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PREFACE

The National Center for Earthquake Engineering Research (NCEER) is devoted to the expansion
and dissemination of knowledge about earthquakes, the improvement of earthquake-resistant
design, and the implementation of seismic hazard mitigation procedures to minimize loss of lives
and property. The emphasis is on structures and lifelines that are found in zones of moderate to
high seismicity throughout the United States. '

NCEER’s research is being carried out in an integrated and coordinated manner following a
structured program. The current research program comprises four main areas:

« Existing and New Structures

+ Secondary and Protective Systems
Lifeline Systems

 Disaster Research and Planning

This technical report pertains to Program 2, Secondary and Protective Systems, and more specifi-
cally, to protective systems. Protective Systems are devices or systems which, when incorpo-
rated into a structure, help to improve the structure’s ability to withstand seismic or other en-
vironmental loads. These systems can be passive, such as base isolators or viscoelastic dampers;
or active, such as active tendons or active mass dampers; or combined passive-active systems.

Passive protective systems constitute one of the important areas of research. Current research
activities, as shown schematically in the figure below, include the following:

1. Compilation and evaluation of available data.
2. Development of comprehensive analytical models. ‘
3. Development of performance criteria and standardized testing procedures.
4. Development of simplified, code-type methods for analysis and design.
Base Isolation Systems
L . 1 Program1 1
Analytical Modeling and . Data Compilation - ‘ r s
Experimental Verification and Evaluation - I - Seismicity and
i

\ / I Ground Mation
oo

Performance Criteria and
Testing Procedures

* 1. Program 2 1
_‘_1ﬁ 1

- Secondary 1

Methods for Analysis I Systems )
and Design lcc e m=m--
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The Center provided funding to the State University of New York at Buffalo to conduct a pro-
gram of analytical and experimental research on the possible use of shape memory materials in
passive protective systems for building structures. This report presents the results of the analyti-
cal research that has been carried owt at SUNY/Buffalo. The following sections detail the

analytical models used, results. obtained, and conclusions that can be drawn from this
investigation. ‘ '
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ABSTRACT

Ozdemir’s model of one-dimensionai hysteretic force-deformation
behavior for base isclation energy absorbing devices is selected as a basis
for more general models of materia; point stress-strain behavior. The
modification of the backstress allows for the description of material behavior
associated Qith shape memory materials. The shape memory material behavior'
characteristics are of interest for base isclation and structural bracing
technologies due to their high damping capacity. The one-dimensional models
of metal plasticity and shape memory material behavior are extended to three-
dimensional tensor representations which involve deviator expressions and
their associated invariants. The resulting formulafions} for the one-
dimensicnal case are used in calculations for the c¢yclic stress-strain
behavior of both models. The resulting hysteretic data show the convenient

aspects of both models for one-dimensional analytical studies.
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SECTION I
INTRODUCTION

In the event of an earthquake it is now possible to achieve reductions
in the structural vibrator& response and associated structural damage of
buildings by utilizing passive control measures and incorporating them into
building design. Base isclation is one modern means of pﬁssiveiy controlling
structural vibration and it is a technology which is being studied with
continually increasing interest. The cqncept of base isolation has been
demonstrated as viable-botﬁlin the laboratory and in practice. . An excellent
overview of the history, development, and modern state of base isolation
technology is presented in a review by Kelly [1}. Many specific studies have
been made on elastomeric, lead-rubber, and frictional base isolation devices.
The success of these studies has ultimately led to implementation -of base
isplation technology in a vﬁriety of worldwide locations.

Another means of mitigating seismic structural vibration is available
through the installation of energy absorbing devices in thg structure of a
building. A study involving the implementation of viscoelastic energy
absorbing devices for iﬁcreased structural damping has been carried out at
NCEER [2]. In the study, this structural damping concept was analyzed
experimentally by adding the viscoelastic dampers to a model structure as
bracing members and then testing the model structure on the NCEER seismic
simulator. Results from this study show that overall structural performance
under seismic conditions can be improved with added viscoelastic dampers.
Alsc evident from the study is the existgnce of a temperature dependence which
stroﬁgly influences the efficiency of the viscoelastiq dampers. This result
is not surprising due to the well known sensitivity of viscoelastic material

properties to temperature.

1-1



Since the apnlied technologies associated with the base iscolation
concept and the concept of added viscoelastic dampers are relatively new,
little has been déne to investigate the use of other damping materials for
these fields. Consider for a moment some of the properties which a candidate
material should exhibit for possible use in base isolation. The overall
material behavior should‘ideally exhibit a significant hvsteretic (or energyv
absorbing) effect without sacrificing stiffness at low strains. Furthermore,
it is élso desirable that the damping properties of the device Be optimum for
the increased levels of strain and stréin rate which occur during strong
earthquake activity. Also, in the event of extreme ground displacements it is
desirable to achieve increased stiffness at very large levels of strain. In
order to explore these phenomena, a material model should be developed and
emploved ﬁhich is gene;al enough to include a variety of different types of
inelastic material behavior. In addition, it is desirable that such a
material ;model bé closely linked to experimental studies of properties for a
broad fange of materials.

One potentially useful class of materials being considered in the
present research are shape memory alloys (SMA’s). The SMA’s are a class of
metals which are characterized by the so called "shape memory effect” that
results from a first order martensitic phase transition. This micromechanical
phase transition process is capable of producing a high damping capacity in
SMA’s as compared to conventional metals [3]. Refer for a moment to Figure 1-
1. In this figure the basic forms of SMA behavior are shown. Figure 1l-1a
shows- SMA behavior at ampient temperatures T < Mf. Mf is the temperature
wherein the microstructure is fully martensitic. This stress-strain behavior
is characterized by a large hysteresis loop similar to that exhibited by
conventional steels. However, the  hysteresis which results from cyclic

loading is not due to dislocation glide (as in most metals}). Rather, the
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hysteresis is due to deformation of martensite which occurs by rotation,
growth, and shrinkage of individual variants of martensite (of which there are
24). These vari;nts form a single parent grain. If strained sufficiently
only one variant will remain. This variant reverts uniquely to the original
parent crystal orientation upon the application of heat, thus the memory
effect.

