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ABSTRACT 

This investigation of the coupled lateral-torsional response of buildings with un symmetric plan 

to earthquakes is organized in three parts. 

In Part I, the elastic response of torsionally-coupled, one-story framed buildings to earthquake 

ground motion, characterized by response spectra of three different shapes, is studied. The earth

quake response is presented for a wide range of values of the various system parameters, including 

the beam-to-column stiffness ratio parameter which characterizes the degree of frame action. The 

base shear and torque in a torsionally-coupled system is compared with the base shear in the 

corresponding torsionallY-Wlcoupled system, and the effects of torsional coupling on earthquake 

forces are identified. Also investigated is the effect of frame action on the forces in frame 

members. 

In Part II, an effective procedure is developed for estimating the maximum response of a class 

of torsionally-coupled, multi-story buildings due to earthquake ground motion characterized by 

smooth response spectra. Several properties characterize this class of buildings, the most important 

of which is: all frames (spanning along either of two orthogonal directions) have proportional 

lateral stiffness matrices. It is demonstrated that the maximum response of such a torsionally-

coupled, N-story building in its nj'h mode of vibration can be determined exactly by analyzing (1) 

the response in the r vibration mode U=I, 2, ... , N) of the corresponding torsionallY-Wlcoupled, 

N-story system; and (2) the response in the nth vibration mode (n=l, 2 for a one-way symmetric 

plan) of an associated torsionally-coupled, one-story system. The total response is then determined 

by an appropriate modal combination rule. 

Utilizing the aforementioned analysis procedure, the earthquake response of torsionally

coupled buildings is presented for a wide range of system parameters. Based on these results, it is 

demonstrated that the building response depends significantly on the static eccentricity ratio e I r, the 

uncoupled torsional to lateral frequency ratio 11, the beam-to-column stiffness ratio p, and the 

uncoupled, fundamental, lateral vibration period Ty I' It is concluded that the response contributions 

of the higher vibration modal-pairs increase with increasing Tyl and decreasing p. However, if Tyl 



- ii -

is in the acceleration- or velocity-controlled regions of the earthquake design spectrum, the first two 

vibration modal-pairs are sufficient to estimate the response to a useful degree of accuracy; the fun

damental vibration modal-pair suffices if TYI is in the acceleration-controlled region of the spec

trum. By comparing the responses of torsionally-coupled buildings with those of corresponding 

torsionally-uncoupled systems, the effects of lateral-torsional coupling on building motions and 

forces, arising from lack of symmetry in building plan, are identified. 

In Part III, cenlers of rigidity, centers of twist, shear cenlers and static eccentricities are 

defined and procedures developed to determine their locations for one-story and multi-story build

ings of general plan layouts. It is found that, unlike one-story systems, the various centers at each 

floor of a multi-story building generally do not coincide, and their locations not only depend on the 

geometric and stiffness characteristics of the building but also on the height-wise distribution of 

lateral forces. Thus, static eccentricities can not be uniquely determined for multi-story buildings. 

A special class of buildings is identified, where the centers of rigidity, the centers of twist and the 

shear centers are coincident, load-independent and lie on a vertical line. Since torsional provisions 

in m'ost building codes are based on the evaluation of static eccentricities, the provisions should 

strictly be applied to the special class of buildings, and further work is necessary to develop code 

provisions for buildings not belonging to this special class. 
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PREFACE 

This work on the earthquake response of torsionally-coupled buildings is organized in three 

parts: 

• Part I: Earthquake Response of Torsionally-Coupled. One-story Buildings 

• Part II: Earthquake Analysis and Response of a Special Class of Torsionally-Coupled. Multi

Story Buildings 

• Part III: The Static Eccentricity Concept in Building Code Analyses 
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PART I 

EARTHQUAKE RESPONSE OF TORSIONALLY -COUPLED, 

ONE-STORY BUILDINGS 
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1. INTRODUCTION 

Buildings subjected to ground shaking simultaneously undergo lateral as well as torsional 

motions if their structural plans do not have two axes of mass and stiffness symmetry. Coupled 

lateral-torsional motions can also occur in nominally symmetric buildings-- buildings with structural 

plans that have two axes of mass and stiffness symmetry-- if ground shaking includes a torsional 

component or due to unforseen conditions such as unbalanced load distributions or differences 

between actual and assumed mass and stiffness distributions. As a result of coupled lateral

torsional motions, the lateral forces experienced by various resisting elements (frames, shear walls, 

etc.) would differ from those experienced by the same elements if the building had symmetric plan 

and hence responded only in planar vibrations. 

The dynamic response of a special class of torsionally-coupled multi-story buildings with 

resisting elements idealized as shear beams have been shown in previous studies to be related to the 

response of an associated one-story system with properties derived from those of the multi-story 

building [1,2]. Furthermore, torsional provisions of most building codes are based largely on 

results obtained by analyzing torsionally-coupled one-story systems. Since many multi-story build

ings consist of moment-resisting frames for which a shear beam idealization may be inappropriate, 

it is nec~ssary to reexamine the relations between such multi-story buildings and the associated 

one-story systems, and to study the effect of frame action on coupled lateral-torsional response of 

buildings. This study of the dynamic response of torsionally-coupled one-story buildings is a first 

step in this direction. 

The earthquake response of torsionally-coupled one-story systems has been investigated exten

sively in the past few years. Parametric studies have been performed [3,4,5,6,7,8]; tbe effectiveness 

of the torsional provisions in building codes in capturing the important response features bas been 

evaluated [4,5,9,10,11]; and different proposals to improve code provisions have been suggested 

[5,9,10,12,13,14]. 

The objectives of .this investigation are: (1) to investigate bow the elastic response of 

torsionally-coupled buildings is influenced by the various system parameters, including the effect of 
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frame action, characterized by the beam-to-column stiffness ratio; (2) to evaluate the effects of 

lateral-torsional coupling in building response; and (3) to investigate the effect of frame action on 

the member forces of resisting elements. The ground motion is assumed to be uniform over the 

base of the building so that torsional response arises only from asymmetry of building plan. The 

results of this investigation provide a basis for the analysis and understanding of the response of 

multi-story buildings, presented in Part II. 
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2. SYSTEMS AND DESIGN SPECTRA 

The linear systems studied are idealized single-story buildings, each consisting of a rigid deck 

(or floor), where the mass of the structure is lumped, supported by massless, axially inextensible 

resisting elements. The resisting elements are frames, shear walls, columns or shear-wall cores, 

with their principal axes oriented along the principal axes, X and Y, of the system (Figure 1). The 

resisting elements are symmetrically located about the X-axis, which is an axis of symmetry for the 

building plan. The dynamic response of such systems to the horizontal component of ground 

motion along the Y-axis, the direction perpendicular to the axis of symmetry, is investigated. Since 

the building is not symmetric about the Y-axis, it will undergo coupled lateral-torsional motions. 

The responses are presented for a wide range of the system parameters which will be identified in 

Section 3. 

The earthquake ground motion is characterized by its pseudo-acceleration response spectrum. 

Conservative values of system response can be obtained by idealizing the spectrum of an actual 

earthquake by a flat branch in the short-period range and by a hyperbolic branch in the long-period 

range (Figure 2), and taking the larger of the responses for the two branches [8]. Thus, two ideal

ized response spectra are considered in this study: flat or period independent pseudo-acceleration 

spectrwn. and hyperbolic pseudo-acceleration spectrum (or flat velocity spectrum). The two ideal

ized spectra are especially useful since normalized response quantities of the system do not depend 

on the system vibrational periods but only on their ratios [1.3]. 

The system is also analyzed for the earthquake input characterized by the smooth design spec

trum of Figure 3, which is developed by well known procedures [15] for excitations with maximum 

ground acceleration Og' velocity Vg and displacement ug of Ig, 48 injsec and 36 in, respectively. 

For a damping ratio of 5 % and 84.1 percentile response, amplification factors of 2.67, 2.32 and 

2.04 are obtained from [15] for the maximum ground acceleration, velocity and displacement, 

respectively, leading to the design spectrum (Figure 3). Comparing the shape of the design spec-

trum to the Og-lig-Ug plot. it is apparent from Figure 3 that the response of short-period structures is 

controlled by ground acceleration, that of medium-period structures by the ground velocity and that 
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Vibration Period T, sec 

FIGURE 2 Flat and Hyperbolic Response Spectra 
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FIGURE 3 Design Spectrum for Ground Motions with Maximum Ground Acceleration ag = 19, 
Velocity Vg = 48 in/sec and Displacement ug = 36 in; Damping = 5 % 
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of long-period structures by ground displacement. The obtained spectrum can thus be subdivided 

into three regions: the acceleration-controlled region, the velocity-controlled region and the 

displacement-controlled region. 

The design spectrum of Figure 3 is replotted in Figure 4 as a normalized pseudo-acceleration 

spectrum to emphasize that the spectral acceleration is constant (flat spectrum) in pan of the 

acceleration-controlled region, and varies as liT (hyperbolic spectrum) in the velocity-controlled 

region. 
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3. EQUATIONS OF MOTION 

Due to the rigidity of the deck and symmetry of the mass and stiffness distributions about the 

X-axis, the single-story system has only two dynamic degrees of freedom: translational displace

ment uy of the center of mass (CM) of the deck along the Y- axis, relative to the ground, and the 

rotation Ue of the deck about a vertical axis. The equations of motion governing u, the vector of 

system degrees of freedom defined by u T = < Uy rUe >, where r is the radius of gyration of the floor 

about a vertical axis passing through its CM, will be developed in this section. 

The building stiffness matrix, K, is the sum of the resisting element stiffness matrices. Kj • 

both developed for degrees of freedom u: 

K= LK; (3.1) 

Frames and shear walls are assumed to contribute to system lateral stiffness only along the 

directions of their own planes. Shear deformations are negligible for frame members so that only 

flexural deformations are considered for frames. Columns contribute to system lateral stiffnesses 

along both the X- and Y-axes. Because the individual torsional stiffnesses of frames. shear walls 

and columns are negligible, the contributions of these resisting elements to the torsional stiffness of 

the building are primarily due to the lateral stiffnesses of these resisting elements. On the other 

hand, the torsional stiffness of a core element is significant, and its contribution to the torsional 

stiffness of the building is due to its torsional stiffness as well as to its lateral stiffnesses along the 

X and Yaxes. 

The stiffness matrix Kj of the ilh resisting elemen.t is determined by the following procedure: 

1. Define the local degrees of freedom for each resisting element (Figure Ib) as follows: 

(a) For a shear wall define one translational degree of freedom at the floor level, along the 

plane of the shear wall, (X- or Y-axis), and a rotational degree of freedom about the horizon

tal axis perpendicular to its plane, (Y - or X- axis). 
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(b) For a frame define one translational degree of freedom at the floor level, along the plane 

of the frame, (X- or Y-axis), and a rotational degree of freedom per joint about horizontal 

axes perpendicular 10 the plane of the frame, (Y - or X- axis). 

(c) For a column define two translational degrees of freedom at the floor level along the X-

and Y- axes and two rotational degrees of freedom about the X- and Y- axes. 

(d) For a core define five degrees of freedom: two translations along the principal axes of the 

core, two rotations about these axes, and one torsional rotation about a vertical axis passing 

through the shear center of the core. 

2. Obtain a complete stiffness matrix for the resisting element for the degrees of freedom 

defined, taking into account flexural and shear deformations for shear walls and cores, and 

only flexural deformations for frames and columns. 

3. Eliminate the joint rotational degrees of freedom of the resisting elements by the static con-

densation process. The resulting condensed matrix, ki' of a core element 'i' is diagonal and 

of dimension equal to three, satisfying the following equation: 

k-ti 0 0 

o kyi 0 

o 0 kei 
{ 

V-ti} 
v· = k· v· Y' J, 

V8j 

(3.2) 

where k-t; and ky; are the lateral stiffnesses of the element along the two principal directions, X 

and Y, and ke; is the torsional stiffness of the core about a vertical axis passing through ils 

shear center. The applied static forces Qxi, Qy; and Qei and resulting displacements 

V.i' v y; and Vei in these three directions are related through k x;, ky; and kei' respectively. Since 

kei is negligible for columns, shear walls and frames, and k ... is negligible for frames and shear 

walls oriented in the Y - direction, (kyi is negligible for elements along the X- direction), equa-

tions (3.2) are simplified for these resisting elements. For columns, we obtain: 

{ QXi} [k ... 0 1 {VXi} Q. = = = k· v· 
, Qyi' 0 ky; v y; " 

(3.3) 
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For shear walls and frames oriented in the X- direction: 

Qx; = kx; v x, (3.4a) 

and for resisting elements oriented in the Y - direction: 

(3.4b) 

4. Detennine the transfonnation matrix, a" relating the resisting element displacement vector, Vi, 

to the system degrees of freedom, u. For a core, ai is given by: 

{
".r,) 0 -Y,Irj ( ) V, = vY' = 1 x,Ir ::8 = ai U 
V8, 0 lIr 

(3.5) 

where Xi and Yi are the X- and Y - coordinates of the shear center of a horizontal section of 

c~re 'i' relative to the CM of the system. Transformation matrix ai of a column is given by: 

(
V.ri ) [ 0 - y;l r 1 ( u

y 
) v· = = = a· u ' 

'. Vyi 1 xJr rU8 I 

(3.6) 

where Xi and Yi are the X- and Y - distances of the column principal axes from the CM of the 

system. For frames and shear walls, with their planes parallel to the X- axis, a i is obtained 

from: 

. ( u
y 

) v . = < 0 - y·lr > = a· u x, , rU8 ' (3.7) 

where y, is the distance of the frame or shear wall from the X- axis. Similarly, if the plane of 

the frame or shear wall is parallel to the Y-axis, ai is given by: 

V. = < 1 xlr> ( u
y 

) = a· u 
y' I rU8 I 

(3.8) 

where Xi is the distance of the frame or shear wall from the Y-axis. 

5. The contribution of resisting element 'i' to building stiffness matrix is K j , and is detennined 

by: 
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1 
-Keyi r 

1 
-Kyei r 
1 

2 Kei r 

(3.9) 

(3.10) 

As mentioned earlier, kei is negligibly small for all types of resisting elements except cores, 

and that either k,d or kYi is negligible for frames and shear walls, depending on their orienla-

lions. 

Using equation (3.1), the building stiffness matrix, K, for degrees of freedom u, is given by: 

Ky 
1 
-Kye 
r 

K= 
lK 1 (3.11) 

r ey 2 Ke 
r 

Kye = Key = L Kyei = L xi kyi and, (3.12) 

Ke = L Kei = L ( kei + xl kyi + yl k xi ) 

The center of rigidity (CR) of a single-story system is the point on the rigid deck through 

which the application of a horizontal static force causes pure translation of the deck without any 

twist. Also, a static torsional moment about a vertical axis causes pure twist of the floor about the 

vertical axi.s passing through the CR. These two properties of the CR legithnize the use of different 

terminology for the same point, e.g. center of resistance, center of stiffness, center of twist, center 
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of rotation, center of torsion, shear center, ... etc.. Utilizing either one of these two properties, the 

distance between the CR and the CM of the floor of the single-story building, usually referred to as 

static eccentricity, can be shown to be: 

Kye 
e = -K-

y 
= -=L,"---k-

y
;- (3.13) 

The building mass matrix for degrees of freedom u is: 

(3.14) 

where m is the mass of the floor. 

The undamped equations of motion for the single-story system, assuming linear behaviour. 

subjected to earthquake ground motion acceleration, aRit), along the Y-axis, are: 

[ mol { ui t) } o m rue(t) + ~K 
r y 

~K 
r Y 

1 
2" Ke r 

(3.15) 

It is apparent from these equations of motion that translational ground motion along the Y- axis 

will simultaneously cause both Y - lateral displacement of the CM as well as torsional rotation of 

the floor about a vertical axis. 

Alternatively, the equations of motion can be written for degrees of freedom v T = < Vy rUfj >, 

where v~ is the lateral displacement at the CR, along the Y-axis, relative to the ground. Simple 

transformation of equations (3.15), yields: 

where, 

m 

e -m-
r 

e -m-
r 

(3.16) 
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(3.17) 

Clearly, if the static eccentricity, e, is zero, equations (3.15) and (3.16) become identical and 

also become uncoupled. In this case, the earthquake ground motion only causes lateral displace-

mcnt governed by the first uncoupled equation: 

(3.18) 

in which, 

(3.19) 

is the lateral vibration frequency of the corresponding uncoupled system. The second uncoupled 

equation leads to the torsional vibrational frequency of the corresponding torsionally-uncoupled sys-

tern: 

(3.20) 

The uncoupled system is obtained from the actual system by shifting its mass so that the CM coin-

cides with the CR, without modifying the locations of the resisting elements (Figure 5). 

Two other definitions of the uncoupled torsional vibration frequency were given in earlier 

investigations: ~Ka/mr2 in reference [3], and ~KaR/m(e2+r2) in references [7] and [9], for exam-

pIe. These are derived from equations (3.15) and (3.16), respectively, by neglecting the off-

diagonal terms of these equations. The frequency .J Ka / mr2 can physically be interpreted as the 

uncoupled torsional vibration frequency of a system with coincident centers of mass and rigidity 

but with torsional stiffness at its center of rigidity equal to Ka rather than KBR , which implies a 

modified configuration of resisting elements compared to the actual coupled system. On the other 

hand .JK9R / m (e 2 + r2) is the uncoupled torsional vibration frequency of a system with coincideD! 

centers of mass and rigidity but with radius of gyration defined at its center of mass equal to 

..J e2 + ? rather than r, which implies modified mass properties. Therefore, both of these definitions 
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for the uncoupled torsional vibration frequency imply modification in either the stiffness or mass 

properties of the actual coupled system. Hence, the definition of equation (3.20) is preferred since 

it is the torsional frequency of an uncoupled system that has the same resisting elements 

configuration and mass distribution as the coupled system (Figure 5). 

The undamped equations of motion of equations (3.15) are simplified to become: 

[L (3.21) 

where, 

(3.22) 

is the uncoupled torsional to lateral frequency ratio. Clearly, the coupled lateral-torsional response 

of the system to ground motion, agyCt), will. depend on the three system parameters: elr , nand Wy. 

Damping is defined in each of the two natural modes of vibration of the system. The damping 

ratio, S, is assumed to be the same in each mode of vibration. 
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. 4. ANALYSIS PROCEDURE 

The systems described in Section 2. with their equations of motion presented in Section 3. are 

analyzed using the standard Response Spectrum Analysis (RSA) method, by which the maximum 

earthquake response of the system can be estimated by the following procedure: 

1. Define the smooth pseudo-acceleration design spectrum for the structure at the particular site. 

2. Deline the structural properties of the system 

(a) Compute the mass, m. of the deck 

(b) Compute the stiffnesses. Ky • Kyo and Ko. of the building using equations (3.12) 

(c) Determine the radius of gyration, r, of the deck about a vertical axis passing through its 

CM 

(d) Compute the static eccentricity. e. from equation (3.13), and the eccentricity ratio, elr 

(e) Compute the uncoupled lateral and torsional frequencies, wyand Wo. using equations (3.19) 

and (3.20). and the uncoupled torsional to lateral frequency ratio. n = wo/Wy. 

(f) Estimate damping ratio,~. In this study S is chosen to be 5 % in each mode of vibration. 

3. Solve the eigen problem 

(4.1 ) 

for the natural vibration frequencies and mode shapes of the system. We obtain: 

and, 
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(n= 1,2) (4.3) 

where the mode shapes have been normalized so that: 

(4.4) 

4. Compute the maximum response in individual modes of vibration repeating the following 

steps for each mode: 

(a) Corresponding to period Tn ( = 2Trlwn ) and damping ratio, ;, read the pseudo-acceleration , 
ordinate, San. of the earthquake design spectrum 

(b) Compute the displacement vector at the CM from: 

(4.5) 

The lateral displacement at the CR, vyn , is given by: 

(4.6) 

(c) Compute the equivalent force vector, tn. which applied statically at the CM causes dis-

placements uyn and rU8n, from: 

_ {!yn } 
fn - ! 

8n 
(4.7) 

The equivalent static torsional moment actually is equal to r!8n' 

(d) Compute, by statics. the base shear. Vno base overturning moment. Mn. and the base torque 

at the eM, TMn• from the external forces !yn and r!8n: 
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(4.9) 

SQ. 
T Mn = r f 0. = W r a yn all. -

g 
(4.10) 

where W is the weight of the one-story building, h its story height, and w; its effective 

weight in the n'h mode of vibration, such that: 

W; 2 - = a with W Y" 

2 

L W;= W 
I 

(4.11 ) 

The base torque at the center of rigidity, TRn , is obtained from: 

(4.12) 

where e: can be referred to as the effective eccentricity in the nih mode of vibration, satisfy-

ing: 

(4.13) 

It is seen later (Section 6) that it is meaningful to express TRn in terms of W;. Substituting 

equations (4.8) into (4.12), we obtain: 

s WO S 
T '= eOW·~ = (eo_n 

) (W~) 
Rn n n g n W g (4.14) 

(e) Compute the internal forces in structural members of a resisting element 'i' associated 

with the vector of lateral and rotational displacements, determined from u. obtained in step 4 

(b), by: 

Vin = ai Un (4.15) 

where the transformation a, depends on the type of resisting element (equations (3.5) to (3.8». 

The joint rotations of the resisting element, which were statically condensed out earlier, are 

computed from Vin using its complete stiffness matrix, defined earlier in Section 3. Internal 
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forces in each member of the resisting element are then computed using the stiffness of the 

member and its joint rotations and displacements. 

5. Determine an estimate of the maximum, r, of a response quantity by combining its modal 

maxima, r n , according to an appropriate combination rule. Since the vibrational frequencies 

of such systems may be closely spaced, the cross-corelation between modal responses can be 

significant. Thus, the combination rule used, should take this effect into account. A heurisli-

cally motivated combination rule that considers this effect [6,8], was utilized in earlier investi-

gations of the dynamics of torsionally coupled systems [ex. 1,2,3]. The more recent Complete 

Quadratic Combination (CQC) rule [17], which leads to essentially identical results as the ear-

lier rule, is utilized in this work. According to the CQC rule, an estimate of the maximwn r 

of the response quantity can be obtained from: 

(4.16) 

where Ynm is the cross-correlation factor between modes 'n' and 'm', and rn and rm are the 

modal maxima of the response quantity in modes 'n' and 'm', respectively. The cross" 

correlation factors, Ynnl' are, in general, functions of the duration and frequency content of the 

ground motion, as well as the natural frequencies and modal damping ratios of the system. 

For smooth earthquake response spectra, representative of broad-frequence-band excitations, 

for long earthquake durations compared to the natural periods of the system, and for equal 

modal damping ratios, .;, Ynm is approximated by [17]: 

Ynm = ------------
( 1 :... q;m)2 + 4.;2 qnm (l + qnm)2 

(4.17) 

in which, 

(4.18) 

Equation (4.16) can be written as: 
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(4.19) 

in which the tirst two terms represent the well-known combination rule: the Square-Root of 

the Sum of Squares (SRSS) of the modal maxima. The last term accounts for the cross-

correlation bet ween modes '1' and '2', and is especially important when the natural freq uen-

cies WI and W2 are close to each other. In computing the modal maxima r. from step 4, using 

equations (4.5) to (4.12), ... etc., r., the algebraic sign obtained for r. should be retained. The 

last term in equation (4.19) assumes positive or negative values depending on whether r I and 

r 2 have the same or opposite algebraic signs. 

In order to facilitate the subsequent interpretation of the effects of lateral-torsional coupling, 

the lateral displacement at the CR, "Y' the base shear, V, the base overturning moment, M, and the 

base torque at the CR, TR , are expressed in normalized form: 

_ Vy 
v=- (4.20) 

vY" 

where Vyo' Vo and Ma are the maximum lateral displacement, base shear, and base overturning 

moment, of the corresponding torsionally-uncoupled system, defined earlier, with coincident centers 

of mass and rigidity, but all other properties identical to the actual system. The maximum uncOu-

pled quantities are determined from: 

(4.21) 

where S"y is the pseudo-acceleration response spectrum ordinate corresponding to lateral vibration 

period (Ty = 2nJwy) and damping ratio.; of the uncoupled system. 

The normalized quantity, f R• can be interpreted as the dynamic eccentricity, ed, the distance 

from the CR of the system where the uncoupled base shear should be applied statically to cause a 

base torque equal to TR at the CR of the system [3,7]. The ratio ed/e then represents the dynamic 

amplification of the static torque eV". This definition of ed is preferred over others [7] as it is akin 
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to the concept underlying building code provisions for torsional forces. 

The parameters conlrolling the normalized response quantities of equations (4.20) are 

identified by considering the contributions of the nth vibration mode to these normalized response 

quantities, which can be determined from equations (4.6) to (4.10) and (4.21), leading to: 

(4.22) 

and, 

(4.23) 

The ratio of spectral ordinates Sun and Say is dependent, generally, on the values of Tn and Ty and on 

the shape of the spectrum. However, Sa./Say depends at most on the ratio T./Ty for the fiat or hypcr-

bolic idealized spectra, described in Section 2; it is equal to one or to w. = ro./roy = TylTn for the 

two spectra, respectively. Thus, it can be observed from equations (4.2),(4.3),(4.19),(4.22) and 

(4.23) that the normalized responses depend only on e/r , n and ~ in the case of the idealized fiat 

and hyperbolic pseudo-acceleration spectra, and on e/r, n ,roy (or Ty) and ~ in the case of 

arbitrary-shaped spectra. 
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5. VIBRATION FREQUENCIES AND MODE SHAPES 

The natural frequencies, Wn (n=1.2), of the coupled system, normalized by wy• the uncoupled 

lateral frequency. are given by equation (4.2) and plotted in Figure 6 against n = Welwy. the uncou

pled torsional to lateral frequency ratio. for three values of the eccentricity ratio. elr: 0.05. 0.4 and 

1.0. Also included for comparison are the uncoupled frequencies wyand we. normalized by Wy, In 

order to identify the effects of lateral-torsional coupling .on the natural vibration frequencies. 

It is apparenr from Figure 6 that the uncoupled frequencies, wyand we. are upper and lower 

bounds of the coupled frequencies. so that as e I r increases the fundamental frequency decreases 

below WII and Wy. while the second frequency increases above wyand we. Naturally, the coupled fre

quencies are closest to the uncoupled ones for systems with smallest elr values. For torsionally

flexible systems, (i.e. n below unity), We is the upper bound for WI' while Wy is the lower bound for 

W2' On the other hand, for torsionally-stiff systems, (i.e. n above unity), Wy is the upper bound for 

WI, while Wo is the lower bound for W2' For systems with closely spaced uncoupled frequenCies, 

(i.e. n around unity), the coupled frequencies are closest to one another. with the closeness most 

pronounced for systems with smaller values of elr. The system is unstable for n equal to zero. 

since, in this case, the fundamental frequency, WI' is zero. 

The displaced position of the deck of the structure vibrating in the nth mode of vibration is 

shown in Figure 7. The lateral displacement at the CM equals G yn while that at the CR equals 

G yn w~. The X-axis of symmetry rotates through an angle equal to Gonlr about a point P at a dis

tance -rGynlGen from the CM. The lateral displacement at any point on .the X-axis, located a dis

tance x from the CM, is given by G yn + (xlr) Gen' 

The lateral and torsional components. G yn and G en , of the nth vibration mode shape. are plotted 

in Figure 8 against n for the three values of e I r: 0.05, 0.4 and 1.0. As a result of the orthogonality 

property of the vibration modes. a; a2 = 0, it can be shown that GYI = G e 2 and G y 2 = -ael' Thus, 

the lateral componenl of one mode equals the torsional component of the other. As n increases. 

the lateral component. ayl' of the fundamental mode increases and its torsional component, UIII' 
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decreases. For torsionally-stiff (Q > 1) systems a yl approaches unity and aSI approaches zero as n 

becomes large. Thus, in this case, the fundamental mode contains predominantly lateral motions 

and the second'mode predominantly torsional motions. Torsionally-flexible (Q < 1) systems with 

smaller e I r ratios have smaller a y I values than as 10 but the modes are not predominantly lateral or 

torsional, unless elr is very small. For systems with closely spaced Uncoupled frequencies (Q = I), 

the lateral and torsional motions are of comparable magnitude, especially for systems with small 

elr. 

The cross-correlation factor, 112, given in equation (4.17), is ploued in Figure 9 against n for 

various elr values and for 5 % damping. The variation of 112 is closely related to the spacing of 

WI and W2. Since the two coupled frequencies are closest for systems with Q = 1 and small e I,. 

values, 112 is largest at n = 1. For larger elr values, the frequenCies COl and co2 are widely spaced 

for any value of n resulting in small 112. The cross-correlation tenn of equation (4.19) is, there

fore, significant for systems with small elr ratios and Q = 1, i.e. closely spaced uncoupled frequen

cies. 
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6. EFFECT OF LA TERAL-TORSIONAL COUPLING 

The effect of lateral-torsional coupling on the response of one-story buildings to earthquake 

ground motion is investigated in this section. This is achieved by comparing the response of the 

torsionally-coupled building to the lateral r~sponse of the corresponding torsionally-uncoupled sys

tem for both the idealized (fiat and hyperbolic) acceleration spectra and the general design spectrum 

of Figure 4. 

Figure 10 shows the variations of the nonnalized base shear if, (which also equals v and M), 

and the dynamic eccentricity ratio edlr, (equations (4.20», against the uncoupled frequency ratio n. 

for different elr values, for fiat and hyperbolic response spectra. For the corresponding 

torsionally-uncoupled system, if = 1 and edl r = O. The effect of lateral-torsional coupling is, there

fore, measured by the deviation of if from unity and edlr from zero. The dynamic amplification of 

eccentricity is measured by the deviation of edl r from e I r; the latter is shown in Figure 10 by 

dashed lines. 

The results of Figure 10 indicate that lateral-torsional coupling has the effect of reducing V 

and increasing edlr. These effects increase as elr increases and are also dependent on n. For sys

tems with smaller elr values, if reaches its minimum value and edlr its maximum value, for values 

of n around unity, i.e. when the uncoupled lateral and torsional frequencies are close to each other. 

As e I r increases, if reaches its minimum values at values of n below unity, while edl r reaches ils 

maxima for values of n above unity. For torsionally-stiff systems (n> I), if approaches unity as n 

becomes large, indicating that there is essentially no reduction in the base shear, while eJlr 

approaches elr, implying no dynamic amplification of eccentricity. For torsionally-flexible systems 

(n < 1) with smaller elr, there is little reduction in base shear. The dynamic eccentricity ratio, e)r. 

for torsionally-flexible systems (n < 1) is less than elr in the case of hyperbolic spectrum and 

approaches zero as n lends to zero, but edlr is almost equal to elr in the case of flat spectrum, indi

cating no dynamic amplification. 
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Dynamic amplification of static eccentricity increases with decrease in elr. For systems with 

smaller e I r ratios, dynamic amplification is most pronounced when the uncoupled frequencies are 

closely spaced, but for systems with larger elr dynamic amplification is significant over a wider 

range of n below and above unity in the case of flat spectrum, and in the range of n above unity in 

the case of hyperbolic spectrum. However, the maximum dynamic amplification of static eccentri

city is about the same for flat and hyperbolic spectra. 

For arbitrary-shaped earthquake response spectra, the coupled lateral-torsional response of the 

structure depends on the uncoupled lateral vibration period Ty in addition to the system parameters 

elr and 12, which influenced the response of the structure in case of flat or hyperbolic spectra. In 

order to understand the role that Ty plays in structural response, V and edle due to earthquake 

ground motion characterized .by the design spectrum of Figure 4, are presented in Figures 11 and 

12. Responses are presented as a function of n for different values of elr ratios and two values of 

Ty equal to 0.25 and 2.5 sec. Also shown in these figures are V and edle computed for the flat and 

hyperbolic spectra, to provide a basis for interpreting the response trends. The Ty values chosen, 

0.25 and 2.5 sec, fall on the flat and hyperbolic branches of the spectrum of Figure 4, respectively. 

Referring to Figure 11, the nonnalized base shear V for systems with small elr is insensitive 

to the shape of the spectrum or to Ty • As elr increases, V computed for the general spectrum fol

lows either that determined for the flat or that for the hyperbolic spectrum depending on Ty. If Tyis 

in the acceleration-controlled region, (or the flat portion of the spectrum), V for the spectrum of 

Figure 4 is essentially the same as that for the flat spectrum, while if Ty is in the velocity-controlled 

region, (or the hyperbolic portion of the spectrum), V is essentially the same for the arbitrary and 

hyperboliC spectra. The deviations from the idealized curves increase with increase in elr, and are 

relatively large for torsionally-flexible systems, The deviations are basically due to the coupled 

vibration periods of the system falling on different branches of the spectrum of Figure 4. As 

expected, based on Section 2, V due to flat and hyperbolic spectra are upper bounds of V for the 

general spectrum. 
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Referring to Figure 12. the dynamic amplification of eccentricity. defined by ed1e = TRleV). in 

systems subjected to ground motion characterized by the design spectrwn of Figure 4 is essentially 

the same as that for the flat or the hyperbolic spectrum depending on Ty- The discrepancies occur 

for torsionally-flexible systems and are more pronounced for Ty equals 0.25 than 2.5 sec. This is 

because the base torque at the CR is dominated by the fundamental mode (see Appendix A). and 

for torsionally-flexible systems the fundamental vibration period is very long and falls on a 

different branch of the spectrum than Ty• As expected, based on Section 2, edl e due to flat and 

hyperbolic spectra are upper bounds of edl e for the general spectrum. 

The maximum lateral displacements v/x) of the symmetry axis of the building, normalized 

with respect to the lateral displacement Vyo of the corresponding torsionally-uncoupled system. are 

shown in Figure 13 for values of n equal to 0.5, 1.0 and 1.5, and values of elr equal to 0.05, 0.4 

and 1.0. The curves are computed using both idealized spectra, flat and hyperbolic, and the general 

design spectrum of Figure 4 for values of Ty equal to 0.25 and 2.5 sec. For systems with small e / r. 

the maximum lateral displacements of the symmetry axis. are insensitive to the shape of the spec

trum and are relatively close to the maximum lateral displacement Vyo for the corresponding uncou

pled system. The base-shear plots of Figures 10 and 11 imply that for systems with larger e I r the 

maximum lateral displacement of the torsionally-coupled system at its CR (x = e) is smaller than "-"" 

and this is confirmed by Figure 13. In contrast, the maximum lateral displacements at some other 

points on the symmetry axis may be larger than Vyo' The maximum lateral displacements at points 

on the symmetry axis on the flexible side of the building, (the side of the building opposite to 

where the CR lies relative to the CM, i.e. x < e), are generally larger than Vyo. increasing as x 

decreases below e and as elr increases, being larger for torsionally-flexible systems compared to 

systems with closely spaced uncoupled frequencies or torsionally-stiff systems. The maximum 

lateral displacements at points of the symmetry axis on the stiff side of the building, (the side of the 

building where the CR lies relative to the CM, i.e. x> e), generally increase as x increases above e 

for torsionally-flexible systems and systems with closely spaced uncoupled frequencies, more so for 

the former, so that, in some cases, they become larger than Vyo as x increases over e. For 
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torsionally-stiff systems, however, the maximum lateral displacements v/x) vary linearly with x, 

decreasing as x increases, and are below vy" for points on the stiff side of the building (x> e). 

The maximum base shear, V, due to earthquake ground motion characterized by the design 

spectrum of Figure 4. is plotted against the uncoupled, lateral vibration period Ty in the form of 

response spectra (Figure 14). The value chosen to non-dimesionalize V is the maximum base shear 

for a rigid single-degree-of-freedom system with lumped weight W. Results are presented for Q 

values equal to 0.5, 1.0 and 1.5 and elr values of 0.05,0.4 and 1.0. Also included in this figure for 

comparison is the normalized base shear Va for the corresponding torsionally-uncoupled system, 

which is identical to the pseudo-acceleration spectrum. It is apparent that torsional coupling gen

erally has the effect of reducing the base shear. with the amount of reduction depending on e I r and 

.0., except for very short period systems with large elr. 

Figure 15 shows the base torque at the CR. TR , normalized by e~Wtaglg, plotted against Tv in 

the form of a response spectrum for values of elr equal to 0.05, 0.4 and 1, and for values of Q 

equal 0.5, 1 and 1.5, due to ground motion characterized by the design spectrum of Figure 4. 

Referring to equation (4.14), the normalization factor chosen is the torque obtained if the maximum 

base shear Wagl g of a rigid single-degree-of-freedom system of lumped weight W is applied at a 

distance e~W; IW, measured from the CR of the system. Also included in Figure 15 for comparison 

is the quantity V,,( e~W; IW), the torque obtained if the base shear of the corresponding uncoupled 

system is applied at an eccentricity e;W;IW, also normalized by e;W;agfg, i.e. V"gl WGs , which is 

equivalent to the normalized pseudo-acceleration spectrwn S)g. It is apparent from Figure 15 thai, 

for torsionally-stiff systems, the normalized base torque spectrum is similar to the Vo ( e;W; IW ) 

spectrum, although it is slightly underestimated by the latter for systems with smaller e I r, and 

overestimated for systems with larger e I r. For torsionally-flexible systems (.0. < 1), the normalized 

base torque is considereably smaller than the pseudo-acceleration spectrum over a wide range of T" 

in the acceleration-, velocity- and displacement-controlled regions of the spectrwn, since the 
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fundamental vibration period is much longer than Ty , causing its contribution to base torque to be 

small. On the other hand, the second mode contribution to base torque is significant for systems 

with small e I r and closely-spaced uncoupled frequencies (Appendix A), and the cross-correlation 

term for the base torque between the two modes is negative (Figure A.l), causing a reduction in the 

base torque, in this case, relative to Voe~W~ IW in all regions of the spectrum. 

Figure 16 shows vy, the maximum lateral displacement at the CR, due to earthquake ground 

motion characterized by the design spectrum of Figure 4, normalized by the maximum ground dis-

placement, u~. as a function of Ty for various values of elr and Q. Also shown in Figure 16 is lOr". 

the maximum later-al displacement of the corresponding torsionally-uncoupled system, also normal-

ized by ur The variation of v)' with Ty follows that of Vyo with minimum discrepancies occuring for 

low elr values. The variation with Q is most pronounced for long~period systems with larger elr 

values. 
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7. EFFECT OF FRAME ACTION 

The overall earthquake response of the system- was shown in the previous sections to be 

influenced by the overall system parameters elr , nand Ty (as well as by; and m, h or r). There-

fore, the overall responses of two buildings with different floor plans and different types of resisting 

elements are identical provided these system parameters are the same for the two buildings. On the 

other hand, the local responses of the system, e.g. member forces in individual resisting elements, 

depend on the location of the element, whether it is a frame, shear wall, or shear-wall core, in addi-

tion to the overall parameters o(the system. In particular, the forces in frame members depend, in 

part, on the degree of frame,action. 

