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PREFACE

The National Center for Earthquake Engineering Research (NCEER) is devoted to the expansion
and dissemination of know’:dge about earthquakes, the improvems=nt of earthquake-resistant
design, and the implementarion of seismic hazard mitigation procedures to minimize loss of lives

and property. The emphasis is on structures and lifelines that are found in zones of moderate to
high seismicity throughout the United States.

NCEER'’s research is being carried out in an integrated and coordinated manner following a
structured program. The current research program comprises four main areas:

+ Existing and New Structures

+ Secondary and Protective Systems
Lifeline Systerns

+ Disaster Research and Planning

This technical report pertains to Program 1, Existing and New Structures, and more specifically
to geotechnical studies.

The leng term goal of research in Existing and New Structures is to develop seismic hazard
mitigation procedures through rational probabilistic risk assessment for damage or collapse of
structures, mainly existing buildings, in regions of moderate to high seismicity. The work relies
on improved definitions of seismicity and site response, experimental and analytical evaluations
of systems response, and more accurate assessment of risk faciors. This technology will be
incorporated in expert systems tools and improved code formats for existing and new structures.
Methods of retrofit will also be developed. When this work is completed, it should be possible to
characterize and quantify societal impact of seismic risk in various geographical regions and

large municipalities. Toward this goal, the program has been divided into five components, as
shown in the figure below:

Program Elements: Tasks:
Earthquaks Hazerde Estimates,
Saismiaty, Ground Motions Ground Moton E stimates,
and Seisi~ic Hazards Estimates ‘ > Hew Ground Mat'on Instrumentation.
‘ Eathguaka & Ground Moton Data Base.
. Sila Resnonse Es.ales,
Geole:hmcaI Studigs, SO-IIS Large Ground Delormain €4t .
and Soil-Structure Interaction e Soit-Structune Iiterachon.
T Struciures 880 Crncal Structural !
System Response: > T::cn:u:u Analyss; e Gompons
Tasting and Analysis Moden Anaiyticn Tool.
‘ ' + Vulnerabity Analyss,
Reliability Analysis - > Raliabity Anslyss.
and Risk xsoss:wenl R Assosaroan.
- ' Code Upgrading.
Archrectural snd Structurs Design.
Expert Systems Evaluson of Exmting Buildings.

il



Geotechnical studies constitule one of the important areas of research in Existing and New
Srructures. Current research activities include the following:

,

Development of linear and ronlinear site response estimates.

Development of liquefaction and large ground deformation estimates.
Investigation of soil-structure intera ‘tion phenomena.

Development of computational methods.

Incorporation of local soil effects and soul-structure interaction into existing codes.

BN

The ultimate goal of projects concerned with geotechnical studies is to develop methods of
engineering estimation of large soil deformitions, soil-struciuse interaction, and site response.

This report describes the development of DYNAID, a finite element computer program for
nonlinear site response analysis. The program can be used to analyze dry, sawirared, and
partially saturated soils. The program provides a user friendly interface and graphic displays of
various output plots. 1t is intended to be a realistic and reliable procedure thar can be used in
engineering design practice.

Y



ABSTRACT

This repon describes DYNAID, a finite ¢lement computer program for nonlinear scismic siic
responsc analysis. Dry, saturated and panially saturated deposits can be analyzed. DYNAID has
been developed to allow site response analyses to be performed taking into account: (/) the non-
linear, anisotropic and hysteretic stress-strain behavior of the soil materials; and (2) the ¢ffccts of
the transient flow of the pore water through the soil strata. The procedures used (field and consti-
tutive equations) are general and applicable lo multidimensional situations. The goal was 10 pro-
vide a rcalistic and reliable anatysis procedure for usc in engincering design practice. Therefore,
although no sacrifices have been made as to the rigor and generality of the field and constitutive
cquations used, attcmps have been made to simplify the use of the code. For that purpose,
features such as automatic ( ie., user transparent) initialization procedures have been imple-
mented. Also, required material constitutive parameters are identified in terms of "classical” soil
mechanics paramcters ( e.g.. elastic moduli, friction angles, permeabilities, etc.). In order to case
the interpretation of the analysis results, graphic display capabilities which allow plots of spatial
and temporal variations of ficld componcnts have been implemenied.

The program and its analysis capabilities are described in Section 1. The theoretical frame-
work which forms the basis of the formulations used is summanzed in Section 2. The numerical
formulation empioyed for solving the coupled ficld equations is reviewed in Section 3, Special
boundary conditions allow the scismic input motion 10 be prescribed as an incident vertically pro-
pagating motion, or as the sum of an incident and a reficcied motion. The procedures imple-
mented arc exact, and explained in detail in Section 4. Each finite element is associated with a
sct of matcrial propentics. The maicrial may be assumed lincar ( é.e., isolropic lincar clastic), or
nonlinear, anisotropic and hysicretic. Two types of nonlinear soil models may be used, depending
upon whether drainage or no drainage of the fluid phase are o take place, viz., depending upon
whether the material responsc is 10 be assumed dependent on the mean effective stress. Both
nonlinear soil models are based on multi-yield plasticity constitutive theory. The pressurce depen-
dent modcl is fully described in Section 5. The required material paramcters for both soil models
are defined in terms of common soil mechanics parameters ( e.g., cohesion, friction angle, poros-
ity. etc.). The procedures used to gencrate the required model parameters are detailed in Scction
6. The integration algorithms used for integrating the nonlincar, anisotropic, hysteretic elastic-
plastic constitutive cquations arc cxplained in Section 7. Output consists of nodal, element
stresses, strains, and pore walter pressures, etc. and time histories. The results are convenicntly
post-processed using the graphics post-processors, which allow sclective plots of field com-
ponents time historics, Fourier spectra, velocity spectra, etc., and spatial plots at selected times of
field componenis variations.
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SECTION1
DYNAID
PROGRAM DESCRIPTION

1.1 INTRODUCTION

Seismic site response analysis involves the determination of the spatial and tem-
poral variatinn of ground motions at a given site. It also involves the determination of
the effects of seismic waves, e.g., potential liquefaction, at a given site. It is a most
important and ¢ssential step in any seismic soil-structure interaction analysis, and is
required to compute compatible motions at ihe boundaries of the discrete soil model in
direct methods of analysis, To compute the site response. assumptions must be made
regarding the types of waves propagated during the earthquake. The most common
assumptions are that the soil is horizontally stratified and that the excitation consists of
vertically propagating dilatationa. P-waves) and shear (S-waves). The dilatational
waves only produce vertical motions, and the problem then becomes one-dimensional.
However, due to the presence of coupling between shear and volumetric deformations in
soil media, the shear waves will, in general. produce both horizontal and vertical
motions. These effects are usually disregarded, and the shear wave propagation is com-
monly analyzed as a one-dimensional problem (see e.g., Ref. [10]). Such an assumption
is certunly valid for saturated soil media if no drainage of the pore fluid can take place
within the time frame of the seismic excitation. However, for dry soil deposits and for
saturated soil deposits of moderate permeabilities in which drainage can take place, hor-
izontal motions will in general be accompanied with vertical motions and such effects
should be accounted for in the analysis. Further, in cases in which potential liquefaction

is of concern, a complete effective stress analysis which models directly the nonlinear



hysteretic stress-strain response of soils should be conducted. In such an analysis, the
buildups in pore water pressures and their dissipation with time are computed, and their
effects on the dynamic response are taken into account, Effective stress analysis based
on the solution of wncoupled equations for the porous solid soil skeleton and the pore
water fluid have been proposed (see e.g., Refs [5,6]). However, a rational and complete
analysis should be based on the solution of the fully coupled (see e.g., Ref. {1]} solid soil

skeleton/pore water fluid equations, such as proposed in Refs {2-4,9].

DYNAID (8] has been devecloped to allow site response analyses to be performed
taking into account; (/) the noniinear. anisotropic and hysteretic stress-strain behavior
of the soil matenials; and (2) the effects of the transient flow of the pore water through
the soil strata, The procedures used (field and constitutive equations) are general and

applicable to multidimensional situations (see ¢.g., Ref. [7}).

1.2 OBJECTIVES AND GOALS

DYNAID is a finite element anaiysis program designed to perform nonlinear
sctsmic Site response calculations. The goal was to provide a realistic and reliable
analysis procedure for use in engineering design practice. Therefore, although no
sacrifices have been made as to the rigor and generaliry of the field and constitutive equa-
tion used, attempts have been made 1o simphfy. as much as possible, the use of the code.
For that purpose, features such as automatic ( /.., user ransparent) initialization pro-
cedures have been implemented. Also, required constitutive parameters are identified in
terms of "classical” soil mechanics parameters ( e.g., ¢lastic moduli, friction angles, per-
meabilities, etc...). In order to ease the interpretation of the analysis results, graphic
display capabilities which allow plots of spatial and temporal variations of ficld com-

ponents have been implemented.



1.3 ANALYSIS CAPABILITIES

Dry, saturated and partially sawrated deposits can be analysed. The theoretical
framework which forms the basis of the formulations used is summarized in Section 2.
The numerical formulation employed for solving the coupled field equations is reviewed

in Section 3.

Consider a typical situation such as illustrated in Fig. 1.1. A semi-infinite horizon-
tally layercd soil deposit is subjected to a seismic ground motion. The ground motion is
attributed 10 the upward propagation of seismic waves from the underlying rock or rock-
like layers. A complete site response analysis would require a model which also includes
the source mechanism. However, for seismic excitations, the many uncertainties in the
source mechanism and in the geological parameters along the transmission path, and the

restrictions on the size of the numerical model, dictate a simpler approuch:

e The semi-infinite demain is modecled by using a finite model, and the site
response calculations are performed for a given seismic input moton prescribed in the
form of an acceleration (or velocity, or displacement) time history to be applied at the
base of the soil column. When an infinite domain is modelled by a finite model, there is
danger that waves reflected from the free-surface will be reflected back off the antificial
bottom boundary and cause errors in the response calculations, unless special boundary
conditions can be imposed at the base of the soil colurnn. In DYNAI1D [8), special boun-
dary conditions can be prescribed which allow the seismic input motion to be prescribed
as an incident vertically propagating motion, or as the sum of an incident and a reflected

motion. The procedures implemented are exact, and explained in detail in Section 4,

e The finite soil column is modeled by using finite elements. For that purpose, the
horizontally-layered ground is divided into a number of finite elements as shown in Fig.

1.1. Each finite element is defined by two (2) nodes. The nodes need not be equally

1-3
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Figure 1.1 Semi-Infinite Lay=red Soil Profile / Finite Element Mesh
spaced, nor need to be input so as to follow any particular numbering pattern. If desired,
the elements may be conveniently grouped into groups, €.g., to sclectively identify dif-

ferent soil layers.

e In the free-field conditions, soil skeleton motions can occur in both the horizontal
and vertical directions. Therefore, to cach nodes are assigned two solid kinematic degrees

of freedom, in the horizontal (number 1) and vertical (2) directions, respectively. How-
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ever, fluid motions can only occur in the vertical direction. Therefore, for saturated depo-
sits in which fluid motions can take place, the third kinematic degree of freedom is

assigned to the fluid motion in the vertical direction (number 3).

¢ To each element is associated a set of matenal properties. The material may be
assumed lincar ( i.e., isotropic linear elastic), or nonlinear. Two types of nonlinear soil
models may be used, depending upon whether drainage or no drainage of the fluid phase
are to take place, viz., depending whether the material response is to be assumed depen-

dent on the mean effective stress.

e Both nonlincar soil models, are based on multi-yield levels plasticity constitutive
theory. The pressure dependent riodel is fully described in Section 5. The required
material parameters for both soil models, are defined in terms of common soil mechanics
parameters ( e.g., cohesion, friction angle, porosity, ete...). The procedures used to gen-

erate the required model parameters are detailed in Section 6.

s The integration algo ithms used for integrating the nonlinear, anisotropic, hys-

teretic elastic-plastic constitutive equations are explained in Section 7.

® Output consists of nodal, element stresses, strains, and pore water pressures, etc...
time histories. The results are conveniently post-processed using the graphics post-
processors, which allow selective plots of field components time histories, Fourier spec-
tra, velocity spectra, etc..., and spatial plots at selected times of field components varia-

tions.



1.4 REFERENCES:

10.

Biot, M. A, "Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous
Solid," J. Acous. Soc. Am., Vol. 28, 1956, pp. 168-191.

Dikmen, S.U, and J. Ghaboussi, "Effective Stress Analysis of Seismic Response
and Liquefaction: Theory." /. Georech Eng., ASCE, Vol 110, No. 5, May 1984, pp.
628-644.

Ghaboussi, J., and Dikmen. S5.U.. "LASS-1I, Computer Program for Analysis of
Seismic Response and Liquefaction of Horizontally Layered Sands,” Report No.
Uil U-ENG-77-2010, Dept. of Civil Eng., Univ. of Illinois at Urbana-Champaign,
Urbana, 1L, 1977.

Ghaboussi, 1., and Dikmen, S.U., "Liquefaction Analysis of Horizontally Layered

Sands,” J. Geotech. Eng. Div., ASCE, 'ol. 104, No. GT3, March 1978, pp. 341-
156.

Lee, M.K.W_, and Finn, N.D., Liam, "DESRA-]: Program for the Dynamic Effec-
tive Stress Response Analysis of Soil Deposits Including Liquefaction Evaluation,”
Soil Mechanics Series Report No. 38, Dept. of Civil Eng,, Univ. of British Colum-
bia, Vancouver, B.C., 1975,

Martin, P.O., and Seed, H.B., "Simplified Procedure for Effective Stress Analysis of
Ground Response,” J. Geatech. Eng. Div., ASCE, Vc.. 105, No GT6, 1979, pp.
7393-758.

Prevost, JLH., "DYNAFLOW: A Nonlinear Transient Finite Element Analysis Pro-
gram,” Dept. of Civil Engineering, Princeton University, 1981, last update, 1987.

Prevost, JH., "DYNAID: A Computer Program for Nonlincar Site Response
Analysis - User’s Manual,” Department of Civil Engineering and Operations
Research, Princeton University, July 1988.

Prevos, LY, "Effective Stress Analysis of Seismic Site Response,” Int. J. Num.
Analyi. Meth. Geomechanics, Val. 10, No. 6, 1686, pp. 653-665.

Schnabel, P.B, Lysmer, J., and Seed, H.B., “"SHAKE - A computer Program for
Earthquake Response Analysis of Horizontally Layered Sites,” Report EERC 72-
12, Univ. of Cahfornia, Berkeley. CA, 1972,



SECTION 2
DYNAMICS OF POROUS MEDIA
BASIC THEORY

2.1 INTRODUCTION

Soils consist of an assemblage of particles with different sizes and shapes which
form a skeleton whose voids are filled with water and air or gas. The word "soil" there-
fore implies a mixture of assorted mineral grains with various fluids. Hence, scil in gen-
eral must be looked at as a one (dry soil) or two (saturated soil) or multiphase (partiaily
saturated soil) material whose state is to be described by the stresses and displacements
(velocities) within each phase. There are still great uncertainties on how to deal analyti-
cally with partiy saturated soils. Attention is therefore restricted in the following to dry
and fully saturated soils. The stresses carried by the soil skeleton are conventionally
called "effective stresses” in the soil mechanics literature (see e.g., Terzaghi [1943]), and

those in the fluid phase are called the "pore fluid pressures”.

