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PREFACE 

The National Center for Earthquake Engineering Research (NCEER) is devoted to the expansion 
and dissemination of knowledge about earthquakes, the improvement of earthquake-resistant 
design, and the implementation of seismic hazard mitigation procedures to minimize loss of lives 
and property. The emphasis is on structures and lifelines that are found in zones of moderate to 
high seismicity throughout the United States. 

NCEER's research is being carried out in an integrated and coordinated manner following a 
structured program. The current research program comprises four main areas: 

• Existing and New Structures 
• Secondary and Protective Systems 
• Lifeline Systems 
• Disaster Research and Planning 

This technical report pertains to Program 1, Existing and New Structures, and more specifically 
to geotechnical studies. 

The long term goal of research in Existing and New Structures is to develop seismic hazard 
mitigation procedures through rational probabilistic risk assessment for damage or collapse of 
structures, mainly existing buildings, in regions of moderate to high seismicity. The work relies 
on improved definitions of seismicity and site response, experimental and analytical evaluations 
of systems response, and more accurate assessment of risk factors. This technology will be 
incorporated in expert systems tools and improved code fonnats for existing and new structures. 
Methods of retrofit will also be developed. When this work is completed, it should be possible to 
characterize and quantify societal impact of seismic risk in various geographical regions and 
large municipalities. Toward this goal, the program has been divided into five components, as 
shown in the figure below: 

Program Elements: 

I Seismicity, Ground Motions 
and Seismic Hazards Estimates 

+ 
I Geotechnical Studies, Soils I and Soil-Structure Interaction 

~ 

I System Response: I 
Testing and Analysis J 
+ l' 

I Reliability Analysis 
and Risk Assessment 

I . 
I 

. 

-
lr 

1- .. 
I 

Expert Systems 

iii 

r 

Tasks: 
Ea~hquake Hazards Estimates. 
Ground Motion Estimates . 
NEM' Ground Motion Instrumentation, 
Ea~hquake & Ground Motion Data Base. 

Site Response Estimates. 
Large Ground Deformation Estimates • 
Soi~Structure Interaction. 

Typical Structures and Cr~ical Structural Components: 
Testing and Analysis; 
Modern Analytical Tools. 

Vulnerabil~y Analysis, 
Reliability Analysis, 
Risk Assessment, 

Code Upgrading. 

Arch~ectural and Structural Design, 
Evaluation of Existing Buildings. 



Geotechnical studies constitute one of the important areas of research in Existing and New 
Structures. Current research activities include the following: 

1. Development of linear and nonlinear site response estimates. 
2. Development of liquefaction and large ground defonnation estimates. 
3. Investigation of soil-structure interaction phenomena. 
4. Development of computational methods. 
:5. Incorporation of local soil effects and soil-structure interaction into existing codes. 

The ultimate goal of projects concerned with geotechnical studies is to develop methods of 
engineering estimation of large soil deformations, soil-structure interaction, and site response. 

The problem of the response of a soil-structure system to incoherent earthquake ground motion 
has been addressed in the past by using aformal stochastic approach (NCEER-88-0021). In the 
present work, the same problem is addressed by an alternative formulation which may be more 
appealing to those who are accustomed or prefer to think in deterministic terms. Specifically, 
the input motion at the control point is described deterministically and not stochastically as in 
the formal stochastic approach. The results obtained by the proposed procedure have been 
shown to be consistent with those obtained in the original study by formal application of the 
stochastic approach. 
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ABSTRACT 

An approximate deterministic method of analysis is presented for assessing 

the effects of ground motion incoherence and of the associated soil­

structure interaction on the seismic response of structure-foundation-soil 

systems. The free-field ground motion in this approach is specified 

by an acceleration history and a spatial incoherence function. Numerical 
solutions are presented which illustrate the procedure and elucidate 

the nature and relative importance of the kinematic and inertial inter­

action effects. The results are shown to be consistent with those obtained 

in a companion recent study by formal application of the stochastic 
approach. 
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SECTION 1 
INTRODUCTION 

It is generally recognized that the motion which is experienced by the 
foundation of a structure during an earthquake may be substantially differ­

ent from the motion that the ground would experience at its interface 

with the structure if the structure were not present (e.g., Veletsos 

1977; Roesset 1980). Two factors contribute to this difference: (1) 

the inability of a rigid foundation to conform to the generally non­
uniform, spatially varying ground motion; and (2) the interaction or 

coupling between the vibrating structure, its foundation and supporting 
soil s. 