Figure 1-1b shows the behavior of the SMA at temperature T > Af‘and
shows the associated superelastic hystereis loop which ideally provideé a
hysteretic effect and has zero residual strain upon unloading. Nocte that Af
is the temperature above which the microstructure is fully austenitic. This
superelastic SMA behavior results from the elastic loading of a stable
austenitic parent phase up to a threshold stress whereupon a stress induced
transformation from austenite to marten;ite takes place. This transformation
process occurs at a significantly reduced modulus thus giving vthe appearance
of a yield point. As deformation proceeds the volume of martensite within the
microstructure increases and the path of the stress-strain curve folloys a
stress plateau. As the microstructure becomes fully martensitic, further
straining will cause the martensite torbé loaded elastically at a modulus
lower than that of elastic austenite but much higher than that of the pﬁase
transition portion of the loading curve. Since the martensite is stable only
due to the presence of the applied stress, a reverse transformation takes
place upon unloading, but at a lowered stress plateau, Ideally, after full
. unloading, the material returns to its original undeformed geometry. This
remarkablé process yields the hysteretic effect with zero residual strain and
thus motivates the assciated term of superelasticity. High temperature
applicaticns of SMA's display linear elastic behavior with no‘ hysteresis as

shown schematically in Figure 1-lc.
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Figure 1-1 Schematic Stress-Strain Curve of Shape Memory Alloys (SMA’'s) [4]

{a) &t temperature T < M_.: LaLrge Area Hysteresis

f
(b) at temperature T > Af: superelasticity

{(c) at high temperature: elasticity



Thus, the modes of material responsé which are of interest in this
research are given by Figure 1(a) (SMA hysteresis) and‘ Figure 1{b}
{superelastic). Some promising characteristics of these two modes of SMA
behavior include high stiffness for small strain levelé {(elastic loading),
reduced stiffness for intermediate levels of strain (due to formation and/or
reorientation of martensite), and high stiffness at large levels of strain
(elastic loading of martensite), Also, since the superelastic material
ideally displays a hysteretic effect with zero residual strain, an energy
absorbing isolation device made from this material would theoretically provide
a centering force for the building following a seismic event.

Another interesting metallurgical aspect of the shape memory alloy is
its capacity to display a variation in its hysteretic behavior which can be
controlled by the selection of the material composition and wvarious heat
treatments applied to the material [5]. The heat treatment ultimately
determines the extent of martensitic phase transformation in the superelastic
material énd this is the primary factor which allows for variatioﬁ of the
observed hysteretic behavior in these materials. Once the heat treatment has
been applied, the subsequent material behavior is essentially insensitive to
normal environmental temperature changes experienced in building design.
Thus, the SMA may also be a potentially functional candidate for use in the
design of structural damping devices due to its potentially large damping
capacity as well as its insensitivity to environmental témperature changes.

These are the basic premises which give foundation to the undertaken
research. In the discussion of the following sections the aspect of material
modeling is carefully reviewed, developed, and presented and is done so in a
way that is pertinent to the field of secondary and protective systems in

earthquake engineering.






SBECTION 2
SURVEY OF HYSTERETIC MODELS
2.1 Background

Based on the nature of this research, a model of inelastic material
behavior is required for the analysis of base isolation devices and structural
damping devices. This need arises from the hysteretic behavior that is
inducéd in these energy absorbing devices during seismic activity. The
hysteretic behavior observed in the energy absorbing devices is markedly
different from the observed vibrational behavior in the structural framing
members of buildings. Energy absorbing devices may typically expe;ience
repeated deformation excursions well into the inelastic range whereas the
deformation encountered in steel framing members and structural joints is
either elasitic or locally plastic.

The development of the base isolation concept and its evolutioﬂ up: to
the present time is discussed in the review paper of Kelly (1]. In this paper
a large bibliography is given which includes references for the design
characteristics of existing base isolation devices as well as references for
experimental and computational analyses of base isolated structures. In many
computational studies,A hysteretic models are used to represent the base
isolation device. Such studies provide a starting point for this research. A
primary requirement for any material model which is to be used in analysis is
that it reproduce experimentally observed hysteretic behavior to a reasonable
degree of accuracy. Also desirable in the model-is a‘physically'motivated
basis in the governing formulation of equations. This allows for studies
involving wvariation of the material characteristics which give reasonably
approximate predictions of the response without recourse to experiment. This
may be especially useful when consideringvthe various types of attainable

behavior in the shape memory materials. .
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2.2 Models of Hysteretic Behavior

A survey of literature from the field-of bagse isolation indicated a
popular use of the hysteretic model of Wen [6]. In Wen’s paper, a method for
ggneral random hysteretic system response is presénted. The hysteretic model
given in [6] is often used to represent the hysteretic behavior of a fully
characterized base isolation device in random structural vibration studies
{such as in [7]). In a similar structural analysis incorporation of a slip-
lock element with Wen's model allowed fgr simulated hysteresis loop pinching
behavior [8]. Thus Wen'’s rmodel is attractive for structural studies
especially pertaining to a seismic base isolation. However, a drawback of
Wen’s model for the purposes of this research is its lack of physically
motivated expressions in the governing formulation. As such, Wen's model is
empirically rather than physically motivated. It is often difficult to
interpret the parameters of an empirical model and associate them with the
physical parameters of the real material or\device. Thus, other models which
possess a more physically motivated formulation are also considered.

In a hysteresis model Ifrom Iwvan [9] the hysteretic system is
considered to be a parallel distribution of ideal Elastoplastic elements
having varying yield levels. This arrangement is shown in Figure 2-1. The
model of Figure 2-1 can then be related back to a material or device by making
a physical analogy. For example, the parallel distribution of elastoplastic
elements can be thought of as analogous to a slip plane in a solid material or
as analogous to a slip Jjoint or yielding member in some more complicated
device. In [9] the author demonstrates how the distributed element
formulation can be used to generate a relatively simple h&steretic model which
is capable of exhibiting the eﬁsential features of one dimensional dynamic
hysteretic systems. This model, while attractive due to its physical

motivation, is somewhat oversimplified for the undertaken research.
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Figure 2-1 Model Consisting of a Diatribution of Ela.stoplasfic Elements [9]
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2.3 Models of Viscoplasticity