In a saturated soil, when free drainage conditions prevail, the steady state pore-fluid
pressures depend only on the hydraulic conditions and are independ=nt of the soil skele-
ton response to external loads. Therefore, in that case, a single phase continuum descrip-
tion of soil behavior is certainly adequate. Similarly, a single phase description is also
adequate when no drainage (i.e., no flow) conditions prevail. However, in intermediate
cases in which some flow can take place, there is an interaction between the skeleton
strains and the pore-fluid flow. The solution of these problems requires that soil behavior
be analyzed by incorporating the effects of the transient flow of the pore-fluid through the
voids, and therefore requires that a two phase continuum formulation be available for

porous media. Such a theory was first developed by Biot [5-10] for an €lastic porous



medium. However, 1t 1s observed experimentally that the stress-strain strength behavior
of the soil skeleton is strongly non-linear, anisotropic, hysteretic and path-dependent. An
extension of Biot's theory into the non-linear anelastic range is therefore necessary in
order to analyze the transient response of soil deposits. This extension has acquired con-
siderable importance in recent years duc to the increased concern with the dynamic
behavior of saturated sotl deposits and associated liquefaction of saturated sand deposits
under seismic loading conditions. Such an extension of Biot’s formulation [26] is
presented herein. For that purpose, soil is viewed as a multi-phase medium and the
modern theories of mixtures developed by Green and Naghdi [21], and Eringen and
Ingram [19], are used. General mixture tesults can be shown through formal lineariza-
tion of the field and constitutive equations, to reduce to Biot’s linear poroelastic model

{seee.g. [12)).

The general theoretical framework which forms the basis of mixtures’ theones was
first developed by Truesdell and Toupin [28] early in 1960. Since then, the theoretical
description of muliiphase materials has received repeated attention in the literature, and
fundamental equations for a dynamic theory of interacting continua have been denived
[sce e.g. Refs 16, 19-24, 28, 29, 34-36]. The most recent findings arc summarized in
Refs 2, 3 and 11 which contain many references to relevant works. In the following, the
general mixture gquations are first summarnized and applied to describe the flow of water
through saturated anelastic porous soil media. Special attention is given in particular to
the physical meaning of the partial stresses which appear in the general field equations,
and an effort is made to relate them to physical quantities measurable in the field.

During deformations, the solid particies which form the soil skeleton undergo
irreversible motions such as slips at grain boundaries, creations of voids by particles
coming out of a packed configuration, and combinations of such irreversible motions.

When the particulate nature and the microscopic origin of the phcnomena involved are

2.2



nol soughl, phenomenological equations then provide an adequate description of the
behavior of the various phases which form the soil medium. In multiphase theories, the
conceptual model is thus one in which each phase (or constituent) enters through its aver-
aged properties oblained as if the particles were smeared out in space. In other words,
the particulate nature of the constituents is described ir terms of phenomenological laws
as the particles behave collectively as a continuum. Soil is thus viewed herein as consist-
ing of a solid skeleton interacting with the pore fluids. In order to be able to derive mul-
tiphase ficld and constitutive equations for such a medium, a technique for obtaining
local average quantities is necessary. Furthermore, the basic kinematics and baiance

equations for each constituent and for the mixture as a whole must be defined.

2.2 KINEMATICS

Soil 1s viewed herein as a mixture consistingof m (1<m £2) deformable media,
each of which is regarded as a continuum (for saturated soils m =2 ), and each follow-
ing its own motion. It is assumed that at any time ¢ each place x of the mixture is occu-
pied simultaneously by m different particles X!,X2, -+ ,X™ , one for each consti-
tuent. As in single-phase theory, to each constituent is assigned a fixed but otherwise

arbitrary reference configuration [18,25,31], and a motion
x=x"(X%r) a=1,.,m 1)

where X denotes the position of the o -constituent in its reference configuration, and
x the spatial position occupied at the time ¢ by the particle labeled X®. For simplicity in
the following, both the reference and current configurations of each cornstituent are
referred to rectangular Cartesian axes. Capital and lower case letters are used for the
indices on coordinates and tensors referred to the undeformed and deformed

configuration, respectively (see e.g., Refs 18 and 25). The usua! continuity and differen-



tiability assumptions are made for the deformation functions x®, and the following res-

tnctions are imposed
det x4} = JE (X% 1) ; detfxB]>0 a=1,....m (1)

for physically possible motions, in which det denotes the determinant and a comma (,) a
partial derivative. The velocity and acceleration of X® at time ¢ are obtained from Eq. 1

by iime differentiation, viz,

b

VO = VAL = (o) = X0 a® = a%(xe) = g (v®) = X* &)

where a superimposed dot indicates differentiation with respect to time holding X fixed

(i.e., the material derivative following the motion of the a -constituent),

(‘>ﬂ=§7(>=§;()+va-vn @)
Here, and in the following, ¥ and V are used to denote spatial and material derivatives,
respectively. The deformation gradient for X™ at time t is defined by
Fe = Fox®,r) = Ux% = [F&] = [x&) (5)
and the velocity gradient is defined by
Lo = Lex,r) = Vvt = F2. (Foy! = [LE] = [vd%] (6)

in which, (F®)-! denotes the inverse of F*. The symmetric and skew-symmetric parts of

L% are referrzd 10 as the deformation rate, d%, and spin tensor, w&, respectively.



2.3 AVERAGE QUANTITIES

Average quantities are obtained by integrating microscopic quantities over an
averaging volume or area. The averaging procedure is used to obtain a ficld of macros-
copic quantities for each phase. In the macroscopic field, the averaging volume
represents and characterizes a physical point. Because the averaging volume is macrus-
copically infinitesimal, it is denoted by 4V . Similarly, the avecraging area dA ,
represents and characterizes a physical point on the surface of dV , and is an infinitesimal
element of area in the macroscopic field. The characteristic length, D, of the averaging
volume or area is selected such that [34] { <<D<<L, where ! is the microscopic scale of
the porous medium and L is the scale of gross inhomogeneities. Typically, { = 50 micron
in sands and { = 1 micron in clays, whereas L = Icm, The part of dV occupied by the a-
phase is denoted by dV®. and the volume fraction, n®, of the ¢x-phase is the fraction of

dV occupied by the a-phase defined by

nt = n%(x,r) - '{—.‘n;l— )]

Cleary, n® is constrained by Z_‘, n*=1and 0sn*< 1. Similarly, the part of d4 lying in
the ce-phase is denoted by dA @, and the areal fraction, 7%, of the a-phase is the fraction
of dA which interest the a-phase defined by

= A% (x,1) = %(—!- (8)
subject to %: %=1 and 0 £ A%< 1. In Ref. [24], arguments are presented which support

the intuitively appealing identity, 7*= 2% |6,27), and in the following, that identity is

assumed to hold.

A macroscopic average mass density function, p®, is associated with each consti-

tuent and is defined as the volume average of the microscopic density function, pg , as



(20]

pe = 'Jl{"'j « Padv )

where dv is the microscopic volume element. In this equation and in subsequent
developments, the dependence of macroscopic and microscopic quantities on X and ¢ is

understood. The intrinsic volume average mass density is defined as

Pu = 'd‘ITu dv“paa'v = ;la-pf’L (am

Note that only when the mass density of the a-phase is microscopically constant, is the
intrinsic volume average mass density function equal to the microscopic mass density. In

the following, py = py and thus p* = n®pg .
The mass density, p, of the mixture is defined as
p=pix:)=Zp (11)
and the mean (or barycentric) velocity, v, for the mixture is defined ~-
v = vi(x,t) = %Ep“vﬂ (12)
The velocity gradient for the mixture is then
L =Vy =il =[vpl (13)

It is of importance to emphasize thar the vefocity v® of the a-constituent (Eq. 3) is its
microscopic (intrinsic or seepage} velocity, and is different from the mean (or superficial)

velocity ¥9, used for instance in Darcy's law [17], defined as
IaRpu'\?""ndA =jakupuvﬂ-nd,4 =jaRp“v“-ndA (14)

where n denotes the unit outward normal to the surface oR, of area A , which encloses

the fixed region in space R , of volume V . Clearly, ¥ = n® v%



2.4 BALANCE LAWS

All equations are postulated at the current time 7, and al! field quantities are func-
tions of x and r. When discussing a constituent of the mixture, it is supposed that it can
be isolated from the rest of the mixture, provided that allowance is made for the action
upon it of the other constituent(s). The balance laws for the two-phase soil mixture are

summarized as follows:

2.4.1 Balance of Mass:

No chemical interaction is assumed to take place between the solid soil skeieton and

the fluid phase. The balance of mass of each a-constituent then takes the form

o
D (p%) + prV v = 0 (15)

Another version of Eq. 5 is obtained by recalling that p® = n% pg, and

44 o
T (r%) + n@V vt = B B (pg) \16)

in which g (Pu) / Dr =0 if the grains which constitute the -phase are incompressible.

Eq. 16 will prove most useful in the following.

2.4.2 Balance of Linear Momentum:

Before postulating the balance of momentum laws for each a-constituent it is first
necessary to consider the forces acting on this constituent within the region R. In addi-
tion to body forces, such as gravity forces, one must also account for the effect on the -
constituent of the mixture outside the region R. This effect is accounted for by introduc-
ing a vector field T (n, x, ) defined on dR and measured per unit arca of oR, such that

j'aerA represents the contact force exerted across dR by the o-constituents outside of



R on the a-constituent in R {23,32,35). This notion of a stress vector is in accord with
the stress vector notion for a single-substance continuous medium as introduced in classi-
cal continuum mechanics (s¢e e.g., Refs 18,2531-33). Corresponding to the partial
stress vector T*, there exists a partial stress tensor 6 [32,35), such that T® = n- 0%,

where n denotes the unit outward normal to gR . Locally,

T g [ Tad (17)

where T, denotes the intrinsic stress vector of the «-phase MNote that: T® = n® T, when t
is microscopically constant. From Eq. 17 and the above definition, it is apparent that the
partial stress tensor cormresponding to the fluid phase, 6*, is equal to n* times the pore
fluid stress, ©,,, i.e,, 6% =n" 0, . However, the partial stess tensor corresponding to the

solid phase, o', 1s nor th: effective stress, ¢, of classical soil mechanics [30] but

rather is
o =06 +n°0, =n°0, =(1-n")c; (18)

for a saturated porous medium, where n* 6,, accounts for the effects of the pore fluid
stress on the individual solid grains which constitutes the solid skeleton. In deriving Eq.
18 it has been assumed that the contact areas between the solid grains are negligibly
small [4,27]. so that the pore fluid and associated stress completely surrounds each grain.
Each solid grain is also subjected to intergranular forces that are in excess of the pore
fluid stress and characterized by the effective stress 6°. The global stress & which is to
appear in the general balance equations for the porous medium, is the sum of the parttial

stresses, ¢ = E o<, and is equal ¢

c=0" +a*¥ =0° + 0o, (19

for a saturated porous medium, as postulated in classical so1l mechanics [30].



The local version of the balance of linear momentum equations for each constituent

then simply writes (see e.g., Refs [2] and [11]):
pra® = V.g®* + p* + p%bh p20)

where b = body force per unit mass; p® = momentum supply to the & - constituent from
the rest of the mixture due to other interaction effects (for example due to the relative

motions of the constituents), subject to )&i)“ =0 [2,11]. 1t is further assumed that the

mixture consists of non-polar constituenis and that there are no moment of inomenium
supply between the phases. The balance laws of moment of momentum for each phase
then yield that, as in single-substance media, the partial stress tensors must all be sym-

metric.

2.4.3 Entropy Inequality:

In setting up constitutive hypotheses for each constituents, on¢e must ensure that
they do not violate the entropy inequality which states that for a mixture in which each

constituent has the same temperature 8 2],

a o
DA“ 11 uDe -, . .
“Ietps XNt F LR (V)
+20’“:d“—-15q~‘7620 @1
o

in which ¢®:d%=¢ (0%d®), A®= partiai Helmoltz free energy, s®= partial

entropy, and q = heat flux for the mixture.



2.5 CONSTITUTIVE ASSUMPTIONS

Constitutive equations must be provided for the state variables. This is accom-
plished as follows:
2.5.1 Solid Grains:

For all praiical applications of interest in soil mechanics, the solid grains may be
assumed incompressible, and in the following p, = constant. Eq. 16 for the solid phase

then simplifies to;

s
-%(n“‘):(l—n“’)VW" 22)

where n* = (1 —n" } = porosity, and Eqs. 16 and 22 may be combined to yield the so-

called “storage equation”, viz,

w

V’[n“’vwl+V'[n5v51=*g—:DD?(Pw) (23)

2.5.2 Fluid Phase:

The following constitutive equation is assumed to describe the behavior of the fluid
phase

6, = —-p.d 24)

where p, = pore-fluid pressure; ie., it is assumed that the fluid has no average shear

viscosity. Further, the fluid flow is assumed barotropic so that the fluid kinetic equation

of state is independent of the temperature, viz,,

F(p..pu3i=10 (25)
from which it follows that
1 D 1 D
f)T'DT(p"’):x_W'lﬁ(pW) (26)

2-10



where A* =p,, @p, /dp, = bulk modulus of the fluid phase. The Auid pressure can

thus be determined from Eq. 23 which now writes:

w

e ==X (Vv ) 4 V(v @
For soil media, the compressibility of the fluid phase is often much smaller than the
compressibility of the solid skeleion. Therefore, the fluid phase may, in some applica-

tions, be regarded as incompressible, and Eq. 23 reduces in that case to
YViinvvw [+ V [nfv] =0 28)
2.5.3 Sofid Porous Skeleton

A rate-type constitutive equation is assumed to describe the behavior of the porous

solid skeleton, of the following form:

b

-D-r-(u"):[)?:v(‘)é-DG:vfl =D:Vy (29)

where v{) and vfj= symmetric and skew-symmetric parts of the solid velocity gra-
dient, respectively: D is the material constitutive tensor, an (objective) tensor valued
function of, possible ¢’ and the solid deformation gradient; DC is the contribution
from the rotational component of the stress rate, viz.,

!

Dfy = 51088y + 0'f1du - o8 dji — '} 8l (30

Many nonlinear material models of interest can be put in the above form (e.g., all non-
lincar elastic and many elastic-plastic material models). Appropriate expressions for the
effective modulus tensor DS for soil media are discussed in Section 5. For a linear iso-

tropic elastic porous skeleton:
Dy = AF 8 8y + B* (8 8y + 8y By ) (31)

where A, W = effective Lame’s moduli, 8;; = Kronecker delta.
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2.5.4 Momentum Supplies

Momentum interaction between the solid skeleton and the fluid phase is assumed to
consist of diffusive and dilatational contributions, viz.

2%

= Y = ~E (v vt ) - p, Vo (32)

where § = symmetric, positive-definite second-order tensor. The first term accounts for
the momentum transfer due (o diffusion phenomena and is someumes called the “stokes
drag” [11]. The inclusion of such a term is basic to all porous media theories (see e.g.,

[5-10]). The sccond term is called a “"buoyancy force” in mixture theories.

