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. This report describes DYNAlD, a finite element computer program for nonlinear seismic
site response analysis. Dry, saturated and partially sCiturated deposits can be analyzed.
DYNA1D has been developed to allow site response analyses to be performed taking into
account: (1) the nonlinear, anisotropic and hysteretic stress-strain behavior of the soil
materials; and (2) the effects of the transient flow of the pore water through the soil
strata. The procedures used (field and constitutive equations) are general and appli-
cable to multidi mensional situations. The goal was to provide a realistic and reliable
analysis procedure for use in engineering design practice. Therefore, although no
sacrifices have been made as to the rigor and generaJity of the field and constitutive
equations used, attempts hav.. been made to simplify the use of the code. For that
purpose, features such as automatic initialization procedures have been implemented.
Also, required material constitutive parameters are identified in terms of classical soil
mechanics parameters. In order to ease the interpretation of the analysis results,
graphic display capabilities which allow plots of spatial and temporal variations of field
compone~ts have been implemented.
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PREFACE

The National Center for Earthquake Engineering Research (NCEER) is devoted to the expansion
and dissemination of know' .:dge about earthquakes, the improvement of earthquake-resistant
design. and the implementation of seismic hazard mitigation procedures to minimize loss of lives
and property. The emphasis is on structures and lifelines that are found in zones of moderate to
high seismicity throughout the United States.

NCEER's research is being carried out in an integrated and coordinated manner following a
structured program. The current research program comprises fOllr main areas:

• Existing and New Structures
• Secondary and Protective Systems
• Lifeline Systems
• Disaster Research and Planning

This technical report pertains to Program I, Existing and New Structures, and more spedfically
to geotechnical studies.

The long term goal of research in Existing and New Structures is to develop seismic hazard
mitigation procedures through rational probabilistic risk assessment for damage or collapse of
structures. mainly existing buildings, in regions of moderate to high seismicity. The work relies
on improved definitions of seismicity and site response, experimental and analytical evaluations
of systems response, and more accurate assessment of risk factors. This technology will be
incorporated in expert systems tools and improved code formats for existing and new structures.
Methods of retrofit will also be developed. When this work is completed. it should be possible to
characterize and quantify societal impact of seismic risk in various geographical regions and
large municipalities. Toward thb goal, the program has been divided into five components, as
shown in the figure below:

program Elements:

I Setsmialy, Ground Motions I
and Seisl,'i(: Hazards Estimates I

+
I Gvo1llchnical Studies, Soils Iand Soil-Structure InteractIOn

•I System Response I
Tesling and Analysis I

+
I Reliability Analysis I -

and Risk A~sessment I

Expert Syslems

iii

Tasks:
Eanhq_ Haz_ EII-..
Gtound MOIIlll\ EII..-.
_ Ground"'''''''' 1no11U......~iQn.
EA1hq...... & Glound MOIIlll\ o.J. B...

SiIa~E..,_.

LMoe GIOUfld DIIormaIlQf\ EII_,
Sai~Slruc:l""lnI..aet....

TypcaI SlrUClu" and c...... SlrUCIural~:
T.'ing and Ana1raa;
..._ Anal}1icol T_,

Vul...~ Ana"....
AoIiobi1lly Analraa.
RakM_.
Code lqrading
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Geotechnical studies constitute one of the important areas of research in Existing and New
Structures. Current research activities include the following:

1. Development of linear and I'onlinear site response estimates.
2. Development of liquefaction and large ground deformation estimates.
3. Investigation of soil-structure imera'tion phenomena.
4. Development of computational methods.
5. Incorporation of local soil effects and soil-structure interaction into existing codes.

The ultimate goal of projects concerned with geotechnical studies is to develop methods of
engineering estimation of large soil deformations, soil-strtic,ufe interaction, and ~ite response.

This report describes the development of DYNA1D. a finite element computer program for
nonlinear sile response analysis. The program can be used to analyze dry. salurated, and
partially saturated soils. The program prOVides a user friendly interface and graphic displays of
various OUtpUI plots. II is intended to be a realistic and reliable procedure Ihal can be used in
engineering design practice.
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ABSTRACT

This repon describes DYNA I D, a finite element computer program for nonlinear seismic site
response analysis. Dry. saturated and panially saturated deposits can be analyzed. DYNA ID has
been developed to allow site response analyses to be perfonned taking into account: (J) the non
linear, anisotropic and hysteretic stress-strain behavior of the soil materials; and (2) the effccts of
the transient flow of the pore water through the soil strata. The procedures used (field and consti
tutive equations) are general and applicable to multidimensional situations. The goal was 10 pro
vide a realistic and reliable analysis procedure for use in engineering design practice. Therefore,
although no sacrifices have been made as to the rigor and generality of the field and constitutive
equations used. attemps have been made to simplify !he use of the code. For that purpose,
features such as automatic ( i.e., user transpa.rent) initialization procedures have been imple
mented. Also, required material constitutive parameters are identified in tenns of "classical" soil
mechanics paramctern (e.g.. elastic moduli, friction angles, penneabilities, etc.). In order to case
the interpretation of the analysis results. graphic display capabilities which allow plOLs of spatial
and temporal variations of field components have been implemented.

The program and its analysis capabilities are descrilx:d in Section l. The theoretical frame
work which fonns the basis of the fonnulations used is summarized in Section 2. The numerical
fonnulation employed for solving the coupled field equations is reviewed in Section 3. Special
boundary conditions allow the seismic input motion to Ix: prescribed as an incident venically pro
pagating motion. or as the sum of an incident and a reflected motion. The procedures imple
mented are eXilel, and e~plained in detail in Section 4. Each finite clement is associated with a
set of material propenies. The material may be assumed linear (i.e .. isotropic linear clastic), or
nonlinear, anisotropic and hysleretic. Two types of nonlinear soil mcxkls may be used, depending
upon whether drainage or no drainage of the fluid phase are to take place, viz., depending upon
whether the material response is to be assumed dependent on the mean effective stress. Both
nonlinear soil models arc based on multi-yield plasticity con'ititutive theory. The p!'Cssure depen
dent model is fully described in Section 5. The required material parameters for both soil models
arc defined in tenns of common soil mechanics parameters ( e.g., cohesion, friction angle. poro~
ity. etc.). TIle procedures used to generate the required model parameters are detailed in Section
6. The integralion a1gorilhms used for integrating the nonlinear. anisotropic. hysteretic elastic
plastic constitutive equations are explained in Section 7. Output consists of nodal. element
slresses. strains. and pore waler pressures. elc. and lime histories. The results are conveniently
post-processed using the graph:cs post-processors, which allow selective plots of field com
ponents time histories. Fourier spectra. velocity spectra. etc.• and spalial plots at selected times of
field components variations.

v
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SECTIO~ I

DYl'iAID

PROGRA'. DESCRIPTION

I .• INTRODliCTIO~

Seismic site response analysis involves the determination of the spatial and te'11

poral variatjl)n of ground motions at a .given site It also involves the determination of

the effects of seismic waves. e.!:., potential liquefaction. at a given site. It is a most

important and essential step in any seismic soil-struCll.re interaction analy·.;i~, and is

n.:quJred to compute compatible motions at tlle boundaries of the discrete soil model in

direct method" of analy"is. To computt> the site response. assumptions must be made

regarding the types of waves propagated during the earthquake. The most common

assumptions are that the soil is horizontally stratified and that the excitation consists of

vertically propagating dilatationa. ,P-waves) and shear (S-waves). The dilatational

waves only produce vertical motio;'!s, and the prohlem then becomes one-dimensional.

However, due to the presence of coupling between shear and volumetric deformations in

soil media, the shear waves will. in general. produce both horizontal and vertical

motions. These effects are usually disn.:t::arded. and the shear wave propagation is com

monly analyzed as a one-dimensional problem (see e.g .. Ref. 110)). Such an assumption

is cer!a11l1y valid for saturated soil media if no drainage of the pore fluid can take place

within the time frame of the seismic excitation. However, for dry soil deposits and for

saturated soil depositli of moderate permeabilities in which drainage can take place, hor

izontal motions will in general be accompanied with vertical motions and such effects

should be accounted for in the analysis. Further. in cases in which potential liquefaction

is of concern, a complete effective stress analysis which models directly the nonlinear
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hysteretic stress-strain response of soils should be conducted. In such an analysis, the

buildups in pore water pressures and their dissipation with time are computed, and their

effects on the dynamic response are taken into account. Effective stress analysis based

on the solution of uncourled equations for t!}e porous solid soil sk.eleton and the pore

water fluid have been proposed (see e.g., Refs [5,6)). However, a rational and complete

analysis should be based on the solution of thejul/y coupled (see e.g., Ref. II]) solid soil

skeleton/pore water fluid equations, such as proposed in Refs [2-4,9].

DYNAID [8J has been del'doped to allow site response analyses to be perfonned

taking into account: (J) the non·linear. anisotropic and hysteretic stress-strain behavior

of the soil materials: and (2) the effects of the transient flow of the pore water through

the soil strata. The procedures used (field and constitutive equations) are general and

applicable to multidimensional situations (see e.,.:., Ref. (7».

1.2 OBJECTIVES AND GOALS

DYNA 1D is a finite element analysis program designed to perform nonlinear

seismic site response calculations. The goal was to provide a realistic and reliable

analysis procedure for use in en£ineering design practice. Therefore, although no

sacrifices have been made as to the rigor and~enerality of the field and constitutive equa

tion used, attempts have been made to simplify, as much a~ possible, the use of the code.

For that purpose, features such as automatic ( i.e .• user transparent) initialization pro

cedures have been implemented. Also, required constitutive parameters are identified in

tenns of "classical" soil mechanics parameters ( e.g., elastic moduli, friction angles, per

meabilities, etc... ). In order to ease the interpretation of the analysis results, graphic

display capabilities which allow plots of spatial and temporal variations of field com

ponents have been Implemented.

I - 2



1.3 ANALYSIS CAPABILITIES

Dry, saturated and panially sarurated deposits can be analysed. The theoretical

framework which fonns the basis of the fonnulations used is summarized in Section 2.

The numerical fonnulation employed for solving the coupled field equations is reviewed

in Section 3.

Consider a typical situation such as illustrated in Fig. 1.1. A semi-infinite horizoll

tally layered soil deposit is subjected to a seismic ground motion. The ground motion is

attributed to the upward propagation of seismic waves from the underlying rock or rock

like layers. A complete site response analysis would require a model which also includes

the source mechanism. However, for seismic excitations, the many uncenainties in the

source mechanism and in the geological parameters along the transmission path, and the

restrictions on the size of the numerical model, dictate a simpler appro:ich:

• The semi-infinite domain is modeled by using a finite model, and the site

response calculations are performed for a given seismic input motion prescribed in the

form of an acceleration (or velocity, or displacement) time history to be applied at the

base of the soil column. When an infinite domain is modelled by a finite model, there is

danger that waves reflected frOnt the free-surface will be reflected back off the artificial

bottom boundary and cause errors in the response calculations. unless special boundary

conditions can be imposed at the base of the soil column. In DYNAID [8], special boun

dary conditions can be prescribed which allow the seismic input motion to be prescribed

as an incident venically propagating motion. or as the sum of an incident and a reflected

motion. The procedures implemented are exact, and explained in detail in Section 4.

• The finite soil column is modeled by using finite elements. For that purpose. the

horizontally-layered ground is divided into a number of finite elements as shown in Fig.

1.1. Each finite element is defined by two (2) nodes. The nodes need not be equally

1 - 3
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Figure 1.1 Semi-Infinite Lay~red Soil Profile I Finite Element Mesh

spaced, nor need to be input so as to follow any particular numbering pattern. If desired,

the elements may be cOJlvenientiy grouped into groups, e.g., to selectively identify dif

ferent soil layers.

• In the free-field conditions, soil skeleton motions can occur in both the horizonlal

and vertical directions. Therefore, to each nodes are assigned two solid kinematic degrees

of freedom, in the horizontal (number 1) and vertical (2) directions, respectively. How-
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ever, fluid motions can only occur in the vertical direction. Therefore. for saturated depo

~it.. in which fluid motions can take place. the third kinematic degree of freedom is

assigned to the fluid motIOn in the vertical direction (number 3).

• To each element is associated a set of material properties. The material may be

assumed linear ( i.e., isotropic linear elastic), or nonlinear. Two types of nonlinear soil

models may be used. depending upon whether drainage or no drainage of the fluid phase

are to take place, \'iz., depending whether the material response is to be as'i1lmed depen

dent on the mean efkctive stress.

• Both nonlinear soil models. are based on multi-yield levels plasticity constitutive

theory. The pre..sure dependent nodeI is fully described in Section 5. The required

materi::!.l parameters for both soil models, are defined in terms of common soil mechanics

parameters (e.~., cohesion, friction angle. porosity, etc ... ). The procedures used to gen

erate the required model parameters are detailed in Section 6.

• The integration algo'ithms used for integrating the nonlinear, anisotropic. hys

teretic elastic-plastic constitutive equations are explained in Section 7.

• Output consists of nodal. element stresses, strains. and pore water pressures. etc...

time histories. The results are conveniently post-processed using the graphics post

processors. which allow selective plots of field components time histories, Fourier spec

tra, velocity spectra. etc .... and spatial plots at selected times of field components varia

tions.
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SECTIO~ 2

DYNAMICS OF POROUS MEDIA

BASIC THEORY

2.1 INTRODUCTION

Soils consist of an assemblage of particles with different sizes and shapes which

fonn a skeleton whose voids are filled with water and air or gas. The word "soil" there

fore implies a mixture of assorted mineral grains with various fluids. Hence, soil in gen

eral must be looked at as a one (dry soil) or two (saturated soil) or multiphase (partiaily

saturated soil) material whose state is to be described by the stresses and displacements

(velocities) within each phase. There are still great uncertainties on how to deal analyti

cally with partiy saturated soils. Attention is therefore restricted in the following to dry

and fully saturated soils. The stresses carried by the soil skeleton are conventionally

called "effective stresses" in the soil mechanics literature (see e.g., Terzaghi (1943]), and

those in the fluid phase are called the "pore fluid pressures".

In a saturated soil, when free drainage conditions prevail, the steady state pore-fluid

pressures depend only on the hydraulic conditions and are independent of the soil skele

ton response to external loads. Therefore, in that case, a single phase continuum descrip

tion of soil behavior is certainly adequate. Similarly, a si~gle phase description is also

adequate when no drainage (i.e., no flow) conditions prevail. However, in intermediate

cases in which some flow can take place, there is an interaction between the skeleton

strains and the pore-fluid flow. The solution of these problems requires that soil behavior

be analyzed by incorporating the effects of the transient flow of the pore-fluid through the

voids, and therefore requires that a two phase cO'ltinuum formulation be available for

porous media. Such a theory was first developed by Biot [5-1OJ for an ela:.tic porous

2· 1



medium. However, it is observed experimentally that the stress-strain strength behavior

of the soil skeleton is strongly non-linear, anisotropic, hysteretic and path-dependent. An

extension of Biot's theory into the non-linear anelastic range is therefore necessary in

order to analyze the transient response of soil deposits. This extension has acquired con

siderable importance in recent years due to the increased concern with the dynamic

behavior of saturated soil deposits and associated liquefaction of saturated sand deposits

under seismic loading conditions. Sl!ch an extension of BioI's formulation [261 is

presented herein. For that purpose. soil is viewed as a multi-phase medium and the

modem theories of mixtures developed by Green and 1"aghdi 121]. and Eringen and

Ingram {191, are u'led. General mixture results can be shown through formal lineariza

tion of the field and constitutive equations, to reduce to Biol's linear poroelastic model

(see e.g. (12)).