There also exists a fairly large selection of material models in the
area of viscoplasticity. Many current researchers in this field take an
approach which uﬁifies the constitutive laws of creep and plasticity based on
the fact that the primary mechanism in almost all creep and plasticity
processes is the motion of dislocations in the microstructure. The models of
the unified approach are described by a constitutive differential equation and
an associated set of internai variables. The internal variables are usually
described by separate growth laws which involve varicus physical parameters of
the material, and as such can be used to physically model material behavior.
Also, these unified models are often written in terms of tensor quantities
thus penmitting-multiaxiél formulations and analysis. A recent text edited by
Miller [10] gives six separate models of the unified approach from prominent
researchers in the field. Alsc, a review article by Krempel [11] cites the
history, development, and modern methods of = viscoplastic modeling including
selected models of the unified approach. A dissertation reflecting Hrempel’s
philosophy is written by Yao [12] and gives a viscoplasticity model based on
overstress. This model is also in tensor form and is given from the same
perspective as other thedries of the unified approach. These models, although
accurate, may be somewhat complex for the nature of the research ongoing in
this project.
2.4 Ozdemir’s Model

The most desirable model for the purposes of this research is one
which accurately reproduces the hysteretic behavior of damping materials or
devices while retaining a relatively simple form and physically motivated
expressions. One such model which may meet these requirements is given in a
dissertation written by Ozdemir [13] under the supervision of Kelly. . In

Ozdemir's work a one dimensional nonlinear transient dynamic model is
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presented for yielding structures. The model was developed and verified for
aselsmic base isolation studies and as such is useful for the ongoing research
in this project. The model in [13] essentially expresses the strain rate as a
sum of elastic and inelastic components as is usually done in most strain rate
expressions [14, 5, 11, 12]. The inelastic component is a function of the
overstress and as such is similar to other unified theories such as in [11]
and [12]. Also, the model of interest from [13] appears to be tractable to an
extension from a one dimensional expression to a three dimensional tensor
representation. The approach for such an extension is given in Segtion 4.2 of
this report.

2.5 Models of Shape Memory Alloy (SMA) Behavior

Since shape memory materials will be receiving a certain degree of
attention in the present research, models developed to specifically predict
their stress-strain behavior are also of interest. Some attempts have been
made in this area, unfortunately however, at the present time there are very
féw models that predict the macréscopic SMA stress-strain behavior. In an
artiple by Falk [4], a model of the shape memory effect is based on a free
energy expression. The various mechanical and thermodynamic quantities are
studied for crystal structures of austenite and martensite twins. The shear
stress and shear strain relationship for the crystal is oﬁtained based on a
proposed Helmholtz free energy function. However, the stress-strain ‘function
in [4] is very simple and when tested numericaily did not generate meaningful
hysteresis loops.'

Another more advanced model of shape memory behavior is proposed by
Achenbach et. al. for memory alloys in plane strain [15]. Tﬂe model is
applicable to - polycrystalline bodies under biaxial loading and also accounts
for the rotational component of the deformation field. The deformation in

SMA's 1is closely linked to phase fractions of austenite and martensite twins
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and as such the model of {15] includes these phase fractions in the
fonmulatién as internal variables. The primary differential equation given in
[15] to govern the material behavior of the SMA is analogous to the
constitutive strain rate tensor equation of the flow type with internal
variables used in unified theories of creep and plasticity. Thus the basic
governing equationshof the two fields are very similar. The full formulation
of the SMA model of [15) is far to complex for practical use in the context of
this research. However, its primary form suggests that the general
constitutive form of the unified approach may also be applicable to SMA
behavior by modifying the descriptions for the internal variables.

Therefore, the direction that has been taken thus far is one wherein a
model of hysteretic behavior has been altered so as to allow for the basic
material characteristics of the SMA to be displayed. The model by Ozdemir
{13] has been found to be useful in this task. Also, in order to allow for

.possible multiaxial formulations, the single dimensional models of inelastic
behavior and of SMA behavior have also been extended to three dimensional

tensor representations.



SECTION 3
HYSTERETIC MODEL. FOR USE IN ANALYSIS
3.1 Introduction
When considering the various models available for hysteretic mate?ial
behavior it is found that the model given in [13] has many features that
render it useful for the endeavors of this research. This model was developed
so> that the force-deformation characteristics of base isclation energy
"absorbing devices could be predicted computationally. The differen£i31
equations presented in (13] specifically pertain to one dimensional non;ihear
transient dynamic hysteretic behavior. One characteristic of many base
isolation devices is that they are only slightly sensitive to the applied rate
of deformation [13]. Such rate independence is a desirable trait under .the\
varying conditions of loading encountered in seismic events, and it is shown
in [13] that the use of rate independent equations to model hysteretic energy
absorbing devices is the most effective means of accurately describing their
behavior.
3.2 Force Deformation Equations in One-Dimension
The starting equations for this research will be a set of rate
independent equations which describe the force deformation characteristics of
hysteretic energy absorbing devicgs from {13]). For initial development and
analysis any -terms which allow for changing material characteristics (e.g.
yield strength, modulus) or changing hardening characteristics will be left
out of the ensuing equations, Thus the following equations, taken from [13],
describe rate independent hysteretic behavior with non—deteriorating hardening

characteristics and non-deteriorating material characteristics:
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o

represents the force in the hysteretic device.
represents the displacement.

represents the yield force of the device.

represents the yield displacement of the device.

is a material constant which controls the slope of the
F-U curve. Given approximately by « = Ky/(Ko—Ky) where
Ko = FO/U0 and Ky is the slope of the F-U curve after
yielding.

is a material constant which controls the sharpness of
transition from the elastic to plastic state. An odd

integer.

ordingry differentiation with respéct to time.

Note in Egs. {(3.1) and (3.2) that the function S is an internal force variable

that ig analogous to the backstress ana the quantity {F-S) is analogous to the

overstress (or effective stress), as used in many viscoplastic constitutive

laws [10, 11, 12].

