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. PREFACE 

The National Center for Earthquake Engineering Research (NCEER) is devoted to the expansion 
and dissemination of knowledge about earthquakes, the improvement of earthquake-resistant 
design, and the implementation of seismic hazard mitigation procedures to minimize loss of lives 
and property. The emphasis is on structures and lifelines that are found in zones of moderate to 
high seismicity throughout the United States. 

NCEER's research is being carried out in an integrated and coordinated manner following a 
structured program. The current research program comprises four main areas: 

• Existing and New Structures 
• Secondary and Protective Systems 
• Lifeline Systems 
• Disaster Research and Planning 

This technical report pertains to Program 3, Lifeline Systems, and more specifically to the study 
of d~s, bridges and infrastructures. 

The safe and serviceable operation of lifeline systems such as gas, electricity, oil, water, com
munication and transportation networks, immediately after a severe earthquake, is of crucial 
importance to the welfare of the general public, and to the mitigation of seismic hazards upon 
society at large. The long-term goals of the lifeline study are to evaluate the seismic performance 
of lifeline systems in general, and to recommend measures for mitigating the societal risk arising 
from their failures. 

In addition to the study of specific lifeline systems, such as water delivery and crude oil transmis
sion systems, effort is directed toward the study of the behavior of dams, bridges and infrastruc
tures under seismic conditions. Seismological and geotechnical issues, such as variation in 
seismic intensity from attenuation effects, faulting, liquefaction and spatial variability of soil 
properties are topics under investigation. These topics are shown in the figure below. 
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In this study, a seismologically-based stochastic model is utilized to describe the horizontal 
bedrock motions at a site in Shelby County, Tennessee due primarily to shear waves generated 
from the New Madrid seismic source. This stochastic model is based on a power spectrum which 
in turn is developedfrom a seismologically-based Fourier amplitude spectrum. From the power 
spectrum, earthquake time histories and probability-based response spectra can be generated 
directly. The peak values of horizontal bedrock accelerations for Memphis and Shelby County 
are computed for two New Madrid earthquakes of M = 7.5 and 65. Two different cases of 
seismic sources are considered: (1) a single source at Marked Tree, Arkansas and (2) the 
southern section of the New Madrid seismic zone. The results are presented in contour maps. 
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ABSTRACT 

~ 
Memphis and Shelby County are geographically close to the southern segment of the New 

Madrid seismic zone (NMSZ). The NMSZ is being regarded by seismologists and earth

quake engineers as the most hazardous zone in the eastern United States. In this study, a 
~ 

seismologically-based model is 1:l·ti~.i,ze€l to describe the horizontal bedrock motions at a site 
1\ . 

due to primarily shear waves generated from a seismic source. This model is centered on a 

power spectrum which is in turn developed from a seismologically-based Fourier amplitude 

spectrum. From the power spectrum, earthquake time histories and probability-based re

sponse spectra can be generated directly. The power spectrum generated in this study can 

also be used to estimate the peak value of earthquake acceleration based on the extreme 

value distribution of a random process. The peak values of horizontal bedrock accelera

tions for Memphis and Shelby County are computed for two New Madrid earthquakes of 

111 = 7.5 and 6.5. Two different cases of seismic sources are considered: (1) a single source 

at Marked Tree, Arkansas; and (2) the southern segment of the NMSZ. The results are 

presented in contour maps. 
~ 
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SECTION 1 

INTRODUCTION 

City of Memphis and Shelby County, Tennessee are geographically close to the southern 

segment of the New Madrid seismic zone (NMSZ) (figure 1-1). The NMSZ is regarded 

by seismologists and engineers as the most hazardous seismic zone in the eastern United 

States. In the winter of 1811-1812, this zone produced three of the largest earthquakes 

known to have occurred in North America and hundreds of damaging aftershocks. At 

present, this zone is still quite seismically active. Thus, a significant potential of seismic 

hazard exists in Memphis and Shelby County. 