The general theoretical framework which forms the basis of mixtures' theories was

first developed by Truesdell and Toupin 128] early in 1960. Since then, the theoretical

description of multiphase materials has received repeated attention in the literature, and

fundamental equations for a dynamic theory of interacting continua have been derived

[see e.g. Refs 16, 19-24, 28, 29, 34-36]. The most recent findings arc summarized in

Refs 2, 3 and 11 which contain many references to relevant works. In the following, the

general mixture equations are fir~t summarized and applied to describe the ftvw of water

througll saturated anelastic porous soil media. Special attention is given in particular to

the physical meaning of the partial stresses which appear in the general field equations,

and an effort is made to relate them to physical quantities measurable in the field.

During deformations, the solid particles which form the soil skeleton undergo

irreversible motions such as slips at grain boundaries, creations of voids by particles

coming out of a packed configuration, and combinations of such irreversible motions.

When the particulate nature and the microscopic origin of tI'c phenomena involved are
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not sought, phenomenological equations then provide an adequate description of the

behavior of the various phases which form the soil medium. In multiphase theories, the

con~eptual model is thus one in which each phase (or constituent) ente:s through its aver

aged protJerties obtained as if the particles were smeared out in space. In other words,

the particulate nature of the constituents is described in telms of phenomenological laws

as the particles bt>:lave collectively as a continuum. Soil is thus viewed herein as consist

ing of a solid skeh~ton interacting with the pore fluids. In order to be able to derive mul

tiphase field and constitutive equations for such a medium, a technique for obtaining

local average quantities is necessary. Furthermore, the basic kinematics and balance

equations for each constituent and for the mixture as a whole must be defined.

2.2 KIl';El\IATICS

Soil is viewed herein as a mixture consisting of m ( 1 ~ m ~ 2) deformable media,

each of which is regarded as a continuum (for saturated soils m = 2 ) • and each follow

ing its own motion. It is assumed that at any time t each place x of the mixture is occu

pied simultaneously by m different particles Xl, X2 , ... , X m , one for each consti

tuent. As in single-phase theory, to each c:onstituent is assigned a fixed but otherwise

arbitrary reference configuration [18.25,31), and a motion

a= I ,.... ,m (1)

where Xu denotes the position of the nih -constituent in its reference configuration, and

x the spatial position occupied at the time t by the particle labeled Xu. For simplicity in

the following. both the reference and current configurations of each cO'istituent are

referred to rectangular Cartesian axes. Capital and lower case letters are used for the

indices on coordinates and tensors referred to the undeformed and deformed

configuration, respectively (see e.g., Refs 18 and 25). The usual continuity and d;fferen-
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tiability assumptions are made for the deformation functions xa , and the following res-

trictions are imposed

ex = 1 ..... m (2)

for physically possible motions. in which det denotes the determinant and a comma (,) a

partial derivative. The velocity and acceleration of Xa at time t are obtained from Eq. 1

by time differentiation, viz.

(3)

where a superimposed dot indicates differentiation with respect to time holding Xa fixed

(i.e.• the material derivative following the motion of the ex -constituent),

ex
()a =~() = ~() + "a.vO (4)

Here, and in the following, V and V are used to denote spatial and material derivatives,

respectively. The deformation gradient for Xu at time t is defined by

(5)

and the velocity i:radient is defined by

(6)

in which, (Fa)-l denotes the inverse of ro. The symmetric and skew-symmetric parts of

La are refe'C;;d to as the deformation rate, da, and spin tensor, wa, respectively.
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2.3 AVERAGE QUANTITIES

Average quantities are obtained by integrating microscopic Quantities over an

averaging volume or area. The averaging procedure is used to obtain a field of macros

copic Quantities for each phase. In the macroscopic field, the averaging volume

represents and characterizes a physical point. Because the averaging volume is macros

copically infinitesimal, it is denoted by dV. Similarly, the averaging area dA ,

represents and characterizes a physical point on the surface of dV ,and is an infinitesimal

element of area in the macroscopic field. The characteristic length, 0, of the averaging

volume or area is selected such that [341' «D«L, where' is the microscopic scale of

the porous medium and L is the scale of gross inhomogeneities. Typically,' = 50 micron

in sands and' = 1 micron in clays, whereas L = Iem. The part of dV occupied by the «

phase is denoted by d\/U. and the volume fraction, n a, of the a-phase is the fraction of

dV occupied by the a-phase defined by

d\'U
av- (7)

Cleary, n a is constrained by L n a = 1 and 0 S n a S 1. Similarly, the part of dA lying in
U

the a.phase is denoted by dA u, and the areal fraction, na. of the a-phase is the fraction

of d4 which interest the a-phase defined by

nu = nu (x, t ) (8)

subject to L na = I and 0 S na S 1. In Ref. [24], arguments are presented which support
a

the intuitively appealing identity, n« = fla [6,27J, and in the following, that identity is

assumed to hold.

A macroscopic average mass density function, pa , is associated with each consti

tuent and is defined as the volume average of the microscopic density function, Pa , as
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[20]

Po._ If pdv- av d\'U a (9)

where dv is the microscopic volume element. In this equation and in subsequent

developments, the dependence of macroscopic and microscopic quantities on x and t is

understood. The intrinsic volume average mass density is defined as

P- - 1 f P dv - 1 po.
u - dVu dVU a - na (10)

Note that only when the mass density of the a-phase is microscopically constant, is the

intrinsic volume average mass density function equal to the microscopic mass density. In

the following, Po. ::;: Po. and thus po. ::;: ria. Pu.

The mass density, p, of the mil\ture is defined as

p ::;: p (x, t) = !: po.
a.

and the mean (or barycentric) velocity, \', for the mixture is definecl ~.

\' = v (x, t) = .L 1: pa. VU
p a

The velocity g:adient for the mixture is then

(11 )

(12)

(13)

It is of importance to emphasize that the velocity va of the a-constituent (Eq. 3) is its

microscopic (intrinsic or seepage) velocity, and is different from the mean (or superficial)

velocity va, used for instance in Darcy's law [17J, defined as

J P va'ndA ::: J p vU'ndA = I pClvU'ndAdR a aRa a. dR
(14)

where n denotes the unit outward nonnal to the surface (JR, of area A , which encloses

the fixed region in space R , of volume V . Clearly, va = nO. va,
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2.4 BALANCE LAWS

All equations are postulated at the current time t, and all field quantities are func

tions of x and t. When discussing a constituent of the mixture, it is supposed that it can

be isolated from the rest of the mixture, provided that allowance is made for the action

upon it of the other constituent(s). The balance laws for the two-phase soil mixture are

summarized as follows:

2.4.1 Balance of Mass:

No chemical interaction is assumed to take place between the solid soil s~,eleton a:1d

the fluid phase. The balance of mass of each (X-constituent then takes the form

(X

-f5t (pa) + pa V . va = 0 (15)

Another version of Eq. 5 is obtained by recalling that pO = nO I'a' and

(l

-f}; (n a ) + nil V . "Il =
(X

nO D
Po 1Jt (Pa) ~16)

in which ~ (Pu) I Dr =0 if the grains which constitute the (X-phase are incompressible.

Eq. 16 will prove most useful in the following.

2.4.2 Balance of Linear Momentum:

Before postulating the balance of momentum la~s for each (X-constituent it is first

necessary to consider the forces acting on this constituent within the region R. In addi

tion to body forces, such as gravity forces, one must also account for the effect on the (X

constituent of the mixture outside the region R. This effect is accounted for by introduc

ing a vector field 1" (n, x, t) defined on oR and measured per unit area of ;)R • such that

f r dA represents the contact force exerted across fJR by the (X-constituents outside of
iJR
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R on the a.-constituent in R 123,32,35!. This notion of a stress vector is in accord with

the stress vector notion for a single-substance cor.tinuous medium as introduced in c1assi-

cal continuum mechanics (see e.g., Refs 18,25,31-33). Corresponding to the partial

stress vector to, there exists a partial stress tensor 00 [32,35), such that rx = n . 00 ,

where n denotes the unit outward normal to oR. Locally,

(17)

where fa denotes the intrinsic stress vector of the a.-phase ~';ote that: t<I = naTa when ta

ill microscopically constant. From Eq. 17 and the above definition, it is apparent that the

partial stress tensor corresponding to the fluid phase, ow, is equal to n W times the pore

fluid stress, Ow, i.e., OW =n w Ow . However, the partial stess tensor corresponding to the

solid phase, 0" , is not th·: effective stres~, a's, of classical soil mechanics [30] but

rather is

0-' = 0'-' + n" Ow = n" 0-, = ( I - n W
) 0 .. (18)

for a saturated porous medium, where n S Ow accounts for the effects of the pore fluid

stress on the individual solid grains which constitutes the solid ~keleton. In deriving Eq.

18 it has been assumed that the contact areas between the solid grains are negligibly

small [4,27], so that the pore fluid and associated stress completely surrounds each grain.

Each solid grain is also subjected to intcrgranular forces ttat are in excess of the pore

fluid stress and characterized by the effective stress 0'-'. The global stress 0 which is to

appear in the general balance equations for ~he porous medium, is the sum of the partial

stresses, <1 = I 00, and is equal to'
a

(19)

for a saturated porous medium, as postulated in classical soil mechanics [30).
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The local version of the balance of linear momentum equations for each constituent

then simply writes (see e.g., Refs (2) and (11)):

(20)

where b = body force per unit mass; pU = momentum supply to the ex - constituent from

the rest of the mix.ture due to other interaction effects (for example due to the relative

motions of the constituents), subject to 1: po. == 0 (2,11]. It is further assumed that the
a

mixture consists of non-polar constituents and that there are no moment of momentum

supply between the phases. The balance laws of moment of momentum for each phase

then yield that, as in single-substance media, the partial stress tensors must all be sym·

metric.

2.4.3 Entropy Incqualill:

In setting up constitutive hypotheses for each constituents, one must ensure that

they do not violate the entropy inequality which states that for a mixture in which each

constituent has the same temperature e [2],

+ r. aa : dO. - if q . V e ~ 0
a

(21)

in which on: dCl = tr ( aa dU ), AU:;-: partial Helmoltz free energy, so. = partial

entropy, dnd q = heat flux for the mixture.
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2.5 CONSTITUTIVE ASSUMPTIO~S

Constitutive equations must be provided for the state variables. This is accom-

plished as follows:

2.5.1 Solid Grains:

For all pralical applications of interest in soil mechanics, the solid grains may be

assumed incompressible, and in the following Ps = constant. Eq. 16 for the solid phase

then simplifies to:

s
-8r (n"') = ( 1 - n W ) V . VI (22)

where n W = ( I - n< ) = porosity, and Eqs. 16 and 22 may be combined to yield the So-

called "storage equation", viz.

(23)

2.5.2 Fluid Phase:

The following constitutive equation is assumed to describe the behavior of the fluid

phase

Ow = - P.. 0 (24)

where Pw = pore-fluid pressure; i.e., it is assumed that the fluid has no average shear

viscosity. Further, the fluid flow is assumed barotropic so that the fluid kinetic equation

of state is independent of the temperature, viz.,

F( Pw ,Pw ) = 0

from which it follows that

w w
1 DID

Pw 1Yi ( pw ) = Aw 1A (Pw )
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where }.w =p", aPw I apw = bulk modulus of the fluid phase. The fluid pressure can

thus be dctennined from Eq. 23 which now writes:

w

1Ji
D (Pw ) = - A

W

(V· ( nW V W
) + V· ( nS v·· ) J

I n W
(27)

For soil media, the compressibility of the fluid phase is often much smaller than the

compressibility of the solid skeleton. Therefore, the fluid phase may, in some applica-

tions, be regarded as incompressible. and Eq. 23 reduces in that CaSl" to

(28)

2.5.3 Solid Porous Skeleton

A rate-type constitutive equation is assumed to describe the behavior of the porous

solid skeleron, of the following fonn:

(29)

where v() and v(1 = symmetric and skew-symmetric parts of the solid velocity gra

dient, respectively; (}~ is the material con:;titutive tensor, an (objective) tensor valued

functi.Jn of, possible 0-" and the solid deformation gradient; DC is the contribution

from the rotational component of the stress rate. viz..

(30)

Many nonlinear material models of interest can be put in the above fonn (e.g., all non-

linear elastic and many elastic-plastic material models). Appropriate expressions for the

effective modulus tensor (}'1 for soil media are discussed in Section 5. For a linear iso-

tropic elastic porous skeleton:

(31)

where ')./ , W= effective Lame's moduli. (jjj = Kronecker delta.
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2.5.4 Momentum Supplies

Momentum interaction between the solid skeleton and the fluid phase is assumed to

consist of diffusive and dilatational contributions, viz.

p' =- p'" = -l;' ( Y" - y'" ) - P", V n" (32)

where ~:::: symmetric. positive-definite second-order tensor. The first term accounts for

the momentum transfer due LO diffusion phenomena and is sometimes called the "stokes

drag" [11]. The inclusion of such a term is basic to all porous media theories (see e.g.•

[5-1Oj). The second term is called a "buoyancy force" in mixture theories.

2.6 COUPLED FIELD EQUATIONS

Under ~he assumptions described above, the linear momentum equations (Eq. 20) sim-

plify to:

p" a' = V . o's - n" V P.. - l; . ( Vs - v'" ) + p" b (33a)

s
p'" flr (,.w ) = p'" ( "s - v" ). V v.. - n W V P.. + ~. ( ,." - y'" ) + P" b(33b)

when the movement of the solid phase is used as the reference motion. When inertia and

convective terms are neglected. Eq. 33b reduces to Darcy's law [17] as

(34)

and thus k:::: (n",)2 Y.... ~-l = Darcy permeability tensor (symmetric, positive-definite).

(units: Lrr); Y.. =g p.. :::: unit weight of the fluid; g = acceleration of gravity.

