38a)
chor = | co-taaesn (4) [ o+ maosn (4) ] (5380
¢y = {[T,J (A= 80} +(C) &ln) (%)} (5.38¢)
and the derivative of (z(f)} can be obtained from Equation 3.13. The

derivation for the AMD yields
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wgt) = (Slg" {zp(0} + §2,4() (5.39)

where
ro_ Al r (0] (B4 (B4 (80 |-,
{Slg" = "(:ﬁﬂ;){bk} [[1]+' 3R, {Q@p] (5.40)
_ T ‘ . 1 v At
52,0 = {S1} {[Td] {Aq(t—An} + {Cg} X(D (T)} (5.41)

The response state-vector can be derived similar to Equation5.38.

F. COMPARISON OF INSTANTANEQUS OPTIMAL CONTROL ALGORITHMS

The instantaneous algorithms are compared in this example. All‘
three algorithms, i.a., the apen-loop, closed-loop and
open-closed-locp algorithms weré derived based on differenf
assumptibns concerning the nature of the signal >which creates the
control forces. In the open-lcop case the control forces depend cn
the measured excitation, in the closed-loop case on the measured
response, and 'in the open-closed-loop case on both the measured
response and excitation. For simulation rgsults one has to input the
excitation in order to get the response. Similarly the measured
response is assumed to be known in order to calculate the control
forces. Therefore all three control schemes should yield the same
answer. This fact was confirmed by extensive results carried out on an
eight-story shear building, equipped with eight active tendons, for
both wind and earthquake excitations. The instantaneous open-loop and

closed-loop algorithms were compared, and the results were identical.
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G. COMPARISON OF RICATTI AND INSTANTANEQUS OPTIMAL ALGORITHMS

The Ricatti closed-loop and instantaneous algorithms are compared
in this example. Theoretically both algorithms should yield the same
results, as was mentioned in Section F of this Chapter. However, the
Ricatti closed-loop algorithm was derived based>‘on an integral rather
than an instantaneous performance index. Consequently the gain matrix,
which depends on the solution of the ARE, is of different form than
that of the instantanecus algorithms. As a consequence, different
control forces and different responses are obtained. However, by
medifying the weighting matrices, approximately aqual control forces
and response can be obtained for the tﬁo schemes. Hence the two
schemes of Ricatti and instantaneous aléoxit@s can be compared. An
eight-story shear building with eight active tendons is the model for
‘this example. The structural properties are: m; = 105.Ug,
ki = 1x 10° kNlm, j=1,..,8, and three percent critical damping. The
earthquake excitation used is the N-S component of the El-Centro
ear‘thquake ground acceleration 9f ﬁay 18, 1940, shown in Figure 23.
The weighting matricl'as, (@] and V[R], are considered to be diagonal in
this example. For the Ricatti closed-loop algorithm, the following
were chosen: QU = 1000, /= 1,.,16, and R(i) = 0.13 x 10_3, | i=1,..,8.
For the instantaneous algorithm the elements of [{] and [R] were found
by trial and error as: Q) = 1x 10°, (=1,..,16, and R(1,1) = 0.50 x 1073,

R(2,2) = 044x 107°, R(3.3) = 041 x107%, R(44) = 031 x 1073, R(5,5) = 0.24x 1077,
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R(6,6) = 0.15x 1073, R(7,7) = 0.80x 107°, R(8,8) = 0.20x 10™*. The maxima of the
control forces using the above chosen weighting matrices are
approximately equal. A comparison of the eighth floor relative
displacement, using the two schemes, is shown in Figure 24. Figure 25
shows -a comparison of the eighth floor control force. It can be

observed that almost identical results are obtained.

H. HUMAN COMFORT ENHANCEMENT IN WIND-EXCITED STRUCTURES

The equations of motion and optimal control expressions for wind
forces for a structure equipped with the AT or AMD systems are the
same as for earthquake forces except that two changes have to be made.
First thé relative displacements, velocities and accelerations have to
be replaced by their absoclute counterparts. Secondly, the forcing
function instead of the earthquake acceleration, {C}} Xg(l), has to be
replaced by the discretized wind. forces vector {IW(f)] which was derived
in Appendix B. The optimal control laws for both the AT and AMD

systems have the same form as for the earthquake excitation.

An eight-story shear building is considered for analysis under
the artificial wind loads. The structural properties of the building
are: m; = 105 Mg, kj =[x 10’ kNlm, j=1,..,8, and three percent critical
damping. The tributary area for each floor is [OOmz, and the interstory
height A = 4m. The instantaneous algorithms were applied for two
cases. In the first case, eight tendons were assumed to be acting, one
on each floor. The weighting matrices were assumed diagonal with the

values: Q) = 1.0x 10°, I=1,.., [6, and R(i) = 09x 1072, i=1,...8. A

sample of the artificial wind load which was created based on the
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derivation of Appendix B is given in Figure 26. Figure 27 shows the
wind pressure transducer proposed by Mayne (36) to measure wind
pressures on buildings. The device was used by Lam and Lam (28) in
full-scale tests to assess the wind locads on thg claddings of
high-rise buildings. The eighth floor displacement with and without
the tendons is compared in Figure 28. Figure 29 shows the
acceleration response for the controlled and uncontrolled cases. It
may be observed that the response is significantly reduced in
magnitude. According to criteria for human comfort from studies by
Chang (5), and Warwaruk {59), the comfort limits are defined in Table
II. From Figure 29 one can observe that the eighth floor acceleration
is reduced from the "annoying" to the "perceptible" range. The second
case is the same building equipped with only an active mass damper,
having the following properties: my; = 5Mg, k; = iOkAVnu -and
€q = UJ;Wg/wc.'The acceleration response of the eighth floor to the
wind excitation is compared to the uncontrolled case in Figure 30.
Again it 1is observed that the acceleration is reduced from the

"annoying" to the '"perceptible' range.

I. WEIGHTING MATRICES

From the Ricatti closed-loop and instantaneous algorithms it is
obvious that the control forces vector is a function of the weighting
matrices [{J] and fR]. These matrices ére assumed constant. Thus the
leve]l of the control forces depends on these matrices. As can be seen
from Equations 3.30, 5.19, 5.32, and 5.40 for a fixed matrix [Q], if [R]

is reduced, then the control force increases. This behavior is
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SECTION A - A

Figure 27. Wind Pressure Transducer
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TABLE II. HUMAN COMFORT CRITERIA

Range Comfort Limit Acceleration, %g

A. Not Percreptible < 0.5
B. Perceptible 0.5 - 1.5
c. Annoying 1.5 - 5.0
D. Very Annoying 5.0 - 15.0
E. Intolerable > 15.0

100



101

8TH FLOOR ACCELERATION (M /SEC?)

- -
i~ w
I S R

(4]

=]

L
R 1
| IW

h

ML Wi

Ve
(b

m a‘f“‘f?l“ !Wai 1

-10 1
—— No Control
AMD
-15 T T : T —
0 10 20 30 40 50 60
TIME (SEC)
Fig 30. Comp on of Eighth Floor Acceleration for Active

r under

Wind Forces




demonstrated by the following example. The eight-story structure of
the previous Section, with the same structural properties, is equipped
with eight tendons. Both weighting matrices [{J} and [R] are assumed
diagonal. The diagonal elements of matrix [{?] are all set equal to the
value (/) = . x 10, /=116, and the diagonal elements of the [R]
matrix are all set equal and allowed to vary as shown in Figure 31. In
Figure 31 the maxima of the first, fourth, and eighth floor control
farces and floor displacements are shown. It is observed that with
decreasing values of R(iJ), the displacements decrease but the control
forces increase. Hence different levels of control can be achieved by
varying the elements of the weighting matrices. In physical terms this
implies that the amplifier gains of the control devices must be
established according to these weighting matrices. The subject of
' scarching for the optimal weighting matrices that will produce the

‘minimum control forces is treated in Chapter VII.
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‘VI. STRUCTURAL OPTIMIZATION USING ACTIVE CONTROL

The structural optimization procedure is described for both the
non-optimal closed-loop and optimal control algorithms. The objective
function is structural weight and is the same for both optimal and
non-optimal control algorithms. The design variables for the
non-optimal control include the structure's floor stiffnesses and the
normalized loop and feedback géins of the control. system., The
constraints are expressed in terms of the standard deviations of floor
relative displacements and control forces. Thé design variables for
the optimal control algorithms are the structure's floor stiffnesses.
The constraints are expressed in terms of the maximum floor relative

displacements and maximum centrol forces.

A. OBJECTIVE FUNCTION

The objective function for both optimal and non-optimal control
algorithms is approximated by a linear structural weight function

given by
N . i
IV = a+2bjkj {6.1)
J=1

where W is the structural weight of the building and & the floor
stiffnesses, assumed to be in the elastic range. The constants a, and
h, are chosen to approximate the actual relationship between the
structurél weight and structural stiffness based on structural member

properties.

104



B. FORMULATION OF OPTIMIZATION PROBLEM

The formulation of the optimization problem is different for the
optimal and non-optimal algorithms. The design variables for the
non-optimal algorithm include the control parameters of normalized

loop and feedback gains in addition to the floor stiffnesses.

1. Non-optimal Closed-loop Control. The structural optimization

problem for the non-optimal c¢losed-loop algorithm is formulated as
follows: Find k;, 7, ¢;, 14, ¢y that will minimize the structural weight W

of Equation 6.1, subject to the following constraints

oy < @, max jo= 1N ' (6.2)
a,; S a@, max Po= 0, M . (6.3)
oy < oy max 4 {6.4)
ki 2 k& min ;= 1. N (6.3)
T, < Tmax io= 1, M {6.6)
fii < ¢ max. i o= L., M {6.7)
Tz < TMax | ) ' 6.8)
ty £ cmax ‘ (6.9)

where o, and o, max are the standard deviations of the relative

X g
displacement of the jth floor and the allowable displacement,
respectively. The quantity o,; can be obtained from the response

statistics of Equation 4.20. The quantities o,, and ¢, max are,
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respectively, the standard deviations of the ith tendon active control
force given by Equation 4.21 and the allow;ble. Similarly o, and o4 max
are, respectively, the standard deviations of the active mass damper
control force given in Equation 4.22 and the allowable. Side
constraints are imposed on the floor elastic stiffnesses & mun, and the
normalized feedback and loop gains of the active tendon and active
mass damper systems. The nﬁmber of floors is N and the number of
tendon <controllers is M. The implementaticn of standard deviation
expressed in the constraints is in the sense that for a given maximum
displacement and a probability of not exceeding that value, the
standard deviation of the displacement can be obfained. A Gaussian

probability distribution is assumed.

2. ‘Optimal Control Algorithms. The structural optimization

problem for the optimal contrcl algorithms is formulated as follows:
Find &;, that will minimize the structural weight of Equatjon 6.1,

subject to the following constraints

7

(1) < x; max Jo= L N (6.10)
u{l) < u max [ = .l,...,M . {6.11)
udt) < uy max » ' , (6.12)
k = k mn j= 1N (6.13)

where x(f), and x; max are the relative displacement of the jth floor and
the maximum allowable, respectively. The ith active tendon control force

and the maximum allowable are denoted by w(/) and i, max, repectively.
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The active mass damper control force and the maximum allowable are

denoted by ! and u; max, repectively.