Egqs. (3.1) and (3.2) can be shown to give vaiues of force and

displacement which are independent of the applied rates of loading, i.e. not

dependent on either of the rates F or U. To show this, the case of positive

displacement rate loading is used. By subtracting Eq. (3.2) from Eq. (3.1)

the following differential equation is obtained

o (3

F=5 _ U
F U
o o

n
[t - v &2
0]
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This result can be reexpressed as

E-S,
F
8]

d(

u, _
di) =
o

n
1 - (e (5B
(o]

Then by integration the solution for the displacement can be showp to be

U —2 o _di
()™ o 1g”

It can easily be seen that the above integral is a function only of the

difference F-S, i.e.
U = ¢{F-S)

By this process it becomes evident that Egs. (3.1) and (3.2} represent rate’
independent Force-Displacement behavior.
3.3 Generalization to a Material Point Stress-Strain Relationship

Eqs. (3.1) and (3.2) are expressed with force and displacement as the
primary variables. This 1is done becauée the studies undertaken in [13]
concentrate on the Qverall behavior of the energy absorbing devices as a
whole, including geometrical effects. It would have been impractical, er the
studies in [13], to have used a set of constitutive equations which describe
material behavior at a single pecint. However, for the research undertaken
here, the reverse is true. Here, a characterization of the material behavior

is first made with a set of «constitutive relations =and later



the material properties and behavior characteristics can be used for the
Therefore Eqs. {3.1) and (3.2) are now

design of an energy absorbing device.
reexpressed, in an equivalent manner, in terms of stress and strain

6 =E [é - I;:l(d—;,ﬂ)n] (3.3)
(3.4)

«F lén("—;ﬂ;“

vhere ¢ : 1is the one dimensional stress.
£ : 1is the one dimensional strain.

p : is the one dimensional back stress.
elastic modulus.

Y : 1is the yield strength.
¥ : 1is a constant controlling the slope of the ¢ - € ocurve.
Given approximately by o ® Ey/(E - Ey) where Ey is the

slope of the ¢ - £ curve after yielding.
is a constant controlling the sharpness of transition

E : 1is the

"

from elastic to plastic states.

: ordinary time derivative.

By rearranging Eq (3) it follows that

+ g1 ("_;,ﬂ;"

™.
1] -
= -

Examination of this equation reveals that the total strain is made up
1} a linear elastic component o/E and 2) a -

of two separate components



. . . i . . . .
nonlinear inelastic component, £ U which is described by the rate expression

0 - lei[{s - B)/Y]n. This inelastic component is a function of the total
strain rate £ and the overstress o-8. Later in this report these one

dinmensional equations for the o¢-f hysteretic material behavior will be
extended to a three dimensional tensor representation, and at that time it
will be seen that the form of the extended equations will be similar to other
models of viscoplastic behavior. In the meantime the one dimensional

equations which are presently being considered are rewritten for clarity.

.

. ' n
.G g-p
s_E+|£|(Y) (3.5)
N . s n
8 = «E It (—§ﬁ> (3.6)

Thus Eqs. (3.5) and (3.8} describe the one dimensional hysteretic behavior of
stress and strain for rate independent materials whiéh undergo cyclic
inelastic deformation.
3.4 Modification to Include SMA Behavior

Modifications of Egs. (3.5) and (3.6} are also of interest since an
altered set of equations may allow for a deécription of cyclic SMA hysteretic
and/or superelastic behavior. The equation for the slope of the ¢-f curve may

lend some information to achieve this end. By returning to Eq. (3.5),

rearranging back to the form of Eg. (3.3) and then dividing through by ¢, the

equation for the slope of the ¢-t curve is cobtained

do _ - .y (9-Bn
% e [1 - st O]
By examining this expression one can see that the slope is constant during

linear elastic loading and unloading (that is when the inelastic component of
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stfain is negligible). Also, it 1is possible to modify the shape of the
inelastic portion of the o¢-£ curve by altering the expression for the
inelastic strain or by altering the expression defining the backstress 8.
Trial modifications to Eq. (3.6) were studied in the hope of achieving an
approximate description of SMA behavior for cyclic loading conditions. first,

Egs. {3.2) and (3.6) were reexpressed as

B_, (¢
- %l

Assuming that the initial conditions on &, B, and £ are all zero, integration

yvields
% = (€ ——%1 = xe ' (3.7)

ItE is readily seen from this expression that the bachkstress is a linear
function of the inelastic strain tin.

By modifying Eq. {3.7) it is possible to describe the variocus aspects
of the shape memory material behavior. A modifiéd form of Eq. (3.7) which
will ﬁllow such a description is arrived at by adding another term to the
inelastic strain in Eq. {3.7)
in

% = of€ + leclcerf(at){u(—zé)}] (3.8)

where fT' a and c are material constants. The constant fT is included to

allow for the patterns of hysteretic behavior which are observed in SMA’s

over varying temperatures. Note that the last term in Eq. (3.8} also contains



the unit step function having the argument -sé, i.e.“{u(-té)}. Thus the unit
step function will activate the added term only during unloading processes,
As such, the ascending branches of the hysteresis loop will be unaffected by
the added term. However, when on a descending branch {unloading portion of
the stress-strain curve) the added term will contribute to the backstress and
will allow for SMA stress-strain descriptions. Examples of such descriptions
will be made in Section 5.3 of this repért. The motivation for selecting this
particular form of the backstress a:ises from the requirement of zero residual
strain which 1is necessary when describing superelastic material behavior.
Thus a backstress function is needed which, when used with Eq. (3.5), will
force the 6-£ curve to pass through the origin upon unloading for superelastic
behavior (refer again to Figure 1-1b}. The computational results presented in
Section 5.3 will show that when the constants of the function fTIEIcerf {at)
are properly selected, the numerical solutions of Egs. (3.5) and (3.8) will
~give o©-£ behavior characteristic of the superelastic material. Thus, a one
dimensional model which will approximately reproduce SMA behavior is given by

Egs. (3.5) and (3.8). These equations are now rewritten for clarity

. * . n
£ = % = 1£ (Q§ﬂ) {3.9)
B = Ex[ei” 4 fTItlcerf(aE)(u(—E;:)}] {3.10)

The numerical computations which demonstrate the cyclic behavior of
the models of plastic hysteretic behavior and SMA hysteretic behavior, as
given by Egs. {3.5) and (3.6) and Egs. {3.9) and (3.10) respectively, will be

presented in Section 5 of this report. However, before proceeding to such



computations, these two models will be extendéd to three dimensicns so as to

allow for multiaxial formulations.



