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ABSTRACT

The present study deals with the optimal design of bUilding

structures equipped with active control systems. The control systems

considered are the active mass damper, the active tendon system, and a

combination of the two systems.

Optimal control algorithms have been extensively studied for

possible adoption in the structural optimization. The studies included

the Ricatti closed-loop algorithm based on classical control theory,

non-optimal closed-loop control in the frequency-domain, and

instantaneous open-loop, closed-loop, and open-closed-loop algorithms

in the time-domain. Although all the above mentioned algorithms were

investigated for their effectiveness in structural control, the

time-domain algorithms have been extensively studied for the combined

effect of structural optimization with optimal control. Also included

in this study are a critical-mode control algorithm and the resulting

spillover effect on the uncontrolled modes, the optimal location of

controllers in conjunction with the critical-mode control algorithm,

and the time-delay in the application of the control forces.

The structural optimization is formulated as a constrained

minimization problem for which the design variables are the floor

stiffnesses of the building and certain control parameters. The

objective function is the structural weight of the building. The

constraints include floor drifts, floor displacements, control forces,

and natural frequencies.
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Structural optimization can yield a safer and more economical

structure based on rational stiffness redistribution while satisfying

a set of constraints. This study shows that active control systems are

effective in reducing the effects of an earthquake on the safety and

serviceability of structures. The combination of structural

optimization and active control can further reduce the control forces

and consequently reduce the total structural cost. This is achieved by

minimizing the required control energy, to determine the optimal

.weighting. matrices, while the structural response is still bound by

the constraints imposed for structural optimization.

The critical-mode control algorithm is developed in order to

reduce the amount of computation time which is important in the

structural optimization scheme. The spillover effect on the

uncontrolled modes is shown to be considerable. For seismic structures

th~ prospect of applying critical-mode control is promising since the

response is governed by the few lowest modes.

The critical-mode control algorithm is also used to determine the

optimal location of a limited number of controllers. Two methods are

investigated; the first is based on the modal shapes and the second

upon the minimization of the control energy and response performance

indices.

The issue of time-delay is investigated in order to be utilized

in the optimal control algorithms used in the structural optimization

process. It is recognized that as control system technology advances

the effect of time-delay may become negligible.
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I. INTRODUCTION

A. LITERATURE REVIEW

Structural control implies that performance and serviceability of

a structure are controlled so that they remain within prescribed

limits during the application ·of environmental loads. Structural

control is achieved by using passive or active control devices. The

passive devices utilize the fact that energy dissipating mechanisms

can be activated by the motion of the structure itself .

Base-isolation of the superstructure from the foundation using

steel-reinforced rubber bearings is an example of passive control for

earthquake resistant structures. Dynamic absorbers used in the

vibration control of machinery are mass~spring systems appended to the

structure. They have been applied to tall buildings in the form of

passive tuned mass dampers, such as the John Hancock bUilding in

Boston (60), and the Citicorp Center in New York (46). Passive

devices although effective in reducing the response. are limited to

just one mode of vibration as pointed out by Chang and Soong (6).

Active control devices require external energy for their

operation. The devices under consideration can be classified into four

categories: 1) active mass damper. 2) active tendons. 3) appendages,

and 4) pulse control.
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Dynamic absorbers or mass dampers can be coupled with an external

power supply and an electrohydraulic actuator to form active mass

dampers. The actuator is operated by an active control algorithm

which can be non-optimal, sub-optimal or optimal, where the optimality

refers to the minimization of a cost functional. The cost functional

to be minimized is the total energy of the system, including the work

done by the control. forces. The active control algorithm is

implemented on a digital or analog computer. Such active devices

produce a larger reduction in response than passive devices. Active

mass dampers, or' active tuned mass dampers as they are sometimes

called, can be used for wind or earthquake excited 'structures.

Active tendons, or cabies, are a second category of active

control systems for civil engineering structures. The tendons can be

tensioned using hydraulic rams. Internal forces are generated that are

used to adjust the deformations of the structure. Displacement and

velocity sensors are used to monitor the response due to external

excitations. If the response exceeds certain limits the controller

determines the required adjustments with the aid of the control

algorithm, and activates the hydraulic actuators which tension the

tendons. The feasibility of using active tendons to control seismic

structures was tested experimentally by Soong, Reinhorn and Yang

(15,53).

A third category of active control systems for tall bUildings is

that of appendages. Appendages are attachments to the top of the

bUilding that resemble aircraft wings with variable geometry. The

appendages are movable and their position is computed based on current
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deformation measurements. Simulation studies by Soong and Skinner for

structures equipped with appendages have shown substantial reductions

in the displacements of tall buildings under wind gusts (54).

Pulse control is a fourth class of active structural control.

Pulses are thrusts applied over a short period of time in the form of

either air and gas jets or tendon prestressing. These thrusts are

applied using pulse generators located at various positions in the

structure. The pulses are applied to the structure at discrete

time-intervals and their intensity is computed by a control algorithm

based on response measurements. Pulse control experiments have been

carried out by Masri, Bekey and Caughey using jets (35).

The application of control theory to aircraft and satellite

systems. has been extensive. The problems that are identified and

. solved range from stochastic control of aircraft in turbulence (22),

to spacecraft· attitude control (31). Several studies and experiments

of active control have been carried out in the aerospace field. The

experiments were performed to actively damp vibrational motion of

flexible structures. Schaechter has performed an experiment employing

a pinned-free flexible beam (49). The experiment demonstrated active

dynamic control, adaptive control, and associated hardware

requirements and mechanization difficulties. Hallauer, Skidmore, and

Gehling. studied the modal-space active damping of a plane grid,

theoretically and experimentally (21). Meirovitch et al., studied the

nonlinear control of. an experimental beam (39). The above studies are

examples of laboratory implementations to either validate theoretical
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control concepts, or determine the reason for difficulties and

!

ineffectiveness in control strategies.

In the field of active control as applied to civil engineering

structures, the effort has been concentrated' in the development of

optimal control algorithms. Recently some experimental work has also

been done. Abdel-Rohman, Quintana and Leipholz have examined the

. .
active control of flexible structures in t.erms of closed-loop control,

and a combination of closed-loop and open-loop control (2). The

classical Ricatti approach was used. The weighting matrices were found

by trial and error,and the equations of motion were approximated by a

limited number of modes. Abdel-Rohman and Leipholz presented a

general approach that solves the optimal control problem ~l). In their

approach a quadratic performance index is minimized and constraints

are imposed on the str~ctureI s deflections, accelerations, and on the

magnitude of the control forces. A deterministic excitation was' used·'

for simulation studies.

Basharkah and Yao attempted to find an optimum gain matrix in the

application of active control to civil engineering structures (4). The

technique was based upon a stochastic approach and modal analysis in

order to reduce the displacement response of building structures to

earthquakes. The topic of optimum gain matrices was studied by Cheng

and Pantel ides in the context of optimum weighting matrices. The

concept of reducing the control force levels by finding the optimum

weighting matrices was formulated as an optimization problem to

minimize control energy (13).
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Yang has studied the application of the active mass damper or

active tendon systems to tall buildings subject to earthquake

excitations (61). The random vibration analysis was formulated in

terms of the transfer matrix approach, thus obtaining the frequency

response of the structure directly. Parametric studies of the

efficiency of the non-optimal control law were carried out in terms of

the control parameters of normalized feedback and loop gains. Yang and

Samali applied the transfer matrix approach to tall buildings in

along-wind motion (65). The active tendon or active mass damper

systems were investigated. The random wind flow was assumed stationary

in time and non-homogenous in space. The standard deviatipns of the

response and of the control forces were computed for a range of the

control parameters of normalized feedback and loop gains.

Cheng and Pantelides presented an algorithm for optimal design of

structural systems equipped with active· tendon and/or active mass

damper systems (9,10) which is given in Chapter IV. The structure was

subjected to a stochastic earthquake excitation and a non-optimal

frequency-domain using the

control law was used. The analysis

transfer matrix

was performed

method. The

in the

structural

optimization was carried out using structural weight as the objective

function, and the standard deviations of the displacement response and

of the control forces as constraints. It was observed that the

optimum structure with the active control system can effectively

reduce the response.
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Meirovitch and Silverberg studied the control of structures

subject to seismic excitation, using the independent modal-space

control method (IMSC) (42). In this method the structure is controlled

firs tdes igns moda 1 controls so as to

by controlling individual

. (37 , 41 , 44) . In the IMSC one

modes independently of one another

control the lower modes .. These modal controls do not represent actual

controls because they are· derived in the modal domain, so an

expression is formulated to relate the modal controls to the actual

controls. An optimal IMSC closed-loop control scheme was applied to a

three-story structure subj ected to a real accelerogram. The results

were satisfactory.

The: topic of· controlling only a few modes of' vibration of a

flexible dynamic system has received considerable attention. Martin

and Soong have showed that modal control theory can be applied

fruitfully to affect direct control of specific structural modes (34).

Balas has presented the feedback control of N modes of a flexible

system and has treated the problem of control spillover into the

uncontrolled modes (3). Meirovitch and Oz have presented an

independent modal-space control scheme for the control of positional,

attitude, and elastic motions for a discretized model of a

distributed-parameter flexible spacecraft (40). The control scheme was

demonstrated for non-optimal and optimal proportional control laws as

well as for on-off control. Recently, a stochastic independent

modal-space estimation and control method was· presented by Oz and

Meirovitch (45). The method is capable of estimating and controlling
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all the modes of a distributed-parameter system

environment.

in a noisy

Yang and Lin have studied an optimal open-loop critical-mode

control algorithm for tall bUildings under stationary earthquake

excitations (63). The control systems considered were the active

tendon or the active mass damper systems. The critical-mode control

was found to be superior'to the global control, insofar as the amount

of on-line computations was concerned. The spillover effect, resulting

from the excitation of the uncontrolled modes by the control forces,

was found to be negligible under certain conditions. It was also

observed that the optimal critical-mode control is likely to be as

effective as the optimal global control, since the response of tall

buildings under earthquake excitations is usually dominated by a few

lowest modes. Yang and Lin have also applied the optimal open-loop

critical-mode algorithm to buildings excited by an earthquake modelled

as a non-stationary random process (64). It was shown that the

building response and the required active control forces computed

based on the stationary earhquake model are conservative.

In this study Chapter IX presents the derivation of a

critical-mode optimal control algorithm based on the ins.tantaneous

closed-loop control. The algorithm is used to evaluate the spillover

effect on the residual modes, and to study the problem of optimal

location of a limited number of controllers.
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The concept of the instantaneous optimal control was introduced

by Saridis and Lobbia in their search for simplified optimal

stochastic control algorithms (48) . Instead of minimizing an integral

performance index it was proposed to minimize a sequence of

single-stage processes. . Thus the optimality of the control is

achieved at each instant of time. The benefit of instantaneous optimal

control algorithms was the simplicity of the derived control law as

compared to the traditional control law based on the integral

performance index.

The concept of instantaneous optimal control algorithms was

recently adopted. by Yang, Akbarpour and Gaemmaghami for analysis of

seismic structures (62). In their approach instead of an integral

performance index, a time-varying performance index is minimized. The

optimal open-loop, closed-loop, and open-closed· loop . algorithms were,

developed. The instantaneous nature of these algorithms allowed the

consideration of the on-line measurement of the earthquake excitation

for the open-loop and open-closed-loop algorithms. The resulting

optimal control laws are simpler than the classical Ricatti approach.

The instantaneous optimal open-loop algorithm was used by Cheng

and Pantelides for the structural optimization of seismic structures

equipped with an active mass damper or active tendon system (11),

which is given in Chapter VI. The objective function to be minimized

was structur·al weight and constraints were imposed on the maximum

floor displacements and maximum control forces. It was found that

structural optimization combined with active control produces an
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efficient and economical design, while keeping the control forces

within a practical range.

Recently Kobori, Kanayama and Kamagata, presented an approach on

"dynamic intelligent" building systems to control earthquake motions

(27). A combination of open-loop and closed-loop control was proposed.

It was suggested that o~en-Ioop control will remove the natural period

of the structure from the seismic spectral peak period, and

closed-loop control will reduce the inertia force created by the

seismic excitation. The algorithm was applied to an experimental three

degree-of-freedom model.

Recently, Lin, Chung. Soong and Reinhorn have made an

experimental study of a standardized model under base excitation

supplied by the earthquake simulator at SUNY/Buffalo (32). The Ricatti

closed-loop and the instantaneous control algorithms were tested, and

comparisons were made between analytical and experimental results.

Time-delay in the application of active control is an important

problem in the implementation of structural control. The problem was

considered in an experimental study of the active tendon system

carried out by Chung, Reinhorn, and Soong (15). The time-delay for the

single degree-of-freedom experimental model was incorporated in the

elements of the gain matrix of the optimal control algorithm. Another

interesting problem in the implementation of active control is the

determination of optimal controller locations when, due to practical

and economic considerations only a limited number of them are

available. Soong and Chang have developed a minimum control energy
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criterion within the framework of modal control to address the problem

(52) . Simulations for a three-story structure showed that the

arrangement that satisfied the minimum control energy criterion also

produced the minimum response.

The use of structural optimization techniques as an ordered

approach to design decisions has been extensively developed in the

past two decades.

electronic co~puter,

Structural optimization with the aid of the

.
can relieve the designer from repetitive

calculations and reanalysis. Many types of optimization problems can

be identified. An efficient structural optimization program

ODRESB-3D, was developed by Truman and Cheng, based on optimality

criteria (14,55,56). The procedure can be used for design and

sensitivity analysis of three-dimensional reinforced concrete and

steel bUildings, subject to multi-component earthquake excitations.

Multiple. constraints are included in the optimization such as

displacement, stress, frequency and drift constraints. The algorithm

includes several analysis capabilities including static, modal

analysis and the ATC-03 analysis procedures. The modal analysis was

used to study multi-component excitations, and the ATC-03 provisions

were used to study the effects of the ATe-03 parameters such as soil

profile, geographic location, plan and vertical irregularities, and

ATC-03 stability function.

Geometric non-linearities such as· the p-~ effect can also be

taken into account in the optimization of tall buildings as

demonstrated by Cheng and Botkin (7). Recently Cheng and Juang have

developed an optimization algorithm designated as ODSEWS-2D-II, for
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structural design of two-dimensional structures with various building

codes including UBC, Chinese-TJ-1l-78, ATC-3-06 Tentative Provisions

and others. The objective is to obtain the minimum weight or minimum

cost of a structural system subject to static, earthquake and wind

forces (8,23). Included are studies on the assessment of ATC-3-06

parameters, the effect of soil-structure interaction of the ATC-3-06

provisions, the effectiveness of various bracing systems in designing

aseismic structures, the effect of the P-.1 forces and the vertical

ground excitations on the optimum design, the comparison of various

seismic code provisions, the comparison of minimum weight and minimum

cost design, and the influence of story drift constraint and

displacement constraint on optimum design.

A method for vibration control of large space structures by

integrating· the structural and control design has been presented by

Khot, Eastep and Venkayya (25). The objective was to reduce the

structural response under an initial disturbance. The cost function

was the weight of the structure, with a constraint on the damping

parameter of the closed-loop system.

Recently, Cheng and Pantelides presented an algorithm for

combining structural optimization and active control of structural

systems (12,13). The algorithm is based on optimal instantaneous

algorithms for structures subject to seismic and wind excitations. The

optimal weighting matrices in the performance index were found by

minimizing the control energy of the control system. The critical-mode

control algorithm for the instantaneous optimal closed-loop scheme was

derived, and the spillover effect was demonstrated for earthquake
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excited structures. For· wind excited structures. the reduction of

floor displacements and enhancement of human comfort was shown. The

objective of structural optimization is to yield a safer and more

economical structure based on a rational· stiffness redistribution

while satisfying a set of constraints. Active control is effective in

reducing the earthquake effects on the safety and serviceability of

the structure. The combination of structural optimization and active

control can further reduce the control forces, and a more economical

structure-control·system can be produced.·

B. OBJECTIVE

The safety and serviceability of seismic structures can be

. improved by using· active· control devices. At ·the design stage the

bUilding can be designed with. the presence 6f the control system in

mind. However in order to achieve economy of both structural material

and control energy. the combined structure-control system should be

optimized.

The main objective of this study is to integrate the design of a

structural system.· with the active control system in an optimal manner.

Earthquake excitation is considered in the form of ground acceleration

or power spectral density of ground acceleration. Wind forces are

generated using wind design spectra. Two .active control systems are

considered, the active mass damper and active tendon systems. Both

frequency-domain and time':"domain control algorithms are considered.

From previous studies by Cheng and Juang (8),

(14), it is known that structural weight is

12
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function for member resizing and is used in this study. The design

variables are the structural stiffness and control parameters. The

constraints include displacements, natural frequencies, drifts, and

control forces. The optimization algorithm uses an interior penalty

function strategy and Powell's search algorithm (47).

Other objectives in this study are: 1) to study the fundamental

concepts of the Ricatti optimal closed-loop algorithm for the passive

mass damper, active mass damper, and active tendon systems, 2) to

discuss the assumptions inherent in the Ricatti optimal closed-loop

algorithm and compare the simulations ~ith experimental results, 3) to

derive the non-optimal closed-loop control in the frequency-domain

based on the transfer matrix concept for the combined active mass

damper and active tendon systems, 4) to derive the instantaneous

optimal control algorithms in

closed-loop and open~closed-Ioop

the time-domain

strategies, 5) to

for open-loop,

investigate the

importance of the ~eighting matrices in the performance index and to

derive optimal weighting matrices by the minimization of control

energy, 6) to study the influence of time-delay and methods of

compensating for it, 7) to derive the critical-mode optimal control

algorithm and study the spillover effect on the uncontrolled modes, 8)

to utilize the critical-mode optimal control algorithm with the modal

and performance index methods in order to determine optimal locations

of controllers, 9) to compare the various optimal control algorithms,

10) to study the effect of wind-induced excitations on the controlled

structure, and 11) to illustrate by numerical examples the design
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procedures of the numerical optimization technique, and the benefits

of using a combined optimum structure-control design.

A brief discussion of· the contents of each Chapter in this

dissertation is given below.

In Chapter lIthe structural control systems are categorized into

three classifications. First, according to whether they are passive or

active. Secondly, the active control systems are categorized in terms

of implementation strategy into open-loop, closed-loop; and

open-closed~loop control. Finally the active control systems are

classified according to the optimality of the control scheme as

optimal, sub-optimal, and non-optimal control algorithms.

Chapter III gives a brief discussion of the assumptions inherent

in the Ricatti optimal closed-loop algorithm. The fundamental concepts

for .the active tendon, active mass damper, and passive mass damper are

discussed. The Ricatti optimal closed-loop algorithm is derived using

both the active tendon and active mass damper systems. Comparisons

with experimental results are made and numerical simulations are

presented.

In Chapter IV the non-optimal closed-loop control based on the

transfer matrix concept is described. The statistics· of the response

for both the active tendon, active mass damper and a combination of

the two systems are derived. The active tendon and active mass damper

control forces are described in terms of the feedback and loop gains.

Numerical examples demonstrate power spectral density comparisons of
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the response for the active tendon, active mass damper and combination

of the two systems.

The instantaneous optimal control algorithms for open-loop,

closed-loop, and open-closed-loop strategies are derived in Chapter V.

The algorithm for a combined active tendon and active mass damper

system is proposed. The solution of the motion equations in

state-space using modal decomposition is described in detail. The

importance of the weighting matrices in the performance index is

emphasized, and numerical examples illustrate the resulting variations

of the control forces and the response. Simulation of the response

under earthquake and wind excitations is demonstrated with the aid of

numerical examples, and a comparison is made with the Ricatti

closed-loop algorithm.

The structural optimization formulation for both optimal and

non-optimal control algorithms is described in detail in Chapter VI.

The design variables, objective function, and constraints pertaining

to the control algorithms derived in Chapters III, IV, and V are

outlined. The numerical optimization algorithm is described, and

numerical applications of the structural optimization with the active

control systems are demonstrated.

In Chapter VII the topic of minimization of control energy is

discussed in the context of optimal weighting, matrices used in the

performance index. Numerical examples illustrate the concept as

applied to an instantaneous closed-loop algorithm.
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Chapter VIII deals with the topic of time-delay. The general

considerations for the time-delay problem are outlined. Compensation

methods for a single-degree of freedom and a multiple-degree of

freedom systems are suggested.

In Chapter IX the critical-mode optimal control algorithm is

derived for the instantaneous optimal closed-loop control. The control

spillover effect is demonstrated both theoretically and numerically.

The critical-mode algorithm is then used to study the problem of

optimal location of a limited number of controllers for an earthquake

excited structure.

In Chapter X the work is reviewed, and the conclusions based on

the results are outlined.

Appendix A contains the derivation of the power spectral density

of filtered white noise for earthquake excitations. This is used in

Chapter IV in conjunction with the non-optimal closed-loop control

algorithm.

Appendix B contains the derivation of artificial wind loads based

on wind design spectra used with the optimal control algorithms of

Chapters III, and V.

Appendix C contains the development of the various expressions

for the performance indices used in the optimal control algorithms of

Chapters III, V and IX.
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Appendix D describes the optimality conditions and optimal

control solutions for the optimal control algorithms of Chapters III,

V and IX.

Appendix E contains the derivations for the motion equations and

transfer matrix relations for the non-optimal closed-loop control

presented in Chapter IV.

Appendix F contains the computer programs for the optimization

algorithm of Chapter VI, and the control algor·ithms described in

Chapters III, IV, and V.
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II. PROTECTIVE SYSTEMS FOR EARTHQUAKE HAZARD MITIGATION

A. PASSIVE AND ACTIVE CONTROL SYSTEMS

The dynamic response of structures to earthquake and wind

excitations can exceed tolerable limits for human comfort, structural

stability and structural integrity. Passive and active control systems

have been developed in order to reduce the effect of wind excitations

and earthquake ground motion on the structure. Passive control system

applications exist in many parts of the world (46,60). Active control

systems have been tested in the laboratory and the results are very

promising (15,35,53,54).