Estimating the characteristics of bedrock motions due to large New Madrid earthquakes is 

an essential task for earthquake-resistant design of structures and seismic risk assessment 

studies such as the Seismic Risk Assessment of Memphis Water Delivery System project. 

For engineering applications, quantitative measures of earthquake shaking rather than 

qualitative description such as Modified Mercalli Intensity are required. Making these 

quantitative estimates is quite challenging due to the lack of strong motion data in the 

New Madrid region. In this study, a seismologically-based model for the horizontal bedrock 

accelerations is first established. Using this model, the power spectrum, time histories 

and response spectra at a site can be developed. In addition, the peak value of horizontal 

bedrock accelerations can be estimated based on the extreme value distribution of a random 

process. Peak bedrock accelerations resulting from two large New Madrid earthq~akes of 

moment magnitudes 7.5 and 6.5 are estimated and displayed in contour maps for Memphis 

and Shelby County. 
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Figure 1-1 Epicenters of New Madrid Earthquakes 
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SECTION 2 

NEW MADRID SEISMIC ZONE 

2.1 Tectonic Setting 

The occurrence of large earthquakes in the middle of a continent is not well understood 

by seismologists and earthquake engineers. There is still no explanation of mid-plate 

earthquakes in plate-tectonic theory. However, it is now commonly believed that the 

present seismic activity in the New Madrid seismic zone (NMSZ) is related to an ancient 

rift complex known as the Reelfoot Rift Complex (figure 2-1) [1-7]. This continental 

rift of La.te Precambrian age is expressed as a northeast trending graben in the granitic 

upper crust, filled with low-velocity sedimentary rocks. The rift is about 70 km wide and 

200 km long. Both regional gravity and aeromagnetic surveys [7-9] and seismic refraction 

studies [10,11] support the rift cOIpplex hypothesis: Due to the present horizontal east-west 

compressive stress regime, the reactivation of the ancient faults within the rift complex is 

responsible for the earthquakes occurring in the NMSZ [4,12]. 

2.2 Seismic Source Zone 

, . 

At present, the NMSZ i~.s still seismically active. Small earthquakes are detected almost 

every other day. The seismic zone is clearly delineated by the concentration of epicenters 

located by both the Memphis State University and Saint Louis University seismic'networks 

(figure 2-2). From the pa'ttern of epicenters, at ieast three distinct linear trends suggesting 
~ - " .-

the orientations of three subsurface fault ~egments in the Ne'~ Madrid region are observed 

[6,13,14]. These three fault segments are described as. :(1) a southern. segment extending 

from Marked Tree, Arkans,as to Caruthersville, Missouri, roughly along the axis, ?f the rift 

structure; (2) a middle segment trending northwest and extending from Ridgely, Tennessee 

to west of New Madrid, Missouri; and (3) a relatively shorter northern segment extending 

from west of New Madrid, Missouri to southern Illinois. 

From the focal mechanism studies [6,12,15], both the northern and southern segments 

exhibit a predominately right-lateral strike slip fault-plane motion. The middle segment, 

on the other hand, appears to be more complex and exhibits a thrust taulting mechanism. 

According to Johnston [13], although the middle fault segment generates four times as 
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Figure 2-2 New Madrid Seismic Zone 
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many microearthquakes as the southern segment, it releases only one quarter of the seismic 

energy produced by the southern segment. Johnston further indicates that except along 

the three principal fault zones no earthquake of mb 2: 6.0 has occurred in the central 

United States. Thus, the NMSZ defined by Johnston [16] as shown in figure 2-2 is used in 

this study. 

2.3 Attenuation 

The 1811-1812 sequence of New Madrid earthquakes, according to Nuttli [17,18]' produced 

damaging intensity at far greater than any other historical earthquake in North American 

continent. The shocks were felt over a wide area of central and eastern United States. 