SECTION 4
EXTENSION OF 1D HYSTERETIC MODELS TO 3D

4.1 Introduction

When considering seismically induced horizonfal ground motion in one
dimension, a variety of important stfuctural response quantities can be
calculated by utilizing simple building models where the superstructure is of
the shear type. Examples of such studies which include base isclation are
given in [7] and [16]. In these studies the energy absorbing device located
at the structural base is typically modeled using the one dimensional
hysteretic equations of Wen {6] or Ozdemif {13]). If one wisheé to account for
multidimensicnal effects in base isolation devices, a three dimensional,
representation of the hysteretic behavior is then needed.‘ To allow for such
possibilities, an extension of Ozdemir’s model given by Egs. (3.5) and (3.6)
will be made to a three dimensional tensor representation. The same extension
will be made for the proposed hysteretic model of SMA behavior.
4.2 Mim of Ozdemir’s Model to 3D

To begin, Egqs. (3.5) and (3.6) are rewritten so that the restriction
on the overstress power n is removed, i.e. n will no longer be restricted to
odd integer values. This is done followiﬁg a standard convention ([17] and

Egs. {3.5) and (3.6} become

S NP Su” Pt ou By .
11 °E 11 Y Y '
. . g,,- B..In-1 o .~ B .
_ 11~ 1 117 P11
Byy = B |ey,] Y ) (4.2)

where the subscripts 11 represent uniaxial behavior in the x direction of a
Cartesian coordinate system. The only restriction now remaining on n is that

it have values such that n 2 1.
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In Shames and Cozzarelli [18] a procedure for extending one
dimensional rate laws to a three dimensional tensor expression 1is presented
for rthe case of steady creep. The extension of Eqs. (4.1) and (4.2} to three
dimensions will follow this procedure. Considering Eq. (4.1), the first term
on the right hand side is the elastic part of the strain rate and the second
term is the nonlinear inelastic part of the strain rate. In the subsequent
development the  inelastic component of the strain will be taken as
incompressible. This is a standard assumption which arises from the commonly
held belief that both creep and plastic behavior result from the movement of
dislocations in the microstructure and no volume change 1is associated with
this effect. In the extension of Eq. (4.1) the elastic component of fhe one
dimensional strain proceeds to the three dimensional form of elasticity

theory, i.e.
e’ P 2K - N - T {4.3)

where £§§ is the elastic component of the tcotal strain tensor, dij is the
stress tensor, E is Young’'s modulus, v is the elastic Poisson ratio, and aij
is the Kronecker delta.

The inelastic comﬁonent of the one dimensional expression for the
strain rate is now rewritten for clarity

n-1 ¢,- By

‘( Y )

5117 By

Y

‘in

11 = 1813 (4.4)

Extending this quantity to three dimensions now requires a number of steps.
In the process, Eq. (4.4) is first rewritten in terms of deviator quantities

that pertain to the uniaxial test. Also, it will be assumed for a moment that

4-2



the total strain rate appearing in this inelastic term is incompressible.

This assumption is made so that it will be possible to extend the quantity

l:l | to three dimensions without considering variable Poisson effects. When

1
considering compressible materials, the value_of the Poisson ratio becomes
variable once inelastic deformation takes place and it is then unclear how an
extension to 3D should proceed. Once the extension process is completed the
assumption will be removed and the result will be taken to be approximate for

cases which include compressibility effects.

When considering the uniaxial test, Eqg. (4.4} may be rewritten as

n-1
- by ) s Vil b

Y Y

3
3" 2 'S1q
- e

2

Tin _
11 -

11 ’

where 11 is the uniaxial component of the stress deviator tensor, b11 is the

uniaxial component of the backstress deviator tensor, and é11 is the uniaxial
component of the total strain rate deviator tensor. Following the procedure
for extending uniaxial vconstitutive relations to three dimensions given in
{181, quantities that are operated on by the absolute value are extended to
three dimensions by generalization to the positive square root of- an

associated invariant quantity. As such the following extensions are made

3 /2
211

_— (3K2)1

3
5 (s1) - byy)

Y

- (BJg) J

where K2 is the second invariant of the strain rate deviator tensor
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(e.. = €. . - 1 £ ,.46..) and J° is the second invariant of the dimensionless
ij ij 3 kk'ij 2
overstress deviator tensor. The overstress deviator tensor is now formally
defined as s. .-b. . where s. . i3 the stress deviator tensor (s.. = ¢.. - 1
1j 1J ij ij ij 3
. . B 1
dkksij) and bij ig the backstress deviator tensor {bij = ﬁij 3 ﬂkksij}' The

remaining extensions of the overstress and the inelastic strain rate will

complete the steps of the process

in in
T Tt &
Sit 7Y 84y
byy = bi;

Thus the extended form of Eq. (4.4) is

'Lls - b
1172350 2 (A1 _id, (4,5

‘in )
2 Y

Eij = (3K2

Now, the previously imposed restriction that the total strain be
incompressible will be removed and Eg. (4.5) will be taken fo give the
approximate 1inelastic strain rate for conditions of general strain fields and
strain rates of compressible materials. Note, however, that this does not
imply that the inelastic strain resuiting from Eq. (4.5) is also not
incompressible. It can be readily be seen from the trace of Eq. (4.5) that no
volume rate dilation is possible for the inelastic component of the strain and
thus there is no volume change associated with the inelastic component of

strain. Now, the constitutive relation for the total strain rate tensor

composed of linear elastic and nonlinear inelastic parts is as follows:



n-1 . ,
. . - == s., - b..
_ 1y B 1/2 .0, 2 °ij _ %ij

zij" E dij z Gkkaij +‘(3K2) (3J2) { ) {4.6)

Next, the expression that defines the evolution of the backstress (Eq.

(4.2)) also needs to be extended to three dimensions. Eq. (3.10) is first

recast into an equivalent expression which is deduced by considering Egs.