The joint rotation index, p, of a frame, is defined as the ratio of the sum of the stiffnesses of 

all beams at the mid-height story of the frame to the summation of the stiffnesses of all the 

columns at the same story [18]. It is expressed by: 

p= (7.1) 

For a one-story, single-bay frame with column moment of inertia, 1, bay width L and story height 

II, P becomes: 

h lb 
p=--

2L I 
(7.2) 

The parameter p is a measure of frame action. The limiting case p = 0 represents a flexural column 

with beams imposing no constraint to joint rotations, and the other limiting case p = 00 represents a 

shear frame in which joi~t rotations are completely restrained and the deformatIons occur only 

through double curvature bending of the columns. Intermediate values of p represent frames with 

both beams and columns undergoing bending deformations with joint rotations. 

To study the effect of frame action on local member forces, consider a frame spanning in the 

Y direction at a distance x from the CM of the building (Figure 1). The maximum lateral displace-

ment of the frame vy(x), which is the combination of the contributions of the two vibration modes 
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of the building, depends on the system parameters elr , n , Ty and ;, as well as on x, but is indepen-

dent of p. Member forces in the one-story frame are proportional to vy(x). For a single-bay frame 

with joint rotation index p, the frame base shear 
c 

V(x)= Et 6(1+12p) vex) 
h 3 1+3p·Y 

The column base moment is given by: 

M (x) = El 3 (1 + 6 p) v (x) 
c h2 1+3p Y 

and the beam moment, Mb(x), and column axial force, Pc(x), by: 

L El lSp 
Mb(x) = PAx) -2 = -2 --3- vy(x) 

h 1 + p 

(7.3) 

(7.4) 

(7.5) 

Figure 17 shows the variations of the proportionality constants of equations (7.3) to (7.5) as a 

function of p. As p decreases to zero, i.e. the beams become increasingly flexible, the beam 

moment and column axial force tend to zero while the base shear and column base moment tend 10 

the corresponding values for cantilever columns, Le.to 6Elvix)/h3 and 3Elvy(x)/h 2 , respectively. 

12Elvy(x)lLh 2, respectively. the values for a shear building. Also it is apparent from Figure 17 thaI 

all member forces increase with increase in p, provided other parameters are kelPt constant. 

As [he member forces in a frame are proportional to the lateral displacement vix), their varia-

tion with positions x of the frame along the symmetry axis. can also be interpreted from Figure 13 

presented earlier. It was shown that the lateral displacements of frames on the flexible and stiff 

sides of torsionally-flexible systems may be significantly larger than the lateral displacement of the 

corresponding torsionally-uncoupled system, and these displacements increase as elr increases. The 

lateral displacements of frames on the flexible side of torsionally-stiff systems with large e I r. or 

systems with closely-spaced uncoupled frequencies may also be larger than in the uncoupled sys-

tern. Therefore. the frames on either the flexible or the stiff side of the building may experience 
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larger member forces due to lateral-torsional coupling, depending on the location of the frame, as 

well as on the overall system parameters. 
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8. CONCLUSIONS 

This study of one-way symmetric buildings subjected to the horizontal component of ground 

motion, perpendicular to the axis of symmetry, leads to the following conclusions: 

(1) The coupled lateral-torsional response of buildings to an earthquake depends on: the sialic 

eccentricity ratio elr,the uncoupled torsional to lateral frequency ratio 0., the uncoupled 

lateral· vibration period Ty , and the damping ratio ; of the structure. In addition to these 

parameters, p, the joint rotation index or the beam-to-column stiffness ratio of the resisting 

elements influences the member forces in individual elements of the building. 

(2) Lateral-torsional coupling modifies the natural vibration frequencies of the system, wilh the 

effect decreasing with decreasing e I r and being smallest at 0. = 1. 

(3) The coupling -between the lateral and torsional components of mode shapes is weak for 

torsionally-stiff systems (0. > 1), and for systems with small e I r and widely spaced uncoupled 

frequencies; for such systems each mode shape is predominantly lateral or torsional. 

(4) Lateral-torsional coupling has the effect of reducing the base shear, base overturning moment 

and lateral displacement at the center of rigidity, but increasing the torque. These effects 

increase as e I r increases and are most pronounced for systems with 0. close to 1. For 

torsionally-stiff systems with 0. considerably greater than I, there is essentially no reduction in 

base shear and the torque is essentially equal to the base shear times the static eccentricity, 

i.e. there is no dynamic amplification of static eccentricity. Systems with closely spaced 

uncoupled frequencies exhibit maximum dynamiC amplification of static eccentricity, espe

cially for smaller e I r ratios. 

(5) The response spectra for base shear, base overturning moment and the lateral displacement at 

the center of rigidity of torsionally-coupled systems are similar in shape to the corresponding 

spectra for the uncoupled system, but with smaller ordinates with the amount of reduction 

depending strongly on elr and 0., but to a lesser degree on Ty , except for torsionally-flexible 

systems with large elr ratios where the dependence on Ty is more pronounced. 
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(6) The normalized base torque spectrum for torsionally-stiff systems is similar to the 

Vo ( e~W; /W) spectrum, the product of the base shear for the uncoupled system and the 

dynamic eccentricity in the fundamental mode of vibration, although it is slightly underes

timated by the latter for systems with smaller e / r and overestimated for larger e / r. However, 

for torsionally-flexible systems the base torque is grossly overestimated by Vo (e;WjO,W ). 

(7) The maximum lateral displacements of the symmetry axis at points on the flexible side of the 

building are generally larger than the lateral displacement Vyo for the uncoupled system, 

increasing as e' r increases and are larger for torsionally-flexible systems compared to 

torsionally-stiff systems or systems with closely spaced uncoupled frequencies. The maximum 

lateral displacements of the symmetry axis at points on the stiff side of the building are also 

generally larger than Vyo for torsionally-flexible systems and systems with closely spaced 

uncoupled frequencies, more so for the former than the latter. For torsionally-stiff systems, 

however, the maximum lateral displacements vary almost linearly with distance and are gen

erally smaller than Vyo on the stiff side of the building. 

(8) Any member force of a resisting element is proportional to the lateral floor displacemeDl of 

the reSisting element. As a result, maximum member forces of resisting elements of the cou

pled system may increase or decrease due to lateral-torsional coupling, depending on the posi

tion of the element and on the controlling parameters of the system. Thus, elements on the 

flexible or stiff side of the building may experience larger member forces than the correspond

ing uncoupled system. 
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APPENDIX A: MODAL CONTRIBUTIONS 

In the interpretation of the effect of lateral-torsional coupling on the response of the building, 

it is necessary to study the contributions of the two modes to various response quantities. 

First, the concept of unit modal response is introduced. It is the response of the structure in 

an individual mode of vibration with unit value for the pseudo-acceleration response ordinate, Sa •. 

The unit response in the nth vibration mode is given by equations (4.6), (4.8), (4.9) and (4.14) with 

Sa. = 1 for the lateral displacement of the center of rigidity, base shear, base overturning moment, 

and base torque at the center of rigidity, respectively. The maximum value of any response quan

tity due to an individual vibration mode is the product of the unit response in that mode and the 

ordinate Sa. of the pseudo-acceleration response spectrum corresponding to that mode. 

In discussing the contributions of the two coupled modes to the response, it is useful to nor

malize the unit response in the nth mode by the unit response of the uncoupled system. The unit 

modal base shear, base overturning moment and lateral displacement at the CR, normalized respec

tively by the unit base shear, base overturning moment and' floor lateral displacement of the 

corresponding uncoupled system, are all represented by W;IW, as is obvious from equation (4.22). 

From equation (4.23), the unit modal base torque at the CR normalized by the product of r and the 

unit base shear of the uncoupled system is given by e~W:lrW. The normalized unit modal lateral 

and torsional quantities W;IW and e:W;lrW are presented in Figure A.I against n for various e Ir 

values. 

Referring to Figure A.I, the contribution of the second mode to the unit translational response 

of the system is negligible compared to that of the fundamental mode for torsionally-stiff systems. 

For torsionally-flexible systems, the fundamental mode contribution to unit translational response of 

the system is significantly lower than that of the second mode for smaller e I r values but is qui te 

large for large elr ratios. For systems with closely-spaced uncoupled frequencies, the two modes 

contribute almost equally to the unit translational response of the system for low to medium e I,. 

values, but the second modal contribution is ,significantly smaller than that of the fundamental mode 
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when elr is large. 

The second modal contribution to the unit base _ torque at the CR of the building is 

significantly smaller than that of the fundamental mode for medium to large values of elr. The 

contribution of the fundamental mode to the unit base torque increases with increase in elr, while 

that of the second mode decreases with the increase in elr. The maximum modal contribution to 

unit base torque of the building occurs at values of n very close to one for small to medium e I r 

and larger than one for large elr. When elr is very small, the contributions of the two modes arc 

almost equal when the uncoupled frequencies are closely-spaced. 

The conclusions drawn from Figure A.I combined with the observ ations of Section 5, lead us 

to .the [ollowing conclusions: 

(1) The unit translational response of coupled systems with predominantly lateral and predom

inantly torsional modes, is dominated by the predominantly lateral mode. 

(2) The unit torsional response of coupled systems is dominated by the fundamental mode, except 

for systems with small elr and closely-spaced uncoupled frequencies. IIi this latter case, the 

contributions of both modes are almost equal. 

The actual contribution of a vibration mode to the response is the product of the unit modal 

contribution and the pseudo-acceleration ordinate. The actual modal contribution may be higher or 

lower than the unit modal contribution depending on the ordinate of the spectrum, which in turn 

depends on the vibrational period value and the shape of the spectrum. 
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APPENDIX B: NOTATION 

a, transformation matrix of element Ii', defined by either of equations (3.5), (3.6), (3.7) 

or (3.8) 

ilg maximum ground acceleration 

axil) ground acceleration as a function of time 

e static eccentricity defined as the distance between the centers of mass and rigidity 

ed dynamic eccentricity defined as the distance from the CR where the uncoupled base 

shear should be applied to cause base torque at the CR equal to TR 

effective eccentricity in the nth mode of vibration, defined by equation (4.12) 

dynamic eccentricity in the nth mode of vibration, defined by equation (4.23) 

equivalent static lateral force in the nth mode of vibration, defined by equation (4.7) 

Ion equivalent static torsional force in the nth mode of vibration, defined by equation (4.7) 

fn f~ = < I yn Ion > 

h height of single-story system 

moment of inertia of beams 

moments of inertia of columns 

lateral stiffnesses of element Ii' along the X and Y directions 

torsional stiffness of core Ii' about a vertical axis passing through its shear cenler 

k· , stiffness matrix of element "i' with respect to degrees of freedom Vi 

elements of K, defined by equations (3.12) 

building torsional stiffness about a vertical axis passing through its CR, determined 

by equation (3.17) 
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elements of K,. defined by equations (3.10) 

building stiffness matrix defined with respect to degrees of freedom u 

stiffness matrix of element • i'. computed for degrees of freedom u 

lengths of beams 

length of columns 

mass of deck 

building mass matrix defined with respect tou 

base overturning moments of coupled and uncoupled systems. respectively 

base overturning moment of coupled system due to the nth mode of vibration 

normalized coupled base overturning moment, defined by equation (4.20) 

nonnalized coupled base overturning moment in the nth mode of vibration, defined by 

equation (4.22) 

Mb(x) , Mc(x) and Pc(x) 

Q9i 

r 

r 

r n 

maximum beam moment, base column moment, and cohimn axial force, respectively, 

of a frame spanning along the Y-axis at a distance. x from the CM 

coupled frequency ratio, wn/wm 

applied lateral forces at element 'i', along the X and Y directions, respectively 

applied torsional moment at element 'i' about a vertical axis -

vector of applied forces to element 'i', defined by either of equations (3.2) or (3.3) 

radius of gyration of deck about a vertical axis passing through its CM 

maximum of a response quantity of the coupled system 

maximum of r in the nth mode of ~ibration 
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Say pseudo-acceleration response spectrum ordinate corresponding to Ty and S 

San pseudo-acceleration response spectrum ordinate corresponding to Tn, (n=I,2), and S 

Tn n'h natural vibration period of coupled system 

Ty natural lateral vibration period of uncoupled system 

TR base torque of coupled system at its CR 

T Mn and TRn base torques of coupled system at its centers of mass and rigidity, respectively, due 

the nih mode of vibration 

u 

Un 

Vn 

normalized coupled base torque at the CR, defined by equation (4.20) 

normalized coupled base torque at the CR, in the nih mode of vibration, defined by 

equation (4.2~) 

maximwn ground displacement 

lateral displacement of CM along the Y-axis 

deck: rotation about a vertical axis 

lateral and torsional displacements in the nih mode of vibration 

lateral displacements at· the CR of the coupled system 

lateral displacement of uncoupled system 

lateral displacement at the CR in the nih mode of vibration 

normalized coupled lateral displecment of CR,defined by equation (4.20) 

normalized coupled lateral displacement, in the nih mode of vibration, defined by 

equation (4.22) 
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maximum ground velocity 

v 

vector of displacements of element "i', defined by either of equations (3.2) or (3.3) 

V xi and Vyj lateral displacements of element' i', along the X and Y principal directions of the elc-

ment 

rotation of core 'i' about a vertical axis passing through its shear center 

lateral dispacment of a frame spanning along the Y-axis at a distance x from the CM 

V'II lateral displacement of element 'i' in the nth mode of vibration 

V, V" base shears of coupled and uncoupled systems, respectively 

Vo base shear of coupled system due to the nth mode of vibration 

v normalized coupled base shear, defined by equation (4.20) 

Vo normalized coupled base shear in the nth mode of vibration, defined by equation 

(4.22) 

v (x) maximum base shear of a frame spanning along the Y-axis at. a distance x from the 

CM 

w total weight of the building 

w' n effective weight in the n'h mode of vibration, defined by equation (4.8) 

Xj and Yi X and Y coordinates of element 'i' 

a~= < a yn aBo >, (n=1,2) 

a y and CX(J lateral and torsional components of natural coupled mode 

a yn and aBo lateral and torsional components of the nth natural coupled mode sh~pe . 

p frame joint rotation index or beam-to-column stiffness ratio 
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natural vibration frequency of coupled system 

nth coupled natural vibration frequency, (n= 1,2) 

lateral natural vibration frequency of uncoupled system, defined by equation (3.19) 

torsional natural vibration frequency of uncoupled system, defined by equation (3.20) 

uncoupled torsional to lateral frequency ratio, oo91ooy 

cross-correlation factor between coupled modes 'n' and 'm' 

damping ratio, chosen to be 5 % 

cenrer of mass 

center of rigidity 





PART II 

EARTHQUAKE ANALYSIS AND RESPONSE OF A SPECIAL CLASS 

OF TORSIONALLY -COUPLED, MULTI-STORY BUILDINGS 





- 59 -

1. INTRODUCTION 

Buildings subjected to ground shaking simultaneously undergo lateral as well as torsional 

motions if their structural plans do not have two axes of mass and stiffness symmetry. Coupled 

lateral-torsional motions can also occur in nominally symmetric buildings-- buildings with structural 

plans that have two axes of mass and stiffness symmetry-- due to unforseen conditions such as 

unbalanced load distributions or differences between actual and assumed mass and stiffness distri

butions, or if ground shaking includes a torsional component. As a result of coupled lateral

torsional motions, the lateral forces experienced by various resisting elements (frames, shear walls, 

etc.) would differ from those experienced by the same elements if the building had symmetric plan 

and hence responded .only in planar vibrations. 

The dynamic response of torsionally-coupled buildings can be determined with the aid of 

general-purpose computer codes [e.g. 1,2] based on standard modal analysis procedures. However, 

for a special class of buildings, it has been demonstrated [3] that the total response (including all 

vibration modes) of a torsionally-coupled, N-story, shear building with rigid fioor-diaphragms-- a. 

system with 3N degrees of freedom (DOF)-- to ground motion characterized by smooth response 

spectra may be determined by analyzing the total responses of two smaller systems: (1) a 

corresponding torsionally-uncoupled, N-storysystem-- a system with N DOF; and (2) an associated 

torsionally-coupled, one-story system-- a system with 3 DOF. This analysis procedure was shown 

to lead to "exact" results if the variation of earthquake spectral acceleration with vibration period is 

fiat or hyperbolic. For arbitrary~shaped smooth spectra, the procedure was shown to lead to results 

that are not "exact" but are accurate to a useful degree. 

One of the major objectives of this investigation is to extend the aforementioned analysis pro

cedure to buildings consisting of moment-resisting frames, shear walls and other resisting elements 

for which the shear-beam idealization is inappropriate. For such a building, the procedure is 

demonstrated to be equally applicable provided it belongs to a special class of buildings identified 

later. It is also shown that, contrary to earlier conclusions [3], the procedure is not "exact" for 

shear buildings (or other types of buildings) even for fiat or hyperbolic spectra. However, it is 
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demonstrated that, even for an arbitrary-shaped earthquake response spectrum, the response in a 

vibration mode of the building can be "exactly" determined from appropriate modal responses of 

(he aforementioned smaller systems. The total response of the building can then be determined 

"exactly" using an appropriate modal combination rule. 

Most previous studies of the response of torsionally-coupled buildings have also been con

cerned with multi-story huildings idealized as shear-beam models [4,5]. Response results obtained 

by the response-spectrum method for a ten-story shear-beam building with medium eccentricity 

ratio and uncoupled torsional to lateral frequency ratio slightly larger than unity, were compared to 

time history analysis and to static approaches that are inherent in building codes [4J. This study 

has shown That the response speCTrum approach is quite accurate if correctly applied, while the 

static approaches give inconsistent results. The square root of the sum of squares (SRSSj of modal 

maxima as an estimate of maximum response was compared [5] to a more refined combination rule 

that takes into account the cross-correlation .between modes [6J for twelve-story shear-beam build

ings with fundamenTal uncoupled lateral vibration period of one sec, and uncoupled torsional to 

lateral frequency ratios ranging between 0.7 and 1.4. It was shown that the SRSS combination rule 

overeSTimates the base torque especially for systems with small eccentricity ratios and for uncou

pled torsional to lateral frequency ratios between 0.75 and 1.25. 

Recent work (7,81 has demonstrated that the earthquake responses of buildings undergoing 

only lateral vibration (i.e. no torsional motions) are significantly influenced by various parameters 

including the beam-to-column stiffness ratio (or the joint rotation index). The second objective of 

this study is to bring this parameter into the study of torsional1y-~oupled buildings. Thus, the 

earthquake response of torsionally-coupled buildings is investigated for a wide range of values of 

the beam-to-column stiffness ratio, the fundamental uncoupled lateral vibriHion period, the ratio of 

uncoupled torsional and lateral vibration frequencies, and the eccentricity between the centers of 

mass and centers of rigidity of the building. The effects of lateral-torsional coupling on building 

response are identified, the influence of the beam-to-column stiffness ratio is investigated, and the 

significance of the higher mode contributions in building response is established in order to provide 
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a basis for simplitied analysis procedures [7J. 
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2. SYSTEMS AND DESIGN SPECTRA 

2.1 A Special Class of Buildings 

The center of rigidity of a one-story system with a rigid deck is the point in the plan of the 

deck through which a horizontal static force must be applied for the deck to translate without tor-

sian. If (he force is along either of the principal axes, which are orthogonal and pass through the 

-

center of rigidity of the system, the deck translates in the same direction as the force. If a pure tor-

sional moment is applied at the deck, torsion of the deck takes place around the center of rigidity. 

Unlike one-story buildings, it is generally not possible to uniquely define the centers of rigi-

dity of the various stories of a multi-story building. However, the centers of rigidity can be 

uniquely identified for buildings having the following properties: 

1. The centers of mass of all floors lie on a vertical line 

2. The resisting elements (frames, columns, shear walls or shear-wall cores) are arranged such 

that their principal axes form an orthogonal grid in plan and are connected at each floor level 

by a rigid diaphragm. 

3. The lateral stiffness matrices of all resisting elements along one direction are proportional to 

each other; i.e. the lateral stiffness matrix of the i'h resisting element in the X direction 

K II = C" K" where C xi is a proportionality constant and K, is a char"acteristic stiffness matrix 

for the resisting elements. Similarly, the stiffness matrix of the i'h resisting element in the Y 

direction KYI = Cyi Ky. The two reference matrices Kx and K)' may not be identical. 

For buildings having the last two properties listed above, it is shown in Appendix A that the centers 

of· rigidity of all stories lie on one vertical line. Thus, for this special class of buildings, the static 

eccentricity for each floor, which is defined as the distance between the center of mass of the floor 

and its center of rigidity, is the same. 

Multi-slory buildings with mixed types of resisting elements, such as frames and columns or 

[ranles and shear walls, spanning along the same direction, do not belong to this special class of 

huildings, since lateral stiffness matrices of such elements along the same direction are not 
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proportional. 

2.2 Systems Considered 

2.2.1 One-Way Symmetric Plans 

The analysis procedure developed in Section 4 is for the special class of buildings defined in 

Section 2.1 with the additional restriction that all resisting elements spanning in any of the two 

orthogonal directions have proportional lateral stiffness matrices, i.e. Kx == Ky. Buildings considered 

are assumed to have floor plans symmetrical about one axis (e.g. Figure I), although most of the 

analytical development is readily extendable to the more general case with no axes of symmetry. 

The buildings considered consist of several massless moment-resisting frames arranged in an 

orthogonal grid (e.g. Figure 1), connected at each story level by a rigid diaphragm. The mass of 

the building is lumped at the centers of mass of the various floors. The centers of mass and the 

centers of rigidity of such buildings lie on two vertical lines, a distance e apart. All floors have the 

same radius of gyration r about a vertical axis passing through their centers of mass. 

2.2.2 Simple Plan 

Utilizing the analysis procedure of Section 4, the response of buildings described in Section 

2.2.1 with a simple plan is investigated in Sections 5 to 8. It is shown in Section 3.1 that this sim

ple plan building is useful in studying the dynamics of the buildings described in Section 2.2.1. 

The systems analyzed are idealized five-story buildings with all floors having an identical rec

tangular plan, symmetrical about the X-axis and consisting of three moment-resisting planar frames 

(Figure 2a), connected at each story level by a rigid diaghragm. The mass of the structure is 

lumped equally at the centers of mass of the five floors, which are assumed to coincide with the 

geometric centers of the floors, which lie on a vertical line. The mass at each floor is denoted by 

m, and r is the radius of gyration of each floor about the vertical axis passing through its center of 

mass. 

The two identical frames oriented along the X- direction are located symmetrically at a dis

tance )'1 on each side of the X-axis; each is identified as frame (2). The third frame, identified as 
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Frame (2) 
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Frame (2) ~ • - --
• Ground Motion 

(a) Typical Floor Plan 

"'po:.. ___ --=r" ... _ 5 
Rotational Joint OOFs 

(b) Typical Frame Elevation 

FIGURE 2 Five-story Building with a Simple Floor Plan 
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frame (1), is oriented in the orthogonal direction and is located eccentrically at a distance e away 

from the Y -axifi. Since this ifi the only frame oriented along the Y-axis, and the X-axis is the axis 

of symmetry, the center of rigidity of each floor lies on its X-axis at a distancee from the center of 

masfi of the floor. It follows that the static eccentricities of all floors are the same, equal to e, and 

the centers of rigidity of the Hoors all lie on a vertical line. The idealized building, therefore, 

belongs to the special clasfi of multi-story buildings, described in Section 2.1. 

The properties of each frame are unifonn over height: constant story height, II, and one bay of 

width 211 (Figure 2b); all beams of a frame have the same flexural stiffness, Elh , and lhe column 

stiffness, EI" does not vary with height. It is assumed that each frame contributes to the stiffness 

of the building only in the direct,ion of its own plane, and that the torsional stiffness of each frame 

about any vertical axis in its own plane is negligible. All frame members are prismatic with con-

stant cross-sections. Axial and shear deformations of members are neglected so that only flexural 

deformations are considered. 

Damping is defined directly in each mode of vibration of the system. The damping ratio, S, 

expressed as a fraction of critical damping, is assumed to be the same in each mode of vibration. 

Frame action is measured by the joint rotation index, p, which, as first introduced by Blume 

19 j, is defined as the ratio of the sum of beam stiffnesses to the sum of column stiffnesses at the 

mid-height story of the frame: 

(2.1) 

in which Lh is the beam width and Lc the column height. For the uniform frames considered, equa-

lion (2.1) becomes: 

1 Ih 
4 I 

(2.2) 

By varying Ihe stiffness ratio p, the entire range of behavior of a frame can be covered. For p =0, 

the frame behaves as a flexural column with beams imposing no constraint to joint rotations. For 
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P = 00, joint rotations are restrained so that the frame behaves as a shear beam. Intermediate values 

of P, therefore, present frames with both beam and column deformations and joint rotations. The 

joint rotation index of frame (1) is denoted by Pb and that of frames (2) by P2. In this study, it is 

assumed that PI = P2 = P, a condition which, as will be seen later, implies that frames (1) and (2) 

have proportional lateral stiffness matrices. 

The dynamic response of the systems described to the horizontal component of ground 

mOlion, assumed to be uniform over the base, along the Y-axis is investigated. Since the building 

is not symmetric about the Y-axis, it will undergo coupled lateral-torsional motions. 

2.3 Ground Motion and Response Spectra 

For earthquake response spectra of arbitrary shape the design forces need not be greater than 

those for either a hyperbolic or a flat spectrum that constitute upper bounds to the design spectrum 

in the range of periods less than the fundamental period of the structure (Figure 3). These two 

idealized spectra are useful since normalized response of the system does not depend on the system 

vibrational periods but only on their ratios [10], and because they are representative of the 

acceleration- and velocity-controlled regions of smooth design spectra. 

The smooth design spectrum selected is shown in Figure 4. This spectrum is developed by 

well known procedures [11] for excitations with maximum ground acceleration, (JR' velocity, VII' and 

displacement, UK of 1 g, 48 in/sec and 36 in respectively. Using a damping ratio of 5 % and 84.1 

percentile response, amplification factors of 2.67, 2.32 and 2.04 are obtained from [11] for the 

acceleration-controlled, velocity-controlled and displacement-controlled regions of the spectrum, 

respectively. It is apparent from the shape of the design spectrum that the response of short period 

structures is controlled by ground acceleration, that of long period structures by the ground dis

placement and that of intermediate period structures by the ground velocity. 

The design spectrum of Figure 4 is replotted in Figure 5 as a normalized pseudo-acceleration 

spectrum to emphasize that the spectral acceleration is constant (flat spectrum) in pan of the 

acceleration-controlled region, and varies as liT (hyperbolic spectrum) in the velocity-controlled 
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Hyperbolic Spectrum 

Flat Spectrum 

Response Spectrum 
of an Actual Earthquake 

Vibration Period T, sec 

FIGURE 3 Flat and Hyperbolic Response Spectra 
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FIGURE 4 Design Spectrum for Ground Motions with Maximum Ground Acceleration Og = 19, 
Velocity Vg = 48 in/sec and Displacement ug = 36 in; Damping = 5 % 



5 
r
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~
 

-1
1

0
 

~
 

1 
~
 

c o -C3 ' Q
.I 

~
 

~
 
~
 

C3
 • o "0
 

:=
 

Q
.I "" Q.,
 

"0
 

Q
.I 

S ~
 

0.
5 

0.
1 

E
 

0.
05

 
' o Z
 

2.
67

 

A
cc

el
er

at
io

n
co

nt
ro

ll
ed

 R
eg

io
n 

T
a

=
0

.1
6

7
 

0.
1 

T,
. 
=

 0.
68

 1 

V
el

oc
it

y
co

nt
ro

ll
ed

 
R

eg
io

n 

V
ib

ra
ti

on
 P

er
io

d
 T

, 
se

c 

Td
 
=

 4.
14

 D
is

pl
ac

em
en

t
co

nt
ro

ll
ed

 
R

eg
io

n 

10
 

F
IG

U
R

E
 5

 
N

or
m

al
iz

ed
 P

se
ud

o-
ac

ce
le

ra
ti

on
 D

es
ig

n 
S

pe
ct

ru
m

 

-.
J o 



- 71 -

region. 
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3. EQUATIONS OF MOTION 

3.1 Torsionally-Coupled, Multi-Story Buildings 

J .1.1 One-Way Symmetric Plans 

Each floor of a one-way symmetric building (e.g. Figure 1) has two degrees of freedom when 

subjected to ground motion along the Y-axis: translation along the Y-axis and rotation about a vert-

ical axis. The displacement vector u for the system is defined by u l = < u~ ru~' >, where u, is the 

vector of Y -lateral displacements of the centers of mass of the floors, relative to the ground; and Uo 

is the vector of deck rotations about a vertical axis; and r is the radius of gyr~llion of each floor 

about a vertical axis passing through its center of mass. 

The stiffness matrix of the idealized building, defined with respect to degrees of freedom u, is 

given by: 

K= L K, (3.1 ) 

where K, is the contribution of the i'h frame to the building stiffness matrix. K, is related to the 

lateral stilIness matrix of the ilh frame which is determined by the following. steps (see Appendix B 

for additional information): 

(1) Defme one lateral displacement degree of freedom per floor and one rotational degree of free

dom per joint as shown in Figure 2b. 

(2) Obtain a complete frame stiffness matrix with reference to the degrees of freedom defined. 

(3) Statically condense out all the rotational degrees of freedom, since there are no external 

moments applied at the joints, to obtain the. lateral stiffness matrix of the illl frame, which is 

denoted by k.H if the frame spans along the X-axis, and by ky, if it spans along the Y-axis. 

The contribution of the i'h frame to building stiffness matrix K, is given by: 

(3.2) 

depending on the orientation of the frame plane. The transformation matrices a{, and aYI relating the 
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lateral degrees of freedom of the i'h frame to the system degrees of freedom, u, are given by: 

a" = [0 -(y,lr)I J and ayi = [I (x,!r)I J (3.3) 

where x, is the distance of the i'h frame oriented In the Y - direction from the centers of mass and Yi 

is the distance of the i'h frame oriented in the X- direction from the centers of mass; and I and 0 are 

unit and zero matrices, respectively, of dimension N, the number of stories. 

Substituting equation (3.3) in (3.2) and the latter in (3.1) leads to the building stiffness matrix: 

Ky 
J 
-KvB r -

K= I 1 
(3.4) 

-KIl) --:;- Kf/ 
r ,-

where, 

(3.5) 

~, , 
KB = k (x; k Yi + Yi k xi ) 

The building stiffness matrix, K, given by equations (3.4) and (3.5) is applicable to any build-

ing with orthogonal-system of frames symmetrical about the X-axis. If the resisting frames 

oriented in the Y - direction have proportional lateral stiffness matrices, the building belongs to the 

special class of buildings identified in Section 2.1 and KyB is proportional to Ky. In other words, if: 

(3.6) 

where k is the characteristic stiffness matrix for the frames, and Cyi is a proportionality constant for 

the ith frame, then: 

(3.7) 
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(3.8) 

The proportionality constant relating KYB to Ky can be shown to be the static eccentricity, defined in 

Section 2.1, of the building (Appendix A), i.e. 

e\'B 
e = ---=--- = ---=.------

e,. L e"i 
(3.9) 

The building stiffness matrix, K, for buildings with constant static eccentricity is therefore given 

by: 

Ky 
e 
-K)' 
r 

K= I 
(3.10) 

e 
-K)' ~K9 r r 

In the rest of this study, all resisting fnunes, spanning along either the X- or the Y-axis, are 

assumed to have proportional lateral stiffness matrices (see. Section 2.2.1), i.e. kYI is given by equa-

tion (3.6) and 

(3.11 ) 

then, in addition to equations (3.7) to (3.10): 

(3.12) 

where. 

(3.13) 

will be shown in Section 4 to be directly related to the ratio of the lh uncoupled torsional frequency 

to the j'h uncoupled lateral frequency of the building, and, for the class of buildings considered 

here. this ratio is independent of 'j'. The stiffness matrix of equation (3.10) can now be expressed 

as: 
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K= 

e 
-Kv r . 

(3.14) 

The undamped equations of motion of the building subjected to ground acceleration agy(t) 

along the Y-axis are: 

[
m 0 1 {u / I) } + 
o m rUe(t) { 

uyCt) } {m I} 
rUe(t) = - 0 a,u(l) (3.15) 

where m is a diagonal mass matrix of dimension N, the number of stories, with diagonal entries 

equal to mj' the mass at the jlh floor, j=l, ... , N; 1 and 0 are vectors of dimension N with all ele-

ments equal to one and zero, respectively. 

3.1.2 Simple Plan 

For the system of Figure 2a, equations (3.5) specialize to: 

(3.16) 

The stiffness matrix for the system of Figure 2a is, therefore, obtained by substituting equations 

(3.16) into (3.10): 

K= 
e 
-kl r Y 

e -ky1 r 
(3.17) 

If the joint rotation indices of frames (1) and (2) of the simple system of Figure 2a are equal, 

i.e. if PI = P2 = p, (a condition which is assumed throughout this study), then the lateral stiffness 

matrices of the two frames are proportional (Appendix B): 

/'. 
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(3.18 ) 

where II and 11 are the moments of inenia of the columns of frames (1) and (2), respectively. Sub-

stituting equation (3.18) into (3.16c) leads to: 

(3.19) , 

Substituting equations (3.18) and (3.19) into (3.17), the stiffness matrix of the system of Fig-

ure 2a with PI = P1 = P is therefore given by: 

K= 

e 
-k,'l r -

e, ')12, 12 
[ (-)- + 2( -)--- 1 k,)'l 

r r II 

(3.20) 

The undamped equations of motion of the system of Figure 2 subjected to ground acceleration 

a~y(t) along the Y-axis are: 

[
m 0] (u"(t)j + 
o m rliB(t) e 

-kyl 
r 

(3.21 ) 

Damping of the system is directly defined in each of the 2N natural modes of vibration of the 

system. The viscous damping factor S, expressed as a fraction of critical damping, is assumed to 

be the same in each mode of vibration. _ 

The stiffness matrices for a building with general plan (e.g. Figure 1) (equation (3.14» and for 

a building with the simple plan of Figure 2a (equation (3.20» are identical provided the static 

eccentricity ratio e Iris the same for the two buildings, the lateral stiffness matrices are identical, 

i.e. kYl = K", and 2 (Y2/r)2/2111 = CBR lr2Cy. The last of these conditions will be shown later to imply 

that the uncoupled torsional to lateral frequency ratios of the two buildings are equal. If in addition 

to these three condi tions, m, the mass of each floor, and the damping ratio S are the same for the 

two buildings, it is apparent from equations (3.15) and (3.21) that the equations of motion of the 
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two buildings are identical, and hence their displacement responses to the same ground shaking are 

also identical. Thus, the conclusions from studying the dynamic response of the building of Figure 

2a in Sections 5, 6, 7 and 8, are also applicable to buildings, described in Section 2.2.1, with more 

general plans, e.g. Figure 1. 

3.2 Corresponding Torsionally-Uncoupled, Multi-Story Systems 

Equations (3.15) and (3.21) govern the coupled lateral (uy)-torsional (ua) motions of the build

ings described in Sections 2.2.1 and 2.2.2, respectively. If the centers of mass of these buildings 

coincide with the centers of rigidity, i.e. e = 0 (Figure 6), the building would not experience any tor

sional motions, i.e. Ua = 0, when it is subjected to translational ground motion only. The undamped 

equations governing the motions of the corresponding torsionally-uncoupled, multi-slory system 

with all properties identical to the torsionally-coupled, multi-story building except that e = 0 are: 

(3.22) 

where v,,(t) is the vector of lateral floor displacements. These are also the equations of motion for 

the planar vibration of frame (1) of Figure 2a subjected to translational ground motion in its own 

plane. 

3.3 Associated Torsionally-Coupled, One-Story System 

It will be shown in Section 4 that the response of a torsionally-coupled, multi-story building 

with properties described in Section 2.2.1 can be related to the responses of two systems: the 

corresponding torsionally-uncoupled, multi-story system introduced in Section 3.2, and an associ

ated torsionally-coupled, one-story system with the following properties: (1) the static eccentricity 

ratio e / r for the associated torsionally-coupled, one-story system is the same as for all the floors of 

the torsionally-coupled, multi-story building; and (2) the ratio KBRlr2Ky of the associated 

torsionally-coupled, one-story system-- where KOR is the torsional stiffness defined at its center of 

rigidity, Ky its lateral stiffness along the Y-axis, and r its radius of gyration about a vertical axis 

passing through its center of mass-- equals the ratio CoR lr2Cy of the torsionally-coupled, multi-story 

building, an equality which implies that the uncoupled torsional to lateral frequency ratio is 
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(a) Plan of Torsionally-uncoupled System Corresonding to One-way Symmetric Building of 

Figure 1 

/ 

-
Coincident V- CM andCR 

(e = 0) 

- --
(b) Plan of Torsionally-uncoupled System Corresponding to Simple Plan of Figure 2a 

FIGURE 6 Floor Plans of Corresponding Torsionally-uncoupled Systems 
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identical for the two systems (Section 4). 

The equations of motion of the associated torsionally-coupled, one-story system subjected to 

ground acceleration Ggy(t) along the Y-axis, are: 

e 

{ u, 1 
-
r 

.. + w; 
K9 r II" . e - , 

r r- K. 

(3.23) 

where, the two degrees of freedom of the rigid deck are: u,' the lateral displacement of the center 

of mass, along the Y-axis, relative to the ground, and 119 , the deck rotation about a vertical axis; Wy 

is the lateral vibration frequency of the corresponding torsionally-uncoupled, one-story system-- a 

system with coincident centers of mass and rigidity (e = 0) but all other properties identical to the 

associated torsionally-coupled, one-story system; and Kf) is the torsional stiffness defined at the 

center of mass. It can be shown that the torsional stiffness of the associated torsionally-coupled, 

one-story system de tined at its center of rigidity is given by: 

(3.24) 
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4. ANALYSIS PROCEDURE 

The maximum value (over time) of any response of a torsionally-coupled, N-story building, 

with. one-axis of symmetry in plan, to earthquake ground motion in the horizontal direction perpeil-

dicular to the symmetry axis can be estimated by the Response Spectrum Analysis (RSA) procedure 

applied to the 2N-DOF system. In this section it is sho'NI1 that, for buildings belonging to the spe-

cial class (Section 2.1) with the additional restriction that all frames having proportional lateral 

stiffness matrices (Section 2.2.1), the earthquake response can be determined by analyzing two 

simpler systems: (1) the corresponding torsionally-uncoupled, N-story system described in Section 

3.2; and (2) the associated torsionally-coupled, one-story system described in Section 3.3. 

Although this analysis procedure is developed for one-way symmetric buildings (e.g. Figure 1), it is 

extendable to the more general case of no axes of symmetry, as demonstrated earlier [3] for shear 

buildings. 

4.1 Frequencies and Mode Shapes 

The natural vibration frequencies and mode shapes of the N-story building are solutions of the 

eigen-probleOl of order 2N associated with equation (3.15): 

(4.1) 
~K 
r Y 

It will be shown that these solutions of these equations can be expressed in terms of the frequencies 

and mode shapes of two systems: the corresponding torsionally-uncoupled, multi-story system. 

defined in Section 3.2; and the associated torsionally-coupled. one-story system introduced in Sec-

tion 3.3. 