2.7 APPLICATIONS I SPECIAL CASES

Several simplified situations of interest in soil mechanics can be obtained as special

cases of the general theory presented previously (Eqs. 22.23 and 33). as shown hereafter.
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2.7.1 Dynamics Without Inertia and Convecth'e Effects in Fluid

If inenia and convestive effects in the fluid phase are neglected, Eqs. 33a and 33b

can be combined to yield:

p' as = V . ( a's - p", a) + p b (35)

where p = p' + P'" = total mass density of the mixture. Further, Eq. 33b simplifies to

Eq. 34. Then taking the divergence of both sides of Eq. 34 and combining with Eq. 27,

one gets

and finally (rearranging terms):

w
= n '" D (p ) + V . ,.sAW 75t w

= - V . I.L k· ( V p", - p", b ) ] (36)

w
n'" D IA'" 15t (p", ) - V . Iy;; k . ( V p", - p", b)l + V' V

S = 0 (37)

In many practical cases, the compressibility of the fluid phase is often much smaller than

that of the solid soil skeleton. Eq. 37 can then be further simplified by assuming that the

fluid compressibility can be neglected, as:

(38)

The term _1. b can conveniently be expressed in a cartesian reference frame as V yg

where y is the vertical coordinate ()' -axis vertical, oriented upward).

2.7.2 Dynamics with Undrained Conditions

In that case k =0 relative to the rate of loading, the pore-fluid follows the motion

of the solid phase (i.e., v'" =VS ) and Eq. 33 simplifies to:
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p a = V . ( o'S - p", ~) + P b (39)

where a ( = a" = aM! ) = accele.-alion of Ihe mixlure. The storage equation (Eq. 23) also

simplifies, and

n W

=--p",
D n W D

T5i (Pw ) = - A'" Til (Pw ) (40)

If it is further assumed thaI the fluid compressibility can be neglected, then (from Eqs. 22

and 40)

-it- (n W
) ~ 0 and V . ,oS == V' "W = 0 (41)

NOle thaI in general, changes in pore-fluid pressures will arise as a resull of the strains in

the solid soil !>keIeton.

2.7.3 Dynamics with Drained Conditions:

In that ca!>e k = 00 relative to the rate of loading, and no change!> in pore-fluid

pressures take place as a result of the strain.. .1 the solid soil skeleton. Eq. 33 then

simplifies to:

pf a·f = V' ( O/·f - Pw ~) + P b

if the pore-fluid is assumed al steady-state. viz. (from Eq. 37).

- V . [_I k· ( V P", - pw b )) = 0y.,

(42)

(43)

If it is further assumed that no fluid flow is taking place (static fluid pressures), then Eq.

33a simplifies to:

pS as = V· O'S + piS b (44)

where piS =P- Pw =nS ( Ps - Pw )= buoyant mass density of the porous soil skeleton,

and (from Eq. 33b)
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vPw - Pw b = 0

2.7.4 Pseudo-static loading conditions:

(45)

In that case inertia (and convective) effects are neglected both in the solid and fluid

phases. The corresponding field equations for the various cases are simply obtained from

above by setting as = a w = 0, viz.

2.7.4.1 "Partly" drained loading conditions (Consolidation Equations):

v .(a's - 1'", b) + P b = 0

w
n IV D 1 VAIV Tit (p", ) - V· [-=t:: k . ( V p", - p", b ) i + . vS = 0

2.7.4.2 Undrained wading Conditinns:

v .(a's - p ... 0) + P b = 0

(46a)

(46b)

(47)

with V· ,.s =V . VW =0 (iJr nW =0) if it is further assumed that the fluid

compressibility can be neglected.

2.7.4.3 Drained Loading Conditions:

V . ( a's - p", 0) + p b = 0

- V . (_I k' ( V Pw - Pw b ») = 0
"(141

or, if no fluid flow is taking place:

V' a's + p's b = 0

V p", - Pw b = 0
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2.8 APPENDIX A : Wa\'e P;opagation with Diffusion

In this section, results pertaining to the calculation of propagation speeds and decay

properties of pl:me waves propagating in the porous medium model defined by Eqs. 33a

and 33b are sum'llarized, Small displacem~nts are assumed and linearized equations are

u~ed. The solid skeleton is modeled as isotropic linear elastic (Eq, 3I) and ~ = ~ S in

the following. One solid rolational and two dilatational diffusive waves will in general

propagate thru the porous medium. It is convenient to first introduce results pertaining to

acceleration waves. Readers interested in detai:.:d derivations should consult Biot

[1956], Bowen [19i\2); Bowen and Chen [1975], and Bowen and Reinicke (19781 on that

subject matter,

AI. Acceleration Waves:

(a) Rotational WQI'c: It propagates thru the solid skeleton with a wave speed C s given

by:

The wave is diffusive, and its amplitude decay is given by:

a (t) = a (0) exp [ - ~ t / 2 pS 1

from which the attenuation distance 8s (1.. deca\' ) can be computed as;e .

(AI)

(A2)

(A3)

(b) DilatatIOnal Wal'es: Two dilatational waves may in general propagate thru the

porous medium with speeds Cp , and CP1 given by:

Cp ,2 = t [(cr +C]) ± [(Cl-C])+4C3!11l2]

where

(A4)

Ct (A5a)
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Ct = (n"'AW
) I p'" (A5b)

(A5e)

Note that Eq. AS will always produce positive squared speeds and thus real speeds if

(A·~ + 2~s ) > O. The two waves are in general diffusive, and their amplitude decay is

given by:

a l (1) = elj (0) exp [ - ~ a.i 1/2 I

where

1 _1_) ICi-cala = (- +
I pI p'" C"1. _ C 2

PI p=

and Co is the "froz.en" mixture speed defined by:

Ca = (AI + 2 Ils + A'" ) / ( p5 + P'" )
n'"

with

Note that it is possible that Co = CP1 (dynamically compatible c<:se). In that case:

(A6)

(A7)

(A8)

(A9)

(AlO)

and.

C - C -- r;:;- .
pl- o-'Jpw'

0.2 = (_1_ + _1_)
ps p"

(AI2)

(AI3)

Note that the wave of the first kind is nondiffusive in that case.
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A2. Harmonic Waves:

The propagation of plane progressive waves in the porous medium model was first

analyzed by Biot [1956J and later by Atkin [l968J. Solutions of the form

fj)( x . t ) =~ exp I i (11 n'x - co I )] (A14)

are sought to the wave equations, where n is the (unit) propagation vector, TJ is the (com

plex) wave number and w is the (real) frequency. The speed of propagation C and the

attenuation coefficient q of the plane harmonic wave described by Eq. A14 are given by

It is convenient to introduce the following characteristic frequency

_ ~ 1 1
~-":l(-+-)pS P'"

(AlS)

(A16)

in terms of the drag coefficient, such that 1/wo is the characteristic time of diffusion.

The characteristic frequency Wo controls the transition from low-frequency to high

frequency behavior.

(a) Rotational Waves: The dispersion relation takes the following form:

where

(AI?)

x =~
CO()

(AI8)

from which the propagation speed and attenuation coefficient are obtained as:

{
2 f X2 }-112C = c ..fi ( I +X )'12 + +

S f2+X2 P1.+X2
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At low frequencies (ro/roo < < 1 )

q = +(roofCs) /-312 (1 - / ) X 2 + 0(X 4 )

and at high frequencies (roIWo > > I )

C= C, {I - t (1-n (I + 3nX-2 +O(X-4>}

q =+("",IC,) (1-n{l- t (I + 2[ + 5[' IX-2+ 0(X-4)}

(A21)

(A22)

(A23)

(A24)

The transition from low- to high-frequency behavior is found (0 take place in the range

10-1 < X =~ < 10.
roo

In the porous medium model, plane harmonic rotational disturbances thus take the

form of progressive waves which are dampled and dispersed. The behavior of these

waves at low frequencies differs from their behavior at high frequenci~s, the transition

between the two regimes occurring fairly sharply at frequencies near the characteristic

frequency roo.

(b) Dilatational Waves: The dispersion relation takes the following foml:

(A25)

and is studied in detail by Atkin [ 1 ]. In general, two dilational waves (dispersive and

diffusive) will propagate with speeds C 1 and C 2 such that

(A26)

and correspond to Biot's waves of the first and second kind [1956], respectively.

2 - 19



Low-Frequency Behavior: In the low-frequency regime, the dilatational mode asso

ciated with the first root has the character of a progressive wave, while the second

root is diffused. The propagation speed and attenuation coefficient of the wave-like

mode are given by

(A2B)

where

(A29)

High-Frequency Behavior: In the high-frequency regime. both dilatational modes

are wave-like. Their propagation speeds and attenuation coefficients are given by

Cj =Cp,{l- 81~j-~12 (3Ai+AA-SAiAA+Af)X-2+0(X-4)} (A30)
( 1 - 2)

. _ 1 Wo IAi - 1 I [_ I { ~ 2 ( ~ 2 _ 6 ~ .~ 21 ~ 2 )
ql - 7 r;; (Xl - A2) 1 8( Al _ 1..

2
)4 1\., 1\., I\.,I\.A: + 1\.£

+ n, ( ,i - 10 'i" -Hi) + (H1 + 10 1.;4 +'i}X-2 + 0 (X-4)}A31)

where j. k ;; I, 2 and j * k .
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2.9 APPENDIX B : One-Dimensional Wave Propagation

In the analysis to follow, the initial-value problem consists of a semi-infinite

saturated porous medium, initially at rest, and subjected at time zero to an arbitrary

time-dependent disturbance at its free-bour;dary x = o. Upon ilT'part, two dilatational

waves (in general both dispersive and diffusive) propagate thru the saturated porous

medium with wave speeds C) and C 2 such that:

(Bl)

where the propagation speeds CP1 and CP1 are the the propagation speeds associated

with the characteristic manifolds corresponding to Eqs 2.33a and 2.33b, and Co is the

"frozen" mixture speed (see Section 2.8. Appendix A). At the speed Co there is no rela-

tive motion between the two phases, the material is nondispersive and behaves like a sin

gle cOfl1inuum. A closed form analytical solution (Simon and Zienkiewicz, 1984) for the

one-dimensional propagation of transient dilatational pulses in a semi-infinite ftuid-

saturated ~ ~stic porous medium is possible when the solid and ftuid are "dynamically

compatible" i.e., when C 1 =Co =CP1 ' viz., \vhen:

AS + 2W ;;;; AW n
S

(Ps .- p",) = A'" [ L -~ J
nW P.. pw n W (B2)

In that case, the wave of the first kind is nondiffusive, and propagates with the speed:

(Xl = 0 (B3)

whereas the wave of the second kind is diffusive, and propagates with the speed:

<XZ=(I+ 1)ps pw (B4)

Note that in that case:

~nW (Ps - Pw )
C2 = C 1 =Ps

(BS)
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where:

a = Ps (> 1)
n W (Ps -P.. )

(B6)

The saturated porous medium is assumed initially at rest, and subjected at time t = 0 to

an arbitrary time-dependent disturbance at its free boundary. Specifically, the following

boundary conditions are assumed 'It the free boundary x =a:

cr(O, t) = F (t ) P.. (O, t) = 0 (B7)

where F (t) is an arbitrary function of time describing the prescribed stress at the free

boundary. Free flow conditions (i.e., full drainage) are assumed at the free boundary_

The solution is obtained using Laplace transforms (see Simon and Zienkiewicz (1984)

for details) and is conveniently expressed in terms of the following parameters:

r _ x
." - PITa (B8)

where K =k I 'Yw , and in ----ns of the displacement w of the fluid relative to the solid

(corresponding to the Darcy velocity), vi::.,

(B9)

Then the solution has the following form:

where

f (1:) = to cr(O,1:) = to F (pK 1:) = to F (t)

(Bll)

(B12)

a = Ps
n W (Ps - pw )

I
b=c(1-c)
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and I(t) = unit s~ep function; Jo(z) = modified Bessel function of zero order. The pore

fluid pressure, total stress and effective stress are obtained as:

r Co Co
Pw = Pw(."t) = -c T [n S u~ + n W u~ 1= -c T [u~ + w.~IBI4)

a's = a's (~, t) =a + Pw

The spatial derivatives of wand US are computed as:

(BI5)

(B16)

(B18)

where ll(z) = modified Bessel function of order one. In the following, the prescribed

stress at the free boundary is .:o;sumed to be a step function, viz.,

0"(0, 1) = F (1) = 0"0 1(1) (B19)

where 0"0 < 0 (compressive wave). In order to illustrate the general features of the tran-

sient wave propagation, typical results are presented in Fig. 2.1. Upon impact at the free

end, a double wave pattern traveling with non-dimensional velocities of 1 (C 1 ) and

a -112 (C 2) is established. The first wave is undamped whereas the second wave is

damped. The total stress propagates with the first wave, and triggers changes in pore fluid

pressure and solid effective stress. From Eqs B14 and B15, the jumps in pore fluid pres

sure and solid effective stress upon arrival of the first wave ( t = ~ ) are given by:
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[P.., 1 =- c (10 [ (f'.l ] = ( I - c ) (fo (B20)

No further changes take place until arrival of the second wave. The jumps in pore fluid

pressure and solid effective stress upon arrival of the second wave ( t =1; ..r;; ) are given

by:

b"
[PIN ] = C (fo e - fr (B21)

The second wave is present only in the Itear field, and eventually disappears in the far

field. This is illustrated in Fig. 2.1 which shows the pore fluid pressure as a function of

position at various non-dimensional times: t =2.0; 5.0; 10.0; 20.0. For the example

reported in Fig. 2.1, the material parameters were selected as follows:

a = 9 b = I _ 16
c(c-I) -j
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SECTION 3

DYNAMICS OF POROUS MEDIA

NUMERICAL FORMULATION

3.1 INTRODUCTION

The enormous complex.ities encountered in solving geotechnical engineering prob-

lems (complex geometries, geological slrata. material behavior) make analytical closcd

fonned solutions very difficult if not impossible. Recent advances in digital computer

technology and in numerical methods have now rendered possible. at least in principle.

the solutlon of any properly posed boundary value problem in mechanics. Consequently,

applications of numerical techniques to geotechnical engineering problems have grown

at a rapid pace during the last decade. Finite element methods appear to be the most

popular procedures employed in geotechnical engineering. A number of excellent books

on finite element methods are available (see e.g., Refs [1, 3, S. 14]). to which the reeder

is referred to for more details on the technique. It is not the purpose of this section to

offer an exhaustive treatment on the subject matter, but rather to briefly present some

applications of the technique to geotechnical engineering problems. It is convenient to

classify the classes of problems encountered in geotechnical engineering according to the

nature of the differential equations to be solved as follows:

(i) Hyperbolic: this class includes transient wave propagation and vibration type
problems (in both saturated and dry soils),

(ii) Parabolic : this class includes transient consolidation type problems in
saturated soil systems.

(iii) Elliptic : this class includes steady stale seepage ftow problems and
loadldefonnation (and failure) analysis of soil and soil-structure systems in
saturated (fuUy drained or undrained conditions) and dry soil media.