2.6 COQUPLED FIELD EQUATIONS

Under the assumptions described above, the linear momentum equations (Eq. 20) sim-

plify to:

pPar =V-¢g" -nsVp, —E- (V=¥ )+p'D (33a)

&
pw %(‘.W)= pW(‘._w_vw ).V\.w - "vaw + E,'(\"-\'w)'l- pw u33b)

when the movement of the solid phase is used as the reference motion. When inertia and
convective terms are neglected, Eq. 33b reduces to Darcy’s law [17] as
n (VY =¥ ) = (P E(Vp, -pub) (34)

and thus k= (1¥)2y, &= Darcy permeability tensor (symmetric, positive-definite),

(units: L/T); Yw = gpw = unit weight of the fluid; g = acceleration of gravity.

2.7 APPLICATIONS / SPECIAL CASES

Several simplificd situations of interest in soil mechanics can be obtained as special

cases of the general theory presented previously (Eqs. 22, 23 and 33), as shown hereafter.



2.7.1 Dynamics Without Inertia and Convective Effects in Fiuid
If inertia and convestive effects in the fluid phase are neglected, Eqs. 33a and 33b
can be combined to yield:
prat =V (6”°-p,8)+ pb (35)

where p = p® + p* = total mass density of the mixture. Further, Eq. 33b simplifies to
Eq. 34, Then taking the divergence of both sides of Eq. 34 and combining with Eq. 27,

one gets

]

—Volar v ev )] = AL B (pa) + VoW

=—V-|~Y-‘—k-(pr-pwb)1 (36)
and finally (rearranging terms):
v D i
T Dr (P )=V Ik (Vpy—pu b)) + Vw5 =0 an

In many practical cases, the compressibility of the fluid phase is often much smaller than
that of the solid soil skeleton. Eq. 37 can then be further simplified by assuming that the

fluid compressibility can be neglected, as:
k- Pw 1 R TS -
-V Kk [V(ZZ)-=Db] +V v =0 (38)
Yo 8
The term -~ % b can conveniently be expressed in a cartesian reference frame as Vy
where y is the vertical coordinate ( y -axis vertical, oriented upward).

2.7.2 Dynamics with Undrained Conditions

In that case k =0 relative to the rate of loading, the pore-fluid follows the motion

of the solid phase (i.e., v* = v$ ) and Eq. 33 simplifies to:



pa=V (c"-p,.8)+pb (39)
where 2 (=a® =a“ ) = accelesation of the mixture. The storage equation (Eq. 23) also

simphfies, and

V'\""':—g—: D[(pw)z_;—:'l?)?(pw) (40)

If 1t is further assumed that the fluid compressibility can be neglected, then (from Eqs. 22

and 40)

By =0 and Vo = V-yv =0 (41)

Note thay in general, chunges in pore-fluid pressures will arise as a result of the strains in

the solid soil skeleton.

2.7.3 Dynamics with Drained Conditions:

In that case k = oo relative to the rate of loading, and no changes in pore-fluid
pressures take place as a result of the strain. .1 the solid soil skeleton. Eq. 33 then
simplifies to:

p,ta.T:V-(o’.r_pw5)+pb 42)

if the pore-fluid is assumed at steady-state, viz. (from Eq. 37),

—V»lYLkapw—pwml:o (43)

Ll

If it is further assumed that no fluid flow is taking place (static fluid pressures), then Eq.

33a simplifies to:
p_\' a* = V-6 + p'.'-' b (44)

where p* =p—p,, =n° (P; — Pw )= buoyant mass density of the porous soil skeleton,

and {from Eq. 33b)



Vp, - p.b=0 (45)
2.7.4 Pseudo-static loading conditions:

In that case inertia (and convective) effects are neglected both in the solid and fluid
phases. The corresponding field equations for the various cases are simply obtained from
above by setting a’ =av =0, vir.

2.74.1 "Party” drained loading canditions (Consolidation Equations):
V- (o5-p,8)+pb=20 (46a)

w
n% . 1 . - 3 - yS =
S D (P ) = Volgm ke (Vpw -pu )1+ Vowr =0 (46b)

2.74.2 Undrained Loading Conditions:

V(6" -p.8)+pb=0 47
with V- v =V -y =0 ( 'DDT n* =0) if il is further assumed that the fluid
compressibility can be neglected.

2.74.3 Drained Loading Conditions:

V(6" -p,8)+pb=0 (48a)
~Vo -k (Vo —pub)] =0 (48b)
or, if no fluid flow is taking place:

V6" +p5b=0 (49a)
Vpue —pub=0 (49b)



2.8 APPENDIX A : Wave P:opagation with Diffusion

In this section, results pertaining to the calculation of propagation. speeds and decay
properties of plane waves propagating in the porous medium model defined by Eqs. 33a
and 33b are summarized. Small displacemaznts are assumed and linearized equations are
used. The solid skeleton is modeled as isotropic linear elastic (Eq. 31) and & = €8 in
the following. One solid rotational and two dilatational diffusive waves will in general
propagate thru the porous medium. It is convenient {o first intreduce results pertaining to
acceleration waves. Readers interested in detailad derivations should consult Biot
[1056], Bowen [1982): Bowen and Chen [1975], and Bowen and Reinicke [1978] on that

subject matier.

Al. Acceleration Waves:

{a) Rotational Wave: Tt propagates thru the solid skeleton with a wave speed C; given

by:
Cir=p/pt (AD)
The wave is diffusive, and its amplitude decay is given by:
alt) = a(@exp[-§1/2p*) (A2)
from which the attenuation distance 8; (—é— decay ) can be computed as:
8 =2p° C 1§ (A3)

(b) Dilatational Waves: Two dilatational waves may in general propagate thru the

porous medium with speeds C,,, and Cp, given by:

6,2 = 3 [ctecty 2 1Ct-cpyacina] (A%
where
C¢ =(ls+2u5+kwﬂ":—w)3)/p-‘ (A5a)
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CZ = (n™A% )/ p» (ASb)

Cqi = (nsh» Y¥/(p'p*) (A5¢)

Note that Eq. AS will always produce positive squared speeds and thus real speeds if

(A" + 2% ) > 0. The two waves are in general diffusive, and their amplitude decay is

given by:
a;(t) = a;(Mexp(-&o /2] (A6)
8, =2C, /(o &) (AT)
where
1 1 1CE ~Cé |
(1‘=(—+———)—5——2— (A8)
Pt P CGA-CA

and Cg i5 the "frozen” mixture specd defined by:

C3 =+ 21 + A y/(prape) (A9)
with
Cp < Cqg < CF (A10)

Note that it is possible that Co=C,, (dynamically compatible cuse). In that case:

s s A PP —Pw} e o At
AF + 2 - . A [pw e (AlD)
and,
C, =Cq = %%-, @ =0 (A12)

Note that the wave of the first kind is nondiffusive in that case.
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A2. Harmonic Waves:

The propagation of plane progressive waves in the porous medium model was first

analyzed by Biot [1956] and later by Atkin [1968]. Solutions of the form
o(x.r)=toexplimnx-wr )] (Al4)

are sought to the wave equations, where n is the (unit) propagation vector, 1| is the (com-
plex) wave number and w is the (real) frequency. The speed of propagation C and the

attenuation coefficient q of the plane harmonic wave described by Eq. Al4 are given by

n= ‘(CD' +ig (A15)
It is convenient to introduce the following characteristic frequency

1 1
g = —t — Al6
&t o) (A16)

in terms of the drag coefficient, such that l/ey is the characteristic time of diffusion.
The charactenstic frequency @p controls the transition from low-frequency to high-

frequency behavior.

(a) Rotational Waves: The dispersion relation takes the following form:

CIMmwg ¥ (f —i X)=-X2(1-iX)=0 (Al17)

where
= P X = W Al8
f pS +pw G)O ( )

from which the propagation speed and attenuation coefficient are obtained as:

_ 1+X2 ., +x2 |
aX | 1ex? ., xz |2
¢ =g {(T—Tf ) - i,—Tf et } (A20)
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Atlow frequencies (W/wp << 1)

c =C,f"'={1+-é—f“z(l—f)(3+f)xl+0(x4)} (A21)

4 = 7 @C) f2 (- f X2+ 0X4) (A22)
and at high frequencies ( w/g >> 1)

C =¢, {1-%(1-f)(1+3f)x—2+0(x4)} (A23)

g = 5 (@/C) (1 ~f){1 -gQ+2f +5f2)X“2+0(X'4)} (A24)

The transition from low- to high-frequency behavior is found to take place in the range

0lex=2 <10.
Wy

In the porous medium model, plane harmonic rotational disturbances thus take the
form of progressive waves which are dampled and dispersed. The behavior of these
waves at low frequencies differs from their behavior at high frequenciss, the transition
between the two regimes occurring fairly sharply at frequencies near the characteristic

frequency wy.
{&) Dilarational Waves: The dispersion relation takes the following form:

iwwg [N CG ~e?]-(N?CR -a?) (P CA-a?) =0 (A25)
and is studied in detail by Atkin [ 1 ]. In general, two dilationar waves (dispersive and
diffusive) will propagate with speeds Cy and C; such that

0<C5C,, <Co<C, <G, (A26)

2

and correspond to Biot's waves of the first and second kind [1956), respectively.
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Low-Frequency Behavior: In the low-frequency regime, the dilatational mode asso-

ciated with the first root has the character of a progressive wave, while the second
root is diffused. The propagation speed and attenuation coefficient of the wave-like

mode are given by

C, = Cg{]+-%—(2.,—l)(1—12)(l+37x|+37xz—71|?.2)X24-0(X4)}(A27)

g1 = ¥ (@y/Co) (k= 1) (1~ Ay X2+ 00X (A28)
where
M o= (CpfCo¥ Ay = (CpfCo» (A29)

High-Frequency Behavior: In the high-frequency regime, both dilatational modes

are wave-like. Their propagation speeds and attenuation coefficients are given by
Ci=Cpd1- MU (35 -5 +A)X2HO X} (A30)
P B(A1-A2)

o _ 1 oy A -] _ 1 2072 g2

+ 20 (AA—100A TR+ (524100, + A2 )P X2+ 0 (X H[A3])

where i,k =1,2 and i =k .



2.9 APPENDIX B : One-Dimensional Wave Propagation

In the analysis to follow, the initial-value problem consists of a semi-infinite
saturated porous medium, initially at rest, and subjected at time zero to an arbitrary
time-dependent disturbance at its free-bouridary x =0. Upon impact, two dilatational
waves (in general both dispersive and diffusive) propagate thru the saturated porous

medium with wave speeds C) and C 5 such that:
0=Cy2C,, « CosC) =G, (B1)

where the propagation speeds C,, and Cj,, arc the the propagation speeds associated
with the characteristic manifolds corresponding to Eqs 2.33a and 2.33b, and Cy is the
"frozen” mixture speed (see Section 2.8, Appendix A). Al the speed Cp there is no rela-
tive motion between the two phases, the material is nondispersive and behaves like a sin-
gle continuum. A closed form analytical solution (Simon and Zienkiewicz, 1984) for the
one-dimensional propagation of transient dilatational pulses in a semi-infinite fluid-
saturated . .stic porous medium is possible when the solid and fluid are "dynamically

compatible” i.e., when Cy=Co=0Cp, , viz,, when:

1‘+2w=k_w£(_es_:&l=;,w[_g;__"‘1 (B2)

n* Pu nv

In that case, the wave of the first kind is nondiffusive, and propagates with the speed:

Ci=Co=0Cp =\/;~—:; o =0 (B3)

whereas the wave of the second kind is diffusive, and propagates with the speed:

Cr=C,, = nv 0‘;:2“52 , a = (317 + p+) (B4)

Note that in that casc:

L=y (< C1) (BS)



where:

a = Ps

PUNN L SE— 1 B
(P, =Py ) b6

The saturated porous medium is assumed initially at rest, and subjected at time ¢ =0 to
an arbitrary time-dependent disturbance at its free boundary. Specifically, the following

boundary conditions are assumed at the free boundary x =0
6(0,1) = F(t) pw(0,2) =0 (B7)

where F(r) is an arbitrary function of time describing the prescribed stress at the free
boundary. Free flow conditions (i.e., full drainage) are assumed at the free boundary.
The solution is obtained using Laplace transforms (see Simon and Zienkiewicz (1984)

for details) and is conveniently expressed in terms of the following parameters:

- _X =
Q-m T= 5K (B8)

where K =k /¥, , and in *--ns of the displacement w of the fluid relative to the solid

(corresponding 10 the Darcy velocity), viz.,
w =n"(u¥-ut) (B9)

Then the solution has the following form:

_ bt N2 _ .12 - -
w = w1 = a—_—gﬁa—j;f(t—ne Zlo[b_fia_‘”;_] 1T - LNz ) d@B10)

W = wt(G,1) = —j;f(tu%) 13- dT - w1 (B11)
where
f) = t’%o(@,‘t) = {%F(pkr) - é%F(r) (B12)
= —___p“ = —I = ..pi Bl
) e rra =% 6D



and 1(t) = unit step function, /g(z) = modified Bessel function of zero order. The pore

fluid pressure, total stress and ¢ffective stress are obtained as:

Pe = pullt) = —¢ E:.R-ﬂ-[.'zs Y + v u ] =-c Eko—[u;‘g + wIQIBM)
Co

c=0o{1= —R-f(T-C) (t-0) (B1S)

g% = 0.1 =0+ pw (B16)

The spaual derivatives of w and «® are computed as:
_b
wy = 'i_'_—lc {f(r—C\"Z)c iy Wt-CVa) +

_ b1 T 3
b _e“zzl][bj_ﬁ_“faa] o
t 3% J-uf(t_t) (E-al)iZ 1(t-CVa )dt [B17)

u = f(1-0"'":-0) - cewg (B18)

where /(z) = modified Bessel function of order one. In the following, the prescribed

stress at the free boundary is assumed to be a step function, viz.,
o(0,1) = F(t) = 6 t() (B19)

where Gp < 0 (compressive wave). In order to illustrate the general features of the tran-
sient wave propagation, typical results are presented in Fig. 2.1. Upon impact at the free
end, a double wave pattern traveling with non-dimensional velocities of 1 (C;) and
a V1 (C,) is established. The first wave is undamped whereas the second wave is
damped. The total stress propagates with the first wave, and triggers changes in pore fluid
pressure and solid effeclive stress. From Eqs B14 and B15, the jumps in pore fluid pres-

sure and solid effective stress upon arrival of the first wave ( t ={ ) are given by:



[pPw] =-cop [6"1=(1-c)06p (B20)

Neo further changes take place until arrival of the second wave. The jumps in pore fluid
pressure and solid effective stress upon armival of the second wave (T = Va ) are given
by:

T

- 1
[pn]1=cope [6] =cope 2% (B21)

The second wave is present only in the uear field, and eventually disappears in the far
field. This is tllustrated in Fig. 2.1 which shows the pore fluid pressure as a function of
position at various non-dimensional times: t=2.0;5.0; 10.0; 20.0. For the example

reported in Fig. 2.1, the material parameters were selected as follows:

g =9 b=t =18 ¢ =

3
clc~-1) — 3 ry
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SECTION 3
DYNAMICS OF POROUS MEDIA
NUMERICAL FORMULATION

3.1 INTROPUCTION

The enormous complexities encountered in solving geotechnical engineering prob-
lems (complex geometries, geological strata, material behavior) make analytical closed-
formed solutions very difficult if not impossible. Recent advances in digital computer
technology and in numerical methods have now rendered possible, at least in principle,
the solution of any properly posed boundary value problem in mechanics. Consequently,
applications of numerical techniques 1o geotechnical engineering problems have grown
at a rapid pace during the last decade. Finite element methods appear to be the most
popular procedures employed in geotechnical engineering. A number of excellent books
on finite element methods are available (see e.g., Refs [1, 3, 5, 14]), to which the reader
is referred to for more details on the technique. It is not the purpose of this section to
offer an exhaustive treatment on the subject matter, but rather to briefly present some
applications of the technique to geotechnical engineering problems. It is convenient to
classify the classes of problems encountered in geotechnical engineering according to the
nature of the differential equations to be solved as follows:

{i) Hyperbolic : this class includes transient wave propagation and vibration type
problems (in both saturated and dry soils),

{ii) Parabolic : this class includes transient consolidation type problems in
saturated soil systems,

(iii) Elliptic : this class includes steady state seepage flow problems and
load/dcformation (and failure) amalysis of soil and soil-structure systems in
saturated (fully drained or undrained conditions) and dry soil media.