C. OQPTIMUM STRUCTURE USING NON-OPTIMAL CLOSED-LOOP CONTROL

1. Example 1: Two-story Building. The optimization procedure is

applied to a4 two-story building shown in Figure 32 for earthquake
excitation. The objective is to find the minimum structural ‘weight
that satisfies the imposed constraints. The design variables are the
floor stiffnesses, and the normalized lcop and feedback gains. Three
case studies .are made. In Case A, the structure is equipped with two
active tendons whose stiffﬁess k, is allowed to vary according ﬁolthe
variati&n of the jth floor stiffness, kj, in the optimization procedure
as k, = fl.()Skj. In Cass.; B, the stiffness of the tendons is fixed at
_k, = ) kipsfin (7000 &N{m). In Case C, an active mass damper is included
in addition to the two tendons. The earthquake excitation used is that
of Equation 4.1, of the Kanai-Tajimi spectral density function, with
the following parameters: w, = 18.85 rad/ scc, (g = 0.65, and
§% = a65x 107 mz,' sch/rad. The structural properties for ail three Cases
are: m = my = ﬁkip—scczlr’n' (350 Mg), ¢ = ¢, = 1.b6kip—scc/in (280 Mgfsee ),
) = 25 degrees. The active mass damper parameters for Case C are:
my = 004 kip— secifin ( 7 Mg ), &y = 611 kiplin ( 1070  kN/m ),
cg = 0.10 kip — sec fin-( 17.5 Mg/ scc ), and:  k,y = 25kipfin (4378 kN/m). The
constraints for all three cases are: o, max = 0.035in (0.89 mm),
o, max = 0070 in ( 1.78 mm ), o, max = g, max = 10kips ( 44.48 kN ),

T max = ¢ max = |0. Additional constraints are imposed for Case C as

IA

T4 < 6, and tq 6,

107




801

(a) (b) (¢)

Figure 32. Two-story Shear Building:
(a) Case A, (b) Case B, (c) Case C




From Figures 33 and 34, one can observe that Case C gives the
least structural weight. From Figure 35, it is evident that the active
tendon control forces of Case B require a larger r,. The ¢, values,
however, reach upper bound for all three cases as shown in Figure 36.
The same active tendon control force standard deviations are obtained
at the optimum for all three cases. In Case C, rz; reaches an upper
bound, whereas c¢; goes to a small value, as shown‘in Figure 37. In all
three cases, the displacement constraint of the second floor and the
control force constraints are active. The difference between Case A
and Case B is very small, in terms of the structural weight. It
appears that the combined active tendon and active mass damper system

is advantageous over the other two cases.

2. Examgle‘Z: Eight-story Building. = The .three active control
system models described in Chapter IV, i.e. the active tendon, active
mass damper, and combined active mass damper and tendons are compared
in this example. The eight-story structure is first optimized,
subjected: to the éarthquake excitation without any active control
system (Case 1); in Case 2 the structure is equipped with eight active
tendons; in Case 3 the structure is equipped with an active mass
damper on the top floor, and in Case 4 the stru;ture is equipped with
an active mass damper and two active tendons at the two bottom floors.
All four cases are shown in Figure 38. The design variables are floor
stiffnesses, and normalized loop and feedback gains. The structural
properties are: m; = 314Mg, k = 3 x 10° kN[m, G = S0Mglsec, j=1.. 8.

The earthquake excitation is that of the Kanai-Tajimi function, given
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114



GT1

-
.
-

o

(a) (b) (c) (d)

Figure 38. Eight-story Structure: (a) Case 1, (b) Case 2,
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by Equation 4.1 with the following parameters: w, = 18.85 rad| sec,
{, = 0.65, and St = a65x107° mZ/ sec’ /rad. The control parameters are also
the same as the ones used in the example of Section E, in Chapter IV.
Note that the normalized loop and feedback gains are not fixed but are

allowed to vary as design variables in this example. The constraints

for all four cases are: &, max = b6x 107" m, oy, max = 1.2x 107 m,
a,; max = 1.8x 1072, 0,4 max = 2.4x 1072 1, 6.5 max = 3.0x 107 m,
0 max = 3.6x 1077 m, .oﬂ max = 4.2x 107 m, a,5 Max = 4'.8 x 1077 m,
rmax = comax = 8, and & min = 1.5x 10’ kN/m. For Case 2 a; max = 2004V,
i=1,.,8 For Case 4, o, max = 004N, i = 1,..,2.

The optimization results are shown in Figures 39 through 42. From
Figure 39 we observe that the structure without controls requires a
very large weight. Comparing the three control configurations, we
note from Figurcs 40 and 41 that the combined system of Case &4, gives
. the least weight. The optimum stiffness distribution for all four
cases .is shown in Figure 42. The values of the normalized loop and
feedback gains for Case 4 are given in Figure 43. It is observed that
7,, reaches an upper bound, r, is close to the upper bound, but r; is
low. Similar results are obtained force,, ¢,, ande¢;. The power spectral
densities of the response for the four optimal cases were calculated;
the spectral density of the eighth floor relative displacement and the
spectral density of the base shear force are shown in Figures 44 and
45, respectively. From these figures it is obvious that the no-control
case 1is the worst <case. Cases 3 and & control the response

effectively; Case 4, however has the least weight and it reduces the
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" higher modes better than Case 3. Case 2 reduces the higher modes best,

but of the three control cases has the most weight.

D. OPTIMUM STRUCTURAL DESIGN USING OPTIMAL OPEN-LOQOP CONTROL

The instantaneocus optimal open-loop control algorithm is used in
this example. An eight-stor& shear building is considered. The
structural properties are: m; = W05Mg, ¢ = [138Mgfsec, j=1,..,8. The
earthquake excitation used is the _N—S component of the El-Centro
earthquake o-f May 18, 1940, shown in Figure 23. The structure is
equipped with eight active tendons, or an active mass damper. The
properties of the mass damper are as follows: m, = 9Mg, k; = 736 kN|m,
and ¢; = IlAMg/scc. The weighting matrices, [Q] and [R], are assumed
diagonal. From extensive numerical calculations it was found that the
ratioc of the diagonal elements of the matrices‘[Q] and [R] is of
importance in determining the 1level of response, and not their
absolute values. From a practical point of view, it is desirable to
have equal maximum values for the required control forces on all
floors. This is achieved by adjusting the ratio of the elements of the
weighting matrices. The weighting matrices are then fixed at these

values for the structural optimization.

The constraints used for both the eight active ;endons case and
the active  mass damper are: Xx; max = OOISHﬂ x; max = 0.025m,
x; max = 0.035m, x, max = 0.045m, x; max = 0050m, x, max = 0.055m,
x; max = 0.060m, xg max = 0.065m. The control forces are constrained at:
w max = 650kN, i = 1,..8, uymax = 650kN, and k min = 1.5x% 10° kN/m. The

optimization cycles for the structural weight are shown in Figure 46,
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The optimum stiffness distribution at the final iteration is shown in
Figure 47. The optimum weight for the AT case is 586.64N, and for the
AMD case 596.8kN. For the AT case, the following constraints are

active: x,, x3, 4,, &y, and u,. For the AMD case, x; is active.

The optimal designs found above for the AT and AMD cases were
subjected to the same earthquake excitation, but without the active
control systems. Figures 48 through 51 describe the response for‘the
optimal structure with and without the active tendons, and Figures 53
through 56 describe the response for the optimal structure with and
without the active mass damper. From Figure 48, it is obvious that
the ecighth floor relative displacement has been reduced by using the
active tendon system. Although the maximum displacement of the
controlled response has been reduced by only about 60 % as compared to
the no-control case, lit is evident that for the rest of the time
history, fhe reduction is much greater. The maximum relative velocity
and maximum acceleration of the eighth floor have been, respectively,
reduced by 55 % and 70 % as compared to the no-control case as shown
in Figures 49 and 50. In Figure 51 the maximum first floor Qrift has
been reduced by 60 %. The first floor drift is defined as the
algebraic difference in displacements between the first and second
floors. The active tendon control force for the first floor tendon is
shown in Figure 52. This control force reaches its maximum value for a
very short time, while for the rest of the time-record its value is

less than half of its maximum.
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From Figure 53, the eighth floor relative displacement has been
reduced by using the 4dctive mass damper system. The reduction is
about 80 % as compared to the no-control case. The maximum relative
velocily and acceleration of the sighth floor have both been reduced
by 85 % as compared to the no-control case as shown in Figqres 54 and
55, respectively. The maximum first floor drift has been reduced by
80 % as shown in Figure 56. The active mass damper control force is
shown in Figure 57. The damper control force is about one third of the
allowable at its maximum value. This is the reason why the active mass
damper system does not reduce the response as much as the active
tendon system. However, the active mass damper performance could be
improved by adjusting the elements of the weighting matrices, so as to

yield a larger control force.

E. QPTIMUM STRUCTURE USING OPTIMAL CLOSED-LOOP CONTROL

The instantaneous optimal clesed-loop contreol algorithm is used
in this example to illustrate the benefits of combinining structural
optimization with active control. An eight-story shear building is
considered. The structural properties are: m; = ZRQJ-mmzﬁn (350 dg)y,
/j=1.,8, and 1 % critical damping in all the modes. The earthquake
excitation used is the N-S5 component of the El-Centro earthquake of
May 18, 1940, shown in Figure 23. The- structure is equipped with
eight active tendons, one on each floor. The weighting matrices [Q]

and [R] are assumed diagonal with the values Ry = 006, = 1,....,8 and

Qhh = 1500, /= 1,..,16. The-choice  of these matrices at this stage
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is arbitrary, and they are fixed at this values during the structural

optimization.

The constraints used in this case (Case 1) are:

x, max = 0.72in (.018 m), x, max 1.4 in (.037 m), x; max 2.16in (055 m),
xg max = 2.88in (073 m), x5 max = 3.60in (.09} m), x, max = 4.32in (110 m),
Xy max = S.04in (.128 m), xy max = $5.76in (.146 m), w max = 300kips (133 kN),
i: 1,...8, and &k min = 400 kipsfin (70040 kNfm). The optimization cycles for
the structural weight are shown in Figure 58. The optimum stiffness
distribution at the final iteration is shown in Figure 59. The optimum
weight for Case 1 1is 42.12kips (18735 &V). The following constraints are
active: x;, x;, .and x,. To illustrate the usefulness and versatility of
the optimization process, a second optimization of the same
structure-control system was carried out, with the following
difference: The displacement constraints of Case 1 were reduced by

70 % for this case (Case 2). The rest of the constraints. are kept at
the same values. The resulting design for Case 2 is also shown in
Figures 58 and 59. As expected the optimum weight for Case 2 is
higher, at 11634%kips (51748 kN). The following constraints are active:
X;, Xy, X4, X5, and x;. It can be seen that optimization is not intended
just to reduce the structural weigﬁt, but to achieve optimal
structural strength through rational stiffness redistribution based on
a given set of constraints. The limitations. of the control system were
observed by retaining the same constraints on the maxima of the

control forces for both Cases 1 and 2, and two different designs were

obtained to satisfy the two situations.
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F. OPTIMUM STRUCTURAL DESIGN WITH FREQUENCY CONSTRAINTS

The instantaneous optimal open-loop control algorithm is used in
this example that demonstrates the use of frequency constraints. The
frequency constraints are imposed so  that the resulting optimum
structure with the active system will have its natural period removed
from the seismic spectral peak period. An eight-story shear building
is éonsidered. The structural properties are: m;, = 105Mg,
(= 1138 Adg/sec, j=1,.. 8. The earthquake excitation used is the N-S

component of the El-Centro earthquake of May 18, 1940, and the

structure is equipped with eight active tendomns.

The displacement constraints used are: x; max = (0.018m,
x; max = 0.037m, x; max = 0.055m, x; max = 0,073 m, x; max = 0,092,
X, max = 0.110m, x; max = (L1288 m, x; max = (.146 m. The control forces are
constrained at: u; max- = 650kN, i =1,...8. The frequency constraints are
imposed as follows: @, min = 090Hz, o, max = [.25Hz, and
L min = 1.0x10°&kN/m. The optimization cycles for the structural weight

are shown in Figure 60a. The opti:hum weight is 164.44iN. The frequency
constraint is active atw; = 090//z. At the optimum, xz3 = 0.0568 m, which
is low}er than the allowable. The first and second mode frequencies are
given in terms cof the optimization cycles in Figures 60b and 60c,
respectively. The optimum stiffness ‘distribution at the final

iteration is shown in Figure 61.
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VII. CONTROL ENERGY MINIMIZATION

Through the course of this study it has been shown that the
weighting matrices are influential in shaping the response. When the
elements of the response weighting matrix {{J] are large the response is
reduced, but at the expense of large controi forces. When the elements
of the control Qeighting matrix [R] are large the control forces are
small, however the displacement responée is increased. Evidence of
these observations was shown in Figure 31 Vinr Chapter V for a
wind-excited structure, But similar results are obtained under

earthquake excitations.