Only the techniques employed for solving hyperbolic problems are briefly reviewed in
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the following. The problem of the dynamic response of a two-phase soil system can be

represented as the following initial-boundary value problem: Let {} denote the domain

occupied by the two-phase system and r its boundary. Find the soil displacement field

US (x,r) and the fluid velocity field yW (x,r) in the domain {} E RNSD (NSD =number of

space dimensions), such that:

p.laS = V'o's -n.lVp,", -l;'(vS -v'"')+plb (1)

P'"' %; (VW ) = p,",(\,s -yW)·Vv'"' -nwVpw +l;'(vS -vW)+pwb (2)

%; (0'.1) = 0: Vv.I (3)

%; (n W
) = (l-n'"')V·v.I (4)

~~ (Pw) =- ~: [V'(n S vS
) + V'(n'"'v'"')J (5)

together with the boundary conditions

u.l = nor on r I' (6a)

v'"' =V'" on f,. (6b)

(a'S - nSPw 0)'" = iis on r II' (7a)

- nWpwn = iiw on fh" (7b)

and the initial conditions

US(O) = u<f
v«(O) = v8

(8a)

(8b)

r 1" r b' and r I'" f.... are the parts of the boundary on which the displacement and trac

tion for the solid and fluid respectively are prescribed. They satisfy the following condi·

lions:

rl'vflr'=r
f,. u f .._ = r

rr f"'lr... =0

r r f"'l r,.. = 0

(9a)

(9b)

When inertia and convective tenns are neglected. Eq. 2 reduces to Darcy's law (2):
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and thus k =\l'l"')2 Yw ~-l:: Darcy permeability tensor (symmetric, positive-dcfinite);

Yw = g P... = unit weight of the fluid, and g = acceleration of gravity.

REMARKS:

In the case of a compressible fluid (Eq. 5) the ftuid pressure is determined (as the
effective stress. Eq. 3) from the computed velocities through time integration of
Eq. 5. In the case of an incompressible ftuid. Eq. S is no longer available but is
replaced by the continuity requirement,

(11)

In order to reduce the number of unknowns, it is convenient in that case to elim
inate the fluid pressure from the list of unknowns. For that purpose, a peruJity
function formulation of the cuntinuity constraint expressed by Eq. 11 is used to
compute the ftuid pressure as:

(12)

where A,'" is fIOt the effective ftuid bulk modulus appearing in Eq. 5, but rather is
a penalty parameter. The penalty p~eter is to be selected as a large number.
This is further discussed in Ref. [12].

When fluid inertia and convection terms are neglected, the problem is expressed as fol

lows: Find the soil displacement field US (x,t) and the fluid pressure field Pw (x,t) in the

domain 0 E RNSD such that:

1,; (0',) =D:Vv'

1,: (n W )=(l-n W )V·y6

together with the boundary conditions:

u' = II' on r.,
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Pw = Pw on

«(f's -pw~)'n = iis on rh,

n·l·(Vpw - Pw b) = ii'" on
Yw

and the initial conditions:

r
l

_

(total traction )

rh- (flow rate )

(17b)

(18a)

(ISb)

US (0) = lI(J

Pw(O) = Pw 0

VS(O) = v6

(19a)

(l9b)

(19c)

where p =ps + pw = total mass density of the mixture. This formulation is expressed in

terms of the solid displacement and the fluid pressure only (US and Pw). However. the

resulting semi-discrete finite element matrix equations form a nonsymmetrical system.

Taking advantage of the symmetry of the full system of equations, including fluid inertia

and convection terms. allows sU'Jstantiai reduction in computations. which may be

greater than those resulting from neglecting fluid in~:;ua and convection. In the follow

ing, the full system of equations is used.

3.2 WEAK FORM I SEMI.DISCRETE FINITE ELEMENT EQUATIONS

The weak formulation associated with the initial boundary value problem is

obtained by proceeding along standard lines (see e.g., Refs. 1. 10. 23). The associated

matrix problem is obtained by discretizing the domain occupied by the porous medium

into non-overlapping finite elements. Each element is defined by nodal points at which

shape functions are prescribed. In general, two sets of shape functions are required for

the solid displacement and the fluid velocity field, respect'vely. However. since attention

in the following is restricted to low order finite elements which are the most efficient in

nonlinear analysis. the same shape functions arc used for both the solid and the fluid.

The shape functions for the solid displacement and fluid velocity associated with node A

arc denoted by NA. in the following. They satisfy the relation NA (xB ) = ~,(8 in which
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xB denotes the position vector of node B and liAS =Kronecker delta. The GaJerkin

counterpart of the weak formulation is expressed in tenns of the shape functions and

gives rise to the foUowing system of equations

[
Ms 0 ]{ as } [z -z]{ yS } { OS } {f! at }o Mw aW + - ZT Z y'" + OW = (W ext (20)

where Ma, aa, va, nn, and pat represent the (generalized) mass matrix, acceleration,

velocity and force vectors, respectively (n = S, w for the soil and fluid phases, respec

tively). The element contributions to node A from node B for direction i and j to the

matrices appearing in Eq. 20 are defined below. The terms are integrated over the spa

tial domain occupied by the clement ae. For computational si.· lplicity a diagonal

"lumped" mass matrix is used,

(no ~on A) (21)

The momentum transfer tenns give rise to the damping matrix Z:

The external force f'O at (Le., body force. surface traction) is computed as follows:

The internal stress forces nn are computed as follows:

(n~)S =Ino(Gi: - n"p",liij )N1dO.
and

(nA)'" = 1 p"'NJ',(v .... -vnv...·do-I. NAnt/llp dQI n- J J IJ n- ,I W
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3.3 TIME INTEGRATION

Time integration of the semi-discrcte finite element equations is accomplished by a

finite difference time stepping algorithm. In general, implicit and explicit integration pr0

cedures are available. Explicit procedures are cocputationally the simplest since they do

not require (for a diagonal mass matrix) equation solving to advance the solution. How

ever, stability restricts the size of the allowable time step. On the other hand, uncondi

tional stability can usually be achieved in implicit procedures but they do require solution

of a system of equations at each time step. For the problem at hand, a purely explicit

procedure is not usually appropriate because of the unreasonably stringent time step res

triction resulting from the presence of the very stiff fluid in the mixture (even for highly

nonlinear solid material models). Recently developed methods combine the attractive

features of explicit and implicit integration. The method used here falls under the

category of "split operator methods". Different portions of the system of equations are

treated implicitly and explicitly, reducing the system of equations to be solved. The

specific split to be made is obviously problem dependent, and the appropriate

implicit/explicit splits for the problem at hand arc sumH:arized thereafter.

3.3.1 One-Step Algorithms

The discretized equations of motion (Sq. 20) can be written symbolically as fol

lows:

M a + C v + n(d, v) = fU' (25)

where M, C represent the generalized mass and damping matrices, n and fU1 represent

generalized internal and external forces and a, v, and d represent the gencralizcd

acceleration, velocity and displacement vecton. Tune integration is performed by using

the implicit-explicit algorithm of Hughcs, et aI. (Refs. [6,7]), which consists of satisfying

the following equations:
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where

d" + 1 = dll + 1 + ~ &2 3" + 1

VII + 1 = VII + 1 +1 & a" + I

- &2
dll + I = d,. + & VII + (1- 2~)2a"

v" + 1 =v" + (1 - 1)&a,.

(27)

(28)

The superscripts I and E refer to the parts of C and n which are treated implicitly and

explicitly, respectively. /it = time step; ffC' = pxt (til); d", v"' and all are the approxima

tions to d(I,,), V(I,,) and a(I,,); y and ~ are algorithmic parameters which control accuracy

and stability of the method. It may be recognized that when all tenns are treated impli

citly the procedure cOlTCsponds to the Newmark method (Ref. [8]). The quantities d" + I

and V" + I are "predictor" values, while d" + I and v" + 1 are "corrector" values. From Eqs

26-28 it is apparent that the calculations are rendered partIy explicit by evaluating part of

the viscous tenn, CE VII + 1 • and the force nE in terms of predictor values based on data

known from the previous step. Calculations commence with the given initial datA (do

and vo) and 80 which is defined by:

Mao = fF - C vo-n(do, vo)

Since M is diagonal, the solution of Eq. 29 is trivial.

3.3.2 Implementation

(29)

At each time step Eqs 26-28 constitute a nonlinear algebraic problem which is

solved by an iterative procedure. An "effective static problem" is formed in terms of

all + I which is then linearized. Within each time step the calculations arc performed

iteratively as summarized in Flowchart I for 8 Newton-Raphson type implementation. In

Flowchart I,
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K' =00' 10 d

cl = C + 0 nl I av

(30a)

(30b)

denote the parts of the tangent stiffness and damping matrices, respectively, to be treated

implicitly. Implicit treatment of nonlinear terms usually requires matrix refonnation and

factorization at each time step (and for every iteration to be perfonned if Newton Raph

son iterations are used). In general, it is therefore desirable to treat nonlinearities expli·

citly; y and ~ in Eqs 27 and 28 are then selected to achieve unconciitional stability in the

implicit group. Then the maximum stable time step for the problem is detennined from a

Courant condition which must be satisfied in the explicit group. However, if any portion

of the explicit group requires exuemcly small time steps, it becomes more cfficicnt to

treat that portion implicitly. The appropriate implicit-cxplicit split for the hyperbolic

problem is disc.usscd in Refs [10, 121, and is summarized thereafter.
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FLOWCHART 1

1. Set Iteration Counter i = 0

2. Predictor Phase:

dAi t 1 =dll + 1

VAi~ 1 = V" + 1

.~i~ 1 = 0
3. Fonn Out-of-Balance Force:

Af(i) = f~ 1 - M aN 1 - C vAi~ 1 - n(dAj~ 10 vN I)

4. Form Effective Mass: (Reform and factorize only if required)

5. Solution Pha~e:

6. Corrector Phase:

aAitY =aAit 1+ ~(i)

vAi:::Y = VII ... 1 + Atya~i:::Y

dAitY = «ill + 1+ At2p aAitY

7. Convergence Check: (only if i > 0)

F[ II A«i) II 'OL • d II ABCi) II Q 1 Q) TOL .] GOTO 8II dfW) II S 7i . an . II ABeD) II S ( -

_ [ II Aa(i) II II &8(i-l) II ]
where Q - max II Aa(I-1) II , IlAa(I-2)1I

OTHERWISE i => i + 1 and GOTO 3

8. II => II + 1 and GOTO 1

*Typically, TOL = 10-3
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3.3.3 Stability Conditions

Linearized stability analysis of implicit / explicit algorithms have been reported in

Ref. [6]. The resulting stability conditions are summarized as follows (see Refs. [S-7]):

In all cases y ~ ]/2:

1. Implicit Treatment: unconditional stability is achieved if Ii ~ "f / 2 and it is

recommended (Ref. [4]) that

P = (1+ t)2/4

to maximize high-frequency numerical dissipation.

2. Explicit Treatment: The time step restriction is

(31)

& S ~ ( 1 - ~ ) I ("f+ t ) (32)

to maximize high-frequency numerical dissipation; Cl) =highest natural frequency

present in the system of equations; ~ = damping ratio. The maximum expected

frequency may be bounded by the frequency of the smlllll'!st element. viz.• for a two

node linear element,

Cl) = 2 f (33)

where L = dimension of the element and C = maximum wave speed.

3. Implicit-Explicit Treatment: The stability characteristics are determined by the con

ditions that render the following B matrix positive-definitive:

B =M + !1t ("f- -}) C' + &2 (P - f) KJ - -} At CE - f,M2 KE (34)

Evidently, stability restrictions are dependent upon the specific choices adopted in

the implicit-explicit split. As shown hereafter, it is convenient to always ClaC 1he

damping terrns implicitly (since they an: linear). The resulting stability restrictions

are then determined by the conditions which render the following B matrix
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positive-definite:

B =: M + I1t ( "f - t )Cl + 11t2 ( J3 - f )KI - f I1t2 KE (35)

REMARK:

For vibration calculations optimum accuracy is obtained with 'Y = 112. Increas
ing Y servcs to dissipate high frequency numerical noise. The purely diffusive
part (consolidation part) of the problem can be captured "dynamically" using the
hyperbolic system devcloped b, setting ..,=3/2 and P= 1 and using implicit
explicit integration (Refs (10,12j). This choice damps out all dynamic transients.

3.4 IMPLEMENTATION

Depending upon the specifics of the particular problem to be studied, different com

putational strategies are to be adopted as discussed in the following.

3.4.1 Wave Propagation Calculations:

Very short time scale (and high frequency) solutions are sought and a purely expli

cit integration of the equations of motions is found most appropriate in thaf case. The

time step size is restricted from stability considerations, and the calculations m to be

carried out at a time step close to the time step corresponding to the propagation of the

fastest compressional wave. The time step restriction is (from Eq. 32):

where

( 1 + 1 ) I CPi 2 - C0 2 I
CIj = ~ p'" C 2_C 2

t' PI PI

(36)

(37)

and CP1 = wave speeds of the two dilatational waves which may in general propagate

thru the porous medium, Co = "frozen" mixture speed with,

(38)
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i.e., for the linear model:

C0 2 = ().! + 2~' + A.W ) I (P' + P'" )
n'"

and the speeds C()I are given by:

(39)

Cp; 2= -t [(Cl +Ct) ± [(C? -Ct )+4Ci] 112] (4Oa)

where

C r =(A.' +2 J.ls + A.w~ ) I p"
II"'

Ct =(n '" A.W ) I P'"

REMARKS:

(40b)

(4Oc)

(4Od)

(1) Second-order accuracy is achieved by selecting .., = 1/ 2 and ~ = 0 (Cen
tral difference integrator).

(2) If only rotational (shear) waves are to be present, the time step resttiction is:

and the wave speed associated with the shear wave is given as:

3.4.2 Vibration Type Calculations:

Since the frequencies to be' captured m: usually much smaller than above, an impli

cit integrator is usually most convenient in that cue since it allows the time step to be

selected following accuracy considerations only. Unconditional stability is to be achieved

by proper selection of the algorithmic par8DlClCI'S as discussed in Section 3.3.3. In the

fo1!"wing,
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(41)

The damping tenn contains the momentum b'ansfu contribution to the equations of

motion, viz.,

(42)

The fluid convective force (Eq. 24b) is usually small and therefore is treated explicitly

with no resulting computational difficulty. The ftuid pressure contribution (Eqs S and 24)

is treated implicitly. For that purpose, a ftuid stiffness matrix is defined through lineariza

tion of Eq. 24 as:

~] (43)

where cal'(a.J3 =S ,w) are matrices defined as follows (from Eq. 5):

Note that since C.rw = (cw.r)T the resulting Kw is symmetric.

(44)

As for the solid effective stress contribution to the equations of motion (Eqs 3 and

24a), three options are possible: explicit, implicit, or implicit-explicit treatments.