The spatial variation of the free-field ground motion may be due to several 

factors. The seismic waves may emanate from different points of an extend­

ed source and may impinge the foundation at different instants or with 
different angles of incidence, or they may propagate through paths of 

different physical properties and may be affected differently in both 
amplitude and phase by the characteristics of the travel paths and by 

reflections from, and diffractions around, the foundation. Even when 

the seismic wave front is plane, it may impinge the foundation-soil inter­
face obliquely, leading to ground motions which differ in phase from 

point to point. The spatial variability of the ground motion due to 

the propagation of a plane wave is known as the wave passage effect,· 

whereas that due to the other, generally random, factors is known as 

the ground motion incoherence effect. It is the latter effect that this 
paper is concerned with. 

An incoherent ground motion is normally specified stochastically in terms 

of a local power spectral density (psd) function and a spatial incoherence 
function; the latter function defines the interrelationship of the harmonic 

components of the motion at pairs of points. The foundation input motion 
and the response of the structure under these conditions are also expressed 

in stochastic terms. 
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The objective of the present paper is two-fold: (1) to present an alterna­

tive formulation of the problem with which deterministic estimates may 

be made of the responses of the structure and its foundation; and (2) 

to employ the procedure in a parametric study of the effects of the major 

parameters involved. The method of analysis presented should be particu­

larly appealing to those who are accustomed or prefer to think in deter­

ministic terms. Both kinematic and inertial interaction effects are 

examined. The kinematic effects basically reflect the effects of the 

nonuniformity of the ground moti on, whereas the i nerti al interaction 

effects represent the effects of the dynamic coupling between the vibrating 

structure, foundation and supporting medium. 

The structures investigated have one lateral and one torsional degrees 

of freedom in their fixed-base condition, and are presumed to be excited 

by horizontally polarized, vertically propagating, incoherent shear waves. 

Th,e response quantities examined include the lateral and torsional com­

ponents of the foundati on input moti on and of the associ ated structural 

deformations, particularly their peak values. The maximum structural 

deformations are displayed in the form of pseudovelocity response spectra, 

and they are compared, over wide ranges of the parameters involved, with 

those obtained for no soil-structure interaction and for kinematic inter­

action only. Simple, physically motivated interpretations are given 

fo r the observed differences, and the i nterrel a tionshi p of these resul ts 

to those obtained in a companion recent study by formal application of 

the stochastic approach (Veletsos and Prasad 1989) is identified. 
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SECTION 2 
SYSTEM CONSIDERED 

The system investigated is shown in Fig. 2-1. It is a linear structure 

of mass m and height H, which is supported through a foundation of mass 

mf at the surface of a homogeneous, elastic halfspace. The circular 

natural frequencies for the lateral and torsional modes of vibration of 

the structure when fixed at its base are denoted by Px = 2TTfx and Pe =2TTfe' 

respectively, in which fx and fe are the -associated frequencies in cycles 

per second (cps); and the correspondi ng percentages of cri ti ca 1 dampi ng 

are denoted by /;x and /;e' respectively. The foundation mat is idealized 

as a rigid circular plate of negligible thickness and radius R which 

is bonded to the halfspace so that no uplifting or sliding can occur, 

and the columns of the structure are presumed to be massless and axially 

inextensible. Both m and mf are assumed to be uniformly distributed 

over identical circular areas. The supporting medium is characterized 

by its mass density, p, shear wave velocity, v , and Poisson's ratio, . s . 
\). The structure may be viewed either as the direct model of a single-

story building frame or, more generally, as the model of a multistory, 

mult imode structure that responds as a system with one 1 atera 1 and one 

torsional degrees of freedom in its fixed-base condition. 

The free-field ground motion is considered to be due to horizontally 

polarized, incoherent shear waves that propagate vertically and induce 

horizontal motions in the plane of the paper. The detailed histories 

of the motions generally vary from point to point. 
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FIG. 2-1 System Considered 
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SECTION 3 
STATEMENT OF PROBLEM 

Let XgCr-,t) be the value at any time, t, of the free-field acceleration 

at a point on the foundation-soil interface defined by the position vector 
-+ .• •• 
r, and let xi(t) and ei(t) be the horizontal and rotational components 
of the foundation input acceleration. The latter term refers to the 

acceleration that the foundation would experience if both it and the 
superimposed structure were massless. The foundation input motion is, 

therefore, independent of the properties of the superstructure. Let, 

further, the restraining action of the soil to the motion of the foundation 

be represented in the spi rit of the approach used in previ ous analyses 
of wave passage effects (e.g., Bycroft 1980; Iguchi 1983; Scanlan 1976), 

by a series of isolated elastic springs. The foundation input accelera­
tions are then given by 