Nuttli constructed a generalized'isoseismal map of the first principal shock (Ms = 8.5) 

occurred on December 16, 1811 (figure 2-3). The area experienced damaging earthquake 

motions (Modified Mercalli Intensity 2: VII) is estimated to be 600,000 km2
• 

The great distance at which the New Madrid earthquakes were felt and caused damages 

has been explained by low attenuation of the seismic waves in the cent~al and eastern 

United States [18]. The attenuation of seismic waves is expressed by the quality factor Q 
which is dependent on frequency f. Based on the attenuation study conducted by Dwyer 

and others [19] in the central United States, the frequency dependent quality factor Q(f) 

of shear and L9 waves is 

Q(f) = 1500 . fOA (2.1) 

Several other Q models based on regional seismographic data have also been derived for 

the eastern North America (ENA). Hasegawa [20] analyzed the records of L9 waves from 

several Canadian shield events and proposed a Q factor for the Shields region as 

Q(f) = 900· fO.
2

. , (2.2) 

Shin and Herrmann [21] performed spectral analysis of the digitally recorded L9 waves of 

the New Brunswick aftershocks arid suggested a Q( f) model as 

Q(f) = 500· fO.
65

. (2.3) 

Since this study is related to NMSZ, we feel that the quality factor proposed by Dwyer 

and others [19] is more appropriate. Thus, Q(f) as shown in equation (2.1) is used. 
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Figure 2-3 Isoseismal Map of the 1811 New Madrid Earthquake 

(after Nuttli, O. W., 197:1) 
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2.4 Occurrence Rate 

Although a large New Madrid earthquake is known to have a much larger damaging area 

than that of a San Andreas earthquake of similar size [18], it is important to recognize 

that earthquakes occur more frequently in California than in the New Madrid region. A 

cumulative frequency-magnitude curve for the New Madrid earthquakes has recently been 

. constructed by Johnston [16J as shown in figure 2-4. 
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SECTION 3 

BEDROCK MOTION MODEL 

In many engineering applications, earthquake excitations are usually represented by power 

spectral density functions (power spectra), acceleration time histories or response spectra. 

Earthquake motions can be generated by empirical approaches [22,23], semi-theoretical 

approaches [24-27] and theoretical approaches [28-33]. Due to the lack of strong-motion 

data in the central and eastern United States, a seismologically-based model is utilized 

to describe the horizontal bedrock motions at a site due to primarily shear waves gen

erated from a seismic source. This model is centered on a power spectrum which is in 

turn developed from a seismologically-based Fourier amplitude spectrum. From the power 

spectrum, earthquake time histories and probability-based response spectra such as 84 

percentile non-exceedance response spectra, can be generated directly. 

3.1 Fourier Amplitude Spectrum 

Several seismologically-based Fourier amplitude spectra have been proposed [29,32,33]. 

The Fourier amplitude spectrum used in this study essentially f~llows the Boore .and Atkin

son approach [29] and is expressed as follows: 

A(f) = C X S(f) x D(f) X 1(f) (3.1 ) 

where C is a scaling factor; S(f) IS a source spectral function; D(f) IS a diminution 

function; and 1(f) is a shape filter. 

3.1.1 Source Spectral Function 

The source spectral function SU) is a frequency-domain representation of the seIsmIC 

energy released by an earthquake. In this study, an w2 source spectrum of shear waves 

proposed by Brune [34,35] and Aki [36] is utilized. This source spectrum is a function of 

a single corner frequency /0 and seismic moment Mo 

S(f) = 1\1[0 

1+ (t)2 

3-1 
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The corner frequency 10 is related to the seismic moment }VIo through shear wave velocity 

/3 and stress parameter Au 

6 (AU)l 10 = 4.9 x 10 f3 AIo 3 (3.3) 

.The seismic moment Mo is related to average displacement D and fault rapture area A as 

follows: 

Mo=J.LAD (3.4) 

where J.L is the modulus of rigidity in the source zone [37J. The equation relating moment 

magnitude M to seismic moment Mo established by Hanks and Kanamori [38J is 

2 
M = 31oglvlo - 10.7 (3.5) 

Since the moment magnitude M is most closely related to the physical characteristics of 

the seismic· source, it is used to describe the size of earthquakes through ouf this study. 