Physical limitations of the actuator impose an upper bound on the
maximum control force magnitude thét can be achieQed. Considerations
of power limit the control energy available. Various objectives and
constraints can be met by judicious selection of the elements of the
weighting matrices. Physically the weighting matrices affect the gain
matrix for the system and they are implemented in terms of the

amplifier gains that produce the control forces.

From extensive numerical results carried out during this study it
was observed that when the weighting matrices [(J] and [R] are assumed
diagonal, it 1is not the absolute value of the elements of these
matrices that influences the response but the ratio of the. elements
(11). Thus the problem can be simplified by keeping the elements of
matrix [{)] <constant and varying the -elements of [R] only. A
trigl-and-error approach was used in order to search for the elements

of the weighting matrix [R] that will produce approximately equal
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maxima for the control forces on all the floors. This 1is desirable

from a practical point of view.

A more rational procedure is developed herein in order to obtain
the optimal weighting matrix [R]. The control energy is chosen as the
objective function to be minimized. The constraints are the same as
those used in ‘the structural optimization wusing optimal control
algorithms. The optimization problem is as follows: Find the elements
R{if) of the weighting matrix [R], assumed diagonal, that will minimize

the control energy defined as

JE

it

1 '1,- -.[. -
L7 wwtor” Ry e e 7.0
2,

subject to constraints on the maximum allowable floor relative

displacements and maximum allowable control forces

xl,-(t) < X, max j =1 ..., (7.2

() < max : i= .., M : (7.5

where V is the number of floors, and VM Is the number of controllers.
The objective here is to obtain the optimum weighting matrices that
will reduce the control forces, while the response still remains
within the constraint limitations. In this sense, a combination of
structural optimization and optimal active <control yields an
economical design that both determines the optimal structure
stiffnesses and the optimum control parameters as expressed by the

optimum weighting matrices.
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The optimal weight structure obtained in Case 1 of Section E in
Chapter VI is idsed as the structure for applying the control energy
minimization procedure. The structure and the weighting matrix [Q] are
fixed. The constraints for allowable displacements and control forces
are the same as before for Case 1. The objective is to determine the
optimum eléments of the diagonal weighting matrix R(ipy, i=1,.,8, that
will minimize the control energy as defined by Equation 7.1. From the
results shown in Figure 62 and Table III, it can be observed that by
finding the optimal weighting matrices, the maxima of the <control
forces have been reduced. The first floor control force at iteration 1
and iteration S5 are compared in Figure 63. It is clear that the energy
minimizatioﬁ has resulted in reduction of the control force. The
maxima displacements, of course, are still bound by the constraints

used in Case 1.

149



\KIPE)‘SEC

CONTROL ENERGY

18.5

300

4
F 250
18.0 1
1]
K —
Q-
? 200 X
n
Lad
Q
3 5
' —~
17.5 . . : 6th I :
\“: /__-_—GD 8
' =
N -150 &
\ Q
\
‘\ ‘CONTROL
17.0 4 \, ENERGY
\‘ 7th - 100
- \\ /
T #-——— = — )
\_“\
\-
™~ 8th
\___-_-_a,g__/____
16.57 T T T T 50
1 2 3 4 5
ITERATION
Figure 62. Optimal Weighting Matrices and_ Control Energy

( 1 kip = 4.45 kN ), ( 1 (kip)®-sec = 19.8 ( kN )%-sec)

150




TABLE IIT. CONTROL ENERGY MINIMIZATION RESULTS

Maxima of Control Forces ( kip )
( 1 kip = 4.45 kN )

Iteration Floor Number
Number
L 2 3 4 5 6 7 8
t 289 271 285 280 273 252 177 92
5 250 258 211 216 202 162 39 57
Weighting Variables R(hl}xlo-3
ITteration Floor Number
Number
1 2 3 & 5 6 7 8
L .070 .070 .070 .070 .070 .070 .070 .070
5 .110 .076 . 100 . 095 . 109 . 169 274 . 240
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VIII. TIME-DELAY IN APPLICATICN OF CONTROL

A very important issue in the implementation of active control is
that of time-delay. Time-delay can cause unsychronized applicaticon of
the control force. More importantly, due to time-delay the control
forces may be applied at a time4at which they are not needed. It is
plausible that such delay in the application of the control forces maf
lead to instability, because the control forces may deteriorate the

-

situation if they are applied at the wrong time.

Although time-delay may be attributed to a variety of factors,
the reasons for it can be classified in two categories. First,
time-delay is caused due to on-line computation and execution of the
cpntfol forces. Secon&ly, it can be caused from delay in measuring
on-line <the base Aacceleration- Note that the first category Iis
- unavoidable no matter whlich control algorithm is being used. However
the second category will occur only if the ©open-loop, or
open-closed-lbop control algorithms are utilized, as shown by Chung,

Reinhorn and Scong {15).

A. ON-LINE COMPUTATION AND EXECUTION OF CONTROL_FORCES

This category of time-delay arises from the delay caused by the
computer in calculating the optimal control forces according to the
algorithm currently in use, and the delay caused in the movement of
the actuator. This type of delay can be compensated for. Assume that

the structure oscillates with a dominant f{requency, ,. The feedback
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force is in general of two types, displacement feedback force (DFF),

and velocity feedback force (VFF),

Wi = Glx(y)+ G2x(r) (8.0

where the first term on the right side of Egqs. 8.1 is the DFF, and the
second term the VFF. If the DFF lags the measurement of the

displacement, ¢ units of time, and the VFF lagslthe measurement of the

X

velocity, ¢, units of time, their corresponding phase lags are w;( 4nd

w, I;, respactively. The ideal and the real system are shown in Figure
64. The ideal or theoretical gains are (| and G2 as shown in Figure
64(a), and the‘ real gains are denoted by g 4and¢; as shown in Figure
64(b). By resolving the DFF and VFF in the real system one ol:lnzains the '
situation shown in Figure 54(c). Note that the DFF produces a nregative
component which reduces the control force effectlof‘ the real system.
Thus t-ime-delay may cause instability. The time-delay is compén;ated-
for in the real system as follows: 1) precalculate the feedback gains
(71 and (2, and the fundamental frequency of the structure, w,;, for the
ideal or theoretical system, 2) determine the time-lag in che
measurement vof the displacement (. and the velocity /; experimentally;
this can be done by measuring the phase shift of the transfer function
of the real system, when the structure is subjected to a white noise
excitation, 3) use the information from 1), and 2) to calculate the

real gains g, and g, with time compensation. From Figure 64, the

equivalence of the real and ideal control forces gives

(G x() = (g cosw) i) x(1) + (g, sIn wy t;) wy x(0) (8.2)
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(G () = (-g sine, ax)%(?—Jr (8 €08 @, 1) %(1) 8.3)

Thus in order to have the ideal system produce the control forces

required by the real system the following relation must held

CosSw &y - wysinwgt; 3J Gl
= : (8.4)
-1 i wy e cosw, {, gjj G2

(_l)!

Therefore the real system gains -can be. obtained from those of the

ideal system by
a) . | coswy {; -r—ul— S w2y Gl
I . i (8.3)
2 Coswy (t,— ) — W s w, te CoCoswy iy Gz

B. COHPENSATION METHOD FOR TIME-DELAY

For mul.:iple degree-of-freedom systems wi;;h more than one
controller, the same concepts can be applied as' for the single
degree-of-freedom system. Being a distributed parameter system, the
structure will be controlled at discrete locations. The active tendeons
will be located at various floors of the building. Assﬁming for the
present discussion that an eight-story building will be equipped with
eight active tendons, we note the following: 1) the time delays in the
VFF and DFF will in general not be the same for avery controller, 2)
for the purpose of calculating time-delays assume that the structure
is vibratir;g‘ at its controlled fundamental frequency, 3) the
controlled fundamental frequency can be obtained from the closed-lcop

plant matrix. Following the discussion for the single
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degree-of-freedom system, Eqs. 8.5 will still be valid for the ith

tendon contral force

ool

where [7R]; was given in Egs. 8.5. Note that for the particular tendon
(. and ¢, may be different, and therefore the elements of [TR]; will be

different. The ideal gain matrix [/K] for the instantaneous optimal

closed-loop control was derived in Chapter V, and is given by
A - T : .
(K] = - (AL) (A1 (87 1) 8.7

[f we consider that the weighting matrices [{J] and [K] are diégonal, and
that the cime-délaylfor each controller is the samé, then i1t can be
‘shown that the real gain matrix for the present example is an [8 x l6]
matrix. Because‘of the form of the controller location matrix, the

real gain matrix is given by
(RK] = [[01} (RKR]] (8.9)

where [f#KAR] is an [8x 48] submatrix whose non-zero elements are: (1,1),
(2,1), (2,2), (3,2), (3,3), (4,3), (4,4), (5,4), (5,5), (6,3), (6,6),
(7,03, (7,7), (8,7), and (8,8). The non-zero elements of the real

gain matrix are related to those of the ideal gain matrix as follows

Gliy)

h cos(w ;)

(8.9)

It is important to note that as' more advanced control software and

hardware beccmes available, the magnitude of time-delay is expected to
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decrease. In the experiment carried out by Chung, Reinhorn and Soong
for a single degree-of-freedom system, it was found that the values
for ¢, and ¢, were 30 msec, and 36 msec, respectively (15). It was also
stated that since real structures vibrate at a lower fundamental
frequency as compared with the test-model, time-delay is expected to
produce minor effects. The issue of time-delay is investigated in
order to be utilized in the.optimal control algorithms used in the

structural optimization process.

C. APPLICATION OF TIME-DELAY COMPENSATION

For the purpose of iilustrating the time-compens;tion method, a
numerical simulation of the real system was attempted. A SDOF
structural system equipped with an active tendon is . considered. The
structural and control properties are described in Table IV. The

elements of the weighting matrices [()] and R are chosen as

1 = [(_;—"__!._UU_:I R =1(2x 10'3)!:, (§.10)

where & is the structure stiffness, 4 is the tendon stiffness and their
values are given in Table IV. The time-delay values were assumed as
follows: ¢, = 30 msec and {; = 36 msec, respectively. The results for a
system compensdted for time-delay and an identical system for which
time-delay was not considered are shownlin Figures 65 through 57. From
these results it can be seen that time delay has some influence on the

response and the applied control force.
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TABLE IV. TIME-DELAY SIMULATION DATA
( 1 lb-sec?/in = 175 Kg )
( 1 1b/in = {75 N/m )

Parameter Quantity
mass 16.69 lb-seczfin
structure stiffness 7924 1b/in
tendon stiffness 2124 lb/in
tendon angle 36 degrees
natural frequency 3.47 Hz
damping factor 1.24 %
earthquake excitation 30 % of El-Centro 1940

159



091

DISPLACEMENT (IN)

o
o
N

i

i

= —

ok

|
o
(=]
o

L

-0.04 ;

Soneiegeid,

~0.06

-

—0.08 1

—-0.10

-

"_I'_I_!—l—l—[_l-‘_ﬁ"rl l‘l | l T LI ¥ l T 77T I T T T T I T | 7T l L} ¥ T L ] T T T T l T Fr r T
0

-
=
T
-
-—

—_— Time Delay
- No Tune Delay

| 2 L 5 6 7 8 9 10
TIME (SEC)

Figure 65. Displacement for SDOF with Time-delay
(1 in = 254 om )




191

)

ACCELERATION ( g's

- —0.16 1

0.20 7

0.16

0.12 1

0.08 1

0.04 1

o

—0.12

Time Delay
No Time Delay

TIME (SEC)

Figure 66. Acceleration for SDOF with Time-delay




01

6 8 2

9

(03s) INiL

(N Sy'y=qr 1)
Anpap-auwi] YItn JOUs 10J 93104 {0X1U0) /0

b4

£

PAETE R LI s AN p——

{rgocg puny

————
.-c.*-.::'a"“'

atnTry

4 i Q

r.\_.l..._‘h»lh.luw.-—hhkpnh.-l.~,...P-_-u-._.».-‘fh‘..lt.l_\lrihlbli-:_[i.llrl-xt-rl;

I

R —

. ——

L 00z
- 008

- 0¥

L 00S

(sd1) 310404 TONLNOD

162



IX. CRITICAL-MODE CONTROL ALGORITHM

As it was pointed out in the Introduction, the optimal
critical-mode control is likely to be as eff;ctive as the optimal
global control, since the response of tall buildings under earthquake
excitations is wusually dominated by a few lowest modes. The
.critical-mode control is also superior to the global contrel, as far
as the amount of on-line computations is concerned. For global control
of a structure with ¥ degrees of freedom, the instantanecus algorithms
require the solution of 2V differential equations. However, if only m
critical modes are controlled where (mM< XN), only 2m differential
equétions have to be solved. The critical-mode control a}gorithm is
developed in order ta reduce the amount of computatrion, which Is

important in the structural optimization procedure.