For the corresponding torsionally-uncoupled. multi-story system e = 0 and the lateral and tor-

sional components of motion are uncoupled; equation (4.1) then reduces to: 

( Ky - w; m ) 'I' = 0 (4.2a) 

and, 
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COR 1 

[ -2- K,. - Wij m ] V' = 0 
r C

y 
• 

(4.2b) 

The lateral vibration frequencies Wy} and mode shapes V'} of the uncoupled system are solutions of 

equations (4.2a). II is apparent that V'j are also the torsional mode shapes of the uncoupled system 

and the torsional frequencies wo} and lateral frequencies Wy} are related by: 

(4.3) 

Equation (4.3) indicates that the ratio of the j'h uncoupled torsional frequency WOj to the j'h lateral 

frequency w,'! does not depend on T. The ratio of the r uncoupled torsional frequency to the j'h 

lateral frequency of the building is. from this point on. denoted by n. where: 

(4.4) 

Next it is shown that the natural vibration mode shapes. of the torsionally-coupled building 

are of the following fonn: 

For. as given by equation (4.5) to be a mode shape, it must satisfy equation (4.1); thus: 

e 
-K)' 
r 

(4.5) 

(4.6) 

wherein equations (4.3) and (4.4) have been utilized. Substituting equations (4.2) into equations 

(4.6), and premultiplying each of the two sub-matrix equa,tions by ( lI(0) V'J results in: 

e 
r 

e 
r 

(4.7) 

where w = wlwyj' Thus" as given by equation (4.5) is a mode shape of the torsionally-coupled. 
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multi-story building provided a, where· aT = < Oy 09 > is an eigenvector of equation (4.7); the 

natural frequency of Ihis coupled mode of vibration, W = ro ooyj' where w is the eigenvalue of equa-

tion (4:7). 

II is possible to physically interpret equations (4.7) as the eigen-equations of the associated 

one-story system introduced in Section 3.3. Starting "from equations (3.23), it can be shown that a 

natural vibration frequency W and mode shape a of the associated one-story system would satisfy 

the eigen-equation: 

where: 

e 
.1" 

e 
I" 

(4.8) e., ., W ,', ( - )- + n- - ( -. r 
r ooy 

(4.9) 

The frequencies 000 and WI are the torsional and lateral vibration frequencies of the corresponding 

torsionally-uncoupled, one-story system-- a system with coincident centers of mass and rigidity 

(e = 0) but all other properties identical to the associated torsionally-coupled. one-story system. 

Because equation (4.8) with w, = w'} is identical to equation (4.7), it is apparent that the latter is 

the eigen-equation of the associated torsionally-coupled. one-story system. defined in Section 3.3, 

with ec(;entricity ratio equal to ell", uncoupled torsional to lateral frequency ratio equal to n. and 

with the uncoupled lateral frequency Wy equal to ooy). the j'h lateral frequency of the corresponding 

LOrsionally-unwupled, multi-story system. 

Hence. the natural frequencies. oonj. and mode shapes 'n} of a torsionally-coupled. multi-story 

building belonging to the special class of buildings. defined in Section 2.1, with the additional res-

triction of proportional lateral stiffness matrices of all resisting frames. introduced in Section 2.2.1. 

are given by: 
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(4.10)\ 

and, 

(4.11) 

for n = 1,:2 and j = 1,.", N, where w)j and 11', are the natural frequencies and mode shapes in lateral 

vibration of the corresponding torsionally-uncoupled, N-story system; ron and an are the normalized 

frequencies and mode shapes of the associated torsionally-coupled, one-story system. Solving these 

two eigen-problems is simpler than the standard method of solving equation (4.1). an eigenvalue 

problem of order 2N. 

Clearly. equations (4.10) and (4.11) are satisfied due to the special form of the building 

stiffness matrix, given by equation (3.14), when the lateral stiffness matrices of all frames are mutu-

ally proportional. If this is not the case. the building stiffness matrix is given by equation (3.10), 

and it is not possible to achieve the simplification displayed by equations (4.10) and (4.11). 

The coupled lateral-torsional responses of buildings, for which equations (4.10) and (4.11) are 

valid, to earthquake ground motion can be determined by analyzing the earthquake responses of the 

corresponding torsionally-uncoupled. N-story system. described in Section 3.2; and the associated 

torsionally-coupled, one-story system, introduced in Section 3.3, for the same ground excitation. 

The Response Spectrum Analysis (RSA) procedures for earthquake analysis of the two simpler sys-

terns are described in the next two sections. The results of these two analyses are utilized in Sec-

tion 4.4 to simplify the RSA procedure for the torsionally-coupled buildings of Section 2.2.1, and 

the resulting analysis procedure is summarized in Section 4.5. 

4.2 RSA of Corresponding Torsionally-Uncoupled, Multi-Story System 

The planar vibration of the corresponding torsionally-uncoupled, N-story system due to 

ground motion along the Y-axis is governed by equation (3.22). The maximum response of this 

system can be estimated from the earthquake design spectrum by the following procedure: 
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I. Determine structural properties: 

(a) Compute the mass matrix. m. defined in Section 3. 

(h) Compute the lateral stiffness matrix K y , by the procedure outlined in Section 3. 

(c) Estimate modal damping ratios, s. 

2. Solve the eigen-pro~lem: 

( K" - w,2 m ) 'II = 0 (4.2a) 

to detennine the natural vibration frequencies Wy) (natural periods Ty! = 2rr/w,,!) and mode 

shapes VI) for j= 1, ... , N. 

3. Compute the maximum response in individual modes of vibration by repeating the following 

steps for each vibration mode c:ontributing significantly to the response: 

.-----: 

(a) Corresponding to period T
YJ 

and damping ratio S of the j,h mode, read the ordinate Saj of 

the pseudo-acceleration response spectrum _of the ground motion .. 

(b) Compute the floor displacements vector,v
J

, from: 

(4.12) 

where, 

L· = IIITm 1 and M· = IlI
T m UI. 

J TJ J TJ TJ (4.13) 

(c) Compute the equivalent, static lateral forces, fJ' required to cause lateral displacements Vj' 

from: 

(4.14) 

(d) Compute the vector of story shears, V j' and the vector of story overturning moments, M j. 

from: 
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(4.15) 

(4.16) 

in which. for a five-story building for example. Sand H are summation matrices of the form: 

1 1 1 2 3 4 5 

0 1 1 1 0 1 2 3 4 

S= 0 0 1 1 and H=h 0 0 1 2 3 
o 0 0 1 1 0 0 0 1 2 
o 0 0 0 0 0 o 0 

In particular. the base shear. VB)' and base overturning moment, M B}. are given by: 

where, 

and 

and, 

Iz < 1 2 3 4 5 > m 'If) 
Iz/ = -------~ 

L) 

(4.17) 

(4.18 ) 

(4.19) 

(4.20) 

are known as the effective weight and effective height for mode 'j'. The effective weight can 

be interpreted as the portion of the total weight of the building which is effective in producing 

the base shear due to the lh mode of vibration [12]. Since the base shear is equal to the resul-

tant of the equivalent lateral forces f). 11/ may be interpreted as the height of the resultant 

force above the base [12]. 

(e) Compute forces F) in structural members of a frame' i' spanning along the Y-axis at a dis-

tance Xi from the centers of mass, by a static analysis of the frame subjected to the equivalent 

lateral forces, [Cyi I ( L Crt)] fj' where Cyi was defined in equation (3.6). This is implemented 
t 

by first recovering the condensed joint rotations corresponding to the Hoar lateral displace-

ments v). using the complete stiffness matrix of the frame. Beam moments, column moments 

and column axial forces are then computed using the relevant joint rotations and lateral 
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displacements, and the element stiffness matrices. (See Appendix C for additional details). 

4. Determine an estimate of the maximum value 1'0 of any response quantity 1'0(1), by combining 

its modal maxima. 1'" according to: 

(4.21) 

The Square-Root of the Sum of Squares (SRSS) combination rule is satisfactory because the 

planar vibration frequencies roy) of the corresponding torsionally-uncoupled. N-story system 

are invariably well separated. As demonstrated in [7], the earthquake response of building 

frames may be satisfactorily estimated by including only the first two terms. i.e. the contribu-

tions of only the first two vibration modes, in equation (4.21); only the first mode contribution 

usually suffkes if the fundamental vibration period is in the acceleration-controlled region of 

the earthquake design spectrum. 

4.3 RSA of Associated Torsionally-Coupled, One-Story System 

The response of the associated torsionally-coupled. one-story system defined in Section 3.3 to 

ground motion along the Y-axis is governed by equation (3.23). The maximum response of the 

system can be estimated from the earthquake response spectrum by the following procedure (see 

Part I for additional details): 

1. Solve the eigen problem of equation (4.8) to obtain the natural vibration frequencies and mode 

shapes of the system, given by: 

and, 

a = " 

(4.22) 

n=1,2 (4.23) 
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where the mode shapes have been normalized so that: 

(4.24) 

2. Compute the maximum response in individual modes of vibration by repeating the following 

steps for each mode: 

(a) Corresponding to period Tn ( = 2rr:lw" ) of the n'h vibration mode and damping ratio, ;, read 

the pseudo-acceleration ordinate, San, of the earthquake design spectrum 

(b) Compute the displacement vector at the center of mass from: 

(4.25) 

The lateral displacement along the Y-axis at a distance Xi from the center of mass of the asso-

ciated torsionally-coupled, one-story system is given by: 

(4.26) 

In particular, the lateral displacement at the center of rigidity, V n , is determined by: 

(4.27) 

(c) Compute the equivalent external forces which applied statically at the center of mass cause 

displacements uyn and rUan, from: . 

f = n (4.28) 

where m denotes the mass of the system. The equivalent static lateral force is fyn and the tor-

sional moment is rf an. 

(d) Compute. by statics, the base shear. Vn• base overturning moment. Mn. and the base torque 

at the center of mass. TMn , from the external forces fyn and rfan: 
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o S,m • SQn 
Vn = f)'n = W a vn - = Wn 

- g g 
(4.29) 

Mn = II f),n = h Vn (4.30) 

(4.31) 

where W is the- total weight of the building, II its story height, and W; its effective weight in 

the n'h mode of vibration, such that: 

w; 0 - = a- with W yn 
(4.32) 

The base torque at the center of rigidity, TRn , is obtained from: 

(4.33) 

where e; can be referred to as the effective eccentricity in the n'h mode of vibration, satisfy-

ing: 

• 
(4.34) 

en a9n e 
=---

r r 

3. Determine an estimate of the maximum, r, of a response quantity by combining its modal 

maxima, '"n, according to an appropriate combination rule. Since the vibrational frequencies 

of torsionally-coupled systems may be closely spaced,the cross-corelation between modal 

responses can be significant, and should be considered in the combination rule used. A heu-

ristically motivated combination rule that considers this effect [6,13] was utilized in earlier 

investigations of the dynamics of torsionally-coupled systems [3,10,14]. The more recent 

Complete Quadratic ,Combination (CQC) rule [15], which leads to essentially identical results 

as the earlier rule, is utilized in this work. According to the CQC rule, an estimate of the 

maximum ,. of the response quantity can be, obtained from: 
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.[22 ]'12 
r = ~];.I rnm rn rm (4.35) 

where rnm is the cross-correlation factor between modes 'n' and 'm', and rn and rm are the 

modal maxima of the response quantity in modes 'n' and 'm', respectively. The cross-

correlation factors, rnm. are. in general. functions of the duration and frequency content of the 

ground motion. as well as the natural frequencies and modal damping ratios of the system. 

For smooth earthquake response spectra. representative of broad-frequency-band excitations. 

long earthquake durations compared to the natural periods of the system. and equal modal 

damping ratios. ~. rnm is approximated by [16]: 

rom = ------------
( 1 - q;m )2 + 4 ~2 qnm (1 + qnm )2 

(4.36) 

in which. 

(4.37) 

Equation (4.35) can be written as: 

(4.38) 

in which the first two tenns represent the well-known combination rule: the Square-Root of 

the Sum of Squares (SRSS) of the modal maxima. The last term accounts for the cross-

correlation between the two modes of the one-story systems and is especially important when 

the natural frequencies WI and 002 ari! close to each other. In computing the modal maxima r n 

from step 4, using equations (4.25) to (4.34), the algebraic sign obtained for rn should be 

retained. The last term in equation (4.38) .assumes positive or negative values depending on 

whether r 1 and r 2 have the same or opposite algebraic signs. 

It will be seen later that it is useful to express the lateral displacements uy at the center of 

mass, Uy(Xi) at a distance Xi from the center of mass and v at the center of rigidity; the deck rotation 
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around a vertical axis Ue. the base shear V. the base overturning moment M. and the base torques 

TM and TR at the centers of mass and rigidity, respectively. in nonnalized fonn: 

(4.39) 

(4.40) 

where VO' V" and M" are the maximum lateral displacement. base shear and base overturning 

moment of the corresponding torsionally-uncoupled. one-story system, a system with coincident 

centers of mass and rigidity. but all other properties identical to the associated torsionally-coupled, 

one-slory system. The uncoupled system responses are detennined from the standard fonnulas for 

single-degree-of-freedom systems [12]: 

SQ\' 
\'" = -" , v" = m Say and Ma = m II Say 

~ 

(4.41) 
w; 

where S"y is the pseudo-acceleration response spectrum ordinate corresponding to lateral vibration 

period (TI' = 21t/w\) and damping ratio S of the uncoupled system. 

The nonnalized quantity. TR, can be interpreted as the dynamic eccentricity, ed, the distance 

from the center of rigidity of the system where the uncoupled base shear should be applied stati-

cally to cause a base torque equal to T R at the center of rigidity of the system [10]. The ratio ed/ e 

then represents the dynamic amplification of the static torque eVo • 

The contribution of the nth vibration mode to the nonnalized response quantities can be deter-

mined from equations (4.25) to (4.34). leading to: 

(4.42) 

(4.43) 
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(4.44) 

(4.45) 

and, 

edn - - e - e; -. San 
-- = T = T - - V = - W -Rn Mn n n S r r r ay 

(4.46) 

where tV: is the effective weight of the associated torsionally-coupled, one~story system expressed 

as a fraction of its total weight. 

An estimate of the maximum normalized response r, can be determined. by CQC of its modal 

maxima r n' i.e. 

r= (4.47) 

4.4 RSA of Torsionally-Coupled, Multi-Story Buildings 

It was shown in Section 4.1 that the natural frequencies Wnj and mode shapes ~nj of a 

torsionally-coupled, N-story building belonging to the special class of buildings (defined in Section 

2.1), with the additional restriction of proportional lateral stiffness matrices of all its frames (Sec~ 

tion 2.2.1), can be determined from the j'h frequency and mode shape of the corresponding 

torsionally-uncoupled, N-story system and the nth normalized frequency and mode shape of the 

associated torsionally-coupled, one-story system. It will be demonstrated next that the response in 

a natural vibration mode of the building can also be determined by analyzing the two smaller sys-

terns. 

4.4.1 Modal Displacements 

Transforming the equations of motion [equation (3.15)] of the torsionally-coupled, multi-story 

building to modal coordinates, it can be shown that the peak value of the displacement response in 
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the nyh vibration mode is: 

(4.48) 

where S"", is the pseudo-acceleration response spectrum ordinate corresponding to illnj (or period 

Tnj = 2n!ill,,) and damping ratio,; for the njth vibration mode; and 

(4.49a) 

in which equations (4.11) and (4.13a) have been introduced; and the generalized mass: 

(4.49b) 

in which equations (4.11), (4.24) and (4.13b) have been utilized. Substituting equations (4.10), 

(4.11) and (4.49) into (4.48) leads to the first parts of equations (4.50a) and (4.50b), and using 

equations (4.12) and (4.42), leads to the second parts: 

(4.50a) 

and, 

(4.50b) 

where v j is the vector of maximum lateral displacements of the corresponding torsionally-

uncoupled,. N-story system in the r mode of vibration [equation' (4.12)]; iiy", and iiBnj are the rior-

malized maximum values of the lateral displacement at the center of mass and the deck rotation, 

respectively, in the nth vibration mode of the associated torsionally-coupled, one-story system [equa-

tions (4.42)] with uncoupled lateral vibration frequency ill)' equal to ill)'j. 

The vector of lateral displacements of a frame 'i' spanning along the Y-axis at a distance Xi 

from the centers of mass of the system, due to the njth mode of vibration is given by: 
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(4.51 ) 

in which equations (4.50) and (4.43) are utilized to obtain the second and the third parts of the 

result; llyn/x;) is the normalized lateral displacement at a distance x, from the center of mass in the 

nth vibration mode of the associated torsionally-coupled, one-story system [equation (4.43)] with 

uncoupled lateral vibration frequency Wy equal to Wyj. In particular, the vector of lateral displace-

ments at the centers of rigidity of the building in the njth vibration mode is determined from: 

(4.52) 

wherein equations (4.23), (4.44) and (4.50) have been introduced to obtain the second and third 

parts of the result; Vnj is the normalized maximum lateral displacement at the center of rigidity in 

the nth mode of vibration of the associated torsinally-coupled, one-story system [equation (4.44)] 

with uncoupled lateral vibration frequency Wy equal to Wyj. 

4.4.2 Modal Story Shears and Overturning Moments 

The equivalent static, lateral forces f ynj and torsional moments rfBnj required to cause lateral 

displacements Uynj and deck rotations UBnj are given by: 

(4.53) 

The vector of maximum story shears V nj and the vector of maximum story overturning 

moments Mnj in the nr vibration mode are obtained by statics from the equivalent static lateral 

forces f yn/ 

V nj = S f ynj and Mnj = H f ynj (4.54) 

where S and H are summation matrices given earlier by equations (4.17). Substituting equation 

(4.50a) in equation (4.53) and the latter in equation (4.54), and utilizing equations (4.10), (4.14) to 

(4.16), (4.42) and (4.44), results in: 
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(4.55a) 

and. 

(4.55b) 

where V j and M j are the vectors of maximum story shears and story overturning moments in the 

corresponding torsionally-uncoupled. multi-story system in its r vibration mode [equations (4.15) 

and (4.16)]; V"j and M"j are the normalized maximum base shear and base overturning moment in 

the nIh vibration mode of the associated torsionally-coupled. one-story system [equations (4.44)] 

with uncoupled lateral vibration frequency cuy equal to cu)j' 

In particular, the maximum base shear VII", is given by a special case of equation (4.55a): 

s 0 s . s 0 

V 0 = V V 0 = (Wo~)(W~~) = Woo ~ 
Bn, n} B} " S } "} 

aj g g 
(4.56) 

wherein equations (4.18) and (4.44) have been utilized; and 

(4.57) 

is the effective weight in the njth vibration mode of the torsionally-coupled. multi-story building. It 

equals the product of the effective weight W; in the j'h vibration mode of the corresponding 

torsionally-uncoupled. multi-story system [equation (4.20a)]. and the effective weight W: in the nth 

mode of the associated torsionally-coupled. one-story system expressed as a fraction of total weight 

[equation (4.44)]. 

Similarly. the maximum base overturning moment is obtained from equation (4.55b). which 

after utilizing equations (4.44), (4.19) and (4.56) leads to: 

(4.58a) 

where, 
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(4.58b) 

i.e. the effective height lI:j of the torsionally-coupled, multi-story building in the njth mode of vi bra-

lion is equal to the effective height hj of lhe corresponding torsionallY-Wlcoupled, multi-story sys-

tern in the jth mode [equation (4.20b)]. 

4.4.3 Modal Torques 

The vector of maximum story torques at the centers of mass of the building in the njth vibra-

tion mode is determined from f lJnj by statics: 

(4.59) 

Substituting equations (4.50b) in equation (4.53) and the latter in equation (4.59), and utilizing 

equations (4.10), (4.14), (4.15), (4.42) and (4.45), results in: 

(4.60) 

where T Mnj is lhe normalized maximum base torque at the center of mass in the nth vibration mode 

of the associated torsionally-coupled, one-story system [equation (4.45)] with uncoupled lateral 

vibration frequency Wy equal to Wy). The vector of maximum story torques at the centers of rigidity 

in the nj'h vibration mode is given by: 

T Rnj = T Mnj - e V ni (4.61a) 

Ulilizing equations (4.46), (4.55a) and (4.60), equation (4.61a) can be rewritten as: 

(4.61b) 

in which T Rnj is the. normalized maximum base torque at the center of rigidity in the nth vibration 

mode of the associated torsionally-coupled, one-story system [equation (4.46)] with uncoupled 

lateral vibration frequency Wy equal to Wyj. In particular, the base torques at centers of mass and 

rigidity, T8Mnj and T8Rnj , are special cases of equations (4.60) and (4.61b): 
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(4.62) 

and, 

(4.63) 

in which equations (4.44), (4.46) and (4.56) have been substituted, and e;j is the effective eccentri-

city of the torsionally-coupled, multi-story building in the nt coupled mode of vibration, equals the 

effective eccentricity e; of the associated one-story system in the nth mode, from which we conclude 

that e;j is independent of 'j '. It will be shown later that a more meaningful expression for TBRnj is 

obtained by substituting equations (4.18) and (4.44) into (4.63), to get: 

(4.64) 

4.4.4 Modal Member Forces 

The maximum force Fnj in a structural member of frame 'i', spanning along the Y-axis at a 

distance Xi from the centers of mass of the system, may be determined by a static analysis of the 

frame associated with the vector of lateral floor displacements Uynj(Xi), at- the location of the frame 

[equation (4.51 »). Since, according to equation (4.51), Uynj(x;) is the product of the normalized 

lateral displacement Uynj(x;) in the nth vibration mode of the associated torsionally-coupled, one-

story system with wy equal to W.I'j and the vector Vj of lateral displacements in the jlh mode of the 

corresponding torsionally-uncoupled, N-story system, the member force. Fnj in the frame can be 

expressed as: 

(4.65) 

where F j is the force in the same member due to the j'h vibration mode of the corresponding 

torsionally-uncoupled, multi-story system, determined by the analysis procedure described in Sec-

tion 4.2. 
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4.4.5 Summary 

It is demonstrated by equations (4.50) to (4.52), (4.55) to (4.56), (4.58a), (4.60), and (4.61b) 

10 (4.65) that the maximum value of any response quantity, r nj , of the torsionally-coupled, multi-

slory building due to ilS nj'h mode of vibration is given by: 

n=I,2; j=I, ... ,N (4.66) 

where r
J 

is the maximum value of the same (or related) response quantity in the corresponding 

torsionally-uncoupled, multi-story system in its j'h mode of vibration (see Table 1); and rn} is the 

normalized response quantity corresponding to r n) (see Table 1) in the n'h vibration mode of the 

associated torsionally-coupled, one-story system with uncoupled lateral vibration frequency roy 

equal to roy). 

4.4.6 Modal Combination 

An estimate of the maximum, r, of a response quantity is determined by combining its modal 

maxima, r nj , according to the CQC rule: 

(4.67) 

where 'Yn).mk is computed by equation (4.36) for frequency ratios qnj,mk given by: 

(4.68) 

Cross-correlation factor 'Ynj.ml: depends on qnj.mt or the relative spacing of ron) and romk; if qnj,mk is 

below 0.8 or above 1.25, 'Ynj,mk is negligibly small [15]. Because the lateral earthquake response of 

torsionally-uncoupled systems can usually be satisfactorily estimated by considering the contribu-

tions of only the first two modes of vibration, N may be replaced by 2 in the first two summations 

of equation (4.67), thus reducing the computational effort. 
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Table 1 Definitions of rj and rnj in equation (4.66) for various r. j 

-r.j 
,.. 

J 
r nj 

I 'h slory shear l'h slory shear normalized base shear 

l'h story torque l'h story shear Xr normalized base torque 

/<11 story overlurning I <II story overturning normalized base 

moment moment overturning moment 

lateral displ. lateral displ. normalized laleral 

of / <II floor at of /th floor displ. at 

location X, location X, 

member force member force in normalized lateral 
- , 

in a frame same frame displ. at 

at location Xi location Xi 
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Equation (4.67) is rewritten as: 

2 N 2·~ N N-I N 

r = I I r~) + 2 I Ylj.2) 1"1) r 2) + 2 I I Y2j,lk r 2j r lk 
j=1 "=1 j=1 j=1 k=j+1 

N-I N N-I N N-I N 

+ 2 L L 'Ylj,2k 1'1/ r2/;:' + 2 I L Ylj,lk 1'1) r lk + 2 L L' Y2j.2k r 2j 1"2k (4.69) 
/=1 k=/+I j=1 k=)+1 )=1 "'=)+1 

in which the first double summation represents the SRSS combination rule, and the next five sum-

mat ions represent the cross-correlation terms between various groups of vibration modes. The first 

of these summations represents cross~correlation between vibration modes'lj' and '2j' of the same 

pair 'j' and the second represents cross-correlation between vibration modes '2j' and 'lk', U= I to 

N-I and k=j+ I to N), such as modes '21' and '12', or '21' and '13'. The last three summations 

represent cross-correlation terms between modes with vibration frequencies WI) and W2b Wlj and 

W.1b and (2) and W2b U=l to N-1 and k=j+l to N);in Section 5 these frequencies will be, shown to 

be widely spaced, implying that Ylj.2h Ylj,lk and Y2j.2k U=l to N-Iand k=j+ I to N) are negligibly 

small, and the last three double summations of equation (4.69) may be dropped (more details are 

available in Appendix D). Equation (4.69) can, therefore, be reduced to: 

2 N 2 N N-I N 

. r' '" I I r~) +2 L YI{2) r l ) r 2/ +,2 L L Y2).1k r2)Tlk (4.70) 
/=1 "=1 )=1 )=1 k=)+1 

The last double summation of equation (4.70) was neglected in [3]. However, this summation 

can have significant contribution to the total response when frequencies (2) and Wlk (e.g. 

W21 and (12) are clos~, as will be shown in Section 8. In cases where this term is insignificant, 

equation (4.70) is approximated further to: 

(4.71) 

in which the fact that YI).2j is independent of 'j' is utilized, [equations (4.36) and (4.68)]. 
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4.4.7 Flat or Hyperbolic Earthquake Response Spectra 

Equation (4.71) can be simplified greatly if the pseudo-acceleration spectrum varies hyperboli-

cally, or is constant, with vibration period. For these two spectra, the ratios of the pseudo-

acceleration ordinates San/Saj are ron or 1. respectively, which are independent of T. Therefore. the 

normalized response quantities rOj of the associated torsionally-coupled, one-story system with 

uncoupled lateral vibration frequency Wy equal to Wyj. given by equations (4.42) to (4.46), become 

independent of 'j'; i.e .. r Oj = Yn • Thus, equation (4.71)simplifies to: 

(4.72) 

in which equations (4.21) and (4.47) have been utilized to obtain the second part of the equation. 

Thus. the total (considering all natural vibration modes) response r of the torsionally-coupled. 

multi-story building is the product of (1) the total value '-0 of the same (or related) response quan

tity in the corresponding torsionally-uncoupled. multi-story system (Table I) computed by equation 

(4.21); and (2) r,the total value of the normalized response quantity corresponding to r (Table 1) 

in the associated torsionally-coupled, one-story system. computed using equation (4.47). The result 

given by equation (4.72) was obtained for shear buildings in [3] since the third summation of equa-

tion (4.70) had been neglected on an intuitive basis. It is apparent from the preceding discussion 

that equation (4.72) is applicable only in the case of the idealized pseudo-acceleration spectra and 

only if the contribution of the third summation of equation (4.70) is negligible. The latter restric-

tion was not recognized in [3]. 

4.5 Step-By-Step Summary of RSA of Torsionally-Coupled Buildings' 

Based on the preceding secti0!.l~!,.t~e earthquake response of a torSionally-coupled, N-story 
. . 

building belonging to the special class of buildings defined e~lier, with'the additional ~estriction 

that the lateral stiffness matrices of all its frames are proportional to each other, can be determined 

by analyzing two smaller systems: (1) the corresponding torsionally-uncoupled. N-story system and 
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(2) a set of N associated torsionally-coupled, one-story systems with uncoupled lateral vibration fre

quency Wy equal to Wyj' j=l •... , N, where Wyj is the vibration frequency of Jhe corresponding 

torsionally-uncoupled, multi-story system. The analysis procedure can be implemented by the fol

lowing steps: 

1. Define the corresponding torsionally-uncoupled, N-story system: a system with coincident 

cemers of mass and rigidity but all other properties identical to the actual torsionally-coupled, 

multi-story building. 

2. Compute the lower few vibration frequencies Wyj and mode shapes lI'j of this system defined 

in Step 1 by solving the eigen-problem of equation (4.2a). 

3. Compute for each mode of vibration 'j' the maximum value of any desired response quantity 

rj in the system defined in Step 1 due to the selected earthquake response spectrum; the pro

cedure outlined in Section 4.2 is used in these computations. This step needs to be imple

mented only for the lower vibration. modes contributing significantly to the response of the 

system. Based on Reference [7], it will usually be sufficient to implement this step for j= 1 ,2. 

4. Detennine the static eccentricity, e, of the torsionally-coupled, N-story building using equation 

(3.9); the radius of gyration of each fioor, .r, about the vertical axis passing through the 

centers of mass; and the static eccentricity ratio, e I r. 

5. Compute the uncoupled torsional to lateral frequency ratio n of the torsionally-coupled, N

story building by equation (4.4). 

6. Define an associated torsionally-coupled. one-story system as having the same eccentricity 

ratio elr (Step 4) and uncoupled torsional to lateral frequency ratio n (Step 5) as the N-story 

building. 

7. Detennine the nonnalized natural vibration frequencies 00" and mode shapes a" (n=I,2) of the 

system defined inStep 6 from equations (4.22) and (4.23). 
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8. Com pute the natural vibration frequencies Wnj and mode. shapes 'nj of I. the torsionally-coupled, 

N-story building by substituting the frequencies w.1, and mode shapes'll" computed in Step 2, 

and nonnalized frequencies iOn and mode shapes an, computed in Step 7, in equations (4.10) 

and (4.11). Computation of 'n, is not necessary unless the mode shapes of the building are 

desired. 

9. Define an associated torsionally-coupled, one-story system as the system defined in Step 6 

with uncoupled lateral vibration frequency Wy equal to Wy)" 

10. Compute for the nih mode of vibration (n=I,2) of the system defined iri Step 9 the normalized 

response quantity r"j' corresponding to the desired response quantitY"nj (Table 1), by equa-

tioris (4.42) to (4.46). This can be done efficiently by recognizing that each r nj is the product 

of (1) a quantity that needs to be computed only once because it is independent of 'j', but 

depends on e/r and Q: and (2) the ratio of the pseudo-acceleration response spectrum ordi

nates San, and Sal' corresponding to wnjand Wyj, respectively. 

11. Compute for the njlh mode of vibration of the torsionally-coupled, N-story building the max

imum value of the desired response quantity "nj from equation (4.66) as the product of rj and 

r n, (Table 1), detennined in Steps 3 and 10, respectively. 

12. Combine the modal maxima rnj according to the' CQC rule [equation (4.67») to obtain an esti

mate of the response, r. 

4.6 Computer Programs Implementation 

Special purpose computer programs were developed' to implement the analysis procedures out

lined in the preceding sections. The programs take advantage of the special properties of buildings 

belonging to the special class with proportional lateral stiffness matrices~of all resisting frames. 

The details of the implementations of the analysis procedures, flow charts of the programs and the 

necessary input data are presented in Appendix C. The programs compute nonnalized response 

quantities, defined in Sections 6 and 8, for buildings with the simplified plan of Figure. 2a, 
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characterizing ground motion by idealized flat or hyperbolic pseudo-acceleration response spectrum 

or the general design spectrum described in Section 2.3. 

The simplified plan (Figure 2a) described in Section 2.2.2 is a special case of the buildings 

described in Section 2.2.1 with more general plans, such as Figure. 1, than Figure 2a; the analysis 

procedure developed for buildings with general plans is, therefore, applicable to the system (Figure 

2a) of Section 2.2.2; the overall dynamic respollses of the buildings of Sections 2.2.1 and 2.2.2 are 

identical provided they have the same structural properties identified in Section 3.1; thus, the results 

in subsequent sections 5, 6, 7 and 8 are obtained for the simplified model of Section 2.2.2 in tenns 

of meaningful parameters, so that the results are applicable to buildings with more general plans 

than Figure 2a. 

The response qautities rj of the corresponding torsionally-uncoupled, multi-story system of 

the simplifed model of Figure 2a depend on p, Ty ), and s. On the other hand, The nonnalized 

quantities r n) lequations (4.42) to (4.46)J of the associated one-story system with uncoupled lateral 

vibration frequency Wy equal to Wy) are products of quantities that depend solely upon e / r and n 

and the ratio of the pseudo-acceleration response spectrum ordinates San/Sa), which depends on the 

shape of the spectrum and on the relative positions of W nj and W yj ' which in turn depend on the 

basic parameters e / r, n, p and Ty). Thus, the response of the torsionally-coupled, multi-story build

ing of Figure 2a depends on parameters elr, n, p, Ty) and s. Obviously when the idealized flat and 

hyperbolic pseudo-acceleration spectra are assumed to characterize ground motion, the ratios Sa,,/ Sa) 

equal to 1 or ron' respectively, and hence rnj , in these two cases do not depend on p or Ty 1. Thus, 

the input to the programs for the case of the idealized spectra is the static eccentricity ratio, elr, the 

uncoupled torsional to lateral frequency ratio, n, the joint rotation index, p, and the damping ratio, 

s. In addition to these, the fundamental uncoupled lateral period, Ty I' is also input for the case of 

the general design spectrum. 
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4.7 Numerical Examples 

4.7.1 Example J 

Consider the five-story building described in Section 2.2.2 with the ratio of its overall dimen-

sions BIA = 0.6. Frames (1) and (2) are identical with column momentofinertia = I; each beam is 

of width = 211, where )1 denotes the story height, and moment of inertia = 2/. The ratio Ell mil 3 = 

564.4. Frames (2) are located at a distance )'2 from the X-axis, with )'21B = 0.476. Frame (1) is 

located at a distance e from the Y-axis, with e I A = 0.135. The damping ratio in each mode of 

vibration ~ = 5 %. The building belongs to the special class of buildings considered in this study 

(Section 2.1). The response of the building to ground motion, characterized by the response spec-

trum of Figure 5, along the Y-axis is to be detennined. 

The analysis follows the step-by-step summary of the procedure presented in Section 4.5: 

1. The corresponding torsionally-uncoupled, five-story system is shown in Figure 6b. 

2. Solution of the eigen-problem of equation (4.2a) leads to natural vibration frequencies Wy) and 

mode shapes 'l'J of the system defined in Step 1: 

rEI 
Wy 1= 0.882 '\/ -;;;;;J = 20.944 rad/sec, and Tyl = 0.3 sec. 

W y, = 65.645 rad/sec, and Ty, = 0.096 sec. 

'IFf = < 0.121 0.294 0.447 0.559 0.621 > 

and 

'IFf = < - 0.357 - 0.612 .,... 0.413 0.106 0.562 > 

The mode shapes have been nonnalized so thatll'Jm'l'J = m. 

3. Utilizing equations (4.12) to (4.20) leads to the maximum responses in the first two vibration 

modes of the system of Figure 6b. 

Table 2 shows the following results: story shears nonnalized by wtagl,g, where wt is the 
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effective weight of the system in its fundamental mode of vibration, and OK is the maximum 

ground acceleration (Section 2.3); story overturning moments normalized by W~h~a/g, where 

lit is the effective height of the system in its fundamental mode of vibration, and frame (I) 

column moments, beam moments and column axial forces normalized by (EII1/ 2
) uR' 

(£11112) ilR and (EIII/ 3
) iig , respectively, where u

R 
is the maximum ground displacement (Sec-

tion 2.3). For this example, W; 15 m ,II = 0.835 and 11;15 II = 0.724. 

4. Since frame (1) is the only frame spanning along the Y-axis, equation (3.9) leads to the obvi-

ous conclusion that the static eccentricity e equals the distance of the frame from the Y-axis. 

For rectangular plans, the radius of gyration is given by: 

Thus, 

e e A ~ 12 = = 0.135 --_.,. == (0.135) (2.970) = 0.4 
r A r 1 + 0.6-

5. The uncoupled torsional to lateral frequency ratio is given by equation (4.4) with CaRICy = 

'2 yi in this example leading to: 

n == ~aL == :~?-.J2 == )'2 B ~ -J2 = (0.476) (0.6) (2.970) .J2 = 1.2 
r2 C - r - BAr 

y 

6. For the associated torsionally-coupled, one-story system, eccentricity ratio elr = 0.4 from Step 

4, and the uncoupled torsional to lateral frequency ratio n = 1.2 from Step 5 . 

7. The normalized natural vibration frequencies ron and mode shapes an (n= 1,2) of the system 

defined in Step 6 arc computed from equations (4.22) and (4.23), leading to: 

ro I == 0.894. and ro2 = 1.342. 
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_ { a) 1 } "_ {- 0.894 }. _ {, 'a"2 } _ { - 0.447 '} 
a1- - 0447 ,a2- - -0894 a!l1. .' . ,ae2 . . , 

~. From equation (4.10): 

WII == w1 Wy1 == (0.894)(20.944) == 18.729 Tad/sec; TIl = 0.335 sec 

W21 = (;)2 Wy I = (1.342) (20.944) == 28.094 cad/sec: T21 = 0.224 sec 

Wn == WI W\'2 == (0.894)(65.645) == 58.703 Tad/sec; TI2 == 0.107 sec 

(1)22 = w2 Wy2 == ( 1.342) (65.645) == 88.055 Tad/sec; T22 = 0.071 sec 

9. Define an associated torsionally-coupled, one-story system as the system defined in Step 6 

. . 
with uncoupled lateral vibration frequency Wy equal to Wy); for j=l, Wy = 20.944 rad/sec, and 

for j=2, Wy = 65.645 rad/sec. 

10. From equations (4.44) and (4.46): 

_ .- - 2 S,m) -. San) 
V = V ' = M ' == a --_. == W -.-~-

nJ nj nj .In S ' n S ' 
Qj aJ 

and, 

Substituting for a yn and (tUn from step 7, and reading of'Sanj and Sa) from the response spec-

trum of Figure 5 corresponding to periods Tni and TYI leads to the results of Table 3. 

11. For each nj'h mode of vibration of the torsionally-coupled, N-story building the maximum 

value of the desired response quantity r nj is given by the product of rj (Table 2) and r nj 

(Table 3) determined in Steps 3 and 10, respectively. The results are shown in Table 4 for 

base shear and torque. 

12. Substituting the modal maxima into equation (4.67) leads to the total values of base shear and 

torque (Table 4). 
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Table 3 Normalized Modal Responses of Associated Torsionally-Coupled. 

One-story System of Example 1 

Mode 

nj u)'n U&n vn T Rn San, Sa} V nj T Rnj 

11 -0.894 0.447 0.8 -0.72 2.67 2.67 0.8 -0.72 

21 -0.447 -0.894 0.2 0.32 2.67 , 2.67 0.2 0.32 

12 -0.894 0.447 0.8 -0.72 1.87 1.71 0.875 -0.787 

22 -0.447 -0.894 0.2 0.32 1.35 1.71 0.158 0.253 
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Table 4 Modal Responses of Torsionally-Coupled. 