Passive control systems are mechanical devices that do not

require external energy for their operation. They redirect the energy

transmitted by the ground motion to structural elements which can

diss ipate it in such a way that the rest of the structure responds

with minimum deformations. The same concept is applied for wind

forces. Examples of passive control systems are rubber and lead-core

base isolators, limited-slip bolted joints and passive tuned mass

dampers.

Active control systems require an outside energy source. Control

forces are applied in order to minimize the effect of the seismic

excitation or to correct the position of the structure. Active control

systems include active tendons, active mass dampers, appendages, and

pulse control by means of jets.
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Passive control systems have their shortcomings. Base isolators

are not suitable for high-rise buildings because large overturning.

moments can cause uplift of the foundation pads .. Another shortcoming

is that large sidesway at the foundation level may render the

structure unstable. Tuned mass dampers are efficient in tall

buildings; their operation, however, is limited to one mode of

vibration only. Extensive studies have been performed on experimental

applications of active control systems including active tendons,

appendages, and pulse control.

B. ACTIVE CONTROL IMPLEMENTATION SCHEMES

There are three active control schemes or strategies by which the

active control law can be implemented to a structure

1. Open-loop disturbance-compensated control

2. Closed-loop control

3. Open-closed-loop disturbance-compensated control

In the open-loop disturbance-compensated scheme shown in Figure

1, the control law requires information about the earthquake

excitation. The diagram for implementation of this scheme using an

active tendon is shown in Figure 2. An accelerometer placed at the

basement of the building measures the earthquake ground acceleration.

This .information is used to calculate the required control force based

on the active control algorithm for open-loop control, which is then

applied to the structure.
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In the closed-loop scheme shown in Figure 3, the control law

requires measurement of the relative displacements and velocities of

the structure. The diagram for this scheme is shown in Figure 4 for

the active tendon system. The sensed information is used to calculate

the required control force based on the closed-loop active control

algorithm, which is then applied to the structure.

The open-closed-loop disturbance-compensated scheme is a

combination of the open-loop compensated and closed-loop control

schemes as shown in Figure S. The diagram for implementation of this

scheme with an active tendon is shown in Figure 6. Both the earthquake

ground acceleration and sensed relative displacements and velocities

are used to calculate the required control forces based on the active

control algorithm, which are then applied to the structure.

For wind excitations it may be difficult to measure the wind

pressures on the structure and hence the closed-loop control scheme

may be the best scheme to be used. The absolute displacements and

velocities are measured and the control forces are calculated based on

the active control algorithm for wind excitations. In this study all

three active control schemes are used for earthquake and wind

excitations.
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C. ACTIVE CONTROL ALGORITHMS

An efficient and capable control algorithm is essential to the

application of an active control system. The control algorithm is to

be used in order to calculate the magnitude of the control forces.

These control forces are to be calculated in real-time according to

the active control law and control scheme employed in the control

algorithm. There are three types of control algorithms:

1. Optimal control algorithms

2. Sub-optimal control algorithms

3. Non-optimal control algorithms

The difference between optimal and non-optimal control algorithms

lies i~ the manner in which the control law is derived. Optimal

control algorithms employ a control law based on the minimization of a

performance index. The performance index, or cost functional, to be

minimized represents the total energy of the system including the work

done by the control forces. It is a compromise between the reduction

of the structure's response and the control energy required to achieve

this reduction. The optimal control law is, therefore, the result of a

constrained optimization problem which can be stated as follows: Find

the optimal control forces that minimize the performance index and

satisfy the equation of motion for the actively controlled structure.

Depending on the particular performance index that is chosen, one can

have many categories of optimal control algorithms. In this study, the

following two categories are examined :
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a. Ricatti optimal control algorithm

b. Instantaneous optimal control algorithms

In the Ricatti optimal control algorithm, an integral performance

index is minimized, following traditional concepts of optimal control

theory. However, the optimal forces are derived by ignoring the

external disturbance or by assuming that it is a white noise process.

In the instantaneous optimal control algorithms, an instantaneous

time-dependent performance index is minimized. The advantage of the

instantaneous optimal control algorithms is that they include the

external disturbance in the derivation of the control forces. In

addition they result in' simpler expressions for the optimal. control

forces. In this study both the Ricatti optimal control algorithm and

the instantaneous optimal control algorithms are used and compared.

Sub-optimal control implies that the performance index does not

include all the characteristics of the system. For example the

structure's response could be minimized without consideration for

minimizing the control forces. Thus a simplified control model results

at the expense of global optimality.

Non-optimal control algorithms are based on the particular

control scheme that is employed. The control forces are calculated

based on conditions other than the minimization of a performance

index. The result is that the magnitude of the control forces is no

longer the minimum required. In this study only a closed-loop scheme

will be considered, using the transfer matrix approach.
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III. RICATTI OPTIMAL CLOSED-LOOP CONTROL

The classical optimal control approach is developed in this

Chapter for seismic structures equipped with active control systems.

Both the active tendon (AT) and active mass damper (AMD) systems are

studied. The earthquake excitation is applied as a ground

acceleration in time function. The Chapter includes a brief

description of the earthquake excitations used. A discussion of the

fundamentals of control systems including the AT, AMD, and passive

mass damper systems is presented. The development begins with a

closed-loop algorithm applied to an initial-conditions problem. This

algorithm is extended to include external disturbances. Finally a

comparison with experimental results obtained by Chung, Reinhorn, and

Soong (15) shows good agreement between experimental and simulation

results.

A. EARTHOUAKE EXCITATION

A real ground earthquake accelerogram record and several

artificial acceleration records are used in this study. The first

accelerogram is a real record of the north-south component of the

EI-Centro earthquake, of May 1940. An artificial accelerogram known

as the EEl record is also used for simulations. Finally an impulsive

triangular acceleration was used to test the Ricatti optimal

closed-loop algorithm.
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B. CONCEPTS FOR RESPONSE REDUCTION USING PASSIVE CONTROL

The passive mass damper (PHD) system does not require external

power; it dissipates the input energy passively, by transferring the

energy from the structure to the mass damper, the spring and the

damping devices. The configuration is shown in Figure 7 where it is

to be noted that the electrohydraulic actuator is not present. This

system is widely used in vibration isolation of centrifugal machines

or other equipment where the excitation is of known constant

frequency. For earthquake or wind excitations, however, many frequency

components of the forcing function exist. For the PMD to be most

effective in limiting the response over a wide range of excitation

frequencies, it is necessary to select the parameters of the mass,

spring, and damping of the passive system in an optimal manner.

The basic principle .for the application of the PHD is that of the

vibration absorber early suggested by Ormonroyd and Den Hartog (43).

In the case of the vibration absorber. the frequency of the mass

damper COd is tuned to that of the exciting frequency co, in order to

eliminate the vibrations. The primary structure is modelled as a mass

m resonating on a spring k. The absorber is tuned to resonate such

that the motion of its massmd becomes relatively large, and the motion

of the mass of the primary system m is minimized. For a fixed mass

ratio (mdlm) and a fixed spring constant kd, the frequency response of

m is independent of the absorber's damping constant Cd at two distinct

frequencies. The response passes through two invariant points PI and

P2 regardless of the value of the damping constant Cd. Den Hartog

optimized absorber performance by first choosing kd so that PI and P2

30



Figure 7. Passive Mass Damper
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are adjusted to equal height, and then by finding~ to make the curve

pass through one of the invariant points with a horizontal tangent. A

detailed discussion of optimal tuning and damping parameters was given

by Den Hartog (19). This optimization procedure was extended to

multiple-degree of freedom discrete undamped systems by Lewis (30).

C. CONCEPTS FOR RESPONSE REDUCTION USING ACTIVE CONTROL

A brief discussion of the underlying concepts for the use of

active control is given in this Section. The description is

qualitative and brings out the basic features of the active tendon and

active mass damper and the manner in which these systems reduce the

response.

1. Active Tendon (AT). The purpose of a control system is the

reduction of the structure's response under seismic or wind loads. In

order to illustrate the manner in which this is achieved, let us

consider a single degree of freedom structure equipped with an active

tendon, subjected to a ground acceleration. As shown in Figure 4, X(I)

is the relative displacement of the structure with respect to the

ground, and m, k, c are the mass, stiffness and damping of the

structure. The ground acceleration is denoted by Xg(t), U(t) is the

actuator displacement, and 0 the angle between the tendon and the

horizontal. The movement of the actuator is regulated by the optimal

closed-loop algorithm. For closed-loop control, the measurement of the

displacement and velocity response is reqUired and is obtained from

the sensors.
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The motion equation for the system of Figure 4 is

m X(l) + C X(l) + k X(l) = - m Xg(l) -U(l) (3.1)

where ~0 is the horizontal component of the control force produced by

the actuator displacement, through tensioning of the tendons. Using

the Ricatti closed-loop algorithm, the feedback control force u(t) is

shown in Section D of this Chapter to be composed of two parts: 1) the

displacement feedback control force, and 2) the velocity feedback

control force. It is also a function of f), the tendon stiffness, and

the actuator movement. Thus the feedback control force can be written

(3.2)

where C is a function of the tendon stiffness and angle f), and Cd and

Cv are the feedback control force gains and are positive quantities.

Equation 3.2 states that the feedback control force is a closed-loop

active control' force proportional to the relative displacement and

velocity of the structure. Substituting Equation 3.2 in Equation 3.1

(3.3)

Transferring the last term of Equation 3.3 to the left side

The equation of motion if no control were present is

m X(l) + c x(t) + k x(t) = - m Xg(l)
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Comparing Equations 3.4 and 3.5 for the controlled and no control case,

one can make the following observations: 1) The stiffness of the

structure has been increased from k to (k + C Cd), 2) the damping of the

structure has been increased from c to (c+ C Cy), 3) the controlled

frequency has been increased since the stiffness has increased and the

mass has not changed. It is evident that the consequences of using

active control are beneficial in reducing the dynamic response of the

structure.

2. Active Mass Damper (AMD). The same single-story structure

considered for the active tendon system is used here, equipped with an

active mass damper of mass md' which is placed on the top floor as

shown in Figure 8. The AMD is connected to the structure through a

spring of stiffness kd and a hydraulic damper cd' The electrohydraulic

actuator is also connected· to the mass md which produces the active

control force.

The equation of motion for the system and the Ricatti closed-loop

optimal control result in similar expressions as those derived for the

active tendon system. These results are described in detail for the

general case of an JV-story structure in Section E of this Chapter. The

main conclusions, however, are the same ones reached for the active

tendon case. The active control force improves the stiffness and

damping characteristics of the structure and effectively reduces the

response due to earthquake or wind excitations.
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The active mass damper control reduces the response more

effectively than the passive mass damper, at the expense of external

power. The parameters of mass, damping and spring constants are

selected in an optimal manner as described for the PHD.

D. ALGORITHM FOR INITIAL CONDITIONS

The subject of this Section is to study the response when the

external disturbance is set equal to zero and the motion is produced

by the initial values of displacement or velocity.

1. Formulation Using Classical Approach. In order to apply the

results of ~lassical optimal control theory, the equation of motion,

Equation 3.1, is cast into its state-form by using the state-vector,

defined as

(z( l)} = {~}(X(l)} .
(3.6)

The equation of motion for an N-story shear building equipped with

active tendons at some floors as shown in Figure 9a is

[M] {X(l)} + [C] {X(l)} + [X] (x(l)} = [y] {u(l)} + Co} Xg(l)

In Equation 3.7, X/l) is the floor relative displacement defined as

(3.7)

j = I, ... , N (3.8)

where Aj(t) is the floor absolute displacement and Xg(t) the ground

displacement. Vector (u(l)} is the control force vector of dimension

[Nxr], wherer = number of controllers. In Equation 3.7, [M], [C] and[K]
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are the mass, damping and stiffness matrices of the structure,

respectively, of dimension [N x N'], [yJ is an [N x rJ matrix relating the

location of the controllers to the structure, and (6} is a vector of

coefficients for the earthquake excitation Xg(/). For an active tendon

system matrix [y] has the form

-I 1

-I

-I

[y] =

-I

-I

and vector (6} has the form

T(J} :: (-mt, -~ I -m] . ... ,-m,v}

where mj is the mass of thejlh floor. Rewriting EquatioJ:? 3.7

Uc(t)} :: - [,\1]-1 [Ll {X(l)} - [1\1]-1 [K] (x(l)} + [iv/]-l [yJ (u(l)}

+ [1\1]-1 (6} Xg(l)

(3.9)

(3.10)

(3.11 )

Using the definition of the state-vector, Equation 3.11 can be written

as

"{ (X(l)} } [0 I [I] ] {(X(l)}}
(x(t)} = - [Mr' [K] - [MJ-I [C] (x(l)}

+ [ 0 ] (u( l)} + { 0 } X (t)
[Mr l [y] [1\1]-1 {a} g
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Rewritting Equation 3.12 in compact form

where

{z(t)} = [/1 IJ(z(t)} + [llrJ (u(t)} + {CI } X,,(t)
"

(3.13)

[AIJ = [__° 1 [I J ] I [llrJ = [ 0 ]
- [AfJ- 1 [K] - [Mr 1 [el [Air I [y J .

{CI } = { 0 }
[Mr 1

(a}

(3.14)

For free vibrations one can set the excitation equal to zero and the

state-equation becomes

(z( t)} [tl rJ {z( t)} + [llrJ {u( t)} (3.15)

This case can be physically materialized when initial conditions are

imposed on {zein with no external excitation. The classical control

theory has been developed based exactly on such a model.

The optimal control force vector {u· (t)} J is to be derived by

minimizing a standard quadratic performance index J given by

J = 1.. fl' ({Z(l)}T [Q] {zet)} + {U(l)}T [R] {u(l)}) dt
2 Io

(3.16)

and satisfying the state-equation, Equation 3.15. In Equation 3.16 10 is

the initial and 1 the final time-instant under consideration. Matrix

[Q] is a [2N x 2N] positive semi-definite matrix, and [R] .is an [r x rJ

positive definite matrix. The performance index, J, represents a

balance between structural response and control energy. When the

elements of [Q] are large, the response is reduced at the expense of
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large control forces. When the elements of [R] are large, the control

forces are small but the response is not reduced, appreciably. Detailed

discussion of Equation 3.16 is given in Appendix G. Assume that the

system is controllable, i. e. J the available control force is

sufficient to bring the system from any initial state to any desired

final state. Assume also that the system is observable, i. e., the

system response output yields sufficient information to determine the

state-vector at any time r. Variational calculus yields the solution

to the optimization problem. Define the Hamiltonian~ as

~ = l-{Z(l)}T [Q] {z(l)} + l-{u(r)}T [R] (l;(r)}
22,

+ (A(t)} T ( [Ai] (z(r)} + [llrJ (u(t)} )
(3.17)

where (i.(r)} is the vector of Lagrange multipliers of dimension [2S x I].

The necessary conditions for optimality are given in .standard

textbooks on control theory, such as Elbert (20)

a~

a{z( r)}

aYe
a(u(r)}

a~

8{A.(t)}

= - (l(r)}

(O}

{OJ

.....

- (A(t)} = [QJ {z(t)} + [Ar]T (A(r)}

[R] (u(r)} + [BrJTp(r)} = (O}

[A r] {z(r)} + [B t] (u(t)} - (z(t)} = {OJ

(3.18)

(3,19)

(3.20)

with the transversality condition

(..l.( 'r)} = (O} (3.21)

From Equation 3.20 note that this condition is the state-equation. From

Equation 3.19 the optimal control is derived as
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(3.22)

Complete derivation of Equation 3.22 is given in Appendix D. Note that

the requirement for [R] to be positive definite arises from Equation

3.22. The Lagrange multipliers ().(l)} are still not known but can be

solved for, by using the first necessary condition of Equation 3.18.

Assume a solution of the form

(A(l)} = [P(l)] {Z(l)} (3.23)

which when substituted in Equation 3.22 implies a closed-loop control,

since

{U"{l)} - [Rr l [Btl [P(l)] {z(l)}

= - [K(t)] (z(l)}

Substituting Equations 3.23 and 3.24 in Equation 3.18 gives

([?(t)] + [P(t)] [ArJ + [ArJT [P(t)] - [P(t)] [Dr] [Rr l [Btl [P(t)] + [Q]) (z(l)}

= {O}

and from Equation 3.21 we get

[P(t,r)] {z(tr)} = (O}

For a non-zero state (z(l)} , the non-trivial solution is

(3.24)

(3.25)

(3.26)

- [P(t)] = [P(t)] [ArJ + [Atl[p(t)] - [P(t)] [BrJ [Rr l [BrJT [P(l)] + [Q] (3.27)

[P(1)] = [0] (3.28)

Equation 3.27 is the matrix Ricatti equation (M:RE)' There are many

efficient algorithms available for the solution of the MRE. Vaughan
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presented a solution in terms of negative exponentials (57). Davison

and Maki developed a method based on an iterative exponential solution

( 18). Both methods are more efficient than a standard Runge-Kutta

approach which requires a small integration step to ensure stability,

and thus large computational times. After the solution of the MRE is

found it is substituted in Equation 3.24 to obtain the optimal control.

From Equation 3.24 note that this is a proportional type of control,·

1. e. the control force vector is proportional to the response. In

practice this type of control can be achieved using a gain amplifier.

For simulation results once the optimal control is calculated,

the state-vector at time l can be found by substituting {u(c)} in

Equation 3.15 and solving for (Z(l)}. The solution of Equation 3.15, a

vector linear differential equation is available in standard textbooks

on control theory (20). A method for the solution of this type of

problem is presented in Chapter V.

2. Asymptotic Behavior of Matrix Ricatti Equation. The Ricatti

equation solution for [P(l)] may reach steady state conditions for time

l far away from~. This relationship between and ~ is a basic

characteristic of the classical optimal control problem of subsection

1 of this Section, also known as the regulator problem. It permits the

use of steady state values in determining the control force vector.

From the results given in Equations 3.27 and 3.28 note that the MRE

requires a time-dependent solution. Moreover from Equation 3.24 it is

obvious that the gain matrix [K(c)J is also time-dependent. For an

infinite final time 1" 1. e. ~ = 00, it can be shown (20) that the
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time-dependent tiRE becomes time-invariant. Setting in Equation 3.27,

[1'(1)] == [0] produces the so-called algebraic Ricatti equation (ARE),

given by

[0] (3.29)

Hence the gain matrix [X] becomes time-invariant and the optimal

control is given as

(u'(I)} = - [Rr l [BrJT [P] (z(t)}

= - [X] (Z(I)}
(3.30)

The solution of the ARE is simpler than that of the tiRE and there are

many good algorithms available. An algorithm which is based on an

iterative technique was presented by Kleinman (26). Another· algorithm

developed by Laub uses an eigenvector approach based on Schur vectors

(29). However the validity of the bound 1 ~ 00 has to be examined for

the particular case of earthquake excitation. It is shown in the next

Section that the assumption is vali4 if 1 is taken to be longer than

the earthquake duration.

The advantage of the ARE over the tiRE is that the gain matrix in

Equation 3.30 is constant and thus the optimal control forces can be

obtained proportional to the response {z(l)}. It should be emphasized

that in a real system the closed-loop control requires the measurement

of the full state-vector, i. e. , 2 N sensors are reqUired to measure the

response. When analog differentiators are used to determine the

velocities {X(l)} , then the number of sensors is reduced to N. Such a

scheme was used by Chung, Reinhorn, and Soong in experiments carried

out on a reduced model at SUNY/Buffalo (IS).
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E. ALGORITHM FOR EXTERNAL DISTURBANCES

In this Section the more general problem that includes the

external disturbance is studied. The state-equation to be used in this

Section is given by Equation 3.l3. In the first subsection the optimal

control algorithm for the case of active tendon. controllers is

developed, and in the. second subsection the algorithm for the active

mass damper is developed. Both control systems are shown in Figure 9.

1. Formulation for Active Tendon System. The optimal control

vector (u· (t)) is to be found by minimizing the performance index of

Equation 3.16 and satisfying the state-:equation given by Equation 3.13.

The Hamiltonian in this case is given by

.Yf = t{Z(t)} T [Q] (z(t)} + t(U(t)} T [R] {u(t)}

+ p(t)}T ([A r] {z(t)} + [lJr] (u(t)) + {er} Xg(t»)
(3.3 I)

The necessary conditions for optimality are the same as those given in

Equations 3.18 - 3.21, except Equation 3.20 now includes the earthquake

excitation term

(3.32)

Proceeding in a similar fashion as was done for the initial conditions

case, assume the relation

(A(l)} = [pel)] (Z(l)} (3.J3)

and substitute Equation 3.33 into Equations 3.18, 3.19 and 3.32 to obtain
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([P(l)] + [P(l)] [ArJ + [ArJT [P(l)] - [P(l)] [BrJ [Rr l [Br{ [P(l)] + [Q]) {z(t)}

+ [P(l)] {el} Xg(l) = CO}
(3.34)

Note that Equation 3.26 still holds. The earthquake excitation is

unknown before the earthquake occurs, therefore, backward solution of

Equation 3.34 subject to the final condition of Equation 3.28 is not

feasible. If we set the earthquake excitation Xg(l) equal to zero, then

Equation 3.34 reduces to Equation 3.25. Therefore strictly speaking the

Ricatti matrix obtained from the solution of the reduced equation,

Equation 3.25, does not correspond to the optimal closed-loop control

for the earthquake excited structure. The Ricatti closed-loop control

is truly optimal only if the earthquake excitation is either zero or a

white noise process. In that respect it can be considered as a

sub-optimal control. However the solution based on Equation 3.25 was

found to be effective in both numerical simulations and experimental

results and is used in this study. When compared with other optimal

control algorithms the Ricatti closed-loop control is as effective.

The external excitation is present in the algorithm since from

Equation 3.30 the optimal control is a function of the forced response.