In this Chapter the critical-mode control algorithm is derived
based on the instantaneous closed-loop algorithm. The spillover effect
is demonstrated theoretically and through the use of numerical
examples. The algorithm is then used as a tool for establishing
optimal locations of active tendon controllers when only a limited

number of controllers are available.
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A. CRITICAL-MODE CONTROL USING INSTANTANEQUS CLOSED-LOCP ALGORITHM

The formulation follows the develcpments of Chapter V. The modal
state-equation can be written in an expanded form using Equations 5.3

through 5.7 as follows
(bo0h = Lo (e 0+ (707 (81w} + (707 € Gl 9.

Cur interest is in controlling only the lowest modes {¢,(/)}.. The
remaining residual modes are denoted as {y,(9)},. By partitioning (e¢,]
. according to the critical and residual modes, Equaticn 9.1 can be

written in the form

ilf},(!)}c - [ (@] L[U] }J’
W (0] 01 Tied

I L
{UQ -ty

where the following definitions have been used

[‘J(/,' “ }c 1 [IB]C e
| T { (7, } i
{9.2)

(78] = (T (B (rey = [T1 (G (9.3)

Rewriting Equation 9.2 in two separate equations, one for the critical

and one for the residual modas

G (le = (ode (b (0), + [TBY, (u()} + (TC), K0 | (9.4)

(0} = Lo (4, (0}, + (TBY, (we)} + {TC}, (1) (9.5)

The critical-mode control algorithm is based entirely on the dynamics
of Equation 9.4. The residual modes of Equation 9.5 are ignored in the

derivation of the optimal contrecl law. The instantaneous performance
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index has to be expressed in cterms of the critical modes only. This
can be achieved by substituting Equaticn 5.2 into Equation 5.1, and
retaining the term containing the critical modes [¢, (1)}, only. The

cxpression for Equation 5.1 becomes

Tty = AU 0w 0} T TQY{CT b 03+ L) CRT Cae) (9.6

Substituting the partitioned modal state-vacter [y, ()}

{ }

() = Ml (9.7)
W ol J

in Equation 9.6, performing the algebra, and ignoring terms that

involve the residual modes {§,(!)}, the critical-mode performance index

LS
Ly = G AN [O) (9 ) + (a0} (R oy (9.9)

in which [Q]; is a Zm x Lm matrix obtained form partitioning the

following matrix product

0L | 0%
949
2. | @ )

(ry'teiry =

More details about Equations 9.8 and 9.9 can be found in Appendix C.
The critical-mode optimal control problem is as follows: Find the
optimal contrel {u%jn that minimizes the critical-mode performance
index J,(t) and satisfies the state~-equation for the critical modes
Equation 9.4, Following the derivation for the global control
algorithm, the critical-mode closed-loop optimal control is found in

Appendix D as
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iy = - (Af‘) [RY™ C78Y [0, 1o, ()
= (K {v (D}

(9.10)

Note that the optimal control is given as a function of the modal
state-vector. Specifical;y, qnly the critical modes {y,{r)}, are of
interest. However the displacement and velccity sensors measure tche
‘actual state-vector {z{!)}. The modal states can be estimated usiﬁg modal
filters, as pointed out by Meirovitch and Baruh (38). The m§dal
filters produce eastimatas of Vmodal states from : distributed
measurements of the ﬁctual states. For simulation purposes we assume
that the modal state-vector can be recovered from the actual
state-vector {z{!)} by using the inverse of Equation 5.2 in the following.
form,

v ),

= (77 (z ‘ 91
wa},]f (717" (=) (911)

The solution of the motion egquation Equation 9.1 proceeds in two
parts. First the critical modes are obtained by solving Equation 9.4,
and the residual modes are obtained by solving Equation 9.5. The

solution of Equation 9.4 for the critical modes can be written as

i) = | oxpllodete=] {[T8), (ult) + (TG Fyio } o 9.12
q

Proceeding for the numerical integration in the same manner performed
for the global control in Equations 5.12 through 5.16 and 5.33, we

obtain
W) = [PUO] (P (9.134)
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-
[/;‘1(1)] {[/1 —[m]c (R rm, EQJC} (9.136)

(P20}

{Uyu—anb+{ﬂ3rﬁm(3})} (9.13¢)

The derivation of Equation 9.13 is given in Appendix D. The solution
for the residual modes can be obtained in a similar manner from
Equation 9.5. Finally the actual state-vector {z{{)} is retrieved from
Equation 5.2. The derivative of the state-vector can then be obrained
from Eguation 3.13. The effectiveness of critical-mode contral applied

to seismic structures is jllustrated in the numerical examples.

B. SPILLOVER EFFECT

[t is known that'any modai control technique has as an objective
Ito.control only some of the modes. The contrel forces may excite the
remaining uncontrolled modes. This is shown here for the instantaneocus
closed-loop algorithm. Substituting Equation 9.10 in Equation 9.2 we

obtain

jwmc} ) [mc/ ](: bl } {mﬂfm }W o
i 0 { edr [ I) TR ’ K c f ¢ N
|t ), 01 | Ced |1 ¥ (78], (K] o1n
{TC}E -,
+{{T—C,}r} Xg(f)

Collecting terms

(e (0} | _ [[waﬁtmcmf (0 Hw,m}c

(lflxr(t)}r [TB]riK]c l Lol Wl 9.15)

LlTan
Tc, {
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Rewriting the equation for the residual modes by partitioning Equation

9.15

bl = Led 0l TG, X0 + (T8, (K], (0} - (9.18)

By compariscn, note that for an uncontrolled system, the last term
would be absent. Thus the last term is an.excitation of the residual
modes by the control forces. This term preduces the céntrbl spillover
effect, the influence of which is examined in the aumerical examples.
If critical-mode control is to be effective, the spillcver effect

should be minimized.

C. QPTIMAL LOCATION OF CONTROLLERS

The objective of this Section is to establish criteria for the
optimal location of a limited number of controllers. The critical-mode
‘optimal control algbrithm derived in this Cﬁapter 1s used to control
the lowest modes of a seismic structure. It is quite plausible that in
the 'application of active control systems to structures, it may be
more economical Ito place the <controllers at a fewv preselected
lecations. The term optimal locations reflects on the reduction of the
structural response, while using the minimum control effort. The
location of the controllers with respect to the structure is reflected
in the matrix (y] in Equation 3.7, and the state-form matrix [5,] in
Equation ;.14. By varying the locations of the controllers, the
entries in the aforementioned location matrix will be changed, thus

the dynamic response will be modified.
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Cne method of.selecting the optimal controller locations is to
consider the modal shapes of the structure. The modal shapes of the
few lowest modes that we select to control give useful informétion
about the most beneficial locations. The maxima of these modal shapes
in a given mode are obviously advantageous locations for the
controllers. However the determination of the optimal locatioms for a
combination of modes is more of an intuitive procedure, but
nevertheless very useful. Another method for the optimal locatiqnﬁ
selectiop is one proposed by Martin and Soong (34). In this apprcach a

performance index of control energy is minimized in the time peried of

interest. This performance index is defined by the integral

g = .[,ff{u(t)} " (uipy dt (9.17)

where tr is the final time. The concept here is that if the choice of
the controller locations is to be optimal, the control work performed
by the control system as reflected in Equaticn 9.17 is to be a
minimum. In the course of the present study it has become obvious that
minimization of the performance index of -Equation 9.17 alone may not
lead to the optimal solution since when the control energy is reduced
the response is bound ;o be increased. Therefore a new performance
index is suggested that reflects upon the measure of the reduction of

the structural response, given as

o = fo a1 T @) de 9.18)
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This index should also be considered in deciding whether or not a
given combination of ' controllers is truly optimal. Extensive

discussion of these c¢riteria is given in the numerical examples.

D. CCOMPARISON OF GLOBAL AND CRITICAL-MODE CCNTROL

A comparison of the global instantaneous closed-loop algorithm
derived in Section D of Chapter V, and the critical-mode control‘
algorithm derived in Section A-of the ‘pre-sent Chapter is carried ocut.
An eight-story shear - building is congidered whose structural

properties are: ky = 10263 kipfin (179700 kN|m),  ky =937 4 kipfin (164140 &N [m),

ks = T190.6 kipfin ( 138430 kNIm )y, ky = 684.1 klipfin ( 119790 kNf{m ),
k¢ = 33835 kipfin ( 94290 &Nim ), Ry o= N0 kpfin (70040 AN[mo),
ky = 00 kipfin (0040 kN[m ), . kg = 0.0 kipjin (70030 ANfm ),
m; o= 2kip — ncczlin( I0Meg), ;=1,..,8, and 3 % .critical damping ' i.n all

‘the modes. The earthquake excitation used is the N-S component of the
£l1-Centro earthquake of May 18, 1940, shown in Figure 23. The
structure is equipped with eight active tendons, one on each floor.
The weighting matrices [Q], and [R], are assumed diagonal with the
values R(i) = 006, (= 1..,8 and Q(//) = 500, /= 1,..16. The global
algorithm considers control of all eight modes as was -done in Chaprer
V, and the cricic;l-mode algorithm considers control of only the first
and second mode. The results are shown in Figures 68 and 69. In Figure
68 the eighth fl0or relative displacement is shown. It can be observed
that the two-mode controcl is almost as effectiﬁe as the global contrél

for this structure and excitation. Figure 69 shows the first floor
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control force and we can observe that in general the two algorithms

require similar control forces.

E. SPILLOVER USING ARTIFICTAL EXCITATION

The structure of Section D equipped with only two active tendons
located at the two bottom floors 1is subjected to an artificial
earthquake ground acceleration. The excitation is a combination of
three sinusoids centered around the first, second and third
frequencies of the structure of 3.5 rad/sec, 9 rad/sec and 15 rad/sec;
respectively. These sinusoids are weighted and scaled to reflect a
peak magnitude of ground acceleration of 0.2] g and to excite the first
three modes. The purpose here is to evaluafe the spillover gffect. The

artificial excitation, designated as Excitation 1, is given by

X, () = 05g(2sind5c+sin%+3 sinlst) (9.19)

and is shown in Figure 70. The critical-mode algorithm was used to
control the first and second modes. The comparison of the no-control
and the two-mode controcl response of the eighth-floor relative
displacement subject to Excitation 1 is given in Figure 71. The
required control forces for the first and second flcor tenden
controllers are shown in Figures 72 and 73. The eighth floor relative
displacement shown in Figure 71 is split into the modal contributions
of the fi;st three modes and is compared with the no-control case.
Figure 74 shows the first mode response, Figure 75 the second, and
Figure 76 the third mode response. While modes one and two are

controlled, mede three is not, which shows the spillover effect. This
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is because the critical-mode algorithm we have used attempts to

control only the first two modes, which in turn excite the third mode.

F. OPTIMAL LOCATION OF CONTROLLERS: EXCITATION 1

The two approaches outlined in Section C for selecting the
optimal locations of contreollers are applied to an eight-story shear
building with two active tendons. The two tendons can be located on
any of the eight possible locations. The c¢ritical-mode algorithm is
used and the first and second mode are controlled. The earthquake
excitation is Excitation 1 shown in Figure 70. The structural
properties are the same as those of the example in Section D, except
that only 1 % critical damping is considered in the present example.
' The weighting matrix [Q] is the same as in the example of Section D,
but matrix [R] has only two elements at the diagonal fixed at the
values R(l,1} = R(2,2) = 0.15. The modal chocice is made from a plot of the
first two modes as shown in Figure .77. It is suggested that for the
first mode the 8th floor would be a suitable choice, and for the
second mode the &4th floor. TFor the performance indices choice, using
Equations 9.17 and 9.18, several trials were made and the best choice
was for the 5th and 6th floors. A comparison of the performance
indices for control energy given in Equation 9.17 and for controlled
response given in Equation 9.18 is shown in Table V. As can be seen
both the control energy and response indices are less for the Sth and
6th floor choice. The maximum relative displacements and accelerations

for all the floors are less for the Sth and 6th floor cheoice. The
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TABLE V. OPTIMAL CONTROLLER LOCATIONS : FIXED R(I,I) - EXCITATION 1
( 1 kip = 4.45 kN ), (1 in = 25.4 mm )

Locations 4 & 8 5& 6
Control Energy 74829 . 74132
Response Index 368 266

Maximum
Displacement (in.) {(in.)