.. 1·· -+ 
x " ( t) = -A f x (r, t) dA 

1 A g 
(1) 

.. 1 ..-+ 
ei(t) = -I f dnx (r,t) dA 

e A g 
(2 ) 

in which dA = an elemental area of the foundation; A = its total area; Ie = its 

polar moment area about a vertical centroidal axis; and dn = the projection 

of 1 in a direction normal to the direction of ground motion. 

The computation of xi(t) and 8i (t) through Eqs. 1 and 2 presupposes that 
the spatial variation of the free-field ground motion may be defined 
in deterministic terms. This is too demanding a requirement which, at 

the present state of knowledge, cannot be realized in practice. The 
most meaningful characterization of the ground motion variation to date 

has been provided in stochastic terms, by means of a cross power spectral 
density function. Denoted by S(r1,r2,w), this function defines the inter­
relationship of the amplitudes of the ha"rmonic components of the motions 

at two points defined by the position vectors 11 and 12, and it is expres­
sed in the form 
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( 3) 

in which S (w) = the power spectral density function of the free-field, g 
control point motion; w=the circular frequency of the motion; and f=the 

so-called incoherence function, which is a dimensionless, generally de­

creasing function of wand of the distance between points, ,11-~2'. It 

should be clear that, for 11 ="t2 or w = 0, f = 1. For the solutions presented 

herei n, the control poi nt is taken at the ground surface beneath the 

foundation center. 

3.1 Fundamental Background Information 

It is desirable to review here the evaluation of the foundation input 

motion in a stochastic analysis of the problem. Let Sx{w) = the psd func­

tion for the lateral component of foundation input motion, and Sy{w) 

= tl,e corresponding function for the circumferential component of motion 

along the perimeter of the foundation. These functions may be expressed 

in the form 

(4a) 

and 

(4b) 

in which Tx(w) and Te(w) are transfer functions interrelating the ampli­

tudes of the harmonics of the free-field control point motion and of 

thE! components of foundation input motion. More specifically, if Cg(w) 

= the mean amplitude of the harmonic motions corresponding to Sg(w), and 

Cx(w) and Cy(w) are the corresponding amplitudes for the horizontal and 

circumferential components of foundation input motion, then 

(5a) 

and 

(5b) 
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On the assumption that the soil medium acts as a series of isolated 

springs. as previously indicated. the functions Tx(w) and Ty(w) are given 
by (see. for example. Veletsos and Prasad. 1989) 

(6) 

and 

(7) 

in which dA 1 and dA 2 are elemental areas of the foundation. and d1 and 

d2 are the projections of 11 and 12 in a direction normal to the direction 
of the ground motion. Although defined specifically for displacement 

amplitudes. the functions Tx and Ty also interrelate the corresponding 
velocity and acceleration amplitudes. 

Several different expressions have been recommended for the incoherence 

function (e.g., Harichandran and Vanmarcke 1986; Hoshiya and Ishii 1983; 

Kausel and Pais 1987; Loh 1985; Luco and Wong 1986; and Luco and Mita 
1987). and there is no general agreement at thi s time on the form that 

may be the most appropri ate for actual earthquakes. For the sol utions 

presented here. the single-parameter. second-order function proposed 

by Luco and Mita (1987) is used 

(8) 

in which y = a dimensionless factor with a value between zero and 0.5. 

The quantities Tx and Te in this case are functions of the single dimen­
sionless parameter 

b = ya (9) o 0 

in which 

a
o 

= wR = We 
Vs 

(10) 
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FIG. 3-1 Transfer Functions for Lateral and Circumferential Responses 
of Massless Foundations 
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is the well known frequency parameter encountered in analyses of vibrating 
'.foundations, and T = R/vs = the time required for the shear waves in the 
soil to traverse a distance equal to the radius of the foundation. 