{(3.9) and (3.10) together. The specific form of the recast equation is

It is then immediately evident that

: _ ‘in
By = Bx By

which, when re-expressed in terms of the deviator expressions of the uniaxial

test, becomes

In the extension to three dimensions

11 by
iin - Eln
ij ;
Therefore
- 2 Exe D
i) 3 1j
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or

- _ 2 172 2 Tij  Tij ,
bij = 3 Bx (3K2) (3J2) { ) (4.7)

Therefore, the fully extended formulation ekpressed in terms of the strain
rate tensor is given by Egs. (4.6)' and- (4.7). This formmlétion is now

rewritten for clarity

n-1
. : . . - .. = b..
_ L4y Y 1/2 .0, 2 Bij "~ "ij
ci,j = g Gij E dkkéi,j + (SKZ) (3J2) ( Y ) {4.8a)
n-1 s - b
* _ 2 1/2 o, 2 ij ij
ij° 3 Ex {SKZI (3J2) ( v ) {4.8b)
where
S..=0,. - 1 S
ijg ~ Yij 3 Tk "ij

Jo—s

i = Bis 3 P 8y

- 1
ijg = 213 T3 tkk ij
- l [ L]
Ky =254 85
S W ¥ Rl ¥ N Bl ¥
2 =32 Y Y

Now, let the formulation of Eqs. (4.8) be examined for the special

case of uniaxial behavior. In this examination the changes in volume which
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result from the Poisson effect will be included. For the case of the uniaxial
test the states of stress, backstfess, and strain rate as weil as the

associated deviatoric states are as follows:

- - 2
011 o o 2911 o o)
_ , - 1
oij = |o o o sij = |o 3%11 ?
Lo 0 ol o o -§ 611
. 5 2
P11 © © 3P11 ‘1’ ©
aij = |o 0 o bij = |o ‘5311 01
Lo o ol 0 o ~561;
811 (o] (¢}
Eij = |o -Ytll o
_o ] -7811
.g )
3 (1+Y>£11 o] o
. _ 1 .
eij = o -3{1+Y)511 o
1 .
i o o —3(1+Y)t11
where 611 is the uniaxial stress, ﬁll is the uniaxial backstress, tll is the

uniaxial strain rate, and Y is the variable Poisson effect associated with the
lateral deformation rate.

It can be shown that ¥ is as follows for this uniaxial case

dﬁll
dtll

1.1
-E -V (4.9)

[ 1

A
By carrying out the necessary mathematical manipulations and simplifications

4-7



172 (1+7) Ié }

(3K2? 1"
n-1
(3% 2 - |°11' Ia11’“'1
2 = Y
y = v+l -1
1 - g{l—vl[sgn(c y |9 117 By “'1{°11’°11)]
3'2 ) | S

Thus the uniaxial components of Eqs. (4.8) are as follows:

. o] . [+ ﬂ n-l ¢ - B
%2 | 11~ P1y 11~ P1a
I I R B e y— ! (4.10)
. . » o B..In-1 o, .- p
_2 l_lL_l_l - Py
By, = 5 Ex(1+1) |:11| . (5 (4.11)

If an incompressible material is considered, i.e. a material having

v z 1/2, the variable Poisson ratio for the strain rate will become constant
according to Eq. (4.9), i.e. ¥ = 1/2. Therefore for the special case of an

incompressible material Eqs. (4.10) and (4.11) become

n-1 (611‘ f11
Y

! .
11 Ell + |‘11|

%11~ Py

Y ) (4.12)

™~
1]

n-1 0;,- 8y

95" iy (
Y.

Y

Byy Ea“lélll ) (4.13)




Comparison of Egs. (4.12) and (4.13) with Egs. (4.1) and (4.2) reveai that
Ozdemir’s model results from the tensor formulation of Egs. {4.8) for -the
special case of a uniaxial test applied to an incompressible material. In
Section 5, results of numerical calculations will be used to show the behavior
of this model.
4.3 Extension of Proposed Model! of SMA Behavior to 3D

Next the proposed model of SMA behavior, Egs. (3.9) ;nd (3.16), will
be extended to three dimensions. The proposed equations as given by Egs.

(3.9) and (3.10) are now rewritten

. [s) . o - ﬂ n_l [»] - a
9 11" P 11" P11
1mn g * l‘11| Y =) (4.14)
P, e+ £ e |°‘ flat, ) (ul-£, £, )1] (4.15)
E - ¥tEqp * IppEggf eTIAR gm0y .

Again, removing the restriction on the overstress power n, and extending Eq.

{(4.14) to three dimensions as before yields Eq. (4.8a), i.e.

n-1
. L R
S U SR 1/2 .0, 2 ,%ij ~ Pij
tij = Gi_j E Gk.kai,j + (3K2) (3J2) { Y }

The extension of Eq. (4.15) will be made assuming a uniform temperature
throughout the material. As was d;)ne in the previous extension, Eq. (4.15) iQ
first recast in terms of the uniaxial components of deviator tensors again
with the momentary assumption of incompressible material behavior. Thus Eq.

{4.15) becomes

o .
+ fT Ienl erf (a.e“)[u(—tutlll}l {4.16)
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To facilitate +the extension, the error function in Eq. {(4.16) is

replaced by its series expansion [19]

=1)F  2r4

2
erf(x) = =% 2 kD) ¥
1

{

"n M8

k=0

Therefore the function erf (aell) can be re-expressed as

e O k2K 2k
erflae)) = -1 k) kr(2keD) leyy]
Now Eq. {4.16) can be réwritten as
by, = [£1™ gT{u(-slléll)} el Ce11 kgo iill;{%%ﬁ%%ik %e11|2k] (4.17)
where
g = & <f—§) £

The same extension methodology can now be used for Eq. (4.17), i.e.

11 b
n 513
3 1/2 .1
2 €5 4 (312) I2 =3 eijeij
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.where the quantity Iz is the second invariant of the strain deviator tensor

and 12 = dIz/dt. Again the restriction that the material be incompressible is
now removed and the formulation for the SMA behavior in a three dimensional

rate expression with internal variable of backstress is as follows:

n-1 s b
D U IO 1/2 o0, 2 ,oij = Cij
£1J = Gij B dkkaij + (3K2) (3J2) ( v ) (4.18)
i . ® k a2 2K
- in _ c/2 (-1) (2a/3) k
bij = Ex [Sij + gTeij{u( )1 (31,} kEO k! (2k+1) (31,)71 (4.19)

To examine +the formulation given by Eqs. (4.18) and (4.19) let the

special cése of the uniaxial test now be considered. For this case

2

2
3911 ° ° ‘ 3%11 ° °
1
Si5 © 1° ~3%11 o by = 1° -3P11 °
1 o ° _lﬂ
° ° 3%11 3P11
211 [&] o)
tij = o -8:11 o
) o -6:11
2
3(1+8)511 o o
_ 1
e = o ARSI o
1
o o -3(1+8)£11

where § is the variable Poisson ratio associated with lateral deformation. It

can be shown that & is as follows:
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for this special case of the uniaxial test.