The asymptotic behavior of the MRE given in Equations 3.27 and 3.28

was tested for a single-story structure equipped with an active tendon

and subject to different excitations. It was found that typically the

elements of [P(l)] remain constant over the entire duration of the

earthquake excitation l' and drop rapidly to zero near~. This

asymptotic behavior is shown in Figure 10. Hence [P(t)] establishes a
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steady-state in a short time starting from 1" backwards. As a result,

the MRE can be approximated by the ARE and [P(t)J replaced by [PJ which

is time-invariant. This is true as long as 1" is longer than the

earthquake duration. For the simulations in this study, Equation 3.29 is

used to solve for the Ricatti matrix and Equation 3.30 to solve for the

optimal control. The response is found using Equation 3.13.

It is to be noted that [PJ is a symmetric matrix of order [2N x 2N]

and hence a system of only [N x (N + 1){2J non-linear equations has to be

solved. The case when a certain floor is not equipped with an active

tendon is taken care of by deleting the corresponding column in the [y J

matrix.

2. Formulation for Active Mass Damper. The structural system

with the AMD is shown in Figure 9b. The state-vector is modified in

this case to include the relative displacement of the AMD with respect

to the top floor displacement xJ:t)

j = I, ... , tV (3.35)

xJ: i) XJ:t) - XN<i) (3.36)

Define the state-vector as

(z (in = {{~(l)}}
D (y(t)}

(3.37)

where (zD(t)} is of dimension [(2N+2) x IJ. N= number of floors, and (y(t)}

is given by

(3.38)
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The equation of motion is given by

(3.39)

where [MD], [CD] and [KD] are the mass, damping and stiffness matrices,

respectively, of the combined structure and mass-damper system of

dimension [(N + I) x (N + I)] given as

[MD] =

[CD] =

mil

(C1+ c2) -c2

- c2 (c2 + c3) -c3
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. [KDJ =

(k l + k2) -k2

- k2 (k2 + k) -k)

(3.42)

where kd • md and Cd are the stiffness. mass and damping of the mass

damper. respectively. The scalar UJI) is the control force due to the

active mass damper and {Yo} and {dO} are [(N + I) x IJ vectors given by

- I, I} (3.43)

The state-form of Equation 3.39 is

where

(3.44)

(3.45)

[AJ = [ 0__-+-_;;;...[I....;;.J_1--J ' {Ed} = [ 0 ]
' - [Mor

l
[KoJ - [Mor [CoJ [Mor' {yo} (3.46)

{CJ = { 0 }
[Mor' {dO}

The optimal control force uJt) is to be found by minimizing the

performance index JOJ given by
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+fr ((ZD(t)}T [QD] (ZD(t)) + RDUJ(t)) dt
10

(3.47)

and. satisfying the state-equation, Equation 3.45 where [QD] is a

[(2N+ 2) x (2N +2)] positive semidefinite weighting matrix, and RD is a

positive scalar. Following the same procedure as for the AT case the

optimal control is found to be

.
(3.48)

where [PD] is the solution to the following ARE

Once the optimal control has been determined from Equation 3.48, the

response is obtained for simulation purposes by solving. Equation 3.45.

F. SINGLE DEGREE-OF-FREEDOM SUBJECT TO INITIAL CONDITIONS

In. order to illustrate the Ricatti optimal closed-loop control,

an example with initial conditions only is presented. The structure is

similar to the one shown in Figure 4, with the follOWing structural

properties: Structural stiffness k = 100 kips/in ( 17513 kN{m), mass

m = 4 kip - sec2/in (700 Mg), and three percent of critical damping, or

equivalently, c = 1.2 kip- sec lin (210 Mg/ sec). The weighting matrix [Q]J

is a [2 x 2] diagonal matrix whose diagonal elements are set equal,

i. e. I Q(I,l) = Q(2,2). The weighting matrix for the control forces is

just a scalar, R. The structure is subjected to an initial

displacement of 0.2 in (5.08 mm). Two cases for control are considered.
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In Case 1, the elements of matrix [Q] are set to the value

Q(l,l) = Q(2,2) = 1.0 and R = 0.01. In Case 2, matrix [Q] is the same,

but R = 0.001. The response was calculated for these two cases, and

compared to the case when no control was applied. From Figure 11, it

is obvious that the displacement response has been reduced

effectively. It is interesting to note that in Case 2, the structure

comes to rest faster than Case 1. The same observations are made for

the ~elocity response as shown in Figure 12. However, as can be seen

from Figure 13, Case 2 requires a larger control force than Case 1.

Thus, depending on the weighting matrices that are used, one can

achieve different reduction levels in response with the associated

control force.

G. COMPARISONS WITH EXPERIMENTAL RESULTS

In order to verify the analytical results obtained in the last

Section, they were compared to experimental results obtained at the

National Center for Earthquake Engineering Research at the University

of New York at Buffalo (15). The experimental setup was a single-story

structure as shown in Figure 4 with structural and control properties

as given in Table I. This is a 1 : 4 scaled model of a prototype

structure. The elements of the weighting matrices [Q] and R are chosen

as

[Q] = [-H---tJ. (3.50)

where k is the structure stiffness, kt is the tendon stiffness and their

values are given in Table I.
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TABLE I. EXPERIMENTAL DATA
( 1 Ib-sec2 lin = 175 Kg )

( 1 lb/in = 175 N/m )

Parameter

mass
structure stiffness
tendon stiffness
tendon angle
natural frequency
damping factor
geometry scaling factor

55

Quantity

16.69 Ib-sec 2/in
7934 Ib/in
2124 Ib/in

36 degrees
3.47 Hz
1.24 %
1 : 4



Figures 14 and 15 show good agreement between analytical and

experimental results obtained under the same conditions. The

differences are due to inaccuracies in the mathemetical model, system

and measurement noise, and interactions between the control system and

the structure.
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Figure 15. Comparison of Control Force with Experiment
( 1 Ib ~ 4.45 N )



IV. NON-OPTIMAL CLOSED-LOOP CONTROL

In this Chapter a closed-loop control scheme using the transfer

matrix approach of dynamic analysis is developed. Three active control

systems are investigated in this study: 1) an active tendon system

installed between adjacent floors as shown in Figure 9a, 2) an active

mass damper installed at the top floor of the bUilding as shown in

Figure 9b, and 3) a combination of the active tendon and active mass

damper systems as shown in Figure 16. The effectiveness of these two

control systems in reducing the structural response under earthquake

excitations is examined.

The procedure for analysis follows the transfer matrix approach

in the frequency-domain instead of the classical modal. approach. The

transfer matrix approach determines the structural response directly

without haVing to calculate the natural frequencies and modes. This

results in considerable simplification of the calculations.

The present closed-loop active control algorithm is not optimal.

The control forces are not determined according to the minimization of

a performance index but according to a simple closed-loop control law.

This implies that the magnitude of the control forces is not the

minimum possible. However, the control forces do not require on-line

computations for their regulation.

The transfer matrix approach for controlled response has been

used by Yang for earthquake excitations (61), and Yang and Samali for

wind excitations (65). Two important features are different in the

derivations presented herein. First, each floor of the structure does

/
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not have to be identical to the others. This is required for the

optimization algorithm to be implemented. Secondly, this derivation

includes a combined active tendon-mass damper system, as shown in

Figure 16. This combined system resulted in improved performance of

the control system.

A. EARTHQUAKE EXCITATION

The earthquake ground acceleration is modelled as a stochastic

process and a random vibration analysis is carried out to determine

the stochastic response of buildings equipped with active control

systems. It is assumed that the strong shaking portion of typical

earthquake accelerograms is stationary, i.e. the statistics are

time-invariant. The corresponding structural response is also

stationary. The earthquake ground acceleration, Xg(l), has been modelled

as a stationary random process with zero mean and a power spectral

density <1>Xg(w). The power spectral density function used herein is a

filtered white noise, known as the Kanai-Tajimi function (24). It is

derived based on a model of the ground as a linear filter. The

complete derivation is given in Appendix A. The power spectral density

of filtered white noise obtained from Appendix A is given as

(4.1)
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In Equation 4.1 Cg = ground damping, wg = ground frequency,

(J) = forcing frequency, and 52 = powe1:' spectrum of white noise. With

proper selection of the ground properties, Cgand w g, Equation 4.1 can be

used to represent earthquake excitations with different power spectral

density shapes. For example using 52 = 1.0 m2
{ secJ {rad, wg = 18.85 rad{ sec,

and two values for the ground damping Cg = 0.15, or Cg = 0.65, two

different curves can be obtained as shown in Figure 17. WhenCg = 0.15

(Curve A in Figure 17), a narrow-band excitation is obtained which can

influence the response within only a narrow range of frequencies. When

Cg = 0.65 (Curve B in Figure 17), a wide-band excitation is obtained.

It is to be noted that at the frequency (J) =wg resonance occurs. As wg

tends to infinity, i.e. the ground assumes infinite stiffness,

2<[>Xg(w) =S, the input is not a filtered white noise anymore, i. e., it

remains a white noise process.

B. COMBINED ACTIVE MASS DAMPER AND TENDONS

The structural model chosen for the present study is an N-story

shear building equipped with a number of active tendons and an active

mass damper, as shown in Figures 16 and 18. The following assumptions

are made to simplify the analysis: 1) the mass of each floor is

concentrated at the floor level, 2) linear elasticity is provided by

massless columns between neighboring floors, 3) the structural

response is described by the displacement and shear force in each

story, 4) active tendon controllers are installed between two

neighboring floors either above or below the jill floor,S) an AT

controller is regulated by two sensors placed on the floors above and
.r"
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below it, 6) an active mass damper is placed on the top floor, and 7)

an acceleration sensor is placed at the top floor to regulate the AND

con tro ller.

Let ~ and y. I;- be the· displacement of the jtll floor, and the

resultant shear force in the columns of the jill floor, respectively, as

shown in Figure 18. Also let XN+1 be the displacement of the AND, and

. YrY be the force exerted On the mass of the damper md from the elastic

springkd and dashpot~. The equations of motion of a typical floor can

be written

S; j S; (N - I)

S; j S; (N- I)

(4.2)

(4.3)

where N == number of floors, Uj is the active control force in the

horizontal direction from the jell tendon and mj' CjJ and kj are the mass,

damping coefficient and elastic stiffness of the jill floor,

respectively. The equations of motion for the Nth floor and AND are

. .
YN == kd(XN+l-XN)+ca'(XN+l-XN) (4.4)

ud == mdXN+1 + YN (4.5)

YN == YN- 1 +mNXN+cNXN+Ud (4.6)

YN- 1 == k N (XN - X N_ 1) + uN (4.7)

Note thatud is the AMD control force and that the quantities Y;J ~J XN ,

XN+ 1J ud' and ~ are all functions of time. Assuming zero initial
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conditions and taking the Fourier transforms of Equations 4.2 and 4.3

yields

{Z}L = [;1( L)] {Z}o, ~ L ~ (N - I) (4.8)

Taking the Fourier transforms of Equations 4.4 and 4.7 yields

(4.9)

(4.10)

in which an overbar denotes the Fourier transform ·of a quantity. In

Equations 4.8 through 4.10 the symbol (Z~ is the state-vector defined

in terms of the diplacement and .shear force Fourier transforms as

Detailed derivations of the above equations are given in

The notation [A(L)] is a matrix product defined as

[;1 ( L)] = [A]L ... [A]2 [A]]

where [A]j is the transfer matrix of thejth floor given by

(4.11 )

Appendix E.

(4.12)

(4.13)

where

1+
( - w

2
mj + iw c)

KCj
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=~ (4.15)

(4.16)

In Equation 4. 16, g~w) is the gain of the AT controller and is

described in Section C or this Chapter. I f a certain floor does not

have a tendon controller, g((w) = O. In Equations 4.9· and 4.10, gm(w) is

the gain of the AMD controller and is described in Section D of this

Chapter. The notation (21 N+1 is defined as the boundary condition

{Z} N+\ = {X~+l}

and matrix[T] is the transfer matrix of the AMD, given by

(4.17)

[T] = (4.18)

The earthquake ground acceleration of Appendix A, given by

Equation 4.1 is used as the earthquake input. The structural response

and active control statistics will be stationary random processes with

zero mean. The power spectral density of the response state-vector at

the mth floor is given by

(4.19)

is given in Equation 4.1 and II {21m 11
2 is the magnitude of the

state-vector {21mJ detailed derivation of which is given in Appendix E.

When the relative displacement of the mth floor to the ground is
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required, Xm in Equation 4.19 should be replaced by (Xm - I). The mean

square response vector at the mth floor level, O'~, is given by

f oo 2 -4 ..
II/.mll III .<t>X~(w) dill

-00

(4.20)

The mean square value of the control force from the ith AT controller,

2 . . bO'u J 1S g1ven y

-4
W (4.21)

whereu is given in Section C of this Chapter. The mean square value of

the AMD control force, O'~J is given by

O'~ == J00 II Ud 11
2 w-4 <1>Xg(w) dw

-00

whereud is given in Section D of this Chapter.

C. ACTIVE TENDON SYSTEM

(4.22)

In the special case when no AMD is present, the solution is

simplified considerably and the response is given by

{Z} N == [A( N)] {Z}o

Applying the boundary conditons

{ XON},{Z}N =

to Equation 4.23 gives

(4.23)

(4.24)
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[
_:1-:-1-:-:1(-:-N"':"'7)---l_A--=-:12:-:-(7,N:-:-) ] { I }
A21(N) A22(N) Yo

(4.25)

The unknown quantities can be found as

Yo =
A21( N)

A22( N)
(4.26)

XN = A 11 ( N ) + A 12( N) Yo (4.27)

Consequently the state-vector and AT control force can be easily

obtained. The statistics of the response are still given by Equations

4.20 and 4.21.

The active tendon control force is due to: 1) the elongation of

the tendon [U<j - AJ-I) cos 0] resulting from the motion of the building;

and 2) the movement of the hydraulic ram lI(t}. Let kr denote the tendon

stiffness. The active tendon control force u in the horizontal

direction is given by

u = kr [(Aj - AJ-I) cos e+ u] cos e (4.28)

where u, AJ, AJ-I and U are functions of time; The controller

considered is an electrohydraulic servomechanism similar to that

described in reference (61) . For the jlh tendon controller, the

building motions are sensed by velocity sensors placed on the floor

above and below it, i. e., the jth and (j - l)th floors

. dAJ
X=-

J dt' A)-I =
dX IJ-

dt
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The sensed motions are transmitted to the controller in the form of an

electric voltage V(t), which is proportional to the sensed motions

V(I) = prl(~-Xj_l) (4.30)

where prl is a proportionality constant. The displacement of - the

hydraulic rams U(t) is regulated by the feedback voltage V(t) , through

the relation

U(t) + RI U(l) = Rl (~~) (4.3 I)

in which R1 is the loop gain and RO is the feedback gain 0 f the

controller. The electrohydraulic mechanism is shown in detai'l in

Figure 19. The definitions of the loop and feedback gain in terms of

the gains KA , Ku , Kp , and Ko , are

RO = Ko

(4.32)

(4.33)

A possible arrangement for providing the feedback control force is

shown schematically .in Figure 20.

Equat ions 4.28, 4.30 and 4.3 I

Taking the Fourier transform of

[

' ,( iw ) ]l'(&("'W'j'" _ _

U = k( cosO cosO+ . (Aj-AJ-I)
&( + (:: )

1

(4.34)

in which WI = fundamental frequency of the structure without control,

&( is the normalized loop gain, and T( is the normalized feedback gain

for the active tendon system,
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(4.35)

The expression ~(w) can now be established from Equation 4.34 as

[
-rrer(:)]

= kr cos f) cos f) + . I

er+ ( ~1J )
1

(4.36)

(4.37)

It is important to note that u is a function of the forcing frequency

W •

.D. ACTIVE MASS DAMPER SYSTEM

In the case where only an AMD is used, the transfer matrix

relations of Equations 4.8 through 4.10 can be used again with one

difference. In matrix [A]j of Equation 4.14 the quantity gr(w) in the term

KS is set equal to zero. Consequently the state-vector and AMD control

force can be obtained using the same general expressions. The

statistics of the response are still given by Equations 4.20 and 4.22.

The active mass damper control force is regulated by an

acceleration sensor on the top floor. The voltage that is proportional

to this sensed acceleration is

V(l) = prm XN
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where prm is a proportionality constant. The displacement of the

hydraulic rams is still given by Equation 4.31. Let the Fourier

transform of the AMD control force be given by

(4.39)

Taking the Fourier transform of Equations 4.31 and 4.38 combined with

Equation 4.39 yields the result

(4.40)

Hence

(4.41 )

where kmd is a proportionality constant, 'rd is the normalized feedback

gain, and Ed the normalized loop gain for the mass damper,

respectively,

(4.42)
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E. COMPARISON OF RESPONSE FOR THREE CONTROL SYSTEMS

The three active control system models described in this Chapter,

i.e., the active tendon, active mass damper, and combined active mass

damper and tendons are examined in this example. The structural model

is an eight-story shear building, with the following properties:

mj = 314Mg, kj = 3 X 105
kN{m, Cj = 90Mg{ sec, j = I, ... ,8. The earthquake

excitation used is that of Equation 4.1, of the Kanai-Tajimi spectral

density function, with the following parameters W g = 18.85 rad{ sec,

and 2 ~ 2 )S = 4.65 x 10 m {sec / rad. The control parameters are:

k t = 15x lO)kN{m, 0= 25 degrees, md = 27/vlg, kd = 957.2kN{m, cd = 23/vlg{sec,

and kmd = 15 X 10J kN/m. In addition, the normalized gains are fixed at

the following values: 't = tt = 8, 'd == 4, and td == 0.4. The structure is

first subjected to the earthquake excitation without any active

control system (Case 1); in Case 2, the structure is equipped with

eight active tendons, one on each floor; in Case 3 the structure is

equipped with an active mass damper on the top floor, and in Case 4

the structure is equipped with an active mass damper and two active

tendons at the bottom two floors. The power spectral densities of the

response for the four cases were calculated. In Figure 21, the

spectral density of the eighth floor relative displacement is shown.

The advantage of the c'ombined system in Case 4 over that of the AMD

alone of Case 3 is that the response of the higher modes is reduced in

addition to the first mode. From Figure 22, it can be seen that all

systems reduce the base shear force. Note that the vertical axis for

both of these figures is based on the logarithmic scale of base 10.
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V. INSTANTANEOUS OPTIMAL CONTROL ALGORITHMS

The difficulty of not knowing the earthquake ground motion

apriori has made it necessary to consider the assumption of a white

noise excitation in the derivation of the Ricatti closed-loop control

in Chapter III. The instantaneous optimal control algorithms resolve

this issue with the added advantage that the optimal control

expressions are simpler than those of the Ricatti closed-loop control.

This simplification was introduced in the study of discrete-time

systems by Saridis and Lobbia (48), in which they developed stochastic

algorithms .. The main idea is that instead of minimizing the integral

performance index used for the Ricatti algorithm, minimization of a

sequence of single-stage processes was proposed. The term

." . 1"per-~nterva optimal controller was used, meaning that optimality

was achieved at each instant of time. This idea was adopted for the

case of control of earthquake-excited structures by Yang, Akbarpour

and Gaemmaghami (62). Cheng and Pantelides extended the same concept

to the optimum design of seismic structures equippped with active mass

damper or active tendons (11,12,13). Cheng and Pantelides have also

adopted the instantaneous algorithms for optimal control of

wind-excited structures (12).

In this Chapter, the instantaneous optimal control algorithms are

developed for all three control schemes, i.e., open-loop, closed-loop,

and open-dosed-loop. In Chapter VI these algorithms are used in the

structural optimization of seismic structures. Their simplicity in
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establishing the control gain matrix is of paramount importance in

their application to the optimization algorithm.

A. EARTHOUAKE EXCITATION

The earthquake acceleration records described in Section A, of

Chapter III are also used herein. Their use allows comparisons to be

made between the Ricatti closed-loop and instantaneous optimal control

algorithms.

B. WIND EXCITATION

Artificial wind velocities are generated for simulation. The wind

flow is assumed stationary in time and non-homogenous in space. It is

known that the wind velocity has two components, steady and turbulent

flow. The logarithmic law is used to obtain the steady flow component

at different floor heights, which is then adjusted for different

averaging times arid terrain conditions.

The fluctuating component is obtained from design spectra for

wind which vary with height above the ground. These design spectra

establish the autospectrum for the structure based on which the

fluctuating components of the wind velocities are created. These

components are then correlated spatially using a transformation matrix

which is based on an experimental coherence function. From. the mean

and fluctuating velocities, the mean and fluctuating windward and

leeward pressures are obtained for each floor. These pressures

multiplied by the tributary area of each floor constitute the
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spatially discretized time-histories of the artificial wind forces.

The complete derivation of the wind forces is given in Appendix B.

C. INSTANTANEOUS OPEN-LOOP DISTURBANCE-COMPENSATED ALGORITHM

In addition to the simplicity of the instantaneous optimal

control algorithms, their instantaneous nature is advantageous because

of their ease of implementation in real-time. In the present algorithm

the earthquake excitation is assumed to be measured by accelerometers

installed at the basement of the bUilding. The structural and control

system for this type of control are shown in Figure 2. The

accelerometer is used to measure the earthquake ground acceleration in

real-time. Thus at any instant of time t, the ground excitation record,

Xg(t) , at the basement of the building is available up to that time

instant. Thus the only measurement required for instantaneous

open-loop control is that of the excitation as pointed out by Yang et

a1. (62). Experimental evaluation of the instantaneous algorithms was

carried out by Lin, Soong and Reinhorn (33). In this Section the

optimal control is derived, based on the measurement of the excitation

for both the active mass damper and active tendon systems.

