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ABSTRACT

Reliability-based optimization techniques are developed for steel structures subjected to

various seismic loadings of static equivalent load, dynamic response spectra, and stationary

process with seismic spectra. The static equivalent load is based on Uniform Building Codt:; tht:

dynamic response spectra are based on Newmark's nondeterministic response approach which

lIsn; a statistical tl:chniqul: to I:stimatl: the respollSt: amplification /actors; and tht: st:isrnic spcclra

of stationary process are related to white noise, ftIter white noise, or modified white noise. The

optimization techniques are derived from the optimality criterion method and the penalty

function method, which have proven to be efficient for nondeterministic structural design.

Reliability is based on two mathematical models of normal and lognormal distribution wi.th two

'different variance approaches.

The structural formulation is derived on the basis of the matrix displacement method and

the lumped mass model. The objective function can be either minimum weight or minimum

total cost. The cost function includes initial construction costs of structural and nonstructural

elements and expected costs of failure at various safety levels. The constraints include the

reliability considerations for displacement and internal forces of individual membcrs as wcll as a

system.

Several numerical examples are provided to illustrate the application and parameter study

of reliability-based optimum design for various types of seismic loadings. Observations of

numerical studies demonstrate: I) for dead and live load case, the model of Great Britain

requires heavier design than the models of the U.S.; 2) the optimum design is very sensitive to

high variation of UBC seismic load and the peak ground acceleration, especially with lognormal

distribution; 3) at high reliability criteria, the lognormal distribution requires a heavier design

than normal distribution; 4) the second variance approach demands a heavier design than the

first variance approach; 5) the elTect of vertical ground acceleration can noticeably alTect the

optimum solutions; 6) the optimum design results of modified white noise spectrum arc c10sc to

those of the ftIter white noise spectrum; 7) the optimum design for fITst passage equation is

conservative among the various failure probability expressions; 8) for different ratios of initial
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cost to member cost, the design yields similar member cross sections but different fmal costs; 9)

the optimum cost is not sensitive to the ratio of expected failure cost to initial cost at high

reliability; and 10) at high reliability level, the difference between maximum and minimum

bound of system failure probability is very small.
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I. lNTROD(;CTlON

A. LITERATliRE REVIEW

Because of recent advances in electronics, t:ngineers and scientists arc on the threshold of a

new era in structural analysis and design. Most of their research efforts are based on the

development of sophisticated comp~ter programs for the analysis of complex structures. A7, 6/\

C\lrn~ntly, whcn these programs arc used to design strudures, the relative stifflH;s,e, of a

structure's constituent members must be assumed. If the preliminary stiifnesses arc misjudged,

repeated analyses, regardless of a program's sophistication. will usually not yield an improved

design. The programs that arc presently used are actually based on conventional designs, and

their application in reality is an art rather than a science.

The optimum design concept has been recognized as being more rational and reliable than

those that require the conventional trial and error process. 71,92 It is because for a given set of

constraints, such as allowable stresses, displacements, drifts, frequencies, upper and lower

bounds of member sizes, and gIVen seismic loads, such as equivalent forces in the wde

prOVISions, spectra, or time-histories, the stifTnesses of members arc automatically sclecli..:d

through the mathematical logic (structural synthesis) written in the wmputer pro~ra/ll_

Consequently, the strengths of the constitutent members arc uniformly distrihuted, and the

rigidity of every component can uniquely satisfy the demands of the external loads and the code

requirements, such as displacements and drifts. By using an optimum design computer program,

one can conduct a project schedule at a high speed and thus increase the benefit because of the

time that is saved. 61 An optimum design program can also be used for parametric studies to

identify which structural system is more economical and serviceable than the other and asse~s

the principles of various building code provisions as to whether they are as logical as they are

intended to be. 24,33

In the structural optimization field, all the optimi/.ation techniques and the computer

programs arc gcner..uly developed on the premise that the design variables, resistanccs, responses,

and loadings are detenninistic. 21,47,48,89,90,91 The reasons for the lack of re~earch
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advancement with regard to structural optimization of nondetcnninistic systems may he that I)

the modem structural optimization algorithms rely on the various techniques of sensitivity

analysis 6,27,87 (rate of change of response quantities with respect to design variables), which

can become a pyramidical task in nondetenninistic cases, and 2) it is too difficult to establish the

objective function involving risk analysis of expected damage costs suitable for an individual

structural design at a particular site. 49,51,7R

In recognition of the ranuom nature of seismil.: structural prohlems and the advam:es that

have been made in reliability analyses of structures, the research project was subsequently

developed for optimum design of nondeterministic structures subjected to seismil.: ocitations.

The study has taken into consideration the safety levels of a system with respect to I[S various

failure modes, uncertainties in the dead and live loads as weU as seismic forces, anu random

parameters in responses and resistances. The cost function indudes initial construction COsts of

structural and nonstructural elements and expected costs of failure at various safety levds. Tht::

structural members are designed on the basis of the global optimum decision, namely, when :m

increase of the initial cost is balanced hy a reduction in the expected cost of failure times the

risk.

I. Optimum Structural Design in General. In [he past decade, a l:Onsiderable amount of

literature has been published on the subject of optimum structural design. The increasing

number of publications corresponds closely to the rapid demand for economical and reliable

structural designs in virtually all fields of endeavor. Optimum designs have been extensively used

in aircraft structural engineering, 91,92 and more recently they have been widely applied in [he

automobile industry. 12,17

Various optimization techniques of linear, nonlinear, and dynamic programmmg have

been developed for different types of static and dynamic structures. 13,14,20-22,47,4X,57 ,61 In

general, most of the tel.:hniques have some limitations and arc best suited for certain classes (If

problmls. The technique oased on energy distribution as the optimality criterion 1I:ls ken

proven to be dfective for large structural systems in aerospace engineering. 7 I,91 ,92 Vt::nkayya

and Cheng 90 extended the optimization algorithm for civil engineering strul.:tures subject to
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general dynamic loads. The method, however, is approximate for the multiple constraint case.

Further studies by Venkayya, Khot, Fleury, Cheng, and others have led to some modem

optimizations, which are efficient for large structural systems and multiple wnstraints. Cheng

and associates have further extended the modem optimization algorithms to direct optimality

criteria for steel and reinforced concrete building systems. 27,31

The development of the optimality criteria method may be considered to be a greal

contribution in the field of engineering oplimi/.alion in lhat it offers a major improvemenl ovcr

any other optimil.atiolls currently ill vogllC. Thc signiticallt advalllagc of the mClhod is lhal the

number of iterations required to converge on an optimum (or pseudo-optimum) desi~ is largely

independent of the number of variables in the problem. The optimality mehtod has been

traditionally used for deterministic structures, which IS now further developed for

nondeterministic structures in this research.

2. Optimum Desim in Earthquake Structural Engineering. Previous studies of optimum

seismic structur.ll design were mostly based on the linearizalion technique and static equivalcnt

selSIIDC forces for simple structures and shear buildings. 57,61,84 Cheng and l30tkin 20.22

studied the feasible direction technique for the design of tall huildings and large frameworks.

This included the geometric nonline;Jnty lIf the P - 6 dlCct. The technique was also sllldied hy

Ray et al. 73,74 and Walker and (lister 93 for optimal elastic design. Cheng am! his associates

later studied the energy distribution criteria and the direct optimality criteria for various seismic

structural designs. 23,25,26,29,33 The above briefly cited references among others mainly deal

with feasible seismic structural design of sizing the constituent members for which the fcasible

domain is an expression of the standards of code requirements; however, another distinct branch

in seismic resistant design is associated with the policy decisions of minimizing the total cost

with a design, that is maximization of the total benefit minus the total cosl; the meril function

includes the building cost and the expccted damagc. 16,62,63,7R,79,RO This is cmphasil.cd on

decision models but not for the complete design of structural systcms with code rcquircmcnts.

The computcr-a..ided interactive design has also been introduced in earthquake structural

design. The algorithm falls in with the mathematical programming of feasible direction. Sample
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problems deal with minimum weight, minimum cost, and minimum or maximum response (for

ellergy-absorbing device at supports) f(lr deterministic systems. X-II HI

It may be concluded that a great deal of research interest has been developed in

connection with optimization models for making policy decisions and structural optimizations

for dctcnninistic systems. lbe structural optimization of nondeterministic structures subjected to

seismic excitations is still in infant stage and has recently been studied by Cheng and Chang,

28,30,32 and others. 42,58 The reliability-based structural design may be found in Reference 41

for dynamic loads and Reference 72 for random loads.

3. Reliability Analysis of Earthguake Structures. 'Ever since ComeU published his classic

paper on seismic risk analysis, 36 a great deal of work has been done on a variety of analytical

mouds. 1<2 Major dli.lrts have been put forth to develop models li.,r detennining seismic hazard.~

(probability of seismic intensity), \'ulnerability (probability of damage for a specilied level of

seismic intensity), and seismic risk (probability of loss). ror instance, the seismic hazard studies

have been based on various models, such as point source, line and / or area source, and

fault-rupture length. 5q

Evaluating the safety of a seismic structure in the past consisted of analyzing the system to

fmd the probable failure level (risk level) of its individual members of which the sizes arc given.

Reliability models have been studied by Ang and others. 2-4, 35, 70 Other notable works with

strong socioeconomic implications for seismic engineering systems have been written by

Whitman ct aI., 94 Blume and Monroe, 15 Liu and :\Ieghanat, 62 and ShinOl:uka and Tan.

In 'Ibesc works are related to life-line problems. The seismic strucural design, which is based on

a given set of risk levels and provides optimum components, has yet to be explored.
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B. OBJECTIVE AND SCOPE

l. Seismic Loadings· unc, NNSRS, Stationary Process. In order to achieve a hroader

ooservation of parameter studies through the structural optimization, three types of pral:tic:.d and

commonly used loading models are employed in this study. 'lbe first type is the UHC codified

seismic load. The second is the Newmark's OCIldeterministic seismic response spectrum (~;,\SRS)

including the statistical response results of actual horizontal or vertical earthquake records. The

third is a Gaussian random process with a con~ant or varied seismic spectrum which has heen

commonly used to represent the seismic random load in civil engineering community.

2. Parameter Study in Reliability-Based Optimum Design Subjected to Various Seismic

Loads. The parameter study for UBC is to investigate the sensitivity of some parameters and to

compare the formulations in reliability-based optimum models. The parameters studied are the

coetlicient of variation of column resistance par.uneters and coefficient of variation for t: Be.

'Inc lurmulations compared arc the probability distrihutions of response and resistance, the

variance approaches, and the zone coetlicients in U Be. The parameters and formulations are

also studied for NNSRS such as variations of column resistance, peak ground acceleration, and

different variance approaches. For the stationary seismic loads, the formulations for various

stationary seismic spectra and failure probability eltpressions are compared in the optimal

solutions. Further parameter studies are due to the difficulty to assess the nonstructural and

expected failure cost, some coefficients to represent different magnitudes of these costs are

studied to show their influences on the optimum design results. In the past, four live load

models of ANSI (American National Standard Institute). NBS (National Bureau of Standards).

UK (United Kingdom), and UNREDUCED (actual) models were proposed. [[owever, no

comparison has been performed to show if there is any dilTerence among these models. III this

study the comparison of four live load models is investigated.
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C. CONTENTS OF THE STUDY

This report consists of tweleve .chapters. Chapter I includes the literature review and the

objective of the study. Chapter 2 presents the reliability concepts. Chapters 3, 4, and 5 indude

structural analysis with reliability consideration respectively associated with static and static

equivalent load, nondeh:rministic response spectrum, and stationary seismic process. The

prohlem fonnulations and optimization algorithms for the design arc presented in Chapter n.

Comparisons of ANSI, NBS, UK, and UNREDUCED live load models are given in Chapter 7.

The application of optimality criterion method and comparison results with penalty function

method are included in Chapter 8. Chapters 9, 10, and II contain studies of the sensitivities and

comparisons of some parameters for UBC, NNSRS, and stationary seismic process. Chapter 12

is the conclusion including observations of the numerical studies.
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II. RELIABILITY CONCEPTS

A. RELIABILITY AND PROBABILITY OF FAILURE

Reliability is a measure of the probability of structural survival during a structure's

lifetime. Thus reliability is a probabilistic measure of the safety for the structure concerned. The

probability of failure, which is the opposite of reliability, can also be adopted to represent the

salCty prohlem ill an ;dternative way. III a dassical fomllliation, reliability and prohability o!

failure are defined as

00 00

Pr< R 2 S ) = J-00 Pd(S)[Js Pd(R) dR]dS (2.1 )

(2.2)

where R, S = structural resistance and response; Pd(S), Pd(R) = probability density

function of structural response and resistance, respectively. Hereafter the reliability anti

probability of failure will also be represented as Pr and Pf .

Since in prJ.ctice, the complete knowledge of exact distributions of resistance and respome

is impossible to detennine, two approximate expressions to the reliability or failure probability

have been used in many studies. One is a fll'St-order second-moment ex.pression that estimates

reliability and probability of failure through a safety factor fonnulation. The other is a first

passage expression that estimates the probability of crossing the specified barrier during the

vibration time interval.
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D. A PIRST-ORDER SECOND·MOMENT EXPRESSION

1. Probability Distribution of Response and Resistance. In 1969, Cornell 37 proposed a

simple approximation model called a fIrst-order second-moment expression, which involves the

evaluation of the mean and variance of the structural resistance and response, and represents

either reliability or probability of failure. Along with this expression two probability

distributions of structural resistance and response considered in this study are normal and

lognormal distributions.

a. Normal Distribution. Since R and S are independent normally distributed variables, a

linear function Q of R and S, where Q = R-S, is also normally distributed and thus, ( Q - Q ) I

O'Q is the standard normal variable with zero mean and unit variant.:c. r.cl 1\ he rrohahility

of failure and be given by

Pf = Pf( R - S:5 0)
0-0

= PN (-0-)
Q

= PN (~0)
Q

I - PN( oQ )
Q

(2.3)

where PN( ) is the standard cumulative normal distribution function, 0 = R - S , 0Q

(cr~ + oS)1/2 , and R, S, o~, oS = the mean and variance of structural resistance, R, and

response, S, respectively.

If a safety factor (or safety index), {1 , is dermed as the ratio O/oQ' then

probability of failure,

Pf = I - PN(P)

reliability,

Pr = PN({1)

where

8
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b. Lognonnal Distribution. If R and S are both lognonnally distributed, the function 0

= lnR-lnS is nonnally distributed. Thus analogous to the nonnal distribution case, the

probability of failure and the reliability are given as follows.

Since

0-0 -0 Q
Pf = Pf(lnR - lnS~O) = PN( ) = PN(-) = I - PN(~) (2.7)GO GO vQ

then

oPf= 1 - PN(-)GO

and

P = PN( Q )= PN ( iIiR - inS )
r GO ' 2 2 1{2

(GlnR + Gln S)

where the mean and variance of lnR and lnS are

- - -1 2 2 2
InR == lnR + (--r-clnR)' GlnR = In(VR + I)

- - -1 2 2 2
lnS = lnS + (--r-clnS), GinS = In(VS + I)

where

(2.9)

(2.10)

(2. II)

V~ =
G~
-2R

V~ = (2.12)

The derivation of Equations (2.10) and (2.11) are given in Appendix A.

The mean and variance of 0 are obtained as

9
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22 2 2 2 2 2
0Q =0lnR + 0lnS =In(V R +l) + In(VS +l) = In[(l + VR)(I + Vs)]

lienee the safely factor, {3 =-a~' is of the form

2
In[(R" _ S) I + VS J

1+ V2
f3 = R

)In[(1 + V~)( I + V~)]

(2.14)

(2.15)

2. uncertainty Formulations of Response and Resistance. According to Equations (2.6)

and (2. 15), fmding the safety factor formulation is equivalent to calculating the means and

coefficients of variation of structural resistance and response. Since uetennining uncertainties of

structural response and resistance is impossible, a fIrst-order approximation is employed to

approximate the uncertainties in tenns of their parameter uncertainties. The approximation of

the me:ms and variances of structural response :U1U resistance can be Jcrivcu as :

mean,

- asS(r) = E[SI['\ +S(-)-Ir' - r-)J
\" '7" or' f\ 1 \

\ 1

= S(F) + 2:( as )-rE[r' - n. or' \ \
\ \

= S(F) + D as )-rr· - r-). or' f\'\ 1
\ 1

=Sm

variance,

cr~ == E[(S - 5)(S - 5)]
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as - as -= E[(S(f) + 2)-)-(r' - n- S)(S(f) + ""(-)-(r' - r·) - S)], ar' r 1 1 ..::- ar' r I I
1 1 I J

cr~ = E[(R - R)(R - R)]

="")(~)/(~)/n " , V, V, fI·,fI""-- a' r ." r "r ',r" r', r', 1 Ii' j' r i' ur j' I J I J

(2.18)

(2.19)

where ri' rl' ,r'i ,r'J' = ith, jth random parameters of response and resistance; Pr'r" Pr",r",
1 ] 1 J

= the correlation coefficients of ri and rl', r' i' and r/J" Vr' , Vr" Vr', , Vr/ . = the
1 J I' J'

coefficints of variation of ri ,rj , r'i' ,r'j' ; ri ,rj' ?i" ?j' the mcans of ri ,rj' r'i' , r/j' ;

r , r' = all mean random parameter values of response and resistance.

A structural response S such as a displacement and an internal force can be detcrmined by

(2.20)

where Cs = an influence coefficient that transfomls the Io;id intensity (q') into the desired

response; q' =: the load intensity which may be dead, live, or earthquake luad.

Two approaches for ftnding the variance of a response are suggested in the following.

a. A Variance Approach to Be Called 1st Variance Approach Hereforth. If the random

parameters involved in a response are known, the variance of a response is found to be

(2.21)
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Once the uncertainties of each random parameter are determined, the vanance of a

response can be obtained through the Equation (2.21). 40,41,42

practical situations, fmding the means and coefficients of variation of random parameters in a

response is difficult. lberefore, the variance of the structural response can be calculated based on

the square of some percentage of the mean value of the influence coefficient (CS) by 44,70

where Cp is a percentage constant of Cs and Vq' IS a coefficient of variation of load

intensity, q'.

Comparing with Equations (2.21) with (2.22), the two equations will be the same if the

following terms arc equal.

and

oq' oq' -2 __ - 2 2,2
LL[(-)r(-)rCS]Pr.r,Vr'Vr·rirj· = (CS) Vq,q.. Or· Or· 1 j I J
1 J 1 j

C. A FIRST PASSAGE EXPRESSION

(2.23)

(2.24)

For a random vibration problem, the probability of failure may be the probability that J.

stationary response will fail in a prescribed bound Juring the system operating time. This

probability called the flfst passage equation has the following form.

Let s(t) be a stationary process, and vt be an expected frequency of crossing the constant

level s = 'i with a positive slope, which is described in Appendix H, then
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where s = the derivative of s; Pd(~' s) joint probability density function of; and s.

(2.25)

If s(t) is a stationary Gaussian process with zero mean, this implies that the joint

probability density of s and s takes the following fonn:

whl:rl.: Os anJ a; are the stanJan.l Jl.:viations of ~ and S, rl.:spcctivdy.

Substituting Equation (2.26) into Equation (2.25), We fUld

+ s -1;2 52 .
v - Joo exp (-(- + -»ds
a - 0 2lt0sos 2 02 02

s s

.J

1 exp ( - a
2

) JOoos exp ( s-2 )d5
Zlt°sos· 2o 0s s

0' -2s - a= -- exp (--)
2ltos 20Z

s

(2.26)

(2.27)

For a double barrier case, lsi < ~, shown in rigure I, the expected frequency of crossing

the level lsi = ';' becomes

+ Os _;2
va = 2va ="'it'O exp (--Z-) (2.2X)

s 20s

When the crossUlgs of the level lsi = a constitute a Poisson process, the ftrst-passage

probability density Pd (t) has the form
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(2.29)

where t is a time parameter.