Closed-form expressions for Tx and Te for the incoherence function defined 
by Eq. 8 have been presented by Veletsos and Prasad (1989), and representa­
tive plots are given in Fig. 3-1 as a function of the cyclic value of 
the exciting frequency, fe =w/21T, for two values of the effective wave 
transit time, 

~ 

T = yt (11) 

With the spatial variation of the ground motion defined stochastically 
by Eqs. 3 and 8, it is desired to evaluate the response of the structure­
foundation-soil system to a deterministically specified free-field ground 
motion. 
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SECTION 4 
PROPOSED METHOD 

Let x (t) be the acceleration history of the control point motion, and .. g .• 
Xg(w) be its Fourier transform. Further, let X(w) be the Fourier transform 

of the lateral component of the resulting foundation input motion, and .. 
Y(w) be the corresponding transform of the circumferential component 

of motion along the perimeter of the foundation. These transforms are, 

of course, complex-valued quantities that define both the amplitudes 

and phase angles of the harmonics in Fourier representations of the rele­

vant motions. 

The approach used is based on the premise that these quantities may be 

interrelated by expressions analogous to Eqs. 5, as 

.. .. 
X(w) = \(w) Xg(w) (12a) 

.. .. 
Y(w)= Ty(w)Xg(w) (12b) 

Implicit in this approach is the assumption that only the amplitudes 

of the Fourier components of the free-field ground motion are modified 

by the presence of the foundation, their phase angles remaining unaltered. 

This is admittedly an approximation. Inasmuch as the spatial variation 

of the free-field motion employed is not completely defined, however, 

the precise change in phase angles cannot be determined. It is also 

worth noting that the histories of foundation input motion obtained by 

this approach are samples of possible realizations of the random process 

implied by the stochastic characterization of the ground motion incoher­

ence, and that they are statistically admissible in the sense that they 

satisfy the amplitude relations defined by Eqs. 5. Furthermore, as either 

y or W tends to zero, it is physically apparent that there can be no 

change in the phase relationship of the harmonics for the free-field 

ground motion and the foundation input motion. These limiting conditions 

are satisfied by the assumed relationship. The same relation also is 

expected to hold true for the relatively small values of the modified 

frequency parameter, bo = ya o ' normally encountered in practice. Finally, 
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the proposed approximation is deemed to be justified by the uncertainties 
that are currently involved in the specification of the incoherence func­
tion. 

The ultimate test of the reasonableness of the proposed approach is, 
of course, the extent to whi ch the results obtained by it agree with 
those obtained by formal application of the stochastic approach. It 
is shown in the following sections that the two sets of results are indeed 
in very good agreement for practical purposes. 

The steps involved in the analysis of the system by the proposed procedure 
may now be summarized as follows: 

.. 
1. Compute the complex-valued Fourier 

control point acceleration, x (t). g 

transform, Xg(w), of the free-field, 
For a motion that is defined at 

discrete time intervals, this computation is naturally implemented 
by application of the Discrete Fourier Transform (OFT). 

2. From Eqs. 12, compute the Fouri er transforms of the hori zonta 1 and .. 
circ~mferential components of the foundation input acceleration, Xi(w) 

and Y i (w) . 

3. If desired, the acceleration histories of the foundation input motion, 
x.(t) and y.(t), may then be determined by taking the inverse Fourier 11_ _ 

transforms of Xi(w) and Yi(w). 

With the foundation input accelerations and their Fourier transforms 

determi ned, the response of the structure may be computed by well es­
tablished procedures either in the frequency domain, or more directly, 
in the time domain. The steps involved in these computations depend 
on whether the inertial interaction (II) effects are considered or not. 

When the II effects are not considered, the actual motion of the foundation 
is the same as the foundation input motion, and the structure is analyzed 
for the latter motion considering it to be rigidly supported at the base. 
When the II effects are considered, the foundation motion is generally 
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different from the foundation input motion and includes, in addition 

to lateral and torsional components, a rocking component about a horizontal 

centroidal axis normal to the direction of the free-field ground motion. 

The analysis in this case must make due provision for the flexibility 

of the supporting medium and for its capacity to dissipate energy by 

radiation of waves. In the frequency domain analysis, this is accomplished 

by use of complex-valued, frequency-dependent foundation impedances, 

whereas in a time domain analysis it -is accomplished either by use of 

the foundation impulse response functions (Veletsos and Verbic 1973; 

Veletsos and Nair 1974b), or by use of the frequency-independent foundation 

models of Meek and Veletsos (1974) and Veletsos and Nair (1974a), as 

indicated by Wolf and Somaini (1986). 

The solutions presented herein were obtained in the frequency domain 

by application of DFT techniques, taking due precautions to ensure that 

the aliasing error involved in their application was negligibly small. 