Floor 1 1.94 1.72

Floor 2 3.27 2.95

Floor 3 3.43 3.21

Floor & 3.40 2.45

Floor 5 5.95 4.74

Floor 6 6.67 5.78

Floor 7 5.61 4.16

Floor 8 3.64 6.89

Maximum
Acceleration (% g) (%g)

Floor 1. 90 80

Floor 2 146 127

Floor 3 134 109

Floor 4 © 55 40

Floor 5 148 140

Floor & 189 173

Floor 7 59 47

Floor 8 179 152

( kip ) ( kip )
Maximum 4th 8th 5th 6th
Control Forces 92 164 95 179
R(1,1) .15 .15
R(2,2) .15 .15
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maxima of the control forces for the 5th and é6th floor choice is

slightly greater.

For the same structure, another compdrison is made between the
two cases of modal shape and performance index choices. This time the
elements of the weighting matrix'[R] are allowed to be differént in the
two choices. The elements of matrix [J] are still fixed. The reason for
allowing the elements of matrix [R] to be different in the two choices
is to make the maxima of the control forces for both choices equal. In
this sense a better comparison can be carried out. The results of this
.comparison are shown in Table VI and Figures 78 through 84. Both the
control energy and response performance indices are less for the 5th
and 6th floor  choice. Similarly the maxima of the relative
displacements and accelerations for all the floors are 1éss for the
5th an& 6th floor choice. The maxima of the coﬁtrol forces are equal
‘and the elements of matrix [R] are‘ different as shown in Table VI.
Figure 78 shows the response for the 8th floor relative displacement
- without contrel, split into the first three modes. It can be seen that
Excitation 1 excites the second and third modes considerably. A
comparison of the required control forces for the two choiées given in
Figures 79 and 80 indicates that they are approximately equal. The two
choices are compared for the 8th floor relative displacement in Figure
81. It is seen that the 5th and é6th floor choice reduces the response

more effectively.
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TABLE VI. OPTIMAL CONTROLLER LOCATIONS - EXCITATION 1
( 1 kip=4.45 kN ), (1 in =254 mm )

Locations 4 & 8 5&6
Control Energy 93283 83716
Response Index 331 249

Maximum
Displacement (in.) (in.)

Floor 1 1.96 1.71

Floor 2 3.31 2.93

Floor 3 3.44 3.17

Floor 4 3.20 2.38

Floor 5, 5.70 4.64

Floor 6 6.29 5.59

Floor 7 5.09 4.03

Flocor 8 8.06 6.64

Maximum
Acceleration (% g) (%g)

Floor 1 92 80

Floor 2 149 127

Floor 3 138 110

Floor & 55 41

Floor 5 149 138

Floor 6 189 172

Floor 7 57 &7

Floor 8 180 152

( kip ) ( kip )
Maximum 4th 8th Sth éth
Control Forces 150 154 149 151
R(1,1) .085 .095
R(2,2) . 160 .180
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The 8th floor controlled response is split into the first three modes
in Figures 82 through 8&4. The 5th and 6th floor choice is more
effective for the first and second mode response. From Figure 84 note
the presence of the spillover effect on the third mode, which is to be

expected since we control only the first and second mode.

G. OPTIMAL LOCATION OF CONTROLLERS: EXCITATION 2

A second excitation, Excitation 2, is applied to the same
structure presented in Section F. The purpose of this example is to
test whether the optimal locations of the two tendons is still optimal

for a different earthquake excitation. Excitation 2 is .given by

X () = 02g(2sin35c+7 sin9 +3.3 sin 15¢) (9.20)

and is shown in Figure 35. It excites the second mode more than the
othér modes. Figure 86 shows the response of the 8th floor for the
three modes without control. The elements of the weighting matrix [R]
are different in the two choices. The elements of matrix [Q] are fixed.
The results are shown in Table VII. The 5th and 6th floor choice is
still better than the modal choice of 4th and 8th floor. Note that the
response index is less and control energy is higher for the 5th and
6th floor choice. The simulation shows that the response index may be
a better measurement than the control energy. A comparison of control
forces is given in Figures 87 and 88, and we observe that they are

reasonably close. The two choices. are compared for the eighth
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TABLE VII. OPTIMAL CONTROLLER LOCATIONS - EXCITATION 2
( lkip=4.45 KN ), (Il in=25.4mm )

Locations 4 & 8 5& 6
Control Energy 124996 130195
Response Index 604 480

Maximum

Displacement (in.) (in.)

Floor 1 2.77 2.39

Floor 2 5.07 4,37

Floor 3 6.39 5.46

Floor 4 6.39 5.39

Floor 5 6.05 5.25

Floor 6 3.65 4.05

Floor 7 6.49 6.05

Floer 8 8.75 8.18

Maximum

Acceleration (% g) (% g)

Floor 1 298 80

Floor 2 149 127

Floor 3 138 110

Floor & 55 41

Floor 5 149 ' 138

Floor 6 189 172

Floor 7 57 47

Floor 8 180 152

( kip ) ( kip )

Maximum 4th 8th 5th 6th

Control Forces 150 152 153 152
R(1,1) .075 .30
R(2,2) . 620 .720
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floor relative displacement, and its first three modal contributions
in Figures 89 through 92. It is observed that overall the performance
index choice of 5th and 6th floors is better. It produces a slightly
higher response in the first mode but less response in the second and

third modes.

A note has to be made about the modal choice. It is interesting
to note that after a modal choice has been made,‘the modal shapes of
the controlled system are no longer the same as those of the original
uncontrolled system. This faect is illustrated by finding the
closed-loop eigenvalues and eigenvectors of the controlled structure.
The procedure used calculates the eigenvalues from the state-equation
as follows. The optimal control of Equation 5.32 is substituted in the

state-equation, Equation 3.13, to give

oy = | (3-S5 1A 27001 | o) + () Ky 0 9.21)

from which the closed-loop-system eigenvalues and eigenvectors are
calculated. The procedure i1s the same as the one used for the standard’

eigenvalue problem,
{2t} = [A){z(0} (9.22)
with the matrix [A] defined as the closed-loop-system matrix

w1 = | ta-F e v | 0.2

The no-control and closed-loop-system eigenvalues and eigenvectors of

the structure of the present example are shown in Tables VIII and IX.
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TABLE VIII. NO-CONTROL AND CLOSED-LOCP EIGENVALUES

NO-CONTROL EIGENVALUES

Mode Eigenvalue Frequency % Damping
1st ) -.035 + 3.493 1 3.493 rad/sec 1.00
2nd -.092 + 9.203 1 9.203 rad/sec 1.00

4th & 8th Floors ( CLOSED-LOOP EIGENVALUES )

Mode Eigenvalue Frequency % Damping
ist -.077 + 3.497 1 3.498 rad/sec 2.20
2nd -.265 +9.297 1 9.301 rad/sec 2.85

S5th & 6th Floors { CLOSED-LOOP EIGENVALUES )

Mode Eigenvalue Frequency % Damping
1st -.107 + 3.499 i 3.501 rad/sec 3.06
2nd -.545 + 9,291 i 9.307 rad/sec 5.86
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From Table VIII one may note that the magnitude of the frequency in
the two modes is slightly incregsed. Also note that the 5th and é6th
floor choice produces higher closed-loop damping ratios for both the
first and second mode. From Table IX, the magnitude of the
eigenvectors is slightly modified, but more significantly the phase
angle varies in the closed-loop cases from that of the no-control
case. This is important as shown in Figure 93 for a simple two
degree-of-freedom structure. The structure on the left is vibrating
in a proportionally damped mode, in which the two degrees of freedom
are vibrating either in-phase or at a phase angle of 180 degrees. The
structure on the right has a varying phase angle as would be the case
for a controlled structure. In Figure 932 the phase angle 1is 155
degrees. It can be seen that the modal shape is complex in this case
and .that the fixed mode shape assumed for the uncontrolled structure
is no longer present. The performance index choice is definitely
better than the modal choice and this can be attributed ﬁo the more
rational procedure of <calculating the indices for all the

possibilities and then choosing the best combination.
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TABLE IX. NO CONTROL AND CLOSED-LOOP EIGENVECTORS

NO CONTROL EIGENVECTORS

-

lst mode - 2nd mode

Magnitude Phase (deg) Magnitude . Phase (deg)
. 109 -90. -.352 90.
.226 -90. -.674 90.
.358 -90. -.913 90.
.498 -90. -.960 90.
.652 -90. _ -.720 90.
.821 -90. -.091 ' 90.
.939 -90. : .576 . 90.

1.000 -90. 1.000 . 90.

4th & 8th Floors ( CLOSED-LOQP EIGENVECTORS )

lst mode 2nd mode
Magnitude Phase (deg) Magnitude Phase (deg)
.110 -90. .375 -90.
.227 -9Q. L7117 -90.
. 360 -90. .966 -90.
.498 -92. 1.000 -92.
.653 -91. .735 -94.
.822 -91. .091 ~-141.
.940 -91. -.6438 95.
1.000 -91. -.987 82.
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TABLE IX. {continued)
S5th & 6th Floors ( CLOSED-LOOP EIGENVECTCRS )

lst mode Znd mode
Magnitude Phase (deg) Magnitude Phase (deg)
.110 -89. -.343 719.
.228 -89. ~-.655 78.
. 360 -89. -.883 77.
.500 -89. -.925 75.
.653 -91. -.685 76.
.820 -92. : -. 142 126.
.939 -92. .571 -98.

1.000 ‘ -92. 1.000 -93.
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PHASE = 180°  PHASE = 135°

Figure 93. Complex Modal Shapes
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X. CONCLUSIONS

This study has shown that active control systems, including the
active mass damper and active tendons system, are effective in
reducing the response of building structures to earthquake and wind
loads. The active ten@ons system implemented with the Ricatti
closed-Loop algorithm showed good agreement when compared to

experimental results.

The non-optimal closed-loop, Ricatti optimal closed-loop and
instantaneous optimal open-loop, optimal closed-loop and optimal
open-closed-loop algorithms were reviewed and discussed. All of these
algorithms can be used for the implementation of active control for
both earthqﬁake and wind excitations. From the point of view of
reliability of measurements the instantanéous optimal closed-loop
control algorithm is favored, especiaily in the case of wind
excitations. It is also favored because time-delay in the measurement
of the excitation is eliminated. In addition, since the feedback gain
matrix for the closed-loop control does not involve the structural
properties of mass, stiffness,and damping, the instantaneous optimal
closed-loop control algorithm is insensitive to imprecise estimation

of the structure's properties.

The structural optimization of building structures equipped with
active control systems was carried out, with constraints imposed on
the allowable floor displacements, control forces, and natural
frequencies. The objective function chosen is structural weight and

the design variables are the floor stiffnesses and some control
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parameters. Structural weight is effective in redestributing the
structural stiffness to the different floors for increased structural
strength. The structural optimization is followed by minimization of
control energy, in order to obtain the optimal weighting matrices that
will reduce the level of the optimal control forces. The design
variables are the elements of the weighting matrices, which are

assumed diagonal matrices.

The optimal design of building structures equipped with active
control systems is shown to be economical in both saving structural
material and reducing the control energy demand. The structure is
strengthened bj the optimal redistribution of the stiffnesses and can
resist the earthquake and ‘wind excitations effectively using the
active control systems. Structural optimization.has the capability of
varying the constraints imposed on structural response andl the
magnitude of the ccntro.l forces; this allows the designer a wide

spectrum of options.

A critical-mode optimal closed-loop algorithm was developed, and
the spillover effect was shown to be considerable. For seismic
structures the prospect of applying the critical-mode control is very

~

promising since the response is governed by the lowest few modes.