Five-story Building of Example 1 

Base Shear + Base Torque + 

W;a/g rW;aKlg 

Mode 

nj VB) V n) V Bn) VB) TRn) TBRn) 

11 2.670 0.8 2.136 2.670 -0.72 -1.922 

21 2.670 0.2 0.534 2.670 0.32 0.854 

12 0.209 0.8 0.167 0.209 -0.72 -0.150 

22 0.209 0.2 0.042 0.209 0.32 0.067 

Total - - 2.240 - - 2.870 
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Computations similar to Table 4 for other response quantities leads to Table 5, wherein results 

are presented considering the contributions of four vibration modes U=I, 2; and n=l, 2), as in 

the computations of Table 4. Also presented are the responses considering all ten vibration 

modes U=I, 2, 3,4,5; and n=l, 2). It is apparent that for this example, it is sufficient to con-

sider only the first two pairs of vibration modes associated with the first two vibration modes 

of the torsionally-uncoupled system. Because the fundamental vibration period Ty-t is in the 

acceleration-controlled region of the spectrum (Figure 5), according to [7] even the fundamen-

tal modal-pair alone would suffice. 

4.7.2 Example 2 

In order to compare results obtained from equations (4.67) or (4.69), (4.70), and (4.71) or 

(4.72), consider the building analyzed in Section 4.7.1 with the following modifications: the plan of 

the building is square, i.e. B t A = 1; each fr3:f11e is assumed to behave as two columns, i.e. the 

moments of inertia of the beams are taken as zero; each column of frames (2) have a moment of 

inertia 12 equal 0.5/; and the static eccentricity e is chosen such that etA = 0.163. Using the step-

by-step procedure of Section 4.5, the response of the building to earthquake ground motion, along 

the Y-axis, characterized by idealized flat and hyperbolic response spectra, is computed for two 

cases: (a) Y21B = 0.408, and (b) Y21B = 0.490. 

The static eccentricity ratio of the building considered is given by: 

!...=.!..-A = (0.163),J 12 = (O.163).J6 = 0.4 
r A r l+(BtAl 

and the uncoupled torsional to lateral frequency ratio n is determined from: 

Thus, in case (a): 

n = r~.J6 = 0.40S.J6 = 1 
B 



iUld in case (b): 

- 112 -

n = Y2..[6 = 0.490..[6 = 1.2 
B 

For each of the five vibration modes of the corresponding torsionally-uncoupled. five-story 

system. the maximum base shear VB) and the base overturning moment M8j [or the base column 

moment in frame (1)]. computed by Steps 1 to 3 of Section 4.5, are presented in Table 6, for flat 

and hyperbolic spectra. The response in each vibration -mode has been normalized with respect to 

the contribution of the fundamental mode. 

The normalized frequencies wn and mode shapes an of the associated torsionally-coupled. 

one-story system are given by: 

for case (a). 

w] = 0_8198 and w2 = 1.2198 

_ {a)']) _ {-0.7733 )_. 
a] - aOI - 0.6340 • { 

ay, ) = {.~ 0.6340 ) 
a0 2 -0.7733 

and for case (b). 

w] = 0.8944 and w2 = 1.3416 

{ 
ay] ) = {-0.8944); a, = { a

y
, ) = {-0.4472 j' 

a O ] 0.4472 - a 0 2 - 0.8940 

The normalized modal quantities r"i of the associated torsionally-coupled. one-story systems 

for j=l. 2 ..... 5 are determined by implementing computational Steps 6 through 10 of Section 8 

leading to the results presented in Table 7. 

The modal responses of the torsionally-coupled. five-story building are given in Table 8a and 

8b. for the fiat and hyperbolic spectra. respectively. normalized with respect to the corresponding 

forces due to the fundamental mode of the corresponding torsionally-uncoupled system. Combina-

tion of the normalized modal responses according to equations (4.67) or (4.69), (4.70), and (4.71) 
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Table 6 Normalized Modal Responses of Corresponding Torsionally-Uncoupled, Five-Story System 

of Example 2 for fial and hyperbolic spectra 

Mode Flat Spectrum Hyperbolic Spectrum 

J 

VB/VB 1 MB/MB1 VB/VB 1 M B/MB1 

-

1 1.0 1.0 1.0 1.0 

2 0.3040 0.0873 1.9411 0.5576 

3 0.1033 0.0182 1.8685 0.3298 

4 0.0485 0.0064 1.6969 0.2240 

5 0.0176 0.0020 0.9151 0.1041 
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Table 7 Normalized Modal Responses of Associated Torsionally-Couple~. One-Story System of 

Example 2 for Cases (a) 11 = 1.0. and (b) 11 = 1.2 

Case (a): 11 = 1.0 

Spectrum. VI v2 TRI TR2 

Flat 0.5981 0.4019 -0.7295 0.3295 

Hyperbolic 0.4903 0.4903 -0.5981 0.4019· 

Case (b): 11 = 1.2 

Spectrum VI V2 TRI TR2 

Flat 0.8000 0.2000 -0.7200 0.3200 

Hyperbolic 0.7155 0.2683 -0.6440 0.4293 
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Table 8a Modal Responses of Torsionally-Coupled, Five-Story Building of Example 2 for Flat 
Spectrum in Cases (a) n = 1.0 and (b) n = 1.2 

Case (a): n = 1.0 

VB.IVBI 

J 
n 

1 2 3 4 5 
1 0.5981 0.1818 0.0618 0.0290 0.0105 
2 0.4019 0.1222 . 0.0415 0.0195 0.0071 

TBR.)r VBI 
1 -0.7295 -0.2218 -0.0753 -0.0354 -0.0128 
2 0.3295 0.1002 0.0340 0.0160 0.0058 

MBn/MBI 
1 0.5981 0.0522 0.0109 0.0038 0.0012 
2 0.4019 0.0351 0.0073 0.0026 0.0008 

Case (b): n = 1.2 

VBn/VBI 

J 
n 

1 2 3 4 5 
1 0.8000 0.2432 0.0826 0.0388 0.0141 
2 0.2000 0.0608 0.0206 0.0097 0.0035 

TBRn/r VBl 
1 -0.7200 -0.2189 -0.0744 -0.0349 -0.0126 
2 0.3200 0.0973 0.0330 0.0155 0.0056 

MB.;lMBl 
1 0.8000 0.0699 0.0146 0.0051 0.0016 
2 0.2000 0.0175 0.0036 0.0013 0.0004 
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Table 8b Modal Responses of Torsionally-Coupled. Five-Story Building of Example 2 for Hyper
bolic Spectrum in Cases (a) n = 1.0. and (b) n = 1.2 

Case (a): n = 1.0 

VBnlVBI 
j 

n 
1 2 3 4 5 

1 0.4903 0.9517 0.9161 0.8320 0.4486 
2 0.4903 0.9517 0.9161 0.8320 0.4486 

TBRnJ!r VBI 
1 -0.5981 -1.1609 -1.1174 -1.0148 -0.5473 
2 0.4019 0.7802 0.7510 0.6821 0.3678 

MBn/MBI 
1 0.4903 0.2734 0.1617 0.1098 0.0510 
2 0.4903 0.2734 0.1617 0.1098 0.0510 

Case (b): n = 1.2 

VBn/VBI 
j 

I n 
1 2 3 4 5 

I 0.7155 1.3890 1.3370 1.2142 0.6548 
2 0.2683 0.5209 0.5014 0.4553 0.2455 

TBRnjlr VBI 
1 -0.6440 -1.2501 -1.2033 -1.0928 -0.5893 
2 0.4293 0.8334 0.8022 0.7285 0.3929 

MBn,lMBI 

1 0.7155 0.3990 0.2360 0.1603 0.0745 
2 0.2683 0.1496 0.0885 0.0601 0.0279 
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Table 9a Responses of Torsionally-Coupled, Five-Story Building of Example 2 for Flat Spectrum 

computed by equations (7.19), (7.22) and (7.24) 

Modal Case (a): n = 1.0 Case (b): n = 1.2 

Combination 

by VB/VBo TBR/rVBo MB/MBo VB/VBo, TBR/rVBo MB/MBo 

Eq. (7.19) 0.7412 0.7826 0.7398 0.8366 0.7712 0.8355 

Eq, (7.22) 0.7405 0.7821 0.7397 0.8359 0.7706 0.8354 

Eq. (7.24) 0.7396 I 0.7830 0.7396 0.8353 0.7715 0.8353 

Table 9b Responses of Torsionally-Coupled, Five-Story Building of Example 2 for Hyperbolic 

Spectrum computed by equations (7.19), (7.22) and (7.24) 

Modal Case (a): n = 1.0 Case (b): n = 1.2 

Combination 

by VB/VBo TSRI rVso MBIMBo VS/VBo TBR/rVBo MsIMs" 

Eq. (7.19) 0.7820 0.6502 0.7252 0.8337 0.6989 0.7879 

Eq. (7.22) 0.7697 0.6384 0.7221 0.8203 0.6863 0.7847 

Eq. (7.24) 0.7131 0.7011 0.7131 0.7780 0.7539 0.7780 
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or (4.72) are included in Tables 9a and 9b. 

It is clear from Table 9a that for this example equation (4.72) leads 10 accurate results in Ihe 

case of flat spectrum. For the hyperbolic spectrum. equations (4.67) and (4.72) differ by about 6 to 

8(70. being larger for n = 1.0 than for n = 1.2. 
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s. VIBRATION FREQUENCIES AND MODE SHAPES 

It is apparent from equations (4.10) and (4.11) that the natural vibration frequencies wn) of the 

torsionally-coupled. multi-story building are closely related to the frequencies w y) and mode shapes 

lI') of the corresponding torsionally-uncoupled. multi-story system (Section 4.2) and to the normal

ized frequencies wn and mode shapes an of the associated torsionally-coupled. one-story system 

(Section 4.3). 

The coupled natural frequencies wn) normalized by Wy) are independent of 'j' (equation (4.10» 

with the ratios wn/Wy) equal to Wn' which depend only on the eccentricity ratio elr and the uncou

pled torsional to lateral frequency ratio 0.. Thus, the normalized frequencies WI/Wy) and W2/Wy) of 

the j,h modal pair vary with .Q and elr in the same manner as WI and w2' respectively, The ratios 

wn/wy) (=wn) are plotted in Figure 7 against .Q for three values of elr: 0.05, 0.4 and l. Also 

included for comparison are the uncoupled frequencies Wy) and we), both normalized by Wy), in order 

to identify the effects of lateral-torsional coupling on the natural vibration frequencies. It is 

apparent from Figure 7 that the uncoupled frequencies Wy) and we) are upper and lower bounds of 

the coupled frequencies; as elr increases, WI) decreases below we) and Wy), while w2) increases 

above Wy) and we). NatUrally. the coupled frequencies are closest to the uncoupled ones for systems 

with smallest elr values. For torsionally-flexible systems (i.e. 0.<1), we) is the upper bound of WI), 

while Wy) is the lower bound for W2)' On the other hand, for torsionally-stiff systems (i.e. 0>1). Wy) 

is the upper bound for WI)' while we) is the lower bound for w2)' For systems with closely spaced 

uncoupled frequencies (i.e. 0. around unity), the coupled frequencies are closest to one another, 

with the closeness most pronounced for systems with smaller values of elr. The building is 

unstable for .Q equal to zero, since, in this case the fundamental frequency WII is zero. 

The coupled natural frequencies wn) normalized by the fundamental uncoupled lateral fre

quency Wy I equals the product of wn and the ratio of the vibration frequencies of the· corresponding 

torsionally-uncoupled, multi-story system wy/wYI (equation (4.10». The frequency ratio Wy/WYI is ( 

presented in Figure 8, which indicates that the corresponding torsionally-uncoupled, multi-story 
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system behaves as a cantilever beam for small values of p and as a shear beam for large 

p. For intermediate values of p the corresponding torsionally-uncoupled, multi-star 

behaves as a frame. The ratios O)n/O)yl are shown in Figure 9 against n for elr equal O. 

three values of p equal to 0, 0.125 and 00, representing the three different ranges of p. 

the preceding observations the fundamental normalized frequency pair, consisting of 0)1 

0)21/O)yl' which are equal to WI and 002, respectively, are independent of p. However, hig] 

tion frequency pairs vary with p due to UIe dependence of O)y/O)y I on p (Figure 8). 

The coupled mode shapes are directly related by equation (4.11) to the mode shap 

corresponding torsionally-uncoupled, multi-story system, shown in Figure 10. Both latera 

sional components, .ynj and f9 nj' of the coupled mode shape f.j are proportional to the 

shape of the corresponding torsionally-uncoupled system (Section 4.2) lI'j' with proportion 

stants a),n and a9n' shown in Figure 11, equal to the lateral and torsional components of the 

of vibration of the associated torsionally-coupled, one-story system (Section 4.3). As a res 

orthogonality property of the one-story mode shapes, ocr OC2 = 0, it can be sh( 

a yl=a92 and 0y2=-091' Thus, the lateral component of a coupled mode of pair 'j' equal: 

sional component of the second mode of pair 'j', i.e . • ylj=.92j and f y2j=-f91j' 

It is apparent from Figure 11 that as n increases a)'1 (or (92) increases while 0y2 

decreases. For torsionally-stiff (0)1) systems 0y I approaches unity and 0y2 approaches 2 

increases. Thus, in this case, the coupled modes flj contain predominantly lateral motion 

predominantly torsional motions, as demonstrated by Figure 12a. Torsionally-flexible (~ 

terns with smaller e/r ratios have smaller 0yl values than 0y2, but the modes are not pred( 

lateral or torsional, as is clear from Figure 12b. For systems with closely spaced unCOli 

quencies (n close to 1), 0)'1 and 091 are of comparable magnitudes especially for systl 

small e / r. Therefore, the lateral and torsional components of a coupled mode shape are of 

order of magnitude for systems with closely spaced uncoupled -frequencies, as exhibited t 

12c. 
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system behaves as a cantilever beam for small values of p and as a shear beam for large values of 

p. For intennediate values of p the corresponding torsionally-uncoupled, multi-story system 

behaves as a frame. The ratios wn/wYI are shown in Figure 9 against 0. for elr equal 0.4 and for 

three values of p equal to 0, 0.125 and 00, representing the three different ranges of p. Based on 

the preceding observations the fundamental nonnalized frequency pair, consisting of Wll/wyl and 

W21/w)'10 which are equal to WI and w2' respectively, are independent of p. However, higher vibra

tion frequency pairs vary with p due to t)1e dependence of Wy/WYI on p (Figure 8). 

The coupled mode shapes are directly related by equation (4.11) to the mode shapes of the 

corresponding torsionally-uncoupled, multi-story system, shown in Figure 10. Both lateral and tor-

sional components, liynj and .9nj' of the coupled mode shape .nj are proportional to the j'" mode 

shape of the corresponding torsionally-uncoupled system (Section 4.2) V'j' with proportionality con

stants Ct)'n and Ct9n , shown in Figure II, equal to the lateral and torsional components of the nth mode 

of vibration of the associated torsionally-coupled, one-story system (Section 4.3). As a result of the 

orthogonality property of the one-story mode shapes, af a2 = 0, it can be shown that 

Ctyl=Ct92 and Cty2=-Ct91' Thus, the lateral component of a coupled mode of pair 'j' equals the tor

sional component of the second mode of pair 'j', i.e. liy Ij=li92j and .y2j=-.9Ij' 

It is apparent from Figure 11 that as n increases CtYI (or Ct92) increases while Ct y2 (or Ct9 1) 

decreases. For torsionally-stiff (0) 1) systems Cty I approaches unity and Ct y2 approaches zero as 0. 

increases. Thus, in this case, the coupled modes .Ij contain predominantly lateral motions and ~j 

predominantly torsional motions, as demonstrated by Figure 12a. Torsionally-flexible (0.<1) sys

tems with smaller elr ratios have smaller CtYI values than Ct y2' but the modes are not predominantly 

lateral or torsional, as is clear from Figure 12b. For systems with closely spaced uncoupled fre

quencies (0. close to I), CtYI and Ct91 are of comparable magnitudes especially for systems with 

small elr. Therefore, the lateral and torsional components of a coupled mode shape are of the same 

order of magnitude for systems with closely spaced uncoupled frequencies, as exhibi~ed by Figure 

12c. 
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The variation of the vibrational mode shapes of the torsionally-coupled building with p is con

trolled by the dependence of the uncoupled lateral mode shapes tt'j on P (Figure 10). The lateral 

and torsional components of two modes '1j' and '2j', belonging to the same pair 'j', are propor

tional to VIi (equation (4.11)). Thus, the shapes of the components of the first pair of modes' 11' 

and '21' is the same as VII' of the second pair '12' and '22' is the same as Vl2, ,." etc .. Since Vlj 

vary significantly with p, as is portrayed by Figure 10, the components of each coupled mode also 

vary significantly with p, as displayed by Figures 12. It should be clear, however, that p plays no 

role in the amount of coupling that exists between the lateral and torsional components of a mode 

shape, since a yn and a 8n do not depend on p. 

Finally, the variations of the cross-correlation modal factors, Ynj.mb with system parameters are 

considered. These factors are computed from equation (4.36) for frequency ratios, qnj.mb computed 

by equation (4.68), and therefore directly related to the closeness of frequencies Wnj and Wm/c' Thus, 

the factors are dependent on elr , nand p. It is clear from Figure 9 that frequencies Wlj and wu, 

WI j and Wlln and W2j and W2b with j= 1 to 4 and k=j+ 1 to 5, are well separated. It follows that 

Ylj,2b Ylj,1t and Y2j,2k for j=1 to 4 and k=j+l to 5, are very close to zero. Hence, cross-correlation 

between such modes is relatively small, justifying equation (4.70). 

Cross-correlation factors Ylj,2j are independent of p or 'j' since Qlj.2j equals w/w2' The fac

tors Ylj,2j are, therefore, equal to Y12 obtained in the case of the associated torsionally-coupled, 

one-story system (equation (4.38)). These are plotted in Figure 13 against n for various elr values 

and for 5% damping. The variation of Ylj,2j or YI2 is closely related to the spacing of WI and w2' 

Since the two coupled frequencies are closest for systems with n = 1 and small e I r ratios (Figure 

7), Ylj.2j is largest at n = 1. For larger elr values, WI and w2 are widely spaced for any value of n 

(Figure 7) resulting in small Ylj.2j' The cross-correlation terms of equation (4.70), given by its 

second summation, are, therefore, expected to be significant for systems with small e / r ratios and n 

= 1, i.e. closely spaced uncoupled frequencies. 
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Cross-correlation factors Y2j,lk (for j=1 to 4 andk=j+l to 5) depend on the relative spacing of 

w 2} and Wit. Referring to Figure 9, it is clear that these frequencies are equal at two values of n 

that depend on eJr, p, j and k. It follows that Y2j,lk has two maxima equal to one corresponding to 

these two values of n. Figure 14 shows Y21.12 and Y21.13 against n for eJr equal to 0.4 and values of 

p equal to 0, 0.125 and 00. These factors are chosen without inference that their corresponding 

terms of equation (4.70) are the most important, but rather as representatives of Y2j.lk' As eJr 

increases or as p increases the two peaks of Y2j,a approach each other, widening the range of n 

where Y2}.1t is large. As k increases with the same j the two maxima of Y2j,lk are drawn farther 

apart, narrowing the range of n where Y2j.1t is significant. On the other hand, as j increases for the 

same k, (example Y21.13 and Y22.13)' the two maxima of Y2j,]k approach each other widening the range 

of n with large Y2},lk' 
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6. EFFECT OF FRAME ACTION 

The effect of frame action on the maximum response of the torsionally-coupled. multi-story 

building. computed by the RSA procedure described in Section 4. is investigated next. The max

imum response is plotted against Ty I. the fWldamental lateral vibration period of the corresponding 

torsionallY-Wlcoupled. multi-story system in the form of response spectra. Such plots are presented 

in Figures 15 and 16 for values of the beam-to-column stiffness ratio p equal to O. 0.125 and 00 and 

seven response quantities: base shear VB. base torque at the center of rigidity TBR • base overturning 

moment Ma. top floor lateral displacement at center of rigidity vs, beam moment MbB in the first 

story of frame (1), column moment MeB in the first story of frame (I), and the column axial force 

PcB in the first story of frame (1). The response quantities VB ' TBR • MB and Vs (Figure 15) are 

selected as representatives of overall behavior of the torsionally-coupled system, and 

MbB ' MeB and PcB (Figure 16) as indicative of its local behavior. The response spectra are presented 

for systems with eccentricity ratio elr equal 0.4 and uncoupled torsional to lateral frequency ratio n 

equal to one. The range of Tyl values included in the response spectra is much wider than reason

able for a five-story building. However, the dynamic response behavior of taller buildings is gen

erally similar to that of a five-story building with the same Ty I' Thus the presented results are indi

cative of the earthquake response of buildings of varying number of stories. 

The response quantities are presented in dimenSionless form as defined in Figures 15 and 16 

and with the normalizing factors given in Table 10, where Us and ag are the maximum ground dis-

placement and groWld acceleration, respectively; W~ and h~, given by equations (4.20), are the 

effective weight and height for the fundamental vibration mode of the corresponding torsionally-

uncoupled, multi-story system; e~ is the effective eccentricity of the associated torsionally-coupled, 

one-story system in its first vibration mode, given by equation (4.34); and W; is the effective 

weight in the fundamental vibration mode of the associated torsionally-coupled, one-story system 

normalized by its weight, given by equation (4.44). The normalization factors for base shear and 

base overturning moment are the maximum base shear and overturning moment for a rigid (i .e. zero 
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Table 10 Normalization Factors 

Response Quantity Nonnalization Factor 

Story Shears W;J/g 

Story Torques 

,at Centers of Rigidity (e~W; )W;J/g 

Story Overturning Moments W;h;Jx/g 

Lateral Displacements 

at Centers of Rigidity iig 

Frame (1) Column Moments ( Ell / II 2) ii g 

Frame (1) Beam Moments ( Ell / h 2) ii g 

Frame (1) Column Axial Forces (Ell/h3) iig 

Table 11 Effective Weight and Height in the Fundamental Mode 

of the Corresponding Torsionally-uncoupled System 

W; h; 
p 

Total Weight Total Height 

O. 0.6787 0.7963 

0.125 0.7963 0.7420 

00 0.8795 0.7027 
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vibration period) single-degree-of-freedom system with height Iz~ and lumped weight W j•• Referring 

to equation (4.64). the normalization factor for the base torque is the torque obtained if the base 

shear W~a/ g of the rigid single-degree-of-freedom system is applied at a distance e~W t from the 

CR of the system. The effective weight and height. wt and ht. depend on P. (Table 11). while e~ 

and wt depend on elr and n (equations (4.34) and (4.44». Similarly the normalized response 

quantities depend on P. elr and n and on the variation of the earthquake response spectrum with 

vibration period but not on its intensity. 

It is apparent from Figure 15 that the base shear, VB. overturning moment, MB , and torque TBR 

vary significantly with p in the velocity- and displacement-controlled regions of the design spec

trum. with the variation of MB not as great as VB or TBR • In the acceleration-controlled region of 

the spectrum the normalized responses do not vary appreciably with p, but the actual response 

values depend on p because this parameter influences wt and h~ (Table 11). The top floor dis

placement V5 of frame (1) is essentially independent of p over a wide range of vibration periods 

Tyl ' 

The general trends in the variation of the three local response quantities-- beam moment. 

column moment and column axial force-- with p are the same (Figure 16). As p decreases, the 

normalized forms of both MbB and PeB tend to zero, while the normalized form of MeB decreases to 

the moment in a cantilever bending beam. For a fixed Tyl> the column stiffness may increase as p 

decreases, and therefore MeB may increase even though its normalized value decreases. 

The effects of frame action, characterized by the beam-to-column stiffness ratio p, identified 

in the preceding paragraphs for torsionally-coupled buildings are similar to those observed in lateral 

response of torsionally-uncoupled systems [12]. The variation in response of torsionally-uncoupled 

systems with p was shown [12] to be related to the significance of higher mode contributions in 

response, which generally increase with decreasing p and with increaSing TYI and also depend on 

the response quantity considered. Similarly, the variation of the response of torsionally-coupled 
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buildings with p will be shown in Section 7 to be closely related to the significance of the higher 

modal-pair contributions in response. 

In Figure 16 MbB is the moment in the first-story beam of frame (1). and MeB and PcB the 

moment and axial force in the first-story colwnn. In order to examine the locations of largest 

member forces. response spectra for the forces in the beams and columns of each story of the frame 

are presented in Figures 17 to 19. These results demonstrate that for the range of parameters con

sidered. the maximwn forces occur in the base story of the frame. The magnitudes of these forces 

decrease at higher stories with the rate of reduction tending to be greater for the larger values of p. 
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7. MODAL·PAIR CONTRIBUTIONS 

The maximwn responses of the torsionally-coupled, multi-story building computed by the 

RSA procedure presented in Section 4.4 are plotted against Ty 10 the fundamental vibration period of 

the corresponding torsionally-uncoupled system, in the form of response spectra. Obtained by con

sidering varying numbers of vibration modal-pairs in RSA, such plots are presented in Figures 20 

to 26 for three values of p = 0, 0.125 and 00, elr = 0.4, 11 = I, and the seven normalized response 

quantities defined in Section 6. 

For the subsequent interpretation of the response results, it is useful to introduce the concept 

of unit modal-pair response. This quantity defined for the jlh modal-pair is the CQC combination of 

the unit modal response of the structure in the two vibration modes 'lj' and '2j', where the unit 

modal response of the building in the nfh vibration mode are given by equations (4.48) to (4.66) 

with unit pseudo-acceleration. It is ~pparent from equation (4.66) that the unit response of the 

building in the nj'h vibration mode is the product of the unit modal response r) in the j'h vibration 

mode of the corresponding torsionally-uncoupled, multi-story system (equations (4.12) to (4.19) 

with Sa) = 1), and· the normalized response rn) in the nth vibration mode of the associated 

torsionally-coupled, one-story system with San/Sa) = 1 [equations (4.42) to (4.46)]. Combination of 

the unit responses in vibration modes' If and '2j' by equation (4.35) gives the unit responses in 

the jth modal-pair to be equal to the product of the unit modal response in the lh uncoupled mode 

and the normalized unit modal response of the associated torsionally-coupled, one-story system, 

determined by equation (4.47). In discussing the contributions of various vibration modal-pairs 

U= 1, 2, ,." N) to the response, it is useful to normalize the unit modal-pair response as a fraction of 

the corresponding value for the first modal-pair. Since the normalized unit modal response of the 

associated torsionally-coupled, one-story system [equation (4.47)] is independent of 'j', i.e. it is the 

same for any pair, the normalized unit response for the jth modal-pair equals the ratio of the unit 

modal responses in the jth and fundamental lateral vibration modes of the corresponding 

torsionally-uncoupled system. Normalized unit modal-pair responses such as for story shears, 
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torques. overturning moments. and frame (1) lateral displacements vary with p but not with Ty (, 

elf, n or the design spectrum. Numerical values of these unit modal-pair responses for a few of 

these quantities are presented in Table 12. The period dependence of the relative modal-pair contri

butions to a response quantity is all represented by the spectral ordinates for the various modes. 

Although the contribution of a modal-pair in response is closely related to its unit modal-pair 

response introduced in the preceding paragraph, it is also dependent on the cross-correlation 

between each of the two vibration modes of the pair to modes of different pairs. These cross

correlation terms are well approximated by the terms in the third summation of equation (4.70). 

The response contributions of the vibration modal-pairs higher than the fundamental modal

pair increase with increasing Ty ( in the velocity- and displacement-controlled regions of the earth

quake design spectrum. For fixed elr. n and p values. the mode shapes, the normalized unit 

modal-pair responses of the building. and the ratios of vibration frequencies do not change with Ty (. 

Thus the increased contribution of the higher modal-pairs is due only to the relative values of the 

design spectrum ordinates, which in turn depend on the spacing of vibration periods and on the 

shape of the spectrum. For the selected spectrum. as Ty ( increases within the above mentioned 

spectral regions. the ratio of the pseudo-acceleration spectrum ordinate for a higher vibration mode 

to that of the fundamental mode generally increases, resulting in increased response contributions of 

higher modal-pairs. 

The increase in response contributions of higher modal-pairs varies with the response quantity. 

As suggested by the normalized unit modal-pair responses of the building (Table 12), for fixed 

values of elf. nand P. Figures 20 to 23 demonstrate that the higher modal-pair contributions are 

much more significant for the base shear, VB' and base torque at center of rigidity, TBR , than for the 

base overturning moment, MB or the top floor displacement V5 of frame (1). Figures 24, to 26 indi

cate that the higher modal-pair contributions are relatively small in the local response quantities for 

frame (1). Among the local response quantities, these contributions are larger for the base-story 

column moment, M eB • than for the base-story beam moment, M bB , or the base-story column axial 

force, PcB. Column moments are closely related to story shears wbich are affected more by higber 
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Table 12 Normalized Unit Modal-Pair Responses 

Top Floor Displacement at Center of Rigidity 

Modal-pair p=o p = 0.125 p = 00 

1 1.0 1.0 1.0 

2 -0.0094 -0.0292 -0.0340 

3 0.0004 0.0034 0.0060 

4 0.0000 -0.0005 -0.0014 

5 0.0000 0.0001 ·0.0003 

Base Shear and Base Torque at Center of Rigidity 

Modal-pair p=O p = 0.125 p = 00 

1 1.0 1.0 1.0 

2 0.3040 0.1475 0.0991 

3 0.1033 0.0647 0.0275 

4 0.0485 0.0325 0.0085 

5 0.0176 0.0111 0.0018 

Base Overturning Moment 

Modal-pair p=o p = 0.125 
I. 

p = 00 

1 1.0 1.0 1.0 

2 0.0873 -0.0030 -0.0340 

3 0.0182 0.0143 0.0060 

4 0.0064 0.0028 -0.0014 

5 0.0020 0.0014 0.0003 
I 
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modal-pair contributions whereas beam moments and column axial forces are closely related to 

story overturning moments which are affected less by higher modal-pair contributions. 

Obviously the higher modal-pairs also affect the shear, moments and torques in all stories in 

addition to the base shear, base overturning moment and base torque. These effects are summarized 

in Figures 27 to 29 wherein the height-wise variation of story shears, story torques and story over

turning moments, expressed as a ratio of the respective values at the base, are presented for build

ings with selected values of TYI = 0.5 and .2.5 sec, for elr = 0.4 and n = 1. The height-wise varia

tion of only the fundamental modal-pair response, which is the same regardless of Ty l' is also 

included. The presented story shears and overturning moments are also the story shears and over

turning moments of frame (1), since it is the only frame in the plane of the ground motion (Figure 

2a). In a lumped mass system, such as the structure considered here, the shear remains constant in 

each story with discontinuities at each floor. However, such a plot would not be convenient in 

displaying the differences among various cases and the alternative presentation with shears varying 

linearly over story height is used. It is apparent that the higher modal-pair contributions not only 

influence the magnitude of the story shears, moments and torques but also their distributions 

because the various vibration modal-pairs affect different portions of the building to varying 

degrees. The distribution, but not necessarily the actual values of forces in the upper stories, is 

especially affected by the higher modal-pair contributions. 

It is apparent from Figures 27 and 28 that the height-wise variations of story shears and 

torques are similar, with differences increasing as Tyl increases. Since the height-wise variations of 

story shears and story torques are exactly the same when only the fundamental modal-pair is taken 

into account, and the normalized unit modal-pair responses of shears and torques are exactly the 

same (Table 12), the differences between the height-wise variations of story shears and story 

torques are only due to cross-correlation terms between vibration modes of different pairs, given by 

the third summation of equation (4.70). 

We next examine how the higher modal-pair contributions to the response of the building are 

affected by the beam-to-column stiffenss ratio, p. As p decreases the normalized unit modal-pair 
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responses of the multi-story building associated with the higher vibration modal-pairs, especially 

the second modal-pair, increase for the base shear, base torque and base overturning moment (Table 

12). At the same time the ratios of the modal vibration frequencies with respect to the fundamental 

uncoupled lateral frequency increase, spreading the frequencies over a wider portion of the spec

trum, thus increasing the effects of the spectrum shape, with these increases depending on the loca

tion of Ty1 • For the selected spectrum and within the period range considered, the effects of the 

spectrum shape are especially significant if Ty lis long, with the effects decreasing as Ty I decreases 

within the velocily- and displacement-controlled regions of the spectrum (Figures 20 to 22). 

The effect of p on the contributions of the higher modal-pairs varies with the response quan

tity. As suggested by the normalized unit modal-pair responses (Table 12), Figures 20 to 22 

demonstrate that p affects the higher modal-pair contributions in the base shear ,and base torque at 

the center of rigidity more than in the base overturning moment. The top floor displacement (Fig

ure 23) displays trends opposite to base shear, base torque and base overturning moment, in the 

sense that the higher modal-pair contributions decrease with decreasing p, but this reverse trend is 

supported' by the normalized unit modal-pair responses of the building (Table 12). However these 

contributions are so small that they are of little consequence (Figure 23). The stiffness ratio p 

affects the higher modal-pair contributions in the base-story column moment in the same manner as 

the base shear but to a lesser degree (Figure 24). The higher modal-pair contributions in the beam 

moment and column axial force, which are closely related to the base story overturning moment, 

are smaller and are affected little by p (Figures 25 and 26). , 

Thus, higher modal-pair contributions to the response of the torsionally-coupled, multi-story 

building generally increase with decreasing p and with increasing TyJ and also depend on the 

response quantity considered. These conclusions are similar to those observed for the higher mode 

contributions in lateral response of torsionally-uncoupled systems [12]. 

Finally, the dependence of higher modal-pair response contributions on elr and n is investi

gated. The base shear, base torque at the center of rigidity and base overturning moment are plot

ted against Ty 1 in the form of response spectra for systems with p = 0, considering various nwnbers 
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of vibration modal-pairs. Such plots are presented in Figures 30 to 32 for systems with elr = 0.4 

and for three values of n = 0.5, 1 and 1.5; and in Figures 33 to 35 for systems with n = 1 and for 

three values of elr = 0.05, 0.4 and 1. Figures 30 to 35 indicate that, although the variations of the 

system response with Ty 1 depend on e I rand n, the higher modal-pair contributions relative to the 

contribution of the fundamental modal-pair are relatively insensitive to elr or n. This is partly due 

to the fact that the normalized unit modal-pair responses are independent of elr and n (Table 12); 

and for fixed values of p and Tyh the uncoupled vibration periods of the building are fixed and the 

vibration periods of a modal-pair of the torsionally-coupled building vary with elr and n (Figure 9) 

in such a way that the resulting variation in the spectral ordinates corresponding to these periods 

combine in a way that the higher modal-pair responses are relatively insensitive to elr or n. 

The height-wise variations of story shears and torques, expressed as a ratio of the respective 

values at the base, are presented in Figures 36 and 37 for systems with p = 0, elr = 0.4, two values 

of TYI = 0.5 and 2.5 sec, and three values of n = 0.5, 1 and 1.5; and in Figures 38 and 39 for sys

tems with p = 0, n = 1, two values of TYI = 0.5 and 2.5 sec, and three values of elr = 0.05, 0.4 and 

l. The variation of only the fundamental modal-pair response, which is the same regardless of Ty1 , 

is also included in these figures. As concluded earlier, Figures 36 and 37 also indicate that for 

fixed elr and p the height-wise variations of story shears and torques are similar, with differences 

more pronounced for torsionally-flexible systems (n<l), especially for values of Tyl in the velocity

or displacement-controlled regions of the spectrum. Similarly, Figures 38 and 39 indicate that for 

fixed n and p the differences between the height-wise variations of story shears and torques slightly 

increase with increase in elr. These effects are attributed to the increase in the cross-correlation 

terms given by the third summation of equation (4.70), as explained earlier in this section. 

Taking advantage of the fact that the earthquake response _of the torsionally-coupled, multi

story buildings considered in this investigation can be estimated by considering only the first two 

vibration modal-pairs, and in some cases only the fundamental vibration modal-pair, it is possible 

to develop simplified procedures for the analysis of torsionally-coupled buildings. The natural fre-

quency and mode shape in the nyh mode of vibration of the torsionally-coupled, multi-story building 
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can be computed from equations (4.10) and (4.11) knowing the r vibration frequency and mode 

shape of the corresponding torsionally-uncoupled. multi-story system and the nth normalized fre

quency and mode shape of the associated torsionally-coupled. one-story system. Thus. estimates of 

the vibration frequencies in the first two modal-pairs of the torsionally-coupled building can be 

determined using estimates of the first two vibration frequencies of the corresponding torsionally

uncoupled. multi-story system determined by following the simplified procedure developed in [12]. 

The maximum response in the nr vibration mode of the torsionally-coupled building was also 

found in Section 4 to be related to the maximum response in the j'h vibration mode of the 

corresponding torsionally-uncoupled. multi-story system and the nonnalized maximum response in 

the nth mode of vibration of the associated torsionally-coupled. one-story system with uncoupled 

lateral vibration frequency equal to Wyj. the jth uncoupled lateral vibration frequency. Utilizing the 

estimated vibration frequencies in the first two vibration modal-pairs of the torsionally-coupled, 

multi-story building. and the modal response maxima of the corresponding torsionally-uncoupled, 

multi-story system estimated by the simplified procedure developed in [12], the maximum response 

of the torsionally-coupled building is estimated by following the analysis procedure described in 

Section 4 considering only the first two vibration modal-pairs of the building. It is believed that 

such simplified response analyses can be applicable to more general buildings than those considered 

in this study. 

The results obtained in. this study may also be utilized in developing code-type analysis pro

cedures by recognizing the similarity in the height-wise variations of story shears and story torques 

and utilizing the aforementioned fact that the response can well be approximated by the first two 

vibration modal-pairs. 
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8. EFFECTS OF LATERAL-TORSIONAL COUPLING 

The lateral and torsional motions of the buildings considered were shown in Section 3 to be 

coupled. The effects of lateral-torsional coupling on building response are investigated by compar-

ing the response of a torsionally-coupled, multi-story building with that of the, corresponding 

torSionally-uncoupled, multi-story system. This comparison is presented for flat and hyperbolic 

pseudo-acceleration spectra, as well as the design spectrum of Figure 5. The response quantities 

selected to study the overall behavior of the building are: the base shear VB' the base torque T BR at 

the center of rigidity, the base overturning moment M B , and the top floor 'lateral displacement Vs at 

the cenler of rigidity. These quantities comp,uted by the procedures of Section 4.4 are normalized, 

respectively, by vBu • e VBo• M Bo and VS o' where VBo andMBo are the base shear and base overturning 

moment of the corresponding torsionally-uncoupled system. The normalized torque TBR/e VBo can 

be interpreted as the ratio of the dynamic eccentricity of the system to its static eccentricity: ed/e, 

where the dynamic eccentricity ed == TBR/VBu is the distance, from the center of rigidity at which 

static application of VBu results in the dynamic base torque TBR at the center of rigidity. The 

response quantities selected as indicative of the local behavior of the building are: column moment 

MeB' beam moment M bB , and column axial force PcB in the first story ofJrame (1). Th,ese quantities 

are normalized, respectively, by, the responses MeBo, M hBo' and P eBo of the corresponding 

torsionallY-Wlcoupled, multi-story system. 