Carrying out the computations for the invariant I2 it is found that

2 2
(1+4) 811

0 [

{144)(1+v)¢

(213 L

11 11

Therefore

c/2

C
FSIZ) [(1+8)[:11|]

{u(-iz)) {u(- %‘(1 (1 +v )¢

11 11)} = {u(~- £11 11)}

Also, the series expaﬁsion in Eq. (4.19) reduces to

‘_4
A

® (-F (2 k 2 2
2 (312} =3 erf (5 a (1+6)£11)
k=0 k! (2k+1) 5&(1+8)£11

After simplification Eq. (4.19) reduces to the following for the uniaxial test

c 2
g [(1+8)I£11l] erf(za(l+d)e , ){“( s11 11’}]

oo <
ml-fl|

_ in
= Ex [t11 +

[ SR [N

Bll

Now, upon considering the case of an incompressible material, i.e. =a

material having v = 1/2, it is evident that § = 1/2. Upon using the
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definition of g(T) given following Eq. (4.17) and simplifying, the expression
for § becomes

115111

_ in c _

511 = Ex [211 + fT L erf(atll){u( £

When considering the result of Eq. (4.18) for this special case, it has been
shown previocusly that Eq. (4.12) will result. Therefore Eqs. (4.18) and

(4.19} have reduced to the following for the special case of the uniaxial test

applied to an incompressible material:

o)

: . 6,.- B, |n~1 o,,- B
- i1 11 711 11- 711

SRl P N - (=) (4.20)
- in c _ .

By = Ex [e)) + £ te 17 erf(ag, jlul-£ &, )] (4.21)

Thus it is seen that the original expressions used to make the extension to
three dimensions are the result of the special case of Eqs. (4.18) and (4.19)
for an incompressibie material in the uniaxial test.

In the next section the results of numerical computations will be used
to show how the model of SMA behavior in one dimension, Eqs. (4.20) and

(4.21), exhibits the various aspects of that particular material behavior.
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SECTION 5

COMPUTATIONAL RESULTS

5.1 Introduction

In this section some results of numerical computations will be
presented for the models of hysteretic behavior which are presently under
consideration. In the cases presented here, one dimensional uniaxial cyclic
loading under strain control will be considered. Both Ozdemir’s model of
hysteretic material behavior and the proposed model of SMA hysteretic material

behavior will be used in the presentation of numerical results.

5.2 Resulis for Ozdemir’s Model

First, Ozdemir’s model of one dimensional hysteretic stress-strain
material behavior is considered. This model 1is given by Eqs. (4.12) and
{4.13}. The equations are rearranged and the subscripts are dropped, to give

the stress-rate as follows:

Q -
n

. . n-1 ‘
E [s Y |9§ﬁ[ ("—:ﬁ} (5.1)

_ . _a.n-1
Ea gl |"’—Yﬁ| ("Tﬁ) (5.2)

™ -
H

Given a set of material data (E,Y,x,n} as input, a FORTRAN algorithm is used
to solve the above equations numerically with fourth order Runge-Kutta
integration. The initial conditions are taken to be zero at the onset of

calculations.



Material data for A-36 structural steel, was taken from {[20) for
Young’s modulus, axial initial Yield strength, and the plastic modulus, i.e.
E, Y, and Ey respectively. The material data is given below

Material Data for A-36

Material Property Symbol Value
Young’s modulus E 28500 ksi
Axial initial Yield stress Y 30 ksi
Plastic modulus Ey 550 ksi

Using the definition of « given following E§; {(4.4) it is found that
ax = .0197
for A-36 steel.

Using this data, Eqs. (5.1) and (5.2) were integrated numerically and
the results for the stress-strain material behavior were plotted graphically
using the computer. A series of plots shown in Figures 5-1 to 5-4 show the
effect of the overstress power n on the shape of the hysteresis lobp. For n=1
the loop is wéll rounded as seen in Figure 5-1. As n increases in value, the’
transition from elastic to plastic behavior becomes much more pronounced as
shown in Figures 5-2, 5—3 and 5-4 for n = 5, 9 and 15 respectively. In fact
Figure 5-4 nearly replicates elastic-plastic material behavior with linear
work hardening (also called bilinear behaviqr}.

Since the transition from elastic to plastic material behavior is
sharpest in Figure 5-4, it is possible to check the initial yield point as
given by the model. By examinatiﬁn of Figure 5-4, the yield poini can be seen
to be in the vicinity of the actual material yield for A-38 steel, i.e.iY = 30
ksi. Thus the actual material yield point is well fepresented by the model.
Alsc, it can be seen from any of the Figﬁres 5-1 to 5-4 that the Bauschingep

effect is manifested with the model. Thus, two important features of physical
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FIGURE 5-1 Smooth Transition from Elastic to Plastic Regime Using Ozdemir’s

Model with n = 1
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FIGURE 5-4 Ozdemir’s Model with n = 15, Bilinear Behavior



material behavior are reproduced by the model (Egs. (5.1) and (5.2}), namely
the material yield point and the Bauschinger effect.

The model is also able to properly reproduce the slope of both the
elastic and plastic portions of the stress strain curves, i.e. E and Ey. This
is show in Figure 5-5 for n = 15, In this figure the slope of the hysteresic
stress-strain curve of Figure 5-4 is plotted. The elastic slope E is
correctly reproduced by the model, i.e. E = 28500 ksi. The value of the
plastic slope, Ey,’cannot be eaéily read off the plot. However, a check of
the data from the numerical calculations gives the plastic slope as 550.6 ksi,
a very small departure from the actual material value of Ey = 550 ksi. Thus
the wvalues of the elastic and plastic moduli are alsc reproduced using the
hysteretic model. It is therefore possible to characterize one-dimensional

hysteretic material behavior easily and accurately using Egs. {5-1) and (5-2},

5.3 Results for the Proposed Model of SMA Behavior

Néxt, the model of SMA behavior will be considered. Recall that the
proposed equations for SMA cne dimensional stress-strain behavior were given
by Egs. {(4.20) and (4.21). They are now rewritten here for convenience, and

once again the subscripts are dropped.