The foundati on impedances for the hori zonta 1 and rocki ng responses were 

computed from the approximate closed-form expressions of Veletsos and 

Verbic (1973), and those for the torsional response were computed from 

the corresponding expressions of Veletsos and Nair (1974a). The cross­

coupling terms between horizontal and rocking actions were considered 

to be negligible. The details of analysis have already been described 

(e.g., Veletsos and Meek 1974; and Veletsos and Prasad 1988) and need 

not be repeated here. It may simply be noted that the relatively simple 

system exami ned here has three degrees of freedom for 1 atera 1 response, 

and two degrees of freedom for circumferential or torsional response. 
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SECTION 5 
PARAMETRIC STUDIES 

As an illustration of the application of the procedure and of the effects 

of the various parameters affecting the response, solutions are presented 

for two free-field control pOint motions: (1) A relatively simple motion, 

for which the acceleration history consists of a sequence of three tri­

angular pulses as shown in part (a) of Fig. 5-1; and (2) the first 6.24 

sec. of the NS component of the 1940 El Centro, "California earthquake 

record, shown in part (b) of the figure. Also shown in this figure are 

the associated velocity and displacement histories.', The abscissa of 

the plots for the simpler input is normalized with respect to the duration 

of each velocity half-cycle, to' The spatial variation of the ground 

motion in both instances is defined by the incoherence function given 

in Eq. 8. 

5.1 Foundation Input Motion 

Fig. 5-2 shows the histories of the horizontal and circumferential com­

ponents of the foundation input motion induced by the simple excitation, 

and Fig.5-3 shows the corresponding histories for the El Centro record. 

The displacement histories, xi(t) and Yi(t), are normalized with respect 

to xg ' the maximum value of the free-field, control point displacement 

for the particular ground motion under consideration, and the velocity 

and acceleration histories are normalized with respect to the corresponding 

velocity and acceleration values, Xg and Xg. The solutions for the El 

Centro record are given for fixed values of the effective wave transit 

time parameter, T = y-r, whereas those for the simpler input are given 

for fixed values of T/to' A value of T=O corresponds to a fully coherent 

free-field motion. The following trends are observed in these plots: 

1. The histories for the lateral component of foundation input motion 

are similar to those of the free-field ground motion, but their peak 

ordinates decrease with increasing value of T. 
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FIG. 5-1· Free-Field Control Point Motions Considered: (a) Simple Motion, 
(b) El Centro Record 

5-2 



U
'I

 
I w
 

01
 

:x
 

"""
­ '"
 

rT
/t

o
 =

0
 

0
.1

 
0

.2
 

~
O
l
 

r<
?
' 

, 
:x

 
'{ 

f 
~
 

-I
...

J 
v 

rO
 

" 
~
 

0
.1

 
0

.2
 

.~ o
l 

J 
\ \ 

1
7

 
·X

 -I
...

J 1 

01
 

x """
-

'"
 .... ~ 

0 
x -0

.5
 

-
'
-
.
 

1 
1 

-
I 

0 
I 

2 
3 

fx
to

 

0
.4

 

.0
1

 
.)

(
 " '" o 

0 
I 

::tt
:?!

I 
... 

• -
._

 
• 

J
'
 

~
 

.
~
 

~
 

~
 

-0
.4

 
,0

.2
 

.. 0.4
] 

A
:.I

 
/"

"\
. 

0
.0

5
 

.
)
(
 

"""
- '"
 

0 
.... ~ .>

; -0
.4

 
0

.4
 

CD
 

)
(
 

.....
.. ,...
 
~
 

0 
>

, -0
.2

 -
-
-
-
.
 ,

 
-

1
-
-

I 

-
I 

0 
I 

2 
3 

fa
to

 

FI
G

. 
5-

2 
H

is
to

ri
es

 o
f 

L
at

er
al

 
an

d 
C

ir
cu

m
fe

re
nt

ia
l 

C
om

po
ne

nt
s 

of
 F

ou
nd

at
io

n 
In

pu
t 

~l
ot

io
n 

fo
r 

Sy
st

em
s 

S
ub

je
ct

ed
 t

o 
Si

m
pl

e 
F

re
e-

F
ie

ld
 G

ro
un

d 
M

ot
io

n 



U
'1

 
I """ 

~ 0
1 

:x
 

Q
 

·x
 -
I
 1 

••
 A

 
A

 n
~
~
r
\
'
~
 

'
~
r
 \ H

 
J 

r 

-
-
T

=
O

 
--

--
;=

=
0

.1
 

~
 
~
 

0
1

 
~
,
 

.X
 

4
:
 

U
 

I 
II

 
~ 

I 
l 

I~
 -I

 
-"

." 