1. Active Tendon System (AT). The optimal control {u*(l)} is to

be derived by minimizing instead of the integral performance index

J of Equation 3.16, an instantaneous time-dependent performance index

Jp (I) defined as

Jp(t) = {z(t){ [Q] (z(t)} + {u(t)}T [R] {u(t)}
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and satisfying the state-equation of Equation 3.13 .. The performance

index Jp (t) is minimized at every time instant l, for all l in the

interval O::s; IS 'J, 'Where 1" is the earthquake duration. Detailed

discussion of Equation 5.1 is given in Appendix C.

First consider the solution of Equation 3.13, assuming the optimal

control {u' (l)} has been derived, and the earthquake excitation Xg(l) has

.been measured upto and including time l. The response (z(l)} can be found

analytically as follows. Let the state vector be expressed in terms of

the modal trans formation matrix [TrJ of the plant matrix [ArJ

{z(l)} = [Tf] {t/lf (l)} (5.2) .

'Where [Tf ] is a [li\' x2i\'] matrix constructed from the' eigenvectors of·

matrix [A e] as

[Te] = [(Md, {Y d , ... , , (M)l, (Y)l , ... , (M N} , {Y N} ] (5.3)

in 'Which {M j } and {Y) are the real and imaginary parts of the

jlfJ eigenvector of matrix [A e]. Substituting Equation 5.2 in the

state-equation, Equation 3.13, yields

(5.4)

Premultiplying Equation 5.4 by [TcJ-l yields the modal state-equation

as

(5.5)

'Where [cprJ is the modal plant matrix defined as

(5.6)
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and the vector (r(tn is made up of the control force and excitation

terms

(5.7)

The advantage of Equation 5.5 over the original state-equation,

Equation 3.13, is that now the modal plant matrix is decoupled

['PrJ = (5.8)

where each sub-matrix ['PrJj is a [2 x 2J matrix given by

['P rJj = [:~j "j J j = 1'0'" N (5.9)
JJ.}

in which~ and~are the real and imaginary parts, respectively, of the

jth eigenvalue of matrix [ArJ. The initial conditions at time t = 0 are

{!J1 r (in = {O} I (5.10)

The solution of Equation 5.5 is given by the integral
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{I/tr(t)} = fCXp[[r.prJ(t-T)] {r(T)}dT
a

(5. ll)

where T is a dummy variable of integration, and I.:xp[[r.prJ (t - T)] is a

[2N x 2N] exponential matrix. Making use of the initial conditions, one

can perform the integration of Equation 5.11

trapezoidal rule. Let t = n~t, then

numerically by the

n-I

(I/tr(t)} = Icxp[[r.pr](n-t)~t]{r(l6t)}6t + {r(t)}(~l)
1=1

(5.12)

where 61, is the time-increment. In order to simplify Equation 5.12

define the summation term as

n-I

(A r (t - 6t)} = Lexp[[r.prJ (n - t) ~t] {r(l ~t)} ~t
1=1

so that Equation 5.12 can be written in the form

(>./I r (t)} = {A r (t - 6/)} + {r(t)} ( ~t )

(5.13)

(5.14)

It can be shown that the term (A(t)} can be expressed in recurrent form

using previous information as

(Ar (t - ~t)} = exp[[r.prJ ~t] {{Ar (t -Mt)} + (r(t - 6t)} (~/)} (5.15)

Substituting Equation 5.14 into Equation 5.2 we can recover the

state-vector in physical coordinates as

{z(t)} = [TrJ { {A r (t - 6t)} + {r(t)} ( ~t) }
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In Equation 5.16, {Ar(t-lit)} is known from previous measurements up to

(t - lit), and in order to evaluate (z(t)} at time I, only one measurement of

X/:(t) is needed. The optimal control force {U·(I)} is obtained from the

optimal control law.

This optimal control law is derived as follows. Substitute

Equation 5.16 in the performance index of Equation 5.1, and in order to

obtain the extremum, set the variation of lp (t) equal to zero

blp (I) _ 0

The optimal control is obtained as

{u· (I)} = [GrJ {Elr (t)}

where

(5.17)

(5.18)

[GrJ = [[BrJT [Q][B r] ( ~/)2 + [R] ]-1 (5.19)

{Br (t)} = - [RrJ T [Q] [TI ] {AI (t - iii)} ( ~I ) - [Br] T [Q] {el } Xg(t) ( ~I Y (5.20)

Thus the optimal contr.ol forces are computed from the measured base

previous informationacceleration Xg(t) and

real-time on-line computational effort

at (t-li/),

minimal.

keeping the

The response

state-vector is obtained from Equation 5.16 after the optimal value of

the control forces is obtained from Equation 5.18. The derivative of

{z(t)} is then obtained from Equation 3. 13.
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2. Active Hass Damper System (AMD). The development for the

active mass damper follows parallel lines to that for the active

tendon. The state-equation, Equation 3.45, can be decoupled by using

the modal transformation

(ZD(l)} = [7dJ ("'~l)}

where [TdJ is constructed from the eigenvectors of matrix [AdJ

(5.2! )

Note that now [TdJ is a [(2N + 2) x (2N + 2)] matrix. Minimization of the

instantaneous performance index

(5.23)

leads to the optimal control for the active mass damper

(5.25)

Note that (Ad (l-L1l)} is similar to the expression for (A((t-L1l)} but is

of dimension [(2N + 2) x I].
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D. INSTANTANEOUS CLOSED-LOOP ALGORITHM

The control forces are regulated by the feedback response

state-vector (~0) alone, i.e., the only measurements required are those

of the response at time t. This can be done by placing displacement and

velocity sensors at the floor levels. The structure and control system

for this type of control are shown in Figure 4. There is a definite

advantage of this algorithm for the case of wind excitations which are

difficult to measure for application with the open-loop algorithm.

From the open-loop case we know that the state-equation, Equation

3.13, can be solved using the trapezoidal rule given by Equation 5.16.

The optimal tendon control force vector {u"(t)} is to be derived that

minimizes the instantaneous performance index of Equation 5.1 and

satisfies the state-equation, Equation 5.16. The Lagrangian function

is given by

LF = {~I)}T[Q] {z(t)} + {u(t)}T[R] {u(t)}

+ (.l.(t)} T { (z(t)} - [TrJ {Ar (t - ~t)} - [Tt] (r(t)} ( ~t) }

Substituting (r(t)} from Equation 5.7

LF = {z(t)}T[Q] {z(t)} + {u(t)}T[R] (u(t)}

+ {).(t)}T { {z(t)} - [TrJ {Ar (t - ~t)} - {[Hr] {u(t)} + {Gr} Xit)} ( ~t) }

The necessary conditions for optimality are

aLF {OJ 2 [Q] {z(t)} + ().(t)} {OJ= -. =a{z(t)}

aLF {OJ 2 [R] {u(t)} - [Hef ().(t)} ( ~t ) (OJ= -. =J{u(l)}
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(5.28)
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(5.30)



(5.31)

Solving for {u·(t)} from Equations 5.29 through 5.31 one obtains the

optimal control

(5.32)

Thus the optimal control forces are computed from the measured

response. The response state-vector can be derived from Equation 5.16

as

1\ 1\

{Z(i)} [:::(1)] g(i)}

and the derivative of (Z(i)} can be obtained from Equation 3.13.

(5.33a)

(5.33b)

(5.33c)

The derivation for the active mass damper system follows parallel

reasoning with the result

(5.34)

The result for the response state-vector is similar to that of

Equation 5.33.
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E. INSTANTANEOUS OPEN-CLOSED-LOOP DISTURBANCE-COMPENSATED ALGORITHM

This algorithm requires the measurement of the ground excitation

and the response. The structure and control system for this type of

control are shown in Figure 6. The. optimal control {u'(t)} is to be of

the form

fUel)} = [51] {Z(l)} + {82(l)} (5.35)

where [51] is a constant gain matrix, and {52(l)} a vector containing the

measured excitation upto and including time l. The necessary conditions

for optimality are the same as for the closed-loop case. Combining

Equations 5.29 through 5.31 and Equation 5.35, it can be shown that

the optimal control vector is of the form of Equation 5.35 with

[81] = - ( ~l) [Rr
l[Bel [ [I] + [Q] [BrJ [Rrl [Bel (.:12

2]-1 [Q] (5.36)

(52(l)) = [51] { [Te] {Ae(l - 6l)} + {Ce} Xg(l) ( ~l) }

The response state-vector can be derived from Equation 5.16 as

1\ 1\

{Z(l)} = ['¥(l)] {~(t)}

[~(t)] = [ [I] - [Dt] [51] ( ~l) J-I [[I] + [RrJ [51] ( ~t) ]

(5.37)

(5.38a)

(5.38b)

(5.38c)

and the derivative of (Z(l)} can be obtained from Equation 3.13. The

derivation for the AMD yields
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where

(Sid) T = - ( 4~'D ) (Bd)' [ [I] + [QD] {Bd~~:d{ (t.I)' ]-' [QD]

S2d(t) = {SId} T { [Td]{Ad(t - ~l)} + {Cd} Xg(t) ( ~l) }

The response state-vector can be derived similar to Equation 5.38.

F. COMPARISON OF INSTANTANEOUS OPTIMAL CONTROL ALGORITHMS

(5.39)

(5.40)

(5.41)

The instantaneous algorithms are compared in this example. All

algorithmsopen-closed-loop

three algorithms, i. e. , the

were

open-loop, closed-loop and

derived based on different

assumptions concerning the nature of the signal which creates the

control forces. In the open-loop case the control forces depend on

the measured excitation, in the closed-loop case on the measured

response, and in the open-closed-Ioop case on both the measured

response and excitation. For simulation results one has to input the

excitation in order to get the response. Similarly the measured

response is assumed to be known in order to calculate the control

forces. Therefore all three control schemes should yield the same

answer. This fact was confirmed by extensive results carried out on an

eight-story shear building, equipped with eight active tendons, for

both wind and earthquake excitations. The instantaneous open-loop and

closed-loop algorithms were compared, and the results were identical.
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G. COMPARISON OF RICATTI AND INSTANTANEOUS OPTIMAL ALGORITHMS

The Ricatti closed-loop and instantaneous algorithms are compared

in this example. Theoretically both algorithms should yield the same

results, as was mentioned in Section F of this Chapter. However, the

Ricatti closed-loop algorithm was derived based on an integral rather

than an instantaneous performance index. Consequently the gain matrix,

which depends on the solution of the ARE, is of different form than

that of the instantaneous algorithms. As a consequence, different

control forces and different responses are obtained. However, by

modifying the weighting matrices, approximately equal control forces

and response can be obtained for the· two schemes. Hence the two

schemes of Ricatti and instantaneous algorithms can be compared. An

eight-story shear building with eight active tendons is the model for

this example. The structural properties

5kj = 1 x 10 kNlm, j = I, ... ,8, and three percent critical damping .. The

earthquake excitation used is the N-S component of the EI-Centro

earthquake ground acceleration of May 18, 1940, shown in Figure 23.

The weighting matrices, [Q] and [R], are considered to be diagonal in

this example. For the Ricatti closed-loop algorithm, the follOWing

were chosen: QU,!) = 1000, ,= I, ... ,16, and R(i,l) =0.13 x 10-3
, i = 1, ... ,8.

For the instantaneous algorithm the elements of [Q] and [R] were found

by trial and error as: QU,!) = 1 x 105
, ,= 1, ... ,16, and R(l,l) = 0.50 x 10-3

J

R(2,2) = 0.44 x 10-3
, R(3,3) = 0.41 x 10-3

, R(4,4) = 0.31 x 10-3
, R(5,5) = 0.24 x 10-3 ,
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1«6,6) = 0.15 x 10-3
, R(7,7) = 0.80 x 10-4, R(8,8) = 0.20 x 10-4. The maxima of the

control forces using the above chosen weighting matrices are

approximately equal. A comparison of the eighth floor relative

displacement, using the two schemes, is shown in Figure 24. Figure 25

shows a comparison of the eighth floor control force. It can be

observed that almost identical results are obtained.

H. HUMAN COMFORT ENHANCEMENT IN WIND-EXCITED STRUCTURES

The equations of motion and optimal control expressions for wind

forces for a structure equipped with the AT or AMD systems are the

same as for earthquake forces except that two changes have to be made.

First the relative displacements, velocities and accelerations have to

be replaced by their absolute counterparts. Secondly, the forcing

function instead of the earthquake acceleration, {Cr} Xg(l) , has to be

replaced by the discretized wind forces vector (W(I)} which was derived

in Appendix B. The optimal control laws for both the AT and AMD

systems have the same form as for the earthquake excitation.

An eight-story shear building is considered for analysis under

the artificial wind loads. The structural properties of the building

are: mj= 105Mg, kj = IxI05 kN/m, J= 1, ... ,8, and three percent critical

damping. The tributary area for each floor is 100 m 2
, and the interstory

height ~ = 4m. The instantaneous algorithms were applied for two

cases. In the first case, eight tendons were assumed to be acting, one

on each floor. The weighting matrices were assumed diagonal with the

5values: Q(l,~ = 1.0 x 10 , I = 1, ... , 16, and R(i,I) = 0.9 X 10-3
, i = 1, ... ,8. A

sample of the artificial wind load which was created based on the
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derivation of Appendix B is given in Figure 26. Figure 27 shows the

wind pressure transducer proposed by Mayne (36) to measure wind

pressures on buildings. The device was used by Lam and Lam (28) in

full-scale tests to assess the wind loads on the claddings of

high-rise buildings. The eighth floor displacement with and without

the tendons is compared in Figure 28. Figure 29 shows the

acceleration response for the controlled and uncontrolled cases. It

may be observed that the response is significantly reduced in

magnitude. According to criteria for human comfort from studies by

Chang (5), and Warwaruk (59), the comfort limits are defined in Table

II. From Figure 29 one can observe that the eighth floor acceleration

is reduced from the "annoying" to the "perceptible" range. The second

case is the same building equipped with only an active mass damper,

having the following properties: md = 5 Mg, kd = 10 kN/m, and

Cd = 0.7 Mg/ sec. The acceleration response of the eighth floor to the

wind excitation is compared to the uncontrolled case in Figure 30.

Again it is observed that the acceleration is reduced from the

"annoying" to the "perceptible" range.

I. WEIGHTING MATRICES

From the Ricatti closed-loop and instantaneous algorithms it is

obvious that the control forces vector is a function of the weighting

matrices [Q] and [R]. These matrices are assumed constant. Thus the

level of the control forces depends on these matrices. As can be seen

from Equations 3.30, 5.19, 5.32, and 5.40 for a fixed matrix [Q], if [R]

is reduced, then the control force increases. This behavior is
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Figure 27. Wind Pressure Transducer
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TABLE II. HUMAN COMFORT CRITERIA

Range

fl.
B.
C.
D.
E.

Comfort Limit

Not Pcrcreptible
Perceptible
Annoying
Very Annoying
Intolerable

100

Acceleration, %g

< 0.5
0.5 - 1.5
1.5 - 5.0
5.0 - 15.0

> 15.0
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demonstrated by the following example. The eight-story structure of

the previous Section, with the same structural properties, is equipped

with eight tendons. Both weighting matrices [Q] and [R] are assumed

diagonal. The diagonal elements of matrix [Q] are all set equal to the

value QU,!) = I. x 105
, / = I, ... , Ih, and the diagonal elements of the [R]

matrix are all set equal and allowed to vary as shown in Figure 31. In

Figure 31 the maxima of the first, fourth, and eighth floor control

forces and floor displacements are shown. It is observed that with

decreasing values of R(i.I), the displacements decrease but the control

forces increase. Hence different levels of control can be achieved by

varying the elements of the weighting matrices. In physical terms this

implies that the amplifier gains of the control devices must be

established according to these weighting matrices. The subject of

searching for the optimal weighting matrices that will produce the

minimum control forces is treated in Chapter VII.
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VI. STRUCTURAL OPTIMIZATION USING ACTIVE CONTROL

The structural optimization procedure is described for both the

lion-optimal closed-loop and optimal control algorithms. The objective

function is structural weight and is the same for both optimal and

non-optimal control algorithms. The design variables for the

non-optimal control include the structure's floor stiffnesses and the

normalized loop and feedback gains of the control system. The

constraints are expressed in terms of the standard deviations of floor

re lative displacements· and control forces. The design variables· for

the optimal control algorithms are the structure's floor stiffnesses.

The constraints are expressed in terms of the maximum floor relative

displacements and maximum control forces.

~. OBJECTIVE FUNCTION

The objective function for both optimal and non-optimal control

a}gorithms is approximated by a linear structural weight function

given by

IV

N

a+ I>jkj
j=1

(6.1)

where W is the structural weight of the building and kj the floor

stiffnesses, assumed to be in the elastic range. The constants a, and

oarp. chosen to approximate the actual relationship between the

structural weight and structural stiffness based on structural member

properties.
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B. FORMULATION OF OPTIMIZATION PROBLEM

The formulation of the optimization problem is different for the

opLimal and non-optimal algorithms. The design variables for the

non-optimal algorithm include the control parameters of normalized

loop and feedback gains in addition to the floor stiffnesses.

1. Non-optima 1 Closed-loop Control. The structural optimization

problem for the non-optimal closed-loop algorithm is formulated as

follows: Find kj , TIl' C/I! TJ, Cd that will minimize the structural weight W

of Equation 6.1, subject to the following constraints

j = 1•... ,N

(1 Aj ::; (1 AJ lTlax

f7 li :::; f7 li max

ad ::; aJ max

k· Z k mmJ

Til ::; T max

Cli ::; Cmax

Td ::; T max

Cd ::s; Cmax

j I, .. , . .v

I .... ,M

I .... ,M

I .... ,M

(6.3)

(6.5)

(6.6)

(6.7)

(6.8)

(6.9)

where a~ and (1~ max are the standard deviations of the relative

displacement of the jlh floor and the allowable displacement J

respectively. The quantity a~ can be obtained from the response

statistics of Equation 4.20. The quantities a~, and a~ max are,
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respectively, the standard deviations of the ilh tendon active control

force given by Equation 4.21 and the allowable. Similarly ad and ad max

are, respectively, the standard deviations of the active mass damper

control force given in Equation 4.22 and the allowable. Side

constraints are imposed on the floor elastic stiffnesses k min, and the

normalized feedback and loop gains of the active- tendon and active

mass damper systems. The number of floors is N and the number of

tendon controllers is A1. The implementation of standard deviation

expressed in the constraints is in the sense that for a given maximum

displacement and a probability of not exceeding that value, the

standard deviation of the displacement can be obtained. A Gaussian

probability distribution is assumed.

2. Optimal Control Algorithms. The structural optimization

problem for the optimal control algorithms is formulated as follows:

Find kj , that will minimize the structural weight of Equation 6.1,

subject to the following constraints

xP) ~ Xj max

u/(I) ~ ui max

ujl) :5 ud max

kj ~ k lJUn j

j l, ... ,N

1. ,1'.1

1, ....N

(6.10)

(6.11)

(6.12)

(6.13)

where xPl. and Xj max are the relative displacement of thejlh floor and

the maximum allowable, respectively. Theilh active tendon control force

and the maximum allowable are denoted by ui(l) and ui max, repectively.
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The active mass damper control force and the maximum allowable are

denoted by uJt) and ud max, repectively.

C. OPTIMUM STRUCTURE USING NON-OPTIMAL CLOSED-LOOP CONTROL

1. Example 1: Two-story Building. The optimization procedure is

applied to a two-story building shown in Figure 32 for earthquake

excita.tion. The objcctive is to find the minimum structural 'weight

that satisfies the imposed constraints. The design variables are the

floor stiffnesses, and the normalized loop and feedback gains. Three

ca.se studicsarcmade. In Case A, the structure is equipped with two

activc tendons whose stiffness k l is allowed to vary according to the

variation of the jth floor stiffness,~, in the optimization procedure

as kl = (I.OS kj . In Case B, the stiffness of the tendons is fixed at

k l = 40kipslin (7000 kN/m). In Case C, an active mass damper is included

in addition to the two tendons. The earthquake excitation used is that

pi Equation 4.1, of the Kanai-Tajimi spectral density function, with

the following parameters: UJI;= IS.85rad/scl.:, '1:=0.65, and

.~.2 = 4.65 x )0-4 m 2/ sl.:cJ/rad. The structural properties for all- three Cases

are: m l = m2 = ::!kip-sl.:c2/in (350 Mg), 1: 1 = c2 = 1.6kip-scc/in (280 JIg/sec),

n = 25 degrees. The active mass damper parameters for Case Care:

md 0.1)4 kip-scc2/in (7 Mg ), kd 6.11 kip/in (1070 kN/m),

cd = 0.10 kip - sec lin ( 17.5 Mg/ scc ), and kmd = 25 kip/in (4378 kN/m). The

constraints for all three cases are: 0.xlmax=0.035in(0.&9mm),

0;:2 max = 0.070 in ( 1.78 mm ), all max = on max = IOkips (44.48' kN),

T max = c max = Ill. Additional constraints are imposed for Case C as

T d :S: 6, and cd:S: 6.
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From Figures 33 and 34, one can observe that Case C gives the

least structural weight. From Figure 35, it is evident that the active

tendon control forces of Case B require a larger Tr . The Cor values,

however, reach upper bound for all three cases as shown in Figure 36.

The same active tendon control force standard deviations are obtained

at the optimum for all three cases; In Case C, Td reaches an upper

bound, whereas Cod goes to a small value, as shown in Figure 37. In all

three cases, the displacement constraint of the second floor and the

control force constraints are active. The difference between Case A

and Case B is very small, in terms of the structural weight. It

appears that the combined. active tendon and active mass damper system

is advantageous over the other two cases.

2. Example 2: Eight-story Building. . The three active control

system models described in Chapter IV, i.e. the active tendon, active

mass damper, and combined active mass damper and tendons are compared

in this example. The eight-story structure is first optimized,

subjected to the earthquake excitation without any active control

system (Case 1); in Case 2 the structure is equipped. with eight active

tendons; in Case 3 the structure is equipped with an active mass

damper on the top floor, and in Case 4 the structure is equipped with

an active mass damper and two active tendons at the two bottom floors.