Q
1

__ . . n-1
- E [e - 1:1]"—{}[ (G—;ﬁyl. (5.3)

Ex [si“ + letlcerf(at){u{-sé)}] (5.4)

™
H

The backstress § given by Eq. (5.4) is seen to be the sum of two parts, a term

which is linearly dependent on the inelastic strain, and a second term

Exlesleerf(aE){u(-tt)} which is active only during unloading processes. It
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FIGURE 5-5 Slope of Hysteresis Loop withn = 15
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_is the inclusion of this second term that allows-the various patterns of ISMA
behavior to be reproduced by the model.

. Displacement controlled cyclic loading tests of Nickel-Titanium SMA
uniaxial specimens are presently being conducted on MTS equiﬁmént as part of
this research. The forthcoming experimental results will provide a set of
.data for the hysteretic behavior of these materials. Witﬁ this data,
characterization studies will be made using the model of SMA Dbehavior
proposed here. In the presént discussion however, the model parameters of
Egs. (5.3) and (5.4) will be selected so as to demonstrate some various types
Iof SMA behavior. Egs. ¢5.3) and (5.4) involve the following material
constants; E, Y, n, «, fT, a and ¢, The constants E and Y represent the
elastic modulus and initial axial yield point respectively. The overstress
power n controls the sharpness of tranéition from elastic to inelastic regions
of the SMA stress-strain curve. The constant « is used to relate the

inelastic modulus to the elastic modulus, and is given by the . following
equation; o = Ey/(E—Ey) where Ey is the slope of the stress-strain curve
following initial axial yielding (i.e. the inelastic modulus of the | SMA) .
Thus the constants E, Y, n, and « are all simple constants and can be
determined in a éimple one-dimensional testing configuration. With constants
fT, a, and ¢, the model of Egs. (5.3) and (5.4) is fully characterized.
Examples of the above model are now presented. For the purposes of
model demonstration, the material constants E, Y, and o are selected to be the

-

same as those of A-36 steel, i.e.

E = 28500 ksi
Y = 30 ksi
X =

0.0197
The overétress power is selected as n = 3, and to begin the discussioh the

constant fT is chosen as; fT = 0. This will eliminate the participation of
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the term leélCerf(as){u(-Eé)} from the backstress. The cyclic loading
condition is taken to be a strain controlled test ranging from £ = -0.016 to £
, = 0.016. The hysteresis behavior calculated uéing Egs. (5.3) and (5.4} for
this set of conditioné is shown in Figure 5-6. This hysteresis is typical of

SMA behavior with T < M which can be seen by referring once again to Figure

£
1-1. Also, note from Figure 1-1 that as the temperature increases the SMA
material behavior proceeds to superelastic. A similar procession is also
attainable in the proposed model. The conditions previously set forth for
Figure 5-6 are also used in Figures 5-7 to 5-10 with the exception that the

constént fT is assigned positive values. Specifically, f_. = .01, .03, .05;

T
and .07 for Figures 5-7 to 5-10 respectively. Now, with fT #-0, the shape of
the hysteresis pattern changes from that previously given in Figure 5-8. This
is due to the changes in backstress §.

Refer to the calculated results shown in Figures 5-7 to 5-10. Note that the
hysteresis loop pattern changes in the unloading portions of the loop. When
the wvalue of fT is taken as ,07 (Figure 5-10), the hysteresis loop is seen to
give a good schematic representation ‘of superelastic SMA behavior wherein
martensite forms as the applied stress is increased. Subsequent release of
the applied stress causes the martensite to return to its original parent
vhase with zero residual strain upon unloading.

It is also of interest to examine thé proposed  SMA imodel for its-
capability to properly represent material constants. Specifically, the
proposed model should reproduce the initial axial yield, elastic modulus, and
inelastic modulus. By examining the plot of hysteresis for large values of n,
the yield point can easily be verified. Therefore n = 15 is used in

conjunction with E, Y, «, and fT as used previously‘ih Figure 5-10. That is
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E = 28000 ksi
Y = 30 ksi

ax = 00,0197

fT = 0.07

The associated behavior predicted by the model under cyclic strain with a =
3500 and ¢ = .0000 is shown in Figure 5-11. Note that the initial axial yield
point (which represents the cnset of martensite formation) of the material (Y
= 30 ksi) is well represented by the model. The slope of the stress-strain
curve of Figure 5-11 is plotted in Figure 5-12. Note that the elastic and
inelastic slopes of the material (E and Ey) are also well represented by the
proposed model. Thus the proposed model of one-dimensional SMA behavior may

be a wuseful analytical tool for the prediction of stress-strain response in

fully characterized SMA’s.
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SECTION 6
CONCLUDING REMARKS

The utilization of Ozdemir’s hysteretic model is beneficial from a
nunber of St.a.ndpbints. The model is relatively simple with respect to many
other ~models of material behavior including models of viscoplasticity.
Ozdemir’s model contains physically motivated constants in its formulation.
Also, the model can be extended to a three-dimensional tenscr representation.
Furthermore, by modifying the expression for the backstress in. Ozdemir’'s
model, a one-dimensional law of shape memory alloy (SMA) behavior is obtained.

By making calculations with the 1D SMA law it is seen that symmetric
hysteretic stress-strain curves are able to be generated for low temperature
{T < Mf) and superelastic (T > Aé) tvpes of SMA behavior. Also, the physical
constants’ in the model which represent the elastic modulus, initial axial
vield, and inelastic modulus are reproduced in the computations. By following
a similar methodology to that used in the extension of Ozdemir’s model, a
three-dimensional tensor representation is propesed for the one-dimensional
SMA model.

The computational results presented in this report perﬁain to ‘one-
dimensional uniaxial cyclic material behavior. A number of follow-on projects
related to this research have been completed, or are presently in progress.
These projects are itemized as follows:

1) Characterization of a Nickel-titanium SMA (Nitinol) in a uniaxial

cyclic configuration

2) Determination of SMA model parameters based on the results of Item

1. Evaluation of SMA model capability.
3) Evaluation of the three-dimensional models of metal plasticity and

SMA behavior for multi-axial loading conditions.
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wa

4)

Analysis of the energy absorbing capacity of a plausible SMA
energy absorbing device for passive structural damping (either
base iaolation or structural bracing). Suggestions for associated

experimentation.,
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