The stress parameter ~u is a parameter describing the level of the source spectral function 

above the corner frequency 10. For a fixed moment magnitude }vI and a constant shear 

wave velocity /3, the corner frequency 10 in equation (3.3) varies with the stress parameter 

~u. The stress parameter ~u proposed by Brune [34,35]' Joyner [39J, Atkinson [40], and 

Boore and Atkinson [29J is a constant and independent of earthquake magnitude while the 

stress parameter suggested by Nuttli [41J increases with magnitude. In this study, we adopt 

the constailt stress parameter to predict the peak ground accelerations. Several values of 

Au have been proposed by Boore and Atkinson [29J, Somerville and others [42J, McGuire 

and other·s [31,43J, and Nebelek and Suarez [44J. Among them, Boore and Atkinson [29], 

McGuire and others [31], and Somerville and others [42J concluded an average Au around 

100 bars. Nebelek and Suarez [44J, on the other hand, suggested a stress v·alue as high as 

670 bars for the 1983 Goodnow earthquake. Nevertheless, the most commonly accepted 

stress value for the eastern North America is 100 bars. Thus, the stress parameter ~u for 

the New Madrid earthquakes is taken as 100 bars. 

3-2 



3.1.2 Scaling Factor 

According the scaling law suggested by Boore [28] and Joyner [39], the scaling factor C is 

a constant given by 

where 

(R9¢) = Radiation pattern 

F = Free surface effect 

C = (R(J¢) . F . V . ! 
47T . P . (33 r 

V = Partition of a vector into horizontal components 

(3 = Continental crustal shear wave velocity 

p = Crustal density 

r = Hypocentral distance 

(3.6) 

(R(Jr/J) is the radiation patterns correspond to different types of seismic waves over a range 

of azimuths (B) and take-off angles (¢». For ¢> and B averaged over the whole focal sphere, 

the shear-wave radiation pattern (R(Jr/J) is 0.55 [45]. F is the amplification due to the free 

surface and is assumed as 2 [28,29]. V is the factor which accounts for the partition of a 

vector into horizontal components and is chosen as 1/.)2. 

The shear wave velocity (3 is the average crustal shear wave velocity near the seismic source. 

Based on the hypocentrallocations of the instrumentally recorded microearthquakes in the 

New Madrid seismic zone, the focal depths normally range from 5 to 20 kilometers below 

the surface where the granitic basement rock of the upper and middle continental crusts 

are found. In this study, a continental crustal shear wave velocity (3 of 3.5 km/sec is used 

for an average focal depth of 10 km. The average crustal density p of continental crust at 

this focal depth is taken as 2.7 9 / cm3
. 

The hypocentral distance r is the distance measured from the focus of an earthquake to 

the surface at which a selected site is located. The term l/r in equation (3.6) accounts for 

the diminishing of the source spectrum as a result of body-wave geometric spreading. At 

hypocentral distances greater than 100 kilometers, r is replaced by ~, where rx indicates 
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a distance beyond which the dominant ground-motion signal can be better described by 

the Lg waves than shear waves [29,31,46]. In this study, rx is chosen as 100 kilometers. 

3.1.3 Diminution Function 

The diminution function D(J) represents the anelastic attenuation which accounts for the 

damping of the earth's crust and a sharp decrease of acceleration spectra above some 

cut-off frequency. These phenomena are expressed by the following equation 

-1T·I·r 
D(J) = exp[ Q(J) ./3]'P(J,!m) 

where 

Q(f) = Frequency-dependent quality factor 

P(J, 1m j = High-cut filter 

(3.7) 

The exponential term in equation (3.7) accounts for the path attenuation. The quali ty 

factor Q(J) is shown in equation (2.1) as suggested by Dwyer and others [19]. The high

cut filter P(J, 1m) accounts for the observation that the acceleration spectra often show a 

sharp decrease above some cut-off frequency 1m which cannot be attributed to the path 

attenuation. In this study, a Butterworth filter with a cut-off frequency 1m set at 40 Hz 

is used as the high-cut filter P(J,/m): 