Two methods for determining the optimal locations of a limited
number of controllers have been investigated. The first method is
based on the modal shapes of the uncontrolled structure. However these
modal shapes are changed when the control system is enforced and

therefore the optimal locations may be difficult to be determined.
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This. is especially true when a large number of modes is to be
controlled. The second method is based on finding the locations of
controllérs that will minimize the control energy and response
indices. The second method is preferable and this can be attributed to
the more rational procedure of calculating the performance indices for
all the possibilities and then choosing the best combination. It was
found that the response index is a better measurement than the control
energy and that the optimal locations of the tendons remained optimal

for two different artificial earthquake excitations.

The issue of time-delay was explored and ways of compensating for
it were suggested. However as the control system technology advances,

the effect of time-delay may become negligible.
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APPENDIX A
EARTHQUAKE EXCITATION - KANAI-TAJIMI SPECTRAL DENSITY

The earthquake excitation derived herein is known as the
Kanai-Tajimi power spectral density {24). This earthquake excitation
is used as a ground acceleration input for the non-optimal closed-loop
control algorithm of Chapter IV, Consider a white noise process
having a power spectral density function of amplitude S to be the
input to tﬁe ground, which is modelled as a linear filter shown in
Figure 94. The ground properties depending on the particular
geological location are specified as w, = ground frequency, and ¢, =
ground damping. The power spectral density of the output Ofg(w) from
the linear filter of the ground model is to be derived. Let z, be the
ground displaéement, x, be the input displacement, and the quantities

K,y C

s Cg» and m,, be the "stiffness”, "damping”, and "mass" of the ground,

respectively; the equation of motion can be written

MyZy + €2, — Xg ) + Kol(2, — xp) =0 ‘ (4.1}
where in Equation 4.1 a dot denotes differentiation with respect to
time. Using the relations for frequency and damping

kg _ 2
—_wg.

Ce
mg E (A.2)

= 2wy,

Equation 4.] can be written as

Byt 2wy g2y + wp 2, = 2wy Ly Xy + 0 X (4.3)
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Figure 94. SDOF Model for Earthquake Excitation
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Taking the Laplace transform of Equation 4.3

- ; r 2z
(57 2, — 2,(0) 5~ 2(0)) + 2w, ¢ ¢ %

-3

(5%, -27,(0)) + e )

= 2wyl (55, — 5 (0)) + w0 X,

where the overbar denotes the Laplace transform of a quantity, ands is

the Laplace operator. Assuming zero initial conditions

x,(0) = 2,(0) = 0, 2(0)=0 (4.5)

and collecting terms, Equation 4.4 becomes

BT+ 2wy L5t wg ) =T (Qwg g5+ w,) (1.6)

Therefore the transfer function of the filter is

‘ wg + 2w, CgS ’
His) = = > = - > (4.7
wg+2aﬁcg:+5 .

t
0:"

aftl

The frequency response function /Hy{iw) can be obtained from the transfer
function Hﬂ:) , by replacing s with (iw), where /[ = v—1. The frequency

response function becomes

iw
' 1 + 2C&'Eg— ‘
liw) = : _ (A.8)
(73 w
ng

The power spectral density of the response is given by the well known

expression

DX (o) = [l §* (:1.9)
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in which §* is the amplitude of the power spectral density function of

the input acceleration, and

Nty ()® = 171, (iw) I (o) _ (1.10)

where |.|| denotes magnitude, and f@(hﬂ is the complex conjugate of

{{ (iw). Performing the algebra one can show using Equations 4.8 and 4.10

that
2
1+4¢2 2
. T w
11 i) = u (A.11)
2 2
(w 2 y2 W
U.Jg wg
Substituting the expression for|Hﬁ(MﬂH2 in Equaticn A.9 , the power
.spectral density of filtered white noise is obtained
{l +40} —“’iJ s?
& 2
o (Dg
PX(w) = (4.12)

2

pi
W 2 2w
(l - z) Ty
Wy w,y
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APPENDIX B
WIND EXCITATION

In order to test the Ricatti closed-loop and instantaneous
algorithms, a set of artificial wind excitations was generated based
on design spectra for wind. The artificially generated wind
velocities are used to create correlated wind pressures that are then
applied on the individual floors of the strpcture. These artificial
wind excitations can be applied for all three cases of open-loop,

closed-loop, and open-closed-loop control.

The wind flow is assumed stationary-in time and non-homogenous in
space. Physically the wind is composed of two velocity components,
steady and turbulent flow. The wind velocity vector at discrete points

can be expressed as
{Fr0} = (FA} + (S (ha)} (8.1)

where{i?hn is the mean wind velocity vector at different heights, @,
and {f(A#)} is the dynamic component of the velocity. The procedure for
determining the mean wind velocity at any height 4, is as follows : The
reference wind velocity at A = 10 meters is adjusted for different
averaging times and different terrain conditions, and the logarithmic
law (51) is used to obtain the mean wind velocity

(F) = +/ ln%
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in which x = Von Karman's constant, f/ = shear velocity constant, and

hy = roughness length which depends on the terrain roughness.

The dynamic component of the wind velocity is considered to be a
stationary random process. The power spectrum of the longitudinal

fluctuations accepted for design, given by Simiu and Scanlan (51), is

n Sthn) 200 £
7 (Es0EYP (6
E = Ff(:) (B.4)

where n is the frequency of the velécity components of the fluctuating
part of the wind velocity. Using Equations 83 and B84 one can
determine the dynamic component of the velocity, {f(ht)}. The vector
{f(ht)} is descretized into ¥V components f({), j = l,.., ¥ corresponding to
the N floors of the structure. From Equations B3 and B4 one may note
that the wind spectrum varies with height, hence each floor has a
unique spectrum. A random process is created that has a specific
correlation, based on an experimentally derived coherence function
developed by Davenport (16), for the entire structure. Consider the
spectra of the first and Nih fleor, as shown in Figure 95. Using the
common part ACD between the two spectra (shown shaded in Figure 95),
with the corresponding spectral density S,.p, N uncorrelated velocities
B;(1) are generated. The algorithm proposed by Shinozuka and Jan (50) is

-

used

L
B1(0) = V2 ) SSrcp (B cos2mat+ dy), j=1,.,N (8.5)

=
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in which the range of frequencies containing the natural frequencies
of the str.ucture has been divided into L ©parts. Note that
Am = ng y—n. The angle ¢; is a phase angle which varies randomly
between zero and 2z, with a uniform probability distribution. The
clements of {f(1)} are then spatially correlated by using the

transformation
(0} = [D] {BW) ’ (B.6)

where [} is a lower-triangular matrix derived on the basis of the
cross-correlation matrix [H] of the process {#(t)}. The elements of [H]
are derived by using numerical integration of the co-spectrum between

points; and j+ !. The co-spectrum given by Vickery (58) is used

SStrm = JS, () Spy () cohirm) (B.7)

where r is the relative distance between points; and j+ |, and coi{r.n) is
the coherence function proposed by Davenport (16), given by

coh(rn) = e " (3.8)

_ 2n [(‘13 (hj_hj+1)2+C§ (7(1'_11‘“)2]”2 (B.9)
Fh) + Fiyy)

where C, and C& are experimentally determined exponential decay

coefficients. Note that the symbol y denotes the horizontal dimension.

According to Simiu and Scanlan (51) the mean square value of the
area under curve ACE or BCD in Figure 95 is equal to 6}2. Hence the
common area ACD is equal toa(6/?), wherex<1. It is known that if [B]

is the <cross-correlation matrix of process {f(1)}, then the
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cross-correlation matrix of the process {y} is [H] given by Davenport

(17)
[H] = [(21(BI[P] | (8.10)

Since ﬂjU) are stochastically independent and all have the wvariance

-~

a(6j‘5, matrix[ﬁ] is a diagonal matrix
[B] = a(6/ (/] (B.11)

In Equation 5.10 the elements of matrix[ﬁ] are given by the integration

of the co-spectrum

H(jk) = J‘wSC(r,n) dn - (B.12)
0 .

and hence the elements of [D] matrix can be obtained from Equation B.10

by using Cholesky Decompositiocn.

Finally to account for areas ABC and CDE in Figure 95, WV
uncorrelated velocities {{(f)} are generated by using the difference

between the first and and Nth floor spectra with the common spectrum

(ACD). Define

Sanc = Sv=Sacn Scpe = Si = Sacop (8.13)
and use Equation .5 with 5,5, and S,z to obtain {£(1)}.

The dynamic component of the velocity is given by

(S} = [D1{B} + {0} (8.14)
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The mean pressures on the windward side of the structure are given by

Simiu and Scanlan (51) as follows: For the steady-state

Pam) = SF G, (B.15)

where p is the air-density, and Cp is a pressure coefficient. For the

fluctuating component

Pk 1) = p Flh) [ty 0 C,, (8.16)

where C, is an average pressure coefficient. Similar relations can be
written for the leeward side. Finally the windward pressures given by
Equations B.15 and B.16 are added to those of the leeward side and are
then mu;Ltiplied by the tributary area of éach floor tc provide the
wind force for each floor. These wind forces at each floor constitute

the wind force vector {W/(!)} to be used in the analysis.
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APPENDIX C

PERFORMANCE INDICES

1. Ricatti Closed-loop.

In order to derive an optimal contrecl force vector a suitable
performance index should be minimized. In the case of the Ricatti
closed-loop algorithm of Chapter 3, the performance index is chosen so
as to minimize the structural response and the control energy over the

time period from {4 to tr. Thus the expression of Equation 3.16

o= L7 () Q1w + )T R i) (€

i

implies that it is important that at every time instant between f; and

lr both the- structﬁral response and control energy should be at a
minimum. If it is more important that the response be small, we should
choose the elements of [J] to be large. If it is more important,
however, that the control energy be small, then we should select the
elements of [R] to have large values. One may note that while the
system dynamics are fixed as given by Equations 3.15 or 3.32, the
performance index is chosen in order to achieve a specific control
objective. Equation C.l1 is for the AT case. For the AMD case, since
there is only one control force, matrix [R] is reduced to just one

element and the performance index is given by Equation 3.47.
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2. Instantanecus Optimal Control Algorithms.

The performance index of Equation C.1 leads to an optimal control
law which requires the solution of Equation 3.34. This equation has to
be sclved backward; in time but since the aarthquake excitation is not
known apriori, its solution is not feasible. Based on the studies of
Saridis and Lobbia (48) for stochastic centrol, the overall
performance index of Equation C.l can also be written in discrete form

as

|

({20} [Q] (=0} + (0} [R] {u(0)}) ' (€2

l

2
I

w|—

—
1]

defined over the time interval of interest. (1,n). The objective is to
find the control sequence {4 {0}, {k(D}, - ; {4, (N} that minimizes /. In
their fofmulation Saridis and = Lobbia, instead of minimizing a
stochastic p;rformance index similar to Equation C.2, suggest a
step-by-step process. Equivalently in terms of the overall performance
index of Equation C.2 we can define an instantaneous performance index

as
Tty = (a0} (@1 {0} + (0} [R] (u(n)} (C.3)

This‘ performance index was suggested by Yang, Akbarpour and
Gaemmaghami for the instantaneous active contrél of earthquake-excited
structures (62). Cne may note that the instantaneous performance index
of Equation C.3 is time-dependent. This expression implies that the
structural response and the control energy are-minimized at every time

instant in the time interval of interest. The performance index of
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Equation C.3 is used in Chapter V for finding the optimal control for
the open, closed and open-closed-loop strategies. The resulting
expressions for the optimal control laws are simpler than those
resulting from the classical performance index of Equation C.1. Using
Equation C.3 instead of Equation C.l1 can be justified in terms of the
interpretation of Equatjon C.l as an area integral between times { to
{r. Thus minimization of Equation C.1 is equivalent to minimization of
the area integral, and minimization of Equation C.3 is equivalent to

minimization of the individual ordinates.

3, Critical-mode Algorithm.