Only the techniques employed for solving hyperbotic problems are briefly reviewed in



the following. The problem of the dynamic response of a two-phase soil system can be
represented as the following initial-boundary value problem: Let £2 denote the domain
occupied by the two-phase system and T its boundary. Find the soil displacement ficld
u®(x,t} and the fluid velocity ficld v* (x,2) in the domain Q & RM2 ( NSD = number of

space dimensions), such that:

p'af® = V-g* ~nsVp, —~E(v* —v*)+p°b M
P B v") = p (v v )Uw — ¥ Up, +E(vF - W) +p¥b )
%%-(U") = D:Vys 3)
%:_(nw) = (1 - n*)Vvs @)
Dv . )‘.w v 5 ys V W oW
T w) = == [ V(as v )+ Ve(nve) &)
together with the boundary conditions
w =0 on Iy (6a)
™ =V on T (6b)
(6% -a’p,8)yn = b on Tp (7a)
-n¥p.n = " on Iy {7b)
and the initial conditions
w'(0) = uj (82)
ve0) = v§ (8b)

Iy, Ty and [ye, Ty are the parts of the boundary on which the displacement and trac-

tion for the solid and fluid respectively are prescribed. They satisfy the following condi-

tions:
rpuly =T gy =0 (9a)

When inertia and convective terms are neglected, Eq. 2 reduces to Darcy’s law {2):

n*(v* -v¥) = —(n¥)2E-1(Vp, - pub) (10)

3-2



and thus k=(n% )2y, &1 = Darcy permeability tensor (symmetric, positive-definite);

Y~ =8 Pw = unit weight of the fluid, and g = acceleration of gravity.

REMARKS:

In the case of a compressible fluid (Eq. 5) the fluid pressure is determined (as the
effective stress, Eq. 3) from the computed velocities through time integration of
Eq. 5. In the case of an incompressible fluid, Eq. 5 is no longer available but is
replaced by the continuity requirement,

V-n*v )+ V- (n*v") = 0 (11)

In order to reduce the number of unknowns, it is convenient in that case to elim-
inate the fluid pressure from the list of unknowns. For that purpose, a penaity-
JSunciion formulation of the continuity constraint expressed by Eq. 11 is used to
compute the fluid pressure as:

Pw = — '):'—:[V'(n’\f’)+V'(ﬂ"Vw)} (12)

where A" is not the effective fluid bulk modulus appearing in Eq. 5, but rather is
a penalty paramerer. The penalty parameter is to be selected as a large number.
This is further discussed in Ref, [12].

When fluid inertia and convection terms are neglected, the problem is expressed as fol-

lows: Find the soil displacement field u*(x,) and the fluid pressure field p,, (x,r) in the

domain € RNSD gych that:

pfa* = V(o —p,8)+pb (13)
-%;-%::—pw -V ..Y‘Tk-(vpw - Pu b)] +Vv =0 (14)
B (@ =D.vw (15)
Brmy=a=n=)vv (6)

together with the boundary conditions:

u =0° on r'r (I7l)



pw = p-w on rx- (17b)
(6 -p.8)yn = b on Iy, (total traction ) (18a)

"'?L(Vp" —pub) = % on Iy (flow rate ) (18b)
w

and the initial conditions:

v (0) = ug (19a)
Pw(0) = pu o (19b)
v(0) = v§ (19¢)

where p=p* + p™ = tolal mass density of the mixture. This formulation is expressed in
terms of the solid displacement and the fluid pressure only (W and p,, ). However, the
resulting semi-discrete finite element matrix equations form a nonsymmetrical system.
Taking advantage of the symmetry of the full system of equations, including fluid inertia
and convection terms, allows sudstantial reduction in computations, which may be
greater than those resulting from neglecting fluid ine:na and convection. In the follow-

ing, the full system of equations is used.

3.2 WEAK FORM / SEMI-DISCRETE FINITE ELEMENT EQUATIONS

The weak formulation associated with the initial boundary value problem is
obtained by proceeding along standard lines (see e.g., Refs. 1, 10, 23). The associated
matrix problem is obtained by discretizing the domain occupied by the porous medium
into non-overlapping finite elements. Each element is defined by nodal points at which
shape functions are prescribed. In general, two sets of shape functions are required for
the solid displaccment and the fluid velocity field, respect vely. However, since atiention
in the following is restricted to low order finite elements which are the most efficient in
nonlinear analysis, the same shape functions are used for both the solid and the fluid.
The shape functions for the solid displacement and fluid velocity associated with node A
are denoted by N4 in the following. They satisfy the relation NA(xf) = 84z in which



x8 denotes the position vector of node B and 845 = Kronecker delta. The Galerkin
counterpart of the weak formulation is expressed in terms of the shape functions and

gives rise to the following system of equations

e [ e { ) e

where M%, a% v& n%, and %€ represent the (generalized) mass matrix, acceleration,
velocity and force vectors, respectively (@ =s,w for the soil and fluid phases, respec-
tively). The clement contributions to node A from node B for direction i and j to the
matrices appearing in Eq. 20 arc defined below. The terms are integrated over the spa-
tial domain occupied by the element ¢, For computational si..plicity a disgonal

"lumped” mass matrix is used,
(mABy = SijfqpaN"dﬂ (no TonA) Q@n
The momentum transfer terms give rise to the damping matrix Z:
(Z4B) = jn'N" E;NBdQ 22)
The external force 2= (ie., body force, surface traction) is computed as follows:

FAe = Inp“b,»NAdﬂ + boundzry rterms @3

The intemnal stress forces n® are computed as follows:

(ay = [ (cif —n’p, 8 N4dQ (24a)

and

(Rt = In‘p‘"N“‘ (v = vividQ ~ [w NAr*p,dQ (24b)



3.3 TIME INTEGRATION

Time integration of the semi-discrete finite element equations is accomplished by a
finite difference time stepping algorithm, In general, implicit and explicit integration pro-
cedures are available. Explicit procedures are corputationally the simplest since they do
not require (for a diagonal mass matrix) equation solving to advance the solution. How-
ever, stability restricts the size of the allowable time step. On the other hand, uncondi-
tional stability can usually be achieved in implicit procedures but they do require solution
of a system of equations at each time step. For the problem at hand, a purely explicit
procedure is not usually appropriate because of the unreasonably stringent time step res-
triction resulting from the presence of the very stiff fluid in the mixture (even for highly
nonlinear solid material models). Recently developed methods combine the attractive
features of explicit and implicit integration. The method used here falls under the
category of "split operator methods”. Different portions of the system of equations are
treated implicitly and explicitly, reducing the system of equations to be solved. The
specific split to be made is obviously problem dependent, and the appropriate

implicit/explicit splits for the problem at hand are sums:.arized thereafter.

3.3.1 One-Step Algorithms

The discretized equations of motion (Eq. 20) can be written symbolically as fol-

lows:
Ma + Cv + n@d,v) = = (25)

where M, C represent the generalized mass and damping matrices, n and = represent
generalized internal and external forces and @, v, and d represent the generalized
acceleration, velocity and displacement vectors. Time integration is performed by using
the implicit-explicit algorithm of Hughes, et al. (Refs. [6,7]), which consists of satisfying

the following equations:



Ma,,, + C’v,”1+CE~",.+1+n’(d,,,,|,v,, 4-l)+nE(an+1,‘-'n+1) =, (26)

dn+l=an+l+BArzan+l @n

Vol = Vi1 + YA 8,
where

dn oy = do +Arv, +(1-20) A4, (28)
Vn+1 = Va +(1-YAra,

The superscripts I and E refer to the parts of C and n which are treated implicidy and
explicitly, respectively. Ar = time step; f&7 = (s,); d,, v,, and a, arc the approxima-
tions to d(s,), v(r,) and a(s,); ¥ end [ are algorithmic parameters which control accuracy
and stability of the method. Jt may be recognized that when all terms are treated impli-
citly the procedure cormresponds to the Newmark method (Ref. [8]). The quantities c'l, +1
and v, . ; are "predictor” values, while d, 4, and v,, , , are "corrector” values. From Eqs
26-28 it is apparent that the calculations are rendered partly explicit by evaluating part of
the viscous term, CE v, .1 . and the force nf in terms of predictor values based on data
known from the previous step. Calculations commence with the given initial data (dy

and vp ) and ag which is defined by:

Mag = 1§ - C vo - n(d, Vo) (29)

Since M is diagonal, the solution of Eq. 29 is trivial.

3.3.2 Implementation

At cach time step Eqs 26-28 constitute a nonlinear algebraic problem which is
solved by an iterative procedure. An “effective static problem” is formed in terms of
8, + 1 which is then lincaiized. Within cach time step the calculations are performed
iteratively as summarized in Flowchart 1 for a Newton-Raphson type implementation. In

Flowchart I,



K' =an//9d (30a)

Cl =C+on/dv (30b)

denote the parts of the tangent stiffness and damping matrices, respectively, to be treated
implicitly. Implicit teatment of nonlinear terms usually requires matrix reformation and
factorization at each time step (and for every iteration to be performed if Newton Raph-
son iterations are used). In genera), it is therefore desirable to treat nonlinearitics expli-
citly; yand B in Eqs 27 and 28 are then selected to achieve unconditional stability in the
implicit group. Then the maximum stable time step for the problem is determined from a
Courant condition which must be satisfied in the explicit group. However, if any portion
of the explicit group requires extremely small time steps, it becomes more efficient to
treat that portion implicitly. The appropriate implicit-explicit split for the hyperbolic
problem is discussed in Refs [10, 12], and is summarized thereafter.
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FLOWCHART 1

1. Set Iteration Counteri =

2. Predictor Phase:
dfly = da sy
viil| = Vi
afl, =0

3. Form Out-of-Balance Force:
A = f£2 | ~Mafl, - Cvil-n(d§l,, vl )

4. Form Effective Mass: (Reform and factorize only if required)

M = M+AyC + AP K
5. Solution Phase:
M* Aal) = Af¥)
6. Corrector Phase:
afith = af |+ Aa0)
vith) = ¥, .+ Aryafith
diity = d, .|+ AP afity

7. Convergence Check: (only if i > ()

F nﬁ""’“ < TOL" .and. "z“"” 0 S(I—Q)TOL“] GOTO 8
jjAatd || j[Aali-D)| ]

where Q= max | TN A D]

OTHERWISE i=>i+1 and GOTO 3

8. n =>n+1 and GOTO 1

*Typically, TOL = 10-3
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3.3.3 Stability Conditions

Linearized stability analysis of implicit / explicit algorithms have been reported in

Ref. [6]. The resulting stability conditions are summarized as follows (see Refs. [5-7]):

Inall cases ¥ 2 1/2:

1.

Implicit Treatment: unconditional stability is achieved if 8 2 y/2 and it is

recommended (Ref. [4]) that

B=(r+4)/4 G

to maximize high-frequency numerical dissipation.

Explicit Treatmenz: The time step restriction is

&< L(1-0)r(y+4) @)
to maximize high-frequency numerical dissipation; ® = highest natural frequency
present in the system of cquations; { = damping ratic. The maximum expected
frequency may be bounded by the frequency of the smallest element, viz., for a two
node linear element,

C
where L = dimension of the element and C = maximum wave speed.

Implicit-Explicit Treatment: The stability characteristics are determined by the con-

ditions that render the following B matrix positive-definitive:
B=M+ar(y-5)C +a2(B-F)K - S arCF - L A2KE (34)

Evidently, stability restrictions are dependent upon the specific choices adopted in
the implicit-explicit split. As shown hereafter, it is convenient to always treat the
damping tcrms implicitly (since they are linear). The resulting stability restrictions

are then determined by the conditions which render the following B matrix



positive-definite:

B=M+Ar(y-5)C + a2(B- K - L AKE 35
REMARK.:
For vibration calculations optimum accuracy is obtained with ¥ = 1/2. Increas-
ing 7y serves to dissipate high frequency numerical noise. The purely diffusive
part (consolidation part) of the probiem can be captured "dynanucally” using the

hyperbolic system developed by setting y=3/2 and f = 1 and using implicit-
explicit integration (Refs [10,12]). This choice damps out ail dynamic transients,

3.4 IMPLEMENTATION

Depending upon the specifics of the particular problem to be studied, different com-

putational strategies are to be adopted as discussed in the following.

34.1 Wave Propagation Calcutations:

Very short time scale (and high frequency) solutions are sought and a purely expli-
cit integration of the cquations of motions is found most appropriate in that case. The
time step size is restricted from stability considerations, and the calculations are to be
carried out at a time step close to the time step corresponding to the propagation of the

fastest compressional wave. The time step restriction is (from Eq. 32):

ar s L(1-F2y 1+ (36)

where

1,1 ,1C.2-Ce?|
o = (F,_+ p' Cp]!_cp;! {37)

and C,, = wave speeds of the two dilatational waves which may in general propagate

thru the porous medium, Cp = "frozen" mixture speed with,

an < Co? g Cptz (38)



i.e., for the lincar model:
Co? = (W + 2+ 20/ (pr 4 pm) (39)

and the speeds Cp, are given by:

G 2= ,'r[(cf+c;)i [(C?—C§)+4C}]‘f2] (402)
where
c? =(1=+2u=+xw.(:_f)3)/ps (40b)
C? = (n™ A )ip» (40c)
C# = (n* A" P1(p*p*) (40d)
REMARKS:

(1) Second-order accuracy is achieved by selecting ¥ = 1/2 and f = 0 (Cen-
tral difference integrator).

(2) If only rotational (shear) waves are to be present, the time step restriction is:

2 1
msa(l-i(—j?mw«;)

and the wave speed associated with the shear wave is given as:

-

3.4.2 Vibration Type Calculations:

Since the frequencies to be captured are usually much smaiier than above, an impli-
cit integrator is usually most convenient in that case since it allows the time step to be
selected following accuracy considerations only. Unconditional stability is to be achieved
by proper selection of the algorithmic parameters as discussed in Section 3.3.3. In the

following,



Y2 1/2 and B=(y+5 P4 @n

The damping term contains the momentum transfer contribution to the equations of

motion, viz.,

A -
C = [_ y Al Z] (42)
The fluid convective force (Eq. 24b) is usually small and therefore is treated explicitly
with no resulting computational difficulty. The fluid pressure contribution (Eqs 5 and 24)

is treated implicitly. For that purpose, a fluid stiffness matrix is defined through lineariza-
tion of Eq. 24 as:

Css Csw
Kw = [Cw: Cm] (43)
where C*B(a,f = s,w) are matrices defined as follows (from Eq. 5):
cane = | aw22Byang ag (44)

Note that since C™ = (C**)T the resulting K,, is symmetric.

As for the solid effective stress contribution to the equations of motion (Eqs 3 and

24a), three options are possible: explicir, implicit, or implicir-explicir treatments,
(a) Expilicit: in that case
K =K, : (45)

and unconditional stability cannot be achieved. The resulting stability restr.ctions

are as follows (from Section 2.3):
A s Z(y+d) (46)
© pJ

where the maximum expected frequency  may be bounded by the frequency of

the smallest clement, viz., for the two-node linear element with a linear solid
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(b)

©

effective stress model,

m:z.f_ C="‘,l—’?p‘:—2}£' @7

where L = smallest dimension of the element.

Implicis: in that case unconditional stability is to achieved. A solid effective stiff-
ness operator is defined from Eq. 24a through linearization as:

5 G
K; = [K g K 8] (48)

where K is the materia} tangent part, and K€ is the initial stress or geometric part,

formed from the tensors DS and DG ( Eq. 2.29) in the usual manner, eg.,
(K§EY = jn, Di; NAN§aQ (49)
and (from Eqs 43 and 48):

|(!=%%=K,+K, (50)

Implicit-Explicit: For nonlinear effective stress solid models a purely implicit treat-
ment of the effective stress solid contribution (Eqs 3 and 24a) requires a matrix
reform / factorize at each time step (and for cvery itcration to be performed if
Newton-Raphson iterations are used), thus producing a considerable computational
burden. In that case it is convenient to adopt an implicit-explicit treatment of the
effective stress contribution as follows: the linear part of the stress is treated impli-
citly while the remaining nonlinear part is treated explicitly. Thus, in the implicit-
explic:it procedure,

K
K! = [ (é) 8] {51)



where K7 is the lincar contribution to the material tangent stiffness, and combining

Eqs 43 and 51:

K’ = ['éf v e (C;f.] 52)
which again iv a symmetric matrix if K& is symmetric. This choice does not
always lead to unconditional stability. The difficulty is not usually associated with
the explicit treaument of K& (which contains terms of the stress order and therefore
usually has a negligible impact on stability), but rather from the explicit treatment

of the nonlinear term (K® - Kf) for materials with a locking tendency.

3.4.3 Diffusion Type Calculations:

It is sometimes desirable to capture the purely diffusive part (consolidation part) of
the solution "dynamically”. Such necessity arises in situations in which both short and
long time solutions to a dynamical problem are sought (such as in seismic or blast
induced liquefaction simulations). As shown in Refs [10, 12], by switching to an
appropriate choice of the Newmark parameters, y=3/2 and f=1, and by using the
implicit or implicit-explicit options described previously, all dynamic transients czin be
damped out, and purely diffusive (consolidation) solutions can be obtained "dynami-
cally" by solving the dynamic equations.
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SECTION4
TRANSMITTING BQUNDARY

4.1 INTRODUCTION

The application of finite elements to the solution of geotechnical problems involv-
ing the vertical propagation of seismic waves in a soil deposit requires the development
of special boundary conditions referred to as transmitting, non-reilecting, silent or
energy-absorbing boundaries. These boundary conditions are required to use at the base
of the necessarily finite mesh to simulate the infinite extent of the soil domain in the vert-
ical downward direction. When an infinite domain is modeled by a finiie mesh, there is
danger that waves reflected from the free-surface will be reflected back off the artificial
bottom boundary and cause errors in the response calculations, unless special boundary
conditions can be imposed at the base of the soil column. In the following, a rigorous
form .tion of an appropriate boundary condition is developed. The proposed boundary
condition is frequency independent, and is local in space and time. It is exact for linear
systems only, and therefore requires that the bottom boundary of the soil column be

placed at a sufficiently large depth such that the soil response be linear at that depth.

Scismic site response calculations are usually performed for a given seismic input
prescribed in the form of an acceleration time history to be applied at the base of the soil
column. As discussed hereafier, the implementation of an appropriate boundary condi-
tion at the base of the soil column requires detailed knowledge of the nature of the
prescribed seismic input, viz. whether it corresponds to an incident vertically propagating

motion or is the sum of an incident and a reflected motion.

The salient features of one-dimensional wave propagation in a semi-infinite system

arc first reviewed before the boundary condition is developed.



4.2 ONE-DIMENSIONAL VERTICAL PROPAGATION OF SEISMIC WAVES

For the purpose of illustrating the salient features of the boundary formulation, the
vertical propagation of shear waves is considered. The equation of motion may be

expressed as:
Puy =G ux (N

where a co.nma is used to indicate partial differentiation; p = mass density; G = shear
modulus; & = horizontal displacement; ¢ =time; and x = depth coordinate, with the x-
coordinate assumed orented upwards positively. The fundamental solution of Eq. 1 can

be expressed as:
uix, 1y =1 —%HR(: +?€) (2}

where

C=\/§ 3

and / and R are two arbitrary functions of thei: arguments: J{r - %r) represents a wave
motion propagating upwards in the positive x -direction with the velocity C, and is
referred 1o as the incidenr motion; R (r + %—) Tepresents a wave motion propagating
downwards in the negative x -direction with the velocity C, and is referred to as the
reflected maotion, The following two identities apply:
It g1u=0 (42)
Ry~ #R.=0 (4b)

and therefore, if one differentiates Eq. 2 with respect to x and 7 in turn:

iy = ity + Ry 5)



uy, =1, + R, 6)
The shear stress T(x, ¢) can therefore be expressed as
. 1) =G uy =pC(=1y +Ry) )
and upon elimination of R ,,, the following relation is obtained:
Tx, t) = pClu,, — 21,) 8)
At this stage it is instructive to siudy the total wave pattern when an incident wave
motion /(¢ — %—) encounters an artificial boundary at x = A. Three extreme cases can be
considered as follows:
4.2.1 The boundary arx = h is fixed. Setting u (h, t) =0inEq. 2 leads to:

R(t + i_(.}i) = I - x—c:ﬁ) )
resulting in th2 total wave motion:

wix. 1) = It - %‘.i) _Iu o+ I_C‘.i) (10)

Therefore, at a fixed boundary, the incident wave is reflected back with the same shape

but opposite sign.

4.2.2 The boundary ar x = h is free. Setting 1h, 1} =01in Eq. 7 leads to:

R(t + x_E,lL) =1 - .J_E,i) (11)
resulting in the tatal wave motion:
x-h x—h
uix, 1) =14 - T2y + 10 + I (12)



Therefore, at a free boundary, the incident wave is reflected back with the same shape

and the same sign.

4.2.3 The boundary at x =h is silens. Selecting Eq. 4a which is identically

satisfied for I as the boundary condition for u atx =4

W + un) |, =0 (13)

results in R = 0. Eq. 13 is called the radiation condition. It is obtained by selecting:

twh, 1) = —pC u, (14)

x=h
When the incident wave I encounters that boundary, it passes through it without
modification and continues propagating towards x =+ os. No reflected wave R, which

would propagale back in the negative x -direction can arise.

4.3 SEMI-INFINITE SOIL COLUMN

Consider the situation shown in Fig. 4.1. An incident vertically propagating wave /
(coming from infinity) arrives at the site, and it is sought to compute the site response for
this incident motion. The finite element mesh has been selected to extend down to the
depth A, and an appropriate boundary condition at the base of the soil column is sought
to simulate the infinite extend of the soil domain in the vertical downward direction. For
the purpose of illustration, it is assumed that the site consists in genera 7 two hemo-

geneous deposits with material properties as follows:
¢ (p, C)above the base of the soil column: 0<x <4

¢ (P, C..)below the base of the soil column: —e<x <0



In order to separate the influence of the incident wave from the reflected wave on the site

Tesponse, it is assumed that the incident motion disturbance spans over 2 duration T with:

chs%-

and thai it reaches the location x =0 at time 1 =0, Several cases are considered as fol-

lows:
, !
277 x =h
u(x,t)
(p.C)
x =0
(Ps:C)

Incident Motion

buph,
L L t
1 1 |
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Figure 4.1 Semi-Infinite Layered Soil Profile
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43.1 Case I. Homogeneous semi-infinite deposit (viz,, pe=p; Cu=C): In

that case the incident vertically propagating wave arriving at x =0 at time ¢ =0, will
reach the free surface x =h at time r = é’r, will be reflected back from the free surface
with the same shape and sign, and must cross the boundary at x =0 (at times ¢t 2 —26’3-)

without any further modification and continue propagating back towards infinity. The

resulting motions are as follows:

e atx =0
w(O, ¢y = I) + 1 - _zc’l)m: - %’i) (15)
 atx=h
_ h _ h
uth, 1y =21@ - -C-)H(t —C) (16)

where M is the Heaviside function. This is illustrated in Fig. 4.1. The desired response
in the finite soil column can be achieved by prescribing at the base of the soil column

either the total motion or the incident part of the motion only, as follows:

- Prescribed motion (fixed base case): In that case the base input motion
must be made up of the incident and reflected motions to reproduce the specified
site Tesponse as

w(®, 1y = 1@y + 1 - %’-)H(: - %’.’.) a7

The first part of the input corresponding to /(1) in Eq. 17 will propagate towards
the surface and reproduce the prescribed surface motion. It will then be reflected
back off the free surface towards the fixed base where it will be reflected again
with a negative amplitude:

-1¢ - Pyne - 2

This reflected wave is canceled exactly by the second part of the input motion in
Eq. 17 thereby preventing any further propagation of waves towards the surface.
In other words, the incident wave I(r) produces the surface motion and the
reflected wave cancels the refiection from the rigid base.



REMARK: The total motion is the one computed in standard deconvolution pro-
cedures implemented in computer programs such as SHAKE (1972).

= Prescribed traction (non-reflecting case). From Eq. 8 the stress in the
semi-infinite soil deposit at location x = 0 can be expressed directly in terms of
the motion at the location and the incident wave motion. Therefore, it suffices to
apply at the artificial boundary x =0, the traction:

0, 1) = pC21,, = u,) (18)

0,

In that case, the incident input motion is absorbed exactly at the base after
reflection from the surface. Eq. 18 is the most general boundary condition since it
only requires knowledge of the incident motion.

432 Cuse 2: Non-homogencous semi-infinite deposit: In that case only the
incident motion s known as it arrives at location x = 0. In order to compute the site
response for this incident motion, accounting for the effects of ensuing reflections (or no
reflections if Co = C and p.. = p) at the boundary x =0, one must prescribe the input at

the base of the finite soil column in terms of prescribed tractinns as:

WO, 1) = p. Coa (21, — uy) (19

0.0

This will ensure proper simulation of the infinite extend of the soil domain in the down-

ward direction.



4.4 CONCLUSIONS

A rigorous appropriate transmitting boundary condition was developed. The pro-
posed boundary is frequency independent and is local in space and time. It is exact for

vertically propagating wave motions and for linear systemns only.

4.5 REFERENCES

{11 Schnabel, P. B, Lysmer, I, and Seed, H. B,, "SHAKE: A Computer Program for
Earthquake Response Analysis of Horizontally Layered Sites", Reporr No. EERC
72-12, University of California, Berkeley, (1972).



SECTION §
PLASTICITY MODEL FOR FRICTIONAL SOILS

5.1 INTRODUCTION

Considerable attention has been given in the past decade to the development of con-
stitutive equations for soil media, but although many different models have been pro-
posed, there is not yet firm agreement among researchers. Elastic (see e.g., Duncan and
Chang, 1970, Coon and Evans, 1971}, endochronic (see e.g., Valanis and Read, 1982), and
many elastic-plastic models with various degrees of sophistication and/or complexity
have been proposed. Elastic-plastic models appear to be the most promising. The most
popular and most widely used soil models are Cap models (Roscoe and Burland, 1968;
Schofield and Wroth, 1968, DiMaggio and Sandler, 1971; Baladi and Rohani, 1979), based
on classical isotropic plasticity theory with associated flow, and are variations and
refinements of the basic Cap model pioncered by Drucker, Gibson and Henkel (1955).
The most chvious limitations of these Cap models are:

(1) They do not adequately model soil stress-induced anisotropy;

{2) They are not applicable to cyclic loading conditions.
Similar limitations apply to the models presented in (Lade and Duncan, 1975; Nemat-
Nasser, 1982). It may be argued that plasric models based on isotropic plastic hardening
rules are adequate for situations in which only loading (and moderate unloading) occurs,
however it is unlikely that such restrictions can be met at every point in general boundary
value problems. In order to account for hysteretic effects, more elaborate plastic models
based on a combination of isotropic and kinematic plastic hardening rules have recently
been proposed. Some rescarchers prefer a two-yield surface plasticity (see e.g., Gha-

boussi and Nomen, 1982; Mroz and Pietruszcak, 1983; Dafalias, 1987), while others



prefer a multi-yield surface plasticity (sce e.g., Mroz, 1967, Prevost, 1977, 1978, 1985 ),
Both theories suffer inherent limitations namely: storage requirements for the multi-
surface theory, “a prioni” selection of an evolution law for the two-surface theory. This is

further discussed in Prevost (1982).

It is the purpose of this section to present a simple plasticity medel for soils. The
model is applicable 10 both cohesive and cohesionless soils. The model has been tailored
(1) to retain the extreme versatility and accuracy of the simple multi-surface /,-theory
(see e.g., Prevost, 1977, 1978) in describing observed shear nonlinear hysteretic behavior,
and shear stress-induced anisotropic effects; and (2) to reflect the strong dependency of
the shear dilalancy on the effective stress ratio in both cohesionless {(Rowe, 1962; Luong,
1980; Luong and Touati, 1983) and cohesive (Hicker, 1985) soils. Conical yield surfaces
are used for that purpose. The theory is applicable to general three-dimensional stress-
strain conditions, but its parameters can be derived entirely from the resulis of conven-
tional triaxial soil tests. As for notation, boldface letters denote vectors, second- and
fourth-order tensors in three-dimensions. A superposed dot denotes the {solid) material
derivative, the symbol | .| the norm of a vector or tensor. and the prefix zr the trace.
The summation over repeated indices is implied, and the following notation is used:

a:b=1a.b=aqg;b; .  Allsiressesare effe. ive stresses.



5.2 BASIC THEORY

5.2.1 Constitutive Equations:

The constitutive equations are written in the following form:
oc=E.(e - € (1

where @ = effective (Cauchy) stress tensor; € = rate of deformation tensor (= symmetric
part of the spatial solid velocity gradient); €” = plastic rate of deformation tensor; and a
dot denotes the (solid) material derivative. In Eq. 1, E is the fourth-order isotropic elastic

COCfﬁCicn\ tensor, \'IIZ‘.
E = ( B - 3 5,8, + G { Oy O,y + 8, 8 (2)
1kt _3_ i7 Vit ik Oyl il Ok )

where B = elastic bulk modulus: G = elastic shear modulus; and 5ij = Kronecker delta.