These normalized response quantities are presented for flat and hyperbolic spectra in Figures 

40 to 46, wherein they are plotted against n for systems with p = 0, -0.125 and 00, and values of 

e/r = 0.05, 0.4 and 1. Also shown in these figures are the normalized responses V ,M, or v, and , . 

t R, of the associated torsionally-coupled, one-story system, defined by equations (4.39) and (4.40), 

which are independent of p. It is apparent from Figures 40 to 46 that the effects of lateral-torsional 

coupling on structural responses are similar for the multi-story ~d the associated one-story sys-

terns. For this reason, the general trends of V (M, or v) and T R for the one-story system, which are 

independent of p, are described first, and then the differences that occur for the multi-story 
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building, in which case p influences the response are described next. Lateral-torsional coupling has 

the effect of reducing V and increasing edl e. These effects increase as the eccentricity ratio e I r 

increases, and are dependent on the uncoupled torsional to lateral frequency ratio n = we/wy). For 

systems with smaller elr values the effect is most pronounced, Le. V reaches its minimum value 

and edle its maximum value, for values of n around Wlity, i.e. when the uncoupled lateral and tor

sional frequencies are close to each other. As elr increases, V reaches its minimum values at 

values of n below unity, while edle reaches its maxima for values of n above unity. For 

torsionally-stiff systems (n>l), V approaches Wlity as n becomes large, indicating that there is 

essentially no reduction in the base shear, while edle approaches one, implying no dynamic 

amplification of eccentricity. For torsionally-flexible systems (n<1) with smaller elr, there is 

essentially no reduction in base shear. The dynamic eccentricity ratio, ed/e, for torsionally-flexible 

systems approaches zero as n tends to zero in the case of hyperbolic spectrum, implying no torque, 

but approaches one in the case of flat spectrum, indi~ating no dynamic amplification. 

These observations on how torsional coupling affects the normalized base shear- and torque for 

the associated torsionally-coupled, one-story system generally carry over to a multi-story building. 

However, unlike the one-story system, the normalized quantities of the multi-story building depend 

on p. The differences between the normalized responses of the two torsionally-coupled systems-

multi-story and its associated one-story-- are due to the contributions of the terms arising from 

cross-correlation between coupled vibration modes '2j' and 'lk' 0=1 to 4; k=j+ 1 to 5) of the 

multi-story building, given by the third summation of equation (4.70) and developed further in 

Appendix D. These cross-correlation terms contain rn), which is defined by equation (4.66), and, 

for a particular response quantity, depend on elr, n, p, and the shape of the response spectrum. 

The magnitude of the cross-correlation terms also depends on the higher modal-pair contributions, 

discussed in Section 7, to a particular response quantity. Thus, the deviations of the normalized 

responses of the multi-story building from those of the associated one-story system depend on e I r, 

n. p, the response quantity. the significance of higher modal-pair contributions. and the response 
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spectrwn considered. Since the cross-correlation terms may assume positive or negative values 

(Section 4), the normalized responses of the multi-story building may be larger or smaller than the 

corresponding normalized responses of the associated one-story system (Figures 40 to 46). The 

deviations between the normalized responses of the two systems are more pronounced in the ranges 

of n where cross-correlation factors Y21,12 and Y21,13, shown in Figure 14, are maximum. These 

deviations are more significant for VB' TBR and McB than for MB, Vs, MbB or PcB as demonstrated by 

Figures 40 to 46, since higher modal-pair contributions were observed in Section 7 to be more 

significant for the former response quantities compared to the latter. Also, the deviations increase 

with decrease in p in the case of VB and TBR , and to a lesser degree for MB and M,B' trends which 

also are related to the importance of the higher modal-pair contributions, discussed in Section 7 

(see also Table 12). The deviations increase with increase in elr and are more significant for the 

hyperbolic spectrum than the flat spectrum; these trends are related to magnitudes of the cross

correlation terms (Appendix D). 

For a general pseudo-acceleration spectrum, the response of the torsionally-coupled multi

story building, normalized by the response of the corresponding torsionally-uncoupled, system, 

depends on Ty 1 in addition to the parameters: e / r, n, and p, affecting the normalized response in 

case of flat or hyperbolic spectra. In order to understand the role that Ty 1 plays in the effect of 

lateral-torsional coupling, the building response was computed for ground motions characterized by 

the design spectrum of Figure 5. The seven normalized quantities, VBIVBo, TBRlr VB", MBIMBo' vs/vso' 

McBIMrBo' MbB1MbBo and P,B/PcBo ' are plotted in Figures 47 to 53, respectively, against n, for 

different values of elr and p and two values of Tyl equal 0.5 and 2.5 sec. Also included in these 

figures are the same responses computed for the flat and hyperbolic spectra, which are independent 

of Ty 1 and were shoMl earlier in Figures 40 to 46, to provide a basis for examining the role of Ty I' 

The TI'l values chosen, 0.5 and 2.5 sec, are in the flat and hyperbolic branches, respectively, of the 

design spectrum. 

The following observations are based on Figures 47 to 53. The normalized responses of sys

tems with small e/r are relatively insensitive to the shape of the spectrum or to Ty\' As e/r 
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increases, the nonnalized response computed for the design spectrum of Figure 5 follows that deter

mined for the flat spectrum if Tyl is in the acceleration-controlled region of the spectrum, and it fol

lows the results for the hyperbolic spectrum if Ty 1 is in the velocity-controlled region of the spec

trum. As mentioned in Section 2.3, the results for the flat and hyperbolic spectra are upper bounds 

of the nonnalized quantities computed for the general spectrum. 

The nonnalized responses for the design spectrum of Figure 5 deviate from the idealized 

curves for flat or hyperbolic spectra, as the case may be depending on Ty I, because of the vibration 

periods falling on different branches of the spectrum than Ty I, and affecting the contributions of 

higher modal-pairs. In other words, the deviations from the idealized curves are related closely to 

the contributions of modal-pairs in response. Thus, based on the earlier imerpretation of higher 

modal-pair responses, the deviations increase with increase in elr; they are larger for torsionally

flexible systems (.0 < 1), and are dependent on the response quantity in question and on the value of 

p. The deviations for VB, TBR and M8 are larger for smaller p, which is supported by Table 12, and 

less pronounced for MB than VB or TBR . For torsionally-flexible systems the base torque (Figure 41) 

is very small even for Ty 1 values in the acceleration-controlled region of the spectrum. This is 

because, in this case the base torque is dominated by the fundamental modal-pair (Section 7), and 

for torsionally-flexible systems the fundamental vibration mode is very long and falls on a differem 

branch of the spectrum than Ty I, causing its contribution to the base torque to be very small. 

The effect of lateral-torsional coupling on the height-wise distribution of forces is summarized 

in Figures 54 to 56, wherein the height-wise variations of story shears, story torques at the centers 

of rigidity, and story overturning moments expressed as ratios of the respective values at the base, 

are presented for both idealized flat and hyperbolic spectra for systems with p = 0, values of elr 

equal to 0.05, 0.4 and I, and values of .0 equal 0.5, 1 and 1.5. In order to idemify the effect of 

lateral-torsional coupling on the height-wise variation of forces, also included in these figures are 

the height-wise variations of story shears and story overturning moments for the corresponding 

torsionally-uncoupled, multi-story system (elr = 0), which depend on p but not on n. It is apparent 

from these figures that for a flat spectrum the height-wise variations of all forces shown are 
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insensitive \0 the values of efr or 0 and follow the respective variations in the correspondin'g 

uncoupled multi-story system. This can be explained by noting that the response of torsionally

coupled buildings with Ty I in the acceleration-controlled region, or the flat portion of the spectrum, 

is mainly due to the fundamental vibration modal pair-- modes '11' and '21' (Figures 20 to 23 )-

and the cross-correlation terms are relatively small, thus ensuring small contributions of higher 

modal-pairs. As a result, the responses of the torsionally-coupled building, normalized by the 

responses of the corresponding torsionally-uncoupled, multi-story system, are very close to the nor

malized responses of the one-story system, causing the height-wise distribution of responses for the 

torsionally-coupled building to follow very closely those for the corresponding uncoupled system. 

The effect of lateral-torsional coupling on the height-wise distribution of forces is more pronounced 

for the hyperbolic spectrum, or the velocity-controlled region of the spectrum, with the effect 

increasing as e f r increases and as p decreases, primarily because the cross-correlation terms are 

more significant in this case, and increase with increase in efr and decrease in p (Figures 40 to 42). 

For the values of 0 shown in Figures 54 to 56, the effect is generally most pronounced for systems 

with closely spaced uncoupled frequencies (0 close to 1), more so for story shears and story 

torques than for story overturning moments, because cross-correlation terms are more significant for 

the fanner quantities than the latter (Figures 47 to 49). However, the overall effect of lateral

torsional coupling on the height-wise variations of forces is not large. 

The effect of lateral-torsional coupling on the response spectra can be examined for the results 

presented in Figures 57 to 63. The seven response quantities of the coupled system, normalized as 

before, are plotted in the form of response spectra against Ty1 , for values of efr equal 0.05, 0.4 and 

1, along with the response quantities for the corresponding uncoupled multi-story system (elr = 0) to 

study the effect of lateral-torsional coupling. 

Observations based on Figures 57 and 59 to 63 are very similar for the following response 

quantites: base shear VB' base overturning moment M B , and top floor lateral displacement Vs at the 

center of rigidity; and column moment M,'B' beam moment MbB and column axial force PcB for base 

story of frame (1). For systems with small efr (e.g. 0.05 or less), the response spectra are 



.., 
II::

S ¥ .....
.. 

b(
) 

~
 

1
0
~
1
 -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
r
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
r
-
-
-
-
~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~
 

Q
 
=

 0
.5

 

I 

n 
=

 
I 

o 
..

..
. / 

..
 

. 
. , 

Q
 =

 1
.5

 

0
,0

.0
5

 

0.
1.

 
,.

w
 

"
,.

. 
',

!'
e
I'

+
' 

'H
"
 

't
l
e
'e

l
l
'Y

 
'.

"
'L

L
' 

,!
,'

+
' 

''
d

id
 

',
!,

',
',

""
 

0.
1 

I 
10

 
0.

1 
10

 
0.

1 
10

 

F
un

da
m

en
ta

l 
P

er
io

d 
T

I'
l 

(s
ee

s)
 o

f 
U

nc
ou

pl
ed

 S
ys

te
m

 

F
IG

U
R

E
 5

7 
C

om
pa

ri
so

n 
o

f 
B

as
e 

S
he

ar
 R

es
po

ns
e 

S
pe

ct
ra

 f
or

 T
or

si
on

al
ly

-u
nc

ou
pl

ed
 (

el
r 

=
 

0)
 a

nd
 

T
or

si
on

al
ly

-c
ou

pl
ed

 (
e 

Ir
 =

 
0.

05
, 

0.
4 

an
d 

I)
 S

ys
te

m
s 

fo
r 

T
hr

ee
 V

al
ue

s 
o

f 
n 

(p
 

=
 

0 
an

d 
~ 

=
 

5 
%

) 

-\0 """ 



.. 
I!::

S 
0

- :s: -- I:s:
 

0
-
~
 

-....
. 

bo
 

<:t
: 

~
 

10
 1 

n 
=

 
0.

5 

.... 
/
e
l
r
 =

 0
 

" .
. 0

.0
5 

n 
=

 1
 

n 
=

 
1.

5 

, 
, 

, Y
 

I 
• 

Ie
 1

.1
 

, 
L

L
I 

I 
1.

1.
1.

' 
'''

d
Id

 
I
.
 I

 
, 

, 
, 

L
I 

0.
1 

"
I
L

W
 

'.
I.

'I
b

·1
 

"
'.

1
1

1
'1

 
'd

ld
•1

d
 

10
 

0.
1 

1 
10

 
0.

1 
1 

10
 

0.
1 

F
un

da
m

en
ta

l 
P

er
io

d 
T.r

1 
(s

ee
s)

 o
f 

U
nc

ou
pl

ed
 S

ys
te

m
 

F
IG

U
R

E
 5

8 
C

om
pa

ri
so

n 
o

f 
B

as
e 

S
he

ar
 R

es
po

ns
e 

S
pe

ct
ra

 f
or

 T
or

si
on

al
ly

-u
nc

ou
pl

ed
 (

e 
Ir

 =
 

0)
 S

ys


te
m

s 
an

d
 B

as
e 

T
or

qu
e 

R
es

po
ns

e 
S

pe
ct

ra
 a

t 
C

en
te

r 
o

f 
R

ig
id

it
y 

in
 T

or
si

on
al

ly
-c

ou
pl

ed
 (

e 
Ir

 
=

 
0.

05
, 

0.
4 

an
d 

I)
 S

ys
te

m
s 

fo
r 

T
hr

ee
 V

al
ue

s 
o

f 
n 

(p
 
=

 0
 a

nd
 ~
 =

 5
 %

) 

.....
 

\D
 

V
. 



10
 

"" 
r
~
 .- ~ .~
 

1 
t 

.....
.. 

bo
 i 

0.
1 

n 
=

 0
.5

 
n 

=
 1

 
n 

=
 1

.5
 

e
jr

 =
 0

,0
.0

5
 

o 
... .

1 ..
... .

 
0

,0
.0

5
 

, 

A
\\

 
!\

~.
 

1/
\~
 

0.
1 

10
 

0.
1 

10
 

0.
1 

10
 

F
un

da
m

en
ta

l 
P

er
io

d 
T

)'
J
 
(s

ee
s)

 o
f 

U
nc

ou
pl

ed
 S

ys
te

m
 

F
IG

U
R

E
 5

9 
C

om
pa

ri
so

n 
o

f 
B

as
e 

O
ve

rt
ur

ni
ng

 M
om

en
t 

R
es

po
ns

e 
S

pe
ct

ra
 f

or
 T

or
si

on
al

ly
-u

nc
ou

pl
ed

 
(e

jr
 =

 
0)

 a
n

d
 T

or
si

on
al

ly
-c

ou
pl

ed
 (

e
jr

 =
 

0
.0

5
,0

.4
 a

n
d

 I
) 

S
ys

te
m

s 
fo

r 
T

hr
ee

 V
al

ue
s 

o
f 

n 
(p

 
=

 
0 

an
d 

~ 
=

 
5 

%
) 

~ 
- '-0 0

\ 



.. 
I:

: - '" ;:.. 

10
 1 

0.
1 

0.
01

 

0.
00

1 

n 
=

 0
.5

 
n 

=
 1

 
n 

=
 1

.5
 

0.
1 

1 
10

 
0.

1 
1 

10
 

0.
1 

F
un

da
m

en
ta

l 
P

er
io

d 
T

1'
1 

(s
ee

s)
 o

f 
U

nc
ou

pl
ed

 S
ys

te
m

 

F
IG

U
R

E
 6

0 
C

om
pa

ri
so

n 
o

f 
T

op
 F

lo
or

 L
at

er
al

 D
is

pl
ac

em
en

t 
at

 C
en

te
r 

o
f 

R
ig

id
it

y 
R

es
po

ns
e 

Sp
ec


tr

a 
fo

r 
T

or
si

on
al

ly
-u

nc
ou

pl
ed

 (
e 

/r
 =

 
0)

 a
nd

 T
or

si
on

al
ly

-c
ou

pl
ed

 (
e 

/r
 =

 
0.

05
, 

0.
4 

an
d 

1)
 S

ys
te

m
s 

fo
r 

T
hr

ee
 V

al
ue

s 
o

f 
n 

(p
 

=
 0

 a
nd

 ~
 =

 5
 %

) 

10
 

..- \0
 

-
J
 



1 

0.
1 

be
 

l;:
s ~
 

.....
.. 

~ 
N

 ~
 <I:
l 

~"
 

0.
01

 

0.
00

1 

n 
=

 0
.5

 
n 

=
 1

.5
 

n 
=

 
1 

III
 

III
 

I 

0.
1 

1 
10

 
0.

1 
1 

10
 

0.
1 

1 
10

 

F
un

da
m

en
ta

l 
P

er
io

d 
T

vi
 
(s

ee
s)

 o
f 

U
nc

ou
pl

ed
 S

ys
te

m
 

F
IG

U
R

E
 

61
 

C
om

pa
ri

so
n 

o
f 

F
ra

m
e 

(l
) 

B
as

e-
st

or
y 

C
ol

um
n 

M
om

en
t 

R
es

po
ns

e 
S

pe
ct

ra
 

fo
r 

T
or

si
on

al
ly

-u
nc

ou
pl

ed
 (

e 
Ir

 =
 

0)
 a

nd
 T

or
si

on
al

ly
-c

ou
pl

ed
 (

e 
Ir

 =
 

0.
05

, 
0.

4 
an

d 
1)

 S
ys

te
m

s 
fo

r 
T

hr
ee

 
V

al
ue

s 
o

fn
 (p

 =
 0

 a
nd

 ~
 =

 5
 %

) 

~ 
-\0 0

0
 



.., 
l;:

s ~
 

.....
... 

.., ~
 

Q
l :i
 

10
 

n 
=

 
0.

5 
n 

=
 1

.5
 

I 

r 
/II

 
II 

I 

0.
1 

0.
01

 "
l
L

y
 

'.
'.

1
.1

'.
1

'"
 

.•
 

,','
,1

,1
,' 

I
,
U

.
'd

 
.
1

"
.
'W

h
W

 
I
.I

I
I
.L

L
!
 

1
."

1
+

1
 

1
.1

1
.1

..
. 

,.I
I.'

fle
W

 

O.
 I

 
I 

10
 

0.
1 

1 
10

 
0.

1 
1 

10
 

F
un

da
m

en
ta

l 
P

er
io

d 
T

Y
I 

(s
ee

s)
 o

f 
U

nc
ou

pl
ed

 S
ys

te
m

 

F
IG

U
R

E
 

62
 

C
om

pa
ri

so
n 

of
 

F
ra

m
e 

(1
) 

B
as

e-
st

or
y 

B
ea

m
 

M
om

en
t 

R
es

po
ns

e 
S

pe
ct

ra
 

fo
r 

T
or

si
on

al
ly

-u
nc

ou
pl

ed
 (

e 
/r

 =
 

0)
 a

nd
 T

or
si

on
al

ly
-c

ou
pl

ed
 (

e 
/r

 =
 

0.
05

, 
0.

4 
an

d 
1)

 S
ys

te
m

s 
fo

r 
T

hr
ee

 
V

al
ue

s 
o

f 
fl

 (
p 

=
 0

0
 a

nd
 ~

 
=

 
5 

%
) 

1 
.....

 
\0

 
\0

 



10
 1 

00
 

l::
s ~ 

0.
1 

~ 
....,

 
..£

;: 'l:
l 

~
 

0.
01

 

0.
00

1 

n 
=

 o
.S

 
n 

=
 1

 
o 

n 
==

 
1.

5 
..

 \ 
..

 

/II
 

-

II 
I 
-,

 

0.
1 

1 
10

 
0.

1 
1 

10
 

0.
1 

1 
10

 

F
un

da
m

en
ta

l 
P

er
io

d 
T

\"
I 

(s
ee

s)
 o

f 
U

nc
ou

pl
ed

 S
ys

te
m

 
F

IG
U

R
E

 
63

 
C

om
pa

ri
so

n 
o

f 
F

ra
m

e 
(1

) 
B

as
e-

st
or

y 
C

ol
um

n 
A

xi
al

 
F

or
ce

 
R

es
po

ns
e 

S
pe

ct
ra

 
fo

r 
T

or
si

on
al

1y
-u

nc
ou

pl
ed

 (
e 

Ir
 =

 
0)

 a
nd

 T
or

si
on

al
ly

-c
ou

pl
ed

 (
e 

Ir
 =

 
0.

05
, 

0.
4 

an
d 

1)
 S

ys
te

m
s 

fo
r 

T
hr

ee
 

V
al

ue
s 

o
fn

 (p
 

=
0

0
 a

nd
 ~

 =
 
5 

%
) 

1 
N

 
0 0 



- 201 -

essentially unaffected by lateral-torsional coupling. For torsionally-stiff ,systems (n > 1), lateral

torsional coupling has relatively linle effect on the response spectrum shape over a wide range of 

Tyl in the acceleration-, velocity- and displacement-controlled regions of the spectrum, even for 

structures with larger elr, although there is some reduction in responses with increase in elr, with 

the decrease being more pronounced for V5, MeB' MbB and PcB in the velocity- and displacement

controlled regions of the spectrum. For torsionally-flexible systems en < 1), lateral-torsl"onal cou

pling also has the effect of decreasing the responses below the uncoupled values as elr increases. 

This reduction occurs over a wide range of Tyl in the acceleration-, velocity- and displacement

controlled regions of the spectrum, but the reduction depends significantly on Ty 1 making the shape 

of the response spectra for the coupled systems to differ significantly from the uncoupled system, 

especially for larger elr values. The reductions due to increase in elr are more pronounced in the 

acceleration- and velocity-controlled regions than in the displacement-controlled region of the spec

trum. 

In Figure 58, the base torque at the center of rigidity normalized by e~W ~W;a/ g, is plotted 

against Ty I' The normalization factor, as explained in Section 6, is the torque obtained if the base 

shear wtaglg of a rigid single-degree-of-freedom s,ystem of lumped weight W; is applied at a dis

tance e~Wt from the center of rigidity of the system. The torsionally-uncoupled system obviously 

does not experience any torque when subjected to pure translational ground motion. However, the 

quantity VBoe~Wl·' also normalized by e;W;Wt"a/g, i.e. VBoglW;ag which depends only on p and Ty1 , 

is included for comparison. For torsionally-stiff systems, or systems with closely spaced uncoupled 

frequencies and larger elr values, VBoe;W; is a good approximation of base torque, although it may 

slightly underestimate it for torsionally-stiff systems with smaller e I r values. For torsionally-

flexible systems VBoe~W; overestimates the base torque over a wide range of TYI in the 

acceleration-, velocity- and displacement-controlled regions of the spectrum. Also, it is apparent 

from Figure 58 that for torsionally-flexible systems (e.g. n = 0.5), there is a shift of the base torque 

response spectrum relative to that of the base shear for the corresponding torsionally-uncoupled, 
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multi-story system. The shift can be explained by the fact that for torsionally-flexible systems the 

fundamental coupled vibration period T 11 may be much longer than Ty 1. causing the contribution of 

the fundamental mode to be very small when Ty 1 is in the acceleration-controlled region of the 

spectrum. Since the fundamental modal-pair is the main contributor to base torque when Ty1 is in 

the acceleration-controlled region (Figure C.l), it follows that the base torque is smaller in this 

.. 
region than V8v e;W ~. For systems with small e Ir and closely spaced uncoupled frequencies, the 

two vibration modes within a modal pair contribute almost equally to the base torque with negative 

cross-correlation between the two modes of the same pair (Figure C.l). This explains the reduction 

of base torque relative to V8oe;W; for elr equal to 0.05 and n equal 1 (Figure 58). It is apparent 

that, in general. the base torque is not satisfactorily approximated by V8oe;W;. 
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9. CONCLUSIONS 

A special class of buildings has been identified as buildings consisting of resisting elements 

(frames, shear walls, columns and shear-wall cores) arranged such that their principal axes fonn an 

orthogonal grid in plan which are connected at each floor level by a rigid diaphragm, with the fol-

lowing properties: (1) the centers of mass of all floors lie on a vertical line; and (2) the lateral 

stiffness matrices of all resisting elements along one direction are proportional (lateral stiffness 

matrices of (he same or different elements along two orthogonal directions are not necessarily pro-

portional). The centers of rigidity of the floors of such buildings are uniquely defined and lie on a 

vertical line. Thus, the static eccentricity of each floor, which is defined as the distance between 

the centers of mass and rigidity of the floor, is the same for all floors. This investigation has been 

concerned with the earthquake analysis and response of buildings belonging to this special class 

with the additional restriction that all frames (spanning along either of the two orthogonal direc

tions) have proportional lateral stiffness matrices. Furthennore, the floor plans are assumed to have 

one axis of symmetry, although most of the development is extendable to the more general case of 

no axes of symmetry. 

It has been shown that the natural vibration frequency Wnj and shape 'nj of the nr mode of a 

torsionally-coupled, N-story building are given by: 

(4.10) 

and, 

(4.11) 

(with n = 1,2 and j = 1, ... , N. N being the number of stories); where Wyj and 'lfj are the j'h natural 

vibration frequency and mode shape of the corresponding torsionally-uncoupled. N-story system-- a 

N-DOF system with coincident centers of mass and rigidity but all other properties identical to the 

actual torsionally-coupled, N-story building. WI! is the nih vibration frequency of the associated 

torSionally-coupled, one-story system-- a 2-DOF system with the same eccentricity and uncoupled 
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torsional to lateral frequency ratio as the ,torsionally-coupled. multi-story building. nonnalized by 

the lateral vibration frequency of the corresponding torsionally-uncoupled. one-story system-- a sys

tem with coincident centers of mass and rigidity but all properties identical to the associated 

torsionally-coupled, one-story system-- and ano -where a[ = < O:yn O:9n >, is the nth mode s,hape of the 

associated torsionally-coupled. one-story system. 

The maximum value (over time) of any response quantity rnj of the torsionally-coupled. N

story building with the aforementioned properties due to its njth vibration mode is given by: 

n=I.2; j=I" .. ,N (4.66) 

where l'j is the maximum value of the same (or related-- see Table 1) response quantity of the 

corresponding torsionally-uncoupled. N-story system in its r lateral vibration mode; and rnj is the 

nonnalized maximum value of the response quantity corresponding to r nj (as given in Table 1) of 

the associated torsionally-coupled. one-story system with uncoupled lateral vibration frequency COy 

equal to COyj' in its nth vibration mode. where the nonnalization is with respect to the maximum 

value of the corresponding response quantity in the corresponding torsionally-uncoupled. one-story 

system. Responses of all the systems are computed for the same earthquake design spectrum. 

It has been demonstarted that the earthquake responses of two buildings with different floor 

plans are idenctical provided: (l) the static eccentricity ratio is the same for both buildings. (2) the 

two buildings have identical lateral stiffness matrices along the direction of ground motion, (3) the 

uncoupled torsional to lateral frequency ratio is the same in both buildings. and (4) the mass of 

each floor and the damping ratio are the same for both buildings. 

As a result of this obse,rvation, the parametric response study is concerned with buildings hav

ing a simple floor plan, consisting of three moment resisting planar frames. only one of which is in 

the direction of the ground motion. This investigation has led _ to the following principal conclu

sions. which are also applicable to the special class buildings with more general plans than the 

simplified model: 
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1. The coupled lateral-torsional response of the building depends on the static eccentricity ratio 

e / r, the uncoupled torsional ·to lateral frequency ratio n, the joint rotation index or beam-to

column stiffness ratio of the frames p, Ty 1, the fundamental lateral vibration period of the 

corresponding torsionally-uncoupled, multi-story system and ~ the damping ratio of the build

ing. 

2. For fixed values of elr, n and p, the response contributions of higher vibration modal-pairs 

increase with increasing TYI in the velocity- and displacement-controlled regions of the earth

quake design spectrum. 

3. For fixed values of elr, n and Ty1 , the response contributions of the higher modal-pairs 

increase with decreasing p. 

4. The response contributions of higher modal-pairs vary with the response quantity in question. 

Among the overall response quantities, the higher modal-pair contributions are much more 

significant for the base shear and base torque than for the base overturning moment or the top 

floor lateral displacement. Among the local response quantities, the higher modal-pair contri

butions are more significant for the column moments than the beam moments or column axial 

forces. 

5. The height-wise variations of story shears and story torques are similar, with differences 

increasing as Ty 1 increases in the velocity- anq displacement-controlled regions of the spec

trum. 

6. The contributions of higher modal-pairs to the response of a building, expressed as fractions 

of the response due to the fundamental modal-pair, are relatively insensitive to elr or n. 

7. The effects of lateral-torsional coupling on the responses of a multi-story building and its 

associated one-story system are similar. Lateral-torsional coupling causes a decrease in the 

base shear, the base overturning moment and the top floor lateral displacement at the center of 

rigidity, but an increase in the base torque; these effects increase as elr increases and are most 

pronounced for systems with closely-spaced uncoupled frequencies. 
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8. The differences between the effects of lateral-tOFsional coupling on the multi-story building 

and its associated one-story system arise due to cross-correlation tenns between vibration 

modes belonging to different modal-pairs. These differences increase with increase in elr. 

they are more pronounced for the base shear and base torque than the base overturning 

moment and the top floor lateral displacement; and are more pronounced for the column 

moment than the beam moment or column axial force in the base-story. 

9. The effect of lateral-torsional coupling on the height-wise variations of forces seems not to be 

very significant. being more pronounced for story shears and story torques than story overtum-

ing moments. The effect increases as elr increases and is more pronounced when TYI is in the 

velocity-controlled region than when it is in the acceleration-controlled region of the spec-

trum. 

10. Lateral-torsional coupling also affects the response spectra. i.e. the variations of forces with 

TyJ> to varying degrees depending on the system parameters and the re~ponse quantities. For 

systems with small elr. the response spectra are essentially unaffected by lateral-torsional cou-

pIing. For torsionally-stiff systems. lateral-torsional coupling has little effect on the shape of 

the response spectra over a wide range of Ty I in the acceleration-. velocity- and displacement-

controlled regions of the spectrum, although there is some reduction in responses with 

increase in e I r. For torsionally-flexible systems, lateral-torsional coup~ ing also has the effect 

of decreasing the responses below the uncoupled values, with reduction depending greatly on 

T)' I, thus making the shape of the response spectra for the torsionally-coupled systems to differ 

significantly from those for torsionally-uncoupled systems. 

II. For torsionally-stiff systems, or systems with closely-spaced uncoupled frequencies and larger 

elr values, the base torque at the center of rigidity is approximated by the quantity VBoe;W;, 
" 

the product of the base shear VBo in the corresponding torsionally-unc~upled, multi-story sys-
" 

tern, the effective eccentricity e~ in the fundamental vibration mode·of the associated one-

story system and W t, the effective weight in the fundamental vibration mode of the associated 
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one-story system normalized by its total weight. In particular VBoe;W; slightly underestimates 

the base torque for torsionally-stiff systems with smaller e/r ratios. but overestimates it for 

torsionally-flexible systems over a wide range of Ty\ in the acceleration-. velocity- and 

displacement-conlrolled regions of the spectrum. and for systems with small e/r and closeiy

spaced uncoupled frequencies. 

Taking advantage of the fact that the earthquake response of the torsionally-coupled. multi

story buildings considered in this investigation can be estimated by considering only the first two 

vibration modal-pairs. and in some cases only the fundamental vibration modal-pair is sufficient. it 

is possible to develop simplified procedures for the analysis of torsionally-coupled buildings. The 

vibration frequencies and mode shapes of the first two modal-pairs of torsionally-coupled buildings 

can be determined utilizing estimates of the first two vibration frequencies and mode shapes of the 

corresponding torsionally-uncoupled. multi-story system obtained by simplified procedure presented 

in [12]. Similarly, utilizing the procedures developed in Section 4. modal-pairs of the torsionally

coupled system can be determined from the modal response maxima of the corresponding· 

torsionally-uncoupled system estimated by the simplified procedure presented in [12]. It is believed 

that such simplified response analyses can be applicable to more general buildings than those con

sidered in this study. 
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APPENDIX A: ON STATIC ECCENTRICITY 

A.I Concepts and Definitions 

The center of rigidity of a one-story system with a rigid deck is the point in the plan of the 

deck through which a horizontal static force must be applied in order that it may cause the deck to 

translate without torsion. If the force is along either of the principal axes, which are orthogonal 

and pass through the center of rigidity of the system, the deck translates in the same direction as 

the force. If a pure torsional moment is applied at the deck, torsion of the deck takes place around 

the center of rigidity. 

Extension of this definition to multi-story buildings is not a simple matter. As a matter of 

fact, it is generally not possible to determine unique centers of rigidity for multi-story buildings. It 

will be shown, however, that there is a special class of buildings where the centers of rigidity are 

uniquely determined and fall on a vertical line. 

Consider a multi-story building consisting of a number of moment-resisting frames (shear 

walls, columns or shear-wall cores), arranged in an orthogonal grid, and joined at each story level 

by a rigid deck (e.g. Figure 1). The centers of mass of the building are assumed to lie on a vertical 

line. Without loss of generality, the resisting elements are assumed to be located symmetrically 

about the X-axis. 

The centers of rigidity of the floors of the building are the points in the planes of the floors 

through which any set of static horizontal forces (of arbitrary magnitude and direction) must be 

applied in order that it may cause all decks to translate without torsion. If the forces are along 

either of the principal axes, which are orthogonal and pass through the centers of rigidity of the 

floors, the decks translate in the same direction as the forces. If a set of pure static torsional 

moments is applied at the decks, torsion of the decks takes place around the centers of rigidity, i.e. 

the centers of rigidity remain at rest. 

The static eccentricity of a floor is simply the distance between the centers of mass and rigi

dity of the floor. When the stalic eccentricities of all floors are zero, lateral motions of the building 

are independent of its torsional malians, and the building is said to be uncoupled .. 
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A.2 Locations of Centers of Rigidity 

The building is subjected to a force vector P defined by pT = < P; TL >, where P y is a vector 

of static horizontal forces applied at the centers of mass along the Y-axis; and T M a vector of static 

torsional moments applied at the decks about a vertical axis. The Y -lateral displacements at the 

centers of mass uy and deck rotations Ue about a vertical axis are determined by solving the equa-

tions of static equilibrium: 

P = Ku (A.I) 

where K is the building stiffness matrix with respect to u, the displacements vector given by 

uT = < u; u~ >. Equations (A. I) are written explicitly as: 

(A.2) 

where Ky, K ye , Key and Ke were given earlier in equations (3.5). 

Alternatively, equations of static equilibrium can be written in terms of u· defined by 

ilI.
T 

= < vT u~ >, where v is the Y-Iateral displacements vector at the centers of rigidity: 

p' = K'u' (A.3) 

where p' is a force vector equivalent to P given by: 

(A.4) 

in which I and 0 denote identity and zero square matrices; e is a diagonal matrix with entries equal 

to the static eccentricities of the floors; and a' is a simple transformation matrix, also relating U to 

u· by: 

u ~ { :: } ~ [! -.-] {:.} ~ .. u' , (A.5) 
\ 

Substituting equations (A.l) and (A.5) into (A.4), we obtain: 
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(A.6) 

Comparing equations (A.3) and (A.6), it is clear that: 

(A.7) 

Substituting equations (A.2) and (A.5) into (A.7), we get: 

(A.8) 

where, 

(A.9) 

Utilizing equations (A.8) into (A.3), we obtain: 

(A.lO) 

Recalling the definition of centers of rigidity given in Section A.l, it is clear that for any 

PI' *' 0 and TR = 0, v*,o but De = o. It follows that: 

(A.U) 

and 

(A.12) 

from which we can write: 

(A.13) 

Also, the definition of centers of rigidity implies thai for any TR *' 0 and Py = 0, v = 0 and U e *' 0, 

from which we obtain: 

(A.14) 

Equations (A.13) and (A.14) should be satisfied for any Py or T R • Thus, 



- 213 -

(A. IS) 

Since e was defined earlier to be diagonal, it is obvious from equation (A. IS) that it is ge~

erally not possible to obtain uniq!Je centers of rigidity satisfying the definition given earlier in Sec-

tion A.I. 

A.3 Application to the Special Class of Buildings 

For the special class of buildings described in Section 2.1, the lateral stiffness matrices of all 

frames spanning in the same direction are proportional. This leads to equation (3.8) of Section 3: 

Cye 
K 9 = K9y =-K 

y C y 
y 

(3.8) 

Substituting equation (3.8) into (A. IS), we obtain: 

(A.I6) 

Thus. for buildings belonging to the special class of buildings. identified in Section 2.1, the static 

eccentricities of all floors are the same, given by: 

Cye 
e=-

Cy 
(3.9) 

Since the centers of mass lie on a vertical line, the centers of rigidity also lie on a vertical line and 

are uniquely defined. 
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APPENDIX B: FRAME LATERAL STIFFNESS MATRIX 

B,.l Model Frame 

The frames considered are idealized as single-bay, five-story moment resisting plane frames 

with constant story height = h, and bay width = 2h (Figure 2b). All members are prismatic with 

constant cross-section. Only flexural deformations are considered in the analysis of the frames. All 

the beams have the same flexural stiffness Elb and the column stiffness Elc does nol vary with 

height. 

B.2 Formulation of Lateral Stiffness Matrix 

The lateral stiffness matrix of any frame can be determined by the following steps: 

1. Define one rotational degree of freedom per joint and one translational degree of freedom per 

floor, as shown in Figure 2b. 

2. Obtain the element stiffnesses: 

(a) Beams contribute to rotational degrees of freedom only. Two rotational degrees of free-

dom are defined per beam: 

(B.l) 

where f IJp and f IJq are the beam end moments; Op and Bq the corresponding end rotations. For 

the special frames considered, the joint rotation index p is given by: 

from which. 

so that: 

El [42 42] kb = 2p h 

(2.2) 

(B.2) 

(B.3) 
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(b) Colwnns contribute to four degrees of freedom: two rotational (9p and 9'1) and two transla-

tional (vp and Vq): 

18p 9p 

faq 8q 

I"p 
= kc 

vp 
(B.4) 

f. q v q 

where 18p and f aq are the column end moments; and I.p and f vq the lateral end forces. 

Column stiffness matrix kc is given by: 

4 2 
6 6 
h h 

2 4 
6 6 

k = EI 
h h 

c h 6 6 12 12 
(B.5) 

h h h 2 h 2 

6 6 12 12 
h h h 2 h 2 

which in partitioned form becomes: 

(B.6) 

3. Assemble element stiffnesses in frame global stiffness kr : 

(B.7) 

where v are the lateral floor displacements and f. the corresponding external lateral forces; 8 

are the joint rotations and f8 the corresponding external moments. One can write: 

(B.8) 

Note that beam stiffness kb contribute to k88 only. kc89 to k 88 • kc9> to k 9v • k c•8 to kva and k cvv 

to kvv' 
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4. Condense out the rotational degrees of freedom to obtain the frame lateral stiffness matrix. 

Since the external moments corresponding to joint rotations are zero, i.e. fa = 0, it follows that: 

(B.9) 

from which 

(B.IO) 

where 

(B.ll) 

Finally: 

(B.12) 

and, 

(B.13) 

is the frame lateral stiffness matrix. 