All four cases are shown in Figure 38. The design variables are floor

stiffnesses. and normalized loop and feedback gains. The structural

properties are: mj = 314Mg, kj = 3x 105kN/m, Cj = 90Mg/sec, j = 1, ... ,8.

The earthquake excitation is that of the Kanai-Tajimi function, given
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by Equation 4.1 with the following parameters: wg '= 18.85 rad! sec,

'I-: '= ll.65 , and 51 2 = 4.65 x 10-
4

m 2! sec3
/ raJ. The control parameters are also

the same as the ones used in the example of Section E, in Chapter IV.

Note that the normalized loop and feedback gains are not fixed but are

allowed to vary as design variables in this example. The constraints

for all four -4 1.2 x 10-3 m ,cases are: CTxl max = 6x 10 m, O"x2 max

-3 "") 10-3 3.0 x 10-3 m,G.d max = I.Xx!O m, 0" :c4 max = _.4 x m, CT :c5 max

J.o x !O-3 m, 4.2 x 10-3 m, 8 -3
(1 xt> max = G ...7 max 0" .til max 4. x III m,

T max = C max = R, and k min = 1.5 x IUs kN!m. For Case 2 0" ei max = 20() k.\' ,

i = 1, .. _,1'1. For Case 4, O"ei max = 200 kN, = 1, ... ,2.

The optimization results are shown in Figures 39 through 42. From

Figure 39 we observe that the structure without controls requires a

very large weight. Comparing the three control configurations, we

note from Figures 40 and 41 that the combined system of Case 4, gives

the least weight,. The optimum stiffness distribution for all four

cases is shown in Figure 42. The values of the normalized loop and

feedback gains for Case 4 are given in Figure 43. It is observed that

Tel reaches an upper bound, Tf2 is close to the upper bound, but Td is

low. Similar results are obtained forceI' cf2, and Cd' The power spectral

densities of the response for the four optimal cases were calculated;

the spectral density of the eighth floor relative displacement and the

spectral density of the base shear force are shown in Figures 44 and

45, respectively. From these figures it is obvious that the no-control

case is the worst case. Cases 3 and 4 control the response

effectively; Case 4, however has the least weight and it reduces the
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higher modes better than Case 3. Case 2 reduces the higher modes best.

but of the three control cases has the most weight.

D. OPTIMUM STRUCTURAL DESIGN USING OPTIMAL OPEN-LOOP CONTROL

The instantaneous optimal open-loop control algorithm is used in

this example. An eight-story shear building is considered. The

s,tructural properties are: mj = 105 Mg. Cj = 1138 Mgl see, j = I, ... , 8. The

earthquake excitation used is the N-S component of the EI-Centro

earthquake of May 18, 1940, shown in Figure 23. The structure is

equipped with eight active tendons, or an active mass damper. The

properties of the mass damper are as follows: md= 9Mg, kd = 736kNlm,

and cd = 11 Mg/ sec. The weighting matrices, [Q] and [R], are assumed

diagonal. From extensive numerical calculations it was found that the

ratio of the diagonal elements of the matrices [Q] and [R] is of

importance in determining the level of response, and not their

absolute values. From a practical point of view, it is desirable to

have equal maximum values for the required control forces on all

floors. This is achieved by adjusting the ratio of the elements of the

weighting matrices. The weighting matrices are then fixed at these

values for the structural optimization.

The constraints used for both the eight active tendons case and

the active mass damper are: XI max = 0,015m, x2 max

Xl max 0.035 m, x4 max = 0.045 m, Xs max = 0.050 m, x6 max

0.025 m,

0.055 m,

X7 max = 0,060m, Xs max = O.065m. The control forces are constrained at:

Uj max = 650 kN, i = I, ... ,8, Ud max = 650 kN, and k min = 1.5 X 105 kN/m. The

optimization cycles for the structural weight are shown in Figure 46.
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The optimum stiffness distribution at the final iteration is shown in

Figure 47. The optimum weight for the AT case is 586.6kN, and for the

AMD case 596.HkN. For the AT case, the following constraints are

active: x6' x7, u1 , u7' andull' For the AMD case, xg is active.

The optimal designs found above for the AT and AMD cases were

subjected to the same earthquake excitation, but without the active

control systems. Figures 48 through 51 describe the response for the

optimal structure with and without the active tendons, and Figures 53

through 56 describe the response for the optimal structure with and

without the active mass damper. From Figure 48, it is obvious that

the eighth floor relative displacement has been reduced by using the

active tendon system. Although the maximum displacement of the

controlled response has been reduced by only about 60 % as compared to

the no-control case, it is evident that for the rest of the time

history, the reduction is much greater. The maximum relative velocity

and maximum acceleration of the eighth floor have been, respectively,

reduced by 55 % and 70 % as compared to the no-control case as shown

in Figures 49 and 50. In Figure 51 the maximum first floor drift has

been reduced by 60 %. The first floor drift is defined as the

algebraic difference in displacements between the first and second

floors. The active tendon control force for the first floor tendon is

shown in Figure 52. This control force reaches its maximum value for a

very short time, while for the rest of the time-record its value is

less than half of its maximum.

126



a::
o
o
.-J
I.L

8

7

6

5

4

3

2

(d - - - - Eight AT
(b) AMi)

~_.........,. --,
I

234 567 8

Floor Stiffness ( kj x105 K N/m )

Figure 47. Optimum Stiffness Distribution for Building with:
(a) Eight Active Tendons, (b) Active Mass Damper

127



0.12 -r------------------------------,

0.08

-::i 0.04-~
:z
Y.I
::i
Y.I
U

::5
Q. 0.00en
c
0::
0
0
..J...
:I:
~ -0.04ao

-0.08

-0; 12

--- -- No Control
Eight AT

I, /

"~

" ~" ""
,

" "~ . h • ""
,

" '. •.
"

,
" " /I

" "
,

" " II i,; • , ,
II

, II i ~

~ " "
, ,

II • II h II

"
"

•
>, "

,
"

,
" " " "

"
,

II
,

"
, , , • II ", , , , , " II ,• " :. ,

/I

" "
, , I

, I J, I , II ,
" "

, ,
"

, , , , r

"
, , , ,

"
, , • ,, , , , ,, , , • ,
, , ,, , I, , ,
, , ,
, , ,, ,

I
,,,,

, ,, ,, , ,, , , ,, • , I, , , , ,
, , , , ,. , , , , ,

~I· , ' , , , ,
, ' , • , ,
, ' "

I • •
" "

, , , ,

" "
, , , ,.,

" "
II , , ,

"" " "
II , , ,

" .,
" " " " , , ,

" " "
" .' " " , , ,

" " " "
" " "

.,
•

, , .' " ~ "
,

.' " < "
I , ,

"
\I

" ~ " "
" " ( , ,

"
II

" ~ "
"

,
" " ~ ""

,
" "

II "
"

, ,
"~ " ,

" " " ~ ", " " ,
" " "

,
" " ,

" "
~

~ " " " "
,

< " ~ "" "" I

"~
I

o 2 4

TIME (SEC)

6 8 10

Figure 48. Comparison of Eighth Floor Relative Displacement of
Optimum Structure with and without Active Tendons

128



-2.0 +----.---,....--""?'""-"-T--or---r--"-T--,...---.---!

o 2

TIME (SEC)

6 8 10

Figure 49. Comparison of Eighth Floor Relative Velocity of
Optimum Structure with and without Active Tendons

129



25 .,--------------------------..,

20
~, ,

! i " -.. ~ "
" '. "

" " " "15 " :.
~ " " " ,• " " " >,,. • , '. ,

"
" ~ • " "

II " "
" " " " • "
"

" "
,

~ " I "
"

1\
,

" "
, "- " " •• ,

" " ~C\J 10 " " "
I

" "U " "
, ,

I
, "I "

, , f....
"

, ,
• . , , ,

en
"

, , , ,
.......... "

, , , ,
, I , , , ,

::i I' , I , ,- 5 ' ' · , , ,, , ,
Z I

" , ,
0 , I

i= , I

~
,

a::.... 0-I.... ,
U • I
U • I
~

, ,, , , ,
a:: -5

, I , , I

0
, , . , ,

I
,

I , , I
"

f, , . , ,
0 I

, ,
" "

, , , , , ,
-I • , ,

" " " , ,
•

,
w. • ., ..

" " " , ' , , ,
"

, ,
" " •

"
,

" "
,

"
I ,.

~
, ,

" " " ,
"

,,
" •• " " " " ,I

" "~ -10 "
,

"
\I

" " " "
,

" "GO '. "
II

.~ 11

" " "
I

" " ,I
" 11

" " II " " ~ "~ • " " II\ " - " " " " " "• I " "
"

" "
,I ~ """ " " " " " "" ~ " " i

,
-15 " " " I, •~ "

" "~ " " •
~ "

.
"",,

-20
~o Control

~- - --
Eight AT

-25

0 2 4 6 8 10

TtttiE (SEC)

Figure 50. Comparison of Eighth Floor Relative Acceleration of
Optimum Structure with and without Active Tendons

130



0.020

----- No Control
Eight AT ~ ,

I

" .
"0.015 " " ~

" " ",
" ", '. ~ " I, " .. '. •

~~ " "
"

II ,
~" " " II ~;

" ~ "
,

II

" "~

"
,

" " " " '. I

" "
, :' ,

" '. ,
• '. :'

0.010 " " "
,

"
~ '. •

~ " "
., , • " " " I

" " • , " " , ,
,I

" " "
, , ,

" "
, •

"
, , , •

" , ' • ,
"

• ,, , , ,
• I -, I- 0.005

, ,
:2 • •, ,- ;, , ,

I I

~
, ,... ,

iii: ·I
0
Q: -0.000
0
0.... , ,... , , ,

• , ,
~ I , ,
VI , , , ,, , , ,

-0.005 ' I • , ,
',' "

, • •
" • I ,
"

I , ,
"

I , , ,
"

, , , I

"
,

"
, , ,, ,

"
, II , ,

"
, ,., "

,
"

, I " " " '. ",. " "
II , • " " " "

II

-0.010 ., \I " " , I "
II

" " "
, "

" " '. • , • "
II

"
,

" II
II

"
I, • ~

, ,
"

II ~ ~ " ""
. , ,

" " " •
" " " "" " • " "

I,

" " " " " " ~
,

II

! " "
II " "

, •II " " "
II .,- " II

"
,

• "
, , ,.

f
-0.015 " " p-,

" f

"
",.
"I

-0~020

0 2 4 6 8 10

T1WE(SEC)

Figure 51. Comparison of First Floor'Relative Drift of
Optimum Structure with and without Active Tendons

131



800~-----------------------

600

400-%
~-w 200·

~
ua::

1\ A0...

vnNv\
f\

...J

M0
a:: 0I-
%
0
U
a::
0 'J0
...J -200· v...
l-
V)

-400·

-600

1086

-800 +-----,.--'"TT--""I"'--""""TI--""I"'-----r---.-----r---.--~

o 2" 4.

TIWE (SEC)

Figure 52. First Floor Active Tendon Control Force

132



0.12 "1"-------------------------,

0.08 -- -- No Control

>,
AMD

;,
>,

" "
,

• " " " "a ,I
" " " ~II " " "

I,

" " " " " ",
" ,. " "" , I ' , "- :' : '

., ,
:::I 0.04

'I
,, ' , I ~- ' , ,, "

~ , ":z , ".... ,
:::I
W
(,) ,
~

•I
~

,
0.00

,
l/) •
C

I,
0:

,,
0 I

0 •, , ,
-l I, , I
Y. , , , ,
:z:: ' , • "" ., "~ -0.04

, " " "lID
"

, .,
"

~

" "
II

"" "
II

"
" "

II
"" " " ",I

"
• "

" " '."
~ c

" "
" " ~

" ~
"a

-0.08 I

-0; t2

o 2 4

TIME (SEC)

6· 8 to

Figure 53. Comparison of Eighth Floor Relative Displacement of
Optimum Structure with and without Active Mass Damper

133



2.0 .......-----------------------------'----,

-1.5

-2.0 +--.......--...,.....----,--..,....----,--..,....-""--1--...,......----,---1
o 2

TIME (SEC)

6 8 10

Figure 54. Comparison of Eighth Floor Relative Velocity of
Optimum Structure with and without Active Mass Damper

134



25 -r--------------------------,

20

~
, ----- No Control
~ AMD~

15 "" " •
-:' I, ", - 4" " "" II II "

" .. I, "
" ..

" "- " II
" .. "N. 10 " II

" • "U • I' "
,

"
LaJ " "

,
"

VI
.,

"
I 'I, , I 'I

......... , , , • "
~

,
• ,

", , I "- 5 • • "
Z , I

0 •,
;:::
oc(
a::;.
LA.! 0

,
I

~
,

U
, ,

\' I
,

U I I

oc( I I, ' ,
a::; -5 • ,

"0
, ,

I
,., ,

I "0 , , , , "...l " • , I' II

W. " , , ,, ' I II

~ "
I

"
" ..

" ":z: I, I, I' I, "I- -10 " " " 'I
~ "ao " " " "

II

"
,. I,

"
P

" " .. 'I •
" " I, ~, •
" " II

" " "" ! ..
-15 ~ -~ I

f I.

-20

108642

- 25 +I--~--_._--~--..,....--..,....--_r_--......-_.,r---___.--_l

o

TI~E (SEC)

Figure 55. Comparison of Eighth Floor Relative Acceleration of
Optimum Structure with and without Active Mass Damper

135



0.020 -r-------------------------

0.015

0.010

-. 0.005
~-
~....
IX
0
IX -0;000
0
0
-'....
~
en

-0.005

-0.010

~ ~
~ ~
"

" " " "• " " "
., ;.

" " " " "
" " " " "

II

• ., " " "
" " 1\

" I ' , "I , ,
", • , ,, , I

I ,,,,,

I
,

, , ,
, ' , ,

I " • ,
,I ,

I .,
"I,

""
, ,. .,

"
"

,
"

.,
~

I, " "
.,

" "" " " ", ? I, ~ ".' " ~
" ".' ..
~

,

i\o Control
AMD

,~,,,,
•, ., .
• I, ,, ,

I,,
I

•I

-0.015

-0.020 +---,---"T""'--......,...--.....--........--..---.-- --....----1

o 2 4

TIME. (SEC)

6 8 10

Figure 56. Comparison of First Floor Relative Drift of
Optimum Structure with and without Active Mass Damper

136



From Figure 53, the eighth floor relative displacement has been

reduced by using the active mass damper system. The reduction is

about 80 % as compared to the no-control case. The maximum relative

velociLy and acceleration of the eighth floor have both been reduced

by 85 % as compared to the no-control case as shown in Figures 54 and

55, respectively. The maximum first floor drift has been reduced by

80 % as shown in Figure 56. The active mass damper control force is

shown in Figure 57. The damper control force is about one third of the

allowable at its maximum value. This is the reason why the active mass

damper system does not reduce the response as much as the active

tendon system. However, the active mass damper performance could be

improved by adjusting the elements of the weighting matrices, so as to

yield a larger control force.

E. OPTIMUM STRUCTURE USING OPTIMAL CLOSED-LOOP CONTROL

The instantaneous optimal closed-loop control algorithm is used

in this example to illustrate the benefits of combinining structural

optimization with active control. An eight-story shear building is

considered. The structural properties are'; mj = 2 kip - scc2{in (350 Mg),

j = I, .. , , 8, and 1 % cr i tical damping in all the modes. The earthquake

excitation used is the N-S component of the- El-Centro earthquake of

May - 18, 1940, shown in Figure 23. The- structure is equipped with

eight active tendons, one on each floor. The weighting matrices [Q]

and [R] are assumed diagonal with the values R(i,l} = 0.06, i = I, ... ,8 and

Q(I,t) = 1500, I = I, ,.. ,16. The choice' of these matrices at this stage
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is arbitrary, and they are fixed at this values during the structural

optimization.

The constraints used in this case (Case 1) are:

xI max 0.72 in ( .lllS m), X2 max = 1.44 in ( .037 m), xJ max 2.16 in ( .055 m),

xa max 2.HH in ( .ll7J m), Xs max J.60 in ( .091 m), x6 max 4.32 in (. I )0 m),

x7 max 5.()4 in ( .12H m), xl:\ max = 5.76 in ( .146 m), Uj max = 300 kips ( )33 kS),

i = I, ... ,H, and k man = 400kips{in (70040 kN{m). The optimization cycles for

the structural weight are shown in Figure 58. The optimum stiffness

distribution at the final iteration is shown in Figure 59. The optimum

weight for Case 1 is 42.12kips (IH7.35 kN). The following constraints are

active: x2' xJ' . and X 4 · To illustrate the usefulness and versatility of

the optimization process, a second optimization of the same

structure-control system was carried out, with the following

difference: The displacement constraints of Case 1 were reduced by

70 % for this case (Case 2). The rest of the constraints are kept at

the same values. The resulting des ign for Case 2 is also shown in

Figures 58 and 59. As expected the optimum weight for Case 2 is

higher, at 116.34kipJ (517.48 kN). The following constraints are active:

xI' xJ' X 4 , xs, and x~. I t can be seen that optimization is not intended

just to reduce the structural weight, but to achi~ve optimal

structural strength through rational stiffness redistribution based on

a given set of constraints. The limitations. of the control system were

observed by retaining the same constraints on the maxima of the

control forces for both Cases 1 and 2, and two different designs were

obtained to satisfy the two situations.
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F. OPTIMUM STRUCTURAL DESIGN WITH FREOUENCY CONSTRAINTS

The instantaneous optimal open-loop control algorithm is used in

this example that demonstrates the use of frequency constraints. The

frequency constraints are imposed so that the resulting optimum

structure with the active system will have its natural period removed

from the seismic spectral peak period. An eight-story shear building

is considered. The structural properties are: ~ = I05,Hg,

(J = lUX ,\lxl sec, j = I, ... , X. The earthquake excitation used is the N-S

component of the El-Centro earthquake of May 18, 1940, and the

structure is equipped with eight active tendons.

The displacement constraints used are: XI max (Ull S m,

O.ll}? m, Xl max = O.ll55 m, X4 max = O.ll?J m, .\'; max 0.092111,

O.IIllm, x7 max = O.12Xm, x M max = O.146m. The control forces are

constrained at: Iii max = 650kN, i = 1, ... ,8. The frequency constraints are

imposed as follows: £01 min = 0.90/-lz, £01 max = 1.25 Hz, and

k min = 1.0 x (04 kN/m. The optimization cycles for the structural weight

are shown in Figure 60a. The optimum weight is 164.4kN. The frequency

constraint is active at WI = 0.9011=. At the optimum, .'1:"8 = 0.0568 m, which

is lower than the aliowable. The first and second mode frequencies are

given in terms of the optimization cycles in Figures 60b and 60c,

respectively. The optimum stiffness distribution at the final

iteration is shown in Figure 61.
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VII. CONTROL ENERGY MINIMIZATION

Through the course of this study it has been shown that the

weighting matrices are influential in shaping the response. When the

elements of the response weighting matrix[Q] are large the response is

reduced, but at the expense of large control forces. When the elements

of the control weighting matrix [I?] are large the control forces are

small, however the displacement response is increased. Evidence of

these observations was shown in Figure 31 in Chapter V for a

wind-excited structure,

earthquake excitations.

but similar results are obtained under

Physical limitations of the actuator impose an upper bound on the

maximum control force magnitude that can be achieved. Considerations

of power limit the control energy available. Various objectives and

constraints can be met by judicious selection of the elements of the

weighting matrices. Phys ically the weighting matrices affect the gain

matrix for the system and they are implemented in terms of the

amplifier gains that produce the control forces.

From extensive numerical results carried out during this study it

wa~ observed that when the weighting matrices [Q] and [R] are assumed

diagonal, it is not the absolute value of the elements of these

matrices that influences the response but the ratio of the elements

(11). Thus the problem can be simplified by keeping the elements of

matrix [Q] constant and varying the elements of [R] only. A

trial-and-error approach was used in order to search for the elements

of the weighting matrix [R] that will produce approximately equal
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maxima for the control forces on all the floors. This is des irable

from a practical point of view.

A more rational procedure is developed herein in order to obtain

the optimal weighting matrix [R]. The control energy is chosen as the

objective function to be minimized. The constraints are the same as

those used in the structural optimization using optimal control

algorithms. The optimization problem is as follows: Find the elements

1~(iJ) of the weighting matrix [R]. assumed diagonal, that will minimize

the control energy defined as

it:' --
"r

\u(lll [R] (u(t)) dl (7.1 )

subject to constraints on the maximum allowable floor relative

displacements and maximum allowable control forces

j 1"."N

I, ... , :'.1

( 7.2)

ll.J)

.... here N is the number of floors, and .\1 is the number of controllers,

The objective here is to obtain the optimum weighting matrices that

.... ill reduce the control forces, while the response still remains

10' i thin the constraint limitations. In this sense, a combination of

structural optimization and optimal active control yields an

economical design that both determines the optimal structure

s t i f fnesses and the optimum control parameters as expressed by the

optimum weighting matrices.
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The optimal weight structure obtained in Case 1 of Section E in
\

Chapter VI is used as the structure for applying the control energy

minimization procedure. The structure and the weighting matrix [Q] are

fixed. The constraints for allowable displacements and control forces

are the same as before for Case 1. The objective is to determine the

optimum elements of the diagonal weighting matrix R(i,i) , = 1, ... ,8, that

will minimize the control energy as defined by Equation 7.1. From the

results shown in Figure 62 and Table III, it can be observed that by

finding the optimal weighting matrices, the maxima of the control

forces have been reduced. The first floor control force at iteration 1

and iteration 5 are compared in Figure 63. It is clear that the energy

minimization has resulted in reduction of the control force. The

maxima displacements, of course, are still bound by the constraints

used in Case 1.
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TABLE III. CONTROL ENERGY MINIMIZATION RESULTS

Maxima of Control Forces ( kip )
( 1 kip = 4.45 kN )

Iteration Floor Number
Number

2 J 4 5 6 7 8

1 289 271 285 280 273 252 177 92
5 250 258 211 216 202 162 89 57

Weighting Variables R(i,lh 10- 3

Iteration Floor Number
Number

1 2 3 4 5 6 7 8

1 .070 .070 .070 .070 .070 .070 .070 .070
5 . 110 .076 . 100 .095 .109 . 169 .274 .240
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VIII. TIME-DELAY IN APPLICATION OF CONTROL

A very important issue in the implementation of active control is

that of time-delay. Time-delay can cause unsychronized application of

the control force. More importantly, due to time-delay the control

forces may be applied at a time at which they are not needed. It is

plausible that such delay in the application of the control forces may

lead to instability, because the control forces may deteriorate the

situation if they are applied at the wrong time.

Al though time-delay may be attributed to a variety of factors,

the reasons for it can be classified in two categories. First,

time-delay is caused due to on-line computation and execution of the

control forces. Secondly, it can be caused from delay in measuring

on-line the base acceleration. Note that the first category is

unavoidable no matter which control algorithm is being used. However

as shown by Chung,

the second category will occur only if

open-closed-loop control algorithms are utilized,

Reinhorn and Soong (15).

the open-loop, or

A. ON-LINE COMPUTATION AND EXECUTION OF CONTROL FORCES

This category of time-delay arises from the delay caused by the

computer in calculating the optimal control forces according to the

algorithm currently in use, and the delay caused- in the movement of

the actuator. This type of delay can be compensated for. Assume that

the structure oscillates with a dominant frequency, wI' The feedback
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force is in general of two types, displacement feedback force (DFF),

and velocity feedback force (VFF),

u( I) G! X(I) + G2:((I) (8. j)

where the first term on the right side of Eqs. 8.1 is the DFF; and the

second term the VFF. If the OFF lags the measurement of the

displacement, l;c units of time, and the VFF lags the measurement of the

velocity, Ii:. units of time, their corresponding phase lags are Wi l;c and

wll;c' respective1y. The ideal and the real system are shown in Figure

64. The ideal or theoretical gains are GI and G2 as shown in Figure

64(a), and the real gains are denoted by KI and:?2 as shown in Figure

64(b). By resolving the OFF and VFF in the real system one o~tains the

situation shown in Figure 64{c). Note that the OFF produces a negative

component which reduces the control force effect of the real system.

Thus time-delay may cause instability. The time-delay is compensated

for in the real system as follows: 1) precalculate the feedback gains

GI andG2, and the fundamental frequency of the structure, Wt, for the

ideal or theoretical system, 2) determine the time-lag in the

measurement of the displacement l;c and the velocity Ii:. experimentally;

this can be done by measuring the phase shift of the transfer function

of the real system, when the structure is subjected to a white noise

excitation, J) use the information from 1), and 2) to calculate the

real gains gl and g2 with time compensation. From Figure 64, the

equivalence of the real and ideal control forces gives

(8.2)
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((12) x(l) (8.3)

Thus in order to have the. ideal system produce the control forces

required by the real system the following relation must hold

[

COS W II x

I .
-- SlOW, IWI x

{Gl}
(12

(8.'+)

Therefore .the real system gains can be. obtained from those of the

ideal system by

(8.5)

B. COMPENSATION METHOD FOR TIME-DELAY

For multiple degree-of-freedom systems with more than one

controller, the same concepts can be applied as for the single

degree-of-freedom system. Being a distributed parameter system, the

structure will be controlled at discrete locations. The active tendons

will be located at various floors of the building. Assuming for the

present discussion that an eight-story bUilding will be equipped with

eight ~ctive tendons, we note the following: 1) the time delays in the

VFF and DFF will in general not be the same for every controller, 2)

for the purpose of calculating time-delays assume that the structure

is vibrating at its controlled fundamental frequency, 3) the

controlled fundamental frequency can be obtained from the closed-loop

plant matrix. Following the
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degree-of-freedom system, Eqs. 8.5 will still be valid for the ilh

tendon control force

(S.b)

where [TR]; was given in Eqs. 8.5. Note that for the particular tendon

{, and t, may be dif ferent, and therefore the elements of [TRl will be

different. The ideal gain matrix elK] for the instantaneous optimal

closed-loop control was derived in Chapter V, and is given by

[lkl - ( ~( ) [Rr' [ilrJr [Q] (S.i)

If we consider that the weighting matrices [Q] and [R] are diagonal, and

that the time-delay for each controller is the same, then it can be

shown that the real gain matrix for the present example is an [R x 16]

matrix. Because of the form of the controller location matrix, the

real gain matrix is given by

[RK] == [[ () ]: [RKR] ]

where [RKRJ is an [R x 1'IJ submatrix whose non-zero elements are: (1,1),

(2,1), (2,2), (3,2), (3,3), (4,3), (4,4), (5,4), (5,5), (6,5), (6,6),

( 7 , 6), ( 7 , 7), ( 8 , 7), and ( 8 , 8) . The non-zero elements of the real

gain matrix are related to those of the ideal gain matrix as follows

C(iJ)

CO:i(w Ii)
(S.9)

It is impor1:ant to note that as' more advanced control software and

hardware becomes available, the magnitude of time-delay is expected to
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decrease. In the experiment carried out by Chung, Reinhorn and Soong

for a single degree-of-freedom system, it Iolas found that the values

for l;r. and l;r. Iolere 30 msec, and 36 msec, respectively (15). It Iolas also

stated that since real structures vibrate at a lOloler fundamental

frequency as compared Iolith the test-model, time-delay is expected to

produce minor effects. The issue of time-delay is investigated in

order to be utilized in the optimal control algorithms used in the

structural optimization process.

C. APPLICATION OF TIME-DELAY COMPENSATION

For the purpose of illustrating the time-compensation method, a

numerical simulation of the real system Iolas attempted. A SDOF

structural system equipped Iolith an active tendon is. considered. The

structural and control properties are described in Table IV. The

elements of the Ioleighting matrices [Q] and R are chosen as

[Q] -8 I.R=(2xlO )1'.:[ (8.IU)

Iolhere k is the structure stiffness, k. r is the tendon stiffness and their

values are given in Table IV. The time-delay values were assumed as

follows: 1:<:= 30 msec andti:= 36 msec, respectively. The results for a

system compensated for time-delay and an identical system for which

time-delay was not considered are shown in Figures 65 through 67. From

these results it can be seen that time delay has some influence on the

response and the applied control force.
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TABLE IV. TIME-DELAY SIMULATION DATA
( 1 Ib-sec2/in = 175 Kg )

( lIb/in = i75 N/m )

Parameter

mass
structure stiffness
tendon stiffness
tandon angle
na~ural frequency
damping factor
earthquake excitation

159

Quantity

16.69 Ib-sec2/in
7934 Ib/in
2124 Ib/in

36 degrees
3.47 Hz
1.24 %
30 % of EI-Centro 1940
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IX. CRITICAL-HODE CONTROL ALGORITHM

As it was pointed out in the Introduction, the optimal

critic.:ll-mode control is likely to be as effective as the optimal

global control, since the response of tall buildings under earthquake

excitations is usually dominated by a few lowest modes. The

. critical-mode control is also superior to the global control, as far

as the amount of on-line computations is concerned. For-global control

of a structure withiV degrees of freedom, the instantaneous algorithms

require the solution of 2N differential equations. However, if only ~

critical modes are controlled where (~<N), only 2~ differential

equations have to be solved. The critical-mode control algorithm is

developed in order to reduce the amount of computation, which is

important in the structural optimization procedure.

In this Chapter the critical-mode control algorithm is derived

based on the instantaneous closed-loop algorithm. The spillover effect

is demonstrated theoretically and through the use of numerical

examples. The algorithm is then used as a tool for establishing

optimal locations of active tendon controllers when only a limited

number of controllers are available.
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A. CRITICAL-MODE CONTROL USING INSTANTANEOUS CLOSED-LOOP ALGORITHM

The formulation folloW's the developments of Chapter V. The modal

state-equation can be written in an expanded form using Equations 5.5

through 5.7 as follows

(9.1 )

Our interest is in controlling only the lowest modes (t/f((I)}c' The

remaining residual modes are denoted as (t/fr(l)),. By partitioning [4'rJ

according to the cr·itical and residual modes. Equation 9.1 can be

written in the form

(9.2\

where the following definitions have been used

(9.J)

Rewriting Equation 9.2 in two separate equations, one for the cricical

and one for the residual modes

== [4'r], (t/f ((t)}, + [Til], (uU)} + (TC), ,r,,(t)
• 0

The critical-mode control algorithm is based entirely on the dynamics

of Equation 9.4. The residual modes of Equation 9.5 are ignored in the

derivation of the optimal control law. The instantaneous performance
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index has to be expressed in t:erms of t:he critical modes only. This

can be achieved by substituting Equation 5.2 into Equation 5.1, and

retaining the term containing the critical modes ::I/!r(l)}e only. The

expression for Equation 5.1 becomes

(9.6)

Substituting the partitioried modal state-vector [l/!r(01

(I/! (I)} == {fl/!I (I)}e (
. I (I/!r (t)), J (9.i)

in Equation 9.6, performing the algebra, and ignoring terms that

involve the residual modes {I/!r(t)}, the critical-mode performance index

. T T
{1jJ( (t)}e [QJe (I/! ( (I)le + (U(I)) [R] (uU)I' (9.S)

in which [QJ~ is a ~ x ~ matrix obtained form partitioning the

following matrix product

199)
[QJ,
[Ql, J

. [QJ,c
[[QJc

More details about Equations 9,8 and 9.9 can be found in Appendix C.

The critical-mode optimal control problem is as follows: Find the

optimal control (u·(t)} that minimizes the critical-mode performance

and satisfies the state-equation for the critical modes

Equation 9.4. Following the derivation for the global control

algorithm, the critical-mode closed-loop optimal control is found in

Appendix D as
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(u (I)} = - (~I) [Rr' [TIJJ[[QJc(w,(I)}c

[K]c (w r (I)}c

(910)

Note that. the optimal control is given as a function of the modal

state-vector. Specifically, only the critical modes {w,(0}c are of

interest. However the displacement and velocity sensors measure the

actual state-vector (Z(I)}. The modal states can be estimated using modal

filters, as pointed out by Heirovitch and Baruh (38). The modal

filters produce estimates of modal states from distributed

measurements of the actual states. For simulation purposes we assume

that the modal state-vector can be recovered from the actual

state-vector (z(I)} by using the inverse of Equation 5.2 in the folloWing

form,

(911) .

The solution of the motion equation Equation 9.1 proceeds in two

parts. First the critical modes are obtained by solving Equation 9.4,

and the residual modes are obtained by solVing Equation 9.5. The

solution of Equation 9.4 for the critical modes can be written as

(9.12)

Proceeding for the numerical integration in the same manner performed

for the global control in Equations 5.12 through 5.16 and 5.33, we

obtain

1\ 1\

("'r(tn, = [PI(t)](P2(l)}
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[I'I(I)J [ [ I J. + (t"l)2 [TI1] [Rr l [TlJ{ [Q] ]-1(, 4 ( (, (9.lJb)

The derivation of Equation 9.13 is given in Appendix D. The solution

for the residual modes can be obtained in a similar manner from

Equation 9.5. Finally the actual state-vector (Z(l)) is retrieved from

Equation 5.2. The derivative of the state-vector can then be obtained

from Equation 3.13. The effectiveness of critical-mode control applied

to seismic structures is illustrated in the numerical examples.

B. SPILLOVER EFFECT

It is known that any modal control technique has as an objective

to control only some of the modes. The control forces may excite the

remaining uncontrolled modes. This is shown here for the instantaneous

closed-loop algorithm. Substituting Equation 9.10 in Equation 9.2 we

obtain

Collecting terms

[
[rprJc [0]] i:ifir (I)},} [[TI1Jc [f"'lc] ,+ (IJIr(t)},
[0] [IPrJr l (ifir(l)}, [TBJ,[A.l,

{
(TC1f } ..+ --' X (I){TC}, g

[
-=[rp=rJ:=,-::+~[T:-B.....;l_[KJ......;.;.,.'-+--::,[_OJ~] { {ifi r(Ill, }
[TBJr [KJc [rprJr {ifi r(I)},
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Rewriting the equation for the residual modes by par~itioning Equation

9 . 15

(916)

By comparison, note that for an uncontrolled system, the last term

\oIould be absent. Thus the last term is an excitation of the residual

modes by the control forces. This term produces the control spillover

effect, the influence of \oIhich is examined in the numerical examples.

If critical-mode control is to be effective, the spillover effect

should be minimized.

C. OPTIMAL LOCATION OF CONTROLLERS

The obj ective of this Section is to establish criteria for the

optimal location of a limited number of controllers. The critical-mode

optimal control algorithm derived in this Chapter is used to control

the lowest modes of a seismic structure. It is quite plausible that in

the application of active control systems to structures, it may be

more economical to place the controllers at a few preselec~ed

locations. The term optimal locations reflects on the reduction of the

structural response, while using the minimum control effort. The

location of the controllers with respect to the structure is reflected

in the matrix [y J in Equation 3.7, and the state- form matrix [BrJ in

Equation 3.14. By varying the locations of the controllers, the

entries in the aforementioned location matrix \oIill be changed, thus

the dynamic response will be modified.
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One method of selecting the optimal controller locations is to

consider the modal shapes of the structure. The modal shapes of the

few lowest modes that we select to control give useful information

about the most beneficial locations. The maxima of these modal shapes

in a given mode are obviously advantageous locations for the

controllers. However the determination of the optimal locations for a

combination of modes is more of an intuitive procedure, but

nevertheless very useful. Another method for the optimal locations

selection is one proposed by Martin and Soong (34). In this approach a

performance index of control energy is minimized in the time period of

interest. This performance index is defined by the integral

frf T
iF. = 0 (l/(t)} (l/~i)} dt

where If is the final time. The concept here is

(9.1 i)

that if the choice of

the controller locations is to be optimal, the control work performed

by the control system as reflected in Equation 9.17 is to be a

minimum. In the course of the present study it has become obvious chat

minimization of the performance index of Equation 9.17 alone may not:

lead to the optimal solut:ion since when the control energy is reduced

the response is bound to be increased. Therefore a new performance

index is suggested that reflects upon the measure of the reduction of

the structural response, given as

i R = f~(z(t)} T (z(t)} dt
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This index should also be considered in deciding whether or not a

given combination of controllers is truly optimal. Extensive

discussion of these criteria is given in the numerical examples.

O. COMPARISON OF GLOBAL AND CRITICAL-MODE CONTROL

A comparison of the global instantaneous closed-loop algorithm

derived in Section D of Chapter V, and the critical-mode control

algorithm derived in Section Aof the present Chapter is carried out.

An eight-story shear· building is considered whos~ structural

properties are: II. I = 1026..1 kip! in (179700 kN/m), 11.2 = 937.4 kip/in (164140 kN/m) ,

II. 790.6 kip/in ( 138430 k:V/m )t k~ = 684.1 kip/in ( [ 19790 k.V/m ),]

II. = 538.5 kip/in 94290 k,vjtn ) . II. 400.0 kip/in 70040 k.V/m ),s 6

k7 400.11 kip/ ill 71)tJ40 kS/m ) , II. = -l-lIO.O kip/ ill 70040 11..\'1 til 'I,s

"m) = 2kip-sl;c-/in(J50rHg), j = I, ... ,~, and 3 % critical damping in all

the modes. The earthquake excitation used is the N-S component of the

EI-Centro earthquake of May 18, 1940, shown in Figure 23. The

structure is eqUipped with eight active tendons, one on each floor.

The weighting matrices [Q], and [RJ, are assumed diagonal with the

values R(i.1} = Il.06, 1= [, ... , Sand Q( 1,1) = 1500, I = I, .... [6. The global

algorithm considers control of all eight modes as was done in Chapter

V, and the critical-mode algorithm considers control of only the first

and second mode. The results are shown in Figures 68 and 69. In Figure

68 the eighth floor relative displacement is shown. It can be observed

that the two-mode control is almost as effective as the global control

for this structure and excitation. Figure 69 shows the first floor
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control force and we can observe that in general the two algorithms

require similar control forces.

E. SPILLOVER USING ARTIFICIAL EXCITATION

The structure of Section 0 equipped with only two active tendons

located at the two bottom floors is subjected to an artificial

earth.quake ground acceleration. The excitation is a combination of

three s inusoids centered around the first, second and third

frequencies of the structure of 3.5 rad/sec, 9 rad/sec and 15 rad/sec,

respectively. These sinusoids are weighted and scaled to reflect a

peak magnitude of ground acceleration of 0.21 g and to excite the first

three modes. The purpose here is to evaluate the spillover effect. The

artificial excitation, designated as Excitation 1, is given by

Xg(/) = .05g(.2 sinJ.51+sin9/+J sin 151) (9.l9)

and is shown in Figure 70. The critical-mode algorithm was used to

control the first and second modes. The comparison of the no-control

and the two-mode control response of the eighth-floor relative

displacement subject to Excitation 1 is given in Figure 71. The

required control forces for the first and second floor tendon

controllers are shown in Figures 72 and 73. The eighth floor relative

displacement shown in Figure 71 is split into the modal contributions

of the first three modes and is compared with the no-control case.

Figure 74 shows the first mode response, Figure 75 the second, and

Figure 76 the third mode response. While modes one and two are

controlled, mode three is not, which shows the spillover effect. This
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is because the critical-mode algorithm we have used attempts to

control only the first two modes, which in turn excite the third mode.

F. OPTIMAL LOCATION OF CONTROLLERS: EXCITATION 1

The two approaches outlined in Section C for selecting the

optimal locations of controllers are applied to an eight-story shear

building with two active tendons. The two tendons can be located on

any of the eight possible locations. The critical-mode algorithm is

used and the first and second mode are controlled. The earthquake

excitation is Excitation 1 shown in Figure 70. The structural

properties are the same as those of the example in Section 0, except

that only 1 % critical damping is considered in the present example.

The weighting matrix [Q] is the same as in ~he example of Section 0,

but matrix [R] has only two elements at the diagonal fixed at the

values R(I,I) = R(2,2) = 0.15. The modal choice is made from a plot of the

first two modes as shown in Figure .77. It is suggested that for the

first mode the 8th floor would be a suitable choice, and for the

second mode the 4th floor. For the performance indices choice, us ing

Equations 9.17 and 9.18, several trials were made and the best choice

was for the 5th and 6th floors. A comparison of the performance

indices for control energy given in Equation 9.17 and for controlled

response given in Equation 9.18 is shown in Table V. As can be seen

both the control energy and response indices are less for the 5th and

6th floor choice. The maximum relative displacements and accelerations

for all the floors are less for the 5th and 6th floor choice. The
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TABLE V. OPTIMAL CONTROLLER LOCATIONS FIXED R(I,I) - EXCITATION 1
( 1 kip = 4.45 kN ), ( 1 in = 25.4 mm )

Locations

Control Energy

Response Index

Maximum
Displacement
Floor 1
Floor 2
Floor 3
Floor 4
Floor 5
Floor 6
Floor 7
Floor 8

Maximum
Acceleration
Floor 1,
Floor 2
Floor 3
Floor 4
Floor 5
Floor 6
Floor 7
Floor 8

Maximum
Control Forces

R(l, 1)
R(2,2)

4 & 8

74829

368

(in. )
1. 94
3.27
3.43
3.40
5.95
6.67
5.61
8.64

( % g
90

146
134
·55
148
189
59

179

( kip )
4th 8th

92 164

.15

.15

183

5 & 6

74132

266

(in. )
1. 72
2.95
3.21
2.45
4.74
5.78
4.16
6.89

( % g
80

127
109
.40

140
173

47
152

( kip )
5th 6th

95 179

.15

.15



maxima of the control forces for the 5th and 6th floor choice is

slightly greater.

For the Silme structure, another comparison is made between- the

two cases of modal shape and performance index choices. This time the

elements of the weighting matrix[R] are allowed to be different in the

two choices. The elements of matrix[Q] are still fixed. The reason for

allowing the elements of matrix [R] to be different in the two choices

is to make the maxima of the control forces for both choices equal. In

this sense a better comparison can be carried out. The results of this

comparison are shown in Table VI and Figures 78 through 84. Both the

control energy and response performance indices are less for the 5th

and 6th floor choice. Similarly the maxima of the relative

displacements and accelerations for all the floors are less for the

5th and 6th floor choice. The maxima of the control forces are equal

and the elements of matrix [R] are different as shown in Table VI.

Figure 78 shows the response for the 8th floor relative displacement

without control, split into the first three modes. It can be seen that

Excitation 1 excites the second and third modes considerably. A

comparison of the required control forces for the two choices given in

Figures 79 and 80 indicates that they are apprOXimately equal. The two

choices are compared for the 8th floor relative displacement in Figure

81. It is seen that the 5th and 6th floor choice reduces the response

more effectively.-
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TABLE VI. OPTIMAL CONTROLLER LOCATIONS - EXCITATION 1
( 1 kip = 4.45 kN ), ( 1 in = 25.4 mm )

Locations

Control Energy

Response Index

Maximum
Displacement
Floor 1
Floor 2
Floor 3
Floor 4
Floor 5
Floor 6
Floor 7
Floor 8

Maximum
Acceleration
Floor 1
Floor 2
Floor 3
Floor 4
Floor 5
Floor 6
Floor 7
Floor 8

Maximum
Control Forces

R(l,l)
R(2,2)

4 & 8

93283

331

(in. )
1. 96
3.31
3.44
3.20
5.70
6.29
5.09
8.06

( % g )
92

149
138

55
149
189
57

180

( kip )
4th 8th
150 154

.085

.160

185

5 & 6

83716

249

(in. )
1. 71
2.93
3.17
2.38
4.64
5.59
4.03
6.64

( % g
80

127
110
41

138
172

47
152

( kip )
5th 6th
149 151

.095

.180
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The 8th floor controlled response is split into the first three modes

in Figures 82 through 84. The 5th and 6th floor choice is more

effective for the first and second mode response. From Figure 84 note

the presence of the spillover effect on the third mode, which is to be

expected since we control only the first and second mode.

G. OPTIMAL LOCATION OF CONTROLLERS: EXCITATION 2

A second excitation, Excitation 2, is applied to the same

structure presented in Section F. The purpose of this example is to

test whether the optimal locations of the two tendons is still optimal

for a different earthquake excitation. E~citation 2 is .giv~n by

Xg (I) = .02 g ( .2 sin 3.51 + 7. sin 91 + 3.J sin 151) (9.20)

and is shown in Figure 85. It excites the second mode more than the

other modes. Figure 86 shows the response of the 8th floor for the

three modes without control. The elements of the weighting matrix [R]

are different in the two choices. The elements of matrix[Q] are fixed.

The results are shown in Table VII. The 5th and 6th floor choice is

still better than the modal choice of 4th and 8th floor. Note that the

response index is less and control energy is higher for the 5th and

6th floor choice. The simulation shows that the response index may be

a better measurement than the control energy. A comparison of control

forces is given in Figur.es 87 and 88, and we observe that they are

reasonably close. The two choices. are compared for the eighth
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TABLE VII. OPTIMAL CONTROLLER LOCATIONS - EXCITATION 2
( 1 kip = 4.45 kN ), ( 1 in = 25.4 mm )

Locations

Control Energy

Response Index

Maximum
Displacement

Floor 1
Floor 2
Floor 3
Floor 4
Floor 5
Floor 6
Floor 7
Floor 8

Maximum
Acceleration

Floor 1
Floor 2
Floor 3
Floor 4
Floor 5
Floor 6
Floor 7
Floor 8

Maximum
Control Forces

RO,l)
R(2,2)

4 & 8

124996

604

(in. )
2.77
5.07
6.39
6.. 39
6.05
3.65
6.49
8.75

% g )
298
149
138

55
149
189
57

180

( kip )
4th 8th
150 152

.075

.620

196

5 & 6

130195

480

(in. )
2.39
4.37
5.46
5.39
5.25
4.05
6.05
8.18

( % g )
80

127
110
41

138
172

47
152

( kip )
5th 6th
153 152

.30

.720
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floor relative displacement, and its first three modal contributions

in Figures 89 through 92. It is observed that overall the performance

index choice of 5th and 6th floors is better. It produces a slight ly

higher response in the first mode but less response in the second and

third modes.

A note has to be made about the modal choice. It is interesting

to note that after a modal choice has been made, the modal shapes of

the controlled system are no longer the same as those of the original

uncontrolled system. This fact is illustrated by finding the

closed-loop eigenvalues and eigenvectors of the controlled structure.

The procedure used calculates the eigenvalues from the state-equation

as follows. The optimal control of Equation 5.32 is substituted in the

state-equation, Equation 3.13, to give

(9 ..21 )

from which the closed-loop-system eigenvalues and eigenvectors are

calculated. The procedure is the same as the one used for the standard

eigen~alue problem,

(i(c)} = [II] (z(I)}

with the matrix [II] defined as the closed-loap-system matrix

(9.22)

(9 ..23)

The no-control and closed-loop-system eigenvalues and eigenvectors of

the structure of the present example are shown in Tables VIII and IX.
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TABLE VIII. NO-CONTROL AND CLOSED-LOOP EIGENVALUES

NO-CONTROL EIGENVALUES

Mode

1st
2nd

Eigenvalue

-.035 + 3.493 i
-.092 + 9.203 i

Frequency

3.493 rad/sec
9.203 rad/sec

% Damping

1. 00
1. 00

4th & 8th Floors ( CLOSED-LOOP EIGENVALUES )

Mode

1st
2nd

Eigenvalue

-.077 + 3.497 i
-.265 + 9.297 i

Frequency

3.498 rad/sec
9.301 rad/sec

% Damping

2.20
2.85

5th & 6th Floors ( CLOSED-LOOP EIGENVALUES )

Mode

1st
2nd

Eigenvalue

-.107 + 3.499 i
-.545 + 9.291 i

204

Frequency

3.501 rad/sec
9.307 rad/sec

% Damping

3.06
5.86



From Table VIII one may note that the ~agnitude of the frequency in

the two modes is slightly increased. Also note that the 5th and 6th

floor choice produces higher closed-loop damping ratios for both the

first and second mode. From Table IX, the magnitude of the

eigenvectors is slightly modified, but more significantly the phase

angle varies in the closed-loop cases from that of the no-control

case. This is important as shown in Figure 93 for a simple two

degree-of-freedom structure. The structure on the left is vibrating

in a proportionally damped mode, in which the two degrees of freedom

are Vibrating either in-phase or at a phase angle of 180 degrees. The

structure on the right has a varying phase angle as would be the case

for a controlled structure. In Figure 93 the phase angle is 135

degrees. It can be seen that the modal shape is complex in this case

and .that the fixed mode shape assumed for the uncontrolled structure

is no longer present. The pe~formance index choice is definitely

better than the modal choice and this can be attributed to the more

rational procedure of calculating the indices for all the

possibilities and then choosing the best combination.
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TABLE IX. NO CONTROL AND CLOSED-LOOP EIGENVECTORS

NO CONTROL EIGENVECTORS

1st mode

Magnitude Phase (deg) Magnitude

2nd mode

Phase (deg)

. 109 -90. -.352 90 .

. 226 -90. -.674 90 .

.358 -90. -.913 90.

. 498 -90 . -.960 90.

.652 -90. -.720 90.

. 821 -90. -.091 90 .

. 939 -90 . .576 90.
1.000 -90. 1.000 90.

4th & 8th Floors ( CLOSED-LOOP EIGENVECTORS )

1st mode 2nd mode

Magnitude Phase (deg) Magnitude Phase (deg)

. 110 -90 . .375 -90.

. 227 -90. .717 -90 .

. 360 -90 . .966 -90.

. 498 -92 . 1.000 -92 .

.653 -91. . 735 -94 .

.822 -91. . 091 -141.

.940 -91. -.648 95.
1.000 -91. -.987 82.
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TABLE IX. (continued)
5th & 6th Floors ( CLOSED-LOOP EIGENVECTORS )

1st mode 2nd mode

Magnitude Phase (deg) Magnitude Phase (deg)

. 110 -89 . -.343 79.

.228 -89 . -.655 78.

. 360 -89 . -.883 77.

. 500 -89. -.925 75 .

. 653 -91. -.685 76.

. 820 ':'92 . -.142 126.

. 939 -92 . .571 -98.
1.000 -92. 1.000 -93.
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x. CONCLUSIONS

This study has shown that active control systems, including the

active mass damper and active tendons system, are effective in

reducing the response of building structures to earthquake and wind

loads. The active tendons system implemented with the Ricatti

closed-Loop algorithm showed good agreement when compared to

experimental results.

Ricatti optimal closed-loop and

optimal closed-loop and optimal

reviewed and discussed. All of these

The non-optimal closed-loop,

instantaneous optimal open-loop,

open-closed-loop algorithms were

algorithms can be used for the implementation of -active control for

both earthquake and wind excitations. From the point of view of

reliability of measurements the instantaneous optimal closed-loop

control algorithm is favored, especially in the case of wind

excitations. It is also favored because time-delay in the measurement

of the excitation is eliminated. In addition. since the feedback gain

matrix for the closed-loop control does not involve the structural

properties of mass, stiffness, and damping, the instantaneous optimal

closed-loop control algorithm is insensitive to imprecise estimation

of the structure's properties.

The structural optimization of bUilding structures eqUipped with

active control systems was carried out. with constraints imposed on

the allowable floor displacements, control forces, and natural

frequencies. The objective function chosen is structural weight and

the design variables are the floor stiffnesses and some control
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parameters. Structural weight is effective in redestributing the

structural stiffness to the different floors for increased structural

strength. The structural optimization is followed by minimization of

control energy, in order to obtain the optimal weighting matrices that

will reduce the level of the optimal control forces. The design

variables are the elements of the weighting matrices, which are

assumed diagonal matrices.

The optimal design of building structures equipped with active

control systems is shown to be economical in both saving structural

material and reducing the control energy demand. The structure is

strengthened by the optimal redistribution of the stiffnesses and can

resist the earthquake and wind excitations effectively using the

active control systems. Structural optimization has the capability of

varying the constraints imposed on structural response and the

magnitude of the control forces; this allows the designer a wide

spectrum of options.

A critical-mode optimal closed-loop algorithm was developed, and

the spillover effect was shown to be considerable. For seismic

structures the prospect of applying the critical-mode control is very

promising since the response is governed by the lowest few modes.

Two methods for determining the optimal locations of a limited

number of controllers have been investigated. The first method is

based on the modal shapes of the uncontrolled structure. However these

modal shapes are changed when the control system is enforced and

therefore the optimal locations may be difficult to be determined.
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This. is especially true when a large number of modes is to be

controlled. The second method is based on finding the locations of

controllers that will minimize the control energy and response

indices. The second method is preferable and this can be attributed to

the more rational procedure of calculating the performance indices for

all the possibilities and then choosing the best combination. It was

found that the response index is a better measurement than the control

energy and that the optimal locations of the tendons remained optimal

for two different artificial earthquake excitations.

The issue of time-delay was explored and ways of compensating for

it were suggested. However as the control system technology advances,

the effect of time-delay may become negligible.
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APPENDIX A

EARTHQUAKE EXCITATION - KANAI-TAJIMI SPECTRAL DENSITY

The earthquake excitation derived herein is known as the

Kanai-Tajimi power spectral density (24). This earthquake excitation

is used as a ground acceleration input for the non-optimal closed-loop

control algorithm of Chapter IV. Consider a white noise process

having a power spectral density function of amplitude S2 to be the

input to the ground, which is modelled as a linear filter shown in

Figure 94. The ground properties depending on the particular

geological location are specified as wg = ground frequency, and 'g =

ground damping. The power spectral density of the output <1>Xg(w) from

the linear filter of the ground model is to be derived. Let Zg be the

ground displacement, xg be the input displacement, and the quantities

kg, cg , and nTg, be the "stiffness", "damping", and "mass" of the ground,

respectively; the equation of motion can be written

(A. I)

where in Equation A.I a dot denotes differentiation with respect to

time. Using the relations for frequency and damping

Cg
-=2w'"'g g g (11.2)

Equation A.I can be written as

222.

(A.3)
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Figure 94. SDOF Model for Earthquake Excitation
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Taking the Laplace transform. of Equation A.3

(52 Zg - Zg(O) 5 - ig(O) ) + 2 w g 'g(5 z~ - zl;(O) ) + w~ Zg

= 2 w g 'g (5 Xg - xg(O) ) + W~ Xg

(/1.4)

where the overbar denotes the Laplace transform of a quantity, ands is

the Laplace operator. Assuming zero initial conditions

(.-4.5)

and co 11ect ing terms, Equat ion A.4 becomes

:; (2 'J r 2 ) _ - (2 r 2 )'"g.r + _w~ "g 5 + W g - X g WI: "g 5 + (J)~

Therefore the transfer function of the filter is

(.-/.6)

= (.-1.7)

The frequency response function[~(iw) can be obtained from the transfer

function f-1g(5) J by replacing 5 with (iw) , where i = ~. The frequency

response function becomes

(A.8)

The power spectral density of the response is given by the well known

expression

(.1.9)
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in which S2 is the amplitude of the power spectral density function of

the input acceleration, and

(//.10)

where 11.11 denotes magnitude, and iI;(iw) is the complex conjugate of

11~(iw). Performing the algebra one can show using Equations A.8 and .4.10

that

2
I + 4 r 2 .!!!.-

""g 2
wg

Substituting the expression for Ilill;(iw)1I2 in Equation A.9

spectral density of filtered white noise is obtained

(II .1 1)

the power

<1>X.(w) =
o

(A .12)
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APPENDIX B

WIND EXCITATION

In order to test the Ricatti closed-loop and instantaneous

algorithms, a set of artificial wind excitations was generated based

on design spectra for wind. The artificially generated wind

velocities are used to create correlated wind pressures that are then

applied on the individual floors of the structure. These artificial

wind excitations can be applied for all three cases of open-loop,

closed-loop, and open-closed-loop control.

The wind flow is assumed stationary in time and non-homogenous in

space. Physically the wind is composed of two velocity components,

steady and turbulent flow. The wind velocity vector at discrete points

can be expressed as

{F(h,l)} = {i\h)} + {f(h,l) } (8.1)

where fF(h)} is the mean wind velocity vector at different heights I I~,

and (f(h,t)} is the dynamic component of the velocity. The procedure for

determining the mean wind velocity at any height 0 is as follows: The

reference wind velocity at h = 10 meters is adjusted for different

averaging times and different terrain conditions, and the logarithmic

law (51) is used to obtain the mean wind velocity

= J..j In...!!...
K flo
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-
in which K = Von Karman I s constant, J = shear velocity constant, and

~ = roughness length which depends on the terrain roughness.

The dynamic component of the wind velocity is considered to be a

stationary random process. The power spectrum of the longitudinal

fluctuations accepted for design, given by Simiu and Scanlan (51), is

n S(It,n)

-2
J

200 E= ---=:.;;.;:....:..:...._-
(1+50£)5 /3

(E.3)

(E.4)

where n is the frequency of the velocity components of the fluctuating

part of the wind velocity. Using Equations 8.3 and 8.4 one can

determine the dynamic component of the velocity, {J(h,l)}. The vector

{J(h,l)} is descretized into N components !}(/) , j = I, ... ,N corresponding to

the N floors of the structure. From Equations E:3 and 8.4 one may note

that the wind spectrum varies with height, hence each floor has a

unique spectrum. A random process is created that has a specific

correlation, based on an experimentally derived coherence function

deve loped by Davenport (16), for the ant ire structure. Cons ider the

spectra of the first and Nlit floor, as shown in Figure 95. Using the

common part ACD between the two spectra (shown shaded in Figure 95),

with the corresponding spectral density SACD' N uncorrelated velocities

~(l) are generated. The algorithm proposed by Shinozuka and Jan (50) is

used

L

Pi (I) = 5 I JSACD (n/) ti.fZt eas(2 tr n/ t + ePJi),
1=1
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in which the range of frequencies containing the natural frequencies

of the structure has been divided into L parts. Note that

D.ni = n(i+l) - ni' The angle cPji is a phase angle which varies randomly

between zero and 2~, with a uniform probability distribution. The

elements of (ff(I)} are then spatially correlated by using the

transformation

[D] {P(I)} (8.6)

where [D] is a lower-triangular matrix derived on the basis of the

-
cross -correlation matrix [H] of the process {"I(t)}. The elements of [H]

are derived by using numerical integration of the co-spectrum between

points} and }+ I. Th~ co-spectrum given by Vickery (58) is used

,c"C (r,n) = .j,c,j (n) Sj+ I (n) coh(r,/!)

where r is the relative distance between points j and } + I, and coh(r.lI) is

the coherence function proposed by Davenport (16), given by

cuh(r,n)
-ve (8.8)

2 n [ eX (~- h)+1)2 + e; (x) - Xj+l)2] 1{2

v =
F(h) + F(~+I)

(8.9)

where Ch and ex are experimentally determined exponential decay

coefficients. Note that the symbol X denotes the horizontal dimension.

According to Simiu and Scanlan (51) the mean square value of the

area under curve ACE or BCD in Figure 95 is equal to 6/ 2
. Hence the

-2
common area ACD is equal to ex (6[ ). where ex < 1. It is known that if [B]

is the cross-correlation matrix
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-
cross -correlation matrix of the process (I'd is [H] given by Davenport

(17)

[H] (B.IO)

Since Pj (I) are stochastically independent and all have the variance

-2 -
a(6f ), matrixeS] is a diagonal matrix

(B. 1I)

-
In Equation n.10 the elements of matrix [H] are given by the integration

of the co-spectrum

-
H(j,k)

roo CJ
o

S (r,n) dn (8.12)

and hence the elements of [D] matrix can be obtained from Equation B.IO

by using Cholesky Decomposition.

Finally to account for areas ABC and CDE in Figure 95, N

uncorrelated velocities {~(0} are generated by using the difference

between the first and and Nih floor spectra with the common spectrum

(ACD). Define

(8.1 J)

and use Equation n.5 with SASC and SCDE to obtain {~(t)}.

The dynamic component of the velocity is given by

(f(h,t)} = [D] (/1(1)} + {~(t)}
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The mean pressures on the windward side of the structure are given by

Simiu and Scanlan (51) as follows: For the steady-state

Pr(h'j-) = .!!.... F 2 (h-) C2 J 'p
(B. IS)

where p is the air-density J and Cp is a pressure coefficient. For the

fluctuating Gomponent

(B. 16)

where C..., is an average pressure coefficient. Similar relations can be

written for the leeward side. Finally the windward pressures given by

Equations B.IS and B.16 are added to those of the leeward side and are

then multiplied by the tributary area of each floor to provide the

wind force for each floor. These wind forces at each floor constitute

the wind force vector (W(l)} to be used in the analysis.
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APPENDIX C

PERFORMANCE INDICES

1. Ricatti Closed-loop.

In order to derive an optimal control force vector a suitable

performance index should be minimizeq. In the case of the Ricatti

closed-loop algorithm of Chapter 3, the performance index is chosen so

as to minimize the structural response and the control energy over the

time period from to to 1"' Thus the expression of Equation 3.16

J = 1.. flf ((Z(l){ [Q] (z(l)} + (U(I)}T [R] (U(l)}) dl
2 to

(C.l)

implies that it is important that at every time instant between 10 and

l' both the structural response and control energy should be at a

minimum. If it is more important that the response be small, we should

choose the elements of [Q] to be large. If it is more important,

however, that the control energy be small, then we should select the

elements of [R] to have large values. One may note that while the

system dynamics are fixed as given by Equations 3.15 or 3.32, the

performance index is chosen in order to achieve a specific control

objective. Equation C.l is for the AT case. For the AMD case, since

there is only one control force, matrix [R] is reduced to just one

element and the performance index is given by Equation 3.47.
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2. Instantaneous Optimal Control Algorithms.

The performance index of Equation C.l leads to an optimal control

law which requires the solution of Equation 3.34. This equation has to

be solved backwards in time but since the earthquake excitation is not

known apriori, its solution is not feasible. Based on the studies of

Saridis and Lobbia (48) for stochastic control, the overall

performance index of Equation C.1 can also be written in discrete form

as

n-I

J = ~ L({z(t)} 7' [Q] (z(t)} + (U(l)} T [R] (U(l)})
{=!

(C.2)

defined over the time interval of interest (l,n). The objective is to

find the control sequence {u,(t)}, {~(t)}. "', (un_I(t)} that minimizes J. In

their formulation Saridis and· Lobbia, instead of minimizing a

stochastic performance index similar to Equation C.2, suggest a

step-by-step process. Equivalently in terms of the overall performance

index of Equation C.2 we can define an instantaneous performance index

as

Jp(l) = (z(t)} T [Q] {Z(l)} + {u(l)} T [R] (U(l)}

This performance index was suggested by Yang,

(C.3)

Akbarpour and

Gaemmaghami for the instantaneous active control of earthquake-excited

structures (62). One may note that the instantaneous performance index

of Equation C. 3 is time-dependent. This expression implies that the

structural response and the control energy are minimized at every time

instant in the time interval of interest. The performance index of
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Equation C.3 is used in Chapter V for finding the optimal control for

the open, closed and open-closed-loop strategies. The resulting

expressions for the optimal control laws are simpler than those

resulting from the classical performance index of Equation C.l. Using

Equation C.3 instead of Equation C.l can be justified in terms of the

interpretation of Equation C.l as an area integral between times ~ to

l' Thus minimization of Equation C.l is equivalent to minimization of

the area integral, and minimization of Equation C.3 is equivalent to

minimization of the indiviQual ordinates.

3. Critical-mode Algorithm.

The performance index derived for the instantaneous algorithms is

modified in order to be expressed in terms of the in critical modes

only. Substituting Equation 5.2 in Equation 5.1

(C.4)

Performing the algebra

Substituting the partitioned modal state-vector of Equation 9.7 in

Equation C.S

= {{"'I (t)}e } T [TrJ T [Q] [TrJ { {l/J r (t)}e }
{"'d')}r {"'I (I)}r

+ {u(I)}T[R] {u(l)}

= {{"'I(t)}~ {"'r(t)};} [TIl [Q][TrJ {~~:~~~;:}
+ {u(I)}T[R] {u(l)}
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The product of the three matrices in the first term is partitioned as

follows

(C.8)
[Q],
[Ql, ]

[Q],c
[[QJc[TrJT [Q] [TrJ

where [QJc is a 2m x 2m matrix and [Q], is a 2(N - ni) x 2(N - ni) matrix.

Substituting Equation C.B in Equation C.7

(C.9)

(C.IO)

For controlling the critical modes only, terms that contain products

involving the residual modes are ignored. Hence the performance index

to be minimized for controlling the critical modes becomes

(C.ll)
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APPENDIX D

OPTIMAL CONTROL DERIVATIONS

Herein the derivations of the optimal control forces for the

Ricatti closed-loop and instantaneous optimal control algorithms are

presented.

1. Ricatti Closed-loop.

The derivation of the optimal control forces for the Ricatti

closed-loop follows the classical control derivation for the linear

regulator problem. A regulator is a feedback control law which

maintains the state of the system close to a desired reference state

during the interval (to, If) , using reasonable values of the control

force vector. Here the state is the displacement and velocity

response, and the desired reference state is the equilibrium state.