P(J, 1m) = [1 + ( L )8r1/2 (3.8) 
1m 

3.1.4 Shape Filter 

The shape filter 1(J) is used to shape the source spectral function for a particular type of 

earthquake motion of interest. For acceleration, the filter function is given as 

1(J) = (21T 1)2 (3.9) 

The essential parameters used to compute the Fourier amplitude spectra of bedrock ac

celeration with moment magnitude !vI = 7.5 and epicentral distance R = 50 km are 

summarized in Table 3"1. The resulting Fourier amplitude spectrum is presented in figure 

3-1. 
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TABLE 3-1 SUMMARY OF PARAMETERS 

SYMBOL VALUE 

MOMENT MAGNITUDE 111 7.5 

EPICENTRAL DISTANCE R 50 km 

RADIATION PATTERN (RotjJ) 0.55 

HORIZONTAL COMPONENT V 0.71 

SHEAR WAVE VELOCITY (3 3.5km/ sec 

SOURCE ROCK DENSITY p 2.7g/cm3 

QUALITY FACTOR QU) 1500r·4 

STRESS PARAMETER 6.0- 100bars 

CUT-OFF FREQUENCY 1m 40.0Hz 
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3.2 Power Spectral Density Function 

The power spectrum of an earthquake can be calculated from the Fourier amplitude spec

trum. An earthquake accelerogram generally shows a build-up segment followed by a strong 

motion segment which is in turn followed by a decay segment. Moayyad and Mohraz [47] 

found that the frequency content of earthquake accelerograms is approximately constant 

during the strong motion segment. Thus, the strong motion segment of an acceleration 

time history is considered as a stationary random process and its one-sided power spectral 

density function SaaU) is 

2 2 
SaaU) = T IAU)I (3.10) 

where AU) is the Fourier amplitude spectrum as in equation (3.1) and T is the duration 

of the strong motion. In this study, strong motion duration T is chosen as the source 

duration which is equal to the reciprocal of the corner frequency to [48,49]. 

T = 1/ to 

The power spectrum of an earthquake of moment magnitude AI 

distance R = 50 km is plotted in figure 3-2. 

3.3 Time Histories 

(3.11) 

7.5 and epicentral 

In this study, the method proposed by Shinozuka [50,51) is employed for generating syn

thetic earthquake time histories. The stationary acceleration time histories as (t) can be 

generated from the equation below 

N 

as(t) = V2L: JSaa(Wk)~W' cOS(27T"Wkt + <Pk) 
k=l 

where 

Saa(Wk) = One-sided earthquake power spectrum 

N = Number of frequency intervals 

~w = Frequency increment 

Wk = k~w 

<Pk = Random phase angles uniformly distributed between 0 and 27T" 

3-7 
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The nonstationary acceleration time histories a(t) can be obtained from the multiplication 

of an envelope function W(t). 

a(t) = as(t) . W(t) (3.13) 

In this study, the envelope function W(t) is comprised of three segments: (1) a paraboli

cally increased segment simulating the initial rise part of the accelerogram and its duration 

is chosen as one fifth of Tj (2) a constant segment representing the strong motion portion 

of an earthquake excitation and has a duration equals to Tj and (3) a linearly decayed 

segment extending four-fifth of T. Thus, the total duration is 2T. It is noted that real 

earthquake records are commonly observed with long coda durations, however, in most en

gineering applications the coda durations are considered unimportant. The total duration 

used in this study is, therefore, adequate for engineering applications. The envelope func

tion for an earthquake of M = 7.5 is shown in figure 3-3. The source duration computed 

from equation (3.11) is 16 seconds and the total duration is 32 seconds. From equations 

(3.12) and (3.13), a sample of accelerogiam of M = 7.5 and R = 50 km is generated and 

displayed in figure 3-3. 

3.4 Probability-Based Response Spectra 

Conventional methods for generating response spectra are through earthquake time his

tories. These methods, however, are tedious and time-consuming. In this study, a more 

efficient method based on the random vibration theory is adopted to compute the response 

spectra directly from the power spectrum [52]. Furthermore,-the response spectra com

puted by this approach has statistical meaning such as the mean response spectra or 90 

percentile non-exceedance response spectra. 

A response spectrum is a representation of the maximum response (displacement, velocity, 

acceleration, etc.) to a specified input earthquake for all possible simple oscillators. The 

equation of motion for a siinple oscillator with natural frequency Wo and damping ratio ( 

IS 

x + 2(wox + w~x = -a(t) (3.14) 

where x(wo, t) is the relative displacement and a(t) is the input earthquake acceleration 

time history. For zero initial condition, the relative displacement x(wo, t) obtained from 

3-9 
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equation (3.14) is 

-lit x(wo;t) = - a{r)exp[-(wo(t - r)Jsin[Wd(t - r)Jdr 
Wd 0 

(3.15) 

where, Wd = Wo(1- (2)1/2. For a given frequency wo, the ordinate of the r~lative displace

ment response spectrum Rd is the maximum absolute value of x(wo, t), that is 

Rd = maxlx(wo,t)1 (3.16) 

Assuming that an earthquake is a stationary Gaussian process with mean zero and one

sided power spectrum Saa(w), the relative displacement response x(wo, t) of a simple os

cillator with natural frequency Wo, is also a stationary Gaussian process with mean zero 

and the power spectrum S:z: (w ). 

where H{w)_ is the complex frequency response function 

1 
H (w) = ---::-----

(w~ - w2 ) + 2i(wwo 

(3.17) 

(3.18) 

with i = vCI. As defined in equation (3.16), Rd is the maximum absolute value of x(wo, t). 

From Appendix A, the mean value Rd can be determined from 

(3.19) 

w here Pm is the mean peak factor and (J':z: is the standard deviation of the displacement 

response. The mean pseudo-acceleration response spectrum Ra can be computed from 

(3.20) 

The mean response spectra for earthquakes of several different moment magnitudes at 

R = 100 km are shown in figure 3-4. Variation of peak spectral accelerations with respect 

to moment magnitudes can· be seen from the figure. 
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3.5 Comments on Parameter Uncertainties 

The seismologically- based model for the horizontal bedrock accelerations is defined by sev

eral parameters as described in Section 3. Some parameters such as source rock density 

p and shear wave velocity (3 appear to have less influence on the resulting bedrock accel

erations. On the other hand, parameters such as quality factor Q(!), stress parameter 

~u, and cut-off frequency f m seem to have significant effects on the bedrock accelerations. 

The quality factor expressed in equation (2.1) is used in this study. Modeling uncertainty 

is accounted for if different equations for the quality factor e.g., equations (2.2) and (2.3) 

are also used. Furthermore, the selection of values other than those used in this study for 

stress parameter and cut-off frequency will cover the random uncertainty. In this study, 

the most commonly accepted value of each parameter for the study region is utilized. The 

random and modeling uncertainties are not included because of the lack of strong motion 

data to quantify these uncertainties. This is a topic needs to be studied in the future when 

more strong motion data are available. 
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SECTION 4 

PEAK BEDROCK ACCELERATIONS IN MEMPHIS AREA 

The seismic hazard in Memphis and Shelby County, Tennessee is entirely dominated by 

earthquakes in the New Madrid seismic zone (figure 1-1). In this study, the peak values 

of bedrock accelerations in Memphis and Shelby County are computed for two large New 

Madrid earthquakes of M = 7.5 and 6.5. The moment magnitude 7.5 earthquake represents 

a major event to be considered for the seismic risk assessment and emergency response 

planning. On the other hand, the moment magnitude 6.5 earthquake is known to have 

significantly high probability of occurrence between now and early next century [53]. 

For the purpose of constructing contour maps, a grid system consists of rectangular cells 

with equal size of 30 seconds in both latitude and longitude is selected [54]. As a result, 

over three thousand grid points within Memphis and Shelby County region are created 

(figure 4-1). 

4.1 Estimation of Peak Bedrock Accelerations 

The peak value Ap of a bedrock acceleration time history a( t) can be expressed as 

Ap = maxla(t)1 ( 4.1) 

The mean value Ap and standard deviation U Ap of the peak values can be determined from 

the random process theory as shown in Appendix A. 

( 4.2) 

U Ap = q . U a ( 4.3) 

where U a , pm and q can be determined from equations (A.l), (A.7) and (A.8), respectively, 

in Appendix A. 

4.2 A Marked Tree Event 

Marked Tree, Arkansas is located near the end of the southern New Madrid seismic zone 

(figure 4-2). On January 4, 1843, an mb = 6.0 earthquake occurred at this location [55]. 
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Thus, in this study, a single source at Marked Tree is first assumed to estimate the peak 

values through out the county. Table 4-1 shows the mean peak values and coefficients 

of variation (COV) of three selected sites, Memphis State University (MSU), Millington 

and Germantown resulting from a Marked Tree event of 111 = 7.5. It can be seen that 

COY of the peak accelerations are generally less than 10 percents. The variation of peak 

acceleration is thus negligible and only the mean values of peak accelerations are used to 

construct the contour maps. The contour maps of mean peak values for the AI = 7.5 and 

6.5 events are presented in figures 4-3 and 4-4, respectively. 

4.3 Southern Segment of NMSZ 

Memphis and Shelby county are located southeast of the NMSZ. If an earthquake occurs 

in the southern segment of the NMSZ, it may have a significant impact on Memphis and 

Shelby County. Since we cannot predict where the next New Madrid earthquake will occur, 

we assume that an earthquake may occur anywhere in the southern NMSZ. The boundary 

of the southern NMSZ is defined in figure 4-2. A grid system is applied to the southern 

NMSZ and results in 155 source points. In order to evaluate the peak values of a site due to 

the southern NMSZ, the peak accelerations from all 155 source points are computed using 

equation (4.2). From these 155 peak values, the mean, standard deviation and maximum 

values are determined. For the three sites, Memphis State University (MSU), Millington 

and Germantown, these values for an AI = 7.5 earthquake are tabulated in table 4-II. It 

can be seen that the mean plus one standard deviation value is very close to those obtained 

from the Marked Tree event. For an M = 7.5 event, the contour maps for the mean, mean 

plus one standard deviation and maximum values are shown in figures 4-5, 4-6 and 4-7, 

respectively. The corresponding contour maps for an AI = 6.5 event are shown in figure 

4-8, 4-9 and 4-10, respectively. 

4-4 
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MEAN 

SD 

COY 

TABLE 4-1 Marked Tree Event M = 7.5 

MILLINGTON 

59km 

0. 219 

0. 0199 

0.09 

4-5 

MSU 

66km 

0.189 

0. 0169 

0.09 

GERMANTOWN 

78km 

0.159 

0.0149 

0.09 
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TABLE 4-11 Distribution of Peak Values (Southern NMSZ, M = 7.5) 

MEAN 

SD 

MEAN + SD 

MAXIMUM 

MILLINGTON 

0.18g 

0.05g 

0.23g 

0.31g 

4-8 

MSU GERMANTOWN 

0.14g 0.12g 

0.04g 0.03g 

0.18g 0.15g 

0.22g 0.18g 
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SECTION 5 

CONCL USIONS 

Memphis and Shelby County are geographically close to the southern segment of the New 

Madrid seismic zone (NMSZ). The NMSZ is being regarded by seismologists and earth

quake engineers as the most hazardous zone in the eastern United States. Estimating 

the characteristics of seismic ground motions induced by large New Madrid earthquakes is 

an essential task for earthquake resistant design of structures and seismic risk assessment 

studies. In many engineering applications, earthquake excitations are usually represented 

by power spectra, time histories or response spectra. Making these quantitative estimates 

is quite challenging due to the lack of strong motion data in the New Madrid region. 

In this study, a seismologically-based model is utilized to describe the horizontal bedrock 

motions at a site due to primarily shear waves generated from a seismic source. This model 

is centered on a power spectrum which is in turn developed from a seismologically- based 

Fourier amplitude spectrum. From the power spectrum, earthquake time histories and 

probability-based response spectra can be generated directly. As an example, the Fourier 

amplitude and power spectra, and an acceleration time history are generated for a New 

Madrid earthquake of moment magnitude Jvl = 7.5 and epicentral distance R = 50 km. 

The mean response spectra corresponding to various !vI are also generated. 

The power spectrum generated in this study can be used to estimate the peak value of 

earthquake accelerations based on the extreme value distribution of a random process. 

The peak values of bedrock accelerations for Memphis and Shelby County are computed 

for two New Madrid earthquakes of M = 7.5 and 6.5. Two cases of seismic sources are 

considered: (1) a single source at Marked Tree, Arkansas, and (2) the southern segment 

of the NMSZ. The results are presented in contour maps and are very useful for seismic 

risk assessment studies such as the Seismic Risk Assessment of Memphis Water Delivery 

System project. 

The effects of soil conditions on earthquake ground motions have been well demonstrated 

by many actual earthquakes such as the 1964 Niigata earthquake, the 1967 Caracas earth

quake, and the 1985 Mexico earthquake. Bedrock motions can be greatly modified, both 
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in amplitude and frequency characteristics, as seismic waves transmit through some over

lying soil deposits. Memphis and Shelby County are located in the Mississippi embayment 

where relatively unconsolidated soils up to 3,000 feet thick are deposited. A recent study 

by Hwang and others [56J has demonstrated that the soil conditions in Memphis area have 

profound effects on earthquake ground motions. It is to be noticed that all the results 

presented in this report are pertinent to bedrock accelerations in Memphis and Shelby 

County. The subsurface conditions of Memphis and Shelby County have been established 

based on about 8,500 existing boring logs [54J. An effort is being carried out to study the 

effects of soil conditions on earthquake ground motions in the entire Memphis area. 
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APPENDIX A 

EXTREME VALUE DISTRIBUTION OF A RANDOM PROCESS 

Assuming that y(t) is a stationary Gaussian process with mean zero and one-sided power 

spectrum Sy (w). The variance of the process u~ is 

(A.l) 

and the moments of the spectral density function about the frequency origin are 

i = 0,1,2, ... (A.2) 

It is noted that AO is equal to u~ and the second moment A2 is the variance of its time 

derivative u;. The shape factor 8 is defined as 

(A.3) 

The shape factor is a measure of the dispersion of the spectral density function about its 

center frequency. 8 is dimensionless and always lies between 0 and 1. Furthermore, 8 is 

small for a narrow-band process and relatively large for a wide-band process [A.l]. 

The mean zero-crossing rate of the stationary Gaussian process vo is 

(A.4) 

The maximum absolute value of a stationary random process y(t) over a duration Td is 

defined as: 

Ym = maxly(t)I, (A.5) 

The statistical distribution of Ym can be approximated by the asymptotic distribution 

function of the extreme values [A.2]. In this study, however, the cumulative distribution 

function of Ym proposed by Vanmarcke [A.l] is used, 

) [ 
. a

2
] [ 1 - exp( - ~a 8e )]., 

Fy",(r = 1- exp(--) exp -VOTd ( 2/ ) 
2 exp a 2 - 1 

r > 0 (A.6) 
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in which Oe = 01.2 and a = r / A is a normalized barrier level. 

The mean and standard deviation of Ym are particularly useful to engineering applications. 

The mean value Ym and standard deviation (jy", can be expressed as follows: 

Ym = pm· (jy (A.7) 

(A.8) 

From equation (A.6), Der Kiureghian [A.3] obtained the following empirical equations for 

pm and q: 

in which 
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VOTd 
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