B.3 Dimensionless Lateral Stiffness Matrix 

The beam stiffness matrix kh , given by equation (B.3), is rewritten as: 

EI [4 2] EI 
kh = 2 P h 2 4 = h kg (B.14) 

where 

k~ = 2p [ ~ !] (B.15) 

is dimensionless and depends on p. Similarly, the column stiffness matrix, given by equation (B.5), 

is rewritten as: 
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EI kG EI kG 

k = EI [ k,oo k .. ] 
h cOO h 2 c9v 

kcvll kcw 
= 

EI k O EI k O 
(B.16) 

C h 
J(i cvll h 3 cvv 

where k~IIEh k~BY' k~vll and k~vv are dimensionless submatrices given by: 

(B.17a) 

[-6 6] k~lIv = k~~11 = -6 6 (B.l7b) 

[ 12 -12] 
k~vv = -12 12 (B.17c) 

Since the individual stiffness submatrices contribute only to parts of the global stiffness matrix kr, 

introducing equations (B.14) and (B.16) into (B.8) leads to: 

El
k

O EI k O 

_ [kvv kVII] 
h 3 vv h 2 vII 

kr - kBY koo = El ko El k o 

h 2 BY h 86 

(B.18) 

where k~v,k8., k~8 and koo are, dimensionless submatrices, with klie the only submatrix dependent on 

Pi due to dependence of kb on p. Substituting equations (B.18) into (B.lO) yields: 

8 k -I k T -h (kO )-1 EI kO =- 118 II. V = v= - 00 -2 IIvV 
EI h 

(B.19) 

with 

(B.20) 

and 



Equations (B.12) become: 

where 
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T = lTo 

h 

f EI [k O k O T' tJ] EI kO 
I' = -3 I', + 1-9 V = -3 V 

Iz h 

(B.21) 

(B.22) 

(B.23) 

is a dimensionless matrix that depends on P due to the dependence of TO on p. Therefore, the 

frame lateral stiffness matrix k is given by: 

(B.24) 

B.4 Derivation of Equation (3.18) 

Specializing equations (B.24) to frame (1) yields its lateral stiffness matrix, which also equals 

the building lateral stiffness matrix Ky: 

(B.25) 

where II is the column moment of inertia of frame (1) and k~l is a dimensionless lateral stiffness 

matrix which depends only on PI' the joint rotation index of frame (1). Similarly, the lateral 

stiffness matrix of frame (2) is given by: 

Elz 
kx2 = -3 k~z 

Iz 
(B.26) 

where 12 is the column moment -of inertia of frame (2), and k~2 is a dimensionless matrix which 

depends on P2. the joint rotation index of frame (2). Clearly, when PI = pz = P then: 

(B.27) 

and, 



- 219 -

(3.18) 
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APPENDIX C: IMPLEMENTATION OF ANALYSIS PROCEDURE 

The lateral stiffness matrices of the frames were shown in Appendix B to be proportional to a 

dimensionless stiffness matrix that depends only on the joint rotation index p. Utilizing this result 

and the analysis procedure described in Section 4, the response of the torsionally-coupled multi-

SIOry building of Figure 2a with PI = P2 = P is expressed in tenns of dimensionless response quanti-

ties, with the purpose of improving computational efficiency. 

C.I Vibration Frequencies and Mode Shapes 

C.l.l Corresponding Torsionally-Uncoupled, Multi-story System 

The lateral vibration frequencies Wyj and mode shapes lIfj are detennined by solving the 

eigen-equations (4.2a): 

(4.2a) 

where m is a diagonal mass matrix of dimension N, the number of stories, of diagonal entries equal 

to m, the mass of each story, i.e. 

m = mmO = mI (C.l) 

where mO and I are identity matrices of dimension N. Substituting equations (B.25), (B.27) and 

(C.l) into (4.2a), and dividing by mh3/EI)o we obtain: 

(C.2) 

where 

(C.3) 

from which, 

j=l, ... ,N (C.4) 
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(C.5) 

and, 

(C.6) 

Since kO depends on p, the dimensionless frequencies Ayj' the ratios 1..,/1..,1 or WYlWyl as well as the 

mode shapes Vlj depend on p. Thus, the fundamental uncoupled lateral frequency wyl (or period 

Tyl =2nlwyl) can be varied'by adequately varying the geometric constants Ell> m and h. 

C.1.2 Torsionally-coupled, Multi-story Building 

The vibration frequencies Wnj and mode shapes of the coupled multi-story building are deter-

mined from equations (4.10) and (4.11): 

(4.10) 

and, 

(4.11) 

for n=1,2 and j=1 to N, with ron and an, where aI = < a yn a 8n >. the normalized frequencies and 

mode shapes of the associated one-story system. Substituting equation (C.5b) into (4.10), we get: 

(C.?) 

Since ron and an depend on eccentricity ratio e I r and uncoupled torsional to lateral frequency ratio 

n. (equations (4.22) and (4.23», and J,..,/Ayl and lIfj depend on p, it follows that the coupled fre-

quencies Wnj depend on elr, .0., p and TYI (or (i)yl)' while 'nj depend on elr, .0. and p. 

C.2 Modal Response Maxima 

C.2.1 Corresponding Uncoupled Multi-story System 
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Taking advantage of the invariance of the mode shapes "j and the frequency ratios roy/roy! 

when Ty 1 varies, the responses of the corresponding uncoupled multi-story system in each mode are 

expressed in terms of dimensionless response quantities. Substituting equation (C. I ) into (4.13), we 

obtain: 

and 

and the ratios 

L· U 
-' =-' 
M j M'? , 

(C.8a) 

(C.8b) 

(e.9) 

Using equations (C.S) and (C.9), the floor displacements vector, given by equation (4.12), 

becomes: 

(C. 10) 

where vi is dimensionless and depends only on p. 

The equivalent static lateral forces, given by equations (4.14), are written as: 

(C.lI) 

in which equations (e.l) and (e.IO) have been introduced. 

Using equations (e.ll) in (4.15), the vector of story shears becomes: 

(C.12) 

where Vi is dimensionless and depends on p; S is a summation matrix given by equation (4.17). 

Similarly, the vector of story overturning moments, given by equations (4.16), is written as: 
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(C.13) 

where H is given by equation (4.17). 

(C.14) 

and Mj is dimensionless and depends only on p. 

Joint rotations of equations (B.19) are expressed as: 

(C.I5) 

where OX are dimensionless and depend on p. 

Beam moments are computed using equations (B.I) and (B.14) and the corresponding end 

joint rotations extracted from OJ. given by equation (C.15). We can write: 

{ 
Mbpj ) = {f Bpj ) 

Mbqj f9qj 

(C.16) 

Similarly. the colwnn end moments are computed using equations (B.4) and (B.16) as well as 

the corresponding end joint rotations and end joint displacements extracted from OJ and Vj. given 

by equations (C.I5) and (C.IO). respectively. We obtain: 
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(C.17) 

For the first story Me'lj = O. 

Column axial forces are computed using statics. The column axial force in the l,h floor is 

obtained from: 

P I - 1 [M' M'] pl+l 
c) - -2 bpj + b'lj + cj h 

(C.lS) 

with p,'t = 0 for I = 5. Thus, we can write: 

E/! S, 1 
Pel]' = - ~ [- (M io , + M iO ,) + pi:+-lo] 

I 3 2 2 bpJ bqJ CJ 
I Wy! 

(C.19) 

In summary, the modal responses of the uncoupled multi-story system can be expressed in the 

form: 

(C.20a) 

where rj, defined by equations (C.10) to (C.19), are dimensionless and depend only on p, while r" 

are constants, also given in equations (C.lO)to (C.19), that depend on m,h', Ell and/or W yl' 

C.2.2 Torsionally-coupled, Multi-Story Building 

The modal responses of the torsionally-coupled multi-story building are given by equations 

(4.48) to (4.65), with their special form summarized in equation (4.66): 

(4.66) 

with r"j the normalized response quantity, given by equations (4.42) to (4.46), in the associated 

one-story system with uncoupled lateral vibration frequency equal to my). These can also be written 

as products of dimensionless quantities that depend only on e / r and n, and the ratio of the pseudo-
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acceleration response spectrum ordinate San/Sa): 

Substituting equations (C.20) into (4.66), we obtain: 

Thus, the lateral displacements at the centers of mass are given by: 

deck rotations: 

lateral displacements at the centers of rigidity: 

story shears: 

story overturning moments: 

story torques at the centers of mass: 

slory torques at the centers of rigidity: 

a beam moment of frame (1): 

s . 
an} -0 0 

vn) = -- Vn v) 
2 

roy I 

V nJ = rn San) V~Vj 

(C.20b) 

(C.2l) 

(C.22) 

(C.23) 

(C.24) 

(C.25) 

(C.26) 

(C.27) 

(C.28) 
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a column moment of frame (1) 

and a column axial force of frame (1) by: 

Ell Sanj -0 0 

P enj == -3 -- \in P cj 
h CO 2 

yl 

(C.29) 

(C.30) 

(C.31) 

Equations (C.21) to (C.31) give the modal responses of the torsionally-coupled building 

expressed in terms of quantities rj' and r:: that are invariant as Ty I varies. Thus. for fixed values of 

P. elr and n. r'j and r:: need to be computed once. Taking advantage of the invariances of r'j and 

r:: when Tyl changes. these were computed in advance for each elr • .Q and p case. and then used 

for each of the different fundamental uncoupled lateral period Ty I considered. avoiding in this way 

a considerable amount of numerical computation. 

C.3 Maximum Response 

Maximwn response of the torsionally-coupled building are computed by combining the modal 

maxima acording to CQC. as given by equation (4.67): 

(4.67) 

where Ynj.mk is given by equation (4.36) for frequency ratios qnj.mb given by equation (4.68). 

C.4 Normalization Factors 

The responses are presented in dimensionless forms by normalizing each by a meaningful nor-

malization factor. given in Table 8 for the response quantities in interest. The choices of the nor-

malization factors for floor displacements, frame (1) beam moments, frame (1) colwnn moments 

and frame (1) column axial forces are rather obvious from equations (C.24), (C.29), (C.30) and 
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(e.3l). respectively. In these u~. the maximum ground displacement, is chosen to nondimensional-

ize SunjIW;I' On the other hand. the nonnalization factors for story shears. story overturning 

moments and story torques are of special fonns that require further explanation. 

The nonnalization factors for the story shears and story overturning moments are W;aglg and 

W~h~agfg, where ?g is the maximum ground acceleration, W~ and h~ were defined in Section 4.2 as 

the effective weight and height of the uncoupled multi-story system in its fundamental vibration 

mode, and given by equations (4.20). These normalization factors are the base shear and base over-

turning moment of a rigid single-degree-of-freedom system with lwnped weight W; and height h~. 

Substituting equations (C. 1), (e.8) and (e.9) into (4.20). we obtain: 

(C.32) 

and, 

• h < 1 2 3 4 5 > m "'I < 1 2 3 4 5 > m
O "I 

hi = = II ---------
Ll 

(C.33) 

Thus, referring to equations (e.25) and (C.26) the normalization factors: 

a 
W • g - W'o 
1- = mag 1 

g 
(e.34) 

and 

a 
WOhO_~ - h - woo h Oo 

I I - m aR I I 
g 

(C.35) 

nondimensionalize m Sanj and m h Sanj' respectively. 

The normalization factor for story torques at centers of rigidity is e;W;W;aglg, which as was 

explained in Section 6, is the torque of the rigid single-degree-of-freedom system at an eccentricity 
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of e~wt, given by equation (4.46) and plotted in Figure C.1, and which equals the dynamic eccen-

tricity of the associated one-story system in its fundamental mode, computed for unit pseudo-

acceleration. The story torques given by equation (C.28) nonnalized by e~wtW;iiRIg become: 

(C.36) 

with t Rn (n= 1,2) and Till depending on e I r and n only. 

With these proper nonnalizations, the structural characteristics (E, 110 m, r and Iz) are not 

included in the computation of the response quantities. 

C.S Computer Program Outline 

A complete, although not very detailed, flow chart of the computer program developed to 

carry out the computations described above is given in this section. The program is written in 

FORTRAN and was checked against SAP80 [1]. 

PROGRAM SPNRMB 

Read parameters p, elr and n 

For p 

Form the total stiffness matrix of the corresponding torsionallly-uncoupled, multi-

story system kr 

Compute the lateral stiffness matrix of the corresponding torsionally-uncoupled, 

multi-story system kO 

Fonn mass matrix rn° 

Compute· the uncoupled lateral frequencies Ayj and mode shapes V'j 

Compute dimensionless modal responses rj of the corresponding torsionally-

uncoupled, multi-story system 
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For elr and n 

Compute normalized frequencies ron and mode shapes an of the associated 

torsionally-coupled. one-story system 

--0 
Compute normalized dimensionless responses r n of the associated torsionally-

coupled. one-story system 

Read number of fundamental uncoupled lateral period cases 

For each fundamental uncoupled lateral period case 

Read fundamental uncoupled lateral period Ty 1 

Read pseudo-acceleration response spectrum ordinate Sanj 

Compute modal maxima Sanj r;: r1 

Estimate maxima of response by CQC 

Normalize responses 

Print results 
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APPENDIX D: INFLUENCE OF MODAL CROSS-CORRELATION 

D.l Derivation of Equation (4.70) 

Estimate of the maximum r of a response quantity is determined by combining its moqal 

maxima r nj according to CQC: 

r= (4.67) 

where Ynj.ml< is computed by equation (4.36) for frequency ratios qnj.mb given by equation (4.68). 

The cross-correlation factor Ynj.ml< is negligible if qnj.mk is below 0.8 or above 1.25 [15]. 

The summation given by equation (4.67) involves (2N i or 100 terms, which are all taken into 

account in this study. However, in order to interpret the results of Section 8, equation (4.67) is 

explicitly written as: 

~ 52 ~ 5 45 

r- = L L r;j + 2 L Ylj.2j r 1j r 2j + 2 L L Y2j.1.I: r 2j r\k 
j=1 n=1 j=1 j=l k=j+1 

4 5 4 5 4 5 

+ 2 L L Ylj,2t r 1j ru + 2 L L Ylj,lk r 1j r lk + 2 L L Y2j).k r 2j r 2t (4.69) 
j=1 t=j+l j=l k=j+l j=l k=j+l 

While the first double summation of equation (4.69) represents SRSS, the next five summations 

represent the cross-correlation terms between various modes of vibration: the first represents cross-

correlation between modes 'Ij' and '2j' of the same pair 'j'; the second represents cross-correlation 

between modes '2j' and 'lk', (j=1 to 4 and k=j+1 to 5), which are of different nature and belong to 

different pairs 'j' and 'k', such as modes '21' and '12', '13', '14' and 'IS', or '22' and '13', '14' 

and 'IS', ... etc.; the third represents cross-correlation terms between modes '1j' and '2k', (j=1 to 4 

and k=j+l to 5), which are of different nature and belong to different pairs 'j' and 'k', such as 

modes '11' and '22', '23', '24' and '25', or '12' and '23', '24' and '25', .. , etc.; the fourth 

represents cross-correlation terms between modes '1j' and 'lk', (j=1 to 4 and k=j+l to 5), which 

are of the same nature but belong to different pairs 'j' and 'k', such as modes '11' and '12', '13', 

'14' and '15', or '12' and '13', '14' and '15', ... etc.; and the fifth represents cross-correlation 
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terms between modes '2j' and '2k', (j= 1 to 4 and k=j+ 1 to 5), which are of the same nature but 

belong to different pairs 'j' and 'k', such as modes '21' and '22', '23', '24' and '25', or '22' and 

'23', '24' and '25', ... etc .. It is shown in Section 5 that frequencies Wlj and wu, WI) and Wit, and 

W2j and W2b (j=1 to 4 and k=j+l to 5), are widely spaced. It follows that Ylj.2ob Ylj,a and Y2j,21:1 

(for j=l to 4 and k=j+1 to 5), are negligibly small, and the last three double summations of equa-

tion (4.69) are negligible. Equation (4.69) can, therefore, be approximated by: 

252, 5 45 

I" == L L I";j + 2 L "11),2) I"lj r 2) + 2 L L "I2j,It r 2j r]k (4.70) 
)=1 n=1 j=1 j=1 k=j+1 

D.2 Normalized Coupled to Uncoupled Responses for the Idealized Spectra 

The maximum response 1"0 of the corresponding uncoupled multi-story system is determined 

by combining its modal maximarj according to SRSS: 

(0.1) 

The effect of lateral-torsional coupling is studied by comparing the coupled responses to the 

corresponding responses in the uncoupled system. The ratios rl ro are given by: 

5 2 2 5 4 5 

L L r nj + 2 L "I1),2j r lj r 2j L L "I2j,It r 2j r]k 
( J:.. )2 == "-j=_I_"_=_1 __ --":.....·=_1 _____ + 2 .'-)=_I_k_=.e..,j+_I--:-___ _ 

5 , 5 2 

~ L~ L~ 
(0.2) 

j=1 j=1 

Noting that "Ilj).j is computed for Qlj,2j = n/~, it is obvious that "Ilj.2j equals "112, the cross-

corelation factor between the two vibartion modes of the associated one-story system. Using this 

fact and substituting equations (C.20) and (C.21) into (0.2), we obtain: 
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4 5 

L L Y2j,lk rj r~ Sa2j Salk 

+ 2 r; r; -"-j=_I_k_=~j+_1--'-5 ------- (0.3) 
L (rj Saj)2 
j=1 

Specializing equations (D.3) to a flat pseudo-acceleration spectrum where: 

(0.4) 

we obtain: 

4 5 

L L Y2j,1k rj 1'; 
( ~ )2 == (r;'2 + Pt + 2 YI2 r;' r;') + 2 r;' r;' ..:...j=_I_k_=..:...j ;,,--1 ____ _ (D.5) 

~ L(~f 
j=1 

or, 

(0.6) 

in which equations (4.47) have been introduced and r is the normalized coupled to uncoupled 

response of the associated one-story system computed for a flat spectrum. 

For a. hyperbolic pseudo-acceleration spectrum we can write: 

(0.7) 

Using equations (4.22), it can be shown that n l ~ = n, then equations (0.3) become: 

4 5 

L L Y2j,1k rjr; (A.y/A.YI ) (A.yklA.yl) 
r 2 -0

2 2 -0
2 2 -0-0 -0-0 j=1 k=j+1 

(-) == (r l n l +r2 Q2+2YI2nrlr2)+2rlr2n~-~--:-s---------- (0.8) 

1'0 L (r; (A.y/A.y d)2 
j=1 

or, 
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4 S 

L L 12i. a 1'j 1'~ P"y/ Ay 1 )( Aykl Ay 1 ) 

(-'-' )2 '" ,? + 2 r; r; n "-i=_l_k_=<--i+_I_-=-S ----------

1'" L (1'j (Ay/ Ay 1))2 
i=1 

(0.9) 

where r is the normalized coupled to uncoupled response of the associated one-story system com-

puted for a hyperbolic spectrum. 

D.3 Influence of Cross-Correlation Terms 

Equations (0.6) and (0.9) indicate that the normalized coupled to uncoupled responses of the 

multi-story building in the case of the fiat or hyperbolic idealized spectra, equal the sum of the nor-
I 

malized coupled to uncoupled responses of the associated one-story system computed for the fiat or 

hyperbolic spectrum, as the case may be, and terms that arise due to cross-correlation between 

vibration modes '2j' and "lk' U=l to 4 and k=j+l to 5). In other words, the differences between 

the normalized responses of the two coupled systems-- multi-story and its associated one-story-- are 

due to the contributions of the terms arising from cross-correlation between vibration modes '2j' 

and 'lk' for j=l to 4 and k=j+1 to 5. 

. 
For the fiat spectrum, each of the cross-correlation terms is proportional to the cross-

correlation factor 12j.1l: (Y21.12 and YZ1.13are shown in Figure 14), the product of the normalized 

modal responses r;r; of the associated one-story system and the product of the modal responses 

1')1'; of the corresponding uncoupled multi.-story system. For the hyperbolic spectrum, each of the 

cross-correlation terms is proportional to Y2i.lk. ?;r;n, 1'j1'; and the frequency ratios Ay/AY1 and 

Av*/A.I'I' Therefore, the values of the cross-correlation terms depend on the values of 12i.l,b rJ;, 

rjr; and A)'/A)'I which in tum depend on elf, n, p and the response quantity in question. Referring 

to Figure 14 it is clear that at two values of n (depending on e/r and p), the cross-correlation fac-

tors 12i.lk arc maximum. The products 2rJ; (for the fiat spectrum) and 2rJ;n (for the hyperbolic 

spectrum) arc shown in Figure 0.1 against n for values of elf equal to 0.05, 0.4 and 1, for the base 

shear, i.e. 2VfV2', (base overturning moment or lateral displacement at the center of rigidity) and 
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the base torque at the center of rigidity, i.e. 2T R IT R2' of the associated one-story system. The 

dependence of the cross-correlation terms on rj and rZ indicate that they are affected by the higher 

modal contributions to responses, given in Table 12 in normalized form. Combining observations 

of Figures 14 and D.l and of Table 12, it is clear that the cross-correlation terms may have positive 

or negative values depending on whether rj and r; are of the same or opposite algebraic Signs. 

Due to the variations of 2 VfV f for the flat spectrum (Figure D.l), the cross-correlation terms for 

slory shears, story overturning moments and all frame (1) member forces are significant for 

torsionally-flexible systems with larger elr, especially when Y21.12 is maximum. For a hyperbolic 

spectrwn VfVril of Figure D.l is significant over a wide range of il, indicating that cross

correlation terms are significant for torsionally-flexible systems, torsionally-stiff systems or systems 

with closely-spaced uncoupled frequencies. Also it is clear from Figure D.l that the significance of 

the cross-correlation terms increases with increase in elr. Similar interpretation of TRITR2 and 

TR1 TR2 il of Figure D.l leads to the conclusion that cross-correlation of torsionally-stiff systems or 

systems with closely-spaced uncoupled frequencies are significant for both idealized spectra, less 

for the flat than the hyperbolic spectrum, increasing as elr increases. The terms are more 

Significant for base shear, base torque and frame (1) column moment in the first story than for base 

overturning moment, frame (1) top floor lateral displacement, frame (1) beam moment or column 

axial force in the first story, due to the higher modal contributions significance for the former quan

tities (Table 12). The cross-correlation terms are larger for smaller p in the case of base shear, 

base torque, base overturning moment, which is also supported by Table 12. 

The observations made here for the cross-correlation terms explain the differences between the 

normalized coupled to uncoupled responses of the multi-story building and its associated one-story 

system discussed in Section 8. 
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APPENDIX E: NOTATION 

maximum ground acceleration 

ground acceleration along the Y-axis as a function of time 

a.fi' ayi transformation matrices defined by equations (3.3) 

proportionality constants for frames 'i' defined by equations (3.11) and (3.6), respec-

tively 

proportionality constants defined by equations (3.7) and (3.8), respectively 

proportionality constants defined by equation (3.12), and related by equation (3.13) 

e static eccentricity defined as the distance between the centers of mass and rigidity of 

a floor 

dynamic eccentricity defined as the distance from the center of rigidity where the 

uncoupled base shear Vo should be applied to cause base torque at the center of rigi-

dity equal to TR 

dynamic eccentricity in the nth vibration mode of the associated one-story system; 

effective eccentricity of the associated one-story system for its nth vibration mode 

effective eccentricity of the associated one-story system in its fundamental vibration 

mode 

effective eccentricity in the nr coupled vibration mode; e~j = e; 

E modulus of elasticity 

iyn , ien lateral and torsional components of 'n 

force in structural member of a frame in the lh vibration mode of the corresponding 

uncoupled multi-story system 
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force in structural member of a frame in the nlh coupled vibration mode 

fo equivalent force vector in the nih vibration mode of the associated one-story system; 

r~ = < f yo f Bn > 

vector of equivalent lateral forces in the lh vibration mode of the corresponding 

uncoupled multi-story system 

vector of equivalent forces in the njth coupled vibration mode; r~j = < r[Oj r~nj > 

lateral and torsional components of roj 

g gravitational acceleration 

h story height 

effective height in the lh vibration mode of the corresponding uncoupled multi-story 

system 

t 

effective height in the fundamental vibration mode of the corresponding uncoupled 

multi-story system 

effective height in the nr coupled vibration mode; h:j = 11/ 

H summation matrix defined by equation (4.17) for a five-story building 

I , Ie moments of inertia of columns 

moments of inertia of beams 

moments of inertia of columns of frames (1) and (2). respectively 

I unit matrix of dimension N 

lateral stiffness of the associated one-story system along the Y-axis 

torsional stiffnesses of the associated one-story system defined at its centers of mass 

and rigidity. respectivley 
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k frames characteristic matrix 

lateral stiffness matrices of frames 'i' along the X- and Y - directions, respectively 

lateral stiffness matrices of frames (1) and (2), respectively 

K building stiffness matrix defined with respect to u 

stiffness matrix of frame 'i' computed for u 

building lateral stiffness matrix along the Y-axis, defined by equation (3.5a) 

stiffness submatrices of K, defined by equations (3.4) and (3.5) 

width of beam 

height of column 

participation factor for the r vibration mode of the corresponding uncoupled multi-

story system 

participation factor for the nfh coupled vibration mode 

m mass of one-story system 

mass at the jth floor level 

base overturning moments of the associated one-story system and its corresponding 

uncoupled one-story system 

M 

base overturning moments of coupled and uncoupled multi-story buildings 

M 
J 

modal mass in the jth vibration mode of the corresponding uncoupled multi-story sys-

tern 

base overturning moment of the associated one-story system in the nth vibration mode 
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frame (1) base-story beam and column moments, respectively; of coupled multi-story 

building 

base overturning moment in the j'h vibration mode of the corresponding uncoupled 

multi-story system 

modal mass in the nj'h coupled vibration mode 

equal M n of the associated one-story system with uncoupled lateral vibration fre

quency my) 

MhBo , MeBo frame (1) base-slOry beam and column moments, respectively, of the corresponding 

uncoupled multi-story system 

M Bnj base overturning moment in the nj'h coupled vibration mode 

m mass matrix of the corresponding uncoupled multi-story system 

M) vector of story overturning moments in the r vibration mode of the corresponding 

uncoupled multi-story system 

N 

vector of story overturning moments in the nj'h coupled vibration mode 

number of stories 

frame (I) base-story column axial force of coupled multi-story building 

frame (1) base-story column axial force of the corresponding uncoupled multi-story 

system 

r radius of gyration of a deck about a vertical axis passing through ,its center of mass 

r maximum of a response quantity of coupled systems 
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maximum of a response quantity of the corresponding uncoupled multi-story system 

in its j,h vibration mode 

maximum of a response quantity of the associated one-story system in its n'h vibra-

tion mode 

maximwn of a response quantity of corresponding uncoupled systems (one- and 

multi-story) 

maximum of a response quantity in the nj'" coupled vibration mode 

equal rn of the associated one-story system with uncoupled lateral vibration fre-

quency Wyj 

pseudo-acceleration response spectrum ordinate corresponding to Tyj and Sj 

pseudo-acceleration response spectrum ordinate corresponding to Tn and S 

pseudo-acceleration response spectrum ordinate corresponding to Ty and S 

pseudo-acceleration response spectrum ordinate corresponding to Tnj and SlIj 

summation matrix defined by equation (4.17) for a five-story building 

n'h coupled vibration period of the associated one-story system 

uncoupled lateral vibration period of the associated one-story system 

maximum base torques at centers of mass and rigidity, respectively, of the associated 

one-story system 

base torque at the center of rigidity of coupled multi-story building 

base torques at the centers of mass and rigidity, respectively, of the associated one-

story system in its n'h vibration mode 
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TMn 

, TRn 

T Mil) , TRn/ 

njLh coupled vibration period 

r uncoupled vibration period 
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fundamental lateral uncoupled vibration period 

equal, respectively, to f Mn and T Rn of the associated one-story system with uncoupled 

lateral vibration frequency roy) 

TBMnj ,TBRn) base torques at centers of mass and rigidity, respectively, in the nr coupled vibration 

T Mnj , T Rnj 

mode 

vectors of story torques at centers of mass and rigidity, respectively, in the njth cou

pled vibration mode 

maximum ground displacement 

lateral displacement of the associated one-story system at its center of mass along the 

Y-axis 

Uy(X,) , lateral displac'ement along the Y-axis of the associated one-story system at a distance 

U,'n(.r;) 

Xi from its center of mass 

deck rotation of the associated one-story system about a vertical axis 

lateral displacement along the Y-axis of the associated one-story system at its center 

of mass in the nth vibration mode 

lateral displacement along the Y-axis of the associated one-story system at a distance 

Xi from its center of mass in the nih mode of vibration 
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deck rotation of the associated one-story system in the- nth vibration mode 

equal. respectively. to u)'n. uyn(Xj) and /ian of the associated one-story system with 

uncoupled lateral vibration frequency Wyj 

displacements vector; uT = < u; ru~ > 

displacement vector of the associated one-story system in the n'h vibration mode; 

u~ = < uyn rUan > 

vector of lateral displacements at the centers of mass of the multi-story building, 

along the Y-axis 

vector of deck rotations about a vertical axis 

displacements vector in the nj,h coupled vibration mode; U~j = < U;nj rU~"j > 

vector of lateral displacements at the centers of mass in the njth coupled vibration 

mode 

vector of deck rotations in the njth coupled vibration mode 

vector of lateral displacements of frame • i' spanning along the Y-axis at a distance Xi 

from the centers of mass of the building in the njth mode of vibration 
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lateral displacement at the center of rigidity of the associated one-story system 

lateral displacement at the center of rigidity of the associated one-story system in the 

nth v ibration mode 

lateral displacement of uncoupled associated one-story system 

frame (1) top floor lateral displacement of coupled and uncoupled multi-story build-

ings 

maximum ground velocity 

equal vn of the associated one-story system with uncoupled lateral vibration fre-

quency w)') 

base shears of the associated, one-story system and its corresponding uncoupled one-

slory system 

base shears of the coupled and uncoupled multi-story buildings 

base shear of the associated one-story system in the nth vibration mode 

equal V n of the associated one-story system with uncoupled lateral vibration fre-

quency w)') 

base shear of the corresponding uncoupled multi-story system in the yh vibration 

mode 

base shear in the nj'h coupled vibration mode 

vector of lateral floor displacemems of the corresponding uncoupled multi-story sys-

tern in the jth vibration mode 



W 

W~ 
J 

W· n 

W~ 

w: 

Xi and Yi 

Y2 

a 
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vector of lateral floor . displacements of the corresponding uncoupled multi'-story sys-

tern 

vector of lateral floor displacements at the centers of rigidity of multi-story system in 

the nlh coupled vibration mode 

vector of story shears of the corresponding uncoupled multi-story system in the lh 

vibration mode 

vector of story shears in the nr coupled vibration mode 

total weight of structure 

effective weight of the corresponding uncoupled multi-story system associated with 

the jth vibration mode 

effective weight of the associated one-story system in its nth vibration mode 

effective weight of the corresponding uncoupled multi-story system associated with 

its fundamental vibration mode 

effective weight associated with the njth coupled vibration mode; W;j = W: Wj' 

x- and Y- distances of frames 'i' from the centers of mass 

distance of frames (2) from centers of mass 

lateral and torsional components of a 

lateral and torsional components of the nth mode shape of the associated one-story 

system 

mode shapes of the associated one-story system; aT = < a y afj > 

nth mode shape of the associated one-story system: a~ = < a yn CXfjn> 



Ynm 
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cross-correlation factor between coupled vibration modes 'n'and 'm' of the associ

ated one-story system 

Yn).mk cross-correlation factor between coupled vibration modes 'nj' and 'mk' of multi-story 

00 

p 

building; n,m=I,2; j,k=I, ... , N 

natural vibration frequencies of coupled systems 

n'h natural vibration frequency of the associated one-story system; n= 1,2 

natural lateral and torsional vibration frequencies of the Wlcoupled one-story system 

W/Wy for the associated one-story system or w/Wy) for the torsionally-coupled multi

story building 

Wn/Wy for the associated one-story system or wn/wyj for multi-story building and asso

ciated one-story system with uncoupled lateral vibration frequency Wy) . 

j'h uncoupled lateral and torsional natural vibration frequencies; j= I, .. " N 

nlh natural vibration frequency of coupled multi-story building 

uncoupled torsional to lateral frequency ratio of multi-story building and its associ

ated one-story system 

mode shapes of coupled multi-story building; .T = < .J .I > 

lateral and torsional components of • 

nlh mode shape of coupled multi-story building; '~j = < ';nj '~nj > 

lateral and torsional components of 'n) 

mode shapes of the corresponding uncoupled multi-story system 

j'h mode shape of the corresponding Wlcoupled multi-story system 

joint rotation index or beam-to-column stiffness ratio for frames 



PI,P2 

o 

1 
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joint rotation indices offrames (1) and (2), respectively 

damping ratio 

zero square matrix of dimension N, or zero vector of dimension N 

vector of ones of dimension N 





PART III 

THE STATIC ECCENTRICITY CONCEPT 

IN BUILDING CODE ANALYSES 
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1. INTRODUCTION 

Buildings subjected to earthquake ground motions may undergo lateral as well as torsional 

motions. In the case of buildings with plans having two axes of symmetry, torsional vibrations 

arise due to the rotational component in ground motion or due to unforseen conditions such as 

unsymmetric load distributions. Such torsional vibrations are usually referred to as "accidental" [1] 

and can not easily be taken into account in dynamic analysis. Torsional vibrations induced in a 

building during an earthquake can also be due to its structural asymmetry. In most building codes 

[e.g. 2,3,4,5], the torsional effect is treated by analyzing the building statically for the equivalent 

lateral forces applied eccentrically away from the centers of mass of the various floors. The eccen

tricity value at a floor level is computed as the sum of its so-called "accidental eccentricity" and its 

"structural or static eccentricity". The accidental eccentricity of a story is normally given as a frac

tion of the plan dimension of the story, perpendicular to the direction of lateral forces, whereas the 

static eccentricity at a floor level is commonly defined as the distance between its center of. mass 

and center of rigidity, but in at least one code [4] it is defined as the distance between the center of 

mass and shear center of the story. In some codes, the static eccentricity is multiplied by a con

stant exceeding unity to account for dynamic amplification. 

The determination of the locations of centers of rigidity at all floor levels is a key step in the 

application of building codes provisions. However, most building codes, do not provide unequivo

cal definitions of centers of rigidity or specify computational procedures to determine their loca

tions. For this reason, it is still unclear what exactly is meant by centers of rigidity of multi-story 

buildings and whether the locations of these centers are intrinsic properties of the building, or if 

they are dependent on the height-wise distribution of lateral loads. 

Several investigators have studied this problem over the past few years, giving different 

definitions of the centers. Most of the studies are restricted to buildings with resisting elements 

(frames and shear walls) located in an orthogonal grid in plan. The centers are referred to, in the 

literature, by different terms, apparently with the implication that these are different terms for the 

same points. Some of the terms that have been used are: centers of rigidity, centers of resistance, 
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centers of stiffness, shear centers, load centers, centers of twist, centers of rotation and centers of 

torsion. Poole [6] defines the center of rigidity of a story as the location of the resultant of the 

shear forces in that story of the various resisting elements when the building is subjected to a static 

lateral loading that causes no torsion in any of the stories. In other words, centers of rigidity are 

identified as the shear centers of the building. Based on this definition, a procedure to determine 

the centers of rigidity is given in [6]. Humar and Awad [7] define the center of resistance of a 

floor as a point such that when a lateral force is applied through it, the level under consideration 

does not undergo any rotation. 

The work of Tso and Cheung [8] distinguishes between centers of rigidity, shear centers and 

centers of twist of a multi-story building. It is recognized that these terms as well as the term 

center of stiffness are interchangeable for a single-story system because in this case all the centers 

are coincident. Mathematical expressions are presented for the locations of centers of rigidity and 

centers of twist of multi-story buildings with orthogonal frame orientations in terms of the lateral 

forces and building stiffness submatrices. Expressions of the centers of rigidity are interpreted phy

sically as the locations of the resultants of the elemental loads applied at each floor level, or load 

centers, and not as shear centers. It is also shown that the centers of twist do not generally coin

cide with the centers of rigidity. For a special class of buildings, with lateral stiffness matrices of 

all resisting frames mutually proportional, the locations of centers of twist and rigidity were shown 

to be coincident, independent of the lateral forces and lie on a vertical line. 

Riddell and Vasquez [9] conclude that the centers of resistance exist only for a particular class 

of structures and that for a general multi-story building such concepts are meaningless. These par

ticular buildings, referred to as "compensable buildings", are shown to have centers of resistance 

that are load independent and lie on a vertical line. The conditions satisfied by this class of build

ings is in agreement with that identified in [8]. For buildings that are "nearly compensable", 

expressions, based on perturbation theory, are given in [9] to determine approximate locations of 

the centers of resistance, all lying on a vertical line. 
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This brief review of past studies shows clearly the inconsistencies in the definitions given for 

centers of rigidity. Although both studies [8] and [9] identify a class of buildings where the centers 

of rigidity of all floors lie on a vertical line, their authors disagree on whether the centers of rigi

dity exist for any multi-story building. The question of whether there is any need to distinguish 

between centers of rigidity, centers of twist and shear centers also remain unanswered. Conse-

quently; it is unclear which of these centers should be chosen to define static eccentricities in the 

application of code provisions. 

The objective of this study is to investigate further the definitions of each of the centers men

tioned above. The locations of these centers are then sought for buildings with general plan lay

outs. The conditions to be satisfied for the centers to be coincident and uniquely defined are inves

tigated. A number of examples is included to illustrate the findings. 
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2. ONE-STORY SYSTEMS 

The center of rigidity, the center of twist, the shear center, the center of stiffness, and the 

static eccentricity are defined in this section for one-story systems. Expressions are derived for the 

locations of these centers as, well as for the orientations of the principal axes of buildings with gen

eral plan layouts (e.g. Figure 1 a). It is shown that these various centers are coincident for one

story buildings and its location depends on the stiffnesses and locations of the various resisting ele

ments but not on the applied load. Although this study of one-story systems is straightforward, it is 

presented to serve as a basis for the study of the corresponding concepts in multi-story buildings. 

2.1 Basic Concepts and Definitions 

Consider a one-story system that consists of a rigid diaphragm or deck of an arbitrary shape 

(Figure la). The horizon~al motion of the diaphragm is resisted by a number of resisting elements 

(frames, columns, shear walls or shear-wall cores), with arbitrary locations and with principal axes 

of arbitrary orientations. 

The center of ri'gidity is the point on the diaghragm through which the application of a static 

horizontal force causes no rotation of the deck, no matter in what direction the force is applied. 

The principal axes, I and II, of the system are two orthogonal axes passing through the center of 

rigidity, such that if a static horizontal force is applied along one of the principal axes of the sys

tem, (he diaghragm translates only in the direction of the force without any twist. 

The center of twist is the point on the diaghragm which remains stationary when the 

diaghragm is subjected to a statically applied horizontal torsional moment, i.e. the diaphragm 

undergoes pure (wist about this point. 

The shear center is the point on the diaghragm through which the resultant of the shear 

forces of all resisting elements passes when':i~e diaphragm is subjected to a system of lateral static 

loads whose resultant passes through the center of rigidity of the building, thus causing no rotation 

or twist of the diaphragm. Since the elemental shear forces in a one-story system are directly pro

portional to the elemental stiffilesses, the shear center is also referred to as the center of stiffness. 
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It is shown in a subsequent section that the center of rigidity, the center of twist, and the 

shear center or center of stiffness of a one-story system are actually coincident. 