(a) Explicit: in that case

(45)

and unconditional ;ttability cannot be achieved. The resulting stability restr:ctions

are as follows (from Section 2.3):

(46)

where the maximum expected frequency CI> may be bounded by the frequency of

the smallest element, viz., for the two-node linear element with a linear solid
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effective stress model,

(47)

wheR L = smallest dimension of the element

(b) Implicit: in that case unconditional stability is to achieved. A solid effective stiff·

ness operator is defined from Eq. 24a through linearization as:

(48)

where KS is the material tangent part, and KG is the initial stress or geometric part,

formed from the tensors OS and ()G (Eq. 2.29) in the usual manner, e.g .•

(49)

and (from Eqs 43 and 48):

(SO)

(c) Implicit-Explicit: For nonlinear effective stress solid models a pure)y implicit treat

malt of the effective stress solid contribution CEqs 3 and 24a) n:quiles a DWrix

refom I factorize at each time step (and for every itcntion to be performed if

Newton-Raphson iterations are used), thus producing a considerable computational

burden. In that case it is convenient to adopt an implicit-explicit ~atment of the

effrrtive stress contribution as follows: the linear part of the lltl'eSS is 1IaIed impli

cidy wbilc the remaining nonlinear part is treated explicidy. Thus, in the implicit

cxplidt procedure,

[
Ki

Ki = 0
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where Ki is the linear contribution to the material tangent stiffness, and combining

Eqs 43 and SI:

I _ [KI + C's C.rw ]
K - CW" e- (S2)

which again i!: a symmetric matrix if KI is symmetric. This choice does not

always lead to unconditional stability. The difficulty is not usually associated with

the explicit ~al.ment of KG (which contains tenns of the stress order and therefore

usually has a negligible impact on stability), but rather from the explicit treatment

of the nonlinear term (Ks - KE) for materials with a locking tendency.

3.4.3 Diffusion Type Calculations:

It is sometimes desirable to capture the purely diffusive part (consolidation part) of

the solution "dynamically". Such necessity arises in situations in which both short and

long time solutions to a dynamical problem are sought (such as in seismic or blast

induced liquefaction simulations). As shown in Refs [lO, 12l, by switching to an

appropriate choice of the Newmark parameters, y =3 I 2 and p... 1 , iIIld bj' using the

implicit or implicit-explicit options described previously, all dynamic ttansients CAll be

damped out, and purely diffusive (consolidation) solutions can be obtained "dynami

cally" by solving the dynamic equations.
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SECTION 4

TRANSMITTING BOUNDARY

4.1 INTRODUCTION

The application of finite elements to the solution of geotechnical problems involv

ing the vertical propagation of seismic waves in a soil deposit requires the development

of special boundary conditions referred to as transmitting, non-renecting, silent or

energy-absorbing boundaries. These boundary conditions are required to use at the base

of the necessarily finite mesh to simulate the infinite extent of the soil domain in the vert

ical downward direction. When an infinite domain is modeled by a finile mesh. there is

danger that waves reflected from the free-surface will be reflected back off the artificial

bottom boundary and cause errors in the response calculations, unless special boundary

conditions can be imposed at the base of the soil column. In the following, a rigorous

{onn Ation of an appropriate' boundary condition is developed. The proposerl boundary

condition is frequency independent, and is local in space and time. It is exact for linear

systems only, and therefore requires that the bottom boundary of the soil column be

placed at a sufficiently large depth such that the soil response be linear at that depth.

Seismic site response calculations are usually performed for a given seismic input

prescribed in the form of an acceleration time history to be applied at the base ':)f the soil

column. As discussed hereafter, the implementation of an appropriate boundary condi

tion at the base of the soil column requires detailed knowledge of the nature of the

prescribed seismic input, viz. whether it corresponds to an incident vertically propagating

motion or is the sum of an incident and a reflected motion.

The salient features of one-dimensional wave propagation in a semi-infinite system

are first reviewed before the boundary condition is developed.
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4.2 O:"E·D1l\1E:\SIO:\AL VERTICAL PROPAGATION OF SEISMIC WAVES

For the purpose of illustrating the salient features of the boundary formulation, the

vertical propagation of shear waves is considered. The equation of motion may be

expressed as:

p U ,II = G u 'xx (1)

where a co~nma is used to indicate partial differentiation; p = mass density; G = shear

modulus; u = horizontal displacement; t :: time; and x =depth coordinate, with the x-

coordinate assumed oriented upwards pvsitively. The fundamental solution of Eq. 1 c~n

be expressed as:

where

u(x,t)=I(t -fl+RCt +f)

c=~

(2)

(3)

and I and R are two arbitrary functions of thei; arguments: I (t - f) represents a wave

motion phlpagating upwards in the positive x -direction with the velocity C, and is

referred to as the in.:ident motion; R (t ~- t-) represents a wave motion propagating

downwards in the negative x -direction with the velocity C, and is referred to as the

reficc'tt'd motion. The following two identities apply:

I _
I,x + C 1.1 - 0

IR,x - c R,I = 0

and therefore, if one differentiates Eq. 2 with respect to x and t in tum:

(4a)

(4b)

"'x = (5)
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u,/ = /,/ + R"

The shear stress t(x, t) can therefore be expressed as

t(x, t) = G u 'x = pC (- /,/ + R '/ )

and upon elimination of R ,/ , the following relation is obtained:

t(x, t) = pC (u '/ - 2 / ./ )

(6)

(7)

(8)

At this stage it is instructive to sludy the total wave pattern when an incident wave

motion / (t - f) encounters an artificial boundary at x =h. Three extreme cases can be

considered as follows:

4.2.1 The boundary at.x = h is fixed. Setting u (h, t) = 0 in Eq. 2 leads to:

R(t + ¥) = -J(t - ¥)
resulting in tho:: total wave motion:

u (x, t) = / (t - ¥) - /(t + ¥)

(9)

(10)

Therefore, at a fixed boundary. the incident wave is reflected back with the same shape

but opposite sign.

4.2.2 The boundary at x = II is free. Setting t(h, t) =0 in Eq. 7 leads to:

x-h x-h
R(t + c-) = l(t - ---r-)

resulting in the total wave motion:

u (x. t) = I (t - ¥) + I (t + ¥)
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Therefore, at a free boundary, the incident wave is reflected back with the same shape

and the same sign.

4.2.3 The boundary at x =h ;s silent. Selecting Eq. 4a which is identically

satisfied for I as the boundary condition for u at x =h

(u,x + -t- u ,,) Ix =h = 0

results in R =O. Eq. 13 is cal1ed the radiation condition. It is obtained by selecting:

(13)

t(h,n=-pcu"lx=h (14)

When the incident wave J encounters that boundary, it passes through it without

modification and continues propagating towards x =+ 00. No reflected wave R, which

would propagate back in the negative x-direction can arise.

4.3 SEMI·INFINITE SOIL COLUMN

Consider the situation shown in Fig. 4.1. An incident vertically propagating wave J

(coming from infinity) arrives at the site, and it is sought to compute the site response for

this incident motion. The finite element mesh has been ~elected to extend down to the

depth h, and an appropriate boundary condition at the base of the soil column is sought

to simulate the infinite extend of the soil domain in the vertical downward direction. For

the purpose of illustration, it is assumed that the site consists in generll l two homo

geneous deposits with material properties as follows:

• (p, C) above the base of the soil column: O:S; x ~ h

• (poo, Coo) below the base of the soil column: - 00 < x < 0
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In order to separate the influence of the incident wave from the reflected wave on the site

response, it is assumed that the incident motion disturbance spans over a duration T with:

and that it reaches the location x = 0 at time I =O. Several cases are considered as fol-

lows:

x

x = h
3hlC

t

u(x,t)

(p, C )

U.tt (0, t)

t

3hlC2hlC
Incident Motion

__--L.--I_- X - 0

Figure 4.1 Semi·Infinite Layered Soil Profile
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4.3.1 Case J: Homogeneous semi-infinite deposit (viz., p.. : p ; Coo =C): In

that case the incident vertically propagating wave arriving at x = 0 at time t =0, will

reach the free surface x = h at time t =f, will be reflected back from the free surface

with the same shape and sign, and must cross the boundary at x = 0 (at times t 2 ~)

without any further modification and continue propagating back towards infinity. The

resulting motions are as follows:

• atx = 0

• atx = 11

u(O, t) = /(1) + /(t - ¥)H(t - ¥)

u(h, t) = 2/(t - f)H(t - f)

(15)

(16)

where H is the Heaviside function. This is illustrated in Fig. 4.1. The desired response

in the finite soil column can be achieved by prescribing at the base of the soil column

either the total motion or the incident pan of the motion only, as follows:

Prescribed motion (fixed base case): In that case the base input motion
must be made up of the incident and reflected motions to reproduce the specified
site response as

u (0, t) = / (t) + / (t - ¥) H (t (17)

The first part of the input corresponding to / (t) in Eq. 17 will propagate towards
the surface and reproduce the prescribed surface motion. It will then be reflected
back off the free surface towards the fixed base where it will be reflected again
with a negative amplitude:

-let -If!-)H(t - ¥)
This reflected wave is canceled exactly by the second part of the input motion in
Eq. 17 thereby preventing any further propagation of waves towards the surface.
In other words, the incident wave / (t) produces the surface motion and the
reflected wave cancels the reflection from the rigid base.
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REMARK: The total motion is the one computed in standard deconvolution pro
cedures implemented in computer program.. such as SHAKE (1972).

Prescribed traction (non-rt'fiectin!: case): From Eq. & the stress in the
semi-infinite soil deposit at location x =°can be expressed directly in tenns of
the motion at the location and the incident wave motion. Therefore. it suffices to
apply at the artificial boundary x =0, the traction:

t(O, t) = pC:2 "1 - U ,I) I(0, t ) (18)

In that ca..e, the inrident input motion is absorbed exactly at the base after
reflection from the surface. Eq. 18 is the most general boundary condition since it
only requires knowledge of the: incident motion.

4.3.2 CUSt' 2: !':on-homogencous semi-infinite depo<;it: In that ca<;e only the

incident motion is known as it arrives at location x =O. In order to compute the site

response for this incident motion, accounting for the effects of ensuing reflections (or no

reflections if C ~..", C and Poe = p) at the boundary x =0, one must prescribe the input at

the base of the finite soil column in tenns of prescribed tractinm as:

1:(0, r) = Poe Co< (2 "1 - U 'I) I (0, t) (19)

This will ensure proper simulation of the infinite extend of the soil domain in the down-

ward direction.
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4.4 CONCLUSIONS

A rigorous appropriate transmitting boundary condition was developed. The pr0

posed boundary is frequency independent and is local in space and time. It is exact for

vertically propagating wave motions and for linear systems only.

4.5 REFERENCES
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SECTIONS

PLASTICITY MODEL FOR FRICTIONAL SOILS

S.lINTRODllCTION

Considerable attention has been given in the past decade to the development of con

stitutive equations for soil media, but although many different models have been pro

posed, there is not yet firm agreement among researchers. Elastic (see e.g., Duncan and

Chang, 1970; Coon and Evans, 1971), endochronic (see e.g., Valanis and Read, 1982), and

many elastic-plastic models with various degrees of sophistication and/or complexity

have been proposed. Elastic-plastic models appear to be the most promising. The most

popular and most widely used soil models are Cap models (Roscoe and Burland, 1968;

Schofield and Wroth, 1968; DiMaggio and Sandler, 1971; Baladi and Rohani, 1979), based

on classical isotropic plasticity theory with associated flow, and are variations and

refinements of the basic Cap model pioneered by Drucker, Gibson and Henkel (1955).

The most obvious limitations of these Cap models are:

(1) They do not adequately model soil stress-induced anisotropy;

(2) They are not applicable to cyclic loading conditions.

Similar limitations apply to the models presented in (Lade and Duncan, 1975; Nemat

Nasser, 1982). It may be argued that plastic models based on isotropic pIa!' tic hardening

rules are adequate for situations in which only loading (and moderate unloading) occurs,

however it is unlikely that such restrictions can be met at every point in general boundary

value problems. In order to account for hysteretic effects, more elaborate plastic models

based on a combination of isotropic and kinematic plastic hardening rules have recently

been proposed. Some researchers prefer II two-yield surface plasticity (see e.g., Gha

boussi and Nomen, 1982; Mroz and Pietruszcak, 1983; Dafalias, 1987), while others
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prefer a multi-yield surface plasticity (sce e.g., Mroz, 1967; Prevost, 1977, 1978, 1985 ).

Both theories suffer inherent limitations namely: storage requirements for the multi

surface theory, "a priori" selection of an evolution law for the two-sl'rface theory. This is

further discussed in Prevost (1982).

It is the pUI}'Ose of this section to present a simple plasticity model for soils. The

model is applicable to both cohesive and cohesionless soils. The model has been tailored

(1) to retain the extreme versatility and accuracy of the simple multi-surface Jrtheory

(see e.g., Prevost, 1977. 1978) in describing observed shear nonlinear hysteretic behavior.

and shear stress-induced anisotropic effects; and (2) to reflect the strong dependency of

the shear dilatancy on the effective Slress ratio in both cohesionless (Rowe, 1962; Luong,

1980; Luong and Tnuati, 1983) and cohesive (Hicker, 1985) soils. Conical yield surfaces

are used for that purpose. The theory is applicable to general three-dimensional stress

strain conditions, but its parameters can be derived entire:y from the resuhs of conven

tional triaxial soil tests. As for notation. boldface letters denote vectors, second- and

fourth-order tensors in three-dimensions. A superposed dot denotes the (solid) material

derivative, the symbol I . I the norm of a vector or tensor. and the prefix tr the trace.

The summation over repeated indices is implied, and the following notation is used:

a : b = rr a . b = aij h ji . All stresses are effc<'ive stresses.
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5.2 BASIC THEORY

5.2.1 Constituth'e Equations:

The constitutive equations are written in the following form:

. ..
a=E:(E-£p) (1)

where 0' = effective (Cauchy) stress tensor; E:::; rate of defonnation tensor (= symmetric

part of the spatial solid velocity gradient); £P :::; plastic rate of defonnation tensor; and a

dot denotes the (solid) material derivative. In Eq. I, E is the fourth-order isotropic elastic

coefficient tensor, \'iz ..

(2)

where B = elastic bulk modulus; G = elastic shear modulus; and Oij = Kronecker delta.

5.2.2 Yield Function:

The yield function is selected of the following form:

I (a, n, M ) = Is - p n I + ~M P =0

where

(3)

I s - p a I = Ilr ( S - P a) 2 ) 1:2 =- I ( s - p a ) : ( S - if (l) ] 112 (4a)

s=a-I'0

I
P = j tr 0'

deviatoric sTress tensor

ellcctive mean normal stress

(4b)

(4c)

and if = (p - a) with a =attraction ( = c Iran «!l ; c = cohesion; ~ = friction

angle); (l = kinematic deviatoric tensor defining the coordinates of the yield surface

center in deviatoric stress subspace; M = material parameter. The yield function plots

as a conical yield surface in stress space with its apex. located along the hydrostatic axis
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at the attraction. For cohesionless soils a =0 and the apex of the cone is at the origin.