Therefore reliability ( Pr ) andprobability offailure ( Pf) on time interval 0 < t < TO are

given by

T
Pf= Pi<TO) = J0 Upd(t)dt = I - cxp ( - vaTO)

Pr = Pr(T0) = I - P~T0) = exp ( - vaT0)

D. RELIABILITY OF STRUCTURAL SYSTEM

(2.30)

(2.31)

In Section A, the derivations of reliability and probability of failure are based on a single

failure mode with a single structural response and resistance case. However, a structural system

may have many failure modes. Hence the system reliability or probability of failure may also bt:

the desired quantity for considering the structural safety problem.

There art: two fundamental types of systems, namely, a series system and a parallel system.

A system is a series system if it is in a state of failure whenever any of its elements fails. Such a

system is also called a weakest-link system. For a parallel system, failure in a single mode will

not always result in failure of the total system, because the structural capacity may be able to

sustain external loads.

In this study, the structural system is considered to be a series system, which means that

the structure fails when any safety criterion is not :>atisfied. Tht: probability of failure for this

system, PIT' may have the form

Pfl·(R < S) = I - Pr(R > S) = I - I\(I~ I > SIn R2 > S2 n ........) (2 ..12)

where R I ' R2 ' S I ' S2·.... arc tht: resistances and respomcs of cal:h failure moJc lor a

structural system.
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The detenrunation of the exact value of Equation (2.32) is very difficult since the

relationship among failure modes is too complicated. Nevertheless, two extreme hounds can hl:

ddennineu on the oasis of the following conuitions. 4,35

Pt:rfectly correlated among failure modes

From Equation (2.32), the system probability of failure, PIT' may be expressed as

PIT == 1- P (R' > S·) == I - (I - P"R· < S·» == ('t/R < S·)r J J 1\ J J ~ J J (2.33)

Therefore, using the maximum value of all failure probability modes yields the system failure

probability as

Pfr == max (Pr)
J

perfectly uncorrclated among failure modes

== I - I + LPr + L2:PfPf
j J i j 1 I

(2.34)

(2.35)

(2.36)

where Pr == the component failure probability of a structural system.
J

E. APPROXIMATION FORMULA FOR CUMULATIVE NORMAL DISTRIBUTION

From previous sections, the reliability and probability of failure arc calculated through the

cumulative normal distribution. Ilowever, finding the exact value of this distrihution is very

complicated and difficult. Therefore, some approximation formulae have to be used to

approximate this function. In this study the formula in Reference 38 is used. The formula has

two equations in two difTen.:nt ranges of safety fadar. They are

Formula (I), {3:s; 1.6
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p3 p5 I
P = (p - -+ -)--+0.5

r 6 40 /2it

Pf= I - Pr

15>P>1.6

p2 _
[ I 3 -- 2 ]Pr =0.51-(I--+-)e 2/- /P +0.5

p2 fl4 It

Formula (2), fl ~ I

where

Pn(fl) = standard normal density function

Formula (3) ,

p _ ( A B + I )/2e't.
f - I + 2~ I + I!~ + Q: + l4:P + ~ + E~p

(2..\7)

(2 ..IK)

(2.3Q)

(2.40)

(2.41)

(2.42)

(2.43)

Comparing Formula (I) with Formulae (2) and (3) yields the results shown in Figure 2

from which one may observe that the results are very close except in the range of safety lJ.l:tor

between 1.4 and 1.8. Therefore formula (I) is used in this study excluding the safety factor

between 1.4 and 1.8. The Formulae (2) and (3) are given in Reference 81.
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Figure 2. Various Approximate Equations for Standard Cumulative Nonnal Distribution.
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Ill. STRUCTURAL SYSTEM TO STATIC Al\'D EQUIYALE~T SEISMIC LOAD

A. LOADING.

Structures may be subjected to the dead loads due to the weights of the ~tructures and

pcrrn:mcnt fixturcs; thc livc loads <Juc to maximum total loads of occupancy aud rllovahlc

furniture; and the static equivalent lateral loads due to earthquakcs. In what follows. the m()(kb

for dead, live, and static equivalent lateral (U BC) seismic loads are discussed.

l. Dead Load. The dead load on a structure consists of the weight of the structure and

permanent installations. The weight of a structure can be obtained from its geometry and the

unit weight of the elements and their dimensions.

The mean value of a dead load is assumed to be the constituent of all its mean wmpom:nt

values. The coefficient of variation of a dead load may be caused by the cocllicient of variation

of the weight of sted members which is 0.05 and the coefficient of variation due to the weight of

lion-structural dements, which is cstimated as 0.1. 44 By usill!,\ the anovc valucs the cocftiLiellt

of variation for the dead load can be obtained as

YO = /C0.05)2 + (0.1)2 = 0.12 (3.1 )

2. Live Load. Live loads are loads ansmg from movable equipments md tixtures,

vehicles and stored goods, and other non-permanent loads. Some live loads may be practically

permanent, and others may be highly transient. They vary with both time and space, and can

be idealized as being composed of two parts, the sustained live loads and the transient live loads.

The sustained live loads exist on the floor for a relatively long time and include furniture

and normal working personnel. 111e changes in the sustained live loads may ocwr due to

tenancy changes in the use of the floor area.
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The transient live loads occur infrequently but with a relatively high intensity and short

duration. The transient live loads may be due to people gathering in a room in large numbers

for a special occasion, due to stocking some goods in a room for a short time, or due to the

l:om:cntration of furniture during remodeling.

The probabilistic model for live loads may be assumed to be

L(x,y) = Ly + £(x,y) (3.2)

where L(x,y) = the ijye load intensity, in pound per square foot at (x,y); Ly = a random

variable modeling the average unit load on the Iloor; £(x,y) = a stochastic process with zero

mean· describing the deviations from the average.

The equivalent uniform distributed load (EUDL), which is the uniform distributed IO;Jd

and produces the same load effect as the actual set of loads, is our desired model and h;JS thL:

following tnL:aning :

EUDL =
JJL(x,y)l(x,y)dxdy

JJI(x,y)dxdy
(3.3)

where I(x,y) = an influence surface coefficient.

The mean and variance of EUDL can be determined as follows

mean,

E[EUDL]

vanance,

:: E[ JJ(Ly + E(x,y»I(x,y)dAI ]

JJI(x,y)di\1

I I
LyAd0 J0 I(x,y)dxdy

=--........;.-..:.----
I I

Ado f 0 l(x,y)dxuy
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where KL = JJJci (2(x,y)dxdy I (jJJJI(x,y)dxdy)2 ; crt, crt = empirical constants to fit the

data from a live load survey; AI = the influence area which covers the influence surface.

KL ' crt, crt can be detennmed from live load survey.

StatisticaJ infonnation on livc loads is obtained from the live load surveys. 45,64,66

These surveys gave the instantaneous values of the live loads on the particular huihling at the

time at which the survey was conducted.

The W"etime maxunum total live load, which is the maXImum value of the live load

(sustained plus transient) over the whole lifetime of the structure and is described in Appendix

C, is considered in this study. For the purpose of simplicity, the four lifetime maximum total

live load models of office building structure which are independent on time are described and

used. The statistics of these four models are :

(I) ANSI 1980 recommendation (L1) 66

lbe load subcommittee of American National Standard Committce !\5H recommendcJ a

I l)l{O version of a live load model. The statistics of this model werc given as

mean,

IT = 50(0.25+ 15/ IA()

coefficient of variation,

Vu = 0.14

(2) NBS survey (L2) 45

psf (3.6)

(3.7)

The National Bureau of Standard (NBS) published the load. survey results for ollit:c

buildings in the United States. The statistics of this live load model wcre given as

mean.

L2 = 18.7 + 520/11\(

coefficient of variation,

psf

21
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(3.9)

(3) United Kingdom survey (U) 64

Mitchall and Woodgate proposed a live load model according to the survey results for

office buildings in the United Kingdom. The analysis resulted in

mean,

IJ 14.9 f-7tdlll\l pst" I I. I (j)

coefficient of variation,

Vu == (11.3 + 15000 I AI) I L3

(4) UNREDUCED Live load (L4) 66

(3.11 )

This Live load modd is a fixed value which uoes not relate to any space pJ.!"amders. The

statistics of this model are

mean,

f4 = 50 psf (\.12)

coefficient of variation,

VL4 == 0.14 (3.13)

In the above models, the influence area parameter AI is the area that contributes the load

determination, and the unit I psf (pounds per square foot) equals 992.16 kPa.

3. U BC Seismic Load. The seismic load may be represented as the static equivalent

lateral load that is constructed in code specifications sueh as ATC 5 or UBC 55. [n these

coues the carthquake is first expresseJ as the grounJ hase shear force allu thell JistributcJ to tile

JesireJ location. The l:arthquake loaJ l:xprl:ssion in the Uniform BuilJing COlk 55 IS USCU 10

this study.
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where

E = the shear force at the base;

Z = numerical coefficient depends on the zone that the structure is located, for zones

I, II, III, IV; Z = 3/16, 3/8, 3/4, I, respectively;

IE = occupancy importance factor;

KJo; = numerical coefficient;

C1<J' = I . the value need not exceed 0.12;
(19'1' )

T = structural fundamental period;

SE = numerical coefficient for site-structure resonance, when characteristic site period

is not properly established, the value of S shall be 1.5;

W = the total dead load.

The structural fundamental period, T, can be calculated in the formula

(3.14)

Because the calculation of this period involves structural analysis which is not known in

the beginning, the approximate period T = O'0ShnIIDn is needed first (Where On = the

dimension of the structure in parallel with applied force direction; hn = the height of the

highest level; Wi = the weight of ith level; u;. = the deflection of ith level; FEi = the lateral

force applied at level i).

After the force E is detennined, E shall be distributed over the height of the structure in

the following formula:

23
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where F Ex = lateral force applied to level x; FE = lateral force applied to level x due to a
ux

unit seismic load intensity; Ftu = the concentrated force at the top due to a unit seismic load

intensity = O.OTT; Wi ' Wx = the portion of W which is located at or is assigned to level i or

x, respectively; ~ ,hx = the height of i or x th level.

The statistics of the UBC seismic load may be determined as:

mean,

(3.16)

The coefficient of variation of earthquake may be assumed to follow a Type " extreme

value distribution 36 which is described in Appendix D and has a probability distribution of

(
-e] )-KI

= e ul

where E' = earthquake random variable; e I

are determined from seismological data survey.

a value of E'; u I , K I

(3.17)

parameters which

For this type of distribution, the coefficient of variation of earthquake, VE ' IS

2
r(l--K-j)

I-~-.;;...;..;--I

r2(1 __1_)
KI

(3.18)

where rc ) is a Gamma function.

Since the phenomina of earthquake is highly complicated and unpredicable, the exact

value of K 1 is impossible to determine. However, many values of K 1 and coefficient of

variation of earthquake have been. proposed in the past decade. Within them the value of

K I, 2.3, which corresponds to coefficient· of variation, I:38, is reported in National Bureau. of

Standards Special Publication No. 577 66 and has been used for some seismic designs. The

value of KI, 2.7, which corresponds to coefficient of variation, 0.85, is recommended for the

nuclear power plant design. 54
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B. STRUCTURAL RESPOr-iSE

The desired load effects for a structure subjected to dead, live, or seismic load may be the

structural displacements or members' internal forces. The total load effects may be due to the

combination of these loads. [n the following the general response formulations for dead. live,

and UBC st;ismic loads are described.

I. Dead Load Effect. The dead load effect, S[) ,can he ohlained hy

(3.1 <J)

where Co is an influence coefficient which transforms the dead load intensity 0 into the

desired load effect (displacement or internal force) through structural analysis.

The mean ( So ) and the variance (as ) are
. 1)

(3.20)

(a) 1st variance approach,

(b) 2nd variance approach,

2 - 2( 2 2aS
O

= (SO) (0.1) +VOJ

(3.21)

(3.22)

where 0.1 is the assumed value to describe the static analysis error 44; VD = the coeflicient of

variation of dead load intensity which is assumed to be 0.12 in I':4ualion (3.1).
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2. L.ive Load )·:llect. The live luad clrect IS obtained as

0·23)

where CL is an influence coefficient that transforms the live load intensity L into the desin:d

load effect.

The mean ( SL ) and the variance (O"§L ) are

(3.24)

(a) 1st variance approach,

(3.25)

(b) 2nd variance approach,

(3.26)

when: O. I is the assumed value to uescribe the stalic ;Ulalysis crror 44; VL ::. the cocfllcicllt of

variation of live load intensity which is assumed to be the value in Equations (3.7), (3.'1), (J.ll),

or (3.13).

3. USC Seismic Load Effect. The unc seismic loal! effect is obtained as

(3.27)

where CE is an influence coefficient that transforms the earthquake load intensity E into the

desired load effect .
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The mean ( SI~ ) and the variance ( a2 , ) are. SE

(a) 1st variance approach,

aCE aCE __
= 2:2:(--E)r(--E)?Pr'r'v r' Vr·rirJ·.. ar' ar' 11 I 1

I 1 I 1

+ 2:2:( aE CE)?( oE CE)rPr-r,Vr,Vr.rirl·, . or' or' J 11 I 1
I J 1 1

(b) 2nd variance approach,

(.1.2!S)

(3.29)

(3.3U)

where 0.1 is the assumed value to describe the static analysis error 44; VE = the coefficient of

variation of earthquake load intensity which is assumed to be the value in Equation (3.18).

4. Combined Load Effect.

The total load effect due to the combined action of dead, live, and UBC load is

Till: mean (S) :Uld variance ( as )of tutal luad effect are

(a) 1st variance approach,
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where i1 and j I are random parameters related to structural analysis.

(b) 2nd variance approach,

as aS
D

+ aS
L

+ aS
E

+2(0.1)2(SDSL + SDSr: + SLSE)

= CbD2«0.1)2+vb) + CrT2«O. J)2+Vr) + C~E2«O.1)2 + V~)

, ","; -;; -"+ ...(O.I)-(SDSL +S\)SE t- St,s,)

= (0. I)2["COD2 + C([2 + CEE2 +2CDDCL[ +2CDDCEE +2CL[C\:E]

C COMPL:TATIOS OF STRUCTL:RAL RESPO~SE

(3.33)

(3.34)

In this section the computations of structural response which may be displacement or

internal force ean be performed as foUows:

l. Displacement. The displacement may be calculated as:

{u} = {CS)q' = [K]-l{q}q' (3.35)

where {u} = displacement matrix; [K]-I = inverse of global stiffness matrix; q = the

applied load matrix due to a unit dead, live, or UBC seismic load intensity; and q' = the load

intensity which may be the dead, live, or UBC seismic load intensity.

By using the above equation the uncertainties of load effects for dead load, live load, l: Be

seismic load, and combination of these loads arc given :
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a. Oead Load Effect. The mean and variance of dead load effect can be expressed as

mean,

(a) 1st variance approach,

2 o{uO} o(uO} _ _ -2 2
o(uO} = LL( 0 )r( )rPr'lr'IVr'IVr'lrilrJ'1 + {uO}VDil j I ri 1 orjl 1 J 1 J

(.1.10)

(3.37)

where il and j I are the random parameters related to structural analysis; and Equation (3.37) is

derived from Equation (3.21) as

(.UX)

The derivative of displacement with respect to i Ith or j Ith random variable of r can be

derived as follows: Since {qO}D = [K](uD}' the derivative of this equation with respect to

random parameter ri I is

(3.39)

Rearranging Equation (3,39), it can be found in

(3.40)

Similary we can have

(3.41 )

(b) 2nd variance approach,
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(3.42)

which is based on Equation (3.22).

b. Live Load Effect. The mean and variance of live load effect can be expressed as

mean,

(3.43)

(a) 1st variance approach,

(3.44)

The derivation of Equation (3.44) is similar to Equation (3.37); and the sensitivity analysis of

the displacement may be expressed as

(3.45)

(3.46)

(b) 2nd variance approach,

(3.47)

c. USC Seismic Load Effect. The mean and vanance of USC load effect can be

expressed as

mean,

(3.48)
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Here qE has the same meaning as FE in Equation (3.15).
ux

(a) 1st variance approach,

(3.49)

The derivation of Equation (3.49) is similar to Equation (3.38); and the sensitiv;ty analysis of

the displacement may be expressed as

= [K]":"( o((q(-)E) _ arK] {u ;})
or' or' Ltl II

(b) 2nd variance approach,

d. Combined Load Effect.

mean,

(a) 1st variance approach,

(3.50)

(3.51)

(3.52)

(3.53)

{-2 }V2 (-2} y2 {-2 }y2+ uD D + uL L + uE E

(b) 2nd variance approach,
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The derviations of Equations (3,54) and (3.55) are similar to Equations (3.33) and (3.34).

(3.55)

For displacement failure mode, substituting Equations (3.53), (3.54), (3.55) illto rquations

(2.6) or (2.15), then the probability of failure in Equat:ons (2.4) or (2.8) can be determined if the

statistics of allowable displacement are given,

2. Internal Force. The internal forces in a structrual member which may be axial forces

or bending moments are given by

where {F}m = the internal forces in a member; [S]m = a member stiffness matrix; [A]~

= transpose of a member's static matrix; (ul m = the corresponding external displaccrn'cnts in

a member.

The uncertainties of load effects due to dead, live, and earthquake load are

a. Dead Load Effect.

mean,

(a) 1st variance approach.

2 J{Folm J{Fol m . - - -2 2
o{FDl m = LL( )r( )iPr'lr'l Vr'l Vr·1rj 1rl·] + ({F ()l V0)

i 1j I arj I arj I 1 J 1 J

(3.57)

(3.58)

where i I and j I are random par.uneters related to structural analysis; and for which the

derivation may be obtained as
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In Equation (3.58) we have

= 8[SJrn [AJT {u } + [SJ [I\J"I" o{uO}rn
or- rn D rn rn rn or-I! I!

= a[sJm [AJT {u } + [sJ [AJT o{uD}rn
ar' m D rn m mar'

JI JI

(J.AO)

(3.61 )

(b) 2nd variance approach.

b. Live Load Effect.

mean,

(a) 1st variance approach,

2 o{FUm o{FUm _ _ -2 2
cr(F.1 = L:L( Or )r( Or )rPr'lT'IVr'IVr'lTilrJ'I+{FL}mVL

urn iIjl il jl 1 J 1 J

(362)

(3.63)

(3.64)

The derivation of Equation (3.64) is similar to Equation (3.58); and the sensitivity analysis of

internal force may be expressed as

a[SJrn [AJT (u} + [sJ [A]T o(uLJrn
Or. rn L m m mar'

d J1
(3.65)

(3.66)

(b) 2nd variance approach,

33



(3.67)

c. unc Load Effect.

mean,

(3.68)

(a) lst variance approach,

(3.69)

The derivation of Equation (3.69) is similar to Equation (3.58); and the sensitivity analysis of

internal force may be expressed as

a{l:ldrn

aril
= (3.70)

(b) 2nd variance approach,

d. Combined Load Effect.

(a) 1st variance approach,
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(3.74)

The derivation of Equation (3.74) is

o(fo}m o{ Flm _ _
cr~} = II( a )j=( )j=Pr'l r'l Vf'l Vr'l ril rJ'1P' m il j I fi I Ofj I 1 J I J

(3.75)

The sensitivity analysis of internal fOfee may be expressed as

i3{F}m = i3{Fol m + o(FI)m + o{FE}m

Ofj I Ofj I Ofj J Ofj I

(b) 2nd variance Jppfoach,

cr[F}m =cr[FO}m+ crfrL}m + crn:E}m

(3.76)

(3.77)

(3.7R)

For column failure modes sustituting Equations (3.73), (3.74), and (3.7R) which may be

the uncertainties of applied axial loads (P) or moments (M) into Equations (6.10), (6.12), (6.16),

(6.17), (6.21), (6.22), (6.25), and (6.26) yields the means and variances of interaction equations.

Substituting these statistics, the safety factors in Equations (2.6) or (2. I5), then the probabilities

of failure in Equations (2.4) or (2.8) can be detennined if the statistics of allowable values of

interaction equations are given.
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D. STRUCTURAL RESISTANCE

In Equations (2.6) and (2.15) they were shown that the uncertainties of structural

resistance are required in calculating the safety factor. The stt:cl member resistances considt:red

are

I. Yield \1oment. The yield moment, My, IS Fy Sc where Fy

material; Sc = elastic section modulus.

The mean and variance of yield moment are

mean,

vanance,

yield strt:ngth of

(3.79)

(l.gO)

where VM is the coefficit:nt of variation of yield moment that equals 0.12 and is assumed to
I y

be a sum of square of the prediction error, clastic section modulus, and yield strength of a sted

member (The coefficients of variation of Fy. Sc' and the predicted behavior error are assumed

to be 0.1, 0.04, and 0.05, respectively 76 ); i.e.

VM = Ao.I)2 + (0.04)2 + (0.05)2 = 0.12
Y

(3.81 )

2. Euler Duckling Load. Por a long column the capacity of the column is governed by

the Euler bucking load and may be expressed as

(.U~2)

where Em = elastic modulus; I = moment of inertia; KL = effective length. The mean and

variance of PE are
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mean,

vanance,

2- ­
It EmI

(KL)2
(3.83)

(3.84)

where VF is tl1\: coefficient of variation' of rE' which equals to O.J amI involves the

uncertainties of prediction, clastic modulus, moment of inertia, and em:ctive length factor. 76

J. Axial Load Capacity. The axial load capacity, Pcr' is

(J.85)

or

(3.86)

In which C~ = 2lt2Em/Py

Ac = cross sectional area.

PF = Euler buckling load; rg = the radius of gyration;

The mean and variance of Pcr are

mean,

(3.87)

or

(3J\8)

vanance,
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2 -2
= Vp Per

cr

In Equations (3.R7) and (J.R9),

(J.89)

(3.90)

where V P may vary from 0.14 to 0.3 I and are considered to be the uncertainties of steel
cr

member area and elastic modulus. 76

4. Yield Load. The yield load is given by

(3.91)

The m~an and vananl:e of Py arc

m~an.

(3.92)

vanance,

(3.9J)

where VP is the coefficient of variation of Py , which is assumed to be 0.14 and incluJcs the
y

- uncertainties of yield strength and a' steel member area. 76

5. Critical \J1omenl. The critical moment, i.~., the moment at which lateral torsional

buckling occurs is
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where Ky and Kz are effective length factors which account for the effects of end restraints to

lateral deflection and twist, respectively; Cb is a coefficient which depends on the variation in

moment along the span; the shear modulus, CIs' is assumed to be O.JH5 I':m ; Iy is the

moment of inertia of weak axis; J = the polar moment of inertia; and Cw IS a warping

torsional coefficient.

The mean and variance of Mcr are

mean,

\1cr

vanance,

2 -2= VM Mer
cr

(J.9S)

(J.96)

where coefficient of variation V r- A may be from 0.15 to 0.20 and contains the uncertainties of
:Vlcr

moment of inertia, elastic modulus, and shear modulus. 76
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IV. NONDETERMINISTIC SEISMIC RESPONSE SPECTRUM ANALYSIS.

1\. LOADING

The earthquake load in this chapter is considered as a dynamic load which vanes with

time. This load will be the ground acceleration at the support of a structure which may be

assumed along the directions of coordinate axes either in horizontal or/and vertical directions.

The structural responses subjected to the ground acceleration may be derived from the

time-history or response spectrum method. The use of time-history to evaluate the statistics of

response requires repeated analysis for many earthquake records. This will cause an excessive

amount of computation, and thus will not be applicable for the analysis. On the other hand, the

response spectrum method is a simple scheme to calculate the dynamic load effects such as

displacements or internal forces from a seismic response spectrum and a peak ground

acceleration. Although many response spectra have been proposed in the past, most of them are

considered only in horizontal ground acceleration and deterministic spectral responses valm:s.

They .are, however, not suiiable for the purpose of reliability design. Therefore, Newmark's

:--.rondeterministic Seismic Responce Spectrum (NNSRS), 65 which uses the statistical technique

to estimate the horizontal or vertical ground spectrum from· actual earthquake accelerograrns, is

adopted for the study. The seismic response spectrum suggested by Newmark was based on 14

earthquakes which had 28 horizontal components and 14 vertical components. By utilizing these

earthquake acceleration records, the statistics of spectral displacements, velocities, and

accelerations for maximum ground acceleration were obtained and used to estimate the

structural displacements and internal forces.

40



B. DYNAMIC EQUILIBRIUM FORMULATION EARTJ IQlJAKL

EXCITATIONS.

The equation of motion for multi-degree structural system can be formulated as foUows:

[m]{ii} + [C]{u} + [K]{u} = {P} (4.1)

where em] = mass matrix; [C] = damping matrix; [K] = stiffness matrix; (P) =

external force matrix; {u} ,{u} , (ii} = structural displacement, velocity, acceleration,

respectively.

If the applied external forces are the ground accelerations, Equation (4.1) becomes

(4.2)

where (a} = the ground acceleration matrix which may include hOrUontal oriand vertical

ground accelations; {uE}' (uE}. {uE} = structural displacements, vclocities, accelerations Jue to

earthquake excitations, respectively.

The structural displacements may be expressed as a sum of a linear combination of the

undamped free vibration mode shapes and the spectral displacements which is

(4.3)

where the nth mode shape matrix {tI>}n is used to transform from a generalized coordinate

Yn to a geometric coordinate uE at nth mode, and the gencralized coordinate Yn which is

the modal magnitude is called nonna! coordinate.

Since the mode shapes have orthogonal properties,

(4.4)

Equation (4.2) can be transformed into the single degree cquation of motion
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where

Uln = structural natural frequency for nth mode

(n = critical damping ratio coefficient for nth mode.

If the orthonormal mode in which Mn equals one is used, Equation (4.5) is given by

where r n = participation factor for nth mode = - {<D}J[m]{ I}

(4.5)

(4.6)

Whcn the sccond-onJer ( P . ~ ) dTcct is considcrcd. thc stiJfm:ss matrix. in Equation (4.2)

becomes

[K] = [K]S-[K]G

where [K]S = elastic stiffness matrix; [K]G

C. STRUCTURAL RESPONSE

geometric stiffness matrix.

(4.7)

The desired structural responses are displacements and internal forces. lbe estimation of

uncertainties of these quantities can be obtained as follows:

I. Displacement.

a. Earthquake Load Effect. The normal coordinate at nth mode. Yn . can be solved by

the Duhamal integral

42
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where wOn = (on;1- (~ ; t = time; T = a time difference.

Par practical usage the commonly used spectral displacement, Ycon ' which IS the

maximum value of Fquation (4)\) has heen chosen, that is

Y<on (4.9)

In order to fInd the statistics of displacement, the mean, variance, and codficicnt of

variation of spectral displacement for each mode, Ywn' are needed and can be derived for

different frequency ranges which are shown in Figure J.

(i) in the constant displacement range: wn I 2n < [w 1

(4.!I!)

uy(un

Or·1
(4.11)

= -2 V2 -2 y2 4-2 y2 -2 y2
Ywn ad + Ywn ad/v2 + Ywn via + Ywn a
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(4.13)

where ad' av ,aa = the amplification factors of spectral displacement, velocity, acceleration,

respectively; d,v,a = the maximum ground displacement, velocity, acceleration, respectively; the

bar over the parameters represents the mean of these parameters; the uppercase Y represents the

coefficient of variation for corresponding parameters; the cr is the standard Jeviatiull ~yrnbol.

The statistics of ad' a v' aa', vIa, and ad/v 2 can be found in Reference 65.

(ii) in the constant velocity range: fWI < (Dn 121t < fw2;

y
-l0n

(-11-1 )

8[_a_V (~)aJ
wn a

= ---'7---
8rj

= -2 y2 -2 y2 -2 y2 -2 y2
YalO cr v + Yam vIa + Ywn wn + Ywn a

(4.15)

(-1.16)

y2
Y(1)1\

2 2 2 2
yrz + Yv/a + Ya + Yrov II

(417)

where YCJ) = the coefficient of variation of nth mode frequency.
n

(iii) in the constant acceleration range: fW2 < (Dn I 21t < fW3

Y(on = (4.1 g)
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= -2 y2 + 4 -2 y2 + -2 y2Ywn ua Ycun wn Ywn a

(i\') i.n the tra.nsition range: feu3 < (LIn / 21t < fw4

(4.19)

(4.20)

(4.21)

Ycun = (4.22)

(4.23)

(4.24)

y2
Ywn (4.25)

(v) in the constant ground acceleration range: fw4 < (On / 21t
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Ycun = (4.26)

=

-2 y2 -2 y2
Ywn a + Ywn (Un

(4.27)

(4.28)

") ").,
V- = yo.. +4V~Ycun a wn

(4.2')

Since displacements due to earthquake excitations can be assumed to be the sum of square

of displacement for each mode, the statistics of displacements arc determined as follows.

mean,

(a) 1st variance approach,

. J(uE} a{uE) __
= LL:(--h:( h:rr·r· Yr' Yr· ri r]'.. Jr' ar' I] 1 J

I ] I 1

where

(4.30)

(4..\ I)

J(<I»n/ari ,J(<I>}nIDrj = the derivatives of mode shape matrices with respect 10 ilh and jth

random parameters; arn/Jri . arn/Jrj = the derivatives of participation factors with respect to

ith and jth random parameters; iJywn/Jri ,JY(~.>nlarj = the derivatives of ~pcctra1 displacements

with respect to ith and jth random parameters.
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is assumed to be a linear combination of mode shapes, i.e.
If 8{<t>}n

ari

Lamk (<t>}k' the determination of the scalar multiplier, <lnik ' can be derived by two
k

conditions. 22

(1) n *" k case

Differentiating the undamped vibration equation with repect to random paralT1l:ters,

([ KJ - w~[mJ) {<t>}n = {O}, it yields

(OJ (4.32)

o{<t>}n
Substituting the linear combination of the mode shapes for into the above equation and

ori

prcmultiplying by f<t>}l for k *" n yields

Because of mode shape orthogonal properties, Equation (4.33) becomes
')

{<t>}T( arK] _ oWn Em] _ co2 o[m] ){<t>}
K or' or' nor- n

1 1 1

(4.33)

If the mode shapes are orthononnal modes (i.e., {ct>}l[m] (<t>}k = I ), the term

{<t>}l[K] {<[>1k yields (l)~. Then the coefficients <lnik can be found from Equation (4.34) as

amk= (4.35)

(2) n = k case
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[n Equation (4.35) amk approaches an infmitive value as wk equals to wn' As a result, it

can not be used in n = k condition. For the orthononnal modes

Differentiating Equation (4.36) with respect to random paramctcrs yields

(4.36)

f) (4.17)

o(<I>}n
~ow substituting into Equation (4.37) solves the cocfficient Clnin which is given by

ori

arun=
_ f<I>}T oem] {<I>}

\ n Or" n
1

2
(4.31\)

The derivative of the natural frequency with respect to design variable.

be derived as follows.

. can :Usa

Differentiating the equation {<I>}J ([K] - w~[m]) (<I>}n 0, we have

(4.39)

By observing the above equation in which the fIrst and third tcnns are zero, Equation (4.34)

becomes

(4.40)

Dr
'lbc derivative of participation factor with respect to design variable, _n_. IS

ori

(4.41 )
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(b) 2nd variance approach,

where

I [ 2 2 ]= uL~ {<1>J n l r nl Yom I ;

and 0.15 is assumed to be the dynamic analysis error. 50

(4.42)

(4.4.~)

(4.44)

b. Combined Load Effect. Nter the uncertainties of dead, live, and earthquake load

effect are individually obtained from previous knowlt:dge, the uncertainties of combination of

these load effects may be given as

mean,

(a) 1st variance approach,

2 a{u} a{u} __
<1{u} = LL(--)r(--)fPr'r,Vr,Vr·rir)'.. ar' ar' 1) 1 J

1 J 1 )

where

(b) 2nd variance approach,

50

(4.45)

(4.46)

(4.47)



where 0.1 is the static analysis error.

(4.4H)

For displacement failure mode, substituting Equations (4.45), (4.46), and (4.48) into

Equations (2.6) or (2.15), then the probabilities of failure in Equations (2.4) or (2.8) can be

determined if the statistics of allowable displacement arc given.

2. Internal Forces.

a. Earthquake Load Effect. The internal force fomulations for the dead and live load are

the same as the previous chapter. However, the dynamic seismic load effect considered here has

a little difference from that. That is

mean,

where [S]m' [A]k are the same notations used in Equation (3.56); {uE)mn

displacements for nth mode corresponding to the mth member.

(a) lst variance approach,

(4.49)

the seismic

(4.50)

= (F~)m [~([S]m[A]~{UE}mn)

(a[S]m [A]T {u} + [S] [A]T a(uE}mn)]
ar' m E mn m mar'

1 1

51
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= (F~)m [~([S]m[A];h{UE}mn)

(o[S]m [A]T {u} + [S] [A]T u{uE}mn )
or. m E mn m m or.

1 L
(4.52)

(b) 2nd variance approach,

2 -2
+(0.15) {FErn} (4.5:1)

where

= 1 [L([S] [A]T {u} )([S] [A]T o{uEJmn)l
(FE)m n m m E mn . m m uYwn l '

(4.54)

(4.55)

and 0.15 is assumed to be the dynamic analysis error.

b. Combined Load Effect. The internal forces due to dead, live, and earthquake load are

given as a combination in the foUowing.

mean,

(a) 1st variance approach,

where
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8{F}m

ar·t
(4.58)

(4.59)

(b) 2nd variance approach,

where 0.1 .is assumed to be the static analysis error.

(4.60)

For column failure modes, sustituting Equations (4.56), (4.57), and (4.60), which may be

the uncertainties of applied altialloads (P) or moments (M) into Equations (6.10), (6.12), (6.16),

(6.17), (6.21), (6.22), (6.25), and (6.26) yields the means and variances of interaction equations.

Substituting these statistics, the safety factors in Equations (2.6) or (2.15), and then the

probabilities of failure in Equations (2.4) or (2.8) can be determined if the statistics of allowable

values of interaction equations are given.

D. STRUCTURAL RESISTANCE

The structural resistances are (I) yield moment, (2) Euler huckling load, (1) axial load

capacity of columns. (4) yield load, and (5) critical moment. The means and variances of these

resistances which are the same notations in Section III D are summarized as follows.

1. Yield \1oment.

mean,

vanance,
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2. Euler Buckling Load.

mean,

vanance,

3. Axial Load Capacity.

mean,

or

vanance,

crp = (VP )2p2
cr cr cr

where Vp varies from 0.14 to 0.3 I.
cr

4. Yield Load,

mean,

variance,

cr~y = (0.14)2 P~

5. Critical Moment.

mean,

for KI,frg > Cc

\olcr

vanance,

cr 2 . = (V '\of )2 \12:vlcr ,Vl cr cr

where V~" varies from 0.15 to 0.2.
:Vl cr
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V. STRUCTURAL SYSTEM TO STATIONARY SEISMIC RANDOM PROCESSES.

A. LOADING

In addition to static equivalent load and dynamic seismic load, earthquake can also be

modeled as stationary seismic random process. In this chapter a stationary seismic random

process is introduced to analyze earthquake's phenominon. A stationary seismic process is a

process whose statistical properties do not change with time and can be characterized by three

classes of noise process: white noise, filter white noise, and modified white noise. Thcse three

random processes can. be used to model phenomina of earthquake indul:cd by ground motion

and are described as follows :

I. White Noise Processes. A stationary process with a constant power spectral density for

all frequencies, G(<o) = GO' is known as a white noise process whieh is described in Appendix

E. The validity of using white noise approximations to simulate strong-motion earthquakes was

examined by Bycroft. 18 It is shown in his study that a white noise process representation yields

velocity spectra that compares favorably with the average velocity spectra of Housner 34 for

actual earthquakes. These results, therefore, justified applicability of white noise processes to

model earthquake's motions.

2. Filter White Noise Processes. According to the existing strong motion accelcrograrns,

the considered frequency spectra are not constant even over a limited band but somewhat

oscillatory in character, and may have peaks at one or several frequencies and damp out with

increasing frequencies. Thus a stationary filter white noise process characterized hy its transfer

function could be more suitable to actual ground accelerograms. lIenee, a second order linear

damped oscillator suggested by Kanai 56 and Tajimi 86 will be an appropriate tilter which is

specified by the ftIter fundamental frequency, wg , and damping ralio, 'g' so that the resulting
c

ft1tered motion has a statistically correct frequency constant. The filter which is used to simulate

earthquake's motions has the form:
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G(Ul) = (5.1 )

where GO is the constant power spectral density value; (,) = frequency.

In general, the parameters Ulg and 'g are affected by the ground layer rigidity, the

epicentral distance, and the earthquake magnitude. In Reference 46, it gave three sets values of

Ulg and 'g to represent three types of soil conditions as

Soil Type

8n

0.6

II

5n

0.6

III

2.4n

0.85

I . Rock or stiff soil conditions

II - Deep cohesionJess soils

III - Soft to medium clays and sands

3. Modified White 7'Joise Processes. 1\ modificd white nOIse procc~s has a constant

spectrum which is obtained by substituting structural natural frequency, Uln , into the

Kanai-Tajimi mter. As a result, the constant spectrum is obtained to be

(5.2)

In Reference 53, Housner and Jennings proposed possible values of

Ulg = 15.6 radf sec "g = 0.64, and GO = 1.0 in2{ sec3 for fum gound condition, based on the

shape of an average pseudo-velocity response spectrum for eight accelerograms (two component

each for four earthquakes).
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B. STRUCTURAL RESPONSE

When a structural system is subjected to dead, live, and stationary seismic load, the

randomness of structural responses is primarily due to the randomness of stationary seismic

processes. Therefore the effect due to a stationary seismic load which is a zero mean Gaussian

process is considered here. The response for a single degree system is illustrated first and then is

extended to a multi-degree system.

1. Single Degree Freedom System. Let s(t) represent the displacement response of a

single degree, viscously damped, linear oscillator to a stationary earthquake excitation aCt); in

random vibration theory, the random function s(t) may be represented by a continuous

superposition of sinusoids in a Fourier integral form as

(5.3)

where Gs(w) is the response spectrum which has the following relationship to the cxcitation

spectrum Ga(w)

(5.4)

In Equation (5.4), H(w) = the transfer function of a structural system -I

(w~ - w2 +2i(wnw) ; wn = the structural natural frequency for nth mode; i = 1=1.

lbe transfer function lI(w) is derived as following. The strudural design system which is

similar to Equation (4.6) can be formulated as

5(t) + Uwns(t) + w~s(t) = - a(t)

Let a(t) =exp(iwt) and s(t) = 11(00) exp(ioot), Equation (5.5) becomes

then H( 00) can be determined from Equation (5.6) as given in Equation (SA).
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Similar to Equation (5.3), an excitation process can be transformed into the excitation

spectrum; through the transfer function the response spectrum can be determined from Fquation

(5.4); then the response spectrum can be transformed into the response process. The relationship

between ex.citation and response is shown in Figure 4.

If the ground acceleration is a Gaussian process with mean-zero, the response process of a

linear deterministic structural system to this excitation is also a Gaussian process with mean

zero. Since a Gaussian process is completely specified by its first two order statistil:s li.e., its

mean and variance), the statistical quantities of interest in structural design arc the moments of

responses, A.sk' which the cases with k =0 and k =2 have the physical meanings of mean square

of response and of time derivative of responsc, and are defmed by

A.sk k = 0,1,2 (5.7)

where A.sk = the kth moments of the power spectral density function of s(t) about the

frequency origin; and Gss(w) is the spectral density of the mean square of s(t) whil:h is

determined to be

Gss(w) = -21 foo RSS(T) ex.p( -iwT)dT
1t -00

_I_foo Raa(T + 0 I - OJ) exp( -iw(T + aI. - O~\)dT
21t -00 - L.!

(5.R)

in which h(8 1), h(02) are unit impulse rcsponsc functions; Gss(w) = spectral density function of

s(t); RSS(T) = autocorrelation of s(t); Gaa(w) = spectral density function of a(t); Raa(T) =

autocorrelation of a(t); for k = 0 and 2, the moments, A.sk' have physical mcanings as:
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f-igure 4. The Relationship Between Excitation Process And Response Proce:;s.
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(i) k = 0,

The autocorrelation of the response s(t) is

(59)

E[s(t)s(t + 1')] (5. 10)

where l' = the time difference between two processes.

If l' is assumed to be a zero value, the above equation yields the variance

(5.11)

Thus the zeroth moment of response,' ~s()' is the mean squan: value of response set).

(ii) k = 2.

00 2
= J Gss(w)w dw

-00

Since the flfst derivative of Rss(1') with respect to time difference gives

(5.12)

(S.U)

taking the second derivative of Rss(1') with respect to l' yields

From Equation (5.10), Equations (5.13) and (5.14) become

00

J iwGss(w) exp(iw1')dw
-00

and
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(5.16)

If T 0,

(5.17)

Therefore the 2nd moment of response, A. s2 ' is the mean square value of time derivative of the

response.

After the relationship between response and earthquake excitation is determined, the

displacements for a single degree system can be found as follows for three types of random

seismic input spectra which are white noise spectrum, ruter white noise spectrum, and modified

white noise spectrum.

a. White Noise Processes. For a white nOIse seismic spectrum, the spectral density

function G(w) is a constsnt GO' Then the spectral moments at nth mode are obtained as 60

A.sO = foo Gss(w)dw = foo IH(w)1 2G aa(w)dw = Gofoo IH(co)1 2dw
-00 -00 -00

Substituting H(w) which is seen in Equation (5.4) into the above equation yields

(5.18)

1- 21n tan-'((1M)

M
(5.19)
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(5.20)

b. filter White Noise Processes.

In Reference 60 Kiureghian has derived the formulae for displacement moments for a

ftlter white noise process. The moments of single degree displacements, ).sO. )'s I. }'s2 can be

determined and used to fmd displacements and internal forces.

(5.21 )

(5.22)

(5.23)

The integration results of lsD- ls I_ ls2 arc given in Appendix F.

c. Modified White Noise Processes. Similar to white noise processes case, the moments

of s(t) are obtained by a constant Kanai·Tajimi spectrum with the structural natural frequency.

(5.24)
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ltGo- (--)
22(cun

I - lIlt tan-I((/D)

D
(5.25)

(5.2(,)

2. Multidegree Structural System. Based on normal mode method, the displacements and

internal forces of a multidcgrce system can be obtained by the superposition of equations for a

single Jegree system as foUows:

a. Displacement. Let u(t) be the displacement matrix of multidegree system, then

(5.27)

and the spectrum of u(t), Gu(cu), is expressed as

Gu(cu) = -21 foo Ru(O)dT = 2:{cI»}nrn-I-foo Rs(O)dT
It -00 n 21t -00

(5.28)

where {cI»}n and r n are the mode shape and the participation factor; S(I) = the Jisplaccmcllt
n

for a single degree system. The system transfer function {lIu(w)} and the spt:ctral density of

displscement {Guu(w)}88 ategiv~n by

(5.29)

and
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(5.30)

where Hn(w) = the transfer function for the nth mode; Gaa(w) = the spectral density of mean

square earthquake excitation; H~ = the complex conjugate of Hn(w). For lightly damped

systems whose model frequencies are well separated, the terms of all cross-spcctral contributions

over Guu(w) may be negligible. The moments of displacements are detemllned as

00 2 2
).ul = J-00wGuu(w)dw = I{<I> lnrn).sl

n

).u2
00 2 2 2= J w Guu(w)dw = L(<I> lnr n).s2
-00 n

(5..12)

(5.33)

For displacement failure mode, substituting Equations (5.3 I) and (5.33) into Equation

(2.28), and then the probability of failure in Equation (2.30) can be determined if detcrministic

allowable displacement is given.

b. Internal Force. Let (F}m be the forces matrix for mth member, these forces can be

detennined from the displacements by {F}m = [S]m[A]:h {u}m = [SAT]m (ulm .

where [S]rn' [A]~. {u}m are the same notations 10 Chapter III, and

[SAT]m = [S]m[A]~. Since matrices [S]m and [A]~ are the deterministic values, the

moments of internal forces can be derived from the above relation by

(5.34)

(5.35)
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I

(5.JA)

For column failure modes substituting Equations (5.34) and (5.36) which may he the

applied axial load (P) or moment (M) into Equations (6.28), (0.30), (6..12), md (6.34), tlll:Y

yield the values of Os and Os for interaction cquations. Substituting the standard deviations of s

and s into Equation (2.28), then the probabilitics of can be determined from Fquation (2.30) if

the deterministic allowable values of interaction equations are known.

C. THE STATISTICS OF PEAK RESPONSES

[f the uncertainties of peak responses for random loads can be found, the probability of

failure for a first-order second moment expression can still be chosen for critcrion. Two

expressions to resprcsent the statistics of peak responses are givcn as follows. Thcse statistics

can be used to calculate the mcans md variances of re~pomes in the safety factor cxpres~ion.

Therefore, the probability of failure can be detcmUned.

I. Davenport's Expression. Davenport 39 derived thc mean and standard deviation of

the maximum absolutc value of a stationary 7.cro-mean Gaussian process s(t) over duration

based on results obtained by Cartwright and Longuet- Higgins and Ricc. 19,75

mean,

standard devi.ation,

(5.37)

°Smax
= [s2 -s2 ] 1/2

max - max (5 ..1!:\)

[n Reference 39, the values of Psmax(smax) dsmax and smax were givcn by
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and

ln~ I In ~
~J===-+"'"2 /2lnvTO

(5.40)

where ~ = vTOexp( -52/2),'1'0 = a. duration, and v = ()'s2/,l.sO)/n. ,l.sO IS gIven In I':quations

(5.31) and (5.34) for displacements and internal forces and ,l.s2 is given in Equations (5.33) and

(5.36) for displacements and internal forces. Thus, the mean square value of smax is found to

be

(5.41 )

By substituting Equations (5.39), (5.40), and (5.41) into Equations (5.37) and (5.JS). thc=

uncertainties become

= (j(2lnvTO) + 0.5772 )os
/2 In vTO

= [( n)( I )]0s
/6 /2 In vTO

(5.42)

(5.43)

where as is given in Equations (5.31) or (5.34) depending on the analysis of displacements or

internal forces.

For displacement failure mode, substituting Equations (5.31) and (5.33) into Equations

(5.42) and (5.43) yields the values of mean and standard deviation of smax; thcn, the safcty

factors in Equations (2.6) or (2.15) or probabilities of failure in Equations (2.4) or (2.8) can bc

determined if the deterministic allowable displacements are given.

foor column failure moues, substituting Fquations (5.34) and (5.36) which may he applied

axial loads (P) or applied moments (M) into Equations (5.42) and (5.43) yields the values of

mean and standard deviation of smax; then substituting these values into Equations (6.27)

through (6.34), the safety factors in Fquations (2.6) or (2.15) or probabilities of failure ill
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Equations (2.4) or (2.8) can be detennined if the detenninistic allowable values of interadion

equations are known.

2. Kiureghian's Expression. By modifying Davenport's expression Kiureghian 60 derived

the following empirical expressions for the uncertainties of peak reponses as follows.

mean,

(5.44)

standard deviation,

(5.45)

where

(5.40)

V e = (1.63qO.45 -O.38)v, q < 0.69 (5,47)

(S.4X)

For displacement failure mode, substituting Equations (5.31), (5.32), and (5.33) into

Equations (5.45) and (5.46) yields the values of mean and standard deviation of smax; then. the

safety factors in Equations (2.6) or (2.15) or probabilities of failure in F.quations (2.4) or (2.X)

can he detennined if the detenninistic allowahle displacements arc given.

For column failure modes, substituting Equations (5.34), (5.35), and (5.36) which may be

applied axial load (P) or applied moment (M) into Equations (5.44), (5.45) and (5.46) yields the

values of mean and standard deviation of smax; then suhstituting these values into I':quations

(6.27) through (6.34), the safety factors in Equations (2.6) or (2.15) or probabilities of failure in

Equations (2.4) or (2.8) can be detennined if the detenninistic allowable values of interadion

equations are given.
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D. STRUCTURAL RESISTANCE

Since the structural system considered here is deterministic, the structural resistances are all

detenninistic values as well. The structural resistances which are the same notations in Section

III0 are

I. Yield Moment.

2. Euler Buckling Load.

J. Axial Load Capacity.

or

4. Yield Load.

5. Critical Moment.
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VI. OPTIMIZATION FORMULATIONS AND ALGORITHMS

A. OPTIMIZATION H)RMlJLATIONS

In engineering optimum design, the goal is to produce a best solution which provides not

only a safety but also a best objective value. An optimum strurctural problem can be

fonnulated as:

minimize objecti....e function

subject to constraints

I. Objective Function. The objective function of a structural design problem may be

weight or cost function which are

a. Weight. Weight (W) IS the constituents of structural member weights aml can he

ex.pressed as

w = ~rd/if\ (6.1)
1

where rdi. til t\ = the mass density, length, and area of a member, respectively.

b. Cost. Total estimated structural cost ( C
T

) which is shown in Figure 5 consists of

two parts: the initial construction cost ( CI ) and the ex.pected future failure loss ( Lf Prr ); i.e.,

(6.2)

where L
f

= expected failure cost; PIT = system failure probability.

Initial construction cost C
I

comprises of the structural material cost and the miscellaneous

cost. The structural material cost is the cost of structural members. The miscdlam:ous cost may

be the product of total unit floor price shown in Table I 43 and total area. The expected future

loss has two components: the expected failure cost ( IT) and the system probability of failure (

PIT ).
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Table I. UNIT FLOOR COST FOR OfrICE BUILDIi"G

Avcragc $/Sf

Foundation 2.27

Exterior walls 5.96

Partitions 3.07

Interior wall fmishcs 1.36

Floor fmishes 1.22

Ceilings 0.99

Specialties 0.38

Conveying systems 0.56

. Plumbing 2.13

Fire protection 0.27

HVAC 6.20

Electrical 3.99

General conditions 2.20

Equipment 0.69

Site work 2.00

total 33.29
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The expected failure cost ( L
f

) is the total loss incurred in a structural failure state. This

includes an additional replacement cost, damage to property, liabilities due to death and injury,

and business intenuption. They are estimated based on the following assumptions: The

additional replacement cost is taken to be two times of initial structural cost. 77 The loss due to

property damage in which no loss of expensive equipments is assumed as 50% of the initial

construction cost. 52 Liabilities due to death and injury include only the people present in the

building failure. Loss due to death is calculated based on an average death age of 30 and i~ the

sum of the person's salary until he reaches the retirement age of 65 years. Thus, this loss is ,15

times the avcrage annual net income. 52 The loss due to serious injuries is a~sumed to be

$350,000 per person. 77 The loss due to minor injury is $5,000 per person. Business

intenuption is estimated as the income of the employees during a 4-year reconstruction period.

The loss due to legal serv:ice may be assumed to be 15 % of the failure loss.85

The estimation of a system failure probability is approximated by Equation (2.36) which is

expressed as

where nf = the number of failure modes.

2. Constraints. In a structural design one requires the probabilities of desired response

failures less than the the allowable probabilities of failures or the safety factors for those failures

greater than the allowable values. These requirements become the constraints in optimum

structural design problems. The desired response failures may be displacment failures, column

failures, and beam failures which are described as follows. In addition to the above individual

failure mode constraints, the system failure probability which is less than the allowable

probability value can also be added to the constraints.

In the following the safety factor with normal distribution and probability of failure, which

are Equations (2.6) and (2.4), respectively, arc used to illustrate the formulations for various

failure modes.
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a. displacement failure. A structural failure due to an excessive displacement may be

expresse as Pu or Pj'{Pu) which is the safety factor or probability of failure. The safety factor

has the form

f3u = (6.4)

where li, cr3 = the mean and variance of adisplacement; ua'cr3a
allowable displacement.

Thus, the probability of failure is

the mean amI variance of

(6.5)

b. beam failure. Beam may fail in a number of different modes. However it is assumed

that the beam fails when the applied moment exceeds the l1exural yield capacity of beam, I.e.,

PM or Pj'{PM)' The safety factor is

13M = (n.n)

/

where M, cr~x = the computed mean and variance of moment; My, cr\.t = the mean and
y

variance of allowable yielding moment.

c. column failure. Four cases may occur in column failure. The representations of them

are

\) failure by yielding at the ends, f \

The safety factor and probability of failure m this case may be expressed as fir, or

P1{Pf\)' Thus
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Pf1
1.0 - f1

=

/Of1

Pf, = 1 - PN(Pf
1
)

whl~rc

f1 = ....f....+ M
Py My

where P = applied axial load; M

axial load;:'vI = yield moment.y

= applied moment at one end of the column; P
y

(6.7)

(6.9)

yield

To detennine the safety factor and probability of failure the mean and variance of f I arc

needed. These uncertainties can be detennined from Equations (2.16) and (2.18). They arc

mean,

(6.10)

, variance,

0t = (OflltV~p2 + (~ltVp p2 + (~>tV~M2
1 ap apy y y DM 1

[i 222M 2 2 2 [i M
= (-=-) (Vp+V p )+(-=-) (VM+VM )+2(") )(-=-)pp ~ VI' VMy (6.12)

Py y My y 1y My Y Y Y
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where P, Py•Vp • Vp = the means and coefficients of variation of P and P ; PI) \1 = the
y y y' y

correlation coefficient of P and M ; The value of Pp 1\1 is assumed to be 0.70 in the study.
y y y' y

2) instability in the plane of bending, f2

The safety factor and probability of failure may be expressed as Pft P~{Jfi Thus

(6.1 J)

. (6.14)

where

(6.15)

where P = critical axial load; Pc = Euler buckling load.
cr r,

'me mean and variance of f2 which can be determined from I\quations (2.16) amI (2.1~)

are

mean,

(6.16)

vanance,

+ 2( P )( ;vi )pp M Vp VMP (I-P/P)M cr" Y cr l ycr Ely

75



(0.17)

wht:rt: Per. Pr,. Vl'er' VI'E = tht: mt:ans and cocllieicnls of variation of Per anu PI"; Pl'crl'l<.'

PPcr:\1y' PPEM
y

= the correlation coefficients of Pcr and PE ' Per and My , :\1y and PI~ .

3) lateral torsional buckling f3

The safety factor and probability of failure may be expressed as Pf
3

or Pr(Pf
3
)' Thus

Pf3

1.0 - £3
=

jor3
Pf

3
= 1- PN(Pf

3
)

(6. IR)

(0.19)

and

(6.20)

M = critical moment.
cr

The mean and variance of f3 which can be dctermincd from Equations (2,16) and (2,18)

are

mean,

(6.21)

vanance,
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where Mer' VM = the mean and coefficicnt of variation of :vf . ; PI) Pr'
, cr cr cr I~

.,., the corrclation codlicients of P and P . ,P aud.\1 ~ and P ..
cr I" cr cr' cr J"

4) bucking about the weak axis, f4

(6.22)

The safcty factor and probability of failure may be expressed as Pf
4

and Pr(Pfi Thus

Pf4
1.0 - f4

=

P:f4
where

f4
p

=
Pcry

where Per = the critical axial load capacity at weak axis.y

(6.23)

(fi.24)

The mean and variance of f4 which can be dctcnnined from Equations (2,16) and (2.18)

are

mean,

variance,

where Pcry' VP = the mean and coefficient of variation of Pcry'
cry
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In the random load cases, the structural resistances are deterministic. Thus the

uncertainties of interaction equations for column members are only due to the uncertaillties of

structural responses which are

mean,

(6.27)

vanance,

(6.2X)

mean,

(6.29)

vanance,

(6.3U)

mean.

(6.3 I)

variance,

o

(6.32)
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mean,

variance,

p
Pcry

(6.33)

((1.34)

where P ,M ,P ,P
E

, M ,Pcr are detenninistic values; of?, and o~ are the variance of
y y cr cr y

applied axial forces and moments.

After the objective function and constraints are decided, the next stcp is to use an

optimization algorithm to solve the fonnulated problem. Thc optimization algorithm may be

classified into two classes: mathematical programing method and optimality criterion method.

B. PENALTY FUNCTION METHOD

The penalty function method is one of the mathematical programming techniques which is

used to search the best moving route of design variables and to reduce the objective functional

value untill no objective functional value can furthcr be minimized; the procedure is then

terminated where an optimum solution is obtained. In this study, interior penalty function

method is used.

Since objective function or constraints may be nonlinear, an optimum structural design

becomes a nonlinear programming problem. There are many search techniques used in the

nonlinear programming; among them penalty function is a procedure for approximating

constrained optimization fonnulation by scquently unconstrained problem. The approximation

is accomplislu:J by aJJing to the objective function a lenn that prescrihes a high pellally vallie

for violation of constraints. Associated with this method is a penalty parameter, rp, whidl

determines the severity of the penalty and, consequently, the degree to which the unconstrained
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formulation approximates the original constrained problem. 1\s rp approaches zero, the

approximation increasingly approaches to a solution which is closer to the actual solution.

The method considered leads the intermediate solution during the search to lying In a

feasible region and converging to the optimal solution from the interior of acceptable domain.

The advantage is that one may stop the search at any time and ends up with a feasihle and

suboptimal but less critical design. 1\ drawback is that the initial point should start in the

feasihle rebrion which may be difficult to determine.

The formulation of the method can be defined as

k k k
= O(X ) - rp~l/gi

J

(I'd 5)

where Pp(Xk, r~) = penalty function; O(Xk) = objective function; Xk = design variables;

r~ = a penalty value; gj = jth constraint; k = the number of completed stages I()f the

subsequent change of renalty values r~.

At an interior point, the sum of the inversing constraints in penalty term is negative, and a

positive r~ will result in a positive penalty term to be added to objective fum:tion. As :1

boundary of the feasible region is reached, some constraints will approach zero and the inverse

of constraints will approach infmity. By successively reducing the parameter r~, the optimal

solution for the constrained problem will be found.

The process for fmding a solution is as follows:

(I) The initial design variables XO arc assumed to be in a feasible region and the penalty

value r~ is chosen; then the unconstrained optimization algorithm is used to fUld the minimum

solution of penalty function Pp(XO, r~).

(2) Reducing the r~ by using the rule r~+ I = CrI~' where Cr < I, and finding the

minimum of Pp(Xk+ I, r~+ I),
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(3) Check whether convergence criterion IS satisfied, if not, repeat step (2); if yes, an

optimal solution is obtained.

In order to solve the penalty function the unconstrained optimization algorithm is needed.

An algorithm used in this study is based on the Powell's method with Goggin one-dimensional

search technique which is described in Appendix H.

C. OPTIMALITY CRITERION METHOD

Optimality criterion method is an indirect method which utilizes iterativl: rr()(;e~~l:S to find

the optimum solution based on a criterion for optimaJity.

Let an optimum structural problem be fonnulated as:

minimize O(X)

subject to gj(X) :::; 0 . j = 1.2,3, ...• nc

where X = design variables; O(X) = objective function; ~(X) = jth constraint; and nc

the number of constraints.

The criterion for optimality of the method may be expressed as :

ao(x) nc agj(X)
( ).+l:,q ). =

aX; x j= I ) aX; x
() and A.. > 0, J- (fdh)

where X; ith design variable; A.j = jth Lagrangian multiplier; x· = an optimal solution. Basl:d

on the above criterion, the design variables x,v+ I at v +I th iteration can be expressed in tenns

of x,v at the vth iteration as

in which Tj is called the recurrence equation and can be written as

act ogj(X) aO(X)
Ti = (- l: A. J.( a ))/( a )

i=l X; X;
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a = a relaxation constant; and act = the number of active constraints. The partial derivative of

constraints with respect to design variables, ogj/ax;., can be expressed in terms of safety factor,

flj. as

agj a(pa - fJ)
=----

ax;. ax;.

-ap·=__J
ax;.

(6.39)

or in terms of probability of failure as

ago
1

JX;

a(Pf- Pf )
=_--:-_....:a:....

ax;.

2ap",p) I -fl· (X) ap-(x)= ----,,.:-1\_ = _-_ exp( J )_0-1 _
aX; .;ITt 2 tJ Xi

(6.40)

where fJ a and Pf are allowable safety factor and probability of failure, respectively_
a

At each iteration one has to scale the initial design and to decide the active constraints for

accelerating convergcnce before the value of T i (Equation (6.38)) is found. For each constraint

the scaling factor is computcd by a linearized approximation to the allowable safety factor or

probability of failure as follows:

~p.
1

act apj passive OPj
= I (-)llx;. + I (-)(x;.' min - Xi')aX:. ox"i=1 -, i'=[-,

(6.41)

in which x;.' min represents passive clements.

Substituting ~x;. = x{'+ I - x{' = AxI' - x{' into the above equation yields

act aflj passive apj
I (-)(A -l)x;. + I (-)(x;.' min - x;,)

i= I ox;. j'= I aX;'
(6.42)

Thus the scaling factor for safety factor can be calculatcd as follows:

act apj passive. apj
(Pa - fl·) + I (-)x;. - I (-)(x;.' min - X;,)

1 i= I ax;. i'= lOX;'
A· =------.-;:........:--=--~:_.:.....-~~----

J act afJj
I (-)X;

i= I ax;.
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For the probabilities of failure, the scaling factors become

act aPr- passive aPr
(Pf - Pr-) + I (_J)x; - I (-))(x;' , - x;')

J. J i= I Ox; j'= I ax;, mm
t\. = -------=.---.;.-.-.:.....---=------=-----=------

J act arr
I (_J)X;

i= I ox;

(6.44)

In order to determine Ti' the active Lagrangian multipliers J. p must be determined from

the following simultaneous equations which arc derived from linearlzl.:J approximations to the

zero constraint values:

.1g'J

\1+ I \I act agj passive ogj
gJ' - gJ' = I (-).1X; + L (-).1x;,(P)

i= I ax;. j' = I ax;,
(6.45)

in which .1x;'( P) represents passive clements.

Let gV+ I = 0,
J

and

act agj(x) OO(x)
Ti = (- I,t,(--)/(--)

j= 1 J aX; ax;

then Equation (6.45) becomes

act a~ passive a~

I -x; + I -.1X;,(P)
. I a~ " I ax I1="' 1 = X
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m which nc 1 = the number of active constraints, gp = the active constraints, ,{ p = the

Lagrangian multipliers of active constraints and can be found from the following simultaneous

equations,
nc act ago a~

(1 - a) L ( L (~)(-a-)/( ~O ),{pXi)
p= 1i= 1 Xi. Xi. X;

act a~ passive agj
= ~ + (a - 1) L (-)Xi + L (-).1X;'(P)

i=l aXi i'=1 axx'
(6.49)

A flow chart of optimality criterion method solving constrained or unconstrained problems

oCr
IS shown in Appcndix I. The recurrence equation, Ti. derived. from '"" () for CO'it

oltj

function in the unconstrained algorithm has the following fonn
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VII. STUDIES OF ANSI, NnS, UK, i\l\D UNRH)UCLD MODFI,S

The two-story steel frame in Figure 6 is used to demonstrate the designs for fi.lur live load

models. The optimal weight, moment of inertia of a member, and probability of failure arc

shown in the following figures. The notations in the figures are LI, U, U, and 1.4 which

signify the live load models of ANSI, NBS, UK, UNREDljCED, respectively; 1st and 2nd

represent the two variance approaches for two probability distributions; N and LN arc

corresponding to normal and lognormal, respectively; D + L signifies the dead load combined

with live load; and D + L + E represents the load combination of dead load, live load, and UBe

seismic force. The parameters used in the example are AI = 900 ft 2 (274.32 m 2)

D = 80 psf (3.82 kPa), VD = 0.12, alJowable individual failure probabilities = 0.000 I,

allowable joint rotations = 0.05 rad., allowable joint displacements = 0.5 In (1.27 em),

allowable variances of joint rotations and displacements are assumed to he ~ef().

Fy = 36 ksi (2.448x.105 kPa), Em = 30000 ksi (2.067x.108 kPa), V \it = 0.12, VII. = 0.],
. y I',

Vp =0.31, Vp =0.14, V M =0.20, Vp =0.3, Pp M =O.X, PP:V1 =O.X,
cr y . cr cry y' y cr' y

PpcrPE = 0.8 ( = I if Pcr = PF ), PPEMy = 0., Ppcr.\l y = O.X, PI'y.\l
cr

= O.IS,

PPEYf
cr

= O. 15 . The parameters for the seismiC base shear In lJ Be arc

Z = 3/8, IE = 1.0, KE = 1.0, SE = 1.5 , hn = 27 ft (8.23 m) and Dn = 30 ft (9.14 mJ. The

structural members are assumed to be rectangular sections and have the relationship area =

2/2(moment of inertia) 1/2. The minimum moment of inertia of all the members is 50 in4

(2081.16 cm4).

A. D1~AD AND L1YF I.OAD CASF

The analytical results corresponding normal distribution are given in f-igure 7 which shows

the magnitude of optimum weight in which the nritish model (1.3) demands a heavier structural

deaign than the U.S. models (LI and L2); ANSI (Ll) demends heavier design than :\'BS (/,2);

UNREDUCED model (L4) demands the heaviest design simply because it docs not ret.luce the

live load in term of influence area AI The 2nd variance approach yields morc weight than the

fust. lbe moments of inertia of a typical beam (ll) and a column (1 4)
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Figure 6. Two Story Building Structure (1 ft = 30.48 em)
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Figure 7. Optimum Weight for Various Live Load Models with Nand D+ L Case.(1 Ib =
4.45 N)
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are sketched in figures R and 9, respectively. The effects of four live load models and the two

v;uiam:c li.ml1ulations on the design arc similar to the optimum weight in Figure 7. 'I hl:

probability of failures of the typical members are given in Figures 10 through 13 in which

b I and b2 are corresponding to the failures due to yielding moment given in Equation (6.6) of

beams I and 2, respectively; and (f l)4 and (f2)4 represent the column failure (element 4) due to

yielding at the member end (Equation (6.9» and instability in the plane of bending (Lquation

(6.15)), respectively. The supporting column, member 3, reaches the minimum moment of

inertia before any failure modes. The failure modes at the optimum solution are close to the

allowable, 10 x 10- 5. The design was determined at the 6th cycle, because the next cycle could

not further improve the optimum solution of the structural weight or the moment of inertia.

The optimum design parameters of weight, moments of inertia, and failure modes an; also

studied for lognormal distribution and arc sketched in Figures 14 through 20. The dTect of l(,ur

live load models and that of two variance approaches on the optimum design results are similar

to those observed on the bases of normal distribution.

Comparsion of the optimum solutions resulting from normal and lognormal distnbutions

reveals that normal distribution requires a heavier structural design than the lognormal

distribution for the first approach, but a lighter structural design for the second approach. The

comparison may be observed from Figures 7 and 14. Similar observations may be conclued for

moments of inertia.

As observed from the normal distribution case, the failure modes shown in Figures 17

through 20 indicate that the individual failure mode approaches the specified failure bound,

Pro = 0.000 I, for four live load models and two probability distributions. The failure modes

which approach the bound are the yielding failure of beams 1 and 2 (b I and h2), and the

yielding and bending instability failures of column 4 ((f l)4 and (f2)4) for both the 1st and 2nd

variance approach.
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B. DEAD, LIVE, AND USC LOAD CASE

As studied in the previous section, the interior penalty function algorithm is also used in

this section. In general, an initial penalty value is fIrst assumed which is then reduced for each

cycle to approach the optimal solution. For optimization process different starting points may

result significant differences of suboptimal solutions. Therefore the suboptimal solutions

between two cycles may have large differences because of two different starting values. These

differences can be seen in the study of ANSI and NBS live load models. In this section the

UBC load, with the variation of 1.38 as recommended by NBS, combined with dead and live

load (D+ L+ E) is used to study the effects of the live load models of ANSI (L1), "BS (L2),

UK (LJ), UNREDUCED (L4) on optimum design parameters. In Figures 21 and 24, the

optimum weights affected by Ll through IA are not quire consistent as shown in J) + L ca,e.

According to the present study of normal distribution, the optimum weight varies from heavy to

light in the sequence of UNREDUCED, UK, NBS, ANSI, for 1st variance approach and

UNREDUCED, NBS, UK, ANSI, for 2nd variance approach; for the case of lognormal

distribution, the sequence is UNREDUCED, NBS, UK, ANSI for the 1st variance approach,

and UNREDUCED, NBS, ANSI, UK corresponding to the 2nd variance approach. The figures

show that the case of D + L + E requires less design cycles than the case of D + L. It is quite

consistent, however, that the lognormal distribution demands a heavier design than the normal

distribution. From Figures 22, 23, 25, and 26, the design sections have the same conclusions as

optimum weight. Figures 27 through 30 show that the failure bounds are mainly due to the

lateral displacements of the top tloor.

C. SUMMARIES

I. For the D + L case, the magnitude order of optimum weight from large to small is

UNREDUCED, UK, ANSI, NBS for both normal and lognormal dbtributions.

2. For the D + L case, the lognormal dbtribution requires a heavier structural design than

nonnal distribution for 2nd variance approach, but a lighter structural design for the Ist variance

approach.
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3. For the D + L case, the 2nd variance approach yields heavier structural design than 15t

variance approach for both normal and lognormal distribution.

4. For the D + L case, the structural failures are mainly due to the failures of beams and

the top column.

5. For the D + L + E case, the magnitude of optimum weight from large to small is not

1Il the consistent order as the D + L case. For the 1st variance approach, the orders are

lJ~REDCCED, UK, :--JBS, ANSI, for normal distribution and U:\REDCCED, :\135, UK,

ANSI, for lognormal distribution; for the 2nd variance approach, the orders are

U:--JREDUCED, NBS, UK, ANSI, for normal distribution and UNREDUCED, NBS, ANSI,

UK, for lognormal distribution. The structural failures are mainly due to the failures of lateral

displacement on the top floor.
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VIII. COMPARISON BASED ON OPTIMALITY CRITERION AND PENALTY

FUNCTION METHOD.

Two structural systems of a truss and a frame are used to illustrate the application of

optimality criterion method and to show the close agreement of design results obtained by using

the optimality criterion method and the penalty function method.

A. TRUSS STRUCTURES

The unsymrnetric three bar truss in figure 31 is used to illustrate the optimum design

problem· by using both the optimality criterion method and the penalty function method. The

design variables are areas of members I (AI), 2 (A2), 3 (1\3). The r.mdom parameters are areas,

elastic modulus (Em)' magnitude of applied load (P), and direction angle of applied load (0).

The mean values of random parameters are Ii = 20 kips (89 kN), "0 = n/4, Em = 10000. ksi

(6.89xI07 kPa) . The coefficients of variation of these parameters are V;\I = VA2 =

VA3 = 0.05, Vp = 0.05, V8 = 0.05, and VEm = 0.015. The alJowable mean displacements are

0.5 in (1.27 cm)and 0.125 (0.3175 cm) in corresponding to x and y directions, respectively. The

allowable mean stresses for three members are assumed to be 36 ksi (2.448 x105kPa). The

variance of allowable displacements and stresses are zero. The optimum design problem is to

fInd the minimum weight subjected to displacement and stress constraints. Based on optimality

criterion method presented in Chapter VI, the mean displacement, ti, and its variance of

displacement 03 (Fquation (2.1 R», can be expressed as

mean,

3 T·i'I
ij = L 1 1 I

i=l EmAt
(8. I)

and

0 2 =u
6'" (au )2v2 j=2
4- ar r rr r

r=1 r
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in which T'i = the internal force of ith member; t'i = the virtual internal force of ith member;

t'j = the length of ith member; and the other terms are expressed in Equations (8.3) through

(lUi) as

au
a~

rit'li
- 2 '

bm/\

3 - r·t'I
'" l 1 1

. £... 2 '
1= lEmA;,

(8.3)

au
ap

au
oe

=

=

= Sx cos e+ Sy sin 0,

= -P sin OSx + P cos OSy

(8.5)

(lUi)

In Equations (8.5) and (8.6), {p}T = transponse of column matrix of external forcl:s =

[p cos e, P sin oJ; {S} = the column matrix of external virtual displacl:ments dUl: to the virtual

load applied at x or y direction = [Sx l SyJT.

Using the above equations and the derivatives of uncertainties of displaceml:nt with rl:spect

to design variables (Equations (8.1) through (8.6)), one can determine the scaling factors

(Equation (6.43)), Largrangian multipliers (Equation (6.49)), and recurrence equations

(Equation (6.47)). For the optimum solution, Figures 32 and 33 show the optimum weights and

the cross sectional areas of the truss based on the optimality criterion method and thl: penality

fuction method. The solutions obtained by thesl: two ml:thods an: very dose.
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B. FRAME STRUCTURES

Two-story building shown in Figure 6 and five-story building in Figure 34 are, used to

demonstrate the application of optimality criterion method for cost objective function. The

structural parameters for the two-story building are the same parameters used 111 prenous

chapter. The :\'BS live load model (L2 ) is used here. The cost function is assumed as

CT = C I + [fPIT' The initial cost is C, = 1.55 (dollars; volume) times structural volume

and the expected loss is If = 1.15 ( 2.5 CI + 3194100) dollars for the two-story building.

3\94\ (JO is the wmbination of the liability due to death ($ 7()(J()()O f(lr I person of annual

income 200(J(J dollars), serious injuries ($14()()()()() for 4 persons), minor injuries (1,75000 lor 15

persons), and the business interruption ($1019100). For the five-story building, the initial

constructure cost is C1= 1.55 (dollars; volume) times structural volume and expected loss is

4 = '1.15 ( 2.5 CI + 14362500) dollars. 14362500 is the combination of the liability due to

death ($3500000 for 5 persons of annual income 20000 dollars), serious injuries ($3500000 for 10

persons), minor injuries ($375000 for 75 persons), and the business interruption ($69H7S()()).

The calculations of liability cost due to death, serious injuries, and minor injuries for eaeh

person are described in Section VIA. The business interruption has been calculated in the

remaining amount of 3194\ 00 or 14362500 excluding the liability cost.

The problem with the given cost function may be constrained or unconstrained depending

on the location of optimal solution fallen on the boundary or within feasible region. It can be

decided to check whether the allowable failure probabilities are reached on the optimal solution.

The algorithm is explained in Appendix I for the application of optimality criterion method to

this type of problem. Figures 35 and 36 reveal the optimum cost of the two-story building

subjected to 0 + L and 0 + L + E. The solution flfst approaches the unconstrained solution and

then jumps up to converge to the constrained solution based on the allowable probability of

failure, Pm = 10.
7

. For the 0 + L case, because the unconstrained solution violated the given

constraints, the unconstrained and constrained results of the penalty function method arc around

1.57;< 104 dollars and 1.6 x 104 dollars, respectively, which are dose to the results of
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1.56 x 104 dollars (unconstrained) and 1.605 x 104 dollars (constrained) based on the optimality

criterion method as shown in figure 35. for the D + L + E case, the unconstrained and

constrained results of the penalty function method are around 5.0 x 104 dollars and

5.3 x 104 dollars, respectively, which are close to the results of 5.08 x 104 dollars

(unconstrained) and 5.34 x 104 dollars (constrained) based on the optimality criterion method as

shown in Figure 36.

In Figure 37, the solution is based on the optimality criterion fa the five-story builJing.

The strul:turaJ parameters used arc the same parameters as in previous chapter. The

unconstraineJ optimum total cost is 4.46 x 106 dollars and the constrained optimum total cost

is 5.39 x 106 dollars for the allowable failure probability = 10-7.
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IX. OPTIMUM DESIGNS fOR UBC LOA/)

The earthquake load ret.:ommendt.:d in the lJnifonn Building Code (lJ BC) is utili.l.ied ht.:rt.:

to study the ~cnsitivities of codlit.:ients of variation of strut.:turaJ resistance paramders, the

sensitivities of coeffit.:icnts of variation of l; BC load, the sensitivities of two pronabiliLy

distrinutions of strut.:tural resist~mce ~.IIId respOllse, and those of the /.One coelli<.:ient ill L BC Oil

the optimum design results. The two-story and ten-story symmetrit.:a1 shear nuildings shown in

rigures 38 and 39 are used to study the optimum solutions. The. parameters used in the

examples are : AI = 900 ft 2 (83.61 m 2 ) for each lloor; J) = so psf ClX2 kPa); VI)

0.12; the allowable displacements = 0.005 times the corresponding hei,ylt rdative to the hase;

the allowable variance of displacements = 0; the mean yielding strenb.rth, f:y = 36 ksi (2.4-lR x.

105 kPa); the mean elastic modulus, Em = 30000 ksi (2.067 x 108 kPa): the cocflicicnt of

\'ariation of elastic modulus, VI: = 0.06; and the coefficient of variation of momt:nt of inertia.
'm

VI = 0.05. The parameters for the base shear in LBC arc: II': = l.(). K I:, = l.() . ."II-: '" I,),

eE = Il(ISv'T), hn = 27 ft (R.n m), and Dn = :\0 ft (4,14 m).

A. VARIATION OF COLU\-IN RI-:SISTA:\CE PARAMFI'I·:RS.

The column resistance parameters of shear building structures considered may he yielding

moment and critical moment. The coellicients of variation of these parameters have neen

estimated and reported in Reference 76. Ilowever, these values were detennined by experimental

works or experienced assumptions, the exat.:t values can not clearly he known. Therefore, the

investigation for sensitivities of variation of these parameters is net.:essary.

Two individual failure modes, yielding and torsional buckling, may exist appear at each

column. The uncertainties of the interaction equation of yielding may he expressed in mean and

coellicient of variation as

I' I

and

125

(!). I)



2

/////
1 30ft

/////

-~,

)

u,

12ft

15ft

Figure 38. 2-Story Shear Building Structure. (1 ft = 30.48 em)

126



9

8

7

6

I

4

10

2

3

30ft~--

~

to
..

9
,

):

8
~

7
):

6
~

6 ..
4

)

3
)

2
)

I

'/// //

T
+
L

+
-+-
L

+L
+L

+
4:-
L

+L

+L,
.l..

Figure 39. IO-Story Shear Building Structurc.(L. = 15 ft, L = 12 ft, 1ft = 30.48 em)

127



(9.2)

in which VM = coefficient of variation of applied moment and VMy = coefficient of variation

of yielding moment. The mean and the coefficient of variation of the interaction of torsional

buckling arc

(9.3)

and

(9.4)

in which V, A = coefficient of variation of critical moment .
•Vlcr

1. Sensitivity of Variation of Yield Moment. The numerical values of VM arc assumed
I y

to vary from 0.05 to 0.2 to investigate the sensitivity of coefficient of variation of yield moment

in this study. The value of 0.12 is recommended in Reference 76. ror the purpose of studying

the sensitivity of VM alone, the coefficient of variation of critical moment is kept constant as
y

0.2 which is also recommended in that reference. The study is based on the two variance

approaches in both nonnal and lognonnal distribution for various allowable probability failures.

Two coefficients of variation of earthquake are assumed to be zero and 1.38 in the study, and

the value of 1.38 is recommended by NBS.

a. No Variation of UBe. In Figures 40 through 43, the optimum solutions of weight and

moments of inertia are not sensitive to the change of variation. of yield moment for Ist and 2nd

variance approach with nonnal distribution and lognonnal distribution when Vp is less than
y

0.15. When Vp is larger than 0.15, the dcsign results increase as allowable reliability criteria
y

incrc:lSC. When the values of Vp vary from 0.15 to 0.2, thc increascs of optimum weight with
y

nonnaldistribution arc about 2% and 4% at Pm = 10-5 and 10.
7
, respectively.
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The increaSt:s associated with lognormal distribution arc about !S% at Pfo

Pro = 10-7
. No noticeable increases for Pro = 10- 1 and 10-3

.

-5
10 and 16'10 at

Figures 40 through 43 show that the 2nd variance approach demands a heavier weight and

larger sections than the Ist variance approach for all VP values with both the normal and
y

lognormal distributions. The difference between two approaches increases as reliability increases.

In Figures 40 and 42, at Vp = 0.15 the weight differences are from 52.6 Ibs 1234.1 ~) :1t
Y

reliability of 10-
1

to 181.3 Ibs (806.7 N) at reliability of 10-
7

with normal distribution 1/\ and B

in Figure 40) and 67.8 Ibs (301.7 N) at reliability of 10. 1
to to 432.7 Ibs (1925.5 N) at reliability

of 10-
7

with lognormal distribution (A and " in Figure 42). The weight differencc between two

rcliabilities decreases as reliability increases. For a given V p = 0.15 value associated with the
y

2nd variance approach, the optimum weight dilference is about 067.4 Ibs (2%9.9 :'-1) between

two reliabilities of 10- 1 and 10-3 and 311.0 Ibs (1383.9 N) between 10-5 and 10-7
with normal

distributions (C and D in Figure 40); about 1026.7 Ibs (4568.8 N) between 10- 1
and 10.

3
, and

762.4lbs (3392.6 N) between 10- 5 and 10-7 with lognormal distribution (C and D in Figure 42).

b. Variation of 1.38 for UBC. Due to the highly complicatcd earthquake phenomina,

NBS recommended a value of 1.38 as the variation of UBC in Reference 66. In Figures 44 and

45, one may observe that, at various reliabilities, the optimum weights obtained by using 1st and

2nd variance approach are close for both the normal and lognormal distributions and that V ~A
'Vl y

is not sensitive to the solution at all. The reason is mainly due to the high value of variation of

earthquake; when 1.38 is used, the variations of structural response and resistance do not

influence the design results any more.

2. Sensitivity of Variation of Critical Moment. The numerical valucs of VM are varied
cr

from 0.1 to 0.3 for investigating the sensitivity of the coefficient of variation of critical moment;

the value of 0.2 is recommended in Reference 76. In the sensitivity study, the other parameters

are based on 0.12 of the coefficient of variations of yield moment, I.cro and I.JR of t hr.:

variations of UBC, normal and lognormal distributions, and the two variance formulations.
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a. No Variation of UBe. The influence of the variation of critical moment on the

optimum design parameters is shown in Figures 46 through 49. From these figures one may

observe that the optimum weight of the building increases as V, K increases for both normal
.Vl cr

and lognormal distributions and for both the 1st and 2nd variance approaches. The same

observation may be concluded for the optimum moment of inertia. Observing I:igures 46

through 49 indicates that the difference of design results bctwecn the 1st and the 2nd varianu.:

approach increascs as the reliability increases and that the dilfen.:nce of the design results

betwl:en two reliabi1ities for 2nd variancc approach decreases as the reliability increases. I"or

instance, the difference of the optimum wcight between the reliabililies of Hf I and to-
3 is 677.4

Ibs (3014.4 N); and the weight differencc between /0-5 and 10-7 is 309.6 Ibs (1377.7 :'\) with

normal distribution. These are signified by A and B in Figure 46. In the same figure, C and D

signify 46.2 1bs (205.6 N) at /0-1 and 177.0 Ibs (787.6 N) at 10- 7 for the difference between the

two approaches. The difference of the optimum weight between 10- 1 and 10-3 is !021.2 lbs

(4544.4 N); and 767.5 Ibs (1377.7 N) between 10- 5 and 10-7 with lognormal distribution. These

are signifIed by A and B in Figure 48 in which C and D indicate 60.9 Ihs (271 :'\) and ..nR.] Ibs

(1950.4 N) associated with the difference between the two approaches.

b. Variation of 1.38 for (me. Whcn VE = I.JR is used in the design, thc optimum

weight is not sensitive to the variation of critical moment for both normal and lognormal

distributions and for both the 1st and 2nd variance approaches. The observation is drawn from

Figures 50 and 51. The same observation has been concluded for the moments of inertia which

are not shown here. It is believed that the high variations of earthquake overdominate the

structural response behavior, the variations of other parameters in structural responsc and

resistance can not therefore reflect their influences on the design results.
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B. SENSITIVITY OF VI\RIi\TION OF VBe LOI\D.

Since the accuracy of the coefficient of variation of UBC is questionable, a sensitivity

study is performed by varying VE from 0 to 1.38 for the two-story building design. The failure

modes considered for the design are displacement failures at the floors and two column failure

modes (Equations (9.1) through (9.4)) for each column member. The coellicients of variation of

yield moment and critical moment are the values of 0.12 and 0.2, respectivdy.

The results arc shown in Figures 52 throu~ 55 from which one may observe that the

changes of optimum weight and moments of inertia increase rapidly, when VE varies from 0 to

1.38. The change is more significant at high reliability than at low reliability for both the 1st

and 2nd variance approach. Also the increases are especially faster for lognormal distribution

than for normal distribution. for instance the weight differences between Pm = 10-
1

and

·510 are 884.5 Ibs (3936.0 N) at VE = 0 and 6137.0 Ibs (27:309 kN) at VE = 1.38 with

normal distribution (A and B in Figure 52) and 1144.8 Ibs (5.094 k N) atVE = 0 to 42.628 kips

(189.694 kN) at VE = 1.38 with lognormal distribution (1\ and B in Figure 54). The weight

differences for Pro = 10.5 are 9370.5 Ibs (41698.7 N) between Vb = 0 and 1.38 with normal

distribution (C in Figure 52) and 44.686 kips (198.R54 kN) between VE = 0 and 1.3/\ with

lognormal distribution (C in I:igure 54).

The weight differences between two vanance approaches, which may be illustrated for

·5Pm = 10 ,are 473.9 Ibs (2108.8 N) at VE = 0 and 56.8 Ibs (252.7 N) at VE = 0.5 with

normal distribution (0 and E of Figure 52), and 637.R Ibs (2838.2 N) at VE = 0 and 150 Ibs

(667.5 N) at VE = 0.5 with lognormal distribution (D and E of Figure 54). The discrepancy

between 1st and 2nd variance approach gradually reduces as the variation of earthquake

increases. After VE = 0.5 the designs based on the two approaches arc practically the same.

Apparently the high values of variation of earthquake control the designs.

The ten-stol)' building shown in Figure 39 was studied for further investigating the

optimum design parameters. 'lbe data for the design are the same as those used for the
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two-story building structure. In this study the design results of nondeterminstic cases are

compared with detenninistic case. The nondetenninistic cases are based on two extreme

probability failures of Pro = 10-
1

and Pro = 10"7. The optimum weight and the moments of

inertia vs the coefficients of earthquake variation arc shuwn in I:igures 56 through 61 for the 2nd

approach with nurmal and lognormal distrihution. As ohserved previously, the discrepam;ics of

the design results increase as VE increases. The results of the dderministic design arc the lower

bound of all the designs.

C. COMPARISON BASED ON NORMAL AND LOGNORMAL DISTRIBUTIO:-':.

The influences of the probability of normal and lognurmal on the design are studied for

the 2-story building for which the design data are the same as used previously, the variation of

CBC is assumed to be 1.38. The optimum weight and the moment of inertia vs the probability

failure levels are shown in Figures 62 and 63. It is interesting to note that at low reliability the

design for normal distribution is higher than that for lognurmal distribution. Approximatdy

-3
after Pf = to , the design for normal distribution is lower than that for lognormal, the

discrepancy increscs as the reliability increases. The optimum weight dilTerences bdween

normal and lognormal distribution are 1256.7 Ibs (5592.3 N) at Pm = 10-
1

and 80.069 kips

-7 -I
(356.308 kN) at Pro = 10 for the 1st variance approach; 906.2 Ibs (4032.6 N) at Pro = 10

and 80.502 kips (358.235 kN) at Pro = 10"
7

for the 2nd variance approach. The differences are

symbolically signified by A and B in Figure 62. Because VE = 1.38 is used, the difference

between the two variance approaches are very small.

D. COMPARISON OF ZONE COEFFICIENTS IN UBC.

In Equation (3.14), the coefficients, 7., represent the I.one the structure is located. The

values of 3/16, 3/8, 3/4, and I cOTTCspond to I.one I, II, III, and IV, respectively. It is to

investigate how the zone codfIcients a.1Teet the design results Illr dillcrent rdiability lcvds hased

on two variance approaches and normal and lognormal distribution. It is also to find how the

UBC variation coefficient (VE = 1.38) affects the design. The twu-stury shear building shown in

Figure 6 is used fur this study. The solutions are shown in hgures 64 through 67.
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As shown in figures 64 and 66, the weight differences increase as reliability increase. The

differences hctween ~one III and IV are 1577.f> Ihs (7020.J N) at 1'10 :- 10- I, and 2257.1 Ibs

(10.044 kN) at Pro = 10"
7

with nonnal distribution (A and B in hgure 64); and 1831.0 Ibs

(8147.9 N) atPfO = 10-
1
, 16.993 kips (75.621 kN) 'at Pro = 10.

7
with lognonnal distribution

(A and B in Figure 66). Because VE = 1.38 is used, the two variance approaches yield

practically the same design.

E. EFFECTS OF COST FU:--;CTION ON SENSITIVITY STUDIES.

The cost objective function in Section VIA may have three components: initial

(9.5)

in which

C1 = Cu2: Lil\; + Cn•
I

Cu = an unit steel volume cost,

Cn = nonstructural members cost,

Cv = a coefficient to describe the ratio of repair cost to initial cost.

C L = the business and human losses,

P
fT

= system prohability of failure.

i\Jthough initial construction cost and future failure cost can be classified into many items,

these quantities are difficult to estimate. Therefore two coefficients of the ratio of initial cost to

members cost (Cin) and the ratio of future failure cost to initial cost (CVL) arc used to

represent the various magnitudes of initial construction cost and future failure cost which may

now be expressed as:

CI = CinCu~~A;
1
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(9.7)

Through these two coefficients, the influences of nonstructural cost and future failure on

the optmium cost design may be observed. The two-story and ten-story shear building shown in

previous examples are used for this study. The failure modes are displacements failures of the

struL:lurc, and yielding and torsional buckling failures of columns.

I. The Ratio of Initial Cost to Structural Member Cost. The initial cost has two

components which are structural member cost and nonstructural member cost. Since the terms

involved in the nonstructural member cost are not clear, it is reasonable to assume that the

structural member cost may be a percentage of initial cost. That means the initial cost IS

assumed as the product of Cin and member cost. lbree values of Cin in the amount of 2, 5,

and 10, are used to investigate the relationship between the structural and nonstructural costs.

The value of CVL is assumed to be constant as 1.0.

Figures 68 through 71 show the optimum solution of the two-story building and hgurcs

72 through 77 revcaJ the design results of the ten-story building. All the desi!!J1 arc hascd on the

2nd variance approach with nonnal and lognormal distribution. The unit cost IS

0.15 dollars/in3. From all the figures, one may observe that there arc some differences between

total cost and initial cost at low reliability (Pro < 10-3); the differences pmctically become zero

as the reliability levels increase. The total costs increase as Cin increases. But the moments of

inertia are not much different for different Cin values. It is because the change of nonstructural

member cost does not affect the change of structural responses under the same safety criterion.

Therefore, the increase of nonstructural member cost does not influence the design of structural

members. The differences between total costs and initial costs decrease for higher reliability

levels because the increase of reliability results the decrease of future fail un: losses.
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2. The Ratio of Expected Failure Cost to Initial Cost. The expected failure cost has two

components which are structural losses (repair costs) and nonstructural losses (business or

human losses). However, this cost is also not clearly to be defined. So in this section the

expected failure costs are all assumed to have a relationship with initial cost. Three values of

CYL in the amount of 0.5, 1.0, and 10. are used to investigate the influence of different

expected failure costs on the optimum solutions. The value of Cin is assumed to be constant as

5.

Figures 78 through 81 show the optimum solution of the two-story building and hgun:s

1'12 through S7 reveal the desi~ results of the ten-story huilding. 1\11 the design are hased Oil tilt:

2nd variance approach with normal and lognormal distrihution. The unit cost IS

0.15 doUarsjin4. From all the figures, one may observe that there are some differences between

total cost and initial cost at low reliability (Pro < 10- 5); the differences practically become zero

as the reliability levels increase. The total costs increase as CYL increases at low reliability (

Pro < 10-5). But the differences are not much different for different CYL values as reliahility

increases. It is because the values of future failure losses are small at high reliability; therefore,

the increase of future failure cost does not change the design of structural members signifcantly_

The differences between total costs and initial costs decrease for higher reliability levels because

the increase of reliability results the decrease of future failure losses.

F. SUMMARIES

l. For no variation of UBC and for 1st and 2nd vanance approach with normal and

lognormal distribution, the optimum solutions do not change with different YM values while
y

these values are less than 0.15. The results between YM = 0.15 and 0.2 for lognormal
y

distribution increase while allowable failure probabilities are targer than 10-5.

2. For no variation of USC, and for 1st and 2nd variance approach with normal and

lognormal distribution, the optimum solutions change as the values of Y:v1 change.
cr

173



48-+---------------------4

-

totaj
initiaj

+ CVL = 0.5
" CVl = I
C CVL = 10

........ , ..

....................
.?
"".,

/:.,
l,'
II",...

/l,.
./,", ,...,, ..,.., ..,........, ,.....,.. '.., .. .. '... .

/ "... .. '
/ .'

,..,

30

28

32

42

-

~38
<
:I
oc

3S
L------

eli
::i

-7-3 -5

PROBABUTY OF FALURE

28'T-'t'.....,.............~........~...............-........~.,.......,........-.,.......,.._r_.,.......,..~.,.......,........-.,.......,..~

-1

Figure 78. Optimum Cost for Various C
VL

with N of 2-Story Building.

174



=
lII!

-.,.
~11-:s
t-

I
~

i 9

0
~

7

... Cn = 0.5
x CVL = 1
11 CVL = 10

-7-3 -5

PROBABUTY OF FAlLLRE

5 .......--.--~ ............,.....,............-.--r-.------.....-.-............---r-.......-.----.-..-............---.--......4
-1

Figure 79. 11 for Various C
VL

with N of 2·Story Building. ( 1 ilt = 41.62 cm4)

175



26+-----------------------+

24
+ CYL = 0.5
x Cn = I
a CYL = 10

22
total

--- initial .

20

en
:)12

-
tnl1o
o

8

8

2

-7-3 -5

PROBABLITY OF FALURE

O'T---.,.-,.......--.-_._................--r--.--.,.-,.......----.................-..--..--.-"T"-.......-.--.--.--.---+

-1

Figure RO. Optimum Cost for Various CVL with LN of 2-Story Building.

176



50+--------------------~

45

40

15

10

5

+ CVL = 0.5
X CH = I
D CVI. = 10

-7-3 ~

PROBABUTY OF FALURE

OT---.-.......-...-.-....-..................."'T'"'"'""--.-............--.-........-..........--.-...........--.-........-...........--.-.......-...--.---l-

-1

Figure 81. I) for Yarious C
YL

with LN of 2-Story Building. (I in4 = 41.62 cnr)

177



40+-----------------------1-

+ CVL = 0.5
X CVL = 1
o CVL = 10

38
__ total
___ initial

-(1)32
~
:J
8
en
=i-ti 28
oo

-7-3 -S

PROBABUTY OF FALURE

2OT--o........-................-................-.....-"'T--.-........--.-..........--.-..........--r-..--.---.--..........--.-................--+
-1

Figure 82. Optimum Cost for Various C
VL

with N of IO·Story Building.

178



7

+ Cn = 0.5
x CVL = I
D CVL = 10

I.e -_...... Iz
-----,. IJ--- 14-- I~

=5
l'I!

-..,.
a:-$4
I-

ffi
~

l5
1- 3

ffi

~ .. '

2

1

-7-3 -5

PROBABUTY OF FALURE

OJ,..........---.-~T""""""'T" .....................,......,..-,-.........--.......-,.........,..--.-...,...-,.............,................--.......--.......-.--.-+

-1

Figure 83. rI - [S for Various C
VL

with N of to-Story Building. ( I irf' = 41.62 em')

179



1

=-

-

3

~ CYl := 0.5
x CYl := ]

0 CYl := 10

~............ 11

----- I,--_ ... ~-- 110

-::;::;::;a---------e-=:::;::::::-
1.0----==------

-7-3 -5

PROBABLITY OF FALURE

o';--..........-r--.........-.-......................,................-.-"'T""""""'I--.--r--.........--r---.--.--.-..................--......-+

-1

rigurc R4, 1
6

- J10 for Various C
YL

with N of 1()·Story Building. (I irf := 41.62 cl'11"')

180



240+---------------------+

200

80

+ CVL = 0.5
X CYL = 1
aCYL = 10

__ lotaJ
_ _ __ initiaJ

-7-3 -5

PROBABILITY OF FALURE

O....-.-.........--.---..--.-.....,....T"""'-.-..,.....,,......,........,..............-.-T'""""'-..-..,.....,,......,......,..............-.---+-

-1

Figure 85. Optimum Cost for Various C
VL

with LN of IO-Story Building.

181



280+----------------------4-

-7

+ (YL = 0.5
X. C YL = 1
aCYL = 10

-3 ~

PROBABIlITY OF FALURE

--I.
...... ..... Iz____•• I,
____ I.

_-I!

O.....---........----.........,I""""T""------.......-..--.-T"'""""...................-------+
-1

40

80

240

~200-

Figure 86. 'I· 15 for Various CVL with LN of IO-SlOry Building. (I iff = 41.62 cf'l'f)

182



140+---------------------+

-7-3 -5

PROBABLrTY OF FALLH:

t CYL = 0.5
X CYL = 1
aCYL = 10

_.

-- 1\0

~
.••••..•. 17_____ I.

---- I..

. ;;;
a~==:::~.........~:..-- ..................-___r__...---.....................--.........+

-1

2D

120

-

Figure 87. 1
6

. 1
10

for Various C
VL

with LN of IO-Story Building.(l in4 = 41.62 cnt)

183



3. For NBS recommended variation of lJBC, and for 1st and 2nd variance approach with

normal and lognormal distribution, the optimum solutions do not change as the values of

VM or VM change.
y cr

~. The change of optimum design due to the change of YI~ are faster at high n:liahility

for 1st and 2nu variance approach with normal and lognormal distribution. This change is

especially fast for lognormal distribution and high variance of earthquake.

5. The optimum solutions between 1st and 2nd variance approach are very close, while the

values of VE are larger than 0.5.

6. At high reliability level, the optimum designs with lognormal distribution arc higher

than those with normal distribution. However it reverses the order at low reliability level.

7. The optimum designs among the zone coefficients increases as the reliability incn:ases .

for 1st and 2nd variance approach with normal and lognormal distribution.

X. The total cost changes as values of Cin change. Ilowever, the moments of inenia do

not change noticeably.

9. The differences of total cost among various values of CYL reduce as the reliability

increases.

10. The difference between total cost and initial cost reduces as the reliability increases.
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XI. OPTIMUM DESIGNS FOR NNSRS LOAD

In this chapter, the Newmark's nondeterministic seismic response spectrum (N;\SRS) is

used to investigate the sensitivities of coefficients of structural resistance parameters, the

comparison of 1st and 2nd variance approach, and the coefficient of variation of peak ground

acceleration. The statistics of amplification factors for Newmark's nondcterminisitic response

spectrum in the 50 percentile are adopted here. 11lese statistics for horizontal ground

acceleration are = 1.4,

a v = 1.66, ria = 2.11, a(ad/y2) = 0.04 , a(Y/a) = 4R/g , crUd = 0.64 , crnv = 0.00

crlla = 0.56 , V(aJ/v~) = O.oS , V(v/a) = O.4S , VIlJ = 0lli'd' VlIv -'- orLiiv ' VILa

craafaa. The statistics for vertical ground acceleration are fmI = 0.3, [(il2 = 3.D, i"cu3 = 10.0,

fr04 = 50.0 , ad = 1.4 , a y = 1.51, aa = 2.05 , a(ad/v2) = 10.11 , aY/a = 29/g, crUd =

0.61, crav = 0.67, craa = 0.77 , V(ad/v2) = 0.7 , Vv/a = 0.53 , Vad = crad/ad ' VUy =

cra fay, va = cru faa' The peak ground accelerations are assumed to be O.2g in Sections A,y a a

B, and C, and OAg in Section D. The two-story strucure shown in Figure 38 and the ten-story

structure shown in Figure 39 have lumped mass for each story of 0.27 k-sec 2 I in (0.47

kN-sec2 / em). The parameters used in the examples arc: the allowable displacements = 11.005

times the corresponding height relative to the structural base; the allowable variance of

displacements = 0; the mean yielding strength, T\ 36 ksi (2.448 x 105 k Pa); the mean

clastic modulus, TIm = ]0000 ksi (2.067 x lOR kPa); the l,;ocllicicnt of variation of dastic

modulus, VE = 0.06; and the coeflicient of variation of moment of inertia, VI = (l.OS. The
m

coefficients of variation of yield moment and critic.a.l moment are 0.12 anu 0.2, respectively.·

A. SENSITIVITIES OF VARIATION OF COLUMN RESISTANCE PARAMETERS.

In order to see the sensitivities of coefficients of variation of yield moment anu critical

moment, no variation of peak ground acceleration will be assumed. The failure moues

considered arc the yielding' or torsional buckling failures for each column member.
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I. Sensitivitv of Variation of Yield Moment. The coefficient of variation of yield moment

is varied from 0.05 to n.2, and the coefficient of variation of critical moment is constant at ll.2.

The optimum weights in Figures 88 and 90, and the moments of inertia in Figures 89 and 91

change when the coefficient of variation of yield moment varies. Ilowever, these changes with

normal distribution are not as sensitive as those associated with lognormal distribution. The

weight percentage increase for 2nd variance approach between Y M = 0.05 and Y \1 = 0.2

-5 -7 y Y
are 6.8% at Pm = 10. and 7.3% at Pm = 10 with normal distrihution and 14.5%

at Pm = 10- 5
and 18.3% at Pm = 10-7

with lognormal distribution.

The discrepancies of weights and moments or interia hetween 1st and 2nd variance

587.7 Ibs (2615.2 :'-i) to

-5
10 for YMy
N) with normal distribution and from

variance approaches at Pm =

(1024.4 N) to 185.2 Ibs (824.1

approach arc not sensitive to the change of Y \1 . The weight differences between 1st and 2nd
y

varies from 0.05 to ll.2 are changing 230.2 Ibs

540.3 Ibs (2404.3 N) with lognormal distribution.

2. Sensitivity of Variation of Critical Moment. The coefficient of variation of critical

moment is varied from 0.1 to 0.3. The coefficient of variation of yield moment used is constant

at 0.12. The optimum weights given in Figures 92 and 93, with normal and lognormal

distributions for two variance approaches, show that they arc not sensitive to the change of

coefficient of variation of critical moment. The moments of inertia arc consequently not given.

B. COMPARISON OF 1ST AND 2ND YARIANCE APPROACH.

In 2nd variance approach, the recommended value of coefficient of variation of natural

frequency, Yw' is 0.16. 50 The determination of this value is hased on the following equation.

Since w = (MfK)lf2, then
r----------------

Y", = (0.1)2 + _1_[( aw )2y2 + ( aw )2y2 ]
....... (;)2 aK r K aM r M
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=

where ll.1 i~ the e~timation of natural frequency which lIlay n.:lkct thl: i,dlrleIICl: cd

non-strudural c!effil:nts, soil-structure interaction; (ii, VC!) = the mean and cm:f1icient of

variation of natural frequency; VM the coeflicicnt of variation of mass = O. J 2; VK = the.

coefficient of variation of stiffness value and is assuml:d to he

VK = fiO.2)2 + vn
m

+ Vi = 0.21

in which 0.2 is the stiffness formulation error, VI; = the coeflicient of varialion of dastic
'm

modulus = 0.06, VI = the coefficient of variation of moment of inertia = 0.05. 76

Therefore, there are three assumed values for formulation e!Tors which are not clearly

defined for 2nd variance approach. lbe first value, 0.2, is the stiffness formulation l:lTor. The;

second value. ll, l, i~ the natural frequency formulation l:ITOr. The Ihml j, a V;.lIIl: of 11.1 S,

CE- in I':quation (4..\7) which is a codlicient of variation of Jynamie allaly~is error.

If the first one is excluded,the coefficient of variation of stillness becomes

VK = jVt + Vr = 0.08., m

If the second one is also excluded,the coetlil:ient of variation of natural frequency is g.i\ en

to be

Vco = (t(VR + V\t)} 1/2 = 0.072.

In addition to the recommended values of 0.16 for Ihe coefficient of variation llf nalural

frequency and 0.15 for the coefficient of variation of Jynamic analysis error. C1.:- two llthl:r

assumed values for the 2nd variance approal:h can be used to ~l:e thl: wmpari~on of thl: ht :Ind

~nd varianl:e approach. One assumes the valul: of 0.072 lllr the codlicient of variatioll of natural

frequency and zero value for the Jynamil: analysis elTor. The other assume~ the I.l:ro valul: for

the coefficient of variation of natural frequency and O. I5 for the coefficient of variatioll of

dynamic analysis error.
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The optimum weights in Figures 94 and 96, and the moments of inertia in Figures 95 and

97 reveal that the 1st variance approach is close to the 2nd variance approach with Veo = 0.072

and CE = 0, and the 2nd variance approach with VO) = 0 and CE = 0.15 at low reliability

with nonnal and lognonnal distributions. When reliability Increases, the differences among

them increase. The 2nd variance approach with Vel) = O. 16 and C E = 0.15 has the largest

optimum design results.

C. SENSITIVITY OF VARIATION OF PEAK Ci({OlJ:'JD i\CClJJ:({ATION.

Similar to the assumption of variation of UBC load. the peak ground acceleration can be

assumed to foUow a type 11 extreme distribution. l:quation (3.18) can stiU be applied to

compute the coefficient of variation of peak ground acceleration. Since the exact value of this

coefficient is difficult to determine, the various values of eoelficient of variation of peak ground

acceleration from zero to I.J8 are used to investigate the sensitivity of this welficlent. The

optimum weights in Figures 98 and 100, and the moments of inertia in Figures 99 and 101 show

that results with lognonnal distribution increase faster than those with normal distribution when

the variation of peak ground acceleration increases. The optimum weights for variatiom of ["leak

~.,.ound acceleration from () to 1.:18 with 2nd variance approach and normal Jistriolllion ;Ire Imln

14.754 kips (65.65Sk;\l) to 19.859 kips (RlU74 k;\l) at Pm = 10- 1 ami from 21.1191 kips

(97.417 kN) to 40.639 kips (180.847 kN) at Pro = 10-7. The optimum weights for variations

of peak ground acceleration from 0 to 1.38 with 2nd variance approach and lognormal

distribution are from 14.751 kips (65.641 kN) to 17.375 kips (77.3\8 kN) at Pm

from 41.754 kips (185.807 kN) to 154.808 kips (688.895 kN) at Pm = 10-7.
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D. COMPARISON or RESPONSES DUE TO HORIZONTAL AND

HORIZONTAL-COUPLED·WITII·VERTICAL GROUND ACCELERATIONS.

The earthquake forces are three dimensional in nature, they are two from the horizontal

and one from vertical directions. However, due to complexity in analysis, the vertical

acceleration is sometimes neglected in design. In this section the influence of this vt:rtical

earthquake force is studied. The relationship between area and moment of inertia, section

modulus and moment of inertia are used as 33

(JA :;:; O.2J25 Ix 1{2
eJl,x
~ = ..1(6061 +84100)-1{2(606)
01 2' x .x

Ix < 9000,

i\ = 0.465/f;

S = /6O.6I x + 84100 - 290

4
Iy = 9"lx

Ix> 9000,

A = (Ix +2300){256

S = (Ix -8056.3){ 1.876

4
ly = 9"lx

aA
oI,x =
as
all( =

I
256

I
1.876

The ten-story shear building shown in Figure 102 has a lumped mass for each story of

0.27 k-sec2 ; in (0.47 kN-sec2 ; em). The ratio of vertical to horizontal ground acceleration is

assumed to be 4/3. When the structure is subjected to horizontal and vertical grounJ

accelerations, the axiaJ intemaJ f()rce~ which arc neglectcJ in the dcsi!,;Jl a~s(lciatcJ with

horizontal ground accelerations only, become an additional part of the structural responses.

Then the column failure modes are yielding failure (fl), lateral huckling failure (f2), and

torsional buckling failure (f3) for honzontal coupled with vertical ground acceleration instead of

yielding failure (f1) and torsional buckling (f3) in horizontal ground acceleration only. The P -

~ effects due to vertical forces are not considered. lbe optimum solution against cycle for

horizontal or combination of horizontal and vertical ground accelerations is shown in foigures·

103 through 106. The notations given in the figures are II (horizontal ground acceleration) and

V (vertical ground acceleration). The results for 2nd variance approach with normal distribution

are
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considered here. In Figure 104 the weight difference between horizontal and horizontal coupled

with vertical ground acceleration increases with the reliability level. It ~hows the weight

increases due to the appearance of vertical ground acceleration are 6.59 % at Pro = J0- I and

11.07 % at Pro = 10-5 . In Figures 105 and 106, the moments of inertia for combination of

horizontal and vertical ground· acceleration are heavier than those for horizontal ground

acceleration.

The mode shapes from frrst to 10th modes are the horizontal vibration modes, and from

lith to 20th modes are the vertical vibration modes. In Figures 107 and 108, the natural

frequencies increases with the reliability levels. 'Ibe natural frequencies of the structure subjected

to horizontal coupled with vertical ground acceleration are higher than those associated with the

horizontal ground acceleration.

In Figures 109 and 110, the mean and variance of displacement subjected to horizontal

and vertical ground acceleration are less than those subjected to horizontal ground acceleration.

In Figure Ill, for horizontal ground acceleration only, the active constraints are the lateral

displacement at lowest level at Pro = 10- 1 and Pro = 10-3 , at the 1st and 2nd level at

Pro = 10- 5 , and at 1st, 2nd, 3rd, and 4th level at Pro = 10-7 . For horizontal coupled with

vertical ground acceleration, the active constraints are the lateral displacements at the 1st level at

Pm = 10- 1 to 10-7. The reason for active constraints at the lower levels is that the dilferences

between allowable and actual displacements at lower levels are smaller than those at higher

levels.

In Figures 112 and 113, the mean values of interaction equations for horizontal and

vertical ground acceleration are higher than those for horizontal ground acceleration at

Pro = 10-3. However, the variance values for f l are in reverse order. In Figure 114, the active

constraints at Pro = 10-3 are f1 of column 2 to column 10 for horizontal ground

acceleration, f l of column 10 and f2 of column 2 to column 10 for combination of horizontal

and vertical ground acceleration.
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E. SUMMARIES

1. The optimum designs change as the values of VMy change; however, the changes with

normal distrihution arc not large.

2. The differences between 1st and 2nd variance approach are not sensitive to the change

of V\1 .
y

3. The optimum designs arc not sensitive to the change of VM
cr

4. \Vhen the coefficient of variation of peak ground acceleration Increases, the optimum

design results with lognormal distribution increase faster than those with normal distribution.

5. The optimum design results for 1st vanance approach are close to those for 2nd

variance approach with VUJ = 0.072 and CE = 0, and 2nd variance approach with Veo = (),

CE = 0.15 at low reliability level; the differences among them increase with rcliahility level;

the optimum design rC~iUlts for 2nd variance approach with recornmendcd values of wdlil:icflls

of variation of natural frequency and CE are the heaviest designs.

6. The vertical ground acceleration can noticeably affect the optimum solution.
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XI. OPTIMUM DESIGN FOR STATIONAR Y SEISMIC PROCESSES.

The earthquake load based on stationary seismic process is also used to investigate the

comparison for various random seismic spectra, for various failure probability expressions, and

for three types of loading. The comparisons also include cost design for two cost ratios, and two

system failure bounds. The two-story and ten-story shear buildings used previously arc

investigated m this study. The parameters for stationary ~elsmlC process arc

('0. == 1.0 in 3 1scc·l, (Itl.JX em3 t sec;\ (!Ig -= 15.tlrad hcc, Cg - 0.6. The dclermillj~lic

allowable displacements are O.1I05 times the com:sponding .heighl relative to the struc.;tural base.

The yielding strength is Fy = 36 ksi (2.448 x 105 kPa), and the clastic modulus is }1I000 ksi

(2.067 x 108 kPa). The notations given in the figures are first passage expression (I;P), safcty

factor ellpression with normal distribution and Davenport's equation (SND), safety factor

ellpression with lognormal distribution and Davenport's equation (SL:'\O), safety factor

ellpression with normal diatribution and Kiureghian's equation (S:--iK), safety factor expression

with normal distribution and Kiureghian's equation (SL:'-JK).

A. COMPARISON or VARIOUS SEISMIC ~PECTRA.

The stOl:hastic.; seismic; spcdrum may be while nOIse spcl:lrum (W~), Kani-T:..jirni liltcr

white noise spectrum (FW), or modified white noise spcc;trum (V1W). These spec;tra arc uscd lo

investigate their effects on optimum weights and moments of inertia.

The optimum weights and moments of inertia subjected to three stochastic seismic; spcc;tra

for five failure probability expressions of FP, SNO. SLND, SNK, and SLNK arc shown in

Figures liS to 124. The results subjected to modified white noise spectrum are the largest

among these spectra. However, the differences of the results between modified white noise

spectrum and ruter white noise spectrum are small. The results for while noise spectrum are the

smallest among these spectra. The weight dilTerences between modi lied white noise spcc;lrurn

and white noise spectrum arc from 706.1 Ibs (JI42.1 N) at Pro = Ill-I to IX26.61bs (XI2X.J :-.i)

at PfO = 10-
7

. The weight dilTerem:cs between modified white noise spectrum and tilter while
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-I
noise spectrum are from 35.81bs (159.3 N) at Pm = 10 to 142.91bs (635.9 \') at Pm

The optimum weight in figure 125 and the moments of inertia in I-'igurcs 126 and 127 of

IO-story shear building for first passage c:<.pn:ssion show that the observations are the same as

those for 2-story shear building. The deterministic designs in the figures are the optimum

solutions which do not include the probabilities of failures in the constraints. The detenninistic

constraints used are

Umax - allowable displacement ::; 0

f lma :<. - 1.0::; [)

r2max - 1.0:::; ()

f3max - 1.0::; 0

f4max - 1.0::; 0

where Umax. f lmax' f2max' f3max' f4max can be obtaincd from I':quations (5.42), (6.27),

(6.29). (6.31), and (6.33).

The results show that the optimum weight and moments of inertia with r~liability

constraints are higher than those with deterministic constraints. The dilTen:nces of optmium

solutions between the designs including reliability constraints and the designs including

detenninistic constraints increase with reliability criteria.

B. COMPARISON OF VARIOUS I·:XPRI·:SSIONS OJ: l"AII.IJRI~ PROBABII.ITY.

The failure probability expressions for stationary seismic processes may he the first passage

expression and the safety factor expressions with two peak response equations of Davenport's

and Kiureghian's equations and two probability distributions of nonnal and lognonnal

distributions. lbe optimum weights in Figures 128, 130, and 132. and the moments of inertia in

Figures 129, 131, and 133 for different expressions of probabilities of failures with three spectra

of white noise, ruter white noise, and modified white noise are compared for two-story shear

building.
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(1) at Pro == 10-
1
, the order of optimum solutions from large to small values in the

following sequence is (a) safety factor expression with lognormal distribution and Davenport\

equation (SLND), (b) ~afety factor expression with normal distribution and Davenport's

equation (SND), (c) fIrst passage equation (FP), (d) safety factor expression with lognormal

distribution and Kiureghian's equation (SLNK), (e) safety factor expression with normal

distribution and Kiureghian's equation (SNK).

(2) at Pro == 10-
3

, the order of optimum solutions from large to small values is in the

sequence of (a) safety factor expression with lognormal distribution and Davenport's equation

(SLND), (b) fIrst passage equation (FP), (c) safety factor expression with lognormal distribution

and Kiureghian's equation (SLNK), (d) safety factor expression with normal distribution and

Davenport's equation (SND), (e) safety factor expression with normal distribution and

Kiureghian's equation (SNK).

(3) at Pro == 10-
5

and 10"7. the order of optimum solutions from large to small values is

in the sequence of (a) flTSt passage equation (foP), (b) safety factor expression with lognormal

distribution and Davenport's equation (SLND), (c) safety factor expression with lognormal

distribution and Kiureghian's equation (SLNK), (d) safety factor expression with normal

distribution and Davenport's equation (SND), (e) safety factor expression with normal

distribution and Kiureghian's equation (SNK).

C. COMPARISON OF UBC, NNSRS, STATIONARY SEISMIC LOADS

Three types of loadings are used here for the comparison of their optimum design results.

'me loadings arc the peak ground acceleration of O..148g in NNSRS approach which can

represent the 1940 E 1 Centro earthquake; I the stationary modified white noise process of

Go == 1.0, (g == 0.6, cug = 15.6, with an amplification factor of 2.7 corresponding 10 the F I

Centro earthquake; 20 and UBC seismic load with zone IV and coefficient of variatiull of L Be

= 1..18. The comparison of the optmum weight and moments of inertia for lsI :md 2nJ

variance approach with normal. and lognormal distributions of the two-story shear building is

studied. Figures 134 to 137 show that optimum solutions inJicate that the order of mai:-rnitude
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with lognormal distribution from large to small values is in the sequence of NNSRS, Stationary,

-I -3
USC at Pro == 10 ; of NNSRS, unc, Stationary at Pm == 10 ; of NNSRS, UBC,

Statiunary at Pru == [O-s; and of UUC, NNSRS, Stationary at P fO == 10-
7

. The order uf

magnitude with normal distribution from large to small values is in the sequence of NNSRS,

-I -7
FP, UBC at Pro == 10 to 10 .

D. EFFECTS OF COST FUNCTION ON SENSITIYITY STUDY.

The same observations for sensitivy studies of two ratios, Cin and CYL ' employed in the

study of UBC load are used herein. The optimum cost and the moments of inertia arc shown in

Figures 138 and 139 for the two-story shear building for three ein values with modified white

noise spectrum and fJ.rst passage expression. The optimum costs and the moments of inertia are

shown in Figures 140 to 142 for the tcn-story shear building for the assumed Cin' seismic input

spectrum, and failure expression used for the two-story shear building. The results on hoth

structures reveal that the moments of inertia do not change for different values of Cin' Since

nonstruetural member cost is not involved in the computation of probabilities of failures and

future failure losses, the change of nonstructural member cost does not affect the change of

structural members.

The optimum cost given Figure 143 and the moment of inertia in Figure 144 for the

two-story shear building are obtained for three CYL values with modified white noise spectrum

and fltSt passage equation. The optimum costs given in Figure 145 and the moments of inertia

in Figures 146 and 147 for the ten-story shear building are obtained for same CYL values,

seismic spectrum, and failure expression used for the two-story shear building. The results on

both structures show that the optimum costs and moments of inertia Jo not change for Jitferent

CVL values at high reliability level. This is because that the future failure loss is small when

high reliability criteria are employed in the design.
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E. COMPARISON OF SYSTEM FAILURE PROBAI3ILlTY FORMULATION IN COST

OPTIMIZATION.

In Section lID, the exact system probability of failure is too complicate to obtain.

However the upper and lower bound for this probability can be obtained. In this section the

upper bound, which is the sum of all individual failure modes, and the lower bound, which is

the maximum value among all individual failure modes, arc used to investigate the r:.tnge of

exact system probability of failure may lie. The ten-story shear building structun: is used. The

values of Cin , 5, and CYL I I, are assumed to represent the cost function. The unit cost is 0.1 S

dollars / in3 .

The total cost in Figure 148 and the moment of inertia in Figure 149 for modified white

noise spectrum and ftrst passage expression show that the differences between maximum and

minimum bound are large at low reliability. These differences reduce when the allowable

reliability increases. At Pro = 10-
1

the optimum total costs are $121528.7 in maximum bound

system failure probability and $111224.5 in minimum bound system failure probability. At

-7
Pro = 10 the optimum total costs are $159248.1 in maximum bound system failure

probability and $159243.9 in minimum bound system failure probability.

F. COMPARISON OF MOMENT OF INERTIA IN COST AND WFiGIIT

OPTIMIZATION.

In spite of different objective functions between cost and weight, the comparison of

moment of inertia for these two functions may be used to see the differences of optimum design

sections. The ten-story shear building, modified white noise spectrum, and ftrst passage

expression are used. The values of ein' 5, and CYL' I, are assumed to represent the cost

function. The unit cost is 0.15 dollars / in3 .

In Figures 150 to 152, there are ditTercnces of moments of inertia between cost and weight

optimization at low reliability. The differences reduce as reliabilities increase. At Pm = 10.
1

the moments of inertia for column I is 606.4 in4 (25240.2 cm4) in weight optim;/.ation and
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889.3 in4 (37015.4 em4) in cost optimization. At Pf() = 10.
7

the moments of im:rtia for

column I are 1462.5 in4 (60873.8 cm4) in weight optimization and 1466.2 in4 (61027.X

cm4) in cost optimization.

G. SUMMI\RIES

J. The results jllr modilil:d white hoi~e seismic :--pl:etrum an: the heavie:--t (k~igIl .

., The results for modi lied white nOIse spectrum and filtered whitl: nOIse spectrum arc

close.

3. The order of optimum solution for live failure probability expressions from large to

small is in different sequential order for different reliability levels.

4. The results of ~ ~sRS at all reliabilities with normal distribution and at low rdiabilities

with lognormal distribution is the heaviest lbilPl among l; BC, :" :\SRS. and ,tatiol1ary seismic

process. "Ibe results of UI3C at high n:liability with lognormal distribution is the heaviest deSign

among UBC,' \';'\SRS, and stationary ~ismic process.

5. The moments of inertia do not change with Cin at all rcliabilities and with C VI. ;,jt

high reliabilities.

6. There is a difference of cost between system maximum and minimum bound ;,jl low

reliability; the difference reduces as reliability increases.

7. There is a difference of moments of inertia between cost and weight objective function

at low reliability; the difference reduces as reliability incn:ascs.
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XII. CONCLUSIONS

Four live load models are used to investigate their optimum design results. The magnituue

from large to small for dead toad plus live load with two Llistrihutions and two \'ariam:e

approaches is in the sequential order of UNREDUCED, UK, \'BS, and i\\'SI. The magnitude

from large to small for dead toad plus live and LBC 10aLls is in Jilkrellt ~equelltial (Jlul:r 1m

different variance approaches and probability distributions.

The sellSitivities of variations of yidJing moment ;Jl\d criticd mOlTlent arc \llHlil:d for

CDC seismic load and \,;SSRS approach. For lJBC seismic load with no variation, the

optimum design results are not sensitive to the change of variation of yidJ moment when V \1
Y

is less than 0.15; the optimum designs change when V\.1 changes; no sensitivities of
. er

coefficient of variation of yield moment and critical momerH can he observed for hig.h variation

of CSc. For N;-..iSRS approach with no variation of peak ground ace.deration, the, optimum

design results are sensitive to the variation of yield moment and not sensitive to the \ariatlon of

critical moment.

for USC loading, the demand of optimum design with lognormal Jistrihution is heaVier

than that with nonnal distribution; the 2nJ variance approach requires heavier Llesign than till:

lirst variance approach; the optimum weight and moments of inertia arc sensitive to the

variation of UDC and the increase with lognormal Llistribution is very fast at high variation

value. The optimum design Jiscrepancy among four earthquake lOne coellicients in l; Be

increases with allowable reliability level.

For NNSRS approach, the 2nd vanance approach requires heavier Jesign than the tirst

variance approach; the optimum weight and moments of inertia arc semitive to the variation of

peak ground acceleration and the increase with lognormal Jistribution is very fast at high

variation. The vertical ground acceleration effects can sib'11ilicantly inlluence the optimum

solutions.
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Investigation of the structure subjected to stationary process with three seismic spectra and

five failure expressions reveals that the optimum designs of modified white noise spectrum are

the conservative designs and close to those of filter white noise spectrum. The optimum designs

of the safety factor expression with Davenport's equation arc the conservative designs at lower

reliability levels and the optimum designs of the first pass~ge ex.pression are the conservative

designs at higher n:liabilities.

Comparing with three types of seismic loadings of U BC, N NSRS, and stationary pr<lCess

with seismic input spectrum, the designs for :'>J:--.rSRS approach an: the conservative designs at

low reliability.

for lJBC and stationary seIsmIc processes, the moments of inertia do not change I()r

diJferent ratios of Cin because the change of nonstructural memhcrs cost docs not alk:ct the

computation of failure probabilities and future losses. The optimum cost is not sensitive to the

ratio of CYL at higher reliability because the value of future failure loss is small at hi~

reliability criteria.

For stationary SCISnuC processes, there are the differences of optimum designs hctween

maximum and minimum bound of system failure probability at low reliability; and the

differences decrease with reliability level. The designs for wst function require heavier sections

than those for weight function at low rcliahility. At higher rcliahility level, this dilfcrencl:

hccomes very small.
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APPENDIX A

DERIVATION OF MEAN AND VARIANCE OF LNR OR L:"JS

If x and y are random variables, they have a relationship

x = lny

and

dx/dy = I/y

For an one to one transfonnation, fy(y)dy = fx(x)dx. shown in hgure 153 it induces

(1\ I)

(1\2)

where fx(x), and fy(Y) are the probability density functions of x and y. Since x is normally

distributed, fx(x) is

f (x) = 1 exp[~ x - x)2] (1\4)
x & 2 O'xO'x 7r

where x and 0' x are mean and standard deviation of x.

Substituting Equation (1\4) into Equation (A3), it yields

f. ( ) = 1 [-=!.{ lny - x }2]y y ~ exp 2 0'
YO'x v27r X

Since

where F ( ) = cumulative distribution function, i. y = medians of x and y.
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(x)

f(y)

Figure 153. The Equal Area of f(x)dx and f(y)dy.
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Since nonnal distribution is a symmetrical distribution, it resulta

Thus,

in ti ­
y = x

Substituting Equation (AS) into the foUowing equation, it yields

(/\ 7)

(A8)

E[l]
co

= f 0 y\(y)dy = (A9)

The Ist and 2nd moment can be detennined to be

E[~] = 9eXP(-}o-Gt y)

tl2 2 2 2 2-= y exp(O'lny)( exp(O'lny) - I) = Y (exp(O'lnY ) - I)

Thus,

Therefore;

(/\ 10)

(All)

(AI2)

x III Y
tI

III y 1111 y l~)(p(
1

III Y - 1/2()1~, Y (1\ I \)
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If y= R or S, Equations (AI3) and (AI4) become Equations (2.10) or (2.11).
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APPENDIX B

AN EXPECTED CROSSING RATE

An ex.pected crossing rate vt is an expected frequency of crossing the level s

positive slope. In what follows, the detennination of this rate will be described.

a with

In a geometry sketch shown in Figure 154, a point of a sample function at t = t I will

cross the given bound, s = a. during a very small time interval, dt, which is so small that the

sample can be treated as a straight line in this interval. In order to cross the bound. the slope,

s, should have postive values such as curves (a) and (b). At t = tl the curve (c) does not have

chance to cross the given bound during dt since its slope is negative. Thus the combination of s,

which is less than and equals to a, and s, which has positive value, decides the process at t

t I will cross the nound. The shaded area hctween the cun:ves s -- -; and s '"" (7; \)/dl IrI

Figure 155 an: the combinations of s and s that result the crossing of the given bound.

Not only considering the combinations of s and s we also need to determine the

probability of these combinations occured. This probability can be described by a joint

probability of s and s, Pd(s, s)dsdS which is the probability having s values between s and s + ds

and having s values between 5 and 5 + ciS. Thus, the expected number of crossings of s =

a during dt is the cumulative probability distribution of combinations of s and 5 which result

the crossings. That is

JOOOdi;J~ . Pd(s , s)ds
a - Sdt

where the integration limits have been chosen to cover the shaded area in Figure 155.

I'hen:fore, the value of vt which is expected numhcr of cros\ings per unit liml: can he

obtained to be

vt = _IfOOOds/i . Pd(s, s)ds
dt a - sdt

finally letting dt .... 0, the desired expected crossing rate becomes

vt = JOspd(a , s)dS
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APPENDIX C

EQUIVALENT UNIFORM DISTRIBUTED LOAD

To derive an equivalent uniform distributed load (EUDL), an influence surface coefficient

IS needed. An influence surface coefficient is two-dimension extension of the principle of

influence linc. The ordinate I (x,y) of an influence surface at any point (x,y) is the intlucncL: on

:-;1I111~~ dcr:-;in'd load dkct dill: 10 a ullit loau at (!l,y). ;\11 i1111 UCllU; ,urbcl:s Illay hc COll,trllclnl

by multiplying appropriate influence lines.

For example, a desired load effect is an axial load on a typical interior column (one story).

From the principle of influence line, this axial load will be detennined by assuming a unit

displacement at one comer of a panel. In Figure 156 a panel subjected to a unit displacement at

one comer will be the product of two influence lines in X and Y axes. The detennination of this

influence surface is as follows.

Assuming a deflection curve in X axis is Uz = a + bx + cx2 + dx3 . the deflection in

terms of nondimensional variable, x' = x I t is solved by substituting boundary conditions

{r I. = (). {it. = () at x' = (), anu (J I. = I. HI. ' () at x.' - I. Thcrcf(lrc thc infllll:lln:

line along x axis has the form:

Uz = 3x.,2 - 2x,3 , O:s x.' :s I

In a similar manner, the influence line along Y axis which has the same boundary

conditions is

Uz = 3y,2_2y,3 , O'5y':s I

where y' = Ylt. Thus, the influence surface I (x,y) IS approllimate1y the product of the

influence lines in X and Y axes.

o :S x' :S I and O:s y' :S I

In the design, the maximum EUDL shown in figure 157 is our concern. The ~taListics of

this lII<1xi ITI urn EUDL can be <1s:;umeu to be
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Figure 157. The Time History of EUDL.
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-- 2 1/2
= EUOL +q(oEUDI) ! (el)

and

where EUDL, 0EUDL == mean and variance of EUDL; q, r2 arc constants .

.substituting l~quations (3.4) and (3.5) into I:quations (C I) anJ (C2), They hecorTIe

(C2)

..,

(EUDL) = -Ly + r (02 + crt KUl/2 =. max 1 r
AI

and

(C3)

(C4)

where C l , C2. C3,C4 are constants which can be detennined from live load survey. Equation

(C4) is corresponding to Equation (3.5).
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APPENDIX 0

A PROBABILITY DISTRIBUTION OF PFAK ACCU.FRAT[ON

To detennine the mean and vanance of maximum peak ground acceleration, the

probability distribution of this accelaration has to be known. In 1968 Cornell showed that this

probability distribution is a type II extreme distribution. In what follows his derivation will be

described.

Since the energy, E, released by earthquake has the relationship 10gIOE = aO + bO M

which was proposed by Ritcher, some researchers such as Kanai, Esteva, and Rosenblueth,

suggested the following relationship among peak ground acceleration (A), magnitude (:\1), and

focal distance (R) is detennined to be

(f) f)

where b 1, b2, b3 are constants which are obtained from field data. Esteva and Rosenblucth

used b I = 2000, b2 = 0.8, and b3 = 2 with unit of A (eml sec2) and R (kilometers) to

represent southern California condition as shown in Figure 158.

The formulation of Equation (01) may be explained as follows: since E = mass (m)

acceleration (A) distance (R) + baM, then mAR +

eM bO In 10. Consequently. A is exponentially proportional to \It but inversely proportional to

R.

hom Equation (D I), the alternative relationship is

M = -lnbl
b2

+ .£l lnR + InA
b2 b2

(D2)

The conditional probability of lnA of actual 1\ which is greater than :my number 111:1 of

allowable peak ground acceleration at focal distance R = r is
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A

A = 2000eO. 8M K-2 (M = constant)

A = 2000eO.8M R-2 (R = constant)

a

R
M

l.------------ ---:~__~M
Figure 158. 'The Relationship of A and M, A and R, n and M.
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P[lni\ 2= InalR = r] = P[M;::: Ina + b3 ~~ -In bl ]

= 1- F( Ina + bJ lnr - In b I )
b2

where f(M) = the cumulative probability distribution function of M.

Since Ritcher also suggested the foUowing relationship which is shown in Figure 158

(DJ)

(04)

where nM = frequency of earthquake, a and b are constants obtained from field data, the

frequency of earthquake can be expressed to be the form

[ J [ a11\1 == cxp a In III - b In 1O:vI = exp - h In 10 (M - h)]

Thus I-F(M) is computed as

1- F(M) = e-P(M - MO)

where P = b In I0 and MO is the smallest magnitude will be considered for the design.

Therefore, from Equation (03)

P[InA 2= \naiR = rJ = exp [_ fJ (Ina + b3 lnr - \n bl - MO )]
b2

(1)5)

(06)

(07)

Based 011· Fqualion (D7) allli Figure 15<> the cumulative distrihution of In/\ for the

distance of site to central point of line fault source (d) and to the farthest point of line fault

source (rO) yields

(08)

where fR(r) is the probability density function of R. The cumulative distribution of focal

distance R is
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line fault source
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Figure 159. The Configuration of Site and Line Earthquake Source.
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FR(r) = PER ::::; r] = P[R2::::; r2]

=P[X2 +d2 ::::;r2] =P[IXl s lr2 -d2 ]

Since the cumulative distribution is the probability of focal length from a to Ir2 - d2 in half

length of line source (t/2), then

d::::; r $ rO (09)

the probability density function of R is

2 r
= d $ r $ rO (D 10)

Substituting Equation (010) into Equation (08), its integration is very complicated.

However, in the region of greatest interest, namely larger values of Ina the results is 36

1 - FlnA(lna) = J-c G exp[ - L Ina]
I b2

where C = a constant == exp[p(.£.!..) + mol
b2

(0 II)

;1 nlllslalll

r 1 == (1 b3 - I.
b2

f( ) == Gamma function

Equation (011) is also the probability of earthquake event in which A is larger than a.

This probability can be substituted into the following equation to detennine a probability

distribution of random number, N, of this earthquake event which is assumed to be a Poisson

process in a time interval of length t years with average occurence rate of \I per year.

e- Pi\lt (pjvt)n

n!
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If the zero number of an earthquake event which is less than an allowable value, the

probability becomes

where -; = viI

Comparing Equation (013) with a type II distribution

-(2.-r KI
FA(a) = e ul

the coefficicnts of uland K1 will be detcnnined to be

ul = (:CGt)b2//3

Kl = P
b2

which are used in Equation (3.17)
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APPENDIX E

A WHITE NOISE PROCESS

Considering a periodic function f(t) of period T, it can be respresented as a superposition

of sinusoids in the following exponent Fourier series

00

f(t) = L Cn exp(i n wo t)
-00

(E1)

where wo = 27rfT is the fundamental frequency. The coefficients Cn can be evaluated directly

from the relation

Tf2
Cn =+J-Tf /(1) I.:XP( - i n 11I0 l)dt

[f f(t) is considered to be a nonperiodic function from t = - 00 to 00 , Equations (E I)

and (E2) become the following relations which are called Fourier integral.

00

f(t) = J F(w) exp(i w t)dw
-00

and

1 00
F(w) =-2J f(t) exp( -i w t)dt

7r -00

(E3)

(E4)

To illustr,ltc. cunsiuering the rectangular pulse function f(t) shown in Figure 160, it yidds

1 Tf2
F(w) = 211: J_T/2A exp( -i w t)dt

A . wT=-stn--
'/'Cw 2 (1\5)

where the function is sketched in Figure 160.
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Figure 160. Rectangular Pulse Function and Its Spectral Fourier Transform.
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If a random process s(t) is considered, the previous relations for autocorrelations of thi~

process which is also a nonperiodic function become

00

E[s(t) s(t + 1')] = R(1') = 1 G(w) exp(i w t)dw
-00

and

I 00
G(w) =-I R(1') exp( -i w T)dT

2/f (fl

where l' = a time difference and G(w) is called a spectral density function.

For a special case where '1' = 0 ,Equations (E6) and (E7) become

00

R(O) = 1 G(w)dw
-00

and

1 00

G(w) = 2" 1_
00

R(O) d1'

(E6)

(ES)

(E9)

Therefore each stationary process has a corresponding spectral density function to Je~crihc

it. The process with an unifonn spectral density value GO shown in Figure 161(a) is called a

white noise process in analogy with white light which has the constant uniform spectrum. Toe

white noise process will result the autocorrelation becomes

(E 10)

where 6(1') is a Dirac delta function which has unit area concentrated at T= 0 and zero valuc~

for l' "* O. The zero correlation of s(t) and s(t + 1'), RS(1'), for l' "* 0 results that the process has

random behavior. A sample function of this random process is shown in Figure 161(b).
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Figure 161. 'The Spectral Density Function and Time History of a Sample Function for a
White Noise Process.
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APPENDIX F

MOMENTS OF FILTER WHITE NOISE PROCESS

1- 2/Tttan-I(,,~) A'

~ F

1 - 2/rttan-
I
«(g/R)

/1 -(i
C 2GO D
- - ---Inr
F 2 Fwg

(F2)

rtGO;\" rtGo E----+---
2:; (1)1\. F 2:;gCllg F

22 2 '22 24 2
wherer= wO/<:>g;A= A

O
+4( r [2- 4(g - (3- 4()r - 4(g r ];A' = AO +4(

r2 [1_ 4(g2_2(1_(2)r2 .2(g2r4 J ; A"=A
O

+ 4(2 r2[_ 4°(g2_ r2];B= 1_8(g2_

22 2.4 2 2 222.2 22(1-2()r +(I+4( )r·C=I-4( -2(1-2( +2( ·4( ( )r +(1+4( .
C'I" n n rr 0
o 0 0 0 0

4 4 2. 2 2 4 2 2· 2 2. 2 28 ( ) r . D = 1 - (1 - 2 ( .) r - 2 ( r; E = I - 2( 1 - 2 ( + 4 ( . 8 ( ( ) r + ( 1+ 4 ( -g , g g g. g
44 22 2 2.2 2.4 2

16( )r;F=F
O

+8( r [1- 2( -2(I-C)r +(1-2( )r ];AO=I-20-4()
g g g g

2 24 2.2 2 44 268r + (I + 4 ( ) r ; and F
O

= I - 4 (1 - 2 ( ) r + 2(3·8 ( + 8 ( ) r - 4( I- 2 ( ) r + r .
g . g g g g
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APPI~NDIX Ci

SUPPLIME:--JTS OF PENALTY FUNCTION METHOD

I. A simple illustration example

Assume a linear optimization problem formulated as

ST.,

For interior penalty function method. the penalty function is

I II'p(x., rp) -- xI + x.., + rp(- --- +--)
.. 3- xl 2- x2

As we know, the solution ofoPp laxi = O,3Pp /3x2 == 0, will be the minimum

solution of Pp' Therefor these two conditions yield

xI = J-r1/2 or J+r lf2p p

and x2 = 2-r~/2 or 2+rM2

The values xI == 3 + r~f2 and 2 + r~/2 which are the feasible points are the desired

solutions. As rp approaches to zero value, the optimum solutions xl = 3, x:! = 2 an:

obtained.
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APPENDIX H

fLOWCHART OF PENALTY FU\,CTfO;\i ALGORfTlI.\1

by min J1x~..l using
one dimensional search

Compute

~, = maxU{x,'"l - Ax,')]

s~ corresponding 10 11'

Repl:lce S~"" = .'I,'
exccpl S~

lei .'Ii' ." =S'
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x<*.. I) = x* + MS

YES

Jenotc
xl'" 'lbyx2

x·byx·
x<*-Ilbyx l

I [{X2)2 - (Xl)2]flXI) + [(Xl)2 - (XI)2J)(. =-=--~--..;...~~~-=-~-~~
2 (x2 - :Cl}/{X l ) + (Xl -- Xl )fix2)

fix.) + [(X I)2 - (X2)2 ]fixJ)

+ (Xl - X 21fiXl )

t1X = 2~X

I )I~eard the one of x', Xl, x 2 , Xl

with largest function values and to
maintain the bracket on the minimum

300



APPENDIX I

FLOWCHART OF OPTI:v1AUTY CRITERION ALGORlTlIM

Input Data

+---A

StnJl.1.ura.! AnaJy~is

A A

301

A
I'roblem bcl.:llmc>

c()n~traincd problem

T, = <Z + (I - <z)T,_•••
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