The center of mass of the system is the point on the floor through which the resultant of the 

inertia forces of the floor passes. If the masses of individual resisting elements are negligible, the 

center of mass of a deck with a unifonn mass distribution coincides with its geometric center. 

The static eccentricity e of the system is defined as the distance between its centers of mass 

and of rigidity. In some building codes [e.g. 4], the static eccentricity is defined as the distance 

between the center of mass and shear center of the building. Because the shear center and center of 

rigidity of a one-story system are coincident, which will be proven later, the two definitions lead to 

the same value for the static eccentricity in this case but, as will be seen later not for multi-story 

buildings. 

2.2 Equations of Motion 

The three degrees of freedom of the system defined at an arbitrary reference point 0 of the 

deck are: two horizontal translational displacements of the deck, u .. and uY' relative to the ground, 

along two orthogonal axes, X and Y, and the rotation Us of the deck about a vertical axis. The 

building stiffness matrix K defined at the reference point 0 with respect to degrees of freedom u, 

where u r = < u .. uy Uo >, is the sum of the stiffness matrices K; of individual resisting elements, also 

computed with respect to u: 

K= ,LK; (2.1) 

The stiffness matrix K; of the jth resisting element is derived from its lateral stiffnesses along its 

two principal axes-- the two orthogonal axes in a horizontal section of the element which pass 

through its shear center [13], such that any static lateral force passing through the shear center 

'~'i~~ , ;1" 

applied along one of the principal axes of the section causes'it to translate in the same direction as 

the force without twist-- and its torsional stiffness about a vertical axis passing through its shear 

center. Lateral stiffnesses of frames and shear walls along their minor principal axes, i.e. along the 
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direction perpendicular to their own plane, are assumed to be negligible. Shear deformations are 

negligible for frame members so that only flexural deformations are considered for frames. A 

column contributes to system lateral stiffnesses due to its lateral stiffnesses along both of its princi

pal axes. Because the individual torsional stiffnesses of frames, shear walls and columns are negli

gible, the contributions of these resisting elements to the torsional stiffness of the building are pri

marily due to the lateral stiffnesses of these resisting elements acting at some distance from O. On 

the other hand, the torsional stiffness of a shear-wall core element is significant, and its contribution 

to the torsional stiffness of the building is due to its torsional stiffness as well as to its lateral 

stiffnesses along its principal axes. 

The stiffness matrix Ki of the i th resisting element is determined by the following procedure: 

1. Define the local degr,ees of freedom for each resisting element (Figure 1 b) as follows: 

(a) For a shear wall define one translational degree of freedom at the roof level, along the 

plane of the shear Wall, i.e. along its major principal axis, and a rotational degree of freedom 

about its minor principal axis, i.e. the horizontal axis perpendicular to its plane. 

(b) For a frame define one translational degree of freedom at the roof level, along the plane 

of the frame, i.e. along its major principal axis, and a rotational degree of freedom per joint 

about horizontal axes perpendicular to the plane of the frame, i.e. along the direction of its 

minor principal axis. 

(c) For a column define two translational degrees of freedom at the roof level along the prin

cipal axes of the column and two rotational degrees of freedom about these axes. 

(d) For a shear-wall core define five degrees of freedom: two translations along the principal 

axes of the core, two rotations about these axes, and one torsional rotation about a vertical 

axis passing through the shear center of the core. 

2. Obtain a complete stiffness matrix for the resisting element for the degrees of freedom 

defined, taking into account flexural and shear deformations for shear walls and shear-wall 

cores, and only flexural deformations for frames and columns. 
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3. Eliminate the joint rotational degrees of freedom of the resisting elements by the static con-

dcnsation process. The resulting condensed matrix k, of 'a shear-waH core element 'i' is diag-

onal and of dimension equal to three, satisfying the following equation:' 

{
V'J v:: = k, Vi 

Vei 

(2.2) 

where k Ui and kbi are the lateral stiffnesses of the element along its two principal axes, and k ei 

is the torsional stiffness of the core about a vertical axis passing through its shear center. The 

applied static forces Qai' Qb, and Qei and resulting displacements Va,' Vb, and Ve, in these three 

directions 'are related through ka, ,kbi and ket> respectively. Since k ei is negligible for columns, 

shear walls and frames, and kbi is negligible for frames and shear walls, equations (2.2) are 

simplified for these resisting elements. For columns, we obtain: 

(2.3) 

For shear walls and frames: 

Qa, = kal. Val (2.4) 

4. Detennine the transfonnation matrix a" relating the resisting element displacement vector Vi' 

to the system degrees of freedom u. For a shear-wall core, ai is given by: 

{ v., } COSfJi sinfJi 

Vi = Vbi = -sinfJ, cosfJ, 

Vei 0 0 

and for a column, the transfonnation matrix ai is given by: 

{
:J;} [cosfJ ' ,:~al I 

v' = =, 
, Vbi -SlOfJi 

sinfJj 

cosfJj 

U:} = a, u 
(2.5) 

(2.6) 

in which fJi is the counterclockwise angle between the X-axis and the major principal axis of 
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the shear-wall core or column; do; and dbi are the perpendicular distances of the major and 

minor principal axes, respectively, from reference point O. In equations (2.5) and (2.6), the 

choice of a positive or a negative algebraic sign to accompany do; (or db;) depends on whether 

a unit 1,10 rotation causes a displacement along the major (or minor) principal axis in the same 

or opposite direction to Va, (or Vb,)' For frames and shear walls, a, is obtained from: 

'., = < co,p, ,i.p, ±d., > I :: } = a, U (2.7) 

where {3, is the counterclockwise angle between the X-axis and the plane of the frame or shear 

Jwall, and d oi is the perpendicular distance from reference point 0 to the plane of the frame or 

shear wall. Again, the choice of a positive or a negative algebraic sign to accompany doj in 

equation (2.7) depends on whether a unit U8 rotation causes a displacement along the plane of 

the frame or shear wall in the same or opposite direction to Voj. 

5. The contribution of resisting element 'i' to building stiffness matrix is K;, and is determined 

by: 

K .. j Kxyi K.<8i 

K; = ark; aj = Kyxi Kyi Ky8j (2.8) 

K8zi K8yj K(Jj 

in which, 

(2.9) 
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As mentioned earlier, k9/ is negligibly small for all types of resisting elements except shear-

wall cores, and kb/ is negligible for frames and shear walls. 

The building stiffness matrix K for degrees of freedom u T 
::;: < Ux uy U9 >, defined at 0, is 

given by superposition of the element stiffness matrices (equation (2.1» resulting in: 

wirh, 

K .. Kry KX9 

K::;: K)'x Ky Ky9 

K9x Key K9 

(2.10) 

(2.11 ) 

The undamped equations of motion for the one-story system, assuming linear behavior, sub-

jeeted to earthquake ground motion accelerations agx(t) and agy(t) along the X- and Y-axes, are: 

m 0 

o m (2.12) 

where m is the mass of the deek; XM and YM are the X and Y coordinates of the center of mass; and 

10 is the polar moment of inertia of the deck about a vertical axis passing through reference point 

0, given by: 

10 ::;: m (,2 + X~ + y~ ) (2.13) 

in which, is the radius of gyration of the"deck about a vertical axis passing through the center of 

mass of the deck. It is apparent from these equations of motion that translational ground motion 

along either the X- or the Y~axis will simultaneously cause both X- and Y - lateral displacements of 
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point 0 as well as torsional rotation or twist of the floor about a vertical axis. 

The equations of motion written with respect to degrees of freedom defined at any point other 

than 0 can be determined by standard transformation of equation (2.12). However, the general 

form of the equations of motion (the mass and stiffness matrices) remains as equation (2.12) unless 

the degrees of freedom are defined at the center of mass or the center of rigidity, which will be 

shown later to coincide with the center of twist and the shear center, of the system. When the 

equations of motion are written with respect to degrees of freedom defined at the center of mass,. 

the building mass matrix becomes diagonal, given by: 

However, the coupling of degrees of freedom in the building stiffness matrix remains of the form 

given in equation (2.12). The equations of motion are then given by: 

[~ 
0 

o 1 {"') 
Kx Kxy Kxa 

{"' } { a,/t) ) m o uy + Kyx Ky Kya :; . = -m ag~(t) (2.14) 

0 mr2 ua Kax Key Ka 

On the other hand, if the equations of motion are written for degrees of freedom u, where 

liT = < Ux uy ua> with Ux and uy the lateral displacements at the center of rigidity along the X- and 

Y -axes, the building stiffness matrix asswnes the fonn: 

Kx Kxy 0 

K= Kyx Ky 0 (2.15) 

0 0 Ka 

since any horizontal static force applied through the center of rigidity causes only lateral displace-

ments and no rotation of the deck (see the definition of the center of rigidity given in Section 2.1). 

The equations of motion written with respect to ii are then given by: 
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m 0 -mey K" Kzy 0 

o m me", Ky:< Ky 0 (2.16) 

-me" me" JR 0 0 Ka 

where the X and Y components of static eccentricity e are: 

(2.17) 

in which XR and YR the X and Y coordinates of the center of rigidity; JR is the polar moment of 

inertia about a vertical axis passing through the center of rigidity, given by: 

(2.18) 

The stiffness values K" , K.(}, , Ky and KB with respect to ii, the degrees of freedom at centers of rigi-

dity, are related to stiffness values Kx , K.ry , Ky and Ka for u, the degrees of freedom at point 0, in 

Section 2.3. The special form of the building stiffness matrix given by equation (2.15) is the basis 

used in Section 2.3 to locate the centers of rigidity of the system. 

A static horizontal lateral force applied lhrough the center of rigidity along either of the sys-

tern principal axes, causes the deck to displace laterally in the same direction as the force, without 

any twist (sec Section 2.1). It follows that the building stiffness matrix defined with respect to 

degrees of freedom u', where u·
T = < u; u;, Ua >, with u; and u;, the lateral displacements at the 

center of rigidity along the prinCipal axes of the system, is of the form: 

K/ 0 0 

(2.19) 

with K/ , KJ~ and K; expressed in terms of K" , Ky , K",y and Ka in Section 2.5. The special form of 

the building stiffness matrix given by equation (2.19) is the basis used to determine the orientations 

of the principal axes of the system. The building mass matrix with respect to u' remains in the 

same form given in equation (2.12). 
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2.3 Location of the Center of Rigidity 

From the building stiffness matrix K defined with respect to the degrees of freedom u at refer-

ence point 0, where u T = < Ux uy U/J >, the building stiffness matrix at any other point can be deter-

mined by simple transformation of K. In particular, the building stiffness matrix K with respect to 

degrees of freedom U, where uT = < U .. uy Lie > is defined at the center of rigidity of the system, is 

related to the building stiffness matrix K by: 

(2.20) 

in which it is a transformation matrix relating u to u: 

o YR 

o 1 -xR (2.21) 

o 0 

Substituting equations (2.21) and (2.10) into (2.20), leads to: 

Kx Kxy KxYR - KxyXR + Kx9 

K= Kyx Ky KyxYR - KyXR + Ky9 (2.22) 

Kex + yRKx - xRKyJC Key + YRKxy - xRKy K9 

in which, 

Comparison of equations (2.22) and (2.15) leads to the following conditions: 

(2.23a) 

(2.23b) 

(2.24) 

and: 

(2.25) 
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in which equations (2.23) have been utilized. Solution of equations (2.23) yields the coordinates of 

the center of rigidity: 

(2.26) 

and, 

(2.27) 

Similar equations were also obtained by Dempsey [10]. 

Thus, the building stiffness matrix K, defined at the center of rigidity for lateral degrees of 

freedom fix and fi.,., along the X and Y directions, and deck rotation U9 about a venical axis, is given 

by: 

K, Kxy 0 

K= Kyx Ky 0 (2.28) 

0 0 K9 

with Ku given by equation (2.25). The location of the center of rigidity is defined by its coordi-

nates XR and YR, given by equations (2.26) and (2.27), relative to reference point O. It is obvious 

from these equations that the location of the center of rigidity of a one-story system is independent 

of the applied loading. 

Equations (2.26) and (2.27) can be simplified further in two cases: 

1. If the building has one axis of stiffness symmetry (e.g. Figure 2a), then one of the principal 

axes of the system coincides with its axis of symmetry, and the other is perpendicular to it. 

In this case, it is only natural to choose the reference X and Y axes to be in tbe same direc-

tions as the principal axes of the system. If the X-axis is chosen in the direction of the sym-

metry axis, then, referring to equations (2.9d) and (2.ge), it is apparent that the tenus Kxyi in 

equation (2.11c) and K X9i in equation (2.llb) occur in pairs that are equal in absolute values 

but are of opposite algebraic signs. It follows that: 
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(a) One-way Symmetric Systems. 

(b) Systems with Orthogonal Orientations of Elemental 
Principal Axes 

• FIGURE 2 Special Cases of Systems 
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K.,), = K"" = 0 and K,,9 = K8" = 0 

from which equations (2.26) and (2.27) are simplified fO become: 

K,9 
and YR = - - = 0 

K, 
(2.29) 

2. If the resisting elements of the building are arranged such that their principal axes form an 

orthogonal grid in plan (e.g. Figure 2b), then the· principal axes of the system are also in the 

directions of the elemental principal axes. It is only natural in this case to choose the direc-

tions of the reference X and Y axes in the directions of the principal axes. It follows that Pi, 

the counterclockwise angle between the X-axis and the major principal axis of any resisting 

element is either zero or 90 degrees, and doi and dbi , the perpendicular distances from refer-

ence point 0 to the major and minor principal axes of the element, are measured along the X-

and Y-axes. Thus, equations (2.11) become: 

K.ry = Ky., = 0 

K,9 = K8.r = L K.t9i = - L k"iYi 
i 

(2.30) 

where k"i and kyi are the lateral stiffnesses of the i lb resisting element along its principal axes, 

which are oriented along the X and Y reference axes; Xi and Yi are the X and Y distances of 

the principal axes of the i lh resisting element from the X and Y axes. Substituting equations 

(2.30) into (2.26) and (2.27), we obtain: 
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(2.31) 

Equations (2.31) are well known in the literature [e.g. 11] since most past studies have been 

concerned with buildings consisting of resisting elements arranged such that their principal 

axes form an orthogonal grid in plan. 

2.4 Coincidence of Center of Twist, Shear Center and Center of rigidity 

2.4.1 Center of Twist 

The center of twist of the one-story system is defined in Section 2.1 as the point in the plane 

of the diaphragm that does not undergo any translational displacement when the diaphragm is sub-

jected to a static horizontal torsional moment. Thus, if degrees of freedom of the diaphragm are 

defined at its center of twist, the building stiffness matrix obtained should be of the same form 

given by equation (2.15). The location of the center of twist is, therefore, determined by following 

the same steps as in Section 2.3 to determine the location of the center of rigidity, with Xr and Yr, 

the X and Y coordinates of the center of twist, substituted for XR and YR in equations (2.21) to 

(2.23). Solving the modified equations (2.23) for Xr and Yr yields the same expressions for the 

coordinates of the center of twist as the center of rigidity (equations (2.26) and (2.27)). Hence, the 

center of twist of a one-story system coincides with its center of rigidity. The same conclusion is 

reached in [8] using an approach based on energy principles. 

2.4.2 Shear Center 

The shear center of the one-story system is defined in Section 2.1 as the point in the plane of 

the diaphragm through which the resultant of the shear forces of the resisting elements passes when 

the diaphragm is subjected to a system of horizontal lateral forces causing no twist (ue = 0) of the 

diaphragm. Substituting Us = 0 in equations (2.5), the lateral displacements of the ith resisting ele-

ment along its principal axes are given by: 
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\'oi = (cos/3, ) U.r + (sin/3i ) u)' 

\'bi = - ( sin/3i ) u.r + (COS/3i ) Uy 

(2.32a) 

(2.32b) 

The shearing forces Q <Ii and Qbi experienced by the i lh resisting element along its principal axes are 

therefore given by: 

(2.33a) 

(2.33b) 

. The shearing forces Q xi and Qyi experienced by the ilh resisting element along the X and Y reference 

axes are the sum of the components of Qai and Qbi along the X and Y axes, respectively, i.e.: 

Q.ri = Q ai COS/3i - Qbi sin/3, 

Substituting equations (2.33) into (2.34) and utilizing equations (2.9), results in: 

(2.34a) 

(2.34b) 

(2.35a) 

(2.35b) 

The resultant of the shearing forces has X and Y components equal to 2, Q.(j and 2, Qyi. respec

tively, and passes through the shear center with X and Y coordinates denoted by Xs and Ys. Refer

ring to Figure 1 a, equilibrium of moments of all shearing forces acting in the plane of the 

diaphragm about a vertical axis passing through 0, gives: 

(2.36) 

The algebraic sign accompanying Qai and Qbi in equation (2.36) depends on whether the forces 

cause positive or negative moments about the vertical axis passing through 0. Substituting equa

tions (2.33 ) and (2.35) into (2.36) and utilizing equations (2.9) and (2.11), leads to: 

( K,() + Kx Ys - Kry Xs ) u, + ( Ky() + K.ry Ys - Ky Xs ) uy = 0 (2.37) 



- 267 -

Since Ux and uy are independent, equation (2.37) results in the following two equations: 

K .. 9 + K .. Ys - K xy Xs = 0 (2.38a) 

(2.38b) 

Equations (2.38) are equivalent to equations (2.23) which proves that the shear center is coincident 

with the center of rigidity. 

It is apparent from the preceding results that the center of rigidity, the center of twist. and the 

shear center for a one-story building with rigid diaphragm are the same point. Thus. the definitions 

given in Section 2.1 for these three centers describe different roles of this Wlique point in the static 

response of a one-story system; i.e .• there is a unique point in the plane of the diaphragm with the 

following properties: (1) a static horizontal force acting through the point causes no twist of the 

diaphragm. (2) the resultant of the shear forces experienced by the various resisting elements also 

passes through the point if the external applied forces cause no twist of the diaphragm; and (3) the 

diaphragm twists or rotates about a vertical axis passing through this point when subjected to any 

static torsional moment. The Wlique 'center' depends on the stiffness and locations of the various 

resisting elements but not on the applied loads. 

2.5 Orientations of the Principal Axes 

The orientations of the principal axes of the system are determined from the special form of 

the building stiffness matrix K', given by equation (2.19), with respect to degrees of freedom uO
, 

where u oT = < u; u;/ U9> with u; and u;/ the lateral displacements at the center of rigidity along prin

cipal axes I and II, respectively. The matrix K
O 

is related to K, the building stiffness matrix defined 

by equation (2.28) with respect to degrees of freedom ii, where iiT = < U .. uy U9> with U .. and uy the 

lateral displacements at the center of rigidity along the X and Y axes, by: 

K
O 

= a
oT K aO 

(2.39) 

The transformation matrix a 0 relates ii to u 0: 
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- sinl1 O~ 1 
cosl1 
o 

. 
ul/ 

• • = a u (2.40) 

where 11 is the counterclockwise angle between the reference X-axis and the principal axis I of the 

system. Substituting equations (2.40) and (2.28) into (2.39) and comparing with equations (2.19), 

leads to: 

(2.41) 

(2.42) 

(2.43) 

and, 

(2.44) 

which results in: 

(2.45) 

The orientation of principal axis I is defined by the angle 11. and the principal axis II is perpendicu-

lar to axis I. 

Determining Sinl1 and C0511 from equation (2.45) and substituting these in equations (2.41) and 

(2.42) leads to: 

.• • K:r + K)' 
K" KI/ = --2-- ± [ l

V, 
K-K 

( .t 2 Y)2 + K~ (2.46) 

Thus. the building stiffness matrix K' defined with respect to degrees of freedom u·. where 

u·
r 

= < u; u;/ Ue >, is given by: 
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(2.47) 

with K/ and K,; given by equations (2.46) and Kfj by equation (2.25). 

For the two cases-- the case when the building has an axis of stiffness symmetry and the case 

when the principal axes of all resisting elements are parallel or perpendicular-- discussed in Section 

2.2, equations (2.45) simplify to: 

2K .. y 
tan211 = = 0 

K .. - Ky 
(2.48) 

since Kxy = O. Thus the principal axes of the system are along the X- and Y-axes and equations 

(2.46) specialize to become: 

(2.49) 

2.6 EXAMPLE 

Consider a one-story building consisting of four frames of identical lateral stiffness k, located 

as shown in Figure 3. Thus: 

and, 

For frame (1) dal = 0 and f31 = 90°; for frame (2) da2 = a and f32 = 0°; for frame (3) da3 = 0 and 

f33 = 0"; and for frame (4) da4 = 2a and f34 = 135°. Using equations (2.9) and (2.10), the contribu-

tions of each frame to the building stiffness matrix is given by: 
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FIGURE 3 Plan of Example (Section 2.6) 
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[ 

0.5k 

-0.5k 

-1.414ka 

-0.5k 

0.5k 

1.414ka 

-1.414ka 1 
1.414ka 

4ka2 

The building stiffness matrix is given by: 

Kx Kxy Kxo 

K= Kyx Ky Kyo 

Kox Kay Ko 

with, 

Kx = 0 + k + k + 0.5 k = 2.5 k 

Ky = k + 0 + 0 + 0.5 k = 1.5 k 

KX), = Kyx = 0 + 0 + 0 - 0.5 k = -0.5 k 

Kx(J = Kox = 0 - k a + 0 - 1.414 k a = - 2.414 ka 

Kyo = Koy = 0 + 0 + 0 + 1.414 k a = 1.414 ka 

(2.50) 

(2.10) 

(2.51) 

Substituting equations (2.51) into (2.26) and (2.27), the coordinates of the center of rigidity (center 

of twist or shear center) are given by: 

and, 

( 2.5 )( 1.414 a) - (- 0.5)( - 2.414 a) = 0.66 a 
( 2.5 )( 1.5) - ( - 0.5 )2 

( l.5)( - 2.414 a) - ( - 0.5)( 1.414 a) = 0.83 a 
YR = - ( 2.5 )( 1.5 ) _ (_ 0.5 )2 

The orientation of principal axis I is determined by substituting equations (2.51) into (2.45): 
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tan211 = 2(-0.5) 2.5 _ 1.5- = -1 

or 11 = 135°. 
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3. MULTI-STORY BUILDINGS 

It was demonstrated in Section 2 that the shear center, the center of rigidity. and the center of 

twist of a one-story system are all coincident. The location of this unique point is independent of 

the applied loading and can easily be determined knowing the sliffnesses and locations of the vari

ous resisting elements of the system. In this section, these concepts are extended and analyzed for 

multi-story buildings .. It is found that the defined centers are, in general. not coincident, and their 

locations depend on the applied lateral or torsional loadings in addition to the stiffness properties. 

For a special class of multi-story buildings. identified in Section 4, the centers for each floor coin

cide, the centers of all floors lie on a vertical line, and are load-independent. 

3.1 Basic Concepts and Definitions 

Consider a multi-slory building consisting of vertical resisting elements (frarnes. colwnns, 

shear walls or shear-wall cores), with arbitrary locations and arbitrary orientations of their principal 

planes. joined al each story level by rigid diaphragms or decks of arbitrary shapes (Figure 4a). 

The centers of rigidity of the floors of the building are points on the floor diaphragms 

through which any set of static horizontal forces of arbitrary magnitude and direction causes no 

rotation or twisting of any of the floors. The principal axes of a floor are two orthogonal axes 

passing through its center of rigidity, such that any set of static horizontal forces applied simultane

ously along one of the principal axes of each floor, causes each floor to displace laterally in the 

direction of its applied force without any twist. It is generally not possible to determine the orien

tations of the principal axes of the floors of a multi-story building satisfying the definition given 

here. Only for a special class of buildings. identified in Section 4, the principal axes of each floor 

can be determined, and for all floors they are found to be oriented along the same two orthogonal 

direction. 

The centers of twist of the floors of the building are the points on the floor diaphragms which 

remain stationary when the building is subjected to any set of static horizontal torsional moments. 

applied at the floor levels. i.e. the floor diaphragms undergo pure twist about these points. 
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The shear center of a floor of the building is the point on the floor through which the resul

tant of the interstory shear forces at that level (due to static forces applied at the floors above and 

including the floor in consideration) experienced by all resisting elements passes when the floors of 

the building are subjected 10 static horizontal forces passing through the centers of rigidity of the 

floors. thus causing no twist in any of the floors. 

The center of mass of a floor of the building is the point on the floor through which the 

resultant of the inertia forces of the floor passes. If the masses of individual resisting elements are 

negligible compared to the masses of the floors. the,centers of mass of a building with floors having 

uniform mass distribution coincide with the geometric centers of the floors. 

The static eccentricity ej of the fh floor is defined as the distance between its center of mass 

and its center of rigidity. In some building codes [e.g. 4], the static eccentricity of a floor is 

defined as the distance between its center of mass and its shear center. Since. as will be seen later. 

shear centers of multi-story buildings do not generally coincide with its centers of rigidity, there is 

more than one definition possible for static eccentricity. 

3.2 Equations of Motion 

A vertical axis Z, chosen as a reference axis, intersects the fh floor at OJ. through which two 

horizontal orthogonal axes. X j and Y j are defined as reference axes for the r floor. The reference 

axes Xj (or Y) of all floors are chosen to be in the same direction. so that the angle between the 

major principal planes of the ith resisting element and the plane defined by Z and X j is the same for 

all floors and is denoted by i3j. measured counterclockwise from X j • and the perpendicular distances 

from OJ to the major and minor principal planes of the ith resisting element are the same for all 

floors and are denoted by dai and dbi • respectively. Each floor 'j' contributes three degrees of free

dom to the total number of degrees of freedom of the system: two horizontal displacements u:rj and 

Uyj. relative to the ground. along reference axes Xj and Y j • and the rotation U8j of the fh floor about 

a vertical axis. The displacements vectors U X ' uy and U8 are of dimension N. the number of stories 
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of the building, with entries equal to U"j' Uyj and UOj' respectively. The building stiffness matrix K 

defined with respect to the 3N degrees of freedom u, where uT = <u; uJ u~ >, is the sum of the 

stiffness matrices K, of individual resisting elements, also computed with respect to u: 

(3.1) 

The stiffness matrix K, of the ith resisting element is derived from its lateral stiffness matrices along 

its two principal planes-- the two mutually orthogonal vertical planes which intersect the floors of 

the resisting element at their principal axes, which in turn intersect at the shear centers of the ele

ment, such that any static horizontal force applied through the shear center at a floor level along 

either of its principal axes would cause the floor to translate in the same direction as the force 

without any twist [13]-- and its torsional stiffness matrix about the vertical axis of intersection of 

its two principal planes, i.e. about the vertical axis on which the shear centers of the resisting ele

ment lie. Lateral stiffness matrices of frames and shear walls along their minor principal planes, 

i.e. along the direction perpendicular to their own plane, are assumed to be negligible. Shear defor

mations are negligibl~ for frame members so that only flexural defonnations are considered for 

frames. A column contributes to system lateral stiffness matrices due to its lateral stiffnesses along 

both of its principal planes. Because the individual torsional stiffnesses of frames, shear walls and 

columns are negligible, the contributions of these resisting elements to the torsional stiffness matrix 

of the building are primarily due to the lateral stiffness matrices of these resisting elements acting 

at some distance from OJ. On the other hand, the torsional stiffness of a shear-wall core element is 

significant, and its contribution to the torsional stiffness matrix of the building is due to its torsional 

stiffness matrix as well as to its lateral stiffness matrices along its two principal planes. 

The stiffness matrix K; of the ith resisting element is determined by the following procedure: 

1. Define the local degrees of freedom for each resisting element (Figure 4b) as follows: 

(a) For a shear wall define at each floor level one translational degree of freedom along the 

plane of the shear wall, i.e. along its major principal plane, and one rotational degree of free

dom about its minor principal plane, i.e. along a horizontal axis perpendicular to its plane. 
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(b) For a frame define one translational degree of freedom at each floor level, along the plane 

of the frame, i.e. along its major principal plane, and a rotational degree of freedom per joint 

about horizontal axes perpendicular to the plane of the frame, i.e. along the direction of its 

minor principal plane. 

(c) For a column define two translational degrees of freedom at the floor level along the prin-

cipal planes of the column and two rotational degrees of freedom about these planes. 

(d) For a shear-wall core define five degrees of freedom at each floor level: two translations 

along its principal axes in the floor, two rotations about these axes, and one torsional rotation 

about the vertical axis of intersection of its two principal planes. , 

2. Obtain a complete stiffness matrix for the resisting element for the degrees of freedom 

defined, taking into account flexural and shear deformations for shear wans and shear-wall 

cores, and only flexural deformations for frames and colwnns. 

3. Eliminate the joint rotational degrees of freedom of the resisting elements by the static con-

derisation process. The resulring condensed matrix k; of a shear-wall core element 'i' is of 

dimension equal to 3N, N the nwnber of stories, satisfying the following equation: 

k a ; 0 0 

o kb; 0 

o 0 ko; I Va; } 
Vb; = k; V; 

Vo; 

(3.2) 

where ka ; and kb; are the lateral stiffness matrices of the shear-wall core along its two princi-

pal planes, and ko; is its torsional stiffness matrix about the vertical axis of intersection of its 

two principal planes; and 0 denotes a zero square matrix of dimension N. The applied static 

force vectors Qa;, Qb; and Qo; and resulting displacement vectors Va;' Vb; and Vo; in these three 

directions are related through ka ;, kb; and ko;, respectively. Since ko; is negligible for 

columns, shear walls and frames, and kb; is negligible for frames and shear walls, equations 

(3.2) are simplified for these resisting elements. For columns, we obtain: 
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(3.3) 

For shear walls and frames: 

(3.4) 

4. Determine the transformation matrix ai' relating the resisting element displacement vector Vi' 

to the system degrees of freedom u. For a shear-wall core, ai is given by: 

{ 

Vai 1 
Vi = Vbi = 

VOj 

COSf3i I 

-sinf3i I 

o 

sinf3i I 

cosf3,I 

o 

and for a column, the transformation matrix ai is given by: 

Vj = { 

Vai } [COSf3j I 
V bj = -sinf3j I 

sinf3j I 

cosf3iI 

{ :: 1 = a, u 
(3.5) 

(3.6) 

in which 13, is the counterclockwise angle between the Xraxes and the major principal plane 

of the shear-wall core or column; dai and dbj are the perpendicular distances from reference 

points OJ to the major and minor principal planes, respectively; and I is a diagonal unit 

matrix. In equations (3.5) and (3.6), the choice of a positive or a negative algebraic sign to 

. accompany d ai (or dbj ) depends on whether a unit UOj rotation of the r floor causes displace-

ments along the major (or minor) principal planes in the same or opposite direction to Vai (or 

Vb;)' For frames and shear walls, aj is obtained from: 

(3.7) 

where f3i is the counterclockwise angle between the xraxes and the plane of the frame or 

shear wall, and d a , is the perpendicular distance from reference point OJ to the plane of the 

frame or shear wall. Again, Jhe choice of a positive or a negative algebraic sign to 
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accompany d ai in equation (3.7) depends on whether a unit U9j rotation of the jlh floor causes a 

displacement along the plane of the frame or shear wall in the same or opposite direction to 

5. The contribution of resisting element 'i' to building stiffness matrix is K i , and is detennined 

by: 

K.,i Kxyi K x9i 

Ki ;::: aT k i ai ;::: Kyxi Kyi Ky9i (3.8) 

K9.<i K 9yi K9i 

in which, 

. 
Kxyi ;::: Kyzi ;::: sinl3i COSl3i (kai - kbi ) (3.9) 

Ky9i ;::: Keyi ;::: ± d ai sinl3i k ai ± dbi COSl3i kbi 

As mentioned earlier, k9i is negligibly small for frames, shear walls and columns but is 

significant for shear-wall cores, and kbi is negligible for frames and shear walls. 

The building stiffness matrix K for degrees of freedom uT 
;::: < U x uy U9 >, defined at reference 

points OJ. is given by superposition of the element stiffness matrices (equation (3.1») resulting in: 

KZ9] 
Ky9 

K9 

(3.10) 

with, 
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. K.., = L K..,i , Ky = L Kyi , Ke =L Kei 
i . 

KX), = Ky.t = L Kxyi 

(3.11) 

The undamped equations of motion for the multi-story building, assuming linear behavior, 

subjected to earthquake ground motion accelerations ag..,(t) and agy(t) along the Xr and Yraxes, are: 

(3.12) 

where 1 denotes a vector of ones of dimension N; m is a diagonal mass matrix of dimension N with 

diagonal entry rtl
J 

equal to the mass of the jth floor; XM and Y M are diagonal matrices of dimension N 

with diagonal entries equal to XMj and YMj' the coordinates of the center of mass of the r floor rela-

tive ,\0 reference axes Xj and Y j; Jo is a diagonal matrix of dimension N with diagonal entries] OJ, 

the polar moment of inertia of the r floor diaphragm about Z, the reference vertical axis passing 

through reference points OJ, given by: 

(3.13) 

where rj is the radius of gyration of the r deck about a vertical axis passing through its center of 

mass. It is apparent from these equations of motion that translational ground motion along either 

the X- or the Y-axes will simultaneously cause both X- and Y - lateral displacements of points OJ as 

well as torsional rotations or twists of the floors about a vertical axis. 

The equations of motion written with respect to degrees of freedom defined at any points 

other than OJ can be determined by standard transformation of equation (3.12). However. the gen-

eral form of the equations of motion (the mass and stiffness matrices) remains as equation (3.12) 

unless the degrees of freedom are defined at the centers of rigidity provided these centers uniquely 

exist for the building, or at its centers of mass. When the equations of motion are written with 



- 281 -

respect to degrees. of freedom defined at the center of mass, the building mass matrix is of a special 

form, given by: 

where JM is a diagonal matrix of dimension N with diagonal entries JMj = mj r], the polar mass 

moment of inertia of the lh floor about a vertical axis passing through its center of mass. However, 

the coupling of the degrees of freedom in the building stiffness matrix remains of the form given in 

equation (3.12). The equations of motion are then given by: 

(3.14) 

On the other hand, if the equations of motion are written for degrees of freedom U, where 

uT = < u.( uy u e > with U.( and uy the vectors of dimension N of fh entries it xj and it yj equal the 

lateral displacements at the center of rigidity of the r floor along the Xr and Yraxes, respectively, 

the building stiffness matrix assumes the form: 

Kx Kxy 0 

K= Ky.( Ky 0 (3.15) 

0 0 Ke 

since any set of horizontal static forces applied through the centers of rigidity causes only lateral 

displacements and no rotations of the decks (see the definition of the centers of rigidity given in 

Section 3.1). However, the mass matrix defined with respect to U remains in of the form given by 

equation (3.12), so that the equations of motion written with respect to u are given by: 



m 0 

o m 

'" Ux 

'" uy 

iia 

K .. 
+ Kyx 

0 

- 282 -

K.ry 0 

Ky 0 (3.16) 

0 Ka 

where ex and e y are diagonal matrices of dimension N with diagonal entries e .. j and eyj' the X and Y 

components of the static eccentricity ej of the j'h floor, given by: 

(3.17) 

in which XRj and YRj are the X and Y coordinates of the center of rigidity of the j'h floor relative to 

its reference axes Xj and Y j ; h is a diagonal matrix of dimension N with diagonal entries JRj equal 

the polar moment of inertia of the j'h deck about a vertical axis passing through its center of rigi-

dity, given by: 

(3.18) 

The form of K given in equation (3.15) follows from the definition given for centers of rigi-

dity as the points on floor levels at which static horizontal forces cause no twist in any of the 

floors. Clearly, if the centers of rigidity are not unique, it would not be possible to determine a 

building stiffness matrix in the form of K given by equation (3.15). In the next section, an attempt 

is made to determine the conditions for existence of unique centers of rigidity utilizing the special 

form of K given by equation (3.15). 

Horizontal torsional moments applied statically at each floor level cause no lateral displace-

ments of the centers of twist. The form of K, therefore, also satisfies the definition of centers of 

twist, given in Section 3.1. Again, if the centers of twist are unique, then the stiffness matrix at the 

centers of twist has the form given by equation (3.15). The submatrices, K ... Ky ,KX). or 

Kyx and Ka, are related to K .. , Ky , Kry and Ka, by expressions given in Section 3.3. The form of 

the building stiffness matrix given by equation (3.15) is the basis for locating the centers of rigidity 

and twist of the building if they can be uniquely defined (Sections 3.3 and 3.4). 
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Staric horizontal lateral forces applied through the centers of rigidity along either principal 

axis I j or II j of each floor, causes each floor to displace in the direction of the force applied to it 

(along its I j .or II) without any rotation (see the definition of principal axes in Section 3.1). It fol-

lows that the building stiffness matrix defined with respect to u', where u·
T 

= < u; u;/ ue > with u; 

and u;/ the vectors of lateral displacements U;j and U;lj at the center of rigidity of the jth floor along 

its principal axes I j and II j , is of the fonn: 

(3.19) 

with K;, K;/ and K~ expressed in tenns of K x, Ky , Kxy and Ke in Section 4.3. The fonn of building 

stiffness given by equation (3.19) is the basis used to detennine the orientations of the principal 

axes of the floors of the system, again only if the centers of rigidity are uniquely defined. The 

building mass matrix with respect to u· remains of the fonn given in equation (3.12). 

3.3 Locations of Centers of Rigidity 

3.3.1 Unique Centers of Rigidity 

The building stiffness matrix K written with respect to the degrees of freedom 

liT = < Ii; u; u~ > defined at the centers of rigidity is related to the building stiffness matrix K writ-

ten with respect to degrees of freedom u, where uT = < u; u; u~ > at reference points OJ, by: 

(3.20) 

in which the matrix a is a transfonnation matrix relating u to Ii: 

u= =au (3.21) 

where XR and Y R are the diagonal matrices of the X and Y coordinates of the centers of rigidity of 
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the building. Substituting equations (3.21) and (3.10) into equation (3.20), leads to: 

Kx 

K = Kyx 

yRKx - xRKyx + K 9x 

in which, 

Kry 

.. Ky 

yRKxy - xRKy + K9). 

KxY R - K,ryXR + KX9 

KyxYR - KyXR + Ky9 

K9 

Comparison of equations (3.22) and (3.15) leads to the following conditions: 

and, 

(3.22) 

(3.23a) 

(3.23b) 

(3.24) 

(3.25) 

in which equations (3.23) have been utilized. Solving the simultaneous algebraic equations (3.23) 

yields the coordinates of the centers of rigidity: 

(3.26a) 

and, 

(3.26b) 

dix A to always exist, implying that XR and YR can be determined from equations (3.26). However, 

the matrices XR and Y R were defined as diagonal matrices and the expressions given by (3.26) do 

not, in general, yield diagonal matrices (see Example 1), implying that unique centers of rigidity do . 

not always exist. A special class of buildings with unique centers of rigidity, i.e. buildings for 

which equations (3.26) yield diagonal matrices, is identified in Section 4. Only for such cases is 
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the building stiffness matrix at the centers of rigidity of the form given by equation (3.15). 