Unless a = 0, the axis of the cone does net coincide with the space diagonal. The cross

section of the yield surface by any deviatoric plane (p = constant) is circular with radius

R = -~M p. Its center does not generally coincide with the origin but is shifted by

the amount if a. This is illustrated by Fig. 5.1 in the principal stress space. The outer

DOnnal Q to the yield surface:

Q = Q' +Q" a (5)

is computed as follows (from Eq. 3):

Q := d f = ( s - if a) + 1 [- f2 M _ (s - p a ) : a ] a (6)
(J Is-pal -r"'Vt· Is-pal

Figure 5.1 Yield Surface in Principal Stress Space
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5.2.3 Flow Rule:

The plastic strain rate is defined as follows:

where p =p' + P" ~ (7)

and A= plastic loading function. The plastic potential is selected such that the devia

toric plastic flow be associative. However, a non-associative flow rule is used for its dila

tational component, and in the following:

P' = Q' 3 P" (8)

where 11 = (is: s)1I2 / p = mobilized stress ratio; and 11 = material parameter. When

" < Tl , 3P" < 0 and plastic compaction takes place, whereas when 11 > i1 , 3P" > 0

and plastic dilation takes place. The case " = 11 corresponds to no plastic volumetric

strains. This is illustrated in Fig. 5.2. In the following, Tl =Tlc when tr 53 < 0 , and

1)= TlE when tr S3 > 0 .

5.2.4 Hardening Rule:

A purely deviatoric kinematic hardening rule is adopted and in the following,

• . H'
po. = < A> 'Q:1l1.1. (9)

where H' ;;; plastic modulus; and 1.1. =(deviatoric) tensor defining the direction of transla

tion. Note that the direction of translation remains arbitrary at this stage, and thus may

be selected independently of any formal plasticity constraints.

In order to allow for the adjustment of the plastic hardening rule to any kind of

experimental data, for example. data obtained from axial or simple shear soil tests, a col

lection of nested yield surfaces (Mroz, 1967) is used. The yield surfaces are all similar

conical surfaces. Upon contact, the yield surfaces are to be translated by the stress point.
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.1 ---------------

-I

Figure 5.2 Dilatational Plastic Flow

In order to avoid overlappings of the surfaces (which would lead to a non-unique

definition of the constitutive theory), the direction of translation ~ of the active yield

surface is selected such that

M' ( - ) ( -')IJ.= V s-pa - s-pa (10)

where M' and a' are the plastic parameters associated with the next outer surface

(M' > M ). This is illustrated in Fig. S.3.

S.2.S Consistency Condition:

The plastic loading function ~ (Eqs 7 and 9) is detennined by the consistency con·

dition which emanates from time differentiation of Eq. 3, viz.,

j =Q; G- if Q' :a=0

s- 6
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Figure S.3 Yield Surface Translation by the Stress Point in
Deviatoric Stress Space

combining Eqs 1,7 and 9, one finally gets:

-i =-JrQ.'~= 1 Q'E'£'r.. n v Hi +H o . .

with

H0 = Q: E : P = 2 G + B (3P" ) ( 3Q" )

and H' = plastic modulus.

5.2.6 Remarks:

(12)

(13)

(i) Under the assumptions spelled above, the elastic-plastic relations write in expanded

form as

~ = 2 G ~ + (B - ¥ )£v 5 - -: ~ > (2 G Q' + B 3P" 5) (14)
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with

I ..
A. = H' + H0 (2 G Q' : £ + B 3Q" [" ) (15)

where E" = tr E. Or equivalently, in terms of deviatoric and dilatational components

5 = 2 G e- < ~ > 2 G Q'

p = B £" - < ~ > B 3P"

where e = £- +£" ~ = deviatoric rate of deformation tensor.

(100)

(16b)

(ii) It is assumed that no pure elastic domain exits. The first yield surface is thus chosen

as a degenerate yield surface of size zero which coincides with the stress point. The nor

mal associated with that yield surface is assumed to be purely dilatational. (i.e., from Eq.

4, Q' = 0 and 3Q" = -.J3). The plastic loading function associated with the stress

point is defined through

~ 1 B 3Q" """fI.= H'+3B ... (17)

(iii) The dependence of the moduli upon the effective mean normal stress is assumed of

the following form

(18)

respectively, where n = experimental parameter (n = 0.5 for most cohesionless soils,

and fl =1 for cohesive soils (Richard et aI., 1970»; PI = reference effective mean nor

mal stress. The assumed dependence of the elastic moduli on the material state renders

the material's elasticity CEq. I) hypoelastic.
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S.3 MODEL PARAMETERS IDENTIFICATION

In addition to the usual state parameters (i.e., mass density, porosity, permeability),

the constitutive parameters required to model the behavior of the solid porous soil skele

ton are as summarized hereafter:

(i) Elastic Parameters:

• Shear Modulus: G

• Bulk Modulus: B

• Power Exponent: n

(ii) Plastic Parameters:

• Dilation Parameters: Tlc I TlE
• Yield Surfaces Parameters:

- Position: a

- Size: M

- Plastic Modulus: H'

The constitutive parameters required to characterize the behavior of any given soil are to

be determined by fitting the model to available experimental soil test data.

The (hypo-)elastic shear G and bulk B moduli (low strain moduli) are best deter

mined through seismic (wave velocity)-type measurements. Their dependence on the

mean stress with the power of n (Eq. 18) is empirical in nature, and is suggested by

Richard et a1. (1970). Correlation formula (relating moduli to initial void ratio, confining

stress, overconsolidation ratio, etc... ) based on the results of resonant column tests are

also available (see, e.g., Hardin and Dreneviteh (1972». Typically, B = 2G /3.

All required plastic model parameters can be derived entirely from the results of

conventional soil tests (e.g., "triaxial" or simple shear soil tests). In the following, a SYS-

5-9



tematic calibration procedure of the required plastic parameters is proposed.

REMARKS:

(i) Because a.ij .;;. 0 in general, the yielding of the material is anisotropic.
The yield surfaces' initial position is a direct expression of the material "memory"
of its past !oading history. Since a is a symmetric second-order tensor, it
posseses in general three distinct orthogonal principal directions. The material is
therefore onhorropic in general (it possesses three distinct perpendicular princi
pal axes of anisotropy). If a has two equal principal values, the material is
cross-anisotropic (or transverse anisotropic), and the material then possesses a
principal axis of anisotropy perpendicular to a plane of isotropy. Finally, if the
three principal values of ex are all equal, the material is isotropic.

The initial anisotropy originally develops during the soil deposition and sub
sequent consolidation which, in most practical cases, occurs under no lateral
deformations. In the following, for simplicity, the material is therefore assumed to
be initially cross-anisotropic. Further, most conventional soil tests (e.g., "triax
ial", simple shear soil tests) require the material to be initially cross-anisotropic.
The vertic,,! l-J.x.is is assumed to cOLncide with the principal direction of consoli
dation. The horizontal (2-3)-plane is thus a plane of isotropy and the material's
anisotropy initially exhibits rotational symmetry about the vertical I-axis. In that
case, the initial position of the yield surfaces is defined by the sole determination
of the parameter (X:

(X = «(XI - (X3 ) = 3 (Xl 12

since (Xj) = 0 for i :I: j ,and

(ii) In general, the model allows different dilation parameters Tlc and TiE to
be associated with each yield surface. However, such a level of sophistication is
usually unwarranted because of the rather inaccurate experimental measurements
of the detailed volumetric strains observed in conventional soil test§..(especiaJ.lY in
extension). Therefore, in the following, one averaged value for TIc and l1E is
used, and assumed to pertain to all yield surfaces.

5.3.1 "Triaxial" Soil Test:

In this section, attention is restricted to the "triaxial" soil test for which the two

effective (lateral) principal stresses are equal, 02 = 03. In order for the soil specimen to

deform in an axisymmetric fashion (£2 = £3 ), the axes of loading must coincide with

the principal axes of the anisotropic tensor a, and a2 = a.3. In the following, in order to
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follow common usage in soil mechanics, compressive stresses and strains are counted as

positive and the discussion is presented in terms of the following stress and strain vari-

abIes:

-
£ = (£, - £3 )

(19)

(20)

where the reference axes 1 and 3 are assumed to be in the vertical and horizontal direc-

tions, respectively. Eq. 3 then simplifies to:

f (0', a, M ) = I q - a if I - M if = 0 vi:. , q I P = (a ± M ) (21)

where a = (<X, - <X3) = 3 <x, I 2. The trace of the yield surface onto the triaxial

(q •p ) stress plane consists of two straight lines of slopes (a + M ) and (n - M ),

respectively. The two lines are anchored along the hydrostatic p - axis at location

p =- a . This is illustrated in Fig. 5.4. In the "triaxial" soil test loading conditbn, the

mobilized stress ratio T\ is defined as follows:

T\=qlp (22)

such that T\ > 0 in compression tests (0', > 0'3); and T\ < 0 in extension tests

( 0', < 0'3). Yieldi1g, accordingly with the proposed model, is therefore directly related

to the mobilized stress ratio, since the yield function can be rewritten as (from Eqs 21

and 22):

f ( 0', n, M ) = f (T\, a, M ) = T\ - (a ± M ) = 0 (23)

The mobilized stress ratio T\ is related to the mobilized friction angle • commonly used

in soil mechanics, vi;:.,

sin.
I< a, - 0'3 ) I I 2= -a..:....;,.+-(;...0'-:-1-+~0'.;..3....) .,..,/2--

5 - 11
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by the following relation (combining Eqs 19,22 and 24):

sincl> = 31'111
nTf

inversely, one can also write (from Eqs 23 and 25):

!L 6 sin cl>c
TIc = ( p k = + 3 _ Sin cl>c = a + M

-!L _ 6 sin ¢E
TIE - ( p)E - - 3 + sin ¢E =a - M

(25)

in compression tests (26a)

in extension tests (26b)

where ¢c and ¢E = mobilized friction angles in compression and extension loading

conditions, respectively.

Model calibration is to be achieved by matching directly the model equations (Eqs

1·18) with the experimental test data. For that purpose, the following are first derived by

direct substitutions of Eqs 19 and 20 into the appropriate expressions:

Is-pal = ..J+lq-fJal

(s-pa):a = t(q-pa)a

3 Q" = - f2 (M - (q -;r a) a)'It Iq-pal

Q : (J = Q': s + 3 Q" P
= t (Q' 1 - Q' 3 ) q + 3 Q" P

= -[2 (q-pa) (q -TIP)
'It Iq-pal

and the stress-strain relations (Eq. 1) simplify to:

5 - 12
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(28)

(29)

(30)

(31)



-f = ft + *(1 -11plq)

£v __ 1 1 - 12 1 - ( n I n)2 . .
P 1f ± F 'It 1+ (Ttl n)2 (q IP - n)

(32)

(33)

for the shear and dilatational components, respectively. In Eq. 33, the plus ( + ) sign is

for compression, and the minus ( - )"sign for extension loading conditions; 1\ = 1\c in

compression; and i1 = TlE in extension.

Yielding, i.e., plastic flow, occurs on the yield surface f CEq. 23) with associated

plastic parameters (a, M, H' ) when the mobilized stress ratios 11 =(a ± M ) , and

when the loading index CEq. 12) A> 0, i.e., (from Eqs 12 and 31) when

(34)

is positive in compression ( " =llc = a + M), and negative in l dension

( 11 =1\£ =0- M ), respectively. The plastic modulus H' associated with the yield

level defined by the parameters a and M is obtained as follows. Given the shear

stress-strain curve (q vs e), and the particular stress path (q vs p ) followed in the test,

it is possible to backfigure the functional dependence of the plastic modulus H' on the

mobilized stress ratio 11 ,i.e., H' =H' (" ) in both compresssion and extension loading

conditions by inverting Eq. 32 as:

(35)

where s = q I P=slope of the effective stress path followed in the (q, p ) plane; and

H =q IE = slope of the shear stress-strain curve. Clearly, for monotonic stress paths:

H = H(q,p) = H(ll) and s =s(q,p)=s(l1) (36)

and therefore, the variation of the plastic modulus H' with the mobilized stress ratio T1

can be computed from the test results. This is illustrated in Fig. 5.4.
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q vs. p

q

q "S. E

H' vs. "

H'

Figure 5.4 Model Interpretation - Triaxial Soil Test
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The proposed constitutive model approximates the (measured) smooth functional

dependence of the plastic modulus H' on the stress ratio 11, by requiring that H' be

constant between each selected yield levels. Evidently, the degree of accuracy achieved

by such a representation of the experimental curve H' =H' ( 11 ) is directly dependent

upon the number of selected yield levels. For a given H' ,the associated yield parame-

ters ( a, M ), are computed from the corresponding mobilized stress ratios 11 =11c in
. .

compression (11 > 0 ), and 11::::: 11£ in extension (11 < 0), respectively, as (from Eq. 26):

<X = (TIc + 11£ ) / 2 M = (TIc - 11£ ) I 2 (37)

Therefore. once the number of yield levels has been selected, the identification of the

plastic parameters (<x, M •H' ) associated with each yield level is straightforward and

can easily be automated.

The dilation parameters Tlc and ~E are obtained from Eq. 33, viz.,

p = B f v
-

when 11 = 11 (38)

In undrained tests (constant volume tests), they correspond to the effective stress ratios at

which the effective stress path changes concavity (i.e., s =q I P=-). In drained tests,

they are close to the effective stress ratios at which the material experiences maximum

compaction. The dilation parameters are related to the dilatancy angles ~c and ~E

commonly used in soil mechanics as (from Eq. 26)

- • 6 sin ~c
11 = +~-..,....;..;~c 3 - sin ¢c

6 sin ~£
11£ = - 3 + sin ¢£

(39)

Typically, (see e.g., Rowe (1962» ~c =~E =30 degrees (which in cohesionless soils

0, --
corresponds to - =3 ), and (from Eq. 39) TIc =1.2; "E =- 0.86 .

011/ -
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REMARKS:

(i) The plastic bulk modulus H', associated with the stress point is deter
mined by measuring the slopes p I rio' of small hydrostatic load-unload cycles at
selected hydrostatic pressures, viz.,

H'
L = B " + 38 (Load)flo'

L = B ( Unload)
flo'

Typically, H' =3 B .

(ii) The dependence of the moduli on the mean effective stress (Eq. 18) is
taken into account by simply referring all moduli in Eqs 32, 33 and 35 to the
reference mean stress PI as:

G 1 =G(!:'!")1I
P

and finally,

H' 1 - t" , PI) II- , \ P

(iii) On the last outermost yield surface, H' =0, and the last yield surface
therefore plays the role of a failure surface. If the mobilized friction angle at
failure is to be the same in compression aJ;d extension loading conditions, viz .•

4>c f = 4>£ f

then (from Eq. 25):

and (from Eq. 37)

a! _ I (Tlc f )2
- -r 3 + TlCT

where (from Eq. 26)

Mf _ I f 6 + Tlc f
- ..... 1"\c'" 3 + 1"\(" f

6 sin 4>c f
=."....-.,....;.-;;~r

3 - sin 4>c I
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(iv) For pure shear loading conditions (i.e., p =0), Eq. 35 reduces to

H' - 2G H
- 2G - H

and the approximation procedure (viz. H' = constant between each selected
yield levels) reduces to a piecewise linearization of the shear stress-strain curves.
The variC!ls yield levels are then simply identified by the condition that the slopes
H =it I £ be the same in compression and extension tests (see e.g., Prevost
(1977».
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SECTION 6

SHEAR STRESS-STRAIN CURVE GENERATION FROM

SIMPLE MATERIAL PARAMETERS

6.1 INTRODUCTION

The calibration of elaborate constitutive soil models, eSI)(~'ially those using Illultiple yield

I('\'els (s('('e.g., Mroz (1%7); Prevost (1977,198.1))). require that stress-strain curves (typically

obtained fwm triaxial or simplc! shear soil tests) be available. HO\/ever, hndget constraints

often pre\'ent det ailed laboratory tests to be conducted on every soil type present at a given

site. Further, usual parcity of field information. randomness and spatial variability of natural

deposits require in every design situation that parametric studies and/or Monte Carlo type

simulations be conducted. Therefore, generation of the stress-strain curves required for the

analysis. from limited fidel information, is a common and significant problem. In this section

attention is focused on slwar stress-strain curve generation.

:\Ii:limutn informat ion for the gem'ration of the curve requires knowledge of (1) the init ia I

gradient, and (2) tIl(' strf'SS and strain levels at failure. The initial gradient, Go, is IIsually

available from seismic type IlIeasuretn('nts (see e.g., Richard ('t al. (1970)). (See Fig. fl.1.)

The maximum shear stress at failure, Tmar • is commonly determined through correlations

with in-situ test results like the SPT and/or the cone penetration test (S('e e.g., Das (I !J:-:.l)

for a r{'c{'nt slll'\'ey of availaLk c<>rrl"lation formula). Tlw maximum shear strain I'm,,, at

failuff' call also 1)(' (·stilllated. Therefore, the problem to he addressed is that of finding a

functional relationship Iwlwec'll the shear stress T and the shear strain 1, T = T(I), such

tha.t:

• at the origin:

1) rI...,=o = 0
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2) ;~ I~=u = (;0

• at failure:

4) ihl -0fry ,,)=""'''0.1' -

• betweell til(' (,rigill and failure:

~) ilT 0 I iJ
J

r 0.) T > anf ~J <
'/~ , ~ o ~ 1 < 1max

COllditiollS (\) throu~h (4) ddillP two points through which the curvt> IIIUSt. pass wit.h pit'.

snilwd gradiellh. Condit.ioll (!j) 1I\f'l'('ly st.atl-s t.hat. t.he curve IllUSt. 1)(' slIlooth without poillts

of inf!ed ion.

The best knuwlI alld 1Il0st widply u:,,,d function is hyperbolic (Kondll('r (\!)():I); Hardin

ilnd DrtI('\'ich (l!l72)). The fUllctioll is simple but, as shown hereafler, far from ideal sill(,(' it

is nut able to model failur(' accurately (conditions 3 and 4). Then'fore, a lIlodified hyperbolic

function includillg a power term is proposed ill the following. This function is shown t.u offer

great. versatility for mudelill)!, stn·ss-st.rain behavior in both monot.onic i1.lid cyclic loading

conditiolls; at both low and high stralll h·vels.

It is ronw'nient to 1I0n-dilllensionali~e the stress-straill relation. This is achieved by

normalizing th(' stress as y = T / ((,'"1ll and th(' strain as x = 'Y/11 wherc 1'1 is a sp('cific

strain valuc. (S('(' Fig. 6.1.) The shear stress-strain relation is t}u'n cXl)ressed ill tel'lllS of

the diJJwnsiollh~ssqualltitil's, J' alld y as y = y(x), and

iJr ,;)iI-;-- = (',,-.
()., (1:1:

( \ )

In tl'rHlS of til(' quall1 ities J' alld y, the desirablp properti('S of tIll' Ilol'lllalized st.n·ss·straill

curve paralld the restril'tions statl'd previollsly. Specifically, tlH' norlllali~ed rurve IIIl1st bpgin

at the origin with an initial ~Iop(' ('qual to 1; have a positiv(' slo\)(' and IlpgatiVl' C\lfvat\lf('

until the failure poillt. at which the slope must equal O.
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6.2 HYPERBOLIC FUNCTION

The basic equation has the form

(2)
"t

T =. 'rmar---
IT +,

wllCre IT = TmaxlGo is the reference strain. (See e.g., Das (1983).) Through the normaliza

tion procedure prc\'iously describ('d with 11 = Ir' the hypcrhoJic function takes the- following

form:
.r

y = -,--,
i + J'

where y = T/(GaA1Tl and l' = Ath•. The slop(' a,ld cur"atUf(' are gi\'en by

(3)

oy 1
=---

ih (1+.r)2
(4)

and

(5)=
i).:,~ (1+1,)1

respectiwly. Examining tl)(" fundiolllll forms. 011(' sccs that the requirements (I), (2), and

(5). viz., Ylr:(J = 0: t-;:!r:u = I: 2: > U and B <:: U for any :r are satisfied. However, the

requirements (3) and (4). that the CUf\'(' must pass through a failure point with zero slope

cannot be met (unless A rma .. = 0.:::). TIH'reforc. although tll(' hyperbolic function is a simple

method of curvp generation which is easily fittpd to tll(' initial conditions. it cannot model

fdilure accurately.
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6.3 MODIFIED HYPERBOLIC FUNCTION

Introduced as an alternative to the hyperbolic relation for the purpose of curve genera

tion, the modified hyperbolic function has the following form:

(6)

(7)
x y~ x m +1

Y =YI-- - .
YI + X (YI + 1)2 (m + 1)

where Tl and m are real and positive parameters. The equation is normalized using 1"1 = I"mar

By letting YI = TJ/(Go'Ymar), and y = T/(Go"lmax) and x = "I1"Im4r as before, the equation

can be expressed as

Differentiation results in the following expressions for the slope and curvature:

(H)

and
y~ m--I

-"';":-~mx .
(Yl + 1)2

(9)

Considering the restnctlons on the functional form of the normalized equation, we

find the., ,.r=0 = 0, ~Ir=o = 1, ~ > 0 for 0 ~ x < 1, ~ < 0 for 0 ~ x < 1, and ~lx=1 = u
are all satisfi(>d. Th(, paramet.er YI is determined by requiring that yl"=1 = Y",ar where

Y T I( G "Y ) -. 1-. This results inmax = mar o/max = IT Imar-

YI Y~ 1
Ymar = YI + 1 - (YI + 1)2 (m + 1) .

(10)

Rearranging in order to solve for 111 yields

2 m 1
YI (Ymar - -+1) +2YI(Ymax - ?) +Ymar = O.7/1 _

(11 )

Requiring the roots to he real results in the inequality

(12)

Solving for a positive YI by taking the appropriate square root,

YI
Ymar - ~ +vt -Ym4r/{m + 1)

m/(m + 1) - Ymax
(13)
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Considering the sign of the numerator and the denominator in turn over the subintervals of

y to guarantee a positive Yl, it can be shown that

• when 0 < Yma:r = "Y./"Yma:r ~ ~

• when ~ < Ymax = r,/rmar < t
• when ~ ~ Ymar = "'I./rmar < 1

m >0

m ~ 4Ymax - 1

m > Ymaz:/(l - Ymu)'

Satisfying these conditions will ensure that ylr=1 = Ymax = 'Y./"'Imaz:' Therefore, all necessary

conditions on the functional relationship can be satisfied with the modified hyperbolic func

tion. Further examination using a variety of values for the parameter m shows that m has no

significant effect on the characteristics of the shear stress-strain curve. Thus the parameter

m can be selected as

m = Ymar/( I - Ymar)

and

when 0 < Ymar = r./"Imax < t

m = l.1{Ymaxl(l-!imar)} when t ~ Ymar = "Y,/"Ymar < I

which satisfy the restrictions on m in each subinterval.

Fig. 6.2 shows the stress-strain curves generated for varIOUS values of the quantity

'Y./"Ymar = Tmax/Go"lmar. Low values of 1.J"Imaz: result in highly nonlinear curves. The

degree of nonlinearity decreases as "Y./"Imar increases until1,/"Ymax = 1.0, which corresponds

to a linear stress-strain relation. Normally, "Y.I"Im(u is to be selected such that the generated

stress-strain curve matches experimental test data. Fig. 6.3 shows the variation of the secant

modulus G = TIl' with the strain level"Y for vaIious "'I.hmax as dimensionless plots GIGo

versus "Y,'rmar (Fig. 6.3a) and G/(Tmaxhmax) versus "Yllmar (Fig. 6.3b). Shear moduli

variations for sands and clays are usually presented in the forms of Fig. 6.3a and 6.3b,

respectively. Clearly, the curves shown in Fig. 6.3 span all known soil test data.
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(14)

6.4 EQUIVALENT VISCOUS DAMPING

The material bt'havior is assumed to be nonlinear and hysteretic. Hysteresis loops are

constructed from the monotonic shear stress-strain curve by using the Masing Rule (Masing

(192(j)). The shear stress-strain curve then plays the role of the backbone or skeleton curve.

An equivalent viscous damping, ~I' for the hysteretic material can be computed as (see e.g.,

Jacobsen (1958)):
I~W

~l=-
41r WI

where ~lV is the frictional work area, i.e., the area enclosed by the hysteresis loop, and lVI is

defined as the work area under the corresponding backbone stress-strain curve as illustriltcd

ill Fig. 4,

WI = 1-' rd1-

LPl. \1'. denott' til<' work an'a under the secant line as illustrated in Fig. 4, viz.,

Using tlwse definitions. the t'xpression for equivalent viscous damping becomes:

Anothl'r expression for an equivalent viscolls damping is often llsed as:

Conwniently, ~l and ~2 are related through the equation (from Eqs. 17 and 18)

6
~2 = 1 "t

- '21,1

( ),'1)

(lfj)

(17)

(18)

( 19)

It can he shown that 1 :s WdW. :s 2. Therefore, as W I /W2 approaches its maximum

value of 2, ~I is buunded by :i2% and ~2 by 64%,

Using tlw relations .r = 1/11 and y:= r/(Goid, WI and W2 can be expressed in terms

of the normalized quantities x and y as:

(20)
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and

IV 1G 2
H2 = 2 OTli/ X . (21 )

Specifically, for the curv,~ generated with the modified hyperbolic equation. it is found

that
+ 2 m+2

W - G 2 { • 2 I (Y\ X) y\ X }
\ - JoTl YI·l - Y. n -Y-\- - (y\ + 1)2 (111 + 1)(m + 2)

and

when r 'S: I, and

and

(22)

(:n)

U4)

when x > 1. Fig. 6..') shows variations of damping ratios with strain levels for vanous

1rhmar. Again, the curves ,>hown in Fig. 6.5 clearly span all known soil test data.
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6.S CONCLUSIONS

Two ('<illations for curv(' g('Jwrat ion Ita\'(' I)('('n ('xamiJl('11. Tlw popular Itypf'rbolie fllne

tioll has been sI10\\'11 1,0 be t'asily filted 10 tht' initii-ll ("oadit iom hut lIot ahh' to mo(kl failurp

accuratPly, A modified hypcrl.c!ic fUJlction incl1jdin~ a po\\"('r !('flll was pr'.•pm('(l. This func·

tio'l has \""'11 shown to off('r gWil1 \crsat ility and aC'-llfiH'y ill lllod"ling shear str(':o,s-slrain

Iwhavior in both mOllotollic and cyclic condition-: at \'oth 1o\\' and hic,h strain 1('","ls.
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SECTION'

INTEGRATION ALGORITHMS

FOR ELASTIC·PLASTIC CONSTITUTIVE RELATIONS

7.1 INTRODUCTION

Plasticity theory has recently gained widespread acceptance in large-scale numeri

cal simulations of practical geotechnical engineering problems, due to its extreme versa

tility and accuracy in modeling real engineering materials behavior. Building upon the

pioneering works of Drucker and Prager (1952) on soil plasticity, the modem trend has

been toward the development of more and more elaborate and complicated elastoplastic

constitutive models 'Nhich resemble the behavior of real engineering materials more

closely.

The numerical solution of elastic-plastic boundary value problems is based on an

iterative solution of the discretized momentum balance equations. Typically, for every

load/time step, solution involves the following steps: Given a converged configuration at

step n:

(i) The discretized momentum equations are used to compute a new
configuration for step (11 + I) via an incremental motion which is used to
compute at every stress point incremental strains A£;

(ii) At every stress point, for the given incremental strains A E. new values of
the state variables (all'" I • S" ... I) and EK ... I are obtained by integration
of the local constitutive equations:

(iii) From the new computed stresses, balance of momentum is checked and if
violated iterations are performed by returning to step (i).

In this section, attention is focused on step (ii) which may be regarded as the central

problem of computational plasticity since it is the main role played by the constitutive

equations in the computations. In finite difference I finite clement computer codes the
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elastoplastic constitutive equations are usually incorporated through a separate set of

constitutive subroutines. The purpose of these subroutines is the integration of the

elastic-plastic constit~tive equations. That is, at every stress point, given a dcfonnation

history, the role of the constitutive-equation subroutine is to return the corresponding

stress history. Exact analytical solutions for the elastic-plastic evolution problem are

available only for the simplest elastic-plastic models. The first exact solution was

obtained by Krieg and Krieg (1977) for the case of the isotropic elastic-perfectly plastic

von Mises model. Later, Yoder and Whirley (1984) extended the solution to apply to the

von Miscs model with arbitrary combination of kinematic and isotropic hardening.

Recently, Loret and Prevost (1986) developed an exact solution for the isotropic

Drucker-Prager model with linear hardening and arbitrary degree of nonassociativity.

Although error-free, these solutions are computationally too slow to be used routinely in

actual calculations. Further, exact analytical solutions are not available for more com

plex models. Therefore, all elastic-plastic models are implemented in analysis programs

with some error, via an integration algorithm called the stress-point algorithm. Evi

dently, the accuracy and stability of the global solutions is to be strongly affected by the

accuracy and stability of the stress-point algorithm. Also, the cost of the analysis is most

strongly affected by the efficiency of the stress-point algorithm. The best algorithm, the

one to be favored, is therefore the one which combines computational efficiency with

accuracy.

The fin;t stress-point algorithm to be developed was the radial return algorithm pr0

posed by Wilkins (1964) for the elastic-perfectly plastic von Mises model. The algo

rithm was subsequently extended by Krieg and Key (1976) to accommodate isotropic and

kinematic hardening laws. The algorithms are analysed in Krieg and Krieg (l977)~

Schreyer et a1. (1979); Yoder and Wirley (1984); and Ortiz and Popov (l98S). Algo

rithms for the Drucker-Prager model have also been proposed. Approximate elaborate
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subincrementation strategies with successive radial stress corrections have been proposed

(see e.g., Nayak and Zienkiewicz, 1972). Other somewhat arbitrary stress corrections

have also been attempted (see e.g., Chen, 1975; Vermeer, 1980) to correct for the

inherent stress drift away from the yield surface. However, all these procedures tend to

be quite expensive and are not error-free. They are analyzed in Loret and Prevost

(1986). Integration algorithms for more complex models have also been developed, typi

cally on a case-by-case basis (see e.g., Sandler and Rubin (1979) for the cap model).