_
1

-1
 

v 

0
.5

. 

D
I 

O~ 
x ~
 

\ 
+

" - x -1
-1

 
.....

, 
I 

I
,
 I 

I 
.
-
-
-
,
-
-

1 

-
I 

0 
2 

3 
4 

5 
6 

7 
t,

 s
 e

c 

0
.4

 

.
Q

 
.x

 " ~o
 

- :~ -0
.4

 
0

.4
 

-
-

T
=

0
.0

5
 

-
-

-
-

T
=

O
.I

 

, 

..
 

\A1
l~ 

I,
 •
•
 

·x
 

/'
 
".

1
 I

 
\ r

I 
" 

4
' 

• 
~
O
 

~
 

-
.
~
 

I 

-0
.4

1 

0
.0

5
 

:
' 

0 
I 

-
1 

,-
"
 

,/
"\

/,
\ 

,
.
'\

 

:r 
~
 

+
" -~ -O

.I
J 

,. 
\ 

\ \ ,I
 

I 
I 

I 
I 

I 

-
I 

0 
2 

3 
4 

5 
6 

7 
t,

 s
 e

c 

FI
G

. 
5-

3 
H

is
to

ri
es

 o
f 

L
at

er
al

 
an

d 
C

ir
cu

m
fe

re
nt

ia
l 

C
om

po
ne

nt
s 

o
f 

Fo
un

da
tio

n 
In

pu
t 

M
ot

io
n 

fo
r 

Sy
st

em
s 

S
ub

je
ct

ed
 t

o
 E

l 
C

en
tr

o 
F

re
e-

F
ie

ld
 G

ro
un

d 
M

ot
io

n 



2. A substantial torsional component of foundation motion is induced, 

the peak value of which generally increases with increasing T. 

3. Because different points of the foundation-soil interface are excited 

differently, both components of foundation input motion start prior 

to the start of, and termi nate after the end of, the control poi nt 

motion. 

4. The reduction with increasing T in the absolute maximum value of the 

horizontal component of foundation input motion, and the corresponding 

increase in the circumferential component, are greatest for 

acceleration, much smaller for velocity, and almost negligible for 

displacement. 

Table 5-1 lists the peak values of response for both components of 

foundation input motion and both forms of excitation. Since the foundation 

filters the high-frequency wave components more effectively than the 

low-frequency components, the acceleration traces of the ground motion, 

which are richer in high-frequency content than the velocity and 

displacement traces, are influenced more than the latter traces. 

Considering that the responses of high-frequency systems are accelera­

tion sensitive, whereas those of low-frequency systems are displacement­

sensitive, it should be clear that the effects of kinematic interaction 

would be important for high-frequency systems and inconsequential for 

low-frequency systems. Furthermore, medi urn-frequency systems, whi ch 

are velocity-sensitive, would be expected to be affected moderately. 

That thi sis indeed the case is confi rmed by the data presented in the 

following sections. 

5.2 Kinematic Interaction Effects 

Thi s term refers to the di fference in the responses of the structure 

computed for the free-field. control point motion and the foundation 

input motion. Let U =the maximum value of the structural deformation x 
induced by the lateral component of foundation input motion, and Uy = the 

corresponding deformation induced along the peripheries of the deck and 
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TABLE 5-1- Normalized Values of Horizontal and Circumferential Components 
of Foundation Input Motions for Two Control Point Motions 
Considered 

. .. . .. 
T T xi x. 

1 xi y. 
1 

y. 
1 

y. 
1 

t sec x . .. x . .. 
x Xg Xg Xg 0 9 9 9 

For Simple Motion 

0 1 1 1 0 0 0 

0.05 0.990 0.985 0.921 0.086 0.120 0.167 

0.10 0.965 0.941 0.840 0.162 0.226 0.256 

0.20 0.891 0.813 0.688 0.273 0.351 0.339 

For El Centro Record 

0 1 1 1 0 0 0 

0.02 0.998 . 0.986 0.889 0.024 0.106 0.336 

0.05 0.992 0.933 0.717 0.057 0.196 0.341 

0.10 0.977 0.832 0.501 0.105 0.251 0.358 
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foundation by the torsional component. For a specified control point 

motion, these deformations depend on the natural frequencies of the struc­

ture, fx and fe' the associated damping factors, tx and teo and the effec­
tive wave transit time parameter, T'. The results for the two free-field 

ground motions examined here are displayed in Figs. 5-4 and 5-5 in the 

form of tri partite 1 ogarithmi c response spectra. The plots at the top 

refer to the lateral response, and those at the bottom refer to the circum-

ferential or torsional response. Several values of T . are 

including the limiting of value T'=O for which there is 

considered, 

no kinematic 

interaction. The damping factors for both modes of response in these 

solutions are taken as 1';x = 1';e = 0.02. 