The performance index derived for the instantaneous algorithms is
modified in order to be expressed in terms of the M critical modes

only. Substituting Equation 5.2 in Equation 5.1

= {[T1 W O} TOT{ITI (W, (O} + {0} [(R] ()} (C.H)

Performing the algebra

L0 = W0y [T QT3 (W, (0} + ()T [R] {uit)} (C.9)

Substituting the partitioned modal state-vector of Equation 9.7 in

Equation C.5

(W, (), (4, (),
w,m},} ”Q”T’]{{ 0},} c8)

+ (u(0} " [R] {m0)}

Jp(l) -

I
——

1w = {{lﬁr(‘)}cr {#, (l)}r} [T,] (A [T,]{E:i (){ } (\

+ {0} [R] ()}
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The product of the three matrices in the first term is partitioned as

foliows

Q. | (o, J 9

T - _
(7.1 [Q1[7] = {[Q]m | 0],

where [Q]. is a Im x 2m matrix and [Q), is a 2(N-m) x AN —m) matrix.

Substituting Equation C.8 in Equation C.7

i = [{ 0] 101+ w0} 100 (v )] 100 + v, (0} 103 ]

o) 1 (D)
(¥ (D),

(C.9)

} + (w(n)}” [R] {10}

L0 = [ ) O o () + (9,0} [Q)e (¥, (D)
+ (0 (01 TQ) (8, (), + (4 (0} QL (0, (0}, + (u()} [R] {0)}

(C.10)

For controlling the critical modes only, terms that contain products
involving the residual modes are ignored. Hence the performance index

to be minimized for controlling the critical modes becomes

40 = W )] 101 b, (D) + (w0} [R] (u(0)} (C.11)
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APPENDIX D
OPTIMAL CONTROL DERIVATIONS
Herein the derivations of the optimal control forces for the
Ricatti closed-loop and instantaneous optimal control algorithms are

presented.

1. Ricatti Closed-loop.

The derivation of the optimal control forces for the Ricatti
closed-loop follows the.classical control derivation for the linear
regulator problem. A regulator is a feedback cqntrol law which
maintains the state of the system close to a desired reference state
- during the interval (4, {}, using reasonable values of the control
force vector. Here the state is the displacement and velocity
response, and the desired reference state is the equilibrium state.
The optimal contrcl force vector {uYO} is to be derived by minimizing

a standard quadratic performance index given by

|-

[ () 101 tat0) + (w(t) " [RY 1)) ai ©.)

9
and satisfying the state-equation
{2} = [4,]{=0} + [B,] {u(0)} ' (0.2)

Define the Hamiltonian as
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A= Sz 1010} + S0} [R] (o)
+ (A0)T (L4, {a(0) + [B] (a0} — (20))

(D.3)

where {i()} Is the vector of Lagrange multipliers of dimension [2.Vx[].

The necessary conditions for optimality are

K 15 _ o _ o ’ |
ooy = o) (0} = [Q1{z0} +[4]" (A0} (D4)
—a?f)} = O ~ Ry + (8170} = (0) (D.5)
aA_ B i |
ooy - [4,](z()} + [BI{u(0)} — (z(0} = (0} (D.6)

with the transversality condition

(A} = () A 0.7
From Equation D.5 the optimal control is derived as

Wy = — IR (237 Gy (D3)

In order to find {i(:)}, Equations D.4, D.6 and D.7 are utilized. Assume

a solution of the form

() = [P (e} . (D9
Substitute Equation D.9 in Equation D.4

~ ([PW] (=0} + (PO WY = (@) (=0} + (417 [P] (=10} (0.10)

Substitute Equation D.6 in Equation D.10
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[P0 {20} + [POY A1 {=(0} + [BI {«(0}) + [Q] {=(1)}

. (D.11)
+[4]1° [P(0]{z@} = {0}

Substitute Equations D.8 and D.9 in Equation D.11

(L) + LPOD LA + L40T LPO] = LPOT B TRY (BT (P01 + 001) {2}y
=

From Equaticns D.7 and D.9 we get
(Plp] {24} = (M (P.13)

For a non-zero state {z(f)}] the non-trivial solution is from Equations

D.12 and D.13
—[PO] = [POICA]+ (AT TPO] = [POIIBILRTT (817 (PWI+101 (D19
(P = [0 . (D.15)

which are given in Chapter III as Equations 3.27 and 3.28. Similar
‘derivations lead te Equation 3.34 for the <c¢ase of the Ricatti

closed-loop algorithm for external disturbances.

?. Instantaneous Open-loop.

The derivation of the optimal control forces for the
instantaneous open-loop case of Chapter V follows. Find the optimal
control forces{uYn} that minimize the instantaneous performance index

of Equation 5.1 given by

) = (20} [T {20} + ()} [R] {u(t)} (D.16)
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and satisfy the state-equation, Equation 3.13, which can be used in

the alternative form given by Equation 5.16 as

(=0} = 7] { (A= s+ r) (4 } (D17

Substituting Equation D.17 in Equation D.16

o = {UJ{ :—A:)mr(:)}(‘{‘)}} [0}

(D.18)
' { (7] { (A (1 = A0} + (T} (-‘%i) } } + (w0} (R (0}
Simplifying the first term
s = {ine=so” +ro” (8 T )
(D.19)
17 { = a0+ (P (45) |+ oty CR Gt
The conditions for minimizing.@(o are
81,0 = 0, D0 > 0 (D 20)
s = STy (7377 (40) { tavte- s+ riop (4) |
(D21)

<420+ o (48) T arer s (4)
+ {0} (RY ()} + (u()}” [R] {ut)}

The variation of {[({)} can be expressed in terms of the variation of

{u(t)} using Equation 5.7
(L) = (117 1B o) + [T1(CY X, (D.22)

Hence
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sy = 737 (B 6{un) (D.23)
Substituting Equation D.23 in Equation D.21 we obtain

oy = sfuny BT T traT el (%){{Ar (¢ — A0} + (F(0) (Azf_)}
* { (A= a0y + Py (4E) } (ATt T e B sy (L) O

+ &)} [R] (u0)} + ()} [R] 8{u(1))
Simplifying

30 = [a{u(n}T[u,]T[QJ[T,J (49 { nvte- s+ rn (41) }
+ tun} " [R] (D) } + [ (u()} T (R] 3(u(2) (D 29)

+ { (A=A + {I‘(t)}T(%) } (1T T01[8,] o{u(t) (#) J

-

The terms in the brackets are the transpose of each other provided
that {] and [R] are symmetric matrices. In order to satisfy Equation
D.2C it suffices to set one of them equal to zero. Therefore the

necessary condition becomes

steon" 103710117 (A4) { tnvce- aop + e (A1) ]

(D.26)
+8(un)} (R ()} = 0
Substitute {I'(t)} from Equation D.22 in Equation D.26
st (817 (85) c1Ta | (vte— a0+ 11 123 o (L)
(D.27

I3 € o (&) |+ dtor 1R Gy = 0

Simplifying
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sty | (32011118, = a0t () + 0877 TQ1 0B (o) (41
(D.28)

# 27 101(CH Fyto (SL)? + [R) Guin) } =0

For a non-trivial solution the terms inside the brackets should be set

equal to zero

[(BATTOIIT] A - 80) (1) + 1817101 (€) Ko (AL )

(D.29)
+[ a1 (&) + 0 o) =
Solving in terms of {u(/))
@) = 1G1@; ) ) (D 300
where
(G = [[B,JT[QJ (8] (ALY + 1) }" | (D-300)

(©.0) = - (B 1OV IT (A :—m}(—)*wa (03 ¥yt (AL ) 309

which is exactly the solution given in Equations 5.18: through 5.20.
The second condition in Equation D.20 can be satisfied by arguing on

physical grounds.

3. Instantaneous Closed-loop.

The derivation of the optimal control forces for the
instantaneous closed-loop case of Chapter V follows. Find the optimal
control forces{uYO} that minimize the instantaneous performance index

of Equation D.l16 and satisfy the state-equation Equation 3.13 or
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equivalently Equation D.17. In addition we want the contrel force
vector to be regulated only by the feedback response vector {z(f)} as

follows

) = [T1]{a} (D.31)
where [7'1] is a time-independent gain matrix. The Lagrangian function
is given by

LF = {20} [0) {20} + ()T [R] (D)

' (D.32)
+ (" { (20} = [T (A ¢ = a0} = 71T (L) }

Substituting {I"(1)} from Equation D.22

LF = (29} Q] (20} + (w0} " [R] {(t)}
- : Al (D.3Y
+(4(0) { (20} = [T (A 0 = 80) = {181 o) + (63 %0} (B }

The necessary conditions for optimality are

OLF _ . - ‘
sz - O 2001 {z} + (4} = (O} (D.34)
ILF  _ . o Ay _

By - 20R) 0} - (837 (A0} (BL) = (0) (D.39)

GLE _ o L _ o sy

From Equation D.35

oy = (&) a1 s’ o) (D37

From Equation D. 34
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{40} .= =2[Q]{z(0} (D.38)

Substituting Equation D.38 in Equation D.37 we get the optimal control

force
. _ At —1 T
oy = - (45 R ) 1) o (039

To obtain the state-vector in closed form, first substitute Equation

D.39 in Equation D.22

(M) = (107 (G Fyo - (777 18 tR1™ 1837 107 (20 (45 (D.40)
Substitute Equation D.40 in the state-equation Equation D.17

(20} = [TI{ (At~ A0} + [T (C) Ko (&L
2

(D.41)
— - 7 N At \2
-y R " o (B4
(0} = [T (A (- A0} + (C Ky 52
- T -Al 2 (D42
- (B CRY (87 (@) (200} (L)
Collecting terms
o) | L0+ 183t (8 10 (4)° |
(D.43)
= _ ¥ Al
= [T - 80) +(C) Kyt (4E)
Finally we obtain by inversion
@0} = [Z0]E0) (D.44a)
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I ? _|
(200 = {[m 2 8 [R]"[B,JT[QJ] (D-44b)

Gy = {[m (A (= AY) +(C) K0 (-Azi)} (D-440)

which is the desired solution given in Equation 5.33.

4. Instantaneocus QOpen-closed-loop.

The derivation of the optimal control forces for this algorithm
follows that of the instantaﬁeous closed-loop control. The difference
is that the optimal control force is to be regulated by both the
ground excitation and the structural response, and is to be of the

form
(w0} = [S1]{z(0} + {S2An} (D.43)

where [S1] is a time-independent gain matrix expressing the closed-loop
feedback, and vector {S2(f)} is a time-dependent vector as required by
the earthquake excitation measurement for open-loop control. The
Lagrangian function is identical to Equation D.32; an@ the optimality
conditions are exactly the same as Equations D.34 through D.36.

Substitute Equation D.35 into Equaticn D.36

2

@0} = [T - a0} +(BICRY™ (817 tacy S0
(D.46)
+ (6 Ko (4L)
From Equation D.34
G0} = -20014d0) = ~[Q1(i=0) + (=) (D47)
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Substitute one term for {z()} from Equation D.46 in Equation D.47

(= -[Ql{tz 0} + [T 1{A (1 = AD}

o’ (D.48)
T a
+[BIIRT (81" () —— + (G} 00 (T’)}
Selving for {}{:}} from Equation D.48
[ 11+ o1 B TR [T (“’) ]{ﬂ-u)}
(D .49)
= - 101] () + [T A= a0) = (G o (1) |
, ‘ -
() = { [11+[Q1(BILRY™ (8] “‘” }
(D.50)
101 (o) + 710 0= a0 + (€ o (L) |
Substitute {i(:); from Equation DI.SO in Equation D.35
_ r ot 17
2RV} = - (8122 [11+(Q1BI(R] 87 =
(D.51)
*EQJ[ (0} + [T A1 a0) + 63 Fyo (&) |
Substituting {u(!)} on the left hand side by Equation D.45
2(RI( {S1] (0} + (520} ]
- A)2 !
= - (A )[ 11+ Q) BITRT (8] J [0) (20}
(D.52)
- " (& )[ (1« taRr (a7 A0 ]

‘101 [ 7 (A= 80} + (G o (L) ]

Equating coefficients in Equation D.52
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An

-
[S1] = —[RY' (8] —[[/H[Q][BJ[R] 81" } (g1 (D53

(S0} = [S1] {[m (A (1= 80y + (G Kyt (4L) } (D54

which are given in Chapter V as Equations 5.36 and 5.37.