5.2.2 Yield Function:

The yield function is selected of the following form:

f(G,a.M)=IS-FOtI+‘\/:§r_Mﬁ=0 (3)

where
Is-poal =lr(s-Fa)rj’? =[(s=pa):(s-Fa)}i? (42)
s=06-pd deviatoric siress tensor (4b)
P = %— ro ef fective mean normal stress (4¢)
and P = (p —a)with a = auraction (=citand ; ¢ =cohesion; ¢ = friction

angle); o = kinematic deviatoric tensor defining the coordinates of the yield surface
center in deviatoric stress subspace; M = material parameter. The yield function plots

as a conical yield surface in stress space with its apex located along the hydrostatic axis



at the attraction. For cohesionless soils @ =0 and the apex of the cone is at the origin.
Unless & = 0, the axis of the cone does nct coincide with the space diagonal. The cross

section of the yield surface by any deviatoric plane { 5 = constant) is circular with radius

R =- ‘\’ %- M p . Its center does not generally coincide with the origin but is shifted by

the amount p . This is illustrated by Fig. 5.1 in the principal stress space. The outer

normal Q to the yicld surface:
Q=Q+0"38 ®)

is computed as follows (from Eq. 3):

— _ (s-pa 1 2 _(s-pa):a
0 ranr - et [VEn - Gpzgiels e

N

Figure 5.1 Yicld Surface in Principal Stress Space



5.2.3 Flow Rule:

The plastic strain rate is defined as follows:
& =<h>P where P=P +P’% €))]

and A= plastic loading function. The plastic potential is selected such that the devia-
toric plastic flow be associative. However, a non-associative flow rule is used for its dila-

tational component, and in the following:
=1
PI = r 3 Pfl — ’ 8
Q (e @)

where 1) = (%s :5)12/ 7 = mobilized stress ratio; and N = material parameter. When

N<1n, 3P” <0 and plastic compaction takes place, whereas whenn>7n , 3P” >0
and plastic dilation takes place. The case 1 =7 corresponds to no plastic volumetric
strains, This is illustrated in Fig. 5.2. In the following, 1 = Nic when & $*< 0, and

1 =Ny when trs¥>0.

§.2.4 Hardening Rule:
A purely deviatoric kinematic hardening rule is adopted and in the following,

{T(.z=<i>-Q£f:—uu 9

where H' = plastic modulus; and p = (deviatoric) tensor defining the direction of transla-

tion. Note that the direction of franslation remains arbitrary at this stage, and thus may

be selected independently of any formal plasticity constrainis.

In order to allow for the adjustment of the plastic hardening rule to any kind of
experimental data, for example, data obtained from axial or simple shear soil tests, a col-
lection of nested yield surfaces (Mroz, 1967) is used. The yield surfaces are all similar

conical surfaces. Upon contact, the yield surfaces are to be translated by the stress point.
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Figure 5.2 Dilatational Plastic Flow

In order to avoid overlappings of the surfaces (which would lead to a non-unique
definition of the constitutive theory), the direction of translation p of the active yield
surface is selected such that

p=M G-Fa)-Gs-pa’) (10)

where M’ and o are the plastic parameters associated with the next outer surface

(M’ > M ). This is illustrated in Fig. 5.3.

§.2.5 Consistency Condition:

The plastic loading function A {Eqs 7 and 9) is determined by the consistency con-

dition which emanates from time differentiation of Eq. 3, viz.,

f=Q:6-pQ:a=0 (11)



Figure 5.3 Yiceld Surface Translation by the Stress Point in
Deviatoric Stress Space

combining Eqs 1,7 and 9, one finally gets:

i=ﬁvQ:6=ﬁ;Q:E:é (12)
with
Ho=Q:E:P=2G + B (3P )(30") (13)

and M’ = plastic modulus.

§.2.6 Remarks:

(i) Under the assumptions spelled above, the elastic-plastic relations write in expanded

form as

6=2Gé+(5-23(1)é,5-<i>(26 Q' +B 3P 5) (14)



with
y — l [N ° v
where €, = tr e Or equivalently, in terms af deviatoric and dilatational components
§=2G¢é-<A>2G6Q (16a)

p=Bg, - <A>B3IP" (16b)

where € = € - %— €, & = deviatoric rate of deformation tensor.

(1) Itis assumed that no pure elastic domain exits. The first yield surface is thus chosen
as a degenerate yield surface of size zero which coincides with the stress point. The nor-
mal associated with that yield surface is assumed to be purely dilatational. (i.e., from Eq.
4, Q" = 0and 3Q” = -+3). The plastic loading function associated with the stress

point is defined through
A= 7?"‘3‘541- B 30" ¢, an

(iii) The dependence of the moduli upon the effective mean normal stress is assumed of

the following form
- P n =B P yn H =} n 18
G Gl(pl) B l(Pl) HI(LPI) (18)

respectively, where n = experimental parameter (n = 0.5 for most cohesionless soils,
and n =1 for cohesive soils (Richard et al., 1970)); p; = reference effective mean nor-
mal stress. The assumed dependence of the elastic moduli on the material state renders

the material's clasticity (Eq. 1) hypoelastic.



5.3 MODEL PARAMETERS IDENTIFICATION

In addition to the usual state parameters ( {.e., mass density, porosity, permeability),
the constitutive parameters required to model the behavior of the solid porous soil skele-
ton are as summarized hereafter:

(i) Elasric Parameters:

o Shear Modulus: G
o BulkModulus: B

e Power Exponent: n

(ii) Plastic Parameters:
e Dilation Parameters. ﬁc , ﬁg
e Yield Surfaces Parameters:
- Position: a
- Size: M

- Plastic Modulus: H’

The constitutive parameters required to characterize the behavior of any given soil are to

be determined by fitting the model to available experimental soil test data.

The (hypo-)elastic shear G and bulk B moduli (low strain moduli) are best deter-
mined through seismic (wave velocity)-type measurements. Their dependence on the
mean stress with the power of n (Eq. 18) is empirical in nature, and is suggested by
Richard et al. (1970). Correlation formula (relating moduli to initial void ratio, confining
stress, overconsolidation ratio, erc...) based on the results of resonant column tests are

also available (see, e.g., Hardin and Drenevitch (1972)). Typically, B =2G /3.

All required plastic model parameters can be derived entirely from the results of

conventional soil tests ( e.g., "triaxial” or simple shear soil tests). In the following, a sys-
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tematic calibration procedure of the required plastic parameters is proposed.

REMARKS:

(i) Because «;; # 0 in general, the yielding of the material is anisotropic.
The yield surfaces’ initial position is a direct expression of the material "memory”
of its past 'oading history. Since @ is a symmetric second-order tensor, it
posseses in general three distinct orthogonal principal directions. The material is
therefore orthotropic in general (it possesses three distinct perpendicular princi-
pal axes of anisotropy). If a has two equal principal values, the matenal is
cross-amisotropic (Or transverse anisotropic), and the material then possesses a
principal axis of anisowropy perpendicular 1o a plane of isotropy. Finally, if the
three principal values of o are all equal, the material is isotropic.

The initial anisotropy originally develops during the soil deposition and sub-
sequent consolidation which, in most practical cases, occurs under no lateral
deformations. In the following, for simplicity, the material is therefore assumed to
be initially cross-anisotropic. Further, most conventional soil tests ( e.g., "triax-
ial", simple shear soil tests) require the material to be initially cross-anisotropic.
The vertica! 1-axis is assumed to coincide with the principal direction of consoli-
dation. The horizontal (2-3)-plane is thus a plane of isotropy and the material’s
anisotropy initially exhibits rotational symmetry about the vertical 1-axis. In that
case, the initial position of the yield surfaces is defined by the sole determination
of the parameter o :

o= (og-0o3)=30/2
since o;; =0 for [ #/ ,and
o =03 =-o/2=-al3

(i) In general, the model allows different dilation parameters ¢ and Ng to
be associated with each yield surface. However, such a level of sophistication is
usually unwarranted because of the rather inaccurate experimental measurements
of the detailed volumetric strains observed in conventional soil tests (especially in
extension). Therefore, in the following, one averaged value for ¢ and ng is
used, and assumed 1o pertain to all yield surfaces.

§.3.1 "Triaxial" Soil Test:

In this scction, attention is restricted to the "triaxial” soil test for which the two
effective (lateral) principal stresses are equal, 62 = @3. In order for the soil specimen to
deform in an axisymmetric fashion (&; = €3 ), the axes of loading must coincide with

the principal axes of the anisotropic tensor @, and &ty = 0. In the following, in order to



follow common usage in soil mechanics, compressive stresses and strains are counted as

positive and the discussion is presented in terms of the following stress and strain vari-

ables:
q = (0;-03) p =(01+203)/3 (19)

€=(€-63) £, = £ +2¢8; (20)

where the reference axes 1 and 3 are assumed to be in the vertical and horizontal direc-

tions, respectively. Eq. 3 then simplifies to:
f(oaM)=|lg-ap| -Mp =0 viz., qlF = (M) (21

where @ = (a;-03) = 30 /2. The trace of the yield surface onto the triaxial
(g .p ) stress plane consists of two straight lines of slopes (a+M ) and (a-M ),
respectively. The two lines are anchored along the hydrostatic p — axis at focation
p =—a . This is illustrated in Fig. 5.4. In the "triaxial” soil test loading condition, the

mobilized stress ratio 1 is dcfined as follows:

N=q/p (22)
such that M >0 in compression tests (0, >C3 ), and N < 0 in extension tests
(6] < 01). Yieldiag, accordingly with the proposed model, is therefore directly related

to the mobilized stress ratio, since the yield function can be rewritten as (from Eqgs 21

and 22):
fooaM)=f(LoM)=n-(atM)=0 (23)

The mobilized stress ratio n is related to the mobilized friction angle ¢ commonly used

in soil mechanics, viz.,

1(g)-03)|/2

sing = o (6,+03)72

(29)




by the following relation {(combining Eqs 19,22 and 24)

sing = é{n—%

(2%)
inversely, one can also write (from Eqgs 23 and 25):
Ne = (_‘L e = 6 sin oc =a+ M in compression tests (26a)
¢ pc 3 — sindc
6 sin
ng = (—;t)c == 9

3 x sndp a-M in extension resis {26b)

where ¢¢c and ¢p = mobilized friction angles in compression and extension loading
conditions, respectively.

Model calibration is to be achieved by matching directly the model equations (Eqs

1-18) with the experimental test data. For that purpose, the following are first derived by

direct substitutions of Eqs 19 and 20 into the appropriate expressions:

|s-Fal =\/§Iq-ﬁal

@n
(s-Fa)a =L (¢g-Fo)a (28)
o = 3 !Ez—i_za! 29
rr 2 -p
30 =‘\/3—(M-JI—3—_FL§—|Lu) (30)
Q:(.¥=Q':§+3Q"p'
= 2(0-00d +30"p
—Aj2 g-pa) - _ op 31
\/;m—ﬁal(" np) 3D

and the stress-strain relations (Eq. 1) simplify to:
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oo (1 -npd) (32)

«imi

& _ 1y 1 AfZ 1R .,

-~ = ip ~

b 'E-i-ﬂr T T (M) (gip — M) (33)
for the shear and dilatational components, respectively. In Eq. 33, the plus ( + ) sign is

for compression, and the minus { - )'sign for extension loading conditions; 1 = N¢ in

compression; and T = T in extension.

Yielding, i.e., plastic flow, occurs on the yield surface f (Eq. 23) with associated
plastic parameters (o, M, H ) when the mobilized stress ratios M=(atM ), and

when the loading index (Eq. 12) A>0,ie., (from Eqs 12 and 31) when

g -np=pn (34)
is positive in compression (N =7c=0+M ), and negative in csitension
(N=Ng =a-~M), respectively. The plastic modulus H’ associated with the yield
level defined by the parameters « and M is obtained as follows. Given the shear
stress-strain curve (g vs £), and the particular stress path ( ¢ vs p ) followed in the test,
it is possible 1o backfigure the functional dependence of the plastic modulus H* on the

mobilized stress ratio 1}, i.e, H =H' (1) in both compresssion and extension loading

conditions by inverting Eq. 32 as:

H = 208 (1 -nis) (35)

where s =¢ /p =slope of the effective stress path followed in the (g, p ) plane; and

H =g /€= slope of the shear stress-strain curve. Clearly, for monotonic stress paths:

H=H(q.p)=H(M) and s =5(q,p)=>s5(n) (36)

and therefore, the variation of the plastic modulus H” with the mobilized stress ratio 1

can be computed irom the test results. This is illustrated in Fig. 5.4.



g vs. p u

Figure 5.4 Model Interpretation - Triaxia! Soil Test



The proposed constitutive model approximares the (measured) smooth functional
dependence of the plastic modulus H’ on the stress ratio T, by requiring that H° be
constant between each selected yield levels. Evidently, the degree of accuracy achieved
by such a representation of the experimental curve H” =H'({n ) is directly dependent
upon the number of selected yield levels. For a given H’ , the associated yield parame-
ters (o, M ), are computed from the comesponding mobilized stress ratios n=n¢ in

CcOmpression (ﬁ >0),and n=Nr inextension (ﬁ < 0), respectively, as (from Eq. 26):
a=(Nc +Me)/2 M=(nc -ng}/2 37

Therefore, once the number of yield levels has been selected, the identification of the
plastic parameters { a, M, H’ ) associated with each yield level is straightforward and

can casily be automated.

The dilation parameters T¢ and Ty are obtained from Eq. 33, viz.,
p=Be  when m=n (38)

In undrained tests (constant volume tests), they correspond to the effective stress ratios at
which the effective stress path changes concavity (i.e., s =q /p = ). Indrained tests,
they are close to the effective stress ratios at which the material experiences maximum
compaction. The dilation parameters are related to the dilatancy angles ®c and &

commonly used in soil mechanics as (from Eq. 26)

- 6sin$c - _ GSinag
i =y L Yy 69)

Typically, (sce e.g., Rowe (1962)) &c =0f =30 degrees (which in cohesionless soils

corresponds to % = 3), and (from Eq. 39} Me=12; ng =-086.



REMARKS:

(i) The plastic bulk modulus H”, associated with the stress point is deter-
mined by measuring the slopes p /€, of small hydrostatic load-unload cycles at
selected hydrostatic pressures, viz,,

£

- H
e, B gs3p  (Lead)
_eé_ =B { Unload )

Typically, H =3B .

(ii) The dependence of the moduli on the mean effective stress (Eq. 18) is
taken into account by simply referring all moduli in Eqs 32, 33 and 35 to the
reference mean stress p as:

GI=G<%>~ Bi=B(Eyn  Hi=H(En
and finally,
Hy =i (B

(iii} On the last outermost yield surface, H' =0, and the last yield surface
therefore plays the role of a failure surface. If the mobilized friction angle at
failure is to be the same in compression ar.d extension loading conditions, viz.,

ocl =0 f
then (from Eq. 25):
1 f = - 3“(7'/
£ - 3+'|"|c'J
and (from Eq. 37)
= 1 (ﬂ(_‘f)2 f_] f6+an
“f_7'3+n57' Mi=gn 3+ e/

where (from Eq. 26)

nef = 65in¢cf
' B 3-Sin¢cj
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(iv) For pure shear loading conditions (i.e., p =0), Eq. 35 reduces to

o= 2GH
-

and the approximation procedure (viz. H' = constant between each selected
yield levels) reduces to a piecewise linearization of the shear stress-strain curves.
The variaus yield levels are then simply identified by the condition that the slopes
H9=4 /€ be the same in compression and extension tests (see e.g., Prevost
(1977)).
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SECTION 8
SHEAR STRESS-STRAIN CURVE GENERATION FROM
SIMPLE MATERIAL PARAMETERS

6.1 INTRODUCTION

The calibration of elaborate constitutive soil models, especially those using multiple yield
levels (see e.g., Mroz (1967); Prevost (1977, 1985)), require that stress-strain curves {(typically
obtained from triaxial or simple shear soil tests) be available. Hoviever, budget constraints
often prevent detailed laboratory tests to be conducted on every soil type present at a given
site. Further, usual parcity of field information, randomness and spatial variability of natural
deposits require in every design situation that parametric studies and/or Monte Carlo type
simulations he conducted. Therefore, generation of the stress-strain curves required for the
analysis, from limited field information, is a comimon and significant probletn. In this section

attention is focused on shear stress-strain curve generation.

Mizimum information for the generation of the curve requires knowledge of (1) the mitial
gradient, and (2) the stress and strain levels at failure. The initial gradient, (', is usually
available from seismic type measurements (see e.g., Richard et al. (1970)). (See Fig. 6.1.)
The maximu shear stress at fatlure, Tmqo, 18 commonly determined through correlations
with in-situ test results like the SP'T' andfor the cone penetration test (sce e.g., Das (19%5)
for a recent survey of available correlation formula). The maximumn shear strain 4,,..,, at
failure can also be estimated. Therefore, the problem to be addressed is that of finding a
functional relationship belween the shear stress 7 and the shear strain 3, r = (7}, such

that:

e at the origin:

1) T|w=0 =90



D

2)

;E‘V=U = ("o

[~1N

e at fallure

3) T|'7=“muu = Triar

=0

3_f|
By [V =Ymax
¢ between the origin and failure:

.))g—f’>0aml%§<0 0 <9 <€ Ymax

Conditions (1) through (4) define two points through which the curve must pass with pre-

scribed gradients. Condition (5) merely states that the curve must be smooth without points

of wiflection.

The best known and most widely usad function is hyperbolic (Kondner (1963); Hardin
and Drnevich (1972)). The function is simple but, as shown hercafter, far froni ideal since it
is not able to model failure accurately (conditions 3 and 4). 'I'herefore, a modified hyperbolic
function including a power Lerm is proposed in the following. This function is shown to offer
great versatility for modeling stress-strain behavior in both menotonic and cyclic loading

conditions; at both low and high stran levels.

It is convenient to non-dimensionalize the stress-strain relation. This is achieved Ly
norinalizing the stress as y = 7/(€/,v,) and the strain as ¢ = v/v, where 4, is a specilic
strain value, (See Fig. 6.1.) The shear stress-strain relation is then expressed in terins of
the dimensionless quantitics, @ and y as y = y(x), and

r_ b PGy o
i Oyt 4, Ot

I= 1,

In terms of the quantities & and y, the desirable properties of tiie normalized stress-strain
curve parallel the restrictions stated previously. Specifically, the normalized curve must begin
al the origin with an initial slope equal to 1; have a positive slope and negative curvature

until the failure paint at which the slope must equal 0.



6.2 HYPERBOLIC FUNCTION
The basic equation has the form

.,
A

T = Tmaz’

where +, = 7,,,. /G, is Lhe reference strain. {See e.g., Das (1983).) Through the normaliza-

tion procedure previously described with 4, = 4, the hyperbolic function takes the following

form:

x
. 3
i+ )

where y = 1/{G,~;) and r = 4/4,. The slope aad curvature are given by

y::

ady 1
I - (4)
dr (14 r)
and _
Py 2
v T (5)
o (1 +17)
respectively. Examiniug the functional forms. one sees that the requirements (1), (2), and
{3), viz., yl,_a =0 %{::u = It 1,:”- > 0 and L—:;% <l for any 1 are satisfied. However, the

requirements (3) and (4). that the curve must pass through a failure point with zero slope
cannot be met (unless ~,,.,. = oc). Therefore. although the hvperbolic function is a simple
methiod of curve generation which is easily fitted to the imtial conditions, it cannot model

failure accurately,



6.3 MODIFIED HYPERBOLIC FUNCTION
Introduced as an alternative to the hyperbolic relation for the purpose of curve genera-
tion, the modified hyperbolic function has the following form:

B 1 /GD 1 ,7m+l
=T - - T
! T|/(Jvu + Y 1(7'1/6'0 + ‘ymﬂr)z ‘YE;;; (Tn + l)

(6)

where 7, and m are real and positive parameters. The equation is normalized using 7y = Tar-

By letting y; = 11/(GoYmazr)s and ¥ = 7/(Go¥mar) a30d T = 7/Tmer as belore, the equation

can be expressed as

T y¥ Im+l

'tz (m+1)(m+1)

Differentiation results in the following expressions for the slope and curvature:

=Y

9 2 2
l.’_y - yl — - yl : Im (8)
de (y+a)? (n+1)?
and
’)2 2 2 2
23 Y Nt (9)

9t (p+a)P  (y+1)?

Considering the restrictions on the functional form of the normalized equation, we

a 2 a* 3
find the | ;20 =10, ;0= 1, FE >0for0 <z <1,z <lfor0 <z <], and 3|,-) =0
are all satisfied. The parameter y; is determined hy requiring that g|,o1 = Yimar where

Ywur = mur/((;o-)'nm:) = 7;—/7,1;.“-- This I'CSU.[LS iﬂ

2
y y 1
Ymer = - - ! 2 . (10)
nt+l (nm+1)Pm+1)
Rearranging in order to solve for yy yields
H } + 231 ( : )+ =0 (11
Y1 ¥Ymar n+ 1 Yil¥Ymax 3 Ymar = V. }
Requiring the roots to be real results in the inequality
m 24ymar* 1. (12)
Solving for a positive y; by taking the appropriate square root,
Ymaer — % + J%"ymnx/(m + 1)
Yy = . (13)

m/(m+ 1) = Ymas
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Considering the sign of the numerator and the denominator in turn over the subintervals of

y to guarantee a positive y;, it can be shown that

[ When0<ymg:=7r/7mua.~$% m >4

¢ when % < Ymaz = Yr/Tmar < 7;' m 2 Aymaz — |
* Whe" % S Ymar = 7?/7mar <1 m > yma:/(] - yma:)‘
Satisfying these conditions will ensure that y|.=; = ¥maz = ¥+/Vmes- Therefore, all necessary

conditions on the functional relationship can be satisfied with the modified hyperbolic func-
tion. Further examination using a variety of values for the parameter m shows that m has no
significant effect on the characteristics of the shear stress-strain curve. Thus the parameter

m can be selected as

m = ymnz/(l - ymut) when 0 < Ymez = 7v/7muz < 3’:’

and

m = l‘l{yﬂm:/(l - :'lmur)} when % < Ymaz = 71-/‘777“11- <
which satisfy the restrictions on m in cach subinterval.

Fig. 6.2 shows thc stress-strain curves gencrated for various values of the quantity
Yo [Ymar = Tmar)GoYmar- low values of 4,/%¥msr result in highly nonlinear curves. The
degree of nonlinearity decreases as %,/ Ymqr increases until 4, /¥mer = 1.0, which corresponds
to a linear stress-strain relation. Normally, ¥, /7maz 18 to be selected such that the generated
stress-strain curve matches experimental test data. Fig. 6.3 shows the variation of the secant
modulus G = 7/ with the strain level 4 for various 4,/9mas- as dimensionless plots G/G,
versus v/ Ymar (Fig. 6.3a) and G/(Tmaz/Ymaz) versus ¥/Ymaz (Fig. 6.3b). Shear moduli
variations for sands and clays are usually presented in the forms of Fig. 6.3a and 6.3b,

respectively. Clearly, the curves shown in Fig. 6.3 span all knawn soil test data.



6.4 EQUIVALENT ViISCOUS DAMPING

The material behavior is assumed to be nonlinear and hysteretic. Hysteresis loops are
constructed from the monotonic shear stress-strain curve by using the Masing Rule (Masing
(1926)). The shear stress-strain curve then plays the role of the backbone or skeleton curve.
An equivalent viscous damping, £;, for the hysteretic material can be computed as (see e.g.,

Jacobsen (1358)):

1 AW
{IZGW (14)

where AW 1s the {rictional work arca, i.c., the area enclosed by the hysteresis loop, and W, is

defined as the work area under the corresponding backbone stress-strain curve as illustrated

M’,:/ rd~y. (15)
0

Let Wy denote the work area under the secant hine as illustrated in Fig. 4, viz.,

in Fig. 4,

1
W, = Er'y. (16)

Using these definitions. the expression for equivalent viscous damping becomes:

2 W,
=20 =22, 7
3 7r( W, ) (17)
Auother expression for an equivalent viscous damping is often used as;
1 AW 2 W,
&= 4—1?—”/2 = Wz — 1) (18)
Conveniently, €, and £; are related through the equation (from Eqgs. 17 and 18)
&1
2 = . 19
=1 T (19}

It can be shown that 1 < W, /W, < 2. Therefore, as W /W, approaches its maximum

value of 2, £ is bounded by 32% and £, by 64%.

Using the relations r = 4/, and y = 7/(Goy), Wy and W; can be expressed in terms

of the normalized quantities r and y as:

Wi=Got [ yde (20)
0
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and

1

W; = 5(30‘{?211 (21)

Specifically, for the curve generated with the modified hyperbolic equation. it is found
that

. , + T y? Im+'2
W = Gyt {yir — g2 in(lDy - H 22
1 oAy —yi In( ” ) o+ Z0n 3 1)(m +2)} (22}
and \ \ -
1 I Y m
W, = =Go42 - 1 23
2 2 ‘“{yly]+z (y1+1)2{m+1)} ( )
when r < |, and
Wl = W)!r:l + yma.t(I - l) (24)
and
1
‘/‘,‘6 = Eymurl (15)

when > 1. Fig. 6.5 shows varations of damping ratios with strain levels for various

Yr/mazr- Again, the curves shown in Fig. 6.5 clearly span all known soil test data.



6.5 CONCLUSIONS

Two egnations for curve generation have been examined. The popular hyperbolic fune-

tion has been shown to be casily fitted to the initial conditions but not able to model fatlure

accurately. A modified hyperhclic function including a power term was proposed. This fune-

tion has been shown to offer great versatility and acenracy in modeling shear stress-strain

behavior in both monotonte and evelie conditions: at both low and high strain levels.
A 2
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SECTION?7
INTEGRATION ALGORITHMS
FOR ELASTIC-PLASTIC CONSTITUTIVE RELATIONS

7.1 INTRODUCTION

Plasticity theory has recently gained widespread acceptance in large-scale numeri-
cal simulations of practical geotechnical engincering problems, due to its extreme versa-
tility and accuracy in modeling real engineering materials behavior. Building upon the
pioneering works of Drucker and Prager (1952) on soil plasticity, the modem wend has
been toward the development of more and more elaborate and complicated elastoplastic
constitutive models which resemble the behavior of real engineering materials more

closely.

The numerical solution of elastic-plastic boundary value problems is based on an
iterative solution of the discretized momentum balance equations. Typically, for every
load/time step, solution involves the following steps: Given a converged configuration at

Step n:

(i) The discretized momentum equations are used t0 computc a new
configuration for step (n +1) via an incremental motion which is used to
compute at cvery stress point incremental strains A €;

(ii) At every stress point, for the given incremental strains A g, new values of
the state variables (G, .,,S,+1) and €f,, arc obtained by integration
of the local constitutive equations;

(iii) From the new computed stresses, balance of momentum is checked and if
violated iterations are performed by returning to step (i).

In this section, attention is focused on step (ii) which may be regarded as the central

problem of computational plasticity since it is the main role played by the constitutive

equations in the computations. In finite difference / finite element computer codes the



elastoplastic constitutive equations are usually incorporated through a separate set of
constitutive subroutines. The purpose of these subroutines is the intcgration of the
clastic-plastic constitutive equations. That is, at every stress point, given a deformation
history, the role of the constitutive-equation subroutine is to return the corresponding
stress history. Exact analytical solutions for the elastic-plastic evolution problem are
available only for the simplest elastic-plastic models. The first exact solution was
obtained by Krieg and Krieg (1977) for the case of the isotropic elastic-perfectly plastic
von Mises model. Later, Yoder and Whirley (1984) extended the solution to apply to the
von Mises model with arbitrary combination of kinematic and isotropic hardening.
Recently, Loret and Prevost (1986) developed an exact solution for the isotropic
Drucker-Prager model with linear hardening and arbitrary degree of nonassociativity.
Although error-free, these solutions are computationally too slow to be used routinely in
actual calculations. Further, exact analytical solutions are not available for more com-
piex models. Therefore, all elastic-plastic models are implemented in analysis programs
with some error, via an integration algorithm called the stress-point algorithm. Evi-
dently, the accuracy and stability of the global solutions is to be strongly affected by the
accuracy and stability of the stress-point algorithm. Also, the cost of the analysis is most
strongly affected by the efficiency of the stress-point algorithm. The best algorithm, the
one to be favored, is therefore the one which combines computational efficiency with

accuracy.

The first stress-point algorithm to be developed was the radial return algorithm pro-
posed by Wilkins (1964) for the elastic-perfectly plastic von Mises model. The algo-
rithm was subsequently extended by Krieg and Key (1976) to accommodate isotropic and
kinematic hardening laws. The algorithms are analysed in Krieg and Krieg (1977):
Schreyer et al. (1979); Yoder and Wirley (1984); and Ortiz and Popov (1985). Algo-
rithms for the Drucker-Prager model have also been proposed. Approximate elaborate



subincrementation strategies with successive radial stress corrections have been proposed
(see e.g., Nayak and Zienkicwicz, 1972). Other somewhat arbitrary stress corrections
have also been attempted (see e.g, Chen, 1675; Vermeer, 1980) to correct for the
inherent stress drift away from the yield surface. However, all these procedures tend to
be quite expensive and are not error-free. They are analyzed in Loret and Prevost
(1986). Integration algorithms for more complex models have also been developed, typi-
cally on a case-by-case basis (see e.g., Sandler and Rubin (1979) for the cap model).
However, no general framework for deveioping consistent, accurate and stable algo-
rithms was available until recently. It was therefore difficult to assess in general the rela-

tive merits and/or shortcomings of the various proposed procedures.

In this section, stress-point numerical algorithms are developed as the basis for
computer modules designed to interface with large scale finite element/finite difference
computer programs for solution of boundary value problems. Since the elastic-plastic
cvolution problem is of a strain driven nature, the integration process is split into an elas-
tic predictor and a return map to restore plastic consistency. The return mapping is
achieved by integrating the nonlinear plastic evolution equations, and there are several
ways this can be implemented (see e.g., Nguyen, 1977; Simo and Ortiz, 1985; Simo and
Taylor, 1986; Ortiz and Simo, 1986; Simo and Hughes, 1987). In the following, atten-
tion is focused on the so-called "cutting-plane” algorithm (see e.g., Simo and Hughes
(1987)). One yield surface and multiple-yield surface plasticity theories are considered.
Finally, a generalization to account for visco-plastic effects is considered. For that pur-
pose, the visco-plastic setup proposed by Duvaut and Lions (1972), is adopted. It Jeads to
a closed-form unconditionally stable algorithm, in which the visco-plastic update can be
constructed from the trial state and the solution to the rate-independent clasto-plastic

problem (Simo et al. (1988)).
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7.2 THEORY

The main equations of the theory arc summarized as follows:

c=E:(e-¢) constitutive equation %))
f(6,.8)=0 yield function @

& =<X>P(0,S) Sflow rule 3
$ =<i>5(0,8) hardening rule (@)

where S8 denotes the collection of structure (hidden or “internal”) variables, assumed to

consist of second-order tensors a and scalars M , viz,
S=(a,M]

In Eq.1 E is the fourth-order isotropic elastic coefficient tensor. For plastic flow to
occur, the yield function (Eq. 2) must be satisfied and A must be positive. The plastic
loading index A is obtained via the consistency condition which ema...ces from time dif-
ferentiation of Eq. 2, viz.,

aof:E:é

M ST EP-3%7 S ©)

In the sequel the following notation is used:

dof =Q=Q +0"d (6)
H =-98sf:8 N
Hy=Q:E:P=B@&rP)(rQ+2GPV:Q (8)

where B , G = Elastic bulk and shear moduli, respectively.



7.3 ALGORITHMS

The problem to be addressed is as follows:

¢ Given the known state variables associated with a converged configuration at step # :
(s, S,) and (ef, &)

and a new configuration at step (n +1),via €y + 1,

# Find the new values of the state variables:
(°n+lvsn+l) and £Rﬂ-l

In the process, the incremental strains A€ = (£, , | — £, } defining the state update are
assumed given. Further, it is assumed that the loading strain rate € is constant over the

time interval, viz,
Ae=ﬁ;cdt=em . )

where At = time step (= t,41— 1, }. As summarized by Ortiz and Popov (1985) an

acceptable algorithm for the integration of Eqs. 1-4 should satisfy the following three

basic requirements:

(i) Consistency with the constitutive relations to be integrated (i.e., first-order
accuracy),

(ii) Numerical stability, and
(ili) Incremental plastic consistency.

Conditions (i) and (1i) are necessary for attaining convergence of the numerical solution
as the time step becomes vanishingly small. Condition (iii) is the algorithmic counterparn
of the plastic consistency condition which requires the yield function 1o be satisfied by

the updated state variables.



Integration of Eqs. 1 - 4 is achieved by a stress relaxation procedure by which Eq. 1
is first used to obtain an elastic predictor, hereafter referred to as the trial stress 6% 4,

viz.,
o, = E.(g,,1-€8)=0, + E:Ac¢ (10)

Clearly, if f {(6Y.1,S,) < 0 the process is elastic and the trial stress is in fact the
final state. Otherwise, the triaf stress lies outside the yield surface and must be relaxed
onto the yield surface to restore plastic consistency. For that purpose, the trial stress is

taken as the initial condition for the following plastic relaxation:

Opns)] = OF 1 —AC (1
where (from Eqs. 1 and 3)
Aot = [V B dr = [ AE:Pd (12)
such that
f(6Gi:1,8+1)=0 (13)

to restore plastic consistency. The resulting procedure is shown schematically in Fig.
7.1, and consists of returning back the trial stress onto the yield surface. In general, the
return path defined by P ir. Eq. 12 is not known in advance nor can it be determined

analytically, and it is therefore necessary to integrate Eq. 12 numerically.



On +1

A or!

/ f(O',, l~sn+])=0

Figure 7.1 Schematic of the Elastic Predictor / Plastic Stress Relaxation



7.3.1 Algorithmic Set-up

An efficient and simple procedure for performing the return mapping was proposed
by Simo and Ortiz (1985), and further analysed by Ortiz and Simo (1986). In this algo-
rithm the return mapping i1s defined iteratively by employing linearized equations itera-
tively about the current tnal state. At every iteration, the plastic corrector problem is
integrated about the current trial values of the state variables by an explicit forward Euler
difference scheme over the length A to be determined by requiring that the updated state
variables satisfy a linearized version of the constraint equation, viz., let i denote the

iteration counter:

ofiby = Ei(&, . —€f ) (14)
ef ¢1D = ef £+ XPL P (ofdy, 80 (5)
Sith = sfly + K, 8ol 851 (16)
with the constraint condition:
f(ofity, 8§19y =0 (17)
Initially:
o’ = ol €L 4% = ef Si%) =S, (18)
Let
A1 = f (ol S (19)

At every iteration the yield function f (the constraint equation, Eq. 31} is linearized

about the current trial values of the state variables, (6§}, S§11) 10 obtain the follow-
ng:
f (oY, sfy) = (

FAL + g fAd1 : (O§1Y -ofil) + s fidy 1 (SFzN -8l ) =0 (0



Combining Eqs 14-16 and 20, onc finds:

L) = I
M4 = TR TP — %S TS @)

and (from Eq. 14) the updated stress state is computed as:

ofity = ofdy — X6, E: P}, (22)
The iteradons continue undl plastic consistency is restored 10 within a prescribed toler-
ance, viz., | £,4ND 149, | STOL with TOL <<1 . The procedure is summarized in
Flowchart 7-1 (from Simo and Hughes, 1987). The algorithm is consistent, firsr-order

accurate, only conditionally stable but achieves a quadratic convergence rate for the

update.



FLOWCHART 7-1. - CUTTING PLANE PROJECTION ITERATIONS

Initialize: i = 0 eI =¢f 89, =8,

Update stress and check yicld condition / plastic consistency:
ofly = E: (& .1 -€f 1)
A = f (af),,8§1)
FUfi)y SOOR. | £ /1ff9,| <TOL) EXIT, OTHERWISE:

Compute new plastic loading function:

Ca) = fAN
M= S TFTTE PR - 9 i ST,

Update plastic strains and state variables:
e 31 = g ) + A3 Pf),
SKi1Y = S§1, + A§2, 56,

Set: i =i+1 and GOTO 2.
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7.3.2 Muliti- Yield Surface Plasticity Case

Within the context of multi-yield surface plasticity models, it may occur that afier
completion of the preceeding calculations, it is found thar the swress point lics outside the
next larger yield surface. When this is the case, the iteration counter i must be reinitial-
ized to i =0, and calculations must begin again with respect 10 the next yield surface
(step 3 in Flowchart 7-1). However, some small, but crucial correction to the stress must
first be made to wake account of the fact that the swress has actually been over relaxed. To
se¢ the origin of the necessary correction, assume that a stress relaxation has just been
performed onto the yield surface f ), and it is now found that the resulting stress point
is outside surface £+, This is illustrated in Fig. 7.2. Clearly, as a result of the stress
overrelaxation, the yield surface f ™) now overlaps (or may even be 10tally outside) the
surface f ™+, However the relaxation should have performed onto the surface f (m+1)

upon contact of the two surfaces. The correction thus becomes:

Ep(i-rl) = gp ) ig)l’(m)((’(“.s,ﬁ)) + x'(!z_‘ P("'”)(O'('.)‘Srgll) (23)

S§+D = 8§ — XD ) (o), 84 ) 24
SHib = 8§k + AL S™*D (0@, 8h) (25)

olith) = gl + 1O E: P (g, §4)) - 14); E: Pm+D) (ol) SG), ) (26)

where the subscript n has been omitted to simplify the notation. The length AS) is
determined by linearizing the yield function f{™) about the current valucs of the state

variables, viz.,
FM(0@, 840 = FM(a®,86)) + S ™ (SFV-SP) @D
and by approximating the contact condition as:

S (o), 85) = fim+D (o), S4L) ) (28)
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™ (®,58) = 0
f(m)(o',s,ﬁ”)) =0

f (o, 88)=0

f (o), 84+D) = fem+h (0), 84,)

Figure 7.2. Multi-Surface Plasticity Case - Schematic of Correction
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Then, since £ ) (60}, §§) ) =0, (from Eqs 24, 27 and 28):

£ o - IV (eW, 8Ly fm (o9, SE ) 29
T s/ M S (g0, §§Y) HD

The length A{); is determined by linearizing the yield function f ™ +1) about the current

values of the state variables, viz.,

f(nnl)(o(.'-rl) . S“’tij ) =

F® (G0, 8Ly + Qg M (064D -ai) + 35 1 (SED -1 ) = 0

(30)
Combining Eqs 23-26, 29 and 30, one finds:
x(‘.)l _ f(m+l)(0(|)‘sgll) { + a,f('"*li:E:P("')
m aqf("“” CE - Pimel) - asf(m+1) . "'(‘S m+T) H 5
(31)

The procedure is surnmarized in Flowchart 7-2.



FLOWCHART 7-2. - INTEGRATION ALGORITHM
MULTI-YIELD SURFACE PLASTICITY CASE

H
—

1. Ininalize: i = 0 m

% =ef S, =8,
2. Update stress and check yield condition / plastic consistency:
ol = E:(e,,1-8f#])
F 100 = f™(ofly,SLh)

FIfm ], <008 |fm1§L,if®™ 10, | <TOL] GOTO 6
OTHERWISE GOTO 3.

3. Compule new plastic loading function:

Sy £m) )
M = O f):E:Pm) — gg f(m):§tm) |

4. Update plastic strains and state variables:
ef F1D = ef ) + K, P | 1)
SETY = 83y + A, 8 | 1,
S, Set: i =i+] and GOTO 2.
6. Check for overshooting of next yield surface, fm+1)
F [m = NYS ] EXIT

F [f™V(of}1,8§11) s0] EXIT
OTHERWISE GOTO 1.
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FLOWCHART 7-2. - Cont’d

7. Compute new plastic loading functions:

HE™) = 3o f™): E: Km) H'm) = —gg fom):§m)

fomet) [©

H'm nel

- (m+1) H§
(m+1) _

A = W [1 Mo

8. Updatc plastic strains and state variables:

fm) =

)

n+l

gp it = g},’ﬂ - Kim) pim) I’(lill + Alm+1) pim+1) ”ill
SU+Y = S, + Fm+1) Gm+D) |f11

9 Set:m=m+l;i=i+1; and GOTO 2.



7.3.3 Application / Examples

Consider the case of yield functions of the type

F™(a,8M) = |s-Fam| + ‘\’%—M("‘)ﬁ=0 32

where
Sm) = [alm) Mim)] (33)
s=G6-p3d p:-._‘,’-rrc (34)

and 7 = (p —a) with a = attraction = material parameter; a{™) = kinematic deviatoric
tensor defining the coordinates of the center of the yield surface f () in deviatoric stress

subspace; M (™) = material parameter. Then (from Eq. 32):

m) .~ om) — (5—F al®) 1 2 army _ (S—=p am);am
Og f™) = QM) = —(——&—T—)—L‘s_ﬁam ! + T[‘\{TM( ) Ts=p ol | 3

= QM 4 (/im)§ (35)

The flow direction (Eq. 3) is assumed as follows:

pim) = pm) 4 p7im) § (36)
with

where 1 = (-g-s:s)m/ﬁ = mobilized stress ratio; and 7| = material parameter. A
purely deviatoric kinematic hardening rule is assumed, and (from Eq. 32):

Isfm) = 9g fM) = — 5 Q'tm) (38)

with



where H’(m) = plastic modulus; and (™) = (deviatoric) tensor defining the direction of
translation. Let NYS denote the number of yield functions used (NYS 21). Thento

avoid overlapping of the surfaces, the translation direction p®) is given by

pim) = — '\}%_ M) g T::_%a;(‘;;_l - (s—F am+D) (40)

when surface f ) translates towards surface £ +1). On the last surface m =NYS and
usually H” =0, and no motion is to tzke place, (the last surface then plays the role of a

failure surface). Otherwise, p(m} = Q') on the last surface.

In order to illustrate the performance of the return mapping algorithm and assess its
accuracy, we consider a cohesionless (@ =0) cross-anisotropic material with assumed
friction angle at failure ¢ =35 degrees and dilation angle ¢ =30 degrees . The
material is modelled by using 10 yield surfaces, and the following elastic moduli are

assumed:
Gy/py = 150. B,/p; = 100,

where p;= reference mean effective stress. Following usual sign conventions in
geomechanics, compressive stresses and strains are considered positive in the following.
The material is assumed to be subjected, at constant volume, to 2 monotonically increas-
ing and decreasing shear strain € with maximum amplimde €=1.510-2 (undrained
triaxial soil test). To assess accuracy and robustness of the algorithm, loading is

achieved in N equal load steps Af with

- £
=N
with N =5,10,and 100. In all cases, the algorithm remained stable. The solution
computed with 100 load steps is fully "converged”, and can be considered “exact”. Fig.
7.3a shows the computed shear stress versus shear strain curves. Very good agreement

with the exact solution is obtained in all cases, even for the solutions constructed with



very large load steps. Fig. 7.3b shows the computed effective stress paths (shear stress
versus mean effective stress). Clearly, the effective stress paths computed with large load
steps differ from the exact stress path. This was to be expected, and is due to the assumed
non-associativity and high degrec of nonlinearity for the diiatational component of the
plastic flow (Eq. 37). The algorithm only being first-order accurate, requires small ioad
steps 10 return accurate answers in highly nonlinear situations. This point is clearly illus-

trated by the assumed nonlinearity in the dilatational component.
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7.4 EXTENSION TO VISCO-PLASTICITY

The extension to visco-plasticity is based on the formulation proposed by Duvaut
and Lions (1972). It is important to note that the visco-plastic formulation used here is
different and not equivalent to Perzyna’ s type formulation (Perzyna, 1966, 1971) com-
monly used in gcomechanics (scc e.g., Katona, 1984). Let [ o(*), $(*) ] denote the invis-
cid solution of the elastoplastic problem. Then the visco-plastic constitutive equations
are written in the following form:
é"”=%E“:(a—a‘") é=lnl(s-s<‘>) (41)
where 1) = relaxation time (= material constant). The exact integration of Eqs 1 and 41 is
straightforward. The resulting algorithm is summarized in Flowchart 7-3. Note thai the

elastic and inviscid elasto-plastic solutions are recovered from the algorithm as:

* %i - 0; 6,.,1=0, + E:Ae,,1 (Elasitic)
. .%_t - w; Oy, = 08, (Inviscid Elasto—Plastic )

The algorithm is straightforward to implement.
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FLOWCHART 7-3. - VISCO-PLASTIC ALGORITHM

Obtain the inviscid clasto-plastic solution: [ 6§°};,84"2, ]

using Flowcharts 7-1 or 7-2.

Compute the visco-plastic solution as:

Gnsy = exp(-A1/N)G, +[1 - exp(—Az /M) 1082,

+ I-—ea%:»’(—At/n) E:Ae,.;

m

Spst = exp(—A1 /)8, + [ 1 —exp(—Ar /) )88
EXIT.
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