The left-hand diagonal scales for the top plots in Figs. 5-4 and 5-5 

represents Ux normalized with respect to xg; the vertical scale represents 

the corresponding pseudovelocity, Vx = PxUx' normalized with respect to 

x ; and the right-hand diagonal scale represents the corresponding pseudo-
9 2 .. 

acceleration, Ax = PxVx = PxUx' normalized with respect to xg. In an analo-
gous manner. the three scales in the lower parts of these figures represent 

the deformation ratio U Ix ; the pseudovelocity ratio Vy/Xg• in which 
y g - 2 

Vy = PeUy; and the pseudoacceleration ratio. Ay/xg' in which Ay = PeVy = PeUy. 

As anticipated from examination of the peak values of the foundation 

input motions, the 1 atera 1 components of the responses of hi gh-frequency 

systems in Figs. 5-4 and 5-5 are reduced significantly by ground incoher­

ence. The reductions are materially less pronounced for medium-frequency 

systems. and very small to negligible for low-frequency systems. For 

very high-frequency systems, for which Ax may be considered to be equal 

to the peak value of the horizontal component of input acceleration, 

the percentage reductions are, of course, identical to those indicated 

in Figs. 5-2 and 5-3 for the foundation input accelerations. 

The general trends of the response spectra for the circumferential com­

ponents of deformation in Figs. 5-4 and 5-5 are consistent with those 

which would be expected from the corresponding histories of foundation 

input motion. In particular, their low-frequency and high-frequency 
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limits are equal to the peak values of the displacement and acceleration 

histories of the input motion, respectively. 

The circumferential component of structural response is generally substan­

tially smaller than the lateral component, and the peak value of the 

combination of the two components is normally only slightly greater than 

that of the lateral component. The peak value of the combination should 

be evaluated by the square-root of the sum of the squares rule. 

5.3 Total Effects of Interaction 

When both the kinematic and inertial interaction effects are considered, 

the response of the system depends not only on the parameters identified 

in the preceding section, but also on the ratio of the height to foundation 

radius for the structure, H/R, and the mass ratio 0 = m/(pnR 2H), in which 

m = the mass of the structure, and the denominator represents the total 

mass of the structure when filled with the supporting soil. Other para­

meters affecting the response of the system are Poisson's ratio for the 

supporting medium, v; the mass ratio for the foundation and structure, 

mf/m; the ratio Ifll of the mass moments of inertia of the foundation 

and structure about horizontal centroidal axes; and the ratio Jf/J of 

the corresponding polar moments of inertia about vertical centroidal 

axes. For the solutions presented herein, r;;x =r;;e = 0.02, <5 = 0.15, v = 1/3, 

and mf (and hence If and J f ) are considered to be negligible. It 

should be noted that, whereas the kinematic interaction effects are defined 

completely by the effective transit time, T, the evaluation of the inertial 

i nteracti on effects requi res the separate specifi cati on of the parameters 

y and T. 

Fig. 5-6 displays the response spectra for the lateral and circumferen­

tial deformations induced by the El Centro record in systems with the 

values of H/R, y and T identified on the figure. Three sets of solutions 

are presented: (1) making no provision for soil-structure interaction 

(551), i.e., considering the foundation motion to be equal to the free­

field control pOint motion; (2) providing only for the kinematic inter-
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action effects, i.e., taking as base excitation the foundation input 
motion; and (3) providing for both kinematic and inertial interaction 
effects, i.e., analyzing the structure-foundation-soil system exactly 
as a coupled system. Solutions (1) are independent of H/R, y and T, 
and solutions (2) are valid for all combinations of yand T for which 
T = yT = 0.02 sec. The following trends may be observed in this figure: 

1. Like kinematic interaction (KI), inertial interaction (II) may affect 
significantly the responses of systems in the medium- and high-frequency 
spectral regions. 

2. The II effects are generally considerably more important than the 
KI effects. 

3. Unlike kinematic interaction which generally decreases the lateral 
response, inertial interaction may increase the response of tall, 
slender systems in the very high-t'requency spectral region. 

4. The II effects for low-frequency, highly compliant structures are 
negl igible because such systems IIsee ll the half-sRace as a very stiff, 
effectively rigid medium. 

These trends, as well as those enumerated earlier for the foundation 
input motion and the KI effects, are in excellent agreement with those 
obtained in a companion recent study by Veletsos and Prasad (1989) by 
formal application of the stochastic approach. This agreement effectively 
confirms the'reliability of the proposed method of analysis. 
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SECTION 6 

CONCLUSION 

An approximate procedure has been presented with whi ch the effects of 
ground motion incoherence on the seismic response of surface-supported 
structure-foundation-soil systems may be evaluated deterministically. 
The free-field ground motion in this approach is specified by the accelera­
tion history of the motion at a reference or control point, and by a 
spatial incoherence function. Information and concepts have been presented 
which elucidate the nature of kinematic and inertial interaction, and 
the relative importance of the two effects. The results obtained by 
the proposed procedure have been shown to be consistent with those obtained 
in a companion recent study by formal application of the stochastic 
approach. 
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SECTION 7 

NOTATION 

The following symbols are used in this report: 

ao = wR/vs = frequency parameter; 

A = foundation contact area; 

A 2 pseudoacceleration corresponding = PxUx = x 
A 2 pseudoacceleration corresponding = PeUy = y 

to Ux; 

to Uy; 

bo = yao = modified frequency parameter incorporating effect 
of ground motion incoherence; 

Cg(w) = .mean amplitude of the harmonics in a Fourier representation 
of the free-field control pOint motion; 

Cx(w), Cy(w) = mean amplitudes of the harmonics in Fourier representations 
of the horizontal and circumferential components of founda­
tion input motion; 

~ ~ = components of r 1 and r 2 norma 1 to the direction of free-
field ground shaking; 

fe = w/2:rr = excHing frequency, in cps; 

fx = fixed-base natural frequency of structure for lateral 
mode of vibration, in cps; 

fe = fixed-base natural frequency of structure in torsional 
mode of vibration, in cps; 

H = height of structure; 

I, If = mass moments of i nerti a of structure and foundation about 
horizontal centroidal axes; 

Ie = polar area moment of inertia of foundation about vertical 
centroidal axis; 

m, mf = mass of structure and foundation, respectively; 

Px = 2:rrfx = fixed-base circular natural frequency of structure 
in lateral mode of vibration; 
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Pe = 21Tfe = fixed-base circular natural frequency of structure 
in torsional mode of vibration; 

psd = power spectral density; 
-+ ~ r I , r2 = position vectors for two arbitrary points on foundation-soil 

interface; 

R = radius of foundation; 

S(r\ ,r2,w) = 

Sg(w) = 

-+" -+ cross psd function for motions at points r l and r2; 

local psd function for displacement histories of free-field 
ground motion; 

Sx(W), Sy(w) = psd functions for displacement histories of horizontal 
and circumferential components of foundation input motion; 

to = duration of velocity half-cycle pulse for simple free-field 
ground motion considered; 

\, Ty = dimensionless transfer functions relating the lateral 
and circumferential components of the foundation input 
motion to those of the free-field control point motion; 

U(w) = psd function of structural deformation induced by the 
lateral component of foundation input motion; 

Ux = maximum structural deformation induced by the lateral 
component of foundation input motion; 

Uy = maximum circumferential deformation along the perimeter 
of the structure induced by the torsional component of 
foundation input motion; 

vs = velocity of shear wave propagation in soil med i urn; 

Vx = PxUx = pseudovelocity value corresponding to U . 
x' 

V = PeUy = pseudovelocity value corresponding to U . 
Y y' 

x = lateral component of actual foundation displacement; 

x. = lateral component of foundation input displacement; 
1 

Xg = Fourier transform of free-field ground acceleration at 

control point; 
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sx' 

Xi = Fourier transform of lateral component of foundation input 
acceleration; 

Y. = Fourier transform of circumferential component of input 
1 

acceleration along the perimeter of the foundation; 

y = dimensionless incoherence parameter; 

8 = mass density ratio for structure; 

se = percentages of critical damping for structure in 1 atera 1 
and torsional modes of vibration; 

\) = Poisson's ratio for soil medium; 

p = mass density of soil medium; 

T = R/vs = transit time; 

T = yT = effective transit time; 

w = circular frequency of excitation and of resulting motion. 
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