The optimal control force vector {U·(l)} is to be derived by minimizing

a standard quadratic performance index given by

J = +fr ({Z(I)}T [Q]{z(l)} + {U(I)}T [R]{u(l)}) dt
10

and satisfying the state-equation

(D. 1)

{i( I)} [ArJ {z(l)} + [RrJ {U(l)} (D.2)

Define the Hamiltonian as
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,yt = +{Z(I)}l' [Q] (Z(t)} ++{U(l)}T [R] (U(I)}

+ ().(i)} T ( [ilr] {Z(l)} + [lJrJ {U(l)} - (i(I)} )

(D.3)

where ().(l)} is the vector of Lagrange multipliers of dimension [2.Y x IJ.

The necessary conditions for optimality are

rJYf
D{Z(I)}

rJYf
8{U(l)}

aYf
D{).(t)}

- ().(t)}

(O)

(O)

--+ - (i(l)} = [Q] (z(t)} + [A({ ().(t)}

[ArJ (Z(l)} + [E(] {u(t)} - (Z(l)} = CO}

(D.4)

(D.S)

(D.6)

with the transversality condition

().(~)} = lO}

From Equation 0.5 the optimal control is derived as

(0,7)

(D,S)

In order to find ()'(l)} , Equations 0.4, 0.6 and 0.7 are utilized. Assume

a solution of the form

P(t)} = [P(t)] (Z(I)}

Substitute Equation 0.9 in Equation D.4

- ([i'(I)] {z(t)} + [P(I)] {i(t)}) = [Q] (z(t)} + [A({ [P(I)] (z(t)}

Substitute Equation D.6 in Equation 0.10
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[1'(1)] {Z(I)) + [1'(1)] ([A r] {Z(I)) + [Br] {u(tm + [Q] {z(t)}

+ [A r]'" [1'(t)] {z(t)} = {OJ

Substitute Equations 0.8 and 0.9 in Equation 0.11

([hi)] + [I'(t)] [tIt] + [r/({[P(t)] - [P(I)] [lJr] [Rr l [lJr{[I'(I)] + [Q]) {z(l))

= {OJ

From Equations 0.7 and 0.9 we get

(D.II)

(D,12)

[P(~)] {z(tr)} = (OJ (D. 13)

For a non-zero state (~I)} the non-trivial solution is from Equations

0.12 and D.13

- [1'(1)]

[P(tr)] = [0] (D.15)

which are given in Chapter III as Equations 3.27 and 3.28. Similar

derivations lead to Equation 3.34 for the case of the Ricatti

closed-loop algorithm for external disturbances.

I.. Instantaneous Open-loop.

The derivation of the optimal control forces for the

instantaneous open-loop case of Chapter V follows. Find the optimal

control forces {u' (I)} that minimize the instantaneous performance index

of Equation 5.1 given by

Jp(t) = {z(t)}T [Q] {z(t)} + {u(t)}T [R] {u(t)}
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and satisfy the state-equation. Equation 3.13. which can be used in

the alternative form given by Equation 5.16 as

(Z(I)} = [TrJ { {/'r (I - ill)} + W(I)} ( ~I) }

Substituting Equation 0.17 in Equation 0.16

.Ip(l) = {[TrJ { (A r (1- ill)} + (r(/)} ( ~I) } }T [Q]

• { [Tr] { {A r (I - ill») + {f(ll} ( ~/) } } + {u(t)} T [R] {U(/)}

Simplifying the first term

Jp(l) = {{Ar(t - ill)}T + {r(i)}": (~/) } [Tr]T [Q]

• [TrJ { (A r (/- ill») + (rW} ( ~I) } + (U(I)} T [R] {lilt)}

The conditions for minimizing.~(~ are

(D.17)

(D.t8)

(D. JCl)

(D.20)

,jJp(t) = J{r(t)} T [TrJT [Q] [TrJ ( ~I ) { (Ar (t - D,I)} + {f(/») ( ~I) }

+ { (A r (I - ill)} T + (r(I)} T ( ~I ) } [TrJT [Q] [Tr] b(r(t)} ( ~/)

+ b{u( I)} T [R] {u(I)} + {u( I)} T [R] b{u(I)}

(D.21)

The variation of (r(t)} can be expressed in terms of the variation of

(u(~} using Equation 5.7

Hence
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(D.23)

Substituting Equation 0.23 in Equation 0.21 we obtain

I)Jp(t) = (){U(l)}'" [lJr]T ([Tlrl)T[Tr{[Q] [TrJ ( ~l){ {Ar (l - ~l)} + (r(l)} ( ~l) }

+ { {A r (l - ~l)}r + {r(l)}T ( ~l) } [Tr]T [Q] [TI ] [Tlr l [BI ] b{U(l)} ( ~l) (D.24)

+ b{U(l)} T [R] {U(l)} + {u(l)} T [R] b{U(l)}

Simplifying

(5Jp(l) [ l5{u(l)} T [lJ I { [Q][TI ] ( ~l ) { {AI (l - ~l)} + (r(t)} ( ~l ) }

+ (){U(l)} T [R] {u(l)} J+ [ {u(l)} T [R] J{U(l)} (D.25)

+ { (Ar (t - ~l)} T + {r(t)} T ( ~l) } ["TI { [Q][BrJ J{U(l)} ( ~l) ]

The terms in the brackets are the transpose of each other provided

that [Q] and [R] are symmetric matrices. In order to satisfy Equation

0.20 it suffices to set one of them equal to zero. Therefore the

necessary condition becomes

b{U(l)} T [llrJT [Q] [TrJ ( ~l) { (AI (l- ~l)} + (r(l)} ( ~l) }

+ l5{u(l)} T [R] fUel)} = 0

Substitute {r(t)} from Equation 0.22 in Equation 0.26

J{U(l)}T[BrJ
T (~l) [Q] [TrJ [ {AI(t- ~l)} + [TrJ-1 [BrJ {u(l)} ( ~l)

+ [TrJ-1 fer} xg(t) ( ~l) ] + J{U(l)} T [R] fUel)} = 0

Simplifying
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b{u(t)} T [ [Brt [QJ UrJ {AI (I - ~I)} ( ~l ) + [BrJT [QJ [BIJ (U(I)} ( ~I )2
+ [IJrt [QJ {Cr} '\'1;(1) ( ~I )2 + [RJ (U(I)}] = 0

(D.28)

For a non-trivial solution the terms inside the brackets should be set

equal to zero

[lJr{ [QJ[7J {AI (t - ~I)} ( ~I) + [Br{ [Q] {Ct } '~g(l) ( ~l )2
+ [ [Bt{ [QJ [BtJ ( ~l Y+ [RJ ] (U(I)} = 0

Solving in terms of (u(l)}

{U· (l)} = [GrJ ((·)1 (I)}

where

(D.29)

(D.JOa)

(D.JOb)

which is exactly the solution given in Equations 5.18· through 5.20.

The second condition in Equation D.20 can be satisfied by arguing on

physical grounds.

3. Instantaneous Closed-Iooo.

The derivation of the optimal control forces for the

instantaneous closed-loop case of Chapter V follows. Find the optimal

control forces {u·(I)} that minimize the instantaneous performance index

of Equation D.16 and satisfy the state-equation Equation 3.13 or
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equivalently Equation D.ll. In addition we want the control force

vector to be regulated only by the feedback response vector (z(e)} as

follows

{u( en = ['I'l] {z( I)} (D.31)

where [n] is a time-independent gain matrix. The Lagrangian function

is given by

LF = {Z(I)} T [Q] {z(I)} + {U(I)} T [R] {u(e)}

+ P(t)} T { (z(e)} - [Tc] {Ac (I - iii)} - [TcJ (f(t)} ( ~e) }

Substituting (r(I)} from Equation D.22

(D.32)

LF = {z(e)}T[Q] (Z(I)} + (u(I)}T[R] (U(I))

+ {l(l)}T { {z(e)} - [TcJ {Ac(1- iii)} - {[Be] {u(e)} + {ec} .~g(l)} ( ~e) } (D.33)

The necessary conditions for optimality are

aLF CO} -+ 2 [Q] {z(e)} + (A(e)} {OJ= =o(z(e)}

aLF CO} 2 [R] {u(l)} - [BcJT P(l)} ( ~t) = (O}= .....
a{u(e)}

(D.34)

(D.35)

From Equation D.35

{u(l)} = +(~t ) [Rr' [Bet P(c)}

From Equation D.34

242

(D.37)



().(I)} . = -2 [Q] {Z(I)} (D.J8)

Substituting Equation 0.38 in Equation 0.37 we get the optimal control

force

(D.J9)

To obtain the state-vector in closed form, first substitute Equation

0.39 in Equation 0.22

Substitute Equation 0.40 in the state-equation Equation 0.17

{z( I)}

(Z( I)}

= [Tr] { {A r (l- ~/)} + [TrJ-1 {er} Xg(l) ( ~/)

- [TrJ-1 [llrJ [Rr l [BrJT [Q] {Z(/)} ( ~I Y}

.. (~l)

= [Tr] {'\r (i-Ill)} + (er) Xg(l) 2

- [llr] [Rrl [fJr{ [Q] {Z(/)} ( ~l )2

(D.41)

(D.42)

Collecting terms

(z(l)} [ [11 + [BrJ [Rr
l

[BrJT [Q] ( ~l)2 ]

= [TrJ {Ar (l- ~l)} + {er} Xg(l) ( ~l )

Finally we obtain by inversion

/\ /\

(Z(l)} = [:::(l)] (e(t)}
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(D.44b)

(D.44c)

which is the desired solution given in Equation 5.33.

4. Instantaneous Open-closed-loop.

The derivation of the optimal control forces for this algorithm

follows that of the instantaneous closed-loop control. The difference

is that the optimal control force is to be regulated by both the

ground excitation and the structural response, and is to be of the

form

(U(l)} = [51] (Z(l)} + (52(t)} (D.45)

where [51] is a time-independent gain matrix expressing the closed-loop

feedback, and vector (52(1)} is a time-dependent vector as required by

the earthquake excitation measurement for open-loop control. The

Lagrangian function is identical to Equation D.3Z, and the optimality

conditions are exactly the same as Equations D.34 through D.36.

Substitute Equation D.35 into Equation D.36

(z(l)}
(D.46)

From Equation D.34

()c(l)} = - 2 [Q] {z(l)} = - [Q] ( (z(l)} + {z(l)} )
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Substitute one term for {~0l from Equation D.46 in Equation D.47

{).(0J = - [Q] [ {Z(l)} + [Tc] {A r (1- L\l)}

+ [llrJ [Rr' [lJr]T ().(l)} (~22 + (Crl /\~{l) ( ~l) ]

Solving for P(t)} from Equation D.48

[ [I] + [QJ[l1rJ [Rr' [Br]T (~~)2 ] ().(l)}

= - [Q] [ (Z(l)} + [Ta (A r (1- ~l)} + .{Cr} Xg{l) ( ~l ) ]

{).(0} = - [ [I] + [Q] [Br] [Rr' [flaT (6~)2 ]-1

+ [Q] [ (Z(l)) + [Tr] {A r (t - 60} + (Cr} Xg(l) ( ~l) ]

Substitute (A(0l from Equation D.50 in Equation 0.35

(D.49)

(D.SO)

2 [R] fUel)} - [8,Jr(~I) [ [I J + [Q][8,][Rr' [8,]T (62' rl

+ [Q] [ (z(l)} + [Tc] {A r (1- 61)} + {Cr} Xg(l) ( ~l) ]

(D.SI)

Substituting {~0} on the left hand side by Equation D.45

2 [R] [ {SI] {Z(l)} + (S2(1)} ]
2 - I

= - [BrJT ( ~l) [ [I] + [Q][Br][Rr' [Br{ (62 ] [Q]{z(l)}

- [8,]T ( ~,) [ [/J + [Q] [8,] [Rr' [8,]T (6t r
+ [QJ [ [Tc] {Ar (l - 6l)} + (Cr} Xg{l) ( ~l) ]

Equating coefficients in Equation D.52
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· (SI] ~ - (fir' (lif (~') [ (I] + (Q] (Ii,] (fir' [B,]T (l'/ rI [Q] (D.53)

{S2(1)} = [51J {[Ta {Ac(1- ~I)} + {Cc} .¥g(l) ( ~I) } (D.5~)

which are given in Chapter V as Equations 5.36 and 5.37.

The response state-vector can be derived as follows. From

Equations 0.17 and 0.22

Substituting {u'(l)} from Equation 0.45

{Z(l)} = [TcJ {Ac(1- Ill)} + [RcJ { [51J (Z(l)} + (S2(1)} } (~I)

+ (Ce) Xg(l) ( ~l)

Collecting terms

[ [I] - [RcJ[SIJ ( ~l) ] {z(l)}

= [TrJ {A c(1- ~l)} + [RrJ (S2(1)} ( ~I) + {CrJ Xg(t) ( ~l)

Substituting for {S2(1)} in terms of [51] from Equation 0.54

[ [I J - [BcJ[5IJ ( ~t) J{z(I)}

= [Ta {/'-r (I - ~l)} + [Ra [51J [Tc] {Ac (t - ~I)} (~l)

.. ( III )2 .. (~l )+ [BcJ[51J{Cc} Xg(l) T + {ec} Xg(t) T

Collecting terms
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Simplifying and solving for{~~}

1\ 1\

{Z(l)} = ['V(l)] {~(l)}

[\P(l)] [ [f] - [JJ{] [SI] (~I)rl
[ [fJ + [fJ{] [51] (~l) ]

which is the answer given in Equation 5.38.

5. Critical-mode Closed-loop.

(D.59)

(D.60a)

(D.6Gb)

(D.60c)

The derivation for the critical-mode closed-loop algorithm

follows the same pattern as the derivation for the instantaneous

closed-loop algorithm. The problem is to find the optimal control

forces {u'(t)} that minimize the performance index of Equation 9.8 and

satisfy the state-equation of Equation 9.4. The control force is to be

regulated by the modal state-vector as follows

(D.61)

Following the same procedure as for the instantaneous closed-loop

algorithm, the optimality conditions are

(D.62)
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2 [N] [U(n! - [TI1):' ().(i)l (~I) = {OJ

From Equation 0.62

Substituting Equa~ion 0.65 in pquation 0.63

(D.63)

(D64)

(D.65)

(D.b6)

which is the optimal con~rol force given in Equation 9.10. To ob~ain

~he cri~ica1-mode state-vector, substitu~e Equation 0.66 in the

sta~e-equation for the critical modes, Equa~ion 0.64

Collecting ~erms

[ [11 + ( ~I )2 [T81 [Rr' [Til): [QJc ] {!/t r (i)}c

= {i\r (I - 6t)}c + {TC)c Xg(i) ( ~I )

which gives the solution

" "{!/tr(i)}c = [PI(I)] {P2(i)}

[
2 ]-1

[PI (i)] = [ 11 + (62 [TB]c [Rr' [TB): [Q)c
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which are given as Equation 9.13.

(D.69c)



APPENDIX E

NON-OPTIMAL CLOSED-LOOP DERIVATIONS

This Appendix presents the derivation of the motion equations and

statistics of response of the combined AT and AMD systems for the

non-optimal closed-loop scheme described in Chapter IV.

Assuming zero initial conditions and taking the Fourier

transforms of Equations 4.2 and 4.3 yields

I :$ j :$ (N -:- I) (E.l)

Y'Ij-
:::; j :::; (,v - I) (E.2)

Let the Fourier transform of the AT control force be expressed by

Equation 4.36. Substituting Equation 4.36 in Equation E.2

(E.3)

Using the definition of Equation 4.16, Equation E.3 can be rewritten

as

(E.4)

Solving Equation E.4 for~ and then substituting in Equation E.l gives

- - Yj-l'
X=X,+--

j j- KCj
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Rewritting Equation E.6 and collecting terms

Y IJ- (£.7)

Combining Equations E.5 and E.7 in matrix form yields the transfer

matrix [A]j of the Jih floor given in Equation 4.14

1+
( - w

2 "7 + iw c)
KCj

{ ~-l}y. IJ-

(E.8)

The transfer matrix of Equation E.8 can be written in compact form by

using the state-vector of Equation 4.11 as

(£.9)

Matrix [A]j represents the transfer mechanism of a story unit. The

state-vector (Z}j-I at floor level (j - I) is transferred to the

state-vector (Z}j at floor level j through the transfer matrix [A]j' If

the Jlh floor unit is not equipped with an active tendon, set g{(w) = 0

in Equation 4.16. Applying Equation E.9 to the first floor

(E.IO)

where {Z}o is the state-vector at the basement floor. For the second

floor

(E. 11)

Combining Equations E.10 and E.l1

(£.12)
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Applying Equation E.9 repeatedly gives

(£.13)

{Z}t = [A( L)J {Z}o, :s; L :s;(N-l) (£.14)

which is given as Equation 4.8. The multiplication of the transfer

matrices is manipulated in the computer program. The transfer relation

in Equation .E. 14 is valid only for the floors I :s; L :s; (/If - I) since we

have an AMD on the top floor. For L = N, this relation must be

modified to include the AMD control force.

Let the Fourier transform of the AMD control force be defined as

in Equation 4.39. Taking the Fourier transform of Equations 4.4 and

4.5 and assuming zero initial conditions

Rewriting Equation E.15 and substituting XN+ 1 from Equation E.15 into

Equation E.16, give

(£.17)

(£.18)

Substitutingud from Equation 4.39 into Equation E.18, gives

(£.19)
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Combining Equations E.17 and E.19 in matrix form yields Equation 4.10,

and the transfer matrix of the AMD, given in Equation 4.18

(1:".2U)

{Z}N+I

[7J

[T] {Z}N (£.21)

(£.22)

For the Nth floor the effect of the AMD is reflected by Equations 4.6

and 4.7. Assuming zero initial conditions the Fourier transforms of

Equations 4.6 and 4.7 are

(£.23)

(£.24)

In Equations E.23 and E.24 the expressions for the Fourier transform

of the AT and AMD control forces from Equations 4.36 and 4.39 have

been utilized. Collecting terms

(£.25)

(£.26)

Using Equation 4.16 in Equation E.26

(£.27)
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Rewriting Equation E.27 and substituting XN from Equation E.27 into

Equation E.25, give

'iN ~ (- mN w' + CN iw ) XN- l + [ 1+

+ gm(w) XN

2 .) ]- mNw + cN/w -

KCN YN- 1

(£.28)

(£.29)

Combining Equations E.28 and E.29 in matrix form yields Equation 4.9

as follows

2 .
m,v (J) + /w Cv

+ { 0 }
gm(w)XN

1+ (-

I
KCN

2 . )mN w + /w CN

KCN

{iV-I}
,v-I (£.30)

{ZLv = [A]N {Z} N-I + { 0 }
gm(w)XN

(£.31)

The boundary conditions for the combined AT and AMD case are given by

__ {XNo+
1 }.{Z} N+l (z}o = {;o} (£.32)

The earthquake ground displacement is assumed to be a Dirac delta

function Xo = b(l). In Equation E.32 XO = I is the Fourier transform of

the Dirac delta function. The response is the impulse response

function and the Fourier transform of the response (Ai. ~) is the

frequency response function to the ground displacement. The boundary

conditions of Equation E.32 can be used to solve for the unknown
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quantities Yo, YN• XN and X,v+I' from Equations E.14, E.21 and E.3!.

Note that from Equation E.14 once Yo is determined the state-vector for

other floors can easily be found. Using Equation E.14 repeatedly to

express (Z},v_1 we get

(£.33)

Substituting Equation E.33 in Equation E.31 gives

(E.34)

and using the notation for the matrix product

[I'J( N)] = [I'JJ.¥ [A]'v_I -.. [11]2 [A]I (E.35)

in Equation E.34, we obtain

(Z}N (E.36)

Simultaneous solution of Equations E.21 and E.36 with the boundary

conditions of Equation E.32 yields Yo. Y,y, XN • In order to simplify the

calculations the following notation is used

(E.37)
A22( N)
A 12( N) ]

[
II II( N)

[A(N)] = 1121(N)

where the elements of the partitioned matrices are known and are

manipulated in the computer program. Let [7] be expressed in the

symbolic form

[
Til Tl2 ]

[7] = -':7":';'21~-T2;"":'="2 (E.38)
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where, from Equation E.22

'I'll

T21

I,

2
md w

'1'22 = 1- ---
kd + iw cd

(£.39)

(t".40)

Rewriting Equations E.21 and E.36 for clarity

{ XNO+ I } [Til T12 ] { XN } { 0 }
= T21 T22 YN - gmCw)XN

{
.=yr

NV
} = [/III(N) A12(N)]{ I} { 0 }

A21( N) A22( N) Yo + gm(w)XN

Substitute Equation E.42 in Equation E.41

(£.41 )

(£.42)

{X'~+I} = [
Til TI2 ] [ A 11( N) A 12( N) ] {_I}
711 T22 A21( N) A22( N) Yo

+ [Til Ti2 ] { 0 } { 0 }
7'21 1'22 gm(w)XN gmCw)XN

(£.43)

Define the matrix product in Equation E.43 as [E]

[E] = [7] [A( N)] = [Ell £12 ]
E21 £22

(£.44)

Then Equation E.43 becomes

{ XN+I } [Ell EI2 ] { I} { Ti2} -
-0- = £21 £"'22 Yo + (1'21 _ I) gmCw) XIV

From the second row of Equation £.45

o == £21 + £22 Yo + (1'22 - 1) gmCw) XN
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From the first row of Equation E.42

XN = 1111 ( N ) + A 12( .tV) Yo (£.47)

Solving Equations E.46 and E.47 simultaneously and using Equations

E.39 and E.40 yields

1:'21 + T2l t Tl2 t AII( N )tgm(w)

£22 + T2l t TI2 t A22( N )tgm(w)
(£.48)

which when calculated can be substituted in Equation E.47 to yield .rN.

From the second row of Equation E.42 we can obtain ~v as

(£A9)

Finally from the first row of Equation E.41

(£.50)

and since from Equation E.39, Til = I, Equation E.50 can be simplified

to

(£.51)

Thus Equations E.47, E.48, E.49 and E.51 describe all the unknown

quantities. The response at any floor level is given by Equation E.14.
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