The response state-vector can be derived as follows. From

Equations D.17 and D.22
(0} = (7108 0= a0y + (B0} (BE) + (€0 K0 (4E) GED

Substituting{utun from Equation D.45

0} = [TIUA, (= 00} + BT ((S1] (0} + (S20) } 5
i} (D.36)
€y 0 (L)
Collecting terms
EGEGIICORED
(057
= [T1A = a0+ (8] (520} (AL ) + (C) Ko (44)
Substituting for {S2()} in terms of [Si] from Equation D.54
L c-mamsn (4L Jew
= [TA (= 80) + (BI IS [T (A, - 80} 5 (D.5%)

+BITSING) K50 (BL )+ €3 Fyoo (4L)

Collecting terms
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[ ci-tarsu(4L) [

) |- (D.59)

m|D

- [ o1+ s

+ [ [11+ (8101 (—AZ—‘) ] (C} X0 (%’_)

Simplifying and solving for-{z(!)}

(=0} = ¥} | (D 80a)
Ial -I .

tho] = [m—m 511 (L) | [EIHEBJESI](%” (D.608)
(50} = {[7}] (A L= A0} +{C) X0 (%L)} (D.60c)

which is the answer given in Equation 5.38.

5. Critical-mode Closed-loop.

The derivation for the «critical-mode <closed-loop algorithm
follows the same pattern as the derivation for the instantaneous
closed-loop algorithm. The problem is to find the optimal control
forces{u%ﬂ} that minimize the performance index of Equation 9.3 and
satisfy the state-equation of Equation 9.4. The control force is to be

regulated by the modal state-vector as follows
()} = (K] {¥, (0} ‘ (D6l)

Following the same procedure as for the instantaneous closed-loop

algorithm, the optimality conditions are

2001 ¢ (D + {20} = {0} (D.62)

247




2[RT twy) = [THY i }(%) = () ‘ (D.63)

0l = 1A 1= 0y, = {78t + (TC) K0} (AL ) = 0 (Do
From Equation D.62

(0} = =20Q0% (v, W) | (D.65)
Substituting Equation D.65 in Equation D.63

Winp = - (A8) a1 e (el Wl (D.o6)

which i1s the optimal control force'given in Equation 9.10. Te obtain
the critical-mode state-vector, substitute Equation D.66 in the

state-equation for the critical modes, Equation D.64

2

) = (Ad— a0y, -2 7y k) LAY (00, 1, (),
(D.67)
+ (TG K0 (%)
Collecting terms
{ (/1 - (AL) [TB]EER]_'[TBL;[QJC]{¢r(0h
(D .68)
= (A= a0l + (TCL 0 (4L
which gives the solution
W) = [PIOY R (D.69a)
(AD? -
(A1) = [mc (R (TBY [ (D.69b)

248



{/92(1)} = { A L=An} + {V'C“jc}\;g(r) (%) } (D.69¢)

-

which are given as Equation 9.13.
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APPENDIX E
NON-OPTIMAL CLOSED-LOOP DERIVATIONS

This Appendix presents the derivation of the motion equations and
statistics of response of the combined AT and AMD systems for the

non-optimal closed-loop scheme described in Chapter IV.

Assuming zero initial conditions and taking the Fourier

transforms of Equations 4.2 and 4.3 yields

V= Yoo+ my(iw)? X + ¢ (iw) X, l<j<(N=1) (£.1)
[ kj(,?j—,_\’j._,)+r9, << (N=-1 (F.2)

Let the Fourier transform of the AT control fqrce be expressed by

Equation 4.36. Substituting Equation 4.36 in Equation E.2

Vi = (ki +glw) (= X_)) (£3

Using the definition of Equation 4.16, Equation E.3 can be rewritten

as
Yoo = Kg(X;— X)) (E4)

Solving Equation E.4 for.% and then substituting in Equation E.l gives

%= B et

A AP (E.5)
—_ —_ b . - ?j-l

Yj = Y_j-I+(—w H'lj+lwcj) /‘}_i+—a (£.6)
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Rewritting Equation E.6 and collecting terms

—w mj+imc-

2
=,?j_,(—w2mj+iwcj)+|il+( j)j( ?j—l (£

Ny

Kg

Combining Equations E.5 and E.7 in matrix form yields the transfer

matrix (4], of the jth floor given in thation 4.14

[
_ 1 —_ —
X ] K¢ X._
A , ! | {2 (E.8)
Yj 5 (—w m; + iw Cj) ' Y_,'_[

(—w" m+iwc) l | + ch

The transfer matrix of Equation E.8 can be written in compact form by

using the state-vector of Equatiom 4.11 as

(2 = [} (4, (£.9)
Matrix [AL- represents the transfer wmechanism of a story unit. The
state-vector (/},_, at floor level (j— 1} is transferred to the
state-vector{lﬂj at floor level j through the transfer matrix L4L. If

the jth floor unit is not equipped with an active tendon, set gfw) = 0

in Equation 4.16. Applying Eqﬁation E.9 to the first floor

{Z}l = [1‘{]1 {Z}o (5-10)

where {Z}; is the state-vector at the basement floor. For the second

floor
{2}, = [4) {Z} (£.11)

Combining Equations E.10 and E.11

(2} = [4]; 4]y {Z}o (E.12)
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Applying Equation E.9 repeatedly gives

il

e = 4, - A [4h (7} (E.13)

(D, = (AL (D, 1£L<¥=1 (E.14)

which is given as Equation &.8. The multiplication of the transfer
matrices is manipulated in the computer program. The transfer relation
in Equation E.1l4 is wvalid only for the floors | < L <(N—-1) since we
have an AMD on the top floor. For L = N,‘ this relation must be

modified to include the AMD control force.

Let the Fourier transform of the AMD control force be defined as
in Equation 4.39. Taking the Fourier transform of Equations 4.4 and

4.5 and assuming zero initial conditions

Yn = kg(Xyp) = Xa) + colia)(Xyp, — ) | (E.15)

Gy = myliw) Xy, + Ty (E.16)

Rewriting Equation E.15 and substituting.?N+1 from Equation E.1l5 into
Equation E. 16, give

Tyo, = Ty 4 E.17

N+l ™ N kd+lw Cd ( )
2

B = —mel Uy+|l - —42 {7 ' (E.18)

a4 o N kg+ iw cy N |
Substituting 4, from Equation 4.39 into Eguation E. 18, gives

3 = mdwz —

~myo* Xy+{l— —Ee— | ¥, — Xy=0 E.19

o Ay ot Cd:i N — ml@) Xy (£.19)
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Combining Equations E.17 and E.19 in matrix form yields Equation 4.10,

and the transfer matrix of the AMD, given in Equation 4.18

|
{ "k’.‘V+| } _ ‘ kd + Cq "\/N _ { {) } (I"’U)
0 ) my Yy Em(@)X

- | -
Mdm kd+ {w Cd
(Dwes = [T1{Zw ~ {JT} (E.21)
] gm((")XN
| ]
l ' k +[LD Cd»
(1] = i (£.22)
2 l mdu)
_m ——— ——————————————————
dw kd+ l'w Cd

For the Nth floor the effect of the AMD is reflected by Equations 4.6
and &4.7. Aésuming zero initial conditions the Fourier transforms of

Equations 4.6 and 4.7 are
Vy = Vo, + my(iw)? Xy + cy (iw) Xy + gmlw) Xy | (E.23)
Tyt = kn (Ky = Xyop) + £io) (Xy — Xy (£.24)

In Equations E.23 and E.24 the expressions for the Fourier transform
of the AT and AMD control forces from Equations 4.36 and 4.3%9 have

been utilized. Collecting terms
Tv= Ty, +( —mya’ +cylio)) Xy + gnlw) Xy (E.25)
Tus = L= g0) 1= T (B9
Using Equation 4.16 in Equation E. 26

Yoy = Kew(Xy—Xy_) . (E.27)
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Rewriting Equation E.27 and substituting X, from Equation E.27 into

Equation E.25, give

v v ?N—I :
Xy = Xy + Keu (£.28)

Ken M= (E.29)

+ &mlw) "?N
Combining Equations E.28 and E.29 in matrix form yields Equation 4.9
as follows

|

{'?N} - l Key {‘?N—l}
Yu ( - my @ + iw CN) ?N—l (£.30)

— mN \’D.l + iw C.V l + KCN
+{ 0 }
gm(w)XN
- . 0 ‘
D = Ay (P ey + 4 ——em E31)
{Zn = [y {(FFn= {gm(w)z‘fy} (

The houndary conditions for the combined AT and AMD case are given by

Ly = {X—%ﬂ‘} {Z} = {?Lo} (E£.32)
The earthquake ground displacement is assumed to be a Dirac delta
function X, = &(f). In Equation E.32 X; = | is the Fourier transform of
the Dirac delta function. The response is ther impulse response
function and the Fourier transform of the response (/?}-,?j) is the
frequency response function to the ground displacement. The boundary

conditions of Equation E.32 can be used to solve for the unknown
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quantities Yy Yy, Xy and Xy,,, from Equations E.1l4, E.21 and E.31.
Note that from Equation E. 14 once ?b is determined the state-vector for
other floors can easily be found. Using Equation E.l4 repeatedly to

express {/}y_; we get
(3o = Aoy [(Alaey — (412 T4] {730 (£.33)

Substituting Equation .E.33 in Equation E.31 gives

Dy = [l [Ayey - (AT (4], {Z}0+{—0-_—} (E.34)
gm(w)XN

and using the notation for the matrix product

LA(N)] = [y [Adyey -~ (4] (4] (E.35)

in Equation E.34, we obtain

Dy = [AN] (2 +{—“:-} ) (E.36)
N ° gm(w)XN ' '

Simultanecus solution of Equations E.21 and E.36 with the boundary
conditions of Equation E.32 yields ﬁy fw E}. In order to simplify the

calculations the following notation is used

(E.37)

ALI(N) ‘AIZ(N)}

[N = [AZI(N) A22(N)

where the elements of the partitioned matrices are known and are
manipulated in the computer program. Let [7] be expressed in the

symbolic form

_ o] 12
L7l = ['121 T22] (£33

255




where, from Equation E.22

l

Tl = 1, 12 = —n
kd+ lw Cy

2

m
720 = - mye, 122 = 1 42
kd‘f'lw €y

Rewriting Equations E.21 and E.36 for clarity
Ky =[Tn le] Xy _{ 0 }
0 T2zl vy, Zm(@) Xy
Tl [All(N)l 412(,\/)]{ | } +{ 0 }
Yy A2UN)| A22(N) | | 7, Zm(@) Xy
Substitute Equation E.42 in Equation E.41
Xy | _ [TIlIle] Al 412N ] 1
0 T21] T22 [ A2U(N) | 422(N) || 7,

Ti1| T12 0 _ 0
+[ 121] TQZ]{ gm(w))?,v} {gm(w)/‘?N}

Define the matrix product in Equation E.43 as [£]

£l 512]

(£] = [7yLaNy] = (LI 2L

Then Equation E.43 bécomes

Xvmil _ Tentlenlf TI2 -
{ 0 } - [521 mz] Y, +{(Tz1—n}g"‘(‘”)’r"

From the second row of Equation E.45

0 = E21 + £ ¥y + (T22 = 1) gplw) Xy
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{£.42)

(E.43)

(E.44)

(£.45)

(E.46)



From the first row of Equation E.42

Ty = AL(N)+A1AN) T,y | (E.47)
Solving Equations E.46 and E.47 simultaneously and using Egquations
E.39 and E.40 yields

> _ 204 T2TIZAU(N ) () (E48)
0T TR+ 2T A22(N ) g (@) '

which when calculated can be substituted in Equation E.47 to yield .Xy.

- From the second row of Equation E.42 we can obtain ?N as

Yy = —A2U(N) + A22(N) Yy + glw) Xy (£.49)

Finally from the first row of Equation E.41

Xyer = THU Xy +T127y (£.50)

and since from Equation E.39, T1l = I, Equation E.50 can be simplified
to
Xyp = Xy + 7127, : (E.51)

Thus Equations E.47, E.48, E.49 and E.51 describe all the unknown

quantities. The response at any floor level is given by Equation E. l4.
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