3.3.2 Load-Dependent Centers of Rigidity 

However, centers of rigidity can be defined for buildings even if equations (3.26) do not yield 

diagonal matrices, but in such a case the locations of centers of rigidity depend on the applied set 

of static lateral forces. The equations of static equilibrium written with respect to ii defined at the 

centers of rigidity are given by: 

p.= K u 

with K given in equation (3.22); or, 

Kx K.fY KxY R - K.ryXR + KX8 

{;:] Kyx Ky KyxYR - KyXR + IKY8 

yRK .. -xRKyx + K 8x YRKxy-XRKy+K8Y K,8 

(3.27) 

where pT = <P~ Ii; T~ > with Ii .. and liy being the vectors of static lateral forces applied at the 

centers of rigidity along the Xj and Y j directions; and T 8 the vector of applied static torsional 

moments about vertical axes passing through the centers of rigidity. For a particular set of forces 

P, with p .. :;to 0 and Ii y :;to 0 but T 9 = 0, it is possible to determine XR and Y R, the coordinates defining 

the locations of centers of rigidity where, according to the definition of Section 3.1, ux:;to 0 and u y :;to 0 

but U8=O. Thus, equations (3.27) specialize to: 

(3.28a,b) 

and: 

(3.28c) 

Utilizing equations (3.28a) and (3.28b), equation (3.28c) can be written as: 

(3.29) 

Solving equations (3.28a) and (3.28b) for Ux and uY' leads to: 
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(3.30a) 

and, 

(3.30b) 

Substituting equation (3.30) into (3.29), the latter becomes: 

(3.31) 

Since Pc and Py are independent, equation (3.31) leads to two conditions: 

and, 

where [PrJ and [Py] denote the diagonal matrices of vectors Px and Py and {XR I and {YR) the vector 

form of diagonal matrices XR and YR' Thus, 

(3.32a) 

and, 

(3.32b) 

Utilizing the following identities derived in Appendix A: 

K- I K A-I B-1 K K- I 
-)' y.r = - yx.r d A -I K K- I K- I K B- 1 an - x)' y = -.t x)' 

equations (3.32) can be simplified to become: 

(3.33a) 

and, 

(3.33b) 
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Since [Py ] and [P.r] are diagonal matrices, equations (3.33) are simplified to equations (3.26) 

when the product matrices and 

unique and independent of the applied loading. 

3.3.3 Example 1 

Consider a five-story multi-story building consisting of four identical columns and a frame, 

located as shown in Figure 5. The lateral stiffness matrices of the columns along their principal 

planes are equal, i.e.: 

and, 

with 

18.829 -11.901 4.774 -1.193 0.199 
-11.901 14.652 -10.707 4.177 -0.696 

k = El 4.774 -10.707 14.055 -9.514 2.586 
1z3 

-1.193 4.177 -9.514 9.878 -3.646 
0.199 -0.696 2.586 -3.646 1.608 

where I is the moment of inertia of the column, assumed to be the same for all floors, and h is the 

story height of the building. The frame is unifonn with all its columns of identical moments of 

inertia, also equal to I; all its beams have the same moment of inertia equal to 0.81, and are of 

width 21z. The lateral stiffness matrices of the frame along its principal planes are given by: 

with 
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40.512 -23.941 7.182 -1.403 0.211 
-23.941 33.870 -22.582 6.757 -1.015 

, El 
7.182 -22.582 33.545 . -21.733 5.069 k =-

h 3 

-1.403 6.757 -21.733 29.453 -13.344 
0.211 -1.015 5.069 -13.344 9.120 

The stiffness matrix contributions of the various elements to the building stiffness matrix defined 

with respect to degrees of freedom at reference points OJ are: 

for the columns: 

Uk 
o -ak] [k 0 n K1 = k ? ' K2 = 0 k 

o o-k 0 0 

Uk o -ak 1 
[: 

0 

o 1 K3= k ok , K4 = k ok 

ok 2 a2k ak a2 k 

and for the frame: 

0.5 k' - 0.5 k' - 1.414 a k' 

Ks= -0,5k' 0.5k' 

-1.414ak 1.414ak' 

Equations (3.9) and (3.10) lead to: 

K" = k + k + k + k + 0.5 k' = 4 k + 0.5 k' 

Ky = k + k + k + k + 0.5 k' = 4 k + 0.5 k' 

K..-y = Kyx = 0 + 0 + 0 + 0 - 0.5k' = -0.5k' 

KeEl = Kox = -ak + 0 - ak + 0 - 1.414ak' = -2ak - 1.414ak' 

Kyo = Koy = 0 + 0 + ak + ok + 1.414ak' = 2ak + 1.414ak' 

The building stiffness matrix at reference points OJ is therefore given by: 



K= 

Equations (3.26) yield: 

4k + 0.5k' 

-0.5k 
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-0.5k' 

4k + 0.5k' 

- 2 a k - 1.414 a k' 2 a k + 1.414 a k' 

0.791 0.055 0.011 
-0.103 0.911 0.086 

XR = YR = -0.196 0.034 0.957 
-0.225 -0.054 0.093 

-2ak - 1.414ak' 

2ak + 1.414ak' 

4 a2 (k + k') 

0.004 0.009 
0.012 0.042 
0.057 0.121 
0.854 0.318 

-0.242 -0.092 0.032 -0.202 1.498 

which clearly is not diagonal. Thus the building considered does not have unique centers of rigi-

dity. However, load-dependent centers of rigidity can be determined for the building. Assuming 

uniform load distributions along both the X and Y directions, i.e. Px = Py = 1, equations (3.33) 

yield: 

0.025 
0.855 

(XR) = (-YR) = 1.180 
0.726 
1.988 

For a triangular height-wise load distribution of Ii'; = Ii; = < 1 2 3 4 5 >-- a distribution which is 

recommended in building codes such as UBC [3] for buildings with constant story height and equal 

lumped story weights, equations (3.33) lead to different locations of the centers of rigidity given 

by: 

-2.112 
0.651 

(XR) = (YR) = 1.196 
0.652 
1.843 

Actual1y any other load distribution would lead to different locations of the centers of rigidity. 

3.3.4 Special Building Plans 



- 291 -

Equations (3.33) can be simplified further if the principal planes of all resisting elements are 

parallel or orthogonal. In this case, the principal axes of the building are parallel to the elemental 

principal planes, and it is natural to choose the Xj and Y j reference axes of each floor to be in the 

direction of the principal axes of the building. It follows that f3i' the counterclockwise angle 

between Xj and the major principal plane of the i 'h resisting element, is either zero or 90 degrees, 

and d ai and db" the perpendicular distances from reference points OJ to the major and minor princi-

pal planes of the element are measured along the Xj and Y j reference axes. Thus equation (3.11) 

becomes: 

Ky = L K yi = L k yi 
i 

K.ry = Kyx = 0 

Ky9 = Kay = L Ky9i = L Xikyi 
i i 

(3.34) 

where k,ri and k yi are the lateral stiffness matrices of the i'h resisting element along its principal 

planes, which are oriented along the Xj and Y j axes; Xi and Yi are the X and Y distances of the 

principal planes of the i th resisting element from the Xj and Y j axes. Substituting equation (3.34d) 

into equations (3.33), leads to: 

(3.35a) 

and, 

(3.35b) 

These equations were also obtained in Reference [8] wherein only buildings consisting of frames 
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arranged in an orthogonal grid in plan were considered .. In Reference [7], the center of rigidity of a 

floor is defined as the point in the floor through which a static horizontal force should be applied to 

cause the floor to translate without rotation or twist; other floors, however, may twist or rotate. In 

other weirds, Reference [7] specializes the applied loads P x and P y to be vectors of zeros. except for 

the entry corresponding to the floor in consideration, which can assume any value. The resulting 

coordinates of the centers of rigidity are in this case given by the diagonal entries of matrices 

Equations (3.33) can similarly be simplified if the building has a vertical plane of stiffness 

symmetry, then the lines of intersection of the symmetry plane and the floor planes are the principal 

axes of the floors. Hence, it is natural to choose one of the reference axes Xj or Y j in the same 

direction as the principal axes of the floor. If the Xj axes are chosen in the directions of the sym-

metry plane, then, referring to equations (3.9d) and (3.ge), it is apparent that matrices Kxyi in equa-

tions (3.11c) and Kx6i in equation (3.l1b) occur in pairs that are equal but of oppposite algebraic 

signs. Thus: 

KAY = Ky., = 0 and Kxa = Ka ... = 0 

from which equations (3.33) are simplified to become: 

(3.36) 

Similarly, if the Y j reference axes are chosen in the direction of the symmetry plane, then: 

(3.37) 

3.3.5 Example 2 

Consider a five-story building (Figure 6) consisiting of four identical columns and a frame, all 

being the same as described in Section 3.3.3 for Example 1. The elements are arranged such that 

their principal planes form an orthogonal grid in plan, and the building has a plane of symmetry. 

The building stiffness matrix defined at reference points OJ (Figure 6) is obtained from equations 

(3.34) as: 
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4k o o 
K == 0 4 k + k' 2 a (k + k') 

o 2a(k + k') 6a2 k + 4a2 k' 

Utilizing equations (3.36) for unifonn height-wise load distribution, results in: 

3.3.6 Load Centers 

- 0.280 
1.082 

{xRI == 1.615 
0.871 
2.941 

and {YR J = 0 

Equations (3.35a) and (3.35b), obtained in t~e case of buildings consisting of frames arranged 

in an orthogonal grid in plan, were physica11y interpreted in [8] as the equations yielding the cen-

troids of the lateral forces "applied" in the planes of the frames at each floor level when the build-

ing is subjected to a static loading that causes no twist in any of its floors (i.e. U o = 0). This con-

elusion was reached by recognizing that K;lp., and K;lpy are actually the vectors U z and uy of the 

x- and Y - lateral displacements experienced by each frame when the building is subjected to loads 

ii, and Py. Then, utilizing equations (3.34e) and (3.34f), equations (3.35a) and (3.35b) are 

simplified to become: 

(3.38a) 

and, 

(3.38b) 

in which Qxi is the vector of lateral forces "applied" along the X- direction in the plane of a frame 

oriented along the X- direction, and Qyi is the vector of lateral forces "applied" along the Y - direc-

tion in the plane of a frame oriented along the Y - direction. Since [P xJ and [P yJ are diagonal 

matrices, XRj and YRj' the X and Y coordinates of the center of rigidity of the rh floor (also the lh 

entries of {xRI and {YR}), are given by: 
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and YRj = ---::-:--
P xj 

(3.39) 

- - h - -where Qxij' Q),;j' Pxj and Pyj are the j' entries of vectors Qx;, Qy;, Px and Py, respectively. It is clear 

from equations (3.39) that the X- and Y - coordinates of the center of rigidity of a floor can be 

detennined by finding the location of the resultant elemental loads at that level. Thus, the centers 

of rigidity of such buidings are identified as the load centers [8]. A computational procedure to 

detennine the locations of the centers of rigidity using a standard frame computer program was also 

presented in [8]. 

This physical interpretation of centers of rigidity is examined, in this section, for buildings 

with more general plans than those considered in [8]. Referring to equations (3.27), the application 

of horizontal forces P Y' along the Y-axes, causing no twist in any of the floors of the building 

(U8 = 0) leads to the lateral displacements u" and u Y' satisfying: 

(3.40) 

from which: 

(3.41) 

Equation (3.33a) is simplified to become: 

(3.42) 

Equations (3.ge), (3.9f) and (3.11) are substituted in equation (3.42) leading to: 

{XR} = [pyr l (L. (±da,cos/3;ka; - (±)db;sin/3;kb;) u .. + L (±da;sin/3;ka, ± db;cos/3;k b;) uy] 
i ; 

or, 

However, equations (3.5) and (3.2) imply that: 
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(3.44a) 

and, 

(3.44b) 

where Q"i and Qbi are the vectors of ."applied" loads of the ith resisting element along its major and 

minor principal planes, due to Py • Thus, equations (3.43) can be written as: 

(3.45) 

Since [Py ] is a diagonal matrix, the lh entry of {XR I or the X- coordinate of the center of rigidity of 

the jlh floor is given by: 

(3.46) 

where Qai} and Qbi} are the jth entries of Qai and Qb.. A similar derivation would lead to the Y

coordinate of the center of rigidity of the jth floor as: 

(3.47) 

Although equations (3.46) and (3.47) are similar, they involve different terms Qaij and Qbij; those 

entering equation (3.47) are determined for the applied forces p .. , and, those appearing in equation 

(3.46) are computed for P>" 

Thus, the centers of rigidity (CR) of buildings with general floor plans, can also be identified 

as load centers. However, because the X- and Y- lateral motions of the building are no longer 

independent, the X- coordinates {XR} of the CR are determined by finding the locations of the resul

tants of the lateral loads experienced by all the resisting elements due to lateral forces Py applied 

along the Y - direction, causing no twist in any of the floors of the building; and the Y -coordinates 

{YR I are determined by finding the locations of the resulatnts of the lateral loads experienced by all 

the resisting elements due to lateral forces p .. applied along the X- direction, causing no twist in 
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any of the floors of the building. This complication is not necessary if the principal planes of the 

resisting elements fonn an orthogonal grid in plan, because the X-and Y - 1 ateral motions of such 

buildings are independent. Furthennore, unlike such buildings, the centers of rigidity of buildings 

with more general plans can not be located using a computer program for plane-frame analysis, 

again due Lo the dependence of the X- and Y - lateral motions of such buildings. 

3.4 Locations of Centers of Twist 

The centers of twist were defined in Section 3.1 as the points at various floor levels which 

remain stationary when the building is subjected to any set of static horizontal torsional moments 

applied at the floor levels. In accordance with this definition, the building stiffness matrix written 

with respect to degrees of freedom defined at the centers of twist would be of the special fonn of 

K, given by equation (3.15). Hence, the locations of the centers of twist are detennined by follow-

ing the same steps perfonned above for the centers of rigidity, with Xr and Yr, the diagonal 

matrices with entries Xrj and Yrr- the X and Y coordinates of the center of twist of the lh floor--

substituted for XR and YR in equations (3.21), (3.22), (3.23) and (3.25). Solving the modified equa-

tions (3.23) for Xr and Yr yields the same expressions for the coordinates of the centers of twist as 

the centers of rigidity. Hence, if expressions (3.26) yield diagonal matrices, centers of twist and 

centers of rigidity of the building coincide. 

However, centers of twist can also be defined for buildings even if equations (3.26) do not 

yield diagonal matrices, but in such a case the locations of the centers of twist depend on the 

applied set of static torsional moments. The equations of static equilibrium, written with respect to 

ii defined at the centers of twist, are: 

{;:} = 

K.( 

Kyx 

YrKx - xrKyx + Kex 

Kxy 

Ky 

YrKA)' - XrKy + Key 

(3.48) 

For a particular set of forces Ii with Ii x = Ii y = 0 and Til "# 0, it is possible to detennine Xr and Yr, the 

coordinates locating the centers of twist, where, according to the definition of Section 3.1, 
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iI, = uy = 0, but U s "# O. Thus, equations (3.48) specialize to: 

and, 

(KyxYr - Kyxr + Kye)uso= 0 

Solution of equations (3.49) for Xr and Yr leads to: 

and, 

o (3.49a) 

(3.49b) 

(3.50a) 

(3.50b) 

where [ua] represents the diagonal matrix form of vector u~ and {xrl and {Yr} the vector forms of 

diagonal matrices Xr and Yr. The deck rotations are determined by a static analysis of the building 

subjected to torsional moments f e (see Example 3). 

Since [ue] is a diagonal matrix, equations (3.50) are simplified to equations (3.26) when the 

products of the stiffness submatrices in equations (3.50) are diagonal. 

Equations (3.50) can also be simplified further in the two cases discussed in the previous sec-

tion: 

1. If the principal planes of all resisting elements are parallel or orthogonal, then equations 

(3.34) are satisfied. Substituting equations (3.34d) into equations (3.50), leads to: 

(3.51) 

These equations were also obtained in [14] for buildings consisting of frames arranged in an 

orthogonal grid in plan. 

2. If the building has a vertical plane of stiffness symmetry, then choosing the Xj direction along 

the symmetry plane leads to: 
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from which equations (3.50) become: 

(3.52) 

Similarly, if Y j are chosen in the direction of the symmetry plane, then: 

(3.53) 

Equations (3.50) to (3.53) show clearly that the locations of centers of twist depend upon the 

applied torsional moments (since Uo depends on To). The locations are unique and independent of 

the applied forces only if equations (3.26) yield diagonal matrices, in which case the centers of 

twist and rigidity are coincident and the building stiffness matrix defined at these centers is of the 

form given by equation (3.15). The conditions to be satisfied for the centers of twist and rigidity to 

coincide, be unique and load independent are examined in Section 4. 

3.4.1 Example 3 

For the building of Figure 5 (Section 3.3.3), the centers of twist are detennined for To = I, i.e. 

for the case when all floors are subjected to. equal torsional moments. Since P x = P y = 0, the deck 

rotations can be determined from the solution of the static equilibrium equation written at reference 

points OJ, i.e.: 

p.} 
from which we obtain: 

Thus, 
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or, 

Solution of these equations leads to U9' Using this procedure the coordinates of the centers of twist 

of the building in Example 1 is found to be: 

3.5 Locations of Shear Centers 

1.208 

1.251 

{xrl = {Yr} = 1.282 

1.305 

1.323 

The location of the shear center of a floor is detennined by finding the centroid of the inters-

tory shear forces experienced by individual resisting elements due to a static loading that causes no 

twist (u9 = 0) of any of the stories (see the definition of shear centers given in Section 3.1). Substi-

tuting u8 =0 in equations (3.5), the vectors of lateral dispalcements of the ith resisting element along 

its principal planes are given by: 

Vaj = cosf3j Ux + sinf3j uy (3.54a) 

Vbj = - sinf3j Ux + cosf3j uy (3.54b) 

The vectors of applied lateral loads on the ith resisting element along its principal planes are given 

by equations (3.2). Thus, 

(3.55a) 

(3.55b) 

The vectors of interstory shear forces Va; and V hj experienced by the jth resisting element are related 
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to Qa; and Qb; by: 

(3.56a) 

V bi = S Qb, = S kb' ( - sin/3i U x + COS/3i uy) (3.56b) 

where S is a summation matrix which is upper triangular, of dimension N and of the form: 

1 1 1 

1 1 

S= (3.57) 
1 

1 

The vectors of shearing forces V.i and V yi experienced by the i'h resisting element along the Xj and 

Y j axes are given by: 

V xi = Vai cos/3; - Vb; sin/3; (3.58a) 

V y; = Va; sin/3i + V bi cos/3, (3.58b) 

Substituting equations (3.56) into (3.58) and utilizing equations (3.9), results in: 

The vector of the resultants of the shearing forces has X and Y components equal to L V xi and 

LV y" respectively, with the resultant of the shearing forces acting on the jth floor passing through 

its shear center with X and Y coordinates equal to XSj and YSj. Referring to Figure 4a, equilibrium 

of moments about reference axis Z of all shearing forces acting at each floor level, and presenting 

the results in vector form, leads to: 

(3.60) 

where Xs and Ys denote the diagonal matrices of entries equal to XSj and YSj' respectively. The alge-

braic sign accompanying V ai and V hi in equation (3.60) depends on whether the forces cause 
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positive or negative moments about reference axis Z. Substituting equations (3.56) and (3.59) into 

(3.60) and then utilizing equations (3.9) and (3.28), leads to: 

(3.61) 

Substituting equations (3.30) into (3.61), and using equations (A.7), we get: 

(3.62) 

Since p .. and Py are independent, we can write: 

and, 

from which we get: 

and, 

Let [p:] and [P~] denote the diagonal matrix forms of vectors SP .. and SPY' respectively, and {xs I 

and Iys I the vector forms of diagonal matrices Xs and Ys, respectively. Then, 

(3.64a) 

and, 

(3.64b) 

Although there is great similarity between equations (3.64) and (3.33), they yield different 

coordinates for the shear centers and centers of rigidity (see Example 4). Thus, in general, shear 

centers do not coincide with centers of rigidity. When the product of the stiffness submatrices of 

equations (3.64) leads to a diagonal matrix with equal diagonal entries, equations (3.64) simplify to 
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equations (3.26) and become load-independent. In this case, shear centers coincide with centers of 

rigidity as well as with centers of twist. 

Simplification of equations (3.64) is possible in the special cases mentioned in Section 3.2, 

where KA)' = Ky.r = 0, leading to: 

(3.65a) 

and, 

(3.65b) 

3.5.1 Example 4 

Using equations (3.64) for the building (Figure 5) desribed in Section 3.3.3, the locations of 

the shear centers of the building are found to be given by: 

0.955 
1.187 

{xsl = {Ys} = 1.298. 
1.357 
1.988 
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4. A SPECIAL CLASS OF MULTI-STORY BUILDINGS 

It is apparent from the preceding section that the centers of rigidity, the centers of twist and 

shear centers of multi-story buildings do not generally coincide. In order for the building to have 

unique, load-independent centers of rigidity that are coincident with centers of twist and shear 

centers, it is necessary that equations (3.26) yield diagonal matrices. The conditions to be satisfied 

for a building to have unique centers of rigidity are examined in this section. 

4.1 Buildings with Arbitrary Orientations of Elemental Principal Planes 

Consider a special class of multi-story buildings with every resisting element having lateral 

stiffness matrices along its principal planes of the form: 

(4.1) 

where Cai and Coi are constants for the i th resisting element and k is a characteristic matrix for the 

building. Utilizing equations (4.1), equations (3.9) become: 

K.<9i = K 9 .ri = [±Cai dai COSJ3i - (± )Cb; db; sinJ3i] k = Cse• k 

Substituting equations (4.2) into (3.11), leads to: 

Kx = L, K..; = L,( Cai COS2J3i + Chi sin2J3;) k = (L, Cxi)k = Cxk 
Iii 

Ky = L Kyi = L(Ca;sin2 J3i + CbiCOS2J3;) k = (L, Cyi)k = Cyk 
,i i 

(4.2) 

(4.3) 
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KX9 = K 9x = L K.r9i = L[±Ca, dai cosf3, - (±) Chi dhi sinf3j] k = (L C.r9i)k = Cx9 k 
. i 

Substituting equations (4.3) into (3.26), leads to: 

(4.4a) 

and, 

(4.4b) 

where I is a unit matrix of dimension N, the number of stories. Since I is diagonal, XR and YR 

obtained from equations (4.4) are also diagonal. Similarly, in order to obtain Xr and Yr, the coordi-

nates vector of the centers of twist, and Xs and Y s, the coordinates vector of the shear centers, equa-

lions (4.3) are substituted into (3.50) and (3.64), respectively, resulting in: 

(4.5a) 

and, 

{Yr} = {Yrl = (4.5b) 

where 1 is a vector of ones. 

It is apparent from equations (4.4) and (4.5) that the centers of rigidity, the centers of twist 

and the shear centers for the special class of buildings considered are coincident, and their locations 

are independent of applied forces. Since all reference points OJ are colinear and axes Xj (and Y j ) 

are all in the same direction, the centers of rigidity, the centers of twist and the shear centers of the 

building lie on a vertical line located at distances from the Z reference axis, measured along the Xj 

and Y j axes, given by: 
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(4.6a) 

and, 

(4.6b) 

in which XRj and YRj' ."(Tj and YTj' and XSj and YSj denote the X and Y coordinates of the centers of 

rigidity, the centers of twist and the shear centers of the building, respectively; these coordinates 

are the srune for all floors. Equations (4.6) for the special class of multi-story buildings resemble 

equations (2.26) and (2.27) for one-story systems. 

The building stiffness matrix K defined at these unique centers is given by: 

C .. k C.ryk 0 

K =. C.ry k Cyk 0 (4.7) 

0 0 Ka 

Figure 7 shows two simple exrunples of buildings with unique centers of rigidity. System' A' 

of Figure 7a consists of three frrunes with equal lateral stiffness matrices kA' i.e. 

Cal = C a2 = Ca3 = l. Using equations (4.3) leads to: 

C~, = sin135 cos135 = -0.5 

C~ =acos135 + acos90 + acosO == 0:293 a 

C;l = asin135 + asin90 + asinO = 1.707 a 

Substituting equations (4.8) into equations (4.6), leads to: 

4
j 

= (1.5) ( 1.707 a ) - ( - 0.5 ) ( 0.293 a) = 1.354 a 
( 1.5 ) ( 1.5 ) - ( - 0.5 )2 

(4.8) 
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and, 

A ( 1.5 ) ( 0.293 a ) - ( - 0.5 ) ( 1.707 a ) = _ 0.646 a 
YRj = - ( 1.5 ) ( 1.5 ) _ ( _ 0.5 )2 

(4.9b) 

The other example, system 'B' of Figure 7b, has three frames of equal lateral stiffness matrix, 

kB • Using equation (4.3) leads to: 

c~. = 2sin135cos135 = -1 

"c.!e =" 1.354 a cos90 + 1.25 a cos135 - 0.25 a cos135 = -0.707 a 

c~ = 1.354 a sin90 + 1.25 a sin135 - 0.25 a sin135 = 2.061 a 

Substituting equations (4.11) into equations (4.6) leads to: 

and, 

( 1 ) (2.061 a) - (-1) (-0.707 a) = 1.354 a 

( 1 ) ( 2 ) - ( - 1 )2 

B (2)(-0.707a)-(-I)(2.061 a) 
YR = - = - 0.646 a 

J ( 1 ) ( 2 ) - (_ 1 )2 

(4.10) 

(4.11a) 

(4. lOb) 

Thus, the two systems, 'A' and 'B'. belonging to the special class of buildings presented 

above have unique centers of rigidity that are of equal coordinates XRj and YRj' Consider a multi~ 

story sytem 'C'. shown in Figure 8. that consists of the two subsystems 'A' and 'B'. with the loca-

tions of the frames in 'C' relative to OJ. being the same as in 'A' and 'B'. Denote by KA and K8 

the building stiffness matrices defined at reference points OJ of systems 'A' and 'B', respectively. 

Then, the building stiffness matrix Kc at OJ of building 'C' is given by: 

(4.12) 

Consider points R j of system 'C' that lie on a vertical line and have coordinates equal to XRj and YRj 
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of systems 'A' and 'B'. The building stiffness matrix, K RC of building 'C' at points Rj , is given 

by: 

K -T K - -T K - -T K - K- K-RC=a ca=a Aa+a 8 a = A+ 8 (4.13) 

where a is given by equation (3.21), with XR and YR the diagonal matrices of entries equal to XRj 

and YRj' Using equations (4.7) to compute KA and K8 of systems 'A' and 'B', equations (4.12) 

become: 
- ( 

C~kA + C~8 C~kA + C~k8 0 

KRC = C~kA + C~k8 ;C:kA + C~8 0 = Kc (4.14) 

0 0 kOA + k08 

Due to the form of KRC ' it is obvious that points Rj are the centers of rigidity of building 'C'. 

Therefore, when a multi-story building consists of two or more subsystems of resisting ele-

ments, with each subsystem having unique centers of rigidity that are coincident, the system itself 

has unique centers of rigidity that are also coincident with those of the individual subsystems. 

4.2 Buildings with Orthogonal System of Resisting Elements 

Consider a building consisting of resisting elements with principal planes of each element 

oriented along the X- and Y-axes. Suppose that the lateral stiffness matrices kxi and kyi along each 

one of the principal planes of all resisting elements are proportional, that is: 

(4.15) 

where C xi and Cyi are constants of the i'h resisting element relating its lateral stiffness matrices to k .... 

and ky, the characteristic matrices of the building along the X and Y principal directions. Then 

equations (3.34) become: 
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(4.16) 

Substituting equations (4.16) into (3.35), leads 10: 

(4.17a) 

and, 

(4.17b) 
C.r9 

YR = - -I = ---.....----1 e z :2,Czi 

:2, CxiYi 

Since 1 is a diagonal matrix, XR and Y R are also diagonal. These equations for the coordinates of 

the centers of rigidity for a multi-story building are similar to equations (2.31) obtained for one-

story systems. 

Therefore, buildings consisting of an orthogonal system of resisting elements with lateral 

stiffness matrices of all resisting elements along each principal direction proportional to each other 

have unique centers of rigidity, aligned on a vertical line. The same conclusion was reached in 

reference [8]. In this case, the building stiffness K defined at the centers of rigidity is given by: 

C)tzO 0 

o Cyky. 0 (4.18) 

o 0 Ko 

It should be apparent that the coordinates of the centers of twist and of the shear centers are also 

given by equations (4.17), so that all the centers are coincident, uniquely defined independent of the 

applied loading and lie on a vertical line. 



- 311 -

Using the result of Section 4.1, if the building with orthogonal elemental principal planes con-

sists of two or more subsystems. with each subsystem having unique centers of rigidity that are 

coincident. the building itself has unique centers of rigidity that are also coincident with those of 

individual subsystems. 

4.3 Orientations of the Principal Axes for the Special Class of Buildings 

Finally, the orientations of the principal planes of the building belonging to the special class. 

identified in Section 4.1. is detennined in this section. The lateral displacements Ux and uy of the 

centers of rigidity along XI and Y j directions are related to lateral displacements u; and u;/ of the 

centers of rigidity. along the principal planes of the system by the transfonnation matrix a': 

c - S 0 

S C 0 
o 0 I 

. .. 
U/I = a U 

Ua 

(4.19) 

in which C and S are diagonal matrices. with diagonal entries equal to COS1Jj and sin1Jj. respec-

tively. where 1Jj is the counterclockwise angle between the Xj reference axes and the major princi-

pal axis in the lh floor. It follows that the building stiffness K' defined with respect to u .. is given 

by: 

(4.20) 

Substituting equations (4.19) and (3.15) into (4.20). and comparing with (3.19). leads to: 

(4.21a) 

(4.21b) 

(4.22) 

and, 
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C
-1 

Addition of equations (4.23), pre-multiplying and post-multiplynig the result by· , ,yields: 

where T is a diagonal matrix with diagonal entries equal to tanllj' 

(4.23a) 

(2.23b) 

(4.24) 

For systems such as those described in Section 4.1 with stiffness submatrices given by equa-

tions (4.3), equations (4.24) simplify to become: 

kT = Tk (4.25) 

Pre-multiplying and post-multiplying equations (4.23a) by C-
1

, and substituting equations (4.3) for 

Kx , Ky and Kxy, leads to: 

(4.26) 

Using equation (4.25) and pre-multiplying by k- 1, results in: 

(4.27) 

or, 

from which, 

(4.28) 

Thus, all principal axes of individual floors are parallel to one another and' their orientation is given 

by Tlj. 

Equations (4.21) can now be written as: 
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K' = x + y + ( x - Y)2 + C 2 k = C· k [c c [c c lY'l 
/ 2 2 xy / 

(4.29a) 

and, 

[ [ l
Y'l C + C C - C 

K;/ = . x 2 y - ( .r 2 Y)2 + C ~ k = C ~ k (4.29b) 

The building stiffness matrix K' defined with respect to u' is given by: 

C;k 0 0 

KO = o C~k 0 (4.30) 

o 0 Ko 

The similarity with the results obtained for one-story systems (Section 2.5) is apparent. 

Note that for buildings with a plane of stiffness symmetry, the plane is also a principal plane 

of the building. Also, if the elemental principal planes are parallel or orthogonal, the principal 

planes of the system are in the same directions as the elemental principal planes. For buildings 

such as building • C' studied in Section 4.1. it is not possible to· find principal axes that satisfy the 

definition given earlier, unless the principal axes of the building subsystems are oriented along the 

same directions. 
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5. CONCLUSIONS 

In a one-story system, it is always possible to locate in the plane of its deck a unique point 

which has different roles in the static response of the system. A static horizontal lateral force pass

ing through this point, causes the floor of the system to displace. laterally without any twist, with 

the resullant of the shear forces experienced by various resisting elements also passing through this 

point. If the force applied through this point is directed along one' of the principal axes of the 

system-- two orthogonal axes passing through this point-- the floor displaces in the direction of the 

applied force without any lwist. If the floor is subjected to a static torsional moment about a verti

cal axis, the point remains at rest, i.e. the floor rotates about a vertical axis passing through this 

point. For this reason, the terms center of rigidity, shear center and center of twist are interchange

able in one-story systems, since they refer to a unique point with different roles in the response of 

the system. 

Unlike one-story systems, centers of rigidity, centers of twist and shear, centers of the floors of 

a multi-story building do not generally coincide. Their locations not only depend on the geometric 

and stiffness characteristics of the building, but also on the applied loading:< For a special class of 

buildings, however, the centers of rigidity, the centers of twist and shear centers of the floors of the 

buildings are coincident at locations that are independent of the applied loading and lie on a verti

cal line. Buildings belonging to this special class consist of resisting elements that have propor

tional lateral stiffness matrices along both their principal planes, if the planes have arbitrary orienta

tions, or they consist of resisting elements that have proportional lateral stiffness matrices along 

each of their principal planes, when these form an orthogonal grid in plan. It is possible to deter

mine, for this special class of buildings, two principal directions along which application of lateral 

forces causes the floors to displace laterally without any twist. There is great similarity between 

the expressions of the locations of the centers and the orientations of the principal axes obtained for 

one-story systems and buildings belonging to this special class. 

Torsional provisions in most building codes are based on the evaluation of static eccentrici

ties, usually given as distances between the centers of mass and the centers of rigidity of a 
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building, with litrle or no explanation of how these eccentricities can be determined. Although 

some codes [e.g. 5] recognize the complexity of determining the centers of rigidity in some build

ings, they do not provide any reasonable alternatives. It is clear that torsional provisions based on 

static eccentricities are strictly applicable only to the special class of buildings described above, and 

further work is necessary to develop code provisions for buildings not belonging to this special 

class. 
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APPENDIX A: USEFUL MATHMATICAL FACTS 

The lateral stiffness matrices k ai and kbi of the ith resisting element along its major and minor 

principal planes, respectively, are positive definite matrices, because each is symmetric and real. 

Since submatrices K'i and K yi , given by equations (3.9), are sums of multiples of k ai and k bi • it fol-

lows that Kxi and Kyi are also positive definite matrices. System submatrices Kx and K y, given by 

equations (3.11), are summations of Kxi and K yi , and, therefore, are also positive definite matrices . 

. Since the inverse of a positive definite matrix always exist [12], it follows that the inverses of Kx 

The building stiffness matrix K being a positive definite matrix, its minors are. also positive 

definite. Consider the minor matrix: 

(A.1) 

The inverse N-1 of N exists because N is positive definite. Let N-1 be given by: 

(A.2) 

Since NN-1 = N-1N = I, we have: 

(A.3) 

and, 

Thus, 

(A.4a) 
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(A.4b) 

Substituting equations (A.4) in (A.3a), we get: 

(A.5a) 

and, 

(A.5b) 

from which: 

N - (K K' K- I K )-1 - A-I II - x - .t)' y yx - (A.6a) 

and, 

(A.6b) 

Finally, since N is symmetric, N- I is also symmetric, and: 

Therefore, 

- K-I K A-I = - B-1 K K-I 
y yx yx x (A.7a) 

and, 

- A-I K K- I = - K- I K B-1 
.t)' y x xy (A.7b) 
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APPENDIX B: NOTATION 

B.l One-Story Systems 

earthquake ground motion accelerations along the X and Y axes 

a I transformation matrix of the ith resisting element defined by equations (2.5) to (2.7) 

transformation matrix defined by equation (2.21) 

• a transformation matrix defined by equation (2.40) 

perpendicular distances from reference point 0 to the major and minor principal axes 

of the ith resisting element 

e static eccentricity of the building defined as the distance between its centers of mass 

and rigidity 

e~ and e\, X and Y components of static eccentricity e 

I and II principal axes of the system 

polar moments of inertia of deck about vertical axes passing through reference point 

o and the center of rigidity, respectively. given by equations (2.13) and (2.18) 

lateral stiffnesses of the ill! reSisting element along its major and minor principal axes, 

respectively 

kXI and kyi lateral stiffnesses of the ill! resisting element along its principal axes which are 

oriented along the X and Y axes 

torsional stiffness of the ith shear-wall core about a vertical axis passing through its 

. shear center 

K {I' Ky; and K.y; or Ky .• i 

submatrices of K; defined by equations (2.8) and (2.9) 
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submatrices of Kj defined by equations (2.8) and (2.9) 

K, ,K,. and K.,), or K, .. r 

k, 

K 

submatrices of K defined by equations (2.10) and (2.11) 

submatrices of K defined by equations (2.10) and (2.11) 

submatrices of K defined by equations (2.15), (2.24) and (2.25) 

submatrices of K' defined by equation (2.19), (2.49) and (2.43) 

stiffness matrix of the ith resisting element defined in equations (2.2) and (2.3) 

building stiffness matrix with respect to degrees of freedom u defined at 0 

building stiffness matrix with respect to degrees of freedom ii defined at the center of 

rigidity 

K' building stiffness matrix with respect to degrees of freedom u· defined at the center 

of rigidity 

K j contribution of the i'h resisting element to K 

m mass of deck 

MM building mass matrix defined at its center of mass 

Q aj and Qb, lateral forces applied at the floor level of the ith resisting element along its major and 

minor principal axes, respectively 

Q xj and Qyj X and Y components of the shearing force experienced by the i th resisting element 

QlJj torsional moment applied at the floor level of the ith shear-wall core 



Q, 

r 

Ii .• and Ii) 

u 

• u 

v, 

x, and Yi 

XR and YR 

Xs and Ys 

XT and YT 

/3, 
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vector of forces applied to the i'h resisting element (equations (2.2) and (2.3» 

radius of gyration of the deck about a vertical axis passing through its center of mass 

lateral displacements at reference point 0, along the X and Y axes, respectively 

deck rotation about a vertical axis 

lateral displacements at the center of rigidity, along the X and Y axes 

lateral displacements at the center of rigidity, along principal directions I and II of 

the building 

degrees of freedom defined at 0; uT = < U .. uy UlJ > 

degrees of freedom defined at the center of rigidity; or = < Ii .. Ii y UlJ > 

degrees of freedom defined at the center of rigidity; u·
T 

= < u; U;l UlJ > 

lateral displacements of the floor of the ith resisting element along its major and 

minor principal axes, respectively 

vector of displacements of the ith resisting element (equations (2.2) and (2.3» 

X and Y distances from 0 to the principal axes of the i th resisting element when they 

are oriented along the X and Y axes 

X and Y coordinates of the center of mass 

X and Y coordinates of the center of rigidity 

X and Y coordinates of the shear center 

X and Y coordinates of the center of twist 

counterclockwise angle between the X axis and the major principal axis of the ith 

resisting element 

counter-clockwise angle between the X axis and principal axis I of the system 
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B.2 Multi-Story Buildings 

ai transformation matrix of the i'h resisting element defined by equations (3.5) to (3.7) 

a transformation matrix defined by equation (3.21) 

aO transformation matrix defined by equation (4.19) 

B matrix equal to Ky - KyxK~lK.ry 

C ai and Chi proportionality constants for the i'h resisting element defined by equation (4.1) 

C xi and Cyi proportionality constants defined for the i'h resisting element defined by equations 

(4.15) in case all the elemental principal planes are oriented along the X and Y axