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ABSTRACT

Reliability-based optimization techniques are developed for steel structures subjected to
vanous seismic loadings of static equivalent load, dynamic response spectra, and stationary
process with seismic spectra. The static equivalent load is based on Uniform Building Code; the
dynamic response spectra are based on Newmark’s nondetermnistic response apprqach which
uses i statistical wehnique to estimale the response amplification factors; and the scisimc spectra
of stationary process are related to white noise, filter white noise, or modified white noise. The
optimization techniques are derived from the optimality cniterion method and the penalty
function method, which have proven to be efficient for nondeterministic structural design.
Reliability is based on two mathematical models of normal and lognormal distribution with two

‘different variance approaches.

The structural formulation is derived on the basis of the matnx displacement method and
the lumped mass model. The objective function can be either minimum weight or minimum
total cost. The cost function includes initial construction costs of structural and nonstructural
elements and expected costs of failure at various safety levels. The constraints include the
reliability consideratons for displacement and internal forces of individual members as well as a

system.

Several numerical examples are provided to ilustrate the application and parameter study
of reliability-based optimum design for vanous types of seismuc loadings. Observations of
numerical studies demonstrate: 1) for dead and live load case, the model of Great Britan
requires heavier design than the models of the U.S.; 2) the optimum design is very sensitive to
high variation of UBC seismic load and the peak ground acceleration, especially with lognormat
distribution; 3) at high reliability criteria, the lognormal distribution requires a heavier design
than normal distribution; 4) the second variance approach demands a heavier design than the
first vanance approach; 3} the effect of vertical ground acceleration can nouceably affect the
optimum solutions; &) the optimum design results of modified white noise spectrum are close 1o
those of the filter white noise spectrum; 7) the optimum design for first passage equation is

conservative among the various failure probability expressions; 8) for different ratios of tnitial

i



cost to member cost, the design yields similar member cross sections but different final costs; 9)
the optimum cost is not sensitive to the ratio of expected failure cost to utial cost at high
reliability; and 10) at high reliability level, the difference between maximum and minimum

bound of system failure probability s very small.
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L INTRODUCITON

A. LITERATURE REVIEW

Because of recent advances in electronics, engineers and scientists are on the threshold of a
new era in structural analysis and design. Most of their research efforts are based on the
development of sophisticated c()mpdtcr programs for the analysis of complex structures. 67, 68
Currently, when these programs are used to desipn structures, the refative suffnesses of a
structure’s constituent members must be assumed. If the preliminary suffnesses are mis;judgcd,
repeated analyses, regardless of a program’s sophistication, will usually not yield an improved
desiim. The programs that are presently used are actually based on conventional designs, and

their application in reality is an art rather than a science.

The optimum design concept has been recognized as being more rational and reliable thun
those that require the conventional trial and error process. /192 It is because for a given set of
constraints, such as allowable stresses, displaccments, drifts, frequencies, upper and lower
bounds of member sizes, and gven seismic loads, such as equivalent forces in the code
provisions, spectra, or time-histories, the stiffnesses of members are automatically sclected
through the mathernatical logie (structural synthesis) wnatten in the computer  program.
Consequently, the strengths of the constitutent members are uniformly distributed, and the
rigidity of every component can uniquely satisfy ‘the demands of the extemnal loads und the code
requirements, such as displacements and drifts. By using an optimum design computer program,
one can conduct a project schedule at a high speed and thus increase the benefit because of the
time that is saved. 81 An optimum design program can also be used for parametric studies to
identify which structural system is more economical and serviceable than the other and assess
the principles of vanous building code provisions as to whether they are as logical as they are

intended to be. 24,33

In the structural optimization field, all the optimizabon techniques and the computer
programs are generadly developed on the premise that the design varables, resistances, responses,

and loadings are deterministic. 21,47,48.8990.31 The reasons for the lack of rescarch



advancement with regard to structural optimization of nondeterministic systems may be that [)
the modern structural optimization algenthms rely on the varous techniques of sensitivity
analysis 6,27,87 {rate of change of response quantities with respect to design vanables), which
can become a pyramidical task in nondcterministic cases, and 2) it is too difficuit to establish the
objective function involving risk analysis of expected damage costs suitable for an individua)

structural design at a particular site. 49,3178

In recognition of the random nature of seismic structural problems and the advances that
have been made in reliability analyses of structures, the research project was subsequenily
developed for optimum design of nondeterministic structures subjected to seismic ¢xcitations.
The study has taken into consideration the safety levels of a system with respect to us various
farlure modes, uncertainties n the dead and live loads as well as seismuc forces, and random
parameters in responses and resistances. The cost function includes wnitial construction costs of
structural and nonstructural elements and expected costs of failure at various safety levels. The
structural members are designed on the basis of the global optimum decision, namely, when an
increase of the initial cost is balanced by a reduction in the expected cost of failure times the

risk.

1. Optimum Structural Design in General. [n the past decade, a considerable amount of

literature has been published on the subject of optimum structural design. The increasing
number of publications corresponds closely to the rapid demand for economucal and reliable
structural desigﬁs in virtually all fields of ¢ndeavor. Ophimum designs have been extensively used
in aircraft structural engineering, 91,92 4nd more recently they have been widely appled in the

automobile industry. 12,17

Various optirnizutic)ﬁ techniques of linear, nonlinear, and dynamic programming have
been developed for different types of static and dynamic structures. 13,14,20-22,47 48,57.61
general, most of the techniques have some limitations and are best sutted for certain classes of
problems. The techmque based on energy distnbution as the opumality critenion has been

proven to be effective for large structural systems in aerospace engincering. 71,9192 venkayya

and Cheng 90 extended the optimization algorithm for civil engineering structures subject to



general dynamic loads. The method, however, 15 approximate for the muluiple constraint case.
IFurther studies by Venkayya, Khot, Fleury, Cheng, and others have led to some modem
opthnﬁations, which are efficient for large structural systems and multiple constraints. Cheng
and associates have funther extended the modem optimization algonthms to direct optimality

critena for steel and reinforced concrete building systems. 27,31

The development of the opumality criterta method may be considered to be a great
contnbution i the field of enginccring optimization in that it offers a major improvement over
any ather optimizations currently m vogue. The sigmbicant advantage of the method 1s that the
number of iterations required to converge on an optimum {or pseudo-optimum) design 1s largely
independent of the number of vanables in the problem. “The optimality mehtod has been
traditionally used for deterministic structures, which 15 now further developed for

nondeterministic structures in this research.

2. Optimum Desien in Earthguake Structural Enyineenng. Previous studies of optimum

setsrmuc structural design were mostly based on the lineanzation techmique und static equivadent
seismic forces for simple structures and shear buildings. 57.61.84 Cheng und Botkin 20.22
studied the feasible direction techmique for the design of tall buildings and large frameworks.
This included the geometne nonhneanty of the 1P - A ellect. The techmque was also studied by
Ray et al. 73,74 and Waiker and Pister 93 for optimal elastic desygn. Cheng and his associates
later studied the energy distzibn;xtion critena and the direct optimality critena for vanous seisrmic
structural designs. 23,25,26,29.33  The above brefly cited references among others mainly deal
with feasible seismic structural design of sizing the constituent members for which the feasible
domain is an expression of the standards of code requirements; however, another distinct branch
in seismic resistant design is associaled with the policy decisions of mimumizing the total cost
with a design, that is maximization of the total benefit minus the total cost; the ment function
includes the building cost and the cxpected damage. 16,62,63,78.79,80 his is emphasized on

decision models but not for the complete design of structural systems with code requirements.

The computer-aided interactive design has also been introduced in earthquake structural

design. The algonthm falls in with the mathematical programming of feasible direction. Sample



problems deal with minimum weight, minimum cost, and minimum or maximum response (for

energy-absorbing device at supports) for deterministic systems, &~11.69

It may be concluded that a great deal of research interest has been developed in
connection with optimization models for making policy decisions and structural optimizations
for deterministic systems. The structural optimization of nondeterministic structures subjected to
seisrnic excitations is still in mfant stage and has recently been studied by Cheng and Chang,
28,30,32  and others. #2:58 The reliability-based structural design may be found in Reference 41

for dyvnamic loads and Reference 72 for random loads.

). Reliability Analvysis of Earthquake Structures. ‘Ever since Cornell published his classic

paper on seismic nisk anadysis, 36 4 great deal of work has been done on a vancely of analytical
models. 82 Major ui“l'orts have been put forth o develop models for determining seismic hazaeds
(probability of seismic intensity), vulnerability (probability of damage for a specified level of
seismic intensity), and seismic nsk (probability of loss). For instance, the seismic harzard studies
have been based on various models, such as point source, line and / or area source, :u;d

fauit-rupture length. 59

Evaluating the salety of a seismic structure in the past consisted of analyzing the system to
find the probable failure level (risk level) of its individual members of which the sizes are given.
Reliability models have been studied by Ang and others. 2—% 33, 70 Qther notable works with
strong socioeconomic implications for seismic engineering systems have becn wrtten by
Whitman et al., % Blume and Monroe, 9 Liu and Neghabat, 62 and Shinosuka and Tun.
83 ‘These works are rclated to life-ling problems. The seismic strucural design, which is bascd on

a given set of nisk levels and provides optimum components, has yet to be explored.



B. OBJECTIVE AND SCOPE

1. Seismic Loadings - UBC, NNSRS, Stationary Process. In order to achieve a broader

observation of parameter studies lhroulg.h the structural optimization, three types of practical and
commonly used loading models are employed in this study. The first 1ype is the UBC codified
seismic load. The second is the Newmark’'s nmdeterministic seismic response spectrum (NNSRS)
including the statistical response results of actual honzontal or vertical earthquake records. The
third is a Gaussian random process with a constant or varied seismic spectrum which has been

commonly used to represent the seismic random load in civil engineering community.

2. Parameter Study in Reliability-Based Optimum Design Subjected to Various Seismic

Loads. The parameter study for UBC is to investigate the sensitivity of some parameters and to
compare the formulations in rehiability-based optimum models. The parameters studied are the
coefficient of vanation of column resistance parameters and coefficient of vanation for URC
The lormulations compared are the probability distnbutions of response and resistance, the
varniance approaches, and the zone coeflicients in UBC. The parameters and formulations are
also studied for NNSRS such as vanations of column resistance, peak ground acceleration. and
different variance approaches. For the stationary seismic loads, the formulations for vanous
stationary seismic spectra and failure probability expressions are compared in the opumal
solutions. Further parameter studies are due to the difficulty to assess the nonstructural and
expected fallure cost, some coefficients to represent different magnitudes of these costs are
studied 1o show their influences on the optimum design results. In the past, four live load
models of ANSI (American National Standard Institute), NBS {Nauonal Burcau of Standards),
UK (United Kingdom), and UNREDUCLED (actual) models were proposed. Ilowever, no
comparison has been performed to show if there is uny difference among these models. 1n this

study the comparison of four live ivad models is investigated.



C. CONTENTS OF THE STUDY

This report consists of tweleve chapters. Chapter 1 includes the literature review and the
objective of the study. Chapter 2 presents the reliability concepts. Chapters 3, 4, and § include
structural analysis with reliability consideration respectively associated with static and static
equivalent load, nondetermimstic response spectrum, and stationary seismuc process.  The
problem formuluations and optimization algonthms for the design are presented in Chapter 6.
Comparisons of ANSI, NBS, UK, and UNREDUCED live load models are given in Chapter 7.
The application of optimality criterion method and comparison results with penaity function
method are included in Chapter 8. Chapters 9, 10, and 11 contain studies of the sensitivities and
comparisons of some parameters for UBC, NNSRS, and stationary seismic process. Chapter [2

is the conclusion including observations of the numerical studies.



[I. RELIABILITY CONCEPTS

A. RELIABILITY AND PROBABILITY OF FAILURE

Reliability is a measure of the probability of structural survival during a structure’s
lifetime. Thus reliability is a probabilistic measure of the safety for the structure concemed. The
probability of failure, which 15 the opposite of rehability, can also be adopted to represent the
safety problem inan alternative way. In a classical formudation, reliability and probability of

failure are defined as

o0 (o =3 '
= 2.
P{R=S) f_ooPd(S)[fS Pd(R)dR]dS (2.0
PAR<S) = | - P{R=S) (2.2)
where R, § = structural resistance and response; Pjy(S), P4(R) = probability density

function of structural response and resistance, respectively. Hereafter the reliability und

probability of failure will also be represented as P, and Py .

Since in practice, the complete knowledge of cxuct distributions of resistance and response
is impossible to determine, two approximate expressions to the reliability or failure probability
have been used in many studies. One is a first-order second-moment expression that estimates
reliability and probability of faijure through a safety factor formulation. The other is a first
passage expression that estimates the probability of crossing the specified barrier during the

vibration time interval.



B. ATFIRST-ORDIR SECOND-MOMENT EXPRIESSION

1. Probability Distribution of Response and Resistance. In 1969, Comell Ly proposed a

simple approxumation model called a first-order second-moment expression, which involves the
evaluation of the mean and vanance of the structural resistance and response, and represents
either reliability or probabuity of failure. Along with this expression two probability
distnbutions of structural resistance and response considered in this study are normal and

lognormal distributions.

a. Nommal Distnbution. Since R and S are independent normally distnbuted vanables, a

linear function Q of R and S, where Q@ = R-S, is also normally distributed and thus, (Q - Q) ¢
() 15 the standard normal vanable with zero mean and unit vanance. et Py obe probability
of farlure and be @ven by

0-Q .. =Q Q
Pp = Pg(R — $<0) = PN{ 50 )=PN(GQ)=I—PN(?Q—) (2.3)

where PN( ) is the standard cumulative normal distribution function, Q = R - S | og =
(oﬁ + Gg)llz , and R, S, oﬁ, c§ = the mean and variance of structural resistance, R, and

response, S, respectively.

If a safety factor (or safety index), £, 1s defined as the ratio 5/00, then
probability of failure,

Pr=1 - PN | (2:4)
reliabtlity,

P, = PN(B) (2.5)
where

8= R-3)/ck + adl? (2.6)




b. Lognormal Distnbution. If R and S are both lognormally distributed, the function Q

= I[nR-InS is normally distributed. Thus analogous to the normal distribution case, the

probability of failure and the reliability are given as follows.

Since

Pr= P;(InR - InS<0) = PN(‘QG—CF):PN(;G): 1 — PN(G—%—) / (2.7
then

Pp=1 - PN(E%—) (2.8)
and

Pr=PN(E%—)=PN( 2_R—2ln—suz) (2.9)

©iaR +Sin §)

where the mean and variance of InR and InS are

IR = InR +(Slofip)  ofyg = In(VR + 1) (2.10)

inS = oS + (:zlolzns), of,g=In(Vd + 1) (2.10)
where

Vi = ;_21’2* , vi = %32_ (2.12)

The denvation of Equations (2.10) and (2.11) are given in Appendix A.

The mean and vanance of Q are obtained as

2
—_ —— - T 1+V
Q=R - 55 = (B8,

1 +VR



08 = R + Oias = In(VE +1) + In(v4 +1) = In[(1 + VE)(1 + V) (2.19)

Hence the safety factor, 8 = -%, 15 of the form

L+ VE
L+ VE

g =
Jal1+ vt + V3]

mi(R-9) ]

(2.19)

2. Uncertainty Formulations of Response and Resistance. According to Equations (2.6)

and (2.15), finding the safety factor formulation is equivalent to calculating the meuans and
coeflicients of vanation of structural resistance and response. Since determining uncertainties of
structural response and resistance is umpossible, a first-order approximation is employed to
approxiumate the uncertainties n terms of thewr parameter uncertainties. The approxmation of
the means and vartances of structural response and resistance can be denved as
mcan,

50 = ELS®) + z<§f—i)ari -]

L

=S + 2(7;’-5_—);5& -]
i 9n

= S@ + (210G — &)
1 1

=S() (2.16)

ﬁﬁ:ﬁmﬁ+g%%ﬁwkﬁﬂ
iy ’

1

= R(r) C2N

variance,

o§=E[S-5)S -]
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= BLS® + (2 5tr; - &) - DS + Z( S )t~ ) ~ 5]
1 1 J

= B L e - oxz( SR = )]
1 1

55 55 - =
= ZZ( [ a\'i )fprirjvrivririri . (2'18)
1]

og = E[(R - R)(R - R)]

JR ﬁR
= 2'1: l' a T ) 1ﬂr lrr 'Vr Vv v l' fl' ]I (2]9}
where g r’j = ith, jth random parameters of response and resistance; pri’j , pr'i’r’j’
= the correiation coefficients of r; and s r‘y and r’j, ; Vr.,Vrj, Vr,l, Ve, = the
]
coefficints of vanation of 1 T 'y rJ: ; rl,r], r T rJr = the means of r;,r i rl’,rlf ;
f,r = all mean random parameter values of response and resistance.

A structural response S such as a displacement and an internal force can be determined by
= Cgq’ (2.20)

where Cg = an influence coefficicnt that transforms the load intensity (q') into the desired

response; q° = the load intensity which may be dead, live, or canhquake load.

Two approaches for finding the variance of a response are suggested in the following.

a. A Vanance Approach to Be Called Ist Vanance Approach Hereforth. If the random

parameters imnvolved in a response are known, the vanance of a response is found to be

[

Js as
0§ ZZ( ~)e(=— )Pr Vrv ”

-22[( )-q +(—)r( a7 )rcslpn\’r Vr]f (2.21
t | o
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Once the uncertainties of each random parameter are determined, the vanance of a

response can be obtained through the Equation (2.21). 40,41,42

b. A Varnunce Approach to Be Called 2nd Vanance Approach lereafter.  In many

practical situations, finding the means and coeflicients of vanation of random parameters in a
response is difficult. Therefore, the variance of the structural response can be calculated based on

the square of some percentage of the mean value of the influence coefficient (ES) by 44,70
2 2 N
(C C ) q +(CS) V (2.22)

where Cp is a percentage constant of ES and Vq: 1s a coefficient of varation of load

intensity, q.

Companng with Equations (2.21) with (2.22), the two equations wil be the samc if the

following terms are cqual.

aC ac
S S ,2 252
%":j:[ —arT'r( &r] ]prirjvrivrjf C C 3)°q (2.23)
and
aq’
EZ[ ! ?(—)rCS]DrrVrV £ —(CS)2 232 (2.29)

ar:

1

C. A FIRST PASSAGE EXPRESSION

For a random vibration problem, the probability of failurc may be the probability that a
stationary response will fail in a prescnbed bound dunng the system operating time. This

probabulity called the first passage equation has the following form.

Lct s(t) be a stationary process, and v;‘ be an expected frequency of crossing the constant

levels = 2 with a positive slope, whuch is described in Appendix B, then

12
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(0¥
o]
wn

Rt

+_ 0~
Va =f0 sl’d(a,s)ds
where § = the denvative of s; Pd(z, §) = joint probability density function ofa and §.

If s(t) 15 a stationary Gaussian process with zero mean, this implies that the joint

probability density of s and 5 takes the following form:

Pysd) = ——— expmLi s + A2 - (2.26)
&Y e oy 27 2 2 ‘ -
5 5

where o and o are the standard deviations of » and s, respectively.

Substituting Equation (2.26) nto Equation {2.25), We find

- "2
= [e o] S —l { a

| f 32
= ) 5 exp (==)ds
2:1050 Gs 02
% yt
= ‘ 227
20, exp ( 20_3 ) (2.27)

For a double barrier case, |s|< a, shown in FFigure |, the expected frequency of crossing

the level [s| = a becomes

) . (2.28)

When the crossings of the level |s|= a constitute a Poisson process, the first-passage

probability density Pj(t) has the form

13






Py(ty = vy exp (= v,t) ‘ (2.29)
where t is a time parameter.

Therefore reliability ( P, ) and probability of failure ( Py) on time interval 0 <t <'T( are

given by
Ty
Pe=P(Tg) = [, Pyt =1 cxp(—v,T) (2.30)
P, =P(Tg) =1~ P{Tp) = exp(~v,Tp (2.31)

D. RELIABILITY QF STRUCTURAL SYSTEM

In Section A, the derivations of reliability and probability of failure are based on a single
failure mode with a single structural response and resistance case. However, a structural system
may have many fallure modes. Hence the system reliability or probability of failure may also be

the desired quantity for considening the structural safety problem.

There are two fundamental types of systems, namely, a senies system and a paralicl system.
A systemn is a series system if it is in a state of failure whenever any of its elements fails. Such a
system is also called a weakest-link system. For a parallel system, failure in a single mode will
not always result in failure of the total system, because the structural capacity may be able to

sustain external loads.

In this study, the structural system is considered to be a series system, which means that
the structure fails when any safety cnterion is not satisfled. The probability of tailure tor this

system, P¢r . may have the form

PepR<$) =1 = PR >S) =1 = PR >8Ry > 85 ) (2.32)

where Ry, R5,5),85.... are the resistunces and responses of cach failure mode tor a

structural system,

15



The determination of the exact value of Lquation (2.32) is very difficult since the
relationship among fatlure modes is too complicated. Nevertheless, two extreme bounds can be
detenmined on the basis of the following conditions, 4 33

Perfectly correlated among failure modes

From Equation (2.32), the system probability of failure, Prp, may be expressed as

Pr=1-P; (RI > S]) = |l-(1- Pf(R]' < S])) = [’t{'Rj < S]) . (2.33)

Therefore, using the maximum value of all fatlure probability modes yields the system fadure

probability as

Prr = max(Py) ‘ (2.34)

Perfectly uncorrelated among failure modes

Ppp= 1= Pe(Ry >8P (Ry>8g) e PR > 8) = 1= 1101 = PR; < 8)

-1 +3Pg + TP Py | (2.35)
Pyt

> Py (2.36)
P |
where Pfj = the component failure probability of a structurai system.

E. APPROXIMATION FORMULA FOR CUMULATIVE NORMAL DISTRIBUTION

From previous sections, the reliability and probability of fatlure arc calculated through the
cumulative normal distnbution. flowever, finding the exact value of this distobution 1 very
complicated and Jdifficult. Therefore, some approxmation formulac have to be used to
approxsmate this function. In thus study the formula in Reference 38 is used. The formula has
two cquations in two different ranges of safety factor. They are

Fomula (1), 8= 1.6

16




[33 ﬁ5

1
P=(f-—+— 0.5 2.37
=8 et 40)‘/5 + (2.37)
Pr=1 - pr (2.3K%)
I15>f>16
2 __
l k) —ﬁ— 2
Po=05[1 (1 -—+—=)e" 2 y= /p]+0.5 (2.39)
r 2 3 ﬂ
B B
Pf=—‘ 1 — Pr (2.40)
Formula (2). =1
L+ 5> Pu()
Pp= HE ald) (2.41)
2 B
2+ 8
where
P,(8) = standard normal density function
1 _—p%2
= ——e (2.42)
¥on
Formqla (3),
AB ! ¥
Pe=(——= el 2.43
Ty T T G BT rES (243
, 52
where A= ()13 = 1604 C = 391D =445 [ = 07y = LERE 293y2

Companng Formula (1) with Formulae (2) and (3) yields the resuits shown in Figure 2

from which one may observe that the rcsults are very close cxcept in the range of safety factor
between 1.4 and |.8. Thercfore Formula (1) is used in this study excluding the safety factor

between [.4 and |.8. The Formulae (2) and (3) are given in Reference §1.

17



-7
= formula (1)
=— =— = formuia (2)
— — formula (3)
:
=
<«
1.
L
Q
b
=
=
a
. §
a
Q
18
a.
8
SAFETY FACTOR
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II. STRUCTURAL SYSTEM TO STATIC AND EQUIVALENT SEISMIC LOAD

A. LOADING.

Structures may be subjected to the dead loads due to the weights of the structures and
permanent fixtures; the live loads due to maximum totad loads of occupancy and movable
furniture; and the static equivalent lateral loads due to carthquakes. In what follows, the models

for dead, live, and static equivalent lateral (UBC) seismic loads are discussed.

1. Dead Load. The dead load on a structure consists of the weight of the structure and
permanent installations. The weight of a structure can be obtained from its geometry and the

unit weight of the elements and their dimensions.

The mean value of a dead load 1s assumed to be the constituent of all 1ts mean component
values. The coefficient of vanation of a dead load may be caused by the coetficient of vanation
of the weight of steel members which is 0.05 and the coefficient of vanation due to the weight of
tnon-structural clements, which is estimated as 0.1+ By usintg the above values the cocthoent

of vanation for the dead load can be obtaned as

Vp = /0.05% + (0.)? =0.12 | (3.1)

2. Live Load. Live loads are loads ansing from movabie equipments and fixtures,
vehicles and stored goods, and other non-permanent loads. Some live loads may be practically
permanent, and others may be highly transient. They vary with both time and space, and can

be idealized as being composed of two parts, the sustained live loads and the transient live loads.

The sustained live loads exust on the floor for a relatively long time and include fumiture
and normal working personnel. The changes in the sustained live loads may oceur due to

tenancy changes in the use of the floor arca.
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The transient live loads occur infrequently but with a relatively high intensity and short
duration. The transient live loads may be due to people gathenng in a room in large numbers
for a special occasion, due to stocking some goods in a room for a short time, or due to the

concentration of fumiture durng remodeling.

The probabilistic model for live loads may be assumed to be

Lixy) = Ly +e(xy) (3.2)
where L{x,y)= the live load intensity, 'm-pound per square foot at (x,y); L‘;’ = 2 random
vanable modcling the average umit load on the floor; e(x.y) = a stochastic process with zero

mean describing the deviations from the average.

The equivalent uniform distnbuted load (EUDL), which 15 the uniform distnbuted loud
and produces the same load effect as the actual sct of loads, is our desired model and has the

following meaning

Lix,y)l{x,y)dxd )
EupL = JJLeniexy)dudy 53)
J [ lx.y)dxdy
where I(x,y) = an influence surface cocflicient.
The mean and vanance of EUDL can be determined as follows
mean,
T +e(xy)l(xy)dA;
E(EUDL] = E[ Ly
ffl(x,y)df\l
_ I
LyAIf [ l(x,y)dxdy
= 0-0 = [ (3.4)
L1 v
1\{./'0 fO I(x,y)dxdy
vanance,
2
g
SEUDL = “r2+A—tKL (3.3)
1 .
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where K| = folfoilz(x,y)dxdy / (_/"(;_[&I(x,:.')dxdy)2 : 0;2, 0{2 = empirical constants to fit the
data from a live load survey; Aj = the influence area which covers the influence surface.
Ki . G?, 0'12 can be determined from live load survey.

Statistical information on hive loads 1s obtaimned from the live load surveys. 45,64,66
These surveys gave the instantancous values of the live loads on the particuluar building at the
time at which the survey was conducted.

The lifetime maximum total live load, which is the maximum value of the live load
{sustained plus transient) over the whole lifetime of the structure and is described in Appendix
C, is considered in this study. For the purpose of simplicity, the four lifetime maximum total
live load models of office building structure which are independent on time are described and
used. The statistics of these four models are :

(1) ANSI 1980 recommendation (L1} 66

The load subcommuttee of Amencan National Standard Committee A38 recommended a
1980 version of a live load model. The stalistics of this model were given as

mean,

L1 = $0(0.25+ 15/ yAy)  psf (3.6)
coef"ﬁcient of variation,

Vi = 0.14 (3.7)

(2) NBS survey (L2) 45

The National Bureau of Standard (NBS) published the load. survey results for office
buildings in the United States. The statistics of this live load model were given as

mean,

L2 = 187 + 520/ yA;  psf (3.5)

coefficient of vanation,

21



Vip = (142 + 18900/Ap) /L2 (3.9)

(3) United Kingdom survey {L3) &4

Mitchall and Woodgate proposed a live load model according to the survey results for
office buildings in the United Kingdom. The analysis resulted in

mean,
L3 = 149 r763) JA]  pof : (3105

coeflicient of vanation,

Vi = (113 + 15000/ Ap /T | (3.4

(4) UNREDUCED live load (L4) 66

This live load model 1s a fixed value which does not relate to any space parameters. The
statistics of this model ase

mean,

14 = 50 psf (312
coefficient of vanation,

Vig = 0.14 | (3.13)

In the above models, the influence area parameter AI is the area that contnibutes the load

determination, and the unit | psf (pounds per square foot) equals 392.16 kPa.

3. UBC Seismic Load. The seismic load may be represented as the static cquivalent

lateral load that is constructed in code specifications such as ATC 3 or UBC 35 In these
codes the carthquake is fiest expressed as the ground base shear foree and then distnbuted to the
desired location. The carthquake load expression in the Uniform Building Code 33 s used

this study.
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E = ZIgKpCpSEW (3.19)

where
E = the shear force at the base;
Z = numerical coefficient depends on the zone that the structure is located, for zones

I I, I, IV; Z = 3/16, 3/8, 3/4, |, respectively;
Ig = occupancy importance factor;

Ky: = numercal cocfficient;

Cy = __']T , the value need not exceed ().12;
’ ( lslrl‘ ) |
T = structural fundamentaj peniod;

= numerical coefficient for site-structure resonance, when characteristic site period

SE =
is not properly established, the value of § shall be 1.5;

W = the total dead load.

The structurai fundamental period, T, can be calculated in the formula

= ,
T=2n/( w; 2)//( FEw)
i=zl i g% Ei

Because the calculation of this period involves structural analysis which is not known in

the beginning, the approximate penod 1 = 0.0Sh“/,/ﬂ 15 needed. first (Where D, = the

dimension of the structure in parallel with applied force direction; h, = the height of the
highest level; W, = the weight of ith level; u; = the deflection of ith level; Fg; = the lateral
force applied at level 1).

After the force E 15 determined, E shall be distnbuted over the height of the structure in

the following formula:

' h
FEx = [(1~F)Wy=o—JE = Fp_E (3.15)
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where Fp, = lateral force applied to level x; Fg = lateral force applied to level x due to a
ux

unjt seismic load intensity; F,, = the concentrated force at the top due to a unit seismic load

intensity = 0.07T; W;, W, = the portion of W which is located at or is assigned to level 1 or

X, respectively; h:  h, = the height of 1 or x th level.

The statistics of the UBC seismic load may be determined as:

mean,
E = ZTEEEEEgE.W (3.16)

The cocfficient of vanation of carthquake may be assumed to follow a Type 1T extremne

value distribution 6 which is described in Appendix D and has a probability distribution of

E'e;) = eyl (3.17)
where E’ = earthquake random vanable; e; = a value of E’; ul, Kl = parameters which

are determined from seismological data survey.

For thus type of distnbution, the coefficient of vanation of earthquake, Vg , is

ra- 1(21-)
Ve = J—KI° (3.18)
r“_m)

where [( ) is a Gamma function.

Since the phenomina of carthquake is highly complicated and unpredicable, the exact
value of K! is impossible to determine. However, many values of Kl and coefficient of
variation of earthquake have been proposcd Lin the past decade. Within them the value of
K1, 2.3, which corresponds to coefficient of vanation, 1.38, is reported in National Bureau. of
Standards Special Publication No. 577 96 and has been used for some scismic designs. The
value of K1, 2.7, which corresponds to coefficient of vanation, 0.85, is recommended for the

nuclear power plant design. 54
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B. STRUCTURAL RESPONSE

The desired load effects for a structure subjected to dead, live, or seismic load may be the
structural displacements or members” intemal forces. The total load effects may be due to the
combination of these loads. In the following the general response formulations for dead. live,

and UBC seismic loads are descnibed.

1. Dead [0ad L:ffect. The dead load cffect, Spy | can be obtained by

SD = CDD (3.1

where Cpy i1s an influence coefficient which transforms the dead load intensity D into the

desired load effect (displacement or internal force) through structural analysis.
The mean (§D ) and the vanance (GéD) are
Sp = Cpb : (3.20)
(a) lst variance approach,

52 - BSp, S
Sp T = Ty

) acDD‘aCDD vves
= -ZE(T )?(5_1-i )fPrirj il

+ Ez( C )r aD CD)rpr r V Vr]rlr] . (32])
l

(b) 2nd vanance approach,

0§D = Bp)*.n? + V&) (3.22)

where 0.1 1s the assumed value to descnbe the static analysis error 4. Viy = the cocflicient of

vartation of dead load intensity which is assumed to be (412 in Lguation (3.1).
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2. Lave Load Isffect. The Live load cilect 1s oblained as

SL = CLL (3.23)

where Cy 1s an influence coefficient that transforms the live load intensity L into the desired

load effect.
The mean (§L) and the vanance ( ch) are
5. = €I, | (3.24)
(a) Ist varniance approach,

Sy Ly
0§L = %JZ(E{-)f(?ri_)Ppriri M

L, °CL ..
= IX(— L)F(—@;j—l-);priri‘/rivrjrirj

dL L — .
+ —C )(==Cy ):pr.r-Y¢. V. .I:T: {3.25
?JZ( &rl I_)r( ar] I_)rprll‘] l’l r] 1) )

(b) 2nd vanance approach,

2 T2 2,42 :
of, = SpLO.0"+ Vi ] | (3.26)
where 0.1 is the assumed value to deseribe the static analysis crror 44, Vi, = the coefficient of

variation of live load intensity which is assumed to be the value in Equations (3.7, (3.9),.(3.11),

or (3.13).

1. UBC Seismic Load Effect. The UBC scismic load cffect 1s obtained as

Sg = CgE (3.27)

where Cg is an influence coeflicient that transforms the carthquake load. intensity E into the

desired load effect .
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‘The mean (§[E ) and the vanance (cgE ) are
S o= CIT ) {3.28)
{a) lst vanance approach,

a8

Sy
- =

51'1'

)fprirj Vri Vrj fifj

odr = I
]

E)r( E E)rpr 1' \4 vl‘ l'

+ ZZ( CE)r(—Cr)rpr f Vr Vr LT (3.29)
I

l

(b) 2nd vanance approach,

c%E = Gp)’O.0° + VE] (3.30)

where 0.1 is the assumed value to describe the static analysis error 44; Vi = the coefficient of

vanation of earthquake load intensity which 1s assumed to be the value in Equation (3.18).

4. Combined Load Effect.

The total load effect due to the combined action of dead, live, and UBC load is
S = Sp+5+Sg (3.31)
The mean (S) and varance (Gg) of total Toad cffect are
S = Sp+SL+5g (3.32)

{a) st vanance approach,

o§ = T/.:] —)r(ar )rPrrVrV]ffj
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55 0Dp s Ly, Ty KDy, Ly CEpy, vV,

= Ly + ~L + [ . GG
il ori) arj; I r afjl 51']'1 Orjl S LT R RS TRIDY
+(CpD)*vh + (€ L)V + (EEE)szZ_: (333)

where 1] and | are random parameters related to structural analysis.
(b) 2nd vanance approach,

0§ = 0§ +0§ +0d. +20.)%SpSy + SpSk +51.5p)
CHDA(O.12 V) + CELA(0.1)2+VE) + CARA(0.1)2 + VE)

R o i v oo

= (0.)2ACHD? + TPL? + TRE2 +2CB T, L +2CpD T +2€; LT

+ CpD?vh + T DVE + CeBvE (3.34)

C. COMPUTATION OF STRUCTURAL RESPONSE

In this section the computations of structural response which may be displacement or

internal force can be performed as follows:

. Displacement. The displacemunt may be calculated as:

(w) = {Cg)a' = (K1 laq’ (3.35)
where {u} = displacement matnx; [K]-! = inverse of global stiffness matnxi q = the
applied load matrix due to a unt dead, live, or UBC scismic load intensity; and ¢° = the load

intensity wiuch may be the dead, live, or UBC scismuc load intensity.

By using the above equation the uncertaintics of load effects for dead load, live load, UBC

scismic load, and combination of these loads are given :
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a. Dead Load Effect. The mean and variance of dead load effect can be expressed as

mean,
@p) = Cpib = (K1 Y apnD | (3.36)
(a) Ist vanance approach,

2 _ oo Olup} dup)
Stup) = EEH T

&P mmvmvr A+ {UD}VD (3.37)

where il and j1 are the random parameters related to structural analysis; and Equaticn (3.37) 1s

denved from Equation (3.21) as

d{up}, d{u D} D 252
ofup) = E;Zl( oy N a )rpfuﬁivmvf;[11’11+(aDCD) Vb
., 0lup}  d{up}
= 22( L )f( D )rpr” fil rll r“ 11" | + {(_ D}D Vlz) {3.3%)

i In o ong

The derivative of displacement with respect to ilth or jith random vanable of r can be
denved as follows: Since {qp}D = I:K]{UD}, the derivative of this equation with respect to

random parameter rj; 1s

{ap}D) K] é{up}
- +[K]—=DL 1.39
ar;) ary| twp) ar;) (339

Rearranging Equation (3.39), it can be found in

d{up} -1 d{apiD)  a(K]

any = (K ) ar| ol -
Sirmulary we can have

dup} -1 9{apiD)  o(K]

o =[K]™ o {uph (3.41)

(b) 2nd vaniance approach,
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Uqu} = {u (O l)2+V2) (3.42)
which 1s based on Equation (3.22).

b. Live Load Effect. The mean and varance of live load effect can be expressed as

mean,
@) = (€L = (K1 gyt (3.43)
(a) Ist vanance approach,

2 ou} Ay
O'{UI_) E]zl arll i ar] Pr llr]l rll r]llr]l+{uL,}vL (3.44)

The derivation of Equation (3.44) is similar to Equation (3.37); and the sensitivity analysis of

the displacement may be expressed as

oo} _ [Krl(@({quL) _ K]

oy orj) arj)

{urh ‘ (3-43)

d{uy } -1, ¥apib)  alk]
ar-lf = [KI7 ar[-]} - g"l fuLh (3.46)
j j i
(b) 2nd vanance approach,
olay) = @2+ v (3.47)

¢. UBC Seismic Load Effect. The mean and variance of UBC load effect can be

expressed as

mean,

@g} = (CRE = (K17 '(qg)E (3.48)
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Here g has the same meaning as FEux in Equaton (3.15).

(a) lst variance approach,

2 o{ug} .  o{ug}
= 3% "
*lug) iYle( iy ¢ o)

- - 2yl ,
)fPr“rler“Vrjlrilrjl + {uE}VE (3.49)
1

The denvation of Equation (3.49) is similar to Equation (3.38); and the sensitivity analysis of

the displacement may be expressed as

ofug} _ [K]—l(a({QE}E) _alK]

61'” 6rll (31'” {Ul‘}) (35“)
dfug} —1,0{agE)  a[K]
i I T T (3.51)

(b) 2nd vanance approach,

ofug) = (EEH(O-DZ+VE)

(K1~ Yag®0.n? + vi) (3.52)

d. Combined Load Effect.

mean,

{U} = (up} + (U} +{Ug}

(K1~ Yap}D + (K1 a )T + [K1 ™ (qg)E (3.53)

(a) lst variance approach,

dup}  o{ur}  Sug) dlup} Hup) | dug)
= P e 0 Ve Vo T
o Ejl By oy o) & anjy * o1 ¥ arj P g1V Vi
_2 . _ )
+ {uD}V%) + {uL}Vi + {u%)V% (3.54)

(b) 2nd vanance approach,
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ofyy = OHNONZFVE) + BEH0.1)2 + V) + [GEH(O.1)% + VE)
+ 20.y%@pTy + Splg + I ) (3.55)
The derviations of Equations (3.54) and (3.55) are similar to Fquations (3.33) and (3.34).

For displaccment failure mode, substituting Fquations (3.53), (3.54), (3.55) into Equations
{2.6) or (2.15), then the probability of failure in Equations (2.4} or (2.8) can be determined if the

statistics of allowable displacement are given.

2. Intemal Force. The internal forces in a structrual member which may be axial forces

or bending moments are given by

Fim = (SInlAl uig (3.3
where {F}, = the internal forces in a member; [S],; = a member suffness matox; I:A:l—rlr'1
= transpose of a member’s static matnx; {u},, = the corresponding cxternal displaccm’cn‘ts in
a member.

The uncertainties of load effects due to dead, live, and earthquake load are

a. Dead Load Effect.

mean,

FDlm = [§]m[A];{ﬁD}m (3.57)
(a) Ist vanance approach,

2
O{FD}m -

HFplm o HFplm

ani) a5

. = = T2 ydy
: JePri iy Ve Ve i = (FDIVD) (3.58)

iljl

where il and jl are random parameters related to structural analysis; and for which the

derivation may be obtaned as
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HFpim,  9Fp} . .., 9Fp}
G%FD}m =223 ]_Dm);( Dm)fpri]rjlvr“"’rjlfufjl+(—D—m)2‘/f) (3.59)

In Equation (3.58) we have
HPphm _ 008Im 4T T ofu D}m
= S A — 3.60
> AT Dl + (8]l AT 5 (3.60)
HFplm _ SIm ., T T uplm
_ 61
o 7 (Al L (uplp + (81L(A ], o (3.61)
{b) 2nd vanance approach,
chD}m = (FE} (0.7 + V) (1.62)
b. Live Load Effect.
mean,
Fy) = BlplAll G0 (3.63)
{a) Ist vanance approach,
2 a(FL)m o{FL) S ®2 y2
SFlm = ZZ )i e m)rPrilrj[Vr“Vrilrul'jl+{FL}mVL (3.64)

11l orj]

The denvation of Equation (3.64) 1s sumular to Equation (3.58); and the sensitivity analysis of

mternal force may be expressed as

HF )y, 48] A m

- m 1T T
T o (Al (v +0S)0A T, o (3.65)
a{FL}m _ a[S]m T u L}m
T o [AIL D + [S1mlA L, e (3.66)

(b) 2nd variance approach,
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G%Fb}m = {ﬁi}m((o.l)z-{-\f%‘) (3.67)

c. UBC l.oad Effect.

mean,

(Fg} = [§]m[A]I,{ﬁE}m (3.68)
(a) st variance approach,

HFElm
5r]l

G%FE} }:Z( { E}m)f-(

= = = 2
THERAT s Ve Ve fnf F FE mVE (3.69)

The derivation of Equation (3.69) is similar to Equation (3.58); and the sensitivity analysis of

internal force may be expressed as

Kb oS3 ratl T ]{Ui
= [Alq i), + [S1nlA L, (3.70)
HFE}m _ AS]m r T 5{UE}m
e = 7 A]m{ug}m+[s] [Al, (3.71)
(b) 2nd vanance approach,
gl = FEIm©@D+VE) 572
d. Combined Load Effect.
Bm = Fpln + Fum * Tilm (3.73)

{a) lst vanance approach,

5{F}m H{Flm
O'%F}m )r arjl )rprtlrll rli\’rlllr]l
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=2 2 = 2 =2
+ FDlmVh + FHhmVi + FlimVE

The denivation of Fquation (3.74) is

{I“}m Nk .
O'ﬁ‘}m lzllzl él‘ r 51’” )l_'pfl[rjlvrllvr”rlir]]

5{ }m

9{F}m {}m

JdL

2VEE?

+( BVED? + ¢ PVET? 4

The sensitivity analysis of internal force may be cxpressed as

HFtm  Fpipy N 8(F}m . HFE}m
Iriy ari i or)

F}m HFpim . H{F}m . H{FElm
6rj[ 5!'] I 6r11 al'j i

(b) 2nd vanance approach,
il
= *Fpim ™ FUm ™ il

20.)%(FpFy + FpFg + FLFR)m)

(3.74)

(3.75)

(3.76)

(3.77)

(3.78)

For column failure modes sustituting Equations (3.73), (3.74), and (3.78) which may bc

the uncertainties of applied axial loads {P) or moments (M) into Lquations (6.10), (6.12), (6.16),

(6.17), (6.21), (6.22), (6.25), and ({6.26) yields the means and vanances of interaction equations.

Substituting these statistics, the safety factors in Equations (2.6) or (2.15), then thc probabilitics

of failure in Equations (2.4) or (2.8) can be detcrmined if the statistics of allowable valucs of

interaction equations are given.
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D. STRUCTURAL RESISTANCE

In Equations (2.6) and (2.15) they were shown that the uncertaintics of structural

resistance are required in calculating the safety factor. The stecl member resistances considered

are
I. Yield Moment. The yield moment, My, 18 ["y S. ; where Fy = yield strength of
material; S, = elastic section modulus.
The mean and variance of yicld moment are
mean,
My = FySc (3.79)
vanance,
2 v ravl ‘
ayy = MJY: {3.80)
My = Ty "My

where VMy 1s the coeflicient of vanation of yicld moment that equals 0.12 and is assumed to
be a sum of square of the prediction error, clastic section modulus, and yield strength of a steel
member (The coefficients of vanation of l"y, Sc and the predicted behavior error are assumed

to be 0.1, 0.04, and 0.05, respectively 6 ) 1.e,

vy = J0.07+ 0002 + 0092 = 0.12 (3.81)
y

2. Euler Buckling Load. For a long column the capacity of the column 1s governed by

“the Euler bucking load and may be expressed as

e L |
P = m (3.82)

(KL)?

where Em = elastic modulus ; I = moment of nertia; KL = ecflective length. The mean and

vanance of PE are
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mean,

- 1“E .1

Pp = —=&
E —_2
(KL)*

varnance,

2 2 52
= Vp P%
GPE Pp'E

(3.83)

(3.84)

where Vi s the cocfficient of vanation of Pp;, which cquals to 0.3 and involves the

uncertaintics of prediction, clastic modulus , moment of incrtia, and effective length factor. 76

3. Axial Load Capacity. The axial load capacity, P, 1s

or

in which C2 = 2n%E

A_ = cross sectional area.

c

The mean and vanance of P, arc

mean,
B, = (1—199)

or

for KL/rg <C. (3.85)

for I(L/frg >C, ‘ (3.86)

= liuler buckling load; g = the radius of gyration:
for KL/rg< C. 4 (3.87)
for KL/rg >C, {3.48)
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2 2 52
op_ = Vp_Pg (3.89)

In Equations (3.87) and (3.89),

- wr ., |F
KL ’1t Y {3.90)
1’g E

where Vpc may vary from 0.14 to 0.31 and are considered to be the uncertainties of steel
T

member area and elastic modulus. 79

4. Yield Load. The yield load is given by

Py = FyA (3.91)
The mean and vanance of Py are
mean,
'Py = FA ‘ (3.92)
vanance,
c,%y = v%y'ﬁ§ (3.93)

where pr 1s the coefficient of vanation of Py , which is assumed to be 0.14 and includes the

"uncentainties of yield strength and a‘stccl member area. 10

5. Catcal Moment. The cnticid moment, i.¢., the moment at which lateral 1woesional

buckling occurs 1s

ConEqly  GJ  riC
My = (s =

Ccr i
KL im (k12

1)? (3.04)
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where Ky and K, are effective length factors which account for the effects of end restrants to
lateral deflection and twist, respectively; Cy is a coefficient which depends on the vanation in
moment along the span; the shear modulus, Gy, s assumed to be 03856 ly is the
moment of inertia of weak axis; J = the polar moment of inertia; and C,, 15 2 warping

torsional coefficient.

The mean and variance of M, are

mean,
_ Eply GJ =T
Ve = (Conart =+ ——L 1) (3.95)
Kb Pm KD
vanance,
2 2 =2
M, = M Mo (3.96)

where coeflicient of variation Vg may be from 0.15 to 0.20 and contains the uncertainties of
“ler

moment of inertia, elastic modulus, and shear modulus. 76
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[V. NONDETERMINISTIC SEISMIC RESPONSE SPECTRUM ANALYSIS.

A. LOADING

The earthquake load in this chapter 15 considered as a dynamic load which vanies with
time. This load will be the ground acceleration at the support of a structure which may be
assumed along the directions of coordinate axes either in horizontal or/and vertical directions.
The structural résponses subjected to the ground acceleration may be derived from the
time-history or respoznsc spectrum method. The use of time-history to evaluate the statistics of
response requires repeated analysis for many earthquake records. This will cause an excessive
amount of computation, and thus will not be applicable for the analysis. On the other hand, the
response spectrum method is a simple scheme to calculate the dynamic load effects such as
displacements or intemnal forces from a seismic response spectrum and a peak ground
acceleration. Although many response spectra have been proposed in the past, most of them are
cﬁnsidered only in honzontal ground acceleration and determuinistic spectral responses values.
They are, however, not suitable for the purpose of reliability design. Therefore, Newmark’s
Nondeterministic Seismic Responce Spectrum (NNSRS), 82 which uses the statistical technique
to estimate the horizontal or vertical ground spectrum from actual earthquake accelerograms, is
adopted for the study. The seismic response spectrum suggested by Newmark was based on 14
earthquakes which had 28 horizontal components and 14 vertical components. By utilizing these
earthquake acceleration records, the statistics of spectral displacements, velocities, and
accelerations for maximum ground acceleration were obtained and used to estimate the

structural displacements and internal forces.
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B. DYNAMIC _EQUILIBRIUM FORMULATION FOR EARTHQUAKIS

EXCITATIONS.

The equation of motion for multi-degree structural system can be formulated as follows:

[m}{i} + [CI{u} + [(K]{u} = (P} (4.1)
where [m] = mass matnix; [C] = damping matrix; [K] = stiffness matrix; (P} =
external force matnx; {u} , {0} , {4} = structural displacement, velocity, acceleration,
respectively.

If the applied external forces are the ground accelerations, Equation (4.1) becomes

(m{iig} + (CX{ug} + [KJ{ug} = - [m1{a} (4.2)

where {a} = the ground acceleration matnx which may wclude horzomal orjand vertical
ground accelations; {ug}, {ug}, {Ug} = structural dispiaccments, velocities, accelerations due to

earthquake excitations, respectively.

The structural displacements may be cxpressed as a sum of a linear combination of the

undamped free vibration mode shapes and the spectral displacements which is

(ug) = Z@),Yy | (4.3)

where the nth mode shape matnx {®}, 15 used to transform from a generalized coordinate

Y

n 'O a geometric coordinate up  at nth mode, and the generalized coordinate Y, which 15

the moda] magnitude s called normal coordinate.

Since the mode shapes have orthogonal properties,
T _ T T _ ,
(@}p[mi{®}, =0, (@}[CI(®}, =0, (D)L[K)HP}, =0 m#n (4.4)

Equation (4.2) can be transformed into the single degree cquation of motion
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. . 2 T ) )
Mp ¥ + 2 p0pMp Yy + Mpol Y, = = (@), [m]{1}a (4.3)

where
My = (O} [m]{®},, ; Lo M, = (@1 [CHD), ;
®w, = structural natural frequency for nth mode

(@O IIKI@), 1 Mpli2

i

{y = critical damping ratio coefficient for nth mode.

[f the orthonormal mode in which M, equals one is used, Equation (4.5} is given by

?n + Inmn\"n + ngn = —Ipa 14.6)

where ', = participation factor for nth mode = — {Q}I[m]{l}

When the sccond-order { P - A) cffect 15 considered, the stifness matnx i Equation (4.2)

becomes
(K] = [Klg-[Klg (4.7)
where [K]g = elastic stiffness matrix; (K] = geometric stiffness matrix.

C. STRUCTURAL RESPONSE

The desired structural responses are displacements and internal forces. The estimation of

uncertainties of these quantities can be obtained as f{ollows:

. Displacement.

a. Earthquake Load Effect. The normmal coordinate at nth mode, Y, , can be solved by

the Duhamal integral

Y. = rn fla.e— {qont—1)

Moop 0 sin @t — 7)dr (4.8)
i Dn
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where wpy = /1 —5,21 ;1 = time; v = a time difference.

For practical usage the commonly used spectral displacement, Yon» Which is the
maximum value of Equation (4.8 has been chosen, that 1s
I {p@plt—)
foy = L n“n ' t—z)d 4.9
Yon [\4 ~©Dn foae sin @pp(t = 7)dr)may (4.9)

In order to find the statistics of displacement, the mean, vanance, and cocfficient of
variation of spectral displacement for cach mode, y,,. arc nceded and can be denved for
different frequency ranges which are shown in Figure 3.

(i) in the constant displacement range : @ / 2m < f |

2 2 —_
— _ - _ 2_
Yon = 249 = ad(lz_a—:d) =4 (%) (38 (.10)
v a v
. P
(3[(1&%)(%)';1}
%¥eon _ vo | i
ari 61"1
Neon 2 _ Y en od ¥ on g WNeom rer T
0)2"0)!1 ( day )rvéda%+(a ad))%ng/vz(v_z)z‘*‘(‘aT);Vgaz*'(E)FVG[u(j)’
= v
v

= [(E%alfa3va, + lagiy)21pV] d/vz( 2)2
v

- L2uy( :‘;)(‘)]1.( Ly2ve, +[ud ))2]ga2v3

-2 2 -2 2 -2 2 2 2 ,
= ymnv a4 + Ymnvad’,\,Z +4Y(Dnvv/d + y(,_mv (4.12)
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2

2 _ g oyl 2 2 2
Yeon 5 = Vad+Vad/V2+4Vv/a+Va (4.13)
Ywn
where ag, 0y, 0y = the amplification factors of spectral displacement, velocity, acccleration,

respectively; d,v,a = the maximum ground displacement, velocity, acccleration, respectively; the
bar over the parameters represents the mean of these parameters; the uppercase V represents the
coefficient of variation for corresponding parameters; the o is the standard deviation syvmbol.
The statistics of (;Ld, a,, a,, vfa, and ad/vz can be found in Reference 65.

{1) 1n the constant velocity range : -fml <@, /n< fmz;

a,v a,
Ton = — = ——(=) (4.14)
u)n u.)n !
Iy v
vy, lagzial s
= +. 12
dr; or;
Ay dy v dy dy
2 _ N \dy2 =2 on (2 (V.2 ®n oyl = 12 0 2,222
G-V(:)n = (—auT)quvﬂv + (a_i)rv"/a(?) + (-E(;);V(On((un) + (T)rvaa
a
=2 g2 52 2 22 2 -2 2 L
= YonVa, t*YenVvja * YonYo, + YunVa (4.10)
2 2 2 2 2 ‘
Yon V“v + VV/II +Vy+ an - 417
where an = the coefficient of vanation of nth mode frequency.
(it1) in the constant acceleration range : ?a)Z <®@p/2n< ico}
_ a,a
Yon = 5 (+.18)
©n
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iy
dycon ©n
5ri éri
on N Na
oF.0 = (—a?);vg a2+( ),J,VZ (mn)2+( )§v2a2
=2 ;2 =2 2 2 2
= ymnva +4yconvm +YonVa
2 _ oyl 2 2
Vi = Vi +VE+avh

(1v) in the transition range © £ 3<wq /2 <f 4

a, (o) tn @, In(f,  Ayn)

_ ( __2
a
y = = exp[ — 1a/w
wn 52 . II‘I ( f(o‘.‘ / rco n
é Ina, In(f  ,/f
Hon A exp[—= Coll “’“)]aiwﬁ)lﬁr;
on In(fyy4/fy3)
2 = (Qenpvz g2, Pon gyr o2, Pengyoa
Fon = G BVETE + (G IV, @) + (VS
In( [/ 72 Ina, 22
= Yén —] + Vgl ————1V4
co«l/ @3 % (fmdfmﬁ n
3 50nVon *+ TonVa
In(f, In &,
vi = —_( Won) 12, Vg, + v§‘+[—_a 1PV VG
04/f(o3) ln(fwl/

(v) in the constant ground acceleration range : f'm <, /2n
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(4.23)

(4.24)

(4.25)



Yon = —= | (4.26)

Yon )
©n
a[-2-]

Pon _ _ “n 4.27)
ari 51’i
o2 - (@Ymn )2\,2 _02+( Neon 2v2_2 _2 v2+v’ v2 (4.28)
Yon ~ fYo,®n 5(%)) = Yun wn ¥ @q :
Ve = VI 4dvE 4.29
Yon — Ya TV, (4.29)

Since displacements due to carthquake excitations can be assumed to be the sum of square
of displacement for each mode, the statistics of displacements are determined as follows,

mean,l
{Tg} = [%( {5}nfns7m)2] 112 (4.30)

(a) Ist vanance approach,

dfu a
{ug} I {ug}

2
{UE} i J 01’1 r (31']

)rf’r i; V. Vrlrlr] (4.31)

where
d{ug} 1 o[ }n 2 ymn
e = TELS®hn— My mn+{¢}nrn( 0+ (ORTA )]
o{ug} (D}
arf = ulE [2({P}q ]“ nymﬂmzr +{¢}2r2 ‘°]“ Weon))
HP),/or, . O{iD}n/ari = the denvatives of mode shape matnices with respect to 1th and jth

random parameters; ol ,/dr;, arn/arj = the derivatives of participation factors with respect to
ith and jth random parameters; dy,,/0r;, aywnfarj = the denvatives of spectral displacements

with respect to ith and jth randem parameters.
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P}, ) o ) {P},
= iIs assumed to be a hinear combmnation of mode shapes, i.e. o =
T 1

2 anik( P}y, the determination of the scalar multiplier, ay;) , can be denved by two
k

If

o iyl
conditions. =~
(1) n#k case

Differentiating the undamped vibration equation with repect 1o random parameters,

([K1=w2[m]) (®}, = {0}, it yields

oK1 _ n 2 3[m] 2 atdnt
Ho K]- — = {0 4.32
{ o [ 1- o, DY, + ([ 1 - wj[m]) 7 {0} (4.32)
¢
Substituting the lincar combination of the mode shapes for n into the above cquation and
T
1

premultiplying by {-@}E for k # n yields

oLK] ‘)‘”n [m] - @2 2tml d[m]

ory or; n an

@y

— NPy,

+OK] - mi{mbgamk(o}k =0 (4.33)

Because of mode shape orthogonal properties, [iquation (4.33) becomes

S
CREIY R P e EON

I

+ a.mk{m}g([K] - mﬁ[m]){tb}k =0 (4.34)

If the mode shapes are orthonormal modes (ie., {t‘D}kT[m] (@} = 1), the tem

{fb}T[K] (@Y viclds wg . Then the coefficients a., ;. can be found from Lquation (4.34) as
K k & anik

a ¢
o LKL gy — 2o ko,
Ak = mz _ 5 (4.35)
n~ %k
{2y n=k case

-~
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In Equation (4.35) a,;, approaches an infinitive value as «y equals to @,. As a result, it

can not be used in n = k condition. For the orthonormal modes

(@) [mlo), = 1 . (4.36)
Differentiating Equation (4.36) with respect to random paramcters yiclds

T Alm]

Te 0P}
20, [ml—— + (@), =y, = 0 (437)
1 1

Now substituting r-}n into Equation (4.37) solves the cocflicient ap;, which is given by
‘ i
Tdlm
- @ il
Anin = 3 i , (4.38)
02
The denvative of the naturai frequency with respect to design vanable, > D can also
T
i
be derived as follows.
Differentiating the equation {‘D}I ((K1- m%[m]) (®), = 0, wc have
ﬂ{(D}l . AN K :)m
LK - oglmpl, + (@11 [ L A P e '“' HDS
Jry i an o
{‘D} .
+ @K -eilmh)—=2 = 0 (4.39)

1

By observing the above equation in which the first and third terms are zero, Equation (4.34)

becomes
0 gyT KL _ 23lm] g, (4.40)
ar; nt o n or; n ‘ '
o o . _ . Ja, .
"The derivative of parucipation factor with respect 10 design vanable, : 18
1
ar o[
n _ A }n m] T 6[m] } (4.41)
ar; ar;

1 1
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(b) 2nd vanance approach,

{E} { E} o
S an2 Y on1¥on2VYon1 VYin2onon2]

G%U}E Il

nln2 y(.onl

+ (0.19)°(3g)

where
<5{U|3}
N wnl = —[ nlr lymnl]'
O{ug} | 2 -2
= [(® r 1;
ayng Ug L{Pqa a2 Yon2

and 0.151s ‘a.-ssumed to be the dynarnic analysis error. 50

(4.42)

(4.43)

(4.44)

b. Combined Load Effect. After the uncentainties of dead, live, and carthquake load

effect are individually obtained from previous knowledge, the uncertainties of combination of

these load effects may be given as

mean,
{uy = (up}+ {up}+ {ug}
(a) 1st vanance approach,

g d
1)) 2 ;“} JePer VeVt

o fu) = EZ(

1

where

d{u} _5{UD} oluy) | Olug)

5ri 5ri (3rl 6ri

(b) 2nd vanance approach,
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(4.45)

(4.46)

(4.47)



oty = °{2UD}+°%U1 J+°{2UE} +20.1) (@ p) (T ) (4.48)

where 0.1 is the static analysis error.

For displacement failure mode, substituting Equations (4.45), (4.46), and (4.48) into
Equations (2.6) or (2.15), then the probabilities of fallure in Equations (2.4} or (2.8) can be

determined if the statistics of allowable displacement are given.
2. Internal Forces.

a. Earthquake Load Effect. The internal force fomulations for the dead and live load are

the same as the previous chapter. However, the dynamic scismic load cffect considered here has
a little difference from that. That is

mean,
Film = [TASIplAY G (0gma) (4.49)

where [S], . [A]}l are the same notations used in Equation (3.56); (ug}y, = the seismic
displacements for nth mode corresponding to the mth member

{a) lst variance approach,

2 o{Fg} 3{Fg) .
U{FE}m = %? arim)r( ar]m)rprrvrvrjf” (4.50)
where
WEm _ 1 .
afi = (F )m Z([S] [A] {UE}ﬂm)
[ ]

T {ATT (w)un + STl A TR ) (@51)

1
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Hplm 1

= T
ar; Fom [g(fs]m[f\}m{ug}mn)
T d{uy:
AT gy + [STLa L mn, (452
] . ).
{b) 2ad varance approach,
{Fg} HFEg} o
G%I'E}m nlr%?t( a')’(.1)n“lm i a3’(:)nﬂzm )fpywnlymlﬁvywnlvyngy“m]ym"z]
+ (0154FE ) (4.53)
where
NFelm L T T 9Uglmn :
= s1..[A ((S] [A]L _=mny7. 454
™ = o TSIl A TR g (ST AT ) 454
HFEIm 1 T { h}mn
: = ) A (LS Al —=]; 4.55
= e TSI A TR p ) (S A T ] s

and 0.15 1s assumed to be the dynamic analysis error.

b. Combined Load Effect. The internal forces due to dead, live, and earthquake load are

given as a combination in the following.

mean,
Flm = Fplm+ FUm+ (FE!m {4.56)
{(a) {st vanance approach,

a{F
Oy {a}m)rprrvrvr i (45T

j i T

where
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{Flq _ HFplm . o{F} . HFEim

4.
ari 6ri c?ri ari ( 58)
a{F}m @{FD}m B{FL}m 5{Fﬁ}m
dr; - (31'j * @ri + or i (4.59)
(b) 2nd vanance approach,
2 2 2 2 , 2 =
O’{F}m = O'{FD}m-i-G{FL}m-i-O'{FE}m-i-Z(O.[) FpimFLim (4.60)

where (0.1 15 assumed to be the static analysis error.

For column failure modes, sustituting Equations (4.56), (4.57), and {4.60), which may be
the uncertainties of applied axial loads (P) or moments (M) into LEquations (6.10), (6.12), (6.16),
(6.17), (6.21), (6.22), (6.25), and (6.26) yields the means and vanances of interaction cquations.
Substituting these statistics, the safety factors in Equations (2.8) or (2.15), and then the
probabi]itiés of failure in Equations (2.4) or (2.8) can be determined if the statistics of allowable

values of interaction equations are given.

D. STRUCTURAL RESISTANCE

The structural resistances are (1) yield moment, (2) Luler buckhing load, (3) axial load
capacity of columns, (4) yield load, and (5) cntical moment. The means and vanances of these

resistances which are the same notations in Section II[[D are summarzed as follows.

1. Yield Moment.

mean,

M, =F,3,

variance,

c&,y = (0.12)2 T\'@
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2. Luler Buckling Load.

mean, )
_ mlEl
Pp = 2
(KL)<

vanance,

3. Axial Load Capacity.

mean,
P, = (- 22/4)FYKC, for KLjry < C¢
or
I_’CI. = T’E , for Kl,,/rg >,
vanance,
bl T
B T (Vpcr)‘pé2r

where VP van'e‘s from 0.14 to 0.31.
cr

4. Yield Load.

mean,

variance,

cﬁy = (0.142 P2

5. Catical Moment.

mean, o
_ Emly. GJ c
M = ([Cym _m—y =+ ”__'wz 2
| KL En D
vanance,
ok = (Vy_ ) ME

where chr varies from 0.15t0 0.2.
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V. STRUCTURAL SYSTEM TO STATIONARY SEISMIC RANDOM PROCESSES.V

A. LOADING

In addition to static equivalent load and dynamic seismic load, earthquake can also be
medeled as stationary seismic random process. In this chapter a stationary seismic random
process is introduced to analyze earthquake's phenominon. A stationary seismic process is a
process whose statistical properties do not change with time and can be characterized by three
classes of noise process: white noise, filter white noise, and modified white noise. These three
random processes can be used to model phenomina of earthquake induced by ground motion

and are described as follows :

1. White Noise Processes. A stationary process with a constant power spectral density for

all frequencies, G(w) = Gg , i1s known as a white noise process which 1s descnibed in Appendix
E. The validity of using whute noise approxumations to simulate strong-motion ‘earthquakes was
examined by Bycroft. I8 It is shown in his study that a white noise process representation yiclds
velocity spectra that compares favorably with the average velocity spectra of Housner 34 for
actual earthquakes. These results, therefore, justified applicability of white noise processes to

model earthquake’s motions.

2. Fiiter White Noise Processes. According to the existing strong motion accelerograms,

the considered frequency spectra are not constant even over a limited band but somewhat
oscillatory in character, and may have peaks at one or several frequencies and damp out with
increasing frequencies. ‘Thus a stationary filter white noise process charactenzed by its transfer
function could be more suitable to actual ground accelerograms. Ilence, a second order lincar’
damped oscillator suggested by Kanai 36 and Tajimi 36 will be an appropriate filter which is
specified by the filter fundamental frequency, @g and damping rutio, Cg' so that the resulting
filtered motion has a statistically correct frééuency constant. The filter which is used to simulate

earthquake’s motions has the form:
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2, ,222
o)g+4Cgmgo)

.
3220

(5.1)
(@é - @2)2 + %gmgco

Glo) =

where Gy is the constant power spectral density value; @ = frequency.

In general, the parameters ©g and Cg are affected by the ground layer ngdity, the

epicentral distance, and the earthquake magnitude. In Reference 46, it gave three sets values of

o and Cg to represent three types of soil conditions as
Soi Type I l1 1§
O 8n 5m 2.4m
Cg 0.6 0.6 0.85

I - Rock or stiff soil conditions
II - Deep cohesionless soils

III - Soft to medium clays and sands

3. Modificd White Noise Processes. A modified white noise process has a constant

spectrum which is obtained by substituting structural natural frequency, w,, into the

Kanai-Tajimi filter. As a result, the constant spectrum is obtained to be

4 222
®g + «gmgmn

G
2 22 2220
(cog—cnn) +4Cgcngmn

Glo,y) = (5.2)

In Reference 53, Housner and Jennings proposed possible values of
wg = 15.6 rad/ sec ,Cg =0.64, and Gy=1.0 in?] sec? for fumn gound condition, based on the
shape of an average pseudo-velocity response spectrum for eight accelerograms (two component

cach for four carthquakes).

56



B. STRUCTURAL RESPONSE

When a structural system is subjected to dead, live, and stationary seismic load, the
randomness of structural responses is primarily due to the randomness of stationary scismic
processes. Therefore the effect due to a stationary seismic load which is a zero mean Gaussian
process is considered here. The response for a single degree system is illustrated first und then is

extended to a multi-degree system.

1. Single Degree Freedom Systemn. Let s(t) represent the displacement response of a

single degree, viscously damped, linear oscillator 10 a stalionary carthquake excitation aft); in
random vibration theory, the random function s(1) may be represenied by a continuous

superposition of stnusoids in a Fourer integral form as

(> o]

s(t) = f_ooGs(m]cimtdco (5.3)

where Go(w) is the response spectrum which has the following relauonship to the excitation

spectrum G, ()

Gyw) = H(@)Gylw) (5.4)
In Equation (5.4), H(w) = the transfer function of a structural system = -1 ¢
(f.orz1 - w2 +2¢w,w) ; @, = the structural natural frequency for nth mode; i = v 1.

The transfer function l{w) is derved as following. The structural design system which is

similar 10 Lquation (4.6) ¢an be formulated as

S0 + Logdt) +olst) = —a(t) (5.5)
Let a(t) = exp(iewt) and s(1)= 1l(w) expliwt), Equation (5.5) becomes

H(w) expliotl — o + 2loyo + 021 = - expliot) (5.6)

then H( ®) can be determined from Equation (5.6) as given in Equation (5.4).
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Sirilar to Equation (5.3), an excitation process can be transformed into the excitation
spectrum; through the transfer function the response spectrum can be determined from Fquation
{5.4); then the response spectrum can be transformed into the response process. The relationship

between excitation and response is shown in Figure 4.

If the ground acceleration is a Gaussian process with mean-zero, the response process of a
linear deterministic structural system to this excitation is also a Gaussian process with mean
zero. Since a Gaussian process is completely specified by its first two order statistics (i.c., its
mean and vanance), the statistical quantities of interest in structural design are the moments of
responses, ), which the cases with k=0 and k = 2 have the physical mcanings of mean square

of response and of time denvative of response, and are defined by

o0

iy = | o Gylode , k=012 | (57)
—oo

where 4y = the kth moments of the power spectral density function of s(t) about the
frequency ongin; and Ggy(w) is the spectral denmty of the mean square of s(t) which s
deterrmuned to be

Gegl@) = 5= %°_Ryglr) exp( —ir)ds
] .
=5[22 _exp(—iwt) [0 [ Ryy(x+0) 03 h(0)) h#7) 48 d0yd
= /22 (@) exp(iwd 40| % _h(0y) exp( ~iwd)d0;
1 ) .
XffoooRa‘a(T + 0y = Gy exp( —io(r + 8 —07))dr

= H@)H( —0)G (@) = [11(0)|*G o) | (5.8)

in which h(8), h(d5) are urut umpulse response functions; G (w) = spectral density function of
s(t); Rgg(7)= autocorrelation of s(t); Gy,(w) = spectral density function of a(t); Ry, (r)=

autocorrelation of aft); for k= 0 and 2, thc moments, 4, have physical meanings as:
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o = [ Gylw)de (5.9)

The autocorrelation of the response s(t) is

(e a)

EGsstt + 0] = Ryg(r) = J__Gygle)eTdo (5.10)

where t = the tume difference between two processes.

If  is assumed to be a zero value, the above equation yields the varance

2 2 o0
o = E[s"()] = f_mGSS(m)dcn =1y (5.11)

Thus the zeroth moment of response, 4, 15 the mean square value of response s(1).

k=2
iy = f_coGss(m)a) de (5.12)

Since the first derivative of R () with respect to time difference gives

dR_ (z
D@ _ Els(st = 1)1 | (5.13)

R,SS(T) - dr

taking the second denvative of Rg(r) with respect to  yields
R'(x) = - EG(t—)5(0] = — Ry(n) (5.14)

From Equation (5.10), Equations (5.13) and (5.14) become

(> o]

R (r) = f _ooimGSS(m) exp(ior)dw (5.15)

and
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e o] o0

R (1) = f_oo(ico)zGSS(oJ) expitor)do = f_m—szSS(a))exp(icor)dm {5.16)
If = = 0,
R..(0) = —R" _ 72

§0) =-R7(0) = [ _o"Gyle)o (5.17)

Therefore the 2nd moment of response, 4,5 , is the mean square value of time derivative of the

response.

After the relationship between response and earthquake excitation is determined, the
displacements for a single degree system can be found as follows for three types of random
seismic input spectra which are white noise spectrum, filter white noise spectrum, and modified

white noise spectrum.

a. White Noise Processes. [FFor a white noise seismic spectrum, the spectral density

function G(w) is a constsnt Gg. Then the spectral moments at nth mode are obtained as 60

isg= [ Ggglw)do= fjooom(m)[ZGu(m)dm =Gy ffooom(mulam

Subsututing H(w) which is seen in Equation (5.4) into the above equation yields

: rGo
o = 3 (5.18)
2Cﬁ)n
— OO = oo = t 2
Isp = [ _oGoldo = [ wlH()XGy(w)do = G [ ol )Xo
~ (nGO) L = 2fntan” (/1 - ¢%) (5.19)
Kmrz, -2

gy = fi'oooszss(m)dm = fi"oomzll [(@)|2G gy (w)do = Gy ff"oomzil (o) 2de
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b. Fiter White Noise Processes.

In Reference 60 Kiureghian has denved the formulae for displacement moments for a
filter white noise process. The moments of single degree displacements, g, 45 27 can be

determined and used to find displacements and internal forces.

isp= [ Gglopo = [ [H@)?Gy(wke

f (o} : + & 20509 [ (0f - 0H% + 42030 1Golde (5.21)
[s o]
iy =[G , (5.22)
Aoy = f O Gss(m)dro (52

The integration results of 1, Agj, 455 are given in Appendix F.

c. Modified White Noise Processes. Similar to white noisc processes case, the moments

of s(t) are obtained by a constant Kanai-Tajimi spectrum with the structural natural frequency.

o=/ ioooGss(“’n)dm =/ iooo|H(m)|2Gaa(mn)dm

=% {(m2 + 4c2m )i[(mé ~02)? + qémémgjc}o}dm

222
nGy m +4Cgmgmn

= (
250)3 (mé—wn) +4C§ 20 2

) (5.24)
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1=/ Tmess(mn)dm

_ " 4 222
2:(‘)!21 fl _ CZ (mé - mg)z + 4{2(0;(1)%
rs2=/ fooo“)sts(“‘)n)dm
4 2272
nG wg + 4 0 0
- 0)( g gg n ) (3.26)

2 2.2 2
Loy (0g —op)” + Kémgmg

2. Multidegree Structural Systern. Based on normal mode method, the displacements and

mtemnal forces of a multidegree system can be obtained by the superposition of cyuations for a

single degree system as follows:

a. Displacement. Let u(t) be the displacement matnx of multidegree system, then

{u)} = (¢}, nSeo (5.27)
n

and the spectrum of u{t), G (w), is expressed as

Gy(w) = % /2 _Ry(O)dr = g{‘b}nrn%‘ 2 _Ry(0)dr

= T{®}laGy(@) = T®)a o Hy(@)Gy(w) (5.28)

where (®}, and ", arc the mode shape and thc participation factor; S = the displacement
for a single degree system. The system transfer function (1 (@)} and the spectral density of

dispiscement {Guu(m)}88 are given by

(Hy(@)} = %HD},,F nHp(@) (5.29)
and
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{Guu(m)} = Gaa(m)Hu(m)Hu’(— )

- Gaa(m)%;{¢}n{¢}nrrnrn:lIn(m)ﬂ:l(cn) (5.30)
n

where Hj,(w) = the transfer function for the ath mode; G,,(w) = the spectral density of mean
square earthquake excitation; H;, = the complex conjugate of Hj(w). For lightly damped
systems whose model frequencies are well separated, the terms of all cross-spectral contnbutions

over G,,,(w) may be negligible. The moments of displacements are determuned as

i = f . Gyylode = S@3 121 | @) G ,wide= S®3,r 3
uf = f_w uu(m) o = Z{ in nf_m“ n((u)l Jaa(w) w= 2 in nASO (5 ].)
n o
- i 2, 2
Ayl = f_ooo)Guu((o)dm = §{‘D Jalnds) (5.32)
% 2 2, -2 .
hy2 = f_mm Gyylwde = E(m Il ads2 ‘ (5.33)

For displacement failure mode, substituting liquanons (5.31) and (5.33) into Lquation
(2.28), and then the probability of failure in Equation (2.30) can be determined i detcrministic

allowable displacement is given.

b. Internal Force. Let {F}, be the forces matrix for mth member, these forces can be
determined from the displacements by (F}, = [S1L[AIL (u}, = [SAT], (um
where [S]m, [A];I;‘, {u}y are the same notations in Chapter I, and
[SAT], = [S]m[A]g. Since matrices [S],, and [A];I,; are the deterministic values, the
moments of internal forees can be denved from the above relation by

iy = /7 Grp)do= [SATZ][% G,y()de

2
= [SAT 14 (5.34)

ul},

ey, = AT Indy (5.35)
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LRy, = AT lmdqy (5.36)

For column failure modes substituting Fquations (5.34) and (5.36) which may be the
applbed axial load (P) or moment (M) into Pquations (6.28), (6.30), (6.32), and (6.34), they
yield the values of o and o for interaction equations. Substituting the standard deviations of s
and s into Equation (2.28), then the probabilities of can be determined from Liguation (2.30) of

the determurustic allowable values of interaction equations are known.

C. THE STATISTICS OF PEAK RESPONSES

If the uncertainties of peak responses for random loads can be found, the probability of
failure for a first-order second moment expression can still be chosen for criterion. Two
expressions to respresent the statistics of peak responses are given as follows. These siatistics
can be used to calculate the means und variances of responses in the safety facter expression.

Therefore, the probability of failure can be determuncd.

1. Davenport’s Expression. Davenport 3% derived the mcan and standard deviation of

the maximum absolute value of a stationary zero-mean Gaussian process s(t) over duration

based on results obtained by Cartwright and Longuet- !iggins and Rice. 19,75

mean,
oo
Smax = / — oo max Psmax(max) 95max (3.37)
standard deviation,
Smax ~ [Sgnax“ggxaxjuz (5.3%)
In Reference 39, the values of Py (Spax) USmax and 5., Were gven by
Psmaxmax/¥Smax = exp(—8ds (5.39)
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and

G ¢ 1 Ing
Smax = /(2IvTg) T " e b (5.40)

where & = vy exp( —52/2),'1'0 = a duration, and v = (Ag/4g)m. Ay 15 given in liguations
(3.31) and (5.34) for displacements and internal forces and Agy is given in Equations {5.33) and
(5.36) for displacements and intenal forces. Thus, the mean square value of 5., 15 found to
be

2 _ a2
“max = J___Smaxexp(—8d¢ (5.41)

By substituting Equations (5.39), (5.40), and (5.41) into Equations (5.37) and (3.38). the

uncertainties become

Smax = (/(2AnvTy) “‘%)05 (5.42)
nvTy

Os = [(—==X 1 Yo (5.43)

max 67 21Ty

where o is given in Equations (5.31) or (5.34) depending on the analysis of displaccments or

internal forces.

For displacement failure mode, substituting Equations {5.31) and (5.33) into [iquations
(5.42) and (5.43) yields the values of mean and standard deviation of s,,,; then, the sufety
factors in Equations (2.6} or (2.15) or probabilitics of failure in Equations (2.4) or (2.8) can be

determined if the deterministic allowable displacements are gven.

For column failure modes, substituting Lquations (5.34) and (5.36) which may be apphed
axial loads (P) or applied moments (M) into Lquations (5.42) and (5.43) yiclds the values of
mean and standard deviation of sp,,,; then substituting these values into Equations (6.27)

through (6.34), the safety factors in liquations (2.6) or (2.15) or probabilities of fulure n

656




Equations (2.4) or (2.8) can be determined if the deterministic allowable values of interaction

equations are known.

2. Kiureghian's Expression. By modifying Davenport’s expression Kiureghian 60 derived

the following empinical expressions for the uncertainties of peak reponses as follows.

mean,

Smax = (JANveTy) + —2202 s (5.44)

‘/ 2 l.n chO

standard deviation,

1.2 54
s = - Jo,, v Tg>21 (5.45)
M N2l Ty 134+ (/2 meTg)%?
OSmax 0.6305, vely<2l (5.46)
where
ve = (163°% 038y . q<069 (5.47)

q = N-23iody « q=069 (5.48)

For displacement falure mode, substituting Egquations (5.31), (5.32), and (5.33) wmnto
Equations (5.45) and {5.46) yields the values of mean and standard deviation of sy, «; then, the
safety factors in Equations (2.6) or (2.15) or probabilitics of failure in Fquations (2.4) or (2.8)

can be determined if the determimistic allowable displacements are gven.

For column fadure modes, substituting Equations (5.34), (5.35}, and (5.36) which may be
applied axial load (P) or applied moment (M) into Equations (5.44), {5.45) and (5.46) yields the
values of mean and standard deviation of sy, then substituting these values into Eguations
{6.27) through (6.34), the safety factors in Fquations (2.6) or (2.15) or probabilities ot fuilure in
Equations (2.4) or (2.8) can be determined if the deterministic allowable values of interaction

equations are given.
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D. STRUCTURAIL RESISTANCE

Since the structural system considered here is determunistic, the structural resistances are all
determministic values as well. The structural resistances which are the same notations in Section

[1ID are

1. Yield Moment.

M, = F,S,

2. Euler Buckling Load.

B r\:zEml
(K1,)2

Pg =

J. Axial Load Capacity.

P

or = (L= 22(4)F A, for KL/rg< Cq

or

Pee= Pg. for KL/rg>CC

4, Yield Load.

P, = FyA,

5. Cntical Moment.

Enly . GJ  n2C

Y 5 W 1,2

Mcr = {[Cbn 1L + ]}
KyL Em (KZL)z
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VI. OPTIMIZATION FORMULATIONS AND ALGORITHMS

A, OPTIMIZATION FORMUILATIONS

In engineenng optimum design, the goal is to produce a best solution which provides not
only a safety but also a best objective value. An optimum strurctural problem can be
formulated as:

mimmize objective function

subject to constraints

1. Objective Function. The objective function of a structural design problem may be

weight or cost function which are
a. Weght. Weight (W) 1s the constituents of structural member weights and can be
expressed as
W = zrdlfl.‘\.i (6.1)
1
where ry;, €5, A; = the mass density, length, and arca of a member, respectively.
b. Cost. Total estimated structurai cost { CT ) which 1s shown wn Figure 5 consists of
two parts: the initial construction cost ( CI y and the expected future failure loss ( l,f P“. ), Le.,
Ct = G+ LsPr (6.2)
where Lf = expected falure cost; pr = system failure probability.

Initial construction cost CI comprises of the structural matenal cost and the muscellancous
cost. The structural matenal cost is the cost of structural members. The miscellancous cost may
be the product of total unit floor price shown in Table [ 43 and total area. The cxpected future

loss has two components: the expected failure cost { ['f ) and the system probahility of failure (

PfT ).
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COST
Y

Figure 5.

Cost vs System Probability of Failure.
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Table I.  UNIT FLOOR COST FOR OFFICE BUILDING

Average $/ST

Foundation 2.27
Extenor walls 5.96
Partitions 3.07
Interior wall finishes .36
Floor finishes 1.22
Ceilings 0.99
Specialties 0.38
Conveying systems 0.56
Plumbing 2.13
Fire protection 0.27
HVAC 6.20
Electrical 399
General conditions 2.20
Equipment 0.69
Site work 2.00
total . 33.29
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The expected failure cost ( Lf) is the total loss incurred in a structural failure state. This
includes an additional replacement cost, damage to property, Liabilities due to death and injury,
and business interruption. They are estimated based on the following assumptions: The
additional replacement cost is taken to be two times of initial structural cost. 7/ The loss due to
property damage in which no loss of expensive equipments is assumed as 50% of the initial
construction cost.>2 Liabilities due to death and injury include only the people present in the
building failure. Loss due 1o death is tl:alculalcd based on an average death age of 30 and 15 the
sum of the person’s salary until he reaches the retirement age of 65 years. Thus, this loss is 35
times the average annual net income. 92 The loss due 1o serious injuries ts assumed to be
$350,000 per person. 77 The loss due to minor injury is $5,000 per person. Business
interruption 15 estimated as the income o‘f the employees dunng a 4-year reconstruction penod.

The loss due to legal service may be assumned to be 15 % of the falure loss.83

The estimation of a system failure probability is approximated by Equation {2.36) which is

expressed as

nf
Pﬂ* = .leﬁ (6.3)
=

where nf = the number of faldure modes.

2. Constraints. In a structural design one requires the probabilities of desired response
failures less than the the allowable probabilities of failures or the safety factors for thosc failures
greater than the ailowable values. 'These requirements become the constraints in optimum
structural design problems. The desired response falures may be dispiacment failures, column
failures, and beam failures which are descnbed as follows. In addition to the above individual
faillure mode constraints, the systern failure probability which is less than the allowable

probability value can also be added to the constraints.

In the following the safety factor with normal distnbution and probability of falure, which
are Equations (2.6} and (2.4), respectively, arc used to illustrate the formulations for vanous

failure modes.
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a. displacement fature. A structural failure due 1o an excessive displacement may be

expresse as f§,, or Pgf,,) which is the safety factor or probabiiity of failure. The safety factor

has the form

a-1,
o= T (64
Uu + Uua
where T, 0’121 = thc mean and vanance of a displacement; T, Gaa = the meuan and vanance of

allowable displacement.
Thus, the probability of failure is

Pf(ﬁu) = 1- PN(,Bu) ‘ 6.5)

b. beam failure. Beam may f{ail in a number of different modes. However it is assumed
that the beam fails when the applied moment exceeds the flexural yield capacity of beam, i.e.,

B or PeBng). The safety factor is

M- M,
= 6.6
Am — (6.6)
M + O‘M
Y
where M, c&dx = the computed mean and vanance of moment; :\Zy, 0':%4 = the mean and

Y
vaniance of allowable yielding moment.

¢. column falure. Four cases may occur mn column failure. The representations of them

1) failure by yielding at the ends, f)

The safety factor and probabiiity of fallure in this case may bc expressed as ﬂ|~l ar

pf(ﬂfl) Thus
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1.0-1

By = = (6.7)
(Gfl
Pfl = I—PN(ﬁf!) (6.%)
where
fy P, M (6.9)

where P = applied axial load; M = applied moment at one end of the colump; Py = yeld

axial load; My = yield moment.

To determine the safety factor and probability of failurc the mean and vanance of f; are

needed. These uncertainties can be determined from Equations (2.16) and (2.18). They are

mean,
fl = _l+;l (6.1
>
1 y My
variance,

of, = >¥ pP? +<—>3 %P2+(—)¥VQM2
Y

_— a
)%Vzw My +2( )r( oM, e M YM, Ve P My

gvf,“?- + ( —P )3\/5 P2+ (—);v%4 M2+ w“ )-ﬁv“ M2

P y
F M
P, (My) PyM, Py "My
5oy 5
= ( L2vE+vE )+ MAvE « vﬁd )+ ALy M e, Ve Y, (612
P, y M, P, M, y
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where _ﬁ,ﬁy. VP,VPy = the means and coefficients of vanation of P and Py; pPyMy = the

correlation coefficient of Py and My; The value of pPyMy 1s assumed to be 0.70 in the study.

2) instability in the plane of bending, 5

The safety factor and probability of failure may be expressed as {}rz, P‘{ﬁfz)' Thus

1.0-F,
ﬁfz = > : (6.13)
/O’fz ’ .
Pf(ﬂfz) = l—PN(ﬂfz) - (6.14)
where
_ P M ]
EI S W T (6.13)

where Pcr = crntical axial load; PF = Fuler buckling load.

The mean and vanance of f5 which can be determined from [iquations (2.16) and (2.18)

are
mean,
b = 5+ M (6.16)
P (1-PPpM,
vanance,
-2 M P 2 P2 ‘ M- P2
of, =(=—+ — ——)*Vh + (—)Vp  +( M Py
M 2 P ™ P
+( =)V +v‘. ) + A== ——pp p,.Vp Vp,.
(L=P/PM, My M P (1= DB v P Peel’t " Per " P

P M
+ =) =P Vp vV
P, (—PpgM, ey Por My
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M M P
A== ————=——="PP\; PrYM, VP (6.17)
(l—P/PE)My (l_p/pE)zMy PE My E Yy 'E

where 1P .l’i:,Vp , Vp .= the means and coeflicients of vanation of P and P PP Py
SIS I cr I Vel

i

= ati St b} ] ). b . )
ppchy, DPEMy the correlation coefficients of | or and 1 | lcr and My , My and I 1

3) lateral torsional buckling f3

The safety factor and probability of falure may be expressed as ﬁf3 or I’f{ﬁ’fJ). Thus

1.0—?3
ﬁf3 = > (6.18)
of
3
P, = 1= PN(p) : (6.19)
and
f3 = P + M {6.20)

P M {l-P/PEg)

Mcr = cntical moment.

The mean and variance of {3 which can be determined from Equations (2,16) and (2,18)

arc
mean,
fp = 4 —=—M _ (6.21)
PCI’ MCI’“ - P/PE)
vanance,
P M P .o P 2 M P
of, =(=—+ — —)Vh + (=—)*Vp __ +( —————)Vp .
f P (1-PPp)M Pg i Per Pa (1 = P/P)2M,, Py; Py
M p) P M P
+ (———) (VM- -’r-Vl ) + 2(=—X ———————)pp P,VP Vp:
TR, et Y0 g G ey el
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-}-2(_F } _@ —
P (1-PPpM,

Vp V)
)ppchcr Per " Mer

<l

M__

_ I
+ A e —
(I=P/PEMer (1 - B/PR)*M,, P

A% \% 6.22
)pMcrpE Mcr PE ‘ ( )

]

where ﬁcr, chr = the mean and ccefficient of vanation of Mcr; Pp P PP M PP}

= the correlation coetticients of I’ dlld PP and™M M und P,..
I cr cr cr I

4) bucking about the weak axis, 4

The safety factor and probability of failure may be expressed as Bf4 and Pf(qu). Thus

1.0—1y
Bg, = 75 (6.23)
Jgf4
where
p .
Pery

where pcry = the cntical axial load capacity at weak axis.

The mean and vanance of {4 which can be determuned from Equations (2.16) and (2.18)

are
mean,

fy = =L (6.25)

Pm.y )
variance,
2 P 2y 2
= (—=)%V v 6.26
0f4 (ﬁ ) Pt Pcry) { )
Cr

where Pcry Vp the mean and coefficient of vanation of P
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In the random load cases, the structural resistances are deterministic. Thus the
uncertunties of interaction equations for column members are only due to the uncertainties of

structural responses which are

(1 fy
mean,
R T (6.27)
y Uy
variance,
c%l = —cplz 12;4-—0\;2 % (6.28)
y  Vy
() fH
mean,
; P M
I + _ (6.29)
2 Per  (1- P/Pp)M,,
variance,
°f22 = (P‘ +—M 5 Pl R p— 5 Yol (6.30)
a (1-P/PpM, E (1= PIPE)"M,
(3) f3
mcan.
B = o+ —2M (6.31)
Per  (1-PIPRM;
yanance,
of, = (F—-— o+ ——L (6.32)
o (1-PPpM, E (1 = PIPE) "M,
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(4) 1y

mean,
iy = PL | (6.33)
cry
variance,
0_2 = 1 )20_2 , (6.34)
47 Py P '

where Py , My , P , Pcry are deterministic values; cfx and cﬁ,( are the vaniance of

cr’ PE ! Mcr

applied axial forces and mements.

After the objective function and constraints are decided, the next step is to use an
optimization algorithm to solve the formulated probiem. The optimization algorithm may be

classified into two classes: mathematical programing method and optimality critcrion method.

B. PENALTY FUNCTION MITHOD

The penalty function method is onec of the mathematical programming techniques which s
used to search the best moving route of design variables and to reduce the objective functional
value untill no objective functional value can further be minimized; the procedure is then
terminated where an optimum solution‘is obtained. In this study, intcrior penalty function

method is used.

Since objective function or constraints may be nonlincar, an optimum structurai design
becomes a nonlinear programming problem. There are many scarch techniques used in the
nonlinear programming; among them penalty function i1s a procedure for approximating
constrained optimization formulation by sequenily unconstrained problem. The approximation
15 accomplished by adding to the objective function a term that pruscn'hcs.u high penalty value
for violation of constraints. Associated with this method is a penalty paramcter, rp, which

determines the severity of the penalty and, consequently, the degree to which the unconstrained
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formulation approximates the original constrained problem. As rp approaches vero, the

approximation increasingly approaches to a solution which s closer to the actual selunon.

The method considered leads the intermediate solution dunng the scarch to lying in
feasible regon and converging to the optimal solution from the interior of acceptable domain.
The advantage 1s that one may stop the search at any time and ¢nds up with a feasible und
suboptimal but less cntical design. A drawback 1s that the imtial point should start mn the

feastble regon which may be difficult to determine.
The formulation of the method can be defined as

Pp(x¥ ) = OXN - sgl g <0 - (6.35)

}
where PP(Xk. ri‘.) = penalty function; O(XX) = objective function; xk = design variables;
r§ = a penalty value; g = jth constraint; k = the number of completed stages for the

subsequent change of penalty values rﬂ‘..

At an interior point, the sum of the inversing constraints in penalty term is ncgative, and a
positive r}f} will result 1n a positive penalty term to be added to objective function. As a
boundary of the feasible region s reached, some constrants will approach zero and the inverse
of constraints wil approach wnfinity. By successively reducing the paramcter rF. the optimal

solution for the constrained problem will be found.
The process for finding a solution 1s as follows:

(1) The initial design vanables X0 arc assumed to be in a feasible reigon and the penalty
value rg; is chosen; then the unconstrained optimization algonthm 1s used to find the minimum

solution of penalty function PP(XO. r?»).

(2) Reducing the rf by using the rule dft! = Crf, where C <1, and finding the

minimum of Pp(Xk+1, &+,

80




(3) Check whether convergence criterion is satisfied, if not, repeat step (2); if yes, an

optimal solution is obtained.

In order 1o solve the penalty function the unconstrained optimization algorithm is needed.
An algorithm used in this study 1s based on the Powell’s method with Goggn one-dimensional

search techmque which i1s descnbed in Appendix H.

C. OPTIMALITY CRlTERIdN METHOD

Optimality critenion method is an indirect method which utilizes iterative processes to find

the optimum solution based on a ententon for optimality.
Let an optimum structural problem be formuilated as:
minimize O(X)

subject to g]-(X) <£0,j=1,23, .,nc
where X = design vanables; O(X) = objective function; gj(X) = jth constrant; and nc =

the number of constraints.

The criterion for optimality of the method may be expressed as :

9gi(X)
0K, nzcij( g;
=10 5

{

o )y ) = 0 and 4,20 (6.36)

where x; ith design vanable; lj = jth Lagrangian multiplier; x* = an optimal solution. Based
on the above cnterion, the design vanables x.[” +1 4t v +1th iteration can be expressed in terms

of x¥ at the vth iteration as
v+ 1 v
X = fa+(1- a)Ti}xi v (6.37)
in which T; is called the rccurrence equation and can be written as

act (X)) H0(X)
T, = (= X 4

(6.38)
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a = a relaxation constant; and act = the number of active constraints. The partial derivative of
constraints with respect to design varables, Ogj/c?xi, can be expressed in terms of safety factor,

By, as

I

T T (6.39)
or in terms of probability of failure as
2
Jg; é(Pg— Py ) P —B3(X) 98;(X) :
_]_ = a_ f(ﬂ) = __l exp{ ) ) ] (6.4)
Ox.i ali éxi ¥ an 2 Oxi

where §, and Pfa are allowable safety factor and probability of failure, respectively.

At each iteration one has to scale the initial design and to decide the active constraints for
accelerating convergence before the valuc of T; {Equation (6.38)) is found. [or cach constraint
the scaling factor is computed by a lincarized approximation to the allowabie safety factor or
probability of failure as follows:

act 9f; passive gf;

]
Af: = 3 (—2)Ax + , ) (6.41)
ﬁ] 1—21( % & 1§l (a’H Y% min = %

n which xj» . represents passive clements.
Substituting Ax; = K{"H - ¥ = Ax{— x into the above equation yiekls

act aB passive (35]
Ba—8; = Z(—)(A—l)xﬁ X G5 )(’H‘mjm X) (6.42)

1=1 '=1
Thus the scaling factor for safety factor can be calculated as follows:

act 6,6 passive. 5{3]
By =B+ Z( )Xl— ,'Z S5 mun ~ %)
A; = =1 (6.43)
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For the probabilities of failure, the scaling factors become

b b aﬁt an]_ paszsive oPy.
(Pr =P+ X (52— % (1)K min — %)
. f, 7 =g X 22 o X min 7 & »
)T TR (6.44)
T
—)x;
i=1 % 5

[n order to determine T, the active Lagrangian multipliers J.p must be determined from
the following simultaneous equations which are denved from lincanzued approximations to the
zero constraint values:

N 28; passive g o
Ag, = g —g = (A + X (——)ax(P) (6.45)

o S R =1 %

in which Ax;/(P) represents passive clements.

Let g]"’+l =0,
Ax, = [a+ (1= u)'l'i]xiv - xiv, (6.46)
and

act  9gi(x)  50(x)
Ty = (= % A(——Di (6:47)
' =1 9N ax :

]=

then Equation (6.45) becomes

(- S ipt =L
act 5gi act D (ki (hi
-g = Y(zlex+(l-a) ¥
AT i= 29, "
ax
Eg da. pasgive og; -
- _X + —Ax(P) (6.48)
i=la\x"lxl =1 axx’ 5
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in which ncl = the number of active constraints, gp = the active constraints, Ap = the
l.agrangian multipliers of active constraints and can be found from the following simultancous
equations,
nc act 0g; dgy
(1-a) Z (Z( (—)/(—) W
p=1i=] %

act agj passive agj
=g +{o— 1) E (= )Xl + Z (—-)Axlf(P) (6.49)

A flow chart of optimality cniterion method solving constrained or unconstrained problems

ac
is shown i Appendix 1. The recurrence cquation, T}, denved . from "a__n = 0 for cost
function in the unconstrained algorithm has the following fonn
- L¢P
T, = ZHPIT (6.50)

T
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VIIL. STUDIES OF ANSI. NBS, UK, AND UNREDUCED MODELS

The two-story steel frame in lagure 6 1s used to demonstrate the designs for four live load
models. The optimal weight, moment of inertia of a member, and probability of faure are
shown in the {ollowing figures. The notations in the figures are LI, [.2, L3, and [.4 which
signify the live load models of ANSI, NBS, UK, UNREDUCLED, respectively; Ist and 2nd
represent the two vartance approaches for twa probability distnmbutions; N and LN are
cormresponding to normal and lognormal, respectively; D+ L signifies the dead load combined
with live load; and D+ L + E represents the load combination of dead load, live load, and UBC
seismic force. The parameters used in the example are A =900 fi2 (274.32 m?)
D =80 psf (3.82 kPa), VD=O.12, allowable individual fuilure probabilities = 0.0001,
allowable joinf rotattons = 0.05 rad., allowable joint displaccments = (0.5 1in (.27 ¢my),
allowable variances of joint rotations and displacements are assumed to he  scro,
Fy= 36 ksi (2.448x10% kPa), Ep; = 30000 ksi (2.067x108 kPa), Vat, =012 Vp, =03,
Vpcr =0.31, pr =0.14, VMcr = 0.20, Vpcry = 0.3, ppyMy =108, ppchy =().R,
PP pE = 08 ( =t i Py,= Pp ) pPEMy =10, ppchy =038, pl’yMcr =118,
PPEM = 0.15. The parameters for the seismic base: shear in  UBC  are
Z=13/8 Ig=10 Kg=10, Sg=15,hn = 27t (823 m) and Dn = 3¢ ft (9.14 m). The
structural members are assumed to be rectangular sections and have the reiationshup area =

2v'Z (moment of inertia)”z. The minimum moment of inertia of ail the members is 50 ind

(2081.16 cm®y.

A, DEAD AND LIVE LOAD CASE

The analytical results corresponding normal distnbution are ;ven in Figure 7 which shows
the magmtude of optimum weight in which the Batish model {[.3) demands a heavier structural
deaign than the U.S. models (L] and L2); ANSI (L1) demends heavier design than NBS (1.2);
UNREDUCED model (L4) demands the heaviest design simply because it does not reduce the
live load in term of influence area A|.The 2nd variance approach yields more weight than the

first. The moments of inertia of a typical beam (I} and a column (ly)
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are sketched in Figures 8 and 9, respectively. "T'he effects of four live load models and the two
vanance formulations on the design are similar (o the optimum weight in gure 7. ‘The
probability of failures of the typical members are given in ['igures 10 through 13 in which
by and b, are corresponding to the failures due to yielding moment given in [quation (6.6) of
beams | and 2, respectively; and (f|)4 and {f5)4 represent the column failure (element 4) due to
yielding at the member end (Equation (6.9)) and wnstability in the plane of bending (lquation
(6.15)), respectively. The supporiing column, member 3, reaches the mumimum moment of
inertta before any failure modes. The failure modes at the optimum solution are close to the
allowable, 10 x 10=2. The design was determruned at the 6th cycle, because ;he next cycle could

not further improve the optimum solution of the structural weight or the moment of inertia.

The optimum design paramelters of weight, moments of inertia, and failure modes are also
studied for lognormal distnbution and are sketched in Figures 14 through 20. The effect of four
live load models and that of two vanance approaches on the optimum design resuits are similar

to those observed on the bases of normal distribution.

Comparsion of the optumum solutions resulting from normal and lognormal distnbutions
reveals that normal distribution requires a heavier structural design than the lognormal
distribution for the first approach, but a lighter structural design for the second approach. The
comparison may be observed from Figures 7 and (4. Similar obscrvations may be conclued for

moments of inertia.

As observed from the normal distribution case, the failure modes shown in Iigures 17
through 20 indicate that the individual falure mode approaches the specificd fuilure bound,
Pgy = 0.0001, for four live load models and two probabiity distnbutions. T'he failure modes
which approach the bound are the viclding failure of beams 1 and 2 (bl and b2), and the
yielding and bending instability failures of column 4 ((f})4 and (f5)4) for both the Ist and 2nd

vanance approach.
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Iigure 11.

Probability of Falure for NBS Live Load Model with N and D+ L Case.
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Figure 13 Probability of Failure for UNREDUCED Live Load Model with N and D +1,
Case.
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B. DEAD, LIVE, AND UBC LOAD CASE

As studied in the previous section, the interior penalty function algorithm 1s also used in
this section. In general, an initial penalty value is first assumed which is then reduced for cach
cycle to approach the optimal solution. For optimization process different starting points may
result significant differences of suboptimal solutions. Therefore the suboptimal solutions
between two cycles may have large differences because of two different starting values. These
differences can be seen in the study of ANSI and NBS live load models. [n this section the
UBC load, with the varation of 1.38 as rccommended by NBS, combined with dead and live
load {(D+ L+ E) is used to study the effects of the live load models of ANSI ([.1), NBS (L.2),
UK (L3), UNREDUCED (L4) on optimum design parameters. In Iligures 2t and 24, the
optimum weights affected by [.1 through [.4 are not quire consistent as shown in D+ [, cuse.
According to the present study of normal distribution, the optimum weight varies from heavy to
light in the sequence of UNREDUCED, UK, NBS, ANS[, for Ist varance approach and
UNREDUCED, NBS, UK, ANSI, for 2nd variance approach; for the case of lognormal
distnbution, the sequence is UNREDUCED, NBS, UK, ANSI for the st vanance approach,
and UNREDUCED, NBS, ANSI, UK corresponciing to the 2nd varance approach. The figures
show that the case of D+ L+ L requires less design cycles than the case of D+ L. [t 15 quite
consistent, howevér, that the lognomat distnbution demands a heavier design than the normal
distribution. From Figures 22, 23, 25, and 26, the design sections have the same conclusions as
optimum weight. Figures 27 through 30 show that the failure bounds are mainly duc to the

lateral displacements of the top floor.

C. SUMMARIES

1. For the D + L case, the magnitude order of optimum weight from large to small 15

UNREDUCED, UK, ANSI, NBS for both normal and lognormal distnbutions.

2. For the D + L. case, the lognommal distnbution reguires a heavier structural design than
normal distribution for 2nd variance approach, but a lighter structural design for the Ist vanance

approach.
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3. For the D + L case, the 2nd vanance approach yields heavier structural design than st

variance approach for both normal and lognormal distnbution.

4. For the D + L case, the structurai failures are mainly due to the failures of beamns and

the top colummn.

5. Forthe D + L + E case, the magnitude of opttmum werght from large to small is not
in the consistent order as the D + L case. For the Ist vanance approach, the orders are
UNREDUCED, UK, NBS, ANSI, for nomal distrnibution and UNREDUCED, NBS, UK,
ANSI, for lognormal distnbution; for the 2nd vanance approach, the orders are
UNREDUCED, NBS, UK, ANSI, for normal distrbution and UNREDUCED, NBS, ANSI,
UK, for lognormal distribution. The structural failures are mainly due to the failures of lateral

displacement on the top floor.
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VIII. COMPARISON BASED ON OPTIMALITY CRITERION AND PENALTY
FUNCTION METHOD.

Two structural systems of a truss and a frame are used to ulustrate the application of
optimality cniterion method and to show the close agreement of design results obtained by using

the optimality cnitenon method and the penalty function method.

A. TRUSS STRUCTURES

The unsymmetnc three bar truss in Figure 31 is used to ilustrate the optimum design
problem: by using both the optimality criternion method and the penalty function method. The
design vanables are areas of members 1 (Al), 2 (A2), 3 (A3). The random parameters are areas,
elastic modulus (E,,,). magnitude of applied load (P), and direction angle of applied load (0).
The méan values of random parameters are P =20 kips (89 kN) , 4 =n/4, Em = 10000). ksi
(6.B9x107 kPa) . The coefficients of vanation of these parameters are Vaj= Vo=
VAJ = 0.05, Vp = (.05, Vg =0.05, and vEm = (0.015. The allowable mean displacements are
0.5 in {1.27 em).and 0.125 {0.3175 cm) in comresponding 1o x and y directions, respectively. The
allowable mean stresses for three members are assumed to be 36 kst (2.448 x10%%Pa). ‘The
variance of allowable displacements and stresses are zero. The optimum design problem 15 to
find the minimum weight subjected to displacement and stress constraints. Based on optimality
cntenon method presented n Chapter VI, the mean displacement, G, and s vanance of
displacement 05 {Equation {2.18)), can be cxpressed as

meari,

! | (8.1)
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Figure 31.  Unsymmetric Three Bar Truss. (1 ft = 30.48 cm)
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i 2 2 du 2,252
Zl( ~ VAR — VE o+ (SFVEP + (Sh3V30 (8.2)
=
in which T’; = the internal force of ith member; t'; = the virtual internal force of ith member;
¢; = the length of ith member; and the other terms are expressed in Equations (8.3) through
(R.6) as
Ju_ _ Tt (8.3
dA; - a2 '
Ao Al
3 —Tt#,
a?au = I &
m 1=1 Eqdy
T
au _ (P} {Sh _ : :
5F - ks —ch056+5ysm0, (8.3)
T
du oy " (Sh . .
e =—Psm05x+l’c0595y (8.6)

In Equations (8.5) and (8.6), {P}‘I‘ = transponse of column matrix of extemnal forces =
(Pcos® Psin@]; {S} - = the column matnx of cxtemal virtual displacements due to the virtual

load applied at x or y direction = [S,, Sy]'r_

Using the above equations and the denvatives of uncertaintics of displaccment with respect
to design varables (Equations (8.1) through (8.6)), onc can determine the scaling factors
(Equation (6.43)), Largrangian muitipliers (Equation (6.49)), and recurrence cquations
(Equation (6.47)). For the optimum solution, Figures 32 and 33 show the optimum weights and
the cross sectional areas of the truss based on the optimality cntenion method and the penality

fuction method. The solutions obtained by these lwo methods are very close.
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B. FRAME STRUCTURES

Two-story building shown in Figure 6 and five-story building in Figure 34 are uscd 10
demonstrate the application of optimality criterion method for cost objective function. The
structural parameters for the two-story building are the same parameters used in previous
chapter. The NBS live load model (L2 ) is used here. The cost function is assumed as
Ct = C +LPsr. The imtial cost is Cy= 1.55 (dollars / volume) times structural volume
and the expected loss 1s Iy = 115 ( 2.5 C; + 3194100) dollars for the two-story building.
3194100 1s the combination of the liability due to death (3 700000 for | person of annual
income 20000 dollars), serious injuries ($1400600 for 4 persons), minor injunes ($75000 tor 15
persons), and the business interruption ($1019100). For the five-story bulding, the initial
constructure cost is Cy= 1.55 (dollars/ volume) times structural volume and expected loss is
Ly = T.05( 25 Cy + 14362500) dollars. 14362500 is the combination of the hability due to
death ($33500000 for 5 persons of annual income 20000 dollars), serious injunes ($3500000 for 10
persons), minor injunes ($375000 for 75 persons), and the business interruption ($6987500).
The calculations of hability cost due to death, serious injunies, and minor injunes for cach
person are described n Secﬁon VIA. The buswness mnterruption has been calculated in the

remaiung amount of 3194100 or 14362500 excluding the Lability cost.

The problem with the @ven cost function may be constrained or unconstrained depending
on the location of optimal solution fallen on the boundary or within feasible region. 1t can be
decided to check whether the allowable fatlure probabilities are reached on the optimal solution.
The algonthm is explained in Appendix 1 for the application of optimality ¢ntenon method to
this type of problem. Figures 35 and 36 reveal the optimum cost of the two-story building
subjected to D+ L and D+ L+ E. The solution first approaches the unconstrained solution and
then jumps up to converge 1o the constrained solution based on the alowable probability of
failure, PfO = 10'7. For the D + L case, because the unconstraned solution violated the wven
constraints, the unconstrained and constrained results of the penalty function method are around

1.57 x 104 dollars and 1.6 x 104 doilars, respectively, which are close 1o the results of
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1.56 x 10* dollars (unconstrained) and 1.605 x 104 dollars (constrained) based on the optimality
cnterion method as shown in Figure 35. For the D + L + E case, the unconstrained and
constrained results of the penalty function method are around 5.0x 104 dollars and
5.3x 104 dollars, respectively, which are close to the results of 5.08x 10% dollars
(unconstramned) and 5.34 x 104 dollars (constramned) based on the optumnality cniterion method as

shown in Figure 16.

In Figure 37, the solution is based on the optimality cniterion fo the five-story building.
The structurad parameters used are the same parameters as in previous chapler. The
unconstrained optimum total cost is 4.46 x 108 dollars and the constrained optimum total cost

is 5.39x 10® dollars for the allowable failure probability = 1o=7.
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[X. OPTIMUM DESIGNS FOR UBC LOAD

The canthquake load recommended in the Uniform Building Code (UBC) is utilizied here
to study the sensitivities of cocflicients of vanation of structural resistance parameters, the
sensitivitics ol coefficients of varation of UBC load, the sensitivitics of two  probability
distrbutions of structural resistance and response, and those of the zone coctlicient i UBC on
the optimum design results. The two-story und ten-story symmclricu.l‘shcar builldings shown in
Figures 38 and 39 are used to study the optimum solutions. The. paramecters used in the
examples are : A; = 900 fi (83.61 mz) for each floor; D = 80 psl (3.82 kPa); Vpy =
0.12; the allowable displacerments = 0.005 times the comesponding henght relative to the base:
the allowable vanance of displacements = (); the mean yielding strength, Fy = 36 kat (2448 x
103 kPa); the mean elastic modulus, Em = 30000 ksi (2.067 x 108 kPa): the coefficient of

varation of elastic modulus, Vl: = (0.06; and the cocfficient of vanation of moment of inerti,
‘m

Vl 0.05. The parameters for the base shear in UBC are: Iy = L0, Ky; = LO, S = 13

Cpp = V(I5¥T ), hn = 27ft (8.23m ), and Dn = 30ft (9,14 m ).

A, VARIATION OF COLUMN RESISTANCE PARAMUETIRS.

The column resistance parameters of shear building structures considered may be yiclding
moment and cntical moment. The coeflicients of varation of these parameters have been
estunated and reported in Reference 76. However, these values were determined by expenmental
works or expenienced assumptions, the exact values can not clearly be known. Therefore, the

investigation for sensitivities of vanation of these paramneters 1s necessary.

Two individual failure modes, yiclding and torsional buckling, may cxist appear at cach
column. The uncertainties of the interaction cquation of yielding may be expressed in mean and

coefficient of vanation as

o= MM, (9.1)

and
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2 2 2
Vfl = VMm+ VMY (9.2)

in which V1 = coecfficient of variation of applied moment and Vg = cocfficient of vanation
Y

of yielding moment. The mean and the coefficient of vanation of the interaction of torsional

buckling are
?2 = M/ﬁcr 3.3)
and
2 2 2
Vi=YV 94
H= VM+V¥Mm, (94)

n which V“c = coefficient of vanation of cntical moment.
- I

1. Sensitivity of Vanation of Yield Moment. The numernical values of VMy are assumecd

1o vary from 0.05 to 0.2 to investigate the sensitivity of coefficient of variation of yicld moment
in this study. The value of 0.12 is recommended in Reference 76. For the purposc of studying
the sensitivity of VMy alone, the coefficient of variation of critical moment is kept constant as
0.2 which is also recommended in that reference. The study is based on the two variance
approaches in both normal and lognomal distribution for vanous allowable probability failures.
Two coefficients of vanation of earthquake are assumcd to be zero and 1.38 in the study, and

the value of 1.38 is recommended by NBS.

a. No Varation of UBC. In Figures 40 through 43, the optimum solutions of weight and

moments of inertia are not sensitive to the change of variation of yield moment for- st and 2nd

vanance approach with normal distribution and lognormal distribution when Vp 1s less than

Y
0.15. When Vp is larger than 0.15, the design results increase as allowable reliability cntena
y,
increase.  When the values of Vp vary from 0.15 to (.2, the increascs of optimum weight with
y .
normal distribution arc about 2% and 4% at Pgpy = 10'5 and 10 7, respectively.
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The increases associated with lognermal distnbution are about 8% at Py = IO_5 and 16% at

Pp = 10'7. No noticeable increases for Py = 10°} and 1072,

Figures 40 through 43 show that the 2nd vanance approach demands a heavier weight and

larger sections than the st variance approach for all Vp values with both the normal and
y
lognormal distnbutions. The difference between two' approaches increases as reliability increases.

In Figures 40 and 42, at V, = 0.15 the weight differences are from 52.6 Ibs (234.1 N at

Py

reliability of 107" 10 181.3 Ibs (806.7 N) at reliability of 10”7 with normal distribution (A and B
in Figure 40) and 67.8 Ibs (301.7 N) at reliability of 10'l to 10 432.7 Ibs (1925.5 N) at rchability
of IC'.7 with lognormal distribution (A and B in Figure 42). ‘I'he weight difference between two
reliabilities decreases as reliability inereases. For a given pr = ).15 value associated with the
2nd vanance approach, the optimum weight dilference is about 667.4 Ibs (29699 N) between
two reliabilities of 107" and 107 and 311.0 Ibs (1383.9 N) between 107 and 107 with normal

3

distributions (C and D in Figure 40); about (026.7 lbs (4568.8 N) between 10" and 107, and

762.4 Ibs (3392.6 N) between 10° and 107 with lognormal distribution (C and D in Figure 42).

b. Vanation of 1.38 for UBC. Due to the highly complicated earthquake phenomina,

NBS recommended a value of 1.38 as the variation of UBC in Reference 66. In Figures 44 and
| 45, one may observe that, at various reliabilities, the optimumn weights obtained by using st and
2nd variance approach are close for both the normal and lognormal distnibutions and that VMY
is not sensitive to the solution at all. The reason is mainly due to the high value of vanation of
carthquake; when [L38 is used, the vanations of structural response and resistance do not

influence the design results any more.

2. Sensitivity of Variation of Crtical Moment. The numerical values of chr are varied

from 0.1 to 0.3 for wnvestigating the sensitivity of the coefficient of vanation of cntical moment;
the value of 0.2 is recommended in Reference 76. In the sensitivity study, the other parameters
are based on 0.12 of the coefficient of vanations of vield moment, scro and 1.38 of (he

vaniations of UBC, normal and lognormal distributions, and the two variance formulations.
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~a. No Varation of UBC. The influence of the varation of critical moment on the

optimum design parameters is shown in Figures 46 through 49. From these figures one may
observe that the optimum weight of the building increases as VMcr increases for both normal
and lognormal distributions and for both the Ist and 2nd variance approaches. The same
observation may be conciuded for the optimum moment of inertia. Obscrving l'igures 46
through 49 indicates that the ddference of design results between the st and the 2nd vanmance
approach increases as the reliability increases and that the difference of the design results
between two reliabilities for 2nd varance approach decreases as the reliability inereases.  For
instance, the difference of the optimum weight between the reliabilitics of ]()-l and 10-3 is 677.4
lbs (3014.4 N); and the weight difference between 10.5 and 10-7 1s 309.6 Ibs (13777 N) with
normal distribution. These are signified by A and B in Figure 46. In the same figure, C and D
signify 46.2 Ibs (205.6 N) at 10-l and 177.0 lbs (787.6 Nj at 10'7 for the difference between the
two approaches. The difference of the optunum weight between 10'1 and IO~3 18 1()2I.i tbs
(4544.4 N); and 767.5 1bs (1377.7 N) between [0'5 and 10'7 with lognormal distnbution. 'These
are signifred by A and B in Figure 48 m which C and D indicate 6(0.9 |bs (271 N) and 438.3 lbs

{1950.4 N) associated with the difference between the two approaches.

b. Vanation of [.38 for UBC. When Vi = 138 1s used in the design, the optimum

weight is not sensitive to the vanation of critical moment for both nomal and lognormal
distributions and for both the st and 2nd vanance approaches. The observation is drawn from
Figures 50 and 51. The same observation has been concluded for the moments of inertia whach
are not shown here. It is believed that the high varations of earthquake overdomunate the
structural response behavior, the vanations of other parameters mn structural response and

resistance can not therefore reflect their influences on the design results.
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B. SENSITIVITY OF VARIATION OF UBC LOAD.

Since the accuracy of the coefficient of vanation of UBC is questionable, a sensitivity
study is performed by varying VE from 0 to 1.38 for the two-story building design. The failure
modes considered for the design are displacement falures at the floors and two column falure
modes {(Equations (9.1) through (9.4)) for each column member. The coethicients of vanation of

yield moment and cntical moment are the values of (3.12 and 1.2, respectively.

The results are shown in Figures 52 through 55 from which one may observe that the
changes of optimum weight and moments of inertia increasc rapidly, when Yy; vanes from 0 to
1.38. The change is more significant at high reliability than at low reliability for both the st
and 2nd vanance approach. Also the increases are especially, faster for lognormal distribution

than for normal distnbution. For instance the weight differences between Py = 10'I and
IO'5 are 884.5 lbs (3936.0 N) at Vi = 0 and 6137.0 Ibs {27.309 kN) at Vg = 1.38 with
normal distribution (A and B in Figure 52) and 1144.8 Ibs (5.094 kN) atV; = 0 to 42.628 kips
(189.694 kN) at Vi = 1.38 with lognormal distribution (A and B in Figure 54). The weight
differences for Py = 10'5 are 9370.5 Ibs (41698.7 N) between V); = 0 and 1.38 with normal
distnibution (C in Figure 52) and 44.686 kips (198.854 kN) between Vi; = () and L3R with

lognormal distribution (C in Vigure 54).

The weight differences between two vanance approaches, which may be illustrated for

Py = 107

, are 473.9 1bs (2108.8 N) at Vg = 0 and 56.8 lbs (252.7 N) at Vi = 0.5 with
normal distribution (D and E of Figure 52), and 637.8 lbs {2838.2 N) at Vi; = 0 and 150 Ibs
(667.5 N) at Vg = 0.5 with lognormal distnibution (I> and E of Figure 54). The discrepancy
between Ist and 2nd vanance approach gradually reduces as the vanation of earthquake

increases. After Vi = 0.5 the designs based on the two approaches are practically the samc.

Apparently the high values of varation of earthquake control the designs.

The ten-story building shown in Figure 39 was studied for further investigating the

optimum design parameters. The data for the design are the same as those used for the
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two-story building structure. In this study the design results of nondetermunstic cases are
compared with deterministic case. The nondeterrministic cases are based on two extreme
probabilify failures of Py = IO.l and Py = 10-7. The optimum weight and the moments of
inertia vs the coeflicients of earthquake vanation are shown in ligures 56 through 61 for the 2nd
appreach with normal and lognormal distnibution. As observed previously, the discrepancies of
the design results increase as Vy; increases. The results of the deterministic design are the lower

bound of all the designs.

C. COMPARISON BASED ON NORMAL AND LOGNORMAL DISTRIBUTION.

The influences of the probabulity of nommal and lognormal on the design are studied for
the 2-story building for which the design data are the same as used previously, the vanation of
UBC is assumed to be .38 The optimum weight and the moment of inertia vs the probability
failure levels are shown in Figures 62 and 63. It is tnteresting to note that at low reliability the
design for normal distribution is higher than that for lognormal distmbution. Approximately
after Py = 10'3, the design for normal distribution is Iowu;r than that for lognommal, the
discrepancy increses as the reliability increases.  The optimum weight differences between
normal and lognormal distribution are 1256.7 lbs (5592.3 N) at P = [(’J'l and 80.069 kips
(356.308 kN) at pgy = 10" for the Ist variance approach; 906.2 Ibs (4032.6 N) at pyy = 1!
and 80.502 kips (358.235 kN at Pp = [0.7 for the 2nd vanance approach. The differences are
symbolically sigufied by A and B in Figure 62. Because Vg = 1.38 is used, the difference

between the two variance approaches are very small.

D. COMPARISON OF ZONE COEFFICIENTS [N UBC.

In Equation {3.14), the coefficients, 7, represent the Z(;HC the structure is located. The
vadues of 3/16, 3/8, 3/4, and | correspond to zone I, 1, 1M1, and IV, respectively. 1 is to
investigale how the zone coetficients affect the design results tor ditferent reliability levels based
on two varance approaches and normal and lognormal distrbution. It is also to find how the
UBC vanation coefficient (Vg = 1.38) affects the design. The two-story shear building shown in

Figure 6 is used for this study. The solutons are shown in l'igures 64 through 67.
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Figure 64.  Optimum Weight for Various Zone Coeflicients at VE =1.38 and N of 2-Story
Building. (1 Ib = 4.45 N)
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As shown in Tigures 64 and 66, the weight differences increase as reliability increase. The
differences between zone 111 and 1V are 1577.6 Tbs (70203 N) at Pyy = l()'], and 2257.3 Ibs
(10.044 kN) at Py = 10'7 with normal distnbution (A and B in ligure 64); and 1831.0 Ibs
(8147.9 N) atPgy = I(J'l, 16.993 kips (75.621 kN) at P = l(J'7 with lognomal distribution
(A and B in Figure 66). Because Vg = 1.38 15 used, the‘ two variance approaches yield

practically the same design.

E. EFFECTS OF COST FUNCTION ON SENSITIVITY STUDIES.

The cost objective function in Section VIA may have three components: initial
construction cost ( Cy ), future failure cost ( Ly), and system probability of fuilure ( I’f,r ). They

are expressed as

Cp = Cp+ Py, (9.9)

in which
Cr= CuZLiAi +Ch.
Cy,=an [unit stee] volume cost,
C, = nonstructural members cost,
Le = CyCi+Cy,
Cy = a coefficient to describe the ratio of repair cost to initial cost,
Cy = the business and human losses,

I’f,]_ = system prohability of failure.

Althouéh mnitial construction cost and future fmlure cost can be classified into many items,
these quantities are difficult to estimate. Therefore two coefficients of the ratio of initial cost ta
members cost (C;) and the ratio of future failure cost to initial cost { Cyp ) are used to
represent the various magnitudes of initial construction cost and future fajlure cost which may

now be expressed as:

Cr = CinCuXli (9.6}
1
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Ly = CvLG S

Through these two coefficients, the influences of nonstructural cost and future failure on
the optmium cost design may be observed. The two-story and ten-story shear building shown in
previous examples are used for this study. The failure modes are displacements fulures of the

structure, and yielding and torsional buckling failures of columns.

1. The Ratio of lmtial Cost to Structural Member Cost. The tial cost has two

components which are structural member cost and nonstructural member cost. Since the terms
involved in the nonstructural member cost are not clear, it is reasonable to assume that the
structural member cost may be a percentage of initial cost. That means the initial cost is
assumed as the product of C;;; and member cost. Three values of C,, in the amount of 2, 3,
and 10, are used to investigate the relationship between the structural and nonstructural costs.

The value of CVL ts assumed to be constant as 1.0.

Figures 68 through 71 show the optimum solution of the two-story building and Figures
72 through 77 reveal the design results of the ten-story building. All the design are based on the
2nd vanance approach with normmal und lognormal distnbution. The unit cost s
0.15 do[la.rs/in3. From all the figures, one may observe that there are some differences between
total cost and wnitial cost at low reliability (P < 10—3); the differences practically become zero
as the reliability levels increase. The total costs increase as C;, increases. But the moments of
inertia are not much different for different C;,, values. It is because the change of nonstructural
member cost does not affect the change of structural responses under the same safety criterion.
Therefore, the increase of nonstructural member cost does not influence the design of structurai
members. The differences between total costs and initial costs decrease for higher reliability

levels because the increase of reliability results the decrease of future failure losses.
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2. The Ratio of Expected Failure Cost to Initial Cost. The expected failure cost has two

components which are structural losses (reparr costs) and nonstructural losses (business or
human losses). However, this cost is also not clearly to be defined. So in this section the
expected fadure costs are all assumed to have a relationship with umtial cost. Three values of
CVL n the ar1:10unt of 0.5, 1.0, and 10. are used to investigate the influence of different
expected failure costs on the optimum solutions. The value of C,, is assumed to be constant as

5.

IFigures 78 through 81 sﬂow the obtimum solution of the two-story building and Figures
SZ through 87 reveal the design results of the ten-story building. All the design are based on the
2nd vanance approzch with normal and lognormal distmbution. The umt cost 1s
0.15 dollars/in?. From all the figures, one may obscrve that there are some differences between
total cost and initiai cost at low rebability (P < 10~ %); the differences practically become 7ero
as the reliability levels increase. The total costs increase as Cy1, increases at low reliubility {
Pp< 10—3). But the differences are not much different for diﬂ'eﬁent Cyp, values as rehability
increases. It is because the values of future failure losses are smail at high reliability; therefore,
the increase of future failure cost does not change the design of structural members signifcantly.
The differences between total costs and initial costs decrease for higher reliability levels because

the increase of reliability results the decreasc of future failure losses.

. SUMMARIES

I. For no vanation of UBC and for Ist aund 2nd vanance approach with normal and

lognormal distnbution, the optimum solutions do not change with different Vyg values while
‘ y
these values are less than 0.15. The resuits between Vg = 0.15 and 0.2 for lognormal
' y -
distribution increase while allowable failure probabilities are larger than 10—,

2. For no vanation of UBC, and for Ist and 2nd varance approach with normal and

lognormal distribution, the optimum solutions change as.the values of Va4  change.
er
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3. For NBS recommended variation of UBC, and for Ist and 2nd vanance approach with
normal and lognormal distribution, the optimum solutions do not change as the values of

VM or Vyg  change.
Y “er

4. The change of oplimum design duc to the chunge of V|:  are faster at high reliability
for Ist and 2nd vuriance approach with normal and lognormal distnbution. This change is

especially fast for lognormal distnibution and high vanance of earthquake.

5. The optimum solutions between st and 2nd variance approach are very close, while the

values of Vg are larger than o.5.

6. At high reliability level, the optimum designs with lognormal distrbution are higher

than those with normal distribution. However it reverses the order at low reliability level.

7. The optimum designs among the zone coefficients increases as the reliability increases

for Ist and 2nd vanance approach with normal and lognormal distribution.

8. The total cost changes as values of C; change. [However, the moments of inertia do

not change noticcably.

9. The differences of total cost among vanous values of Cyp  reduce as the reliability

mcereases.

10. The difference between total cost and imtial cost reduces as the rehability increases.
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X1 OPTIMUM DESIGNS IFOR NNSRS LOAD

In this chapter, the Newmark’s nondeterministic seismic response spectrum (NNSRS) is
used to investigate the sensitivities of coefficients of structural resistance parameters, the
comparison of Ist and 2nd vanance approach, and the coefficient of vanation of peak ground
acceleration. The statistics of amplification factors for Newmark’s nondeterminisitic response
spectrum in the S50 percentile are adopted here. These statistics for horizontal ground
acceleration are f,; = 04, f,5 = 20, f,3 = 60, f,4 = 200, a5 = 14
a, = 166, @, = 211, Fq,,2) = 604 5(.\//3) = 48y . Ogy = 064 , O = 066

U"a =036 V(ud/vz) = 065, V(v!u) = 045, Vud = "’ud/‘—’dv Vrrv‘ = Ouvl‘"’_v ; v”a

Gﬂaj&'a. The statistics for vertical ground aceeleration are _fml = 03,1, =30, fmJ = 0.0,

foa= 500, a3 =14 ,d, = 1.5l,a = 205, a(udfvz) = 10.11 av/a = 29/g, Ty =
061, Og, = 067, og, = 077, Vg2 = 0.7, V= 053, Vg, = Sayfy . Va, =

GGV/EV , Vg = cﬂafﬁa. The peak ground aceelerations are assumed to be 0.2g in Scctions A,

a
B, and C, and 0.4g in Section D. The two-story strucure shown in Figurc 38 and the ten-story
structure shown in Figure 39 have lumped mass for each story of 0.27 k-sec2/ in (0.47
kN-sec? / cm). The parameters used in the examples are: the allowable displacements = 0.00}5
times the comresponding height relative to the structural base; the ulowable vanance of
displacements = 0; the mean yielding strength, Fy = 36 kst (2.448 x 103 kPa); the mean
clastic modulus, l_m = 3000 ksi (2.067 x 108 kPa); the coctficient of vanation of clasuc
modulus, Vum = (1.06; and the coeflicient of vanation of moment of merua, Vi = 0.05. The

coeflicients of variation of yield moment and critical moment are ().12 and 0.2, respectively.

A. SENSITIVITIES OF VARIATION OF COLUMN RESISTANCE PARAMETLERS,

In order to see the sensitivities of coefficients of vanation of yield moment and cnticu
moment, no vanation of peak ground acceleration will be assumed. The failure modes

considered are the yielding-or torsional buckhng failures for each column member.,
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1. Sensitivity of Varation of Yield Moment. The cocfficient of varation of yield moment

is varied from 0.05 to 0.2, and the coefficient of variation of critical moment is constant at (.2,
The optimum weights in Figures 88 and 90, and the moments of inertia in Figures 89 and 91
change when the coefficient of varation of yield moment vanes. However, these changes with
normal distnbution are not as sensitive as those associated with lognormal distnbution. The
weight percentage increase for 2nd variance approach between Vyy = 0.05and Vi = 0.2
are 68% at P = 107 and 73% at Py = 107 with nomal distribution and 14.5%

at PfO- =107 and 18.3% at Py = 10”7 with logmormal distribution.

The discrepancies of weights and moments of intena between Ist and 2nd  vanance
approach .;.\rc not sensitive to thlc change of Vyy . The weight dillerences between Ist and 2nd
vanance approaches at Pgy = 10-5 for Vg vanes from 0.05 to 0.2 are changing 230.2 lbs
(I.024.4 N) to 1852 Ibs (824.1 N) with nom):al distnbution and from 587.7 lbs (2615.2 N) to

540.3 1bs (2404.3 N) with lognormal distnibution.

2. Senstuvity of Varnation of Crtical Moment. The coefficient of variation of cntical

moment is varied from 0.1 to 0.3. The coefficient of variation of yield moment used is constant
at 0.12. The optimum weights given in Figures 92 and 93, with nomal and lognormal
distributions for two varance approaches, show that they are not sensitive to the chunge of

coeflicient of vanation of catical moment. The moments of inertia are consequently not given.

B. COMPARISON OF IST AND 2ND VARIANCE APPROACIH.

In 20d vanance approach, the recommended value of coefficient of vanation of natura
frequency, V,, is 0.16. 30 The determination of this value is bascd on the following cquation.
Since w = (M(K)”z, then

v, = /(0. 1) + é{(g—‘é);vf( + (;—3),2.\/.[%1]
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- @)2 + glz‘{[%(%)' V2L RIVE + [ ”ﬁ%JFWV%ﬂ

- /(0.1)2+%(v§+v§,) = 016
where 0.1 s the estimation of natural frequency  which may  refleet the infhicnee of
non-structural elements, soil-structure interaction; @, Vm = the mean and cocellicient of
variation of natural frequency; Vg = the coefficient of varation of mass = 0.12; V¢ = the
coefficient of varation of stiffness value and is assumed 1o he

Vg = J022+VE _+VE = 021

in which 0.2 is the stiffness formulation error, Vi = the coefficient of vanation of elastic
'm

modulus = 0.06, V| = the coefficient of variation of moment of inertia = 0.05. 76

Therefore, there are three assumed values for formulation crrors which are .not clearly
defined for 2nd vanance approach. The first value, 0.2, is the stiffness formulanon eror. The
second value, L1, 15 the natural frequency formulation error. The third v a value of 013,

('l:."in Equation (4.37) which 1s g coctlicient of vanation of dynamic.analysis crmor.

If the first one is excluded,the coeflictent of vanaton of stiflness becomes
Vg = /vém+vf = 0.08.

If the second one 15 also excluded,the cocthicient of vanation of natural frequency 1s wven
to be

Vo = [GVE + V32 = 0072

In addition to the recommended values of 0.16 for the coefficient of vanution of natural
frequency and (.15 for the ceefficient of vanation of dynamic analysis error. Cy:. two other
assumed values for the 2nd vanance approach can be used (o see the comparson of the Ist and
2nd varanee approach. One assumes the value of 0.072 tor the cocllicient of varation ol natural
frequency and zero value for the dynamic analysis error. The other assumes the zero value for
the coefficient of varation of natural frequency and 0.15 for the coefficient of vanation of

dynamic analysis crror.
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The optimum weights in Figures 94 and 96, and the moments of inertia in Figures 95 and
97 reveal that the Ist variance approach is close to the 2nd vanance approach with V = 0.072
and Cg = 0, and the 2nd vanance approach with V, = 0and Cg = 0.15 at low reliability
with normal and lognormal distnbutions. When reliability increases, the differences among
them increase. The 2nd vanance approach with V ;= 0.16 and Cp = 0.15 has the largest

optimum design results.

C. SENSITIVITY OF VARIATION OF PEAK GROUND ACCELERATION.

Sumilar to the assumption of vanation of UBC load, the peak ground acceleration can be
assumed to follow a type Il extreme distribution. Equation (3.18) can still be applied to
compute the coefficient of vanation of peak ground acceleration. Since the exact value of this
coefficient is difficult to determine, the vanous values of coetficient of vanation of peak ground
acceleration from zero to 1.38 are used to investigate the sensiivaty of this coethicient.  The
optimum weights 1 Figures 9% and 100, and the moments of inertia in Figures 99 and 0] show
that results with lognormal distnbution increase faster than those with nomal distnbution when
the varation of peak ground acceleration incrcases. 'I'he optimum weights for vanations of peak
rround aceeleration from 0 to 138 with 2nd vanance approach and normal distnbution are from
14.754 kaps (65.655 kN) 1o 19.85§ kips (88.374 kN) at Pyy = 10— and from 21.891 Kips
(97.417 kN) to 40.639 kips (180.847 kN) at Py = 10=7. The optimum wetghts for vanations
of peak ground acceleration from ¢ to 1.38 wath 2nd vanunce approach and lognormal
distribution are from 14.751 kips (65.641 kN) to [7.375 kips (77.318 kN) at Py = 10—1 and

from 41.754 kips (185.807 kN) to 154.808 kips (688.895 kN at Py = 10~/

194



25
] + st
x nd(V, =0.16,C; =0.15)
O 2nd(V, =0.,C, =0.15
A md(V, =0072,C, =0.)
i
201
> ]
F ] 1
(/]
m J
- |
-y
%
>
45-4
2+ —————r—— ——

-1 -3 5 -7
PROBABLITY OF FALURE

Figure 94.  Optimum Weight for Vanious Variance Expressions with N of 2-Story Building.
(1lb = 4.45 N)

195



30

{st

2nd (V, =0.16, C; =0.15)
2nd (V_ =0, C; =0.15)
2nd (V, =0.072,C, =0.)

DOax 4+

8

MOMENT OF INERTIA CiN" )~

ﬂr'TlrlT!‘l"]!‘!’rTVT’!ﬁ[‘rlﬁfiﬁ""’l

-1 -3 -5 7
PROBABILITY OF FAILURE

IFigure 95. ‘I:}nfor Various Variance Expressions with N of 2-Story Building. (1 in = 2.34
)

196




Ist

2nd (V, =0.16, C; =0.15)
2nd (V, =0., C; =0.15)
2nd (V, =0.072,C; =0.)

8
e 0Ox+

8

m N

WEIGHT ( LBS ) x ¥

PROBABILITY OF FAILURE

Figure 96.  Optimum Weight for Various Variance Expressions with LN of 2-Story Bulding.
(Ilb = 445 N)

197



100
Folst '
90 1 s
X 2nd (V, =0.16, C; =0.15)
g 2nd (V. =0., C, =0.15)
a 2nd (V_ =0072, C, =0.)
80«
2
“ 70
’
Z
L=
< a0
E 60
4
& so
-
prd
wl
§ 40 r.
m-
m-
07 —————r—— - —r——— —
-1 -3 -5 -7
PROBABLITY OF FALURE
Figure 97. I, for Various Variance Expressions with LN of 2-Story Building. (! in = 2.54

cm) .

198




] + P, = 16!
X Pg = 10! A
40 1 Q8 Pyp=10 .
a Py= 10— -

WEIGHT (LBS ) » ¥
]

b

VARIATION OF PEAK ACCELERATION

Figure 98.  Optimum Weight for Varation of Peak Acceleration with N of 2-Story Building.
(I'lb = 4.45 N)

199



x WP

4

MOMENT OF INERTIA (IN )

Iigure 99.

A
f"
J
+ pﬂ) = Io ! "l
» — 3 .
80 x Pg =10 J
Q Py,= 10 /
A Py =107
) ;
/
Ist N
— wm— —— znd ':'
-
70
/ 2
P
r 4 x
r" ,"
l' I’
'-‘ ‘l'
- 'l’ “
60
4
;
S
/;
'I
;
.
/
K
50 ! o
‘l
i ) . ~
'r' »
v -
.
’I
/
‘l
‘l' ‘l‘ N
- 4 ’
', I‘
" ’ .-’
- ’l ‘x
B
i’-
"’
301 ’ A
- o - - g
~ ‘
A o o
-~ -‘-x
< P A e 1
l" ------- -
- w
) R ————r —— e

ch

VARIATION OF PEAK ACCELEHATION

for Vanation of Peak Acceleration with N of 2-Story Buiding. (1 mn
)

200

2.54




x 1

WEIGHT ( L8S )

[Figure 100.

170

4+ P, = 107
X Pn = l0—] :A
: B P, = 107
150 b Pz = Io—'l ;

VARIATION QF PEAK ACCELERATION

Optimum Wecight for Vanation of Peak Acceleration with LN of 2-Story Building.
(11b = 4.45 N)

201



10"
0 A
10 !
107 i

D o= +
o
a
o

——— - 2nd

g

4

MOMENT OF INERTIA (IN ) x 1o

""""
______
-l

------ ————

VARIATION OF PEAK ACCELERATION

Figure 100[.. I }ngor Vanation of Peak Acceleration with LN of 2-Story Building. {1l in =
C

202

2.54




D. COMPARISON OF RESPONSES  DUE __TO_  HORIZONTALI, _AND

HORIZONTAL-COUPLED-WITH-VERTICAL GROUND ACCLLERATIONS.

The earthquake forces are three dimensional in nature, they are two from the honzontal
and one from vertical directions. IHowever, due to complexity in analysis, the vertical
acceleration is sometimes neglected in design. In this section the influence of this vertical
earthquake force is studied. The relationship between area and moment of inertia, section

modulus and moment of inertia are used as 33

I, < 9000,
A= 04651 ; A - 02251712
: (.
X
S = 60,61, + 84100 — 290 ; 3515_ = ?[(60.6Ix+84IOO)-1/2(60.6)
: X
Iy = <, |
9
I > 9000,
- c. oA _ 1
A = (I +2300)/256 ; 7 "
1
S = (I, —8056.3)/1.876 ; TR

_ 4
Iy = 3l

The ten-story shear building shown in Figure 102 has a lumped mass for cach story of

0.27 k-sec?/ in (0.47 kN-sec? / cm). The ratio of vertical to horizontal ground acceleration is
assumed to be 4/3. When the structure is subjected to horxontal aﬁd vertical  pround
aceelerations, the axial intermal forees which are neglected in the design assoctated  with
horizontal ground accelerations only, become an additional part of the structural responses.
Then the column failure modes are yielding falure (f)), lateral buckling failure (f5), and
torsional buckling failure (f5) for horizontal coupled with vertical ground acceleration instead of
yielding failure (f}) and torsional buckling (f3) in honzontal ground acceleration only. The P -
A effects due to vertical forces are not considered. The optimum solution agains't cycle for

horizontal or combination of horizontal and vertical ground accelerations 15 shown in Figures:
103 through 106. The notations mven in the figures are 11 (horizontal ground acceleration) and

V (vertical ground acceleration). The results for 2nd variance approach with normal distnbution

arc
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considered here. In Figure 104 the weight diffcrence between honzontal and honzontal coupled
with vertical ground acceleration increases with the reliability level, It shows the weight
increases due to the appearance of vertical ground acceleration are 6.59 % at I’y = 10-! and
[1.07 % at Py = 10=3. In Figures 105 and 106, the moments of inertia for combination of
horizontal and vertical ground acceleration are heavier than those for horizontal ground

acceleration.

The mode shapes from first to 10th modes are the honzontal vibration modes, and from
L1th to 20th modes are the vertical vibration modes. In Figures 107 and 108, the natural
frt_:quencies increases with the reliabality levels. 'The natural irequencies of the structure subjected
to horizontal coupled with vertical ground acceleration are higher than those associated with the

honzontal ground acceleration.

In Figures 109 and 110, the mean and vanance of displacement subjected to honrontal
and vertical ground acceleration are less than those subjected to horzontal ground acceleration.
In Figure t11, for horizontal ground acceleration only, the active constraints are the lateral
displacement at lowest level at Py = 101 and Py = 10=3, at the Ist and 2nd level at

Pﬂ) = 10_5, and at Ist, 2nd, 3rd, and 4th level at P = 10—7 - For horizontal coupled with
vertical ground acceleration, the active constraints are the lateral displacements at the Ist level at
Pp = 10~! to 107, The reason for active constraints at the lower levels is that the ditferences
between allowable and actual displacements at lower levels are smaller than those at higher

levels.

In Figures 112 and 113, the mean values of interaction cquations for honzontal and
vertical ground acceleration. are higher than those for honzontal ground acceleration at
Pp = 10—3. However, the variance values for fy are in reverse order. [n Figure 114, the active
constraints at Py = 10—3 are fi of column 2 to column [0 for horizontal ground
acceleration, {; of column 10 und f5 of column 2 to column 10 for combination of honzontal

and vertical ground acceleration.
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Figure 109. Mean Displacement with N and 2nd of 10-Story Building. (1 in = 2.54 cm)
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Figure 110. Variance of Displacement with N and 2nd of 10-Story Building. (1 in = 2.54 cm)
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E. SUMMARIES

1. The optimum designs change as the values of vMy change; however, the changes with

normal distnibution e not large.

2. The differences between [st and 2nd variance approach are not sensitive to the change

y

3. The optimum designs are not sensitive to the change of VM -
cr

4. When the coefficient of vanation of peak ground acceleration increases, the optimum

design results with lognormal distribution increase faster than those with normal distribution.

5. The optimum design results for I[st vanance approach are close to those for 2nd
vanance approach with V, = 0.072 and Cg = 0, and 2nd varance approach with V, = 0,
Cp = 0.15 at low reliability level; the differences among them increase with reliability level;
the optimum design results for 2nd vanance approach with recommended values ol coctlicients

of vanation of natural frequency and Cy; are the heaviest designs.

6. The vertical ground acceleration can noticeably affect the optimum solution.
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X1. OPTIMUM DLSIGN FOR STATIONARY SEISMIC PROCISSES.

The earthquake load based on stationary seismic process is also used to investigate the
comparison for various random seismic spectra, for various faifure probability expressions, and
for three types of loading. The comparisons also inciude cost design for two cost ratios, and two
system faure bounds. The two-story and ten-story shear buildings used previously are
investigated in this study. The parameters for stationary seismic  process  are
Gy = L0 ind /seed, (16,38 cm3 fsecd), ny = 15.6 rad Jsec, Ly =06 The determamstic
uﬂowablé displacernents are 0.005 times the cormresponding height relative to the structural basc.
The yielding strength is Fy = 36 ksi (2.448 x 107 kPa), and the clastic modulus is 30000 ksi
(2.067 x 108 kPa). The notations gven in the figures are first passage expression {I'1), safety
factor expression with normal distnbution and Davenport’s equation (SNID), safety factor
expression with lognorm:ﬂ distnbution and Davenport’s equation (SLND), safety factor
expression with normal diatnbution and Kiureghian's equation (SNK), safety factor expression

with normal distnbution und Kiureghian’s equation (S1.NK).

A. COMPARISON OF VARIOUS SEISMIC SPECTRA.

The stochastic seismic spectrum may be white nomse spectrum (WN), Kam-'Taprm Lilter
white noise spectrum (I'W), or modified white noise spectrum (MW). These spectra are used to

investigate their effects on optimum weights and moments of inertia.

The optimum weights and moments of inertia subjected to three stochastic seismic spectra
for five failure probability expressions of [FP', SND, SLLND, SNK, and SLNK are shown 1n
Figures 115 to 124. The results subjected to modified white noise spectrum are the largest
among these spectra. FHowever, the differences of the results between modified white noise
spectrum and f{iter white noise spectrum are small. The results for white noise spectrum are the
smallest among these spectra.  The weght differences between maodilied white noise spectrum
and white noise spectrum are from 706.1 [bs (3142.1 N) at Pm = 1()-l to 1826.6 ths {81283 N)

at l’fo = 1()'7, The weight differences between modified white noise spectrum and filter white

219



x 1P

WEIGHT (LBS )

t———— e ——————

-1 -3 - -5 -7
PROBABILITY OF FAILURE

[Figure 115. Optimum Weight for Three Seismic Input Spectra with FP of 2-Story Building.
(1lb = 445 N)
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Figure 117. Optimum Weight for Three Seismic In

put Spectra with SND of 2-Story Building.
(I1lb = 445N)
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Figure 118. I, for Three Seismic Input Spectra with SND of 2-Story Building. (1 in = 2.54
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Figure 119. Optimum Weight for Three Seismic Input Spectra with SLND of 2-Story
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Figure 120. I, for Three Seismic Input Spectra with SLND of 2-Story Building. (1in = 2.54
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Figure 121. Optimum Weight for Three Seismic [nput Spectra with SNK of 2-Story Building.
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Figure 123. Optimum Weight for Three Seismic Input Spectra with SLNK of 2-Story
Building: (11b = 4.45 N)
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noise spectrum are from 35.8 Ibs (159.3 N) at Py = 107! 10 142.9 1bs (635.9 N) at Poy = 1w’

The optimum weight in Figure 125 and the moments of mnertia in Figures 126 and 127 of
10-story shear building for first passage expression show that the observations are the same as
those for 2-story shear building. The deterministic designs in the figures are the optimum
solutions which do not include the probabilities of failures in the constraints. The deterministic
constraints used are

Umax — alowable displacement <0

flmax = 10<0
Fopax = 1020
lmax = 100
famax = 1.0 0

where Tav fimax: Pmax 3maxe [4max  can be obtained from Liquations (5.42), (6.27),

{6.29), {6.31), and (6.33).

The resuits show that the optimum weight and moments of inertia with reliability
‘constraints are higher than those with deterministic constraints. The differences of optmium
solutions between the designs including reliability constraints and the designs ncluding

deterministic constraints increase with reliability cntena.

B. COMPARISON OF VARIOUS EXIPRESSIONS O PAILURE PROBARILTTY.

The falure probability expressions for stationary seismic processes may be the first passage
expression and the safety factor expressions with two peak response cquations of Davenpornt’s
and Kiureghian’s equations and two probability distnbutions of normal and lognormal
distnbutions. The optimum weights in Figures 128, 130, and 132, and the moments of incrtia in
Figures 129, 31, and 133 for different expressions of probabilities of failures with three spectra
of white noise, filter white noise, and. modificd white noise are compared for two-story shear

building.
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Figure 128. Optimum Weight for Various Failure Expressions with WN of 2-Story Building.
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Figure 132. Optimum Weight for Various Failure Expressions with MW of 2-Story Building.
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(1) at PfO = 10'1. the order of optimum solutions from large to small values in the
following sequence is (a) safety factor expression with lognormal distmbution and Davenport's
equation (SLIND), {b) sufety factor expression with normal distnibution and Davenport’s
equation (SND), (c) first passage equatioﬁ (FP), (d) safety factor expression with lognormal
distnbution and Kiureghian’s equation (SLNK), (e) safety factor expression with normal

distnbution and Kiureghian’s equation (SNK).

(2) at PfO = 10.3, the order of optimum solutions from large to small values is in the
sequence of (a) safety factor expression with lognormal distnbution and Davenport’s equation
(SLND), (b) first passage equation (FP), (c) safety factor expression with lognormal distnbution
and Kiureghian's equation (SL.NK), (d) safety factor expression with normal distnbution and
Davenport’s equatit.:)n (SND), (e) safety factor expression with normal distmbution and

Kiureghian's equation (SNK).

5

(3yat P, = 10~ and 10'7. the order of optimum solutions from large to small values 1s

10
it the sequence of (a) first passage equation (I'P), (b) safety factor expression with lognormal
distribution and Davenport’s equation (SLND), (c) safety factor expression with lognomal
distnibution and Kiureghian's equation (SLNK), (d) safety factor expression with normal

distnbution and Davenport’'s equation (SND), {e) safety factor expression with normal

distribution and Kiureghian’s equation (SNK).

C. COMPARISON OF UBC, NNSRS, STATIONARY SEISMIC LOADS

Three types of loadings are used here for the comparison of their optimum design results.
The loadings are the peak ground acceleration of - 0.348¢ in NNSRS approach which can
represent the 1940 1i1 Centro eanhquakc;l the stationary modified white noise process of
Gy = 1.0, Cg = 0.6, @g = 15.6, with an ampiification factor of 2.7 corresponding to the |41
Centro earthquake; 20 and UBC seismic load with zone IV and coeflicient of vadation of UBC
= 1.38. The companson of the optmum weight and moments of mertia for st und 2nd

vanance approach with normal. and lognormal distnbutions of the two-story shear building 15

studied. Figures 134 to 137 show that optimum solutions indicate that the order of magnitude
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Figure 134. Optimum Weight for UBC, NNSRS, and Stationary with MW and N of 2-Story
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with lognormal distribution from large to small values is in the sequence of NNSRS, Stationary,

o = 1071 ; of NNSRS, UBC, Stationary at Py = 107 ; of NNSRS. UBC,

Stationary at l’m = lll-5 »and of UBC, NNSRS, Stationary at l’ﬂl = l()-7, The order of

UBC at P

magnitude with normal distribution from large to small values is in the sequence ol NNSRS,
7

FP, UBC at Py = 00107,

D. EFFECTS OF COST FUNCTION ON SENSITIVITY STUDY.

The same observations for sensitivy studies of two ratios, C;; and Cyq , employed in the
study of UBC load are used herein. The optimum cost and the moments of wnertia are shown in
Figures 138 and 139 for the two-story shear building for three C;; values with modified white
noise spectrum and first passage expression. The optimum costs and the moments of inertia are
shown in Figures 140 to 142 for the ten-story shear building for the assumed C;,, seismic input
spectrum, and failure expression used for the two-story shear building. The results on both
structures reveal that the moments of inertia do not change for different values of C; . Since
nonstmﬁural member cost is not mvolved in the computation of probabilities of falures and
future failure losses, the change of nonstructural member cost does not affect the change of

structural members.

The optimum cost given Figure 143 and the moment of inertia in Figure |44 for the
two-story shear building are obtained for three Cy;  values with modified white noise spectrum
and first passage equation. The optimum costs given in Figure 145 and the moments of inertia
in Figures [46 and 147 for the ten-story shear building are obtained for same Cy values,
seismic spectrum, and failure expression used for the two-story shear building. The resuits on
both structures show that the optimum costs and moments of inertia do not change for different
CVL values at high reliability level. This 15 because that the future fuilure loss is small when

high reliability criternia are employed in the design.
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Figure 144. l1 for Various CVL with MW and FP of 2-Story Building. (1 in = 2.54 cm)
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E. COMPARISON OF SYSTEM FAILURE PROBABILITY FORMULATION IN COST

OPTIMIZATION.

In Section IID, the exact system probability of failure is too complicate to obtain.
However the upper and lower bound for this probability can be obtained. In this section the
upper bound, which is the sum of all individual failure modes, and the lower bound, which is
the maximum value among all individual failure modes, are used to investigate the range of
exact system probability of {ailure may lie. The ten-story shear buidding structure is used. 'The
values of C;), 5, and Cyy , 1, are assumed to represent the cost function. The unit cost is 0.15

dollars / n3 .

The total cost in Figure 148 and the moment of inertia in Figure 149 for m.odi_ﬁed white
noise spectrum and first passage expression show that the differences between maximum and
minimum bound are large at low reliability. These differences reduce when the allowable
reliability increases. At Py = 10'l the optimum total costs are $121528.7 in maxumum bound
system faillure probabiity and $111224.5 in muumum bound system failure probability. At
Py = 10'7 the opttmum total costs are $159248.1 in maximum bound system fulure

probabulity and $159243.9 in mimimum bound system failure probability.

E. COMPARISON OF MOMENT OF INERTIA [N COST AND WEIGHT

OPTIMIZATION.

In spite of different objective functions between cost and weight, the companson of
moment of inertia for these two functions may be used to see the differences of optimum design
sections. The ten-story shear budding, modified white noise spectrum, and first passage
expression are used. The values of C;;,, 5, and Cyyp , 1, are assumed to represent the cost

function. The urmut cost 1s 0.15 dollars / in3 .

In Figures 150 to 152, there are differences of moments of inertia between cost and weight
optimization at low reliability. The differences reduce as reliabilities increase. At Py = [()'l

the moments of incrtia for column | is 606.4 in?  (25240.2 cm?) in weight optimization and
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Figure 148. Cost for Maximum and Minimum System Failure with MW and FP of 10-Story
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889.3 in* (370154 cm¥) in cost optimization. At Py = ]()'7 the moments of inentia for
column | are 1462.5 in? (60873.8 cm¥) in weight optimization and 14662 in* (610278

cm4) In cost optimiuzation.

G. SUMMARIES
1. "The results for modified white nowne seismic spectrum are the heaviest design.

2. The results for modified white noise spectrum and filtered white noise spectrum: are

close.

3. The order of optimum solution for five failure probability expressions from large to

small is in different sequential order for different reliability levels.

4. The results of NNSRS at all rehabilities with normal distnbution and at low reliabilities
with lognormal distnbution is the heaviest desym amonyg UBC, NNSRS, and stationary seismic
process. The results of UBC at high reliability with lognormal distribution is the heaviest design

among UBC,-NNSRS, and stationary scismic process.

5. The moments of inertia do not change with C;,  at all rehabilities and with Cyp o at

high reliabilities.

6. There is a difference of cost between system maximum and minimum bound al low

reliability; the difference reduces as reliability increases.

7. There is a difference of moments of inertia between cost and weight objective function

at low reliability; the difference reduces as reliability increases.
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XII. CONCLUSIONS

Four live load models are used to investigate their optimum design results. The maunitude
from large to small for dead load plus live load with two distmbutions and two varance
approaches is in the sequential order of UNREDUCED, UK, NBS, and ANSIL The magnitude
from large 10 small for dead load plus live and UBC loads 15 i different sequential order for

different vanance approaches and probability distmbutions.

The sensiivities of vanutions of yielding moment and cntical moment are stched for
UBC scismic load and NNSRS approach.  For UBC seismic [oad with no vanation, the
optimum design results are not sensitive to the change of vanation of vield moment when V\’Iv
1s less than 0.15; the optimum decsigns change when VMcr changes: no sensitivities c;t'
coefficient of variation of yield moment and critical moment can be observed for high vanation
of UBC. For NSRS approach with no varation of peuk ground acceleration, the optumum
design results are sensitive to the varation of yield moment and not sensitive to the vanution of

¢ritrcal meoment.

For UBC loading, the demand of optimum design with lognormal distnbution is heavier
than that with normal distribution; the 2nd vanance approach requires heavier design than the
first vamance approach; the optimum weight and moments of inertia are sensitive to the
variation of UBC and the increase with lognormal distribution s very fast at high varation
value. The optimum design discrepancy among four earthquake sone cocllicients in UBC

increases with allowable reliability level.

For NNSRS approach, the 2nd vanance approach requires heavier design than the first
variance approach; the optimum weight and moments of inertid are sensitive to the vanation ot
peak ground acceleration and the increase with lognomal distnbution s very fast at high
vanatton. The vertical ground acceleration cffects can sigmiticantly influence the optimum

solutions.
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o amedBlithad

[nvestigation of the structure subjected 1o stationary process with three seismic spectra and
five failure expressions reveals that the optimum designs of modificd white nowse spectrum are
the conservanve designs und close to those of filier white noise spectrum. The opumum designs
of the safety factor expression with Davenport’s equation are the conservative designs at lower
reliability levels and the optimum designs of the first passégc expression are the conservative

designs at higher rehabilitics.

Companng with three types of seismic loadings of UBC, NNSRS, und stationary process
with seismic input spectrum, the designs for NNSRS approach are the conservative designs at

low reliability.

[For UBC and stationary setsmic processes, lhe moments of nertia do not change for
different ratios of C;,, because the change of nonstructural members cost does not alffect the
computation of failure probabilities and future losses. The optimum cost is not seasitive to the
ratio of Cy at higher reliability because the value of future falure loss is small at high

reliabity criteria.

For stationary scismuc processes, there are the differences of optimum designs between
maximum and muumum bound of system faiure probability at low reliabiity; and the
differences decrease with reliability level. ‘The designs for cost fum.:tion require heavier sections
than those for werght function at low rchability. At higher reliability level, this dilference

becomes very small.
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APPENDIX A
DERIVATION OF MEAN AND VARIANCE OF LNR OR LNS

If x and y are random variables, they have a relationship

x= Iny (Al)
and
dxfdy = ljy (A2)
For an one to one transformation, fy(y)dy = x(x)d;t, shown in Figure 153 it induces
fy(Y) = fx(x)% (A

where f,(x), and fy(y) are the probability density functions of x and y. Since x is normally

distributed, fx(x) is

- 1 -1, x-x,2
[ (x) = — = expl 5oy <] (A4)

X
where X and o, are mean and standard dewiation of x.

Substituling Equation (A4) into Liquation (AJ), it yields

£y (y) = ydxi@_ exp( 5L 2] (AS)
Since
0.5= Ply<y] = Pllny<!ny] = Plx<in §1= Fyln¥) =F, (&) (AG)
where F ( ) = cumulative distnbution function, Q,S} = medians of x and y.
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Figure 153. The Equal Area of f{x)dx and f(y)dy.
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Since normal distribution is a symmetnical distnbution, it resulta

0.5 = F,(X) = Fy® (A7)
Thus,

lny = X | (A8)
Substituting Equation (AS) into the following equation, it yields

=]

Ely'] = [, Yoy = @) exnidriof, y) (A9)
The Ist and 2nd moment can be determined to be

T = -0 I .2

y = Elyl = yexp(50(ny) (Al0)

§ = Lly21-y2= y2exp(20f,) — ¥% exp(Ofny)

and 4]

= FPexplof, ) explof) = 1) = T(exp(ERyY) -~ 1) (At
Thus,
2
y = 5= exp(dlny)— (AL2)
Y
Therefore;
3 ﬁf)} In? o by expy 012“ y/2)_l Iny -112”|2“y (ALY
oy = In(l+V3) (A14)
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If y= R or S, Equations {A13) and (A14) become Equations (2.10} or (2.11).
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APPENDIX B
AN EXPECTLID CROSSING RATE

An expected crossing rate v;' is an expected frequency of crossing the level s = 2 with

positive slope. In what follows, the determination of this rate will be described.

In a geometry sketch shown in Figure 134, a point of a sample function at t = tl will
cross the given bound, s = a, during a very small time interval, dt, which is so small that the
sample can be treated as a straight line in this interval. In order to cross the bound, the slope,
§, should have postive values such as curves (a) and (b). Att = tl the curve (c) does not have
chance to cross the given bound during dt since its slope is negative. Thus the combination of s,
which is less than and equals t0 2, and §, which has positive value, decides the process at t =
t1 will cross the bound. The shaded area between the cureves s — a4 and 5 = (: s)fdt n

Figure 155 are the combinations of 5 and 5§ that resuit the crossing of the given bound.

Not only considering the combinations of s and s we also need to determine the
probability of these combinations occured. This probability can be described by a joint
probability of s and §, Pg(s, 5)dsds which is the probability having 5 values between s and s +ds
and having § values between § and 5+ d5. Thus, the expected number of crossings of s =
Y during dt is the cumulative probability distribution of combinations of s and 5 which resuit
the crossings. That is

f3°d§f,§_ é,dtpd(s , $)ds

where the integration limits have been chosen to cover the shaded area in Figure 155.

Therctore, the value ol "I which 15 cxpected number of crossings per unit tmie can be
obtained to be

F = dfoogsfa  pus. sids
&= /ot g P

Finally letting dt — 0, the desired expected crossing rate becomes

i = [5osPy(@  9ds
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Figure 154. Sample Functions Cross s = @ During the Interval dt.
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Figure 155. The Combinations of s and s Which Cross the Specified Bound s = T,
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APPENDIX C
EQUIVALENT UNIFORM DISTRIBUTED LOAD

To derive an equivalent uniform distributed load (EUDL), an influence surface coefficient
is needed. An influence surface coefficient is two-dimension extension of the principle of
influcnce line. The ordinate | (x,y) of an influence surface at any point (x,y) is the influcnce on
some dersired load efleet due 1o a umt load at (x,y). An mfluence surdaces may be constructed

by multipiying appropriate influence lines.

For example, a desired load effect is an axial load on a typical interior column (one story).
From the principle of influence line, this axial load will be deterruned by assurmng a umt
displacement at one corner of a panel. In Figure 156 a panel subjected to a unit displacement at
one comer will be the product of two influence lines in X and Y axes. The determunation of this

nfluence surface 1s as follows.

Assuming a deflection curve in X axisis U, = a+bx+ cx2 + dx3, the deflection in
terms of nondimensional variable, x* = x / ¢ is soived by substituting boundary conditions
U, = ().l'i.ﬂ =0ax =0, and U], = [.l-l.‘,_ = 0 ar - [ Thercfore the influcnce

line along x axis has the form:

= Ix2-23 0<x gl

Uz

In a similar manner, the influence line along Y axis which has the same boundary
conditions is |
U, = 3y2-2y3, I<y <l
where y’ = y/¢. Thus, the influence surface I (x.y) is\ approxdmately the product of the
influence lines in X and Y axes.
(', y) = (3x2-2x3y2 - 293 0<x'<land 0<y <1

in the design, the maximum EUDL shown in Figure 157 is our concemn. The statistics of

this maxumum LUDIL. can be assumed to be
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Figure |57. The Time History of EUDL.
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= EUDL+I|(0’12..:UD[)”2 ! (Ch
and
csz =T 02 . fC2)
(EUDL)p,, = "29EUDL

where EUDL, ogyp|, = mean and vaniance of EUDL; Iy, I3 arc constants.
Substituting I'quations {3.4) and (3.5) into Liquations (C1) and (C2). They became

9

EUDD).. = Ty +rya+ kli2 = ¢+ 2 (C3)
max = Ly 1r Ay U | AIUZ -
and
2
2 2, 9 Cq4
gET: = l'2(0' +—K = C3+—— (CH
EUDL r A U Al

where Cy, Cy, C3IC4 are constants which can be determined from live load survey. Equation

(C4) is corresponding to Equation (3.3).
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APPENDIX D
A PROBABILITY DISTRIBUTION OF PEAK ACCELERATION

To determine the mean and vanance of maximum peak ground acceleration, the
' probability distnbution of this accelaration has to be known. In 1968 Comell showed that this
probability distribution is a type II extreme distribution. In what follows his derivation will be

described.

Since the energy, E, released by earthquake has the relationship log|pE = a5 + by M
which was proposed by Ritcher, some researchers such as Kanai, Esteva, and Rosenblueth,
suggested the following relationship among peak ground acceleration (A), magnitude (M), and

focal distance (R) is determined 1o be

A :bicthR b3 (11

where bl, b2, b3 are constants which are obtained from field data. Esteva and Rosenblucth
used bl = 2000, b2 = 0.8, and b3 = 2 with unit of A (cm/sec?) and R (kilometers) to

represent southern California condition as shown in Figure 158.

The formulation of Equation {D1) may be explained as follows: since E = mass (m)
acceleration (A) distance (R) = a9 + bgM,then m A R = eagln 10 .
eMbginiQ, Consequently, A is exponentially proportional to M but inversely proportional to
R.

From Fquation (1), the altemative relationship is

— Inbl b3 InA
M = 22 InR 4+ ML D
M b2 * b2 * b2 (L2

"l‘hc conditional probability of InA of actual A which is greater than any number na of

allowable peak ground acceleration at focal distance R = r1s
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A =2000e**R-2 (M = constant )

A = 2000e°**R- (R = constant ) R

A
4
= logony = a — b
%
5
k=
— M
Figure 158. The Relationship of A and M, A and R, n and M.
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P[InA > InaR = r] = P(M > 12 + b3h"2“' —Inbl
ina + b3 Inr = Inbl, )

==K b2

where F(M) = the cumulative probability distribution function of M.
Since Ritcher also suggested the following relationship which is shown in Figure 158

logjpnm=a~b M (D3)

where nyq = frequency of earthquake, a and b are constants obtained from field data, the

frequency of earthquake can be expressed to be the form

nyy= explalnl0 - binio M] = expl - b in 10 (M—%)] (135)

Thus 1-F(M) 1s computed as
L~ M) = ¢ FM—Mg) (D6)

where § =b Inl0 and Mg 1s the smallest magnitude will be considered for the design.
Therefore, from Equation (D3)

Ina + b3 Inr ~ Inbi

P{lnA >InajR=r]= exp [ ~8 ( o

- My)] (D7)

Based ou Liquation (D7) anmd igure 159 the cumulative distribution of InA for the
distance of site to central point of line fauit source (d) and to the farthest point of line fault

source (rg) yields

| = Fipa(lna) = P{lnA > lnal = f;ol"flnA 2 lna|R =] fp(r)dr (D8)

where fp(r) is the probability density function of R. The cumulative distibution of focal

distance R is
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line fault source

site

Figure 159. The Configuration of Site and Line Earthquake Source.
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FrRD=P[R<rl= P[RZ2xr?]
=P[X2+d2<r2] =P[Xj</r2-d2]
Since the cumulative distribution is the probability of focal length from 0 to Yr2 - d2 in half

length of line source (¢/2), then

[7_ 2
2~ d d<r<rg (D9)

F =—
R(D 7 :
the probability density function of R is

dFu(r
RO _ 2r d<r<rg (D10)

fp(r) =
® dr Hrz - d2

Substituting Equation (D10) into Equation (D8), its integration is very complicated.

. However, in the region of greatest interest, namely larger values of lna the results is 36

1 = Fipallna) = %CG cxp[--f—z- Ina] (DIYH

where C = a constant = exp[ﬁ(—%) + mypl,

(i - aconstant -

b3,
b2 ’
I'( ) = Gamma function

rl =

Equation (DI1) 1s also the probability of earthquake event 1n which A is larger than a.
This probability can be substituted wnto the following cquation to deterrmne a- probability
distnbution of random number, N, of this earthquake event which 15 assumed to be a Poisson
process in a time interval of length 1 years with average occurence rate of v per year.
e~ Pivt (l’ivl)n
. n= 01223 ... {(12)

Py =P[N=n] = =

where P} =1 — Fx(a)
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If the zero number of an earthquake event which is less than an allowable value, the

probability becomes
Fa(@ = PIN=0]= exp[ -vCGta F/®?]

where v = vif
Comparing Equation (D13) with a type Il distribution

— 2y~ Kl
Fa@= ¢ G

the coefficients of ul and K1 will be determuned to be

ul= (sCcGpPbHh

which are used in Equation (3.17)
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APPENDIX E
A WHITE NOISE PROCESS

Considering a periodic function {(t) of period T, 1t can be respresented as a superposition

of sinusoids in the following exponent Fourier senes
(=] . N
fity= = C, explinwgt) (ED
e ,

where wg = 2T is the fundamental frequency. The coefficients C; can be evaluated directly

from the relation

. e . .
C, = .,1_,'[_,”21(:) exp( -1y thdt (12)
If f(1) 1s considered to be a nonperiodic function from t= - oo 10 oo , Equations (E1)

and (E2) become the following relations which are called Fourer integral.

[= ]

fity = f_ooF(m) expli w t)de (E3)
and
e -
Flw)==—/ f(t) exp(—iw t)dt , (E4)
2t 7 —oo '
To 1llustrate, considering the rectangular pulse function f(t) shown in Figare (60, 1t yields
T2 .
' - L — - -_/\_ 1 w—r- N
Flw) = 5 f_leA exp( —1w t)dt =——sin 3 (1:5)

where the function 1s sketched mn Figure 160.
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Figure 160. Rectangular Pulse Function and Its Spectral Founer Transform.
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If a random process s(1) is considered, the previous relations for autocorrelations

process which 1s also a nonpenodic function become
o0
E{st) st +7)]= R(z)= [ _Gl@) expliw do
and

l
Glw) = —)_f Rt} exp{ 1w t)d7
RY: 4 Ive)

where + = a time diffcrence and G(w) is called a spectral density function,

For a special case where t = 0 Equations (E6) and (E7) become
oo
R(0) = f_ooG(w)dw
and

l oo
Glw) = E‘f—mR(O) dr

of this

(:7)

(E8)

(E9)

Therefore cach stationary process has a corresponding spectral density function to desenbe

it. The process with an uniform spectral density value G shown in Figure 161(a) is called a

white noise process in analogy with white light which has the constant unuform spectrum. The

white noise process will result the autocorrelation becomes

Ry(7) = 2xGpd(r)

(E10)

where 4(t) is a Dirac delta function which has unit area concentrated at v =0 and zero values

for  # 0. The zero correlation of s(t) and s(t+ 1), RS(T). for r # 0 results that the process has

random behavior. A saumple function of this random process is shown in Figure [61(b).
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Figure 161. The Spectral Density Function and Time History of a Sample Function for a
White Noise Process.
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APPENDIX F

MOMENTS OF FILTER WHITE NOISE PROCESS

0 A ’ ‘
40 = —3 F* 5y - D
n

Gy 1~ 2ntan—lg/1-¢2) ar
sl 2;@% }l_cz F

xGy !-Untan”@i1-05) ¢ 2Gy p
F F

2 T2
Log [1-4 “g

nG ’ G -
g = 2 AL 0L (E3)
ZCm" ) I+ Igtt)g I

n lnr (F2)

where 1= wgjog A= Ag+4 S [2- 4c2- G- ah - s, 2A %A = Ay +al
1 - 4ng»2(l-cz)r2-25g2r4]; A”-A0+4(;2 2 2 ). B=1- Bcgz
20288 v+ aghtc=1ac220-2¢° +2c 4g CZ) 2+(1+4¢
8{g4)r4;D=1A(1‘2§2)r2—2:;g2 Eot.21-2¢2 +4cg 8¢ gz) 2+(1+4¢

4. 4 - 2
6, F=Fy v - 2¢ 2 1 h 4l +(1-2cg2)r ],A0-1-2(1-4cg)

2 2,4
+ (1+4Cg)r ,amdF0

- . . 2 i 2 4, 4 ) A 8
140 Zng]r A I e IR L
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APPENDIX G
SUPPLIMENTS OF PENALTY FUNCTION METHOD

1. A simple lustration example

Assume a lincar optimization problem formulated as
min., X| + X2
ST, g = 3-x<0

gy = 2-x3<0

For interor penalty function method, the penalty function is
| 1

I -
P(S—x! 2— x5

X, T - x|+x2+r

plX. p)
As we know, the solution of GPP jox) = U,@Pp {6x3 = 0, will be the miumum
solution of Pp . Therefor these two conditions yield

Xy = 3-edi2 or 3+rllj/2

P
and Xy = 2—1'1131‘2 or 2+ry2
The values x| = 3+ rl_!)/z and 2+ ré,fz which are the feasible points are the desired
solutions. As > approaches 1o zero value, the optimum solutions x; = 3 ,xa = 2 are
obtained.
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APPENDIX H

FLOWCHART OF PENALTY FUNCTION ALGORITHM

S* :direction
Yeeior

Determine
xh, = x4 Sk

by mun f{x,) using
one dimensional search

Ho) = floeemy
j(,x*“”}

Tz ~/x3)

i

Compute

A= max{fix: ) - xn]

52 corresponding to 4t

Compute
A= ZX: - X:

%) = Yl + A, )
U(.r,‘) ‘ﬂ-":) —-4A‘]> 0.5

d.mx‘:) —/IX:H)]Z

£x)

Replace %0 = 8t
cxcept S*
let S#eth = §*

i

min fxgt = xt + L5%)

xg-n=x:
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AX

~ AX|

bk l)byxl

X9 /x9)

XD = xk 4 AXS

YES AX =2AX

NO

Jdenate

x*byxd
x(k—l)byxi

1 L2 = (P + [0 = (x)7]
2 (x? — xHAxXY + (x? ~ x)HflxY)
Sx3 + [(x') = (x)? )fx)

T (x! = D)

(Y- =

If differcnice between two of
x* xt xd )t

with smaller tunction values
and corresponding x < g,

I nscard the one of x*, xt, x2, 3
with largest function values and to
maintain the bracket on the minimum
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APPENDIX |

FLOWCHART OF OPTIMALITY CRITERION ALGORITIM

Frroblem becownes

faput Duta A constrained problem o
YES
1—-—-—A
: Unconstrawmed o
Optimal constramng
Structural Analysis solution strained
' violated

s

Differenee
between current
and previans
vost -

YES °
NO S
the constraint \YE 0
reaches ihe 8 iteration >N 2= D
bound gven L= premeas
T‘ =a+ (1~ E)Tunmu
NO '
NO
u Recurrence
Scaling liquation
A A
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1 ¢

Compute

Lagrangan
Multiphers

Deleet the '
negative lLagranman
Muitipliers

YES

No Lagrangian
Mulupliers are
pasttive

Difl. of
current and previous
Cost <:c

constrained

soluticn
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