However, no general framework for devejoping consistent, accurate and stable algo

rithms was available until recently. It was therefore difficult to assess in general the rela

tive merits and/or shortcomings of the various proposed procedures.

In this section, stress-point numerical algorithms are developed as the basis for

computer modules designed to interface with large scale finite element/finite difference

computer programs for solution of boundary value problems. Since the elastic-plastic

evolution problem is of a strain driven nature, the inteeration process is split into an elas

tic predictor and a return map to restore plastic consistency. The return mapping is

achieved by integrating the nonlinear plastic evolution equations, and there are several

ways this can be implemented (see e.g., Nguyen, 1977; Simo and Ortiz, 1985; Simo and

Taylor, 1986; Ortiz and Simo, 1986; Simo and Hughes, 1987). In the folJowing, atten

tion is focused on the so-caned "cutting-plane" algorithm (see e.g., Simo and Hughes

(1987». One yield surface and multiple-yield surface plasticity theories are considered.

Finally, a generalization to account for visco-plastic effects is considered. For that pur

pose, the visco-plastic setup proposed by Duvaut and Lions (J 972), is adopted. It leads to

a closed-form unconditionally stable algorithm, in which the visco-plastic update can be

constructed from the trial state and the solution to the rate-independent dasto-plastic

problem (Simo et al. (1988».
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7.2 THEORY

The main equations of the theory are summarized as follows:

, ..
a=[:(£-eP) constitutive equation (1)

/(a,S)=O yield function (2)

.
£I' = <A.>P(a.S) flow rule (3)

S=<~>S(a,S) hardening rule (4)

where S denotes the collection of structure (hidden or "internal") variables, assumed to

consist of second-order tensors a and scalars M ,viz"

S=[a,M]

In Eq.l [ is the fourth-order isotropic elastic coefficient tensor. For plastic ftow to

occur, the yield function (Eq. 2) must be satisfied and A. must be positive. The plastic

loading index A. is obtained via the consistency condition which ema..•(es from time dif

ferentiation ofEq. 2, viz.,

A. = o(J f : [ :£
do / : [ :P - ds f : S

In the sequel the following notation is used:

00 f = Q = Q' + Q" 6

H' = -osf:S

H 0 =Q : E : P =B (tr P) (rr Q) + 2 G P' : Q'

where B , G = Elastic bulk and shear moduli, respectively.
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7.3 ALGORITHMS

The problem to be addressed is as follows:

• Given the known state variables associated with a converged configuration at step II :

and

and a new configuration at step (n + 1) • via En + 1 ,

• Find the new values of the state variables:

( On + I , Sn +1 ) and

In the process. the incremental strains A£ = (£,. + I - tIl ) defining the state update are
,

assumed given. Further, it is assumed that the loading strain rate E is constant Over the

time interval, viz,

(9'

where ,1t = time step (= '.. +1 - tIl ). As summarized by Ortiz and Popov (198.5) an

acceptable algorithm for the integration of Eqs. 1-4 should satisfy the following three

basic requirements:

(i) Consistency with the constitutive relations to be integrated (i.e., first-order
accuracy),

(ii) Numerical stability, and
(iii) Incremental plastic consistency.

Conditions (i) and (ii) are necessary for attaining con ..ergenct' of the numerical solution

as the time step becomes vanishingly small. Condition (iii) is the algorithmic counterpart

of the plastic consistency condition which requires the yield function to be satisfied by

the updated state variables.
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Integration of Eqs. 1 - 4 is achieved by a stress relaxation procedure by which Eq. 1

is first used to obtain an elastic predictor, hereafter referred to as the trial stress o~ + ),

viz.,

O~r+ I = E : ( En + I - EC) = an + E: A E (10)

Clearly, if f (a~r+ 1 ,Sn ) ~ 0 the process is elastic and the trial stress is in fact the

final state. Otherwise, the trial stress lies outside the yield surface and must be relaxed

onto the yield surface to restore plastic consistency. For that purpose, the trial stress is

taken as the initial condition for the following plastic relaxation:

(In + I = (Jf[+ I - A (JP

where (from Eqs. 1 and 3)

A (JP = ~ E: EP d, = t: A. E : P d,

such that

f ( an ... I , Sn + I ) = 0

(11 )

(12)

(13)

to restore plastic consistency. The resulting procedure is shown schematically in Fig.

7.1, and consists of returning back the trial stress onto the yield surface. In general. the

return path defined by P ir. Eq. 12 is not known in advance nor can it be determined

analytically, and it is therefore necessary to integrate Eq. 12 numerically.
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Figure 7.1 Schematic of the Elastic Predictor I Plastic Sb'eSS Relaxation
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7.3.1 Algorithmic Set-up

An efficient and simple procedure for performing the return mapping was proposed

by Simo and Ortiz (1985), and further analysed by Ortiz and Simo (1986). In this algo

rithm the return mapping is defined iteratively by employing linearized equations itera

tively about the current trial state. At every iteration, the plastic corrector problem is

integrated about the current trial value!> of the state variables by an explicit forward Euler

difference scheme over the length 'i.. to be determined by requiring that the updated slate

variables satisfy a linearized version of the constraint equation, viz., let i denotf the

iteration counter:

(14)

(15)

(16)

with the constraint condition:

(17)

Initially:

(18)

Let

(19)

At every iteration the yield function f (the constraint equation. &1' 31) is linearized

about the current trial values ofthe state variables, (a,H 1 ,S~it 1) 10 obtain the follow

ing:
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Combining Eqs 14-16 and 20, one finds:

(21)

and (from Eq. 14) the updated stress state is computed as:

(22)

The iterations continue until plastic consistency is restored to within a prescribed toler

ance, viz., I 1,,(i/11) f1JOJ.1 I !.TOL with TOL «I. The procedure is summarized in

Aowchart 7-1 (from Simo and Hughes, 1987). The algorithm is consistent, first-order

accurate, only conditionally stable but achieves a quadratic convergence rate for the

update.
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FLOWCHART 7-1. - CUTTING PLANE PROJECTION ITERAnONS

1. Initialize: i = 0

2. Update stress and chc:<:k yield condition I plastic consistency:

3. Compute new plastic loading function:

4. Update plastic strains and state variables:

5. Set: = i + 1 and GOTO 2.
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7.3.2 Multi-Vield Surface Plasticity Case

Within the context of multi-yield surface plasticity models. it may occur that after

completion of the preceeding calculations, it is found that the stress point lies outside the

next larger yield surface. When this is the case. the iteration counter i must be reinitial

ized to i =O. and calculations must begin again with respect to the next yield surface

(step 3 in FJowchar. 7-1). However. some small, bu: crucial correction to the stress must

first be made to take account of the fact that the stress has actually been over relaxed. To

see the origin of the necessary correction, assume that a stress relaxation has just been

performed onto the yield surface /(111), and it is now found that the resulting stress point

is outside surface/(III+1). This is illustrated in Fig. 7.2. Clearly. as a result of the stress

overrelaxation. the yield surface / (III) now overlaps (or may even be totally outside) the

surface I (III+\). However the relaxation should have perfonned onto the surface 1(111+1)

upon contact of the two surfaces. The correction thus becomes:

f}'(i+l) = f?(i) - ~)p<m)(a<i).S"'» + ';:,(!~I p(.... +-I)(~i).S"'ll) (23)

SM+l) = SM) - ,;:g) S(.... ) (a<i), SM» (24)

SMtl' = S"'ll + ';:~~l S(III+-I) (a<i), SMll ) (25)

o<i+l) = a<i) + AJ:) E: p<m) (a<i). SJ:» - ';:~~l E: p<.... +l) (O<i), S"'ll) (26)

where the subscript n has been omitted to simplify the notation. The length ~) is

determined by linearizing the yield function / (1ft) about the current values of the state

variables, viz.,

and by approximating the contact condition as:

j(Ift)(di ).SM+l» = 1(",+l)(O<i),SJ:~l)

7 - 11
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f(m+l) «J ,SM~1 ) = 0

/
.
I
,
•

,
\
\,,,
I

I
I

I

"f.,.,'"-,.--
f(m) «(J, s~:+1)) = 0

/
I,

I

/(m) (a<i) ,SM+l» = f(m+n(a<i) ,SM~1 )

Figure 7.2. Multi-Surface Plasticity Case - Schematic of Correction

7 - 12



Then, since I (III) ( O<i) , S~) ) = 0, (from Eqs 24, 27 and 28):

I (Ift+l) (0<1), SMll )
H'J')

(29)

The length ~~l, is derennined by linearizing the yield function / (... +1) about the current

values of the state variables, Yiz.,

l(m+l) (0<;+1), S~tr ) ::

l(m+l)(O<i),S,lild + da/(m+\):(O<i+l)-di ») + dsf(Ift+l):(SMtP-S,lill) = 0

(30)

Combining Eqs 23-26, 29 and 30, one finds:

).(i) _ l(m+l)(a<i).S,li~I) [
",+1 - d

a
l(m+l): E: p<m+l) _ as/(m+I): S(III+1} I +

The procedure is summarized in Flowchart 7-2.
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FLOWCHART '-2•• INTEGRATION ALGORITHM

MULTI·YIELD SURFACE PLASTICITY CASE

1. Initialize:; = 0 m = 1 S~O~ 1 = SIt

2. Update stress and check yield condition I plastic consistency:

aTHERWISE GaTO 3.

3. Compute new plastic loading function:

'AJi _ [ [(m) ] (')
~ 1 - ao / (m) : E : p("') - as / ("') :Slm) lit 1

4. Update plastic strains and state variables:

5. Set: i = i + 1 and GaTO 2.

6. Check for overshooting of next }ield surface, /(".+1) :

F [m = NYS ] EXIT

F [/(",+1) (CJ~i~ 1 • S~i~ t> SO] EXrr

OTHERWISE GOTO 7.
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FLOWCHART '-2.. Cont'd

7. Compute new plastic loading functions:

H' (".) :::. - as f (1ft) : S(Ift)

'i..(III) = [f~:I;] (i)

H "+ \

[ []]

(i)
-(".+1) _ (11I+1) H 611I )

A. - H6111+& + H'("'+]) 1 + H'(m) " + 1

8. Update plastic strains and state variables:

9. Set: m = m +1 ; i = i + I ; and GOTO 2.
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7.3.3 Application I Examples

Consider the case of yield functions of the type

where

s(m) = [ arm) • M(m) ]

(32)

(33)

s=o-pS I
P = J tr 0 (34)

and if = (p - a ) with a = attraction = material parameter; a('") = kinematic deviatoric

tensor defi~ing the coordinates of the center of the yield surface! (m) in deviatoric stress

subspace; M(m) = material parameter. Then (from Eq. 32):

do!(m) '= Q(m) = (5-paCm » + +[- fiM(m) _ (5- p a(III»:a(III)] l)
. I s-p a{m) I :J 'Jt I 5-p a<m) I

=Q'(m) + e"' (m) l)

The flow direction (Eq. 3) is aSl'umed as follows:

p(m) = p'(m) + p"(m) 5

with

(35)

(36)

p'(m) = Q'(m) (37)

where 11 =(t5: 5)112/ if =mobilized stress ratio; and Ti = material parameter. A

purely deviatoric kinematic hardening rule is assumed, and (from Eq. 32):

with

dS!(m) = da!(m) = - if Q'(m)

i,.(m) = < j. > arm) = < j. > K(m) tJ.Cm)
p Q'(mj : J.l.(m j

7·16
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where H'(wa) = plastic modulus; and ....(mj = (deviatoric) tensor defining the direction of

translation. Let NYS denote the number of yield functions used (NYS ~ 1 ). Then to

avoid overlapping of the surfaces, the translation direction J,l(m) is given by

J1(m) = - - r:r M(m+l) if 5 - P a(m) - (5 - if a Cm+1) ) (40)"V t I 5 - P a{m) I

when surface {em) translates towards surface/(m+l). On the last surface m =!llYS and

usually H' =0, and no motion is to t8ce place, (the last surface then plays the role of a

failure surface). Otherwise, J1(IPl) = Q'(IPl) on the last surface.

In order to illustrate the performance of the return mapping algorithm and assess its

accuracy, we consider a cohesionless (a = 0) cross-anisotropic material with assumed

friction angle at failure <lV =35 degrees and dilation angle ~=30 degrees . The

material is modelled by using 10 yield surfaces, and the following elastic moduli arc

assumed:

where PI = reference mean effective stress. Following usual sign conventions in

geomechanics, compressive stresses and strains are considered positive in the following.

The material is assumed to be subjecte~, at constant volume, to a monotonically increas

ing and decreasing shear strain £" with maximum amplitude £= 1.5 10-2 (undrained

triaxial soil test). To assess accuracy and robustness of the algorithm, loading is

achieved in N equal load steps Ai with

-
&=N

with N =5, 10, and 100. In all cases, the algorithm remained stable. The solution

computed with 100 load steps is fully "converged", and can be considered "exact". Fig.

7.3a shows the computed shear stress versus shear strain curves. Very good agreement

with the exact solution is obtained in all cases, even for the solutions constructed with
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very large load steps. Fig. 7.3b shows the computed effective stress paths (shear stress

versus mean effective stress). Clearly, the effective stress paths computed with large load

steps differ from the exact stress path. This was to be expected, and is due to the assumed

non-associativity and high degree of nonlinearity for the dilatational component of the

plastic ftow (Eq. 37). The algorithm only being first-order accurate, requires small load

steps to return accurate answers in highly nonlinear situations. This point is clearly illus

trated by the assumed nonlinearity in the dilatational componem.
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7.4 EXTENSION TO VISCO-PLASTICITY

The extension to visco-plasticity is based on the formulation proposed by Duvaut

and Lions (1972). It is important to note that the visco-plastic fonnulation used here is

different and not equivalent to Pcrzyna' s type formulation (Perzyna, 1966, 1971) com

monly used in gcomechanics (see e.g., Katona, 1984). Let [ 0<.) , SC·) ] denote the invis

cid solution of the elastoplastic problem. Then the visco-plastic constitutive equations

are written in the following form:

(41)

where Tl =relaxation time (= material constant). The exact integration of Eqs 1 and 41 is

straightforward. The resulting algorithm is summarized in flowchart 7-3. Note that the

elastic and inviscid elasto-plastic solutions are recovered from the algorithm as:

• ~ -+ 0; 0,. + 1 = 0,. + E : &,. + 1 (Elastic)

.61
11

([nviscid Elasto-Plastic )

The algorithm is sttaightforward to implement.
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FLOWCHART 7-3•• VISCO-PLASTIC ALGORITHM

1. Obtain the inviscid elasto-plastic solution: [a~·) I , S~·) I ]

using Aowchans 7-1 or 7-2.

2. Compute th~ visco-plastic solution as:

a" + 1 = exp( - iY /11 ) a" + [ 1 - exp( - Al 111 ) 1aA~~ 1

+ I - e,%( -iY /!) E' A~/11 . uc." + 1

S" + 1 = exp( - Al 111 ) SrI + [ I - ellp( - tJ.I 111 ) ] Sf) 1

3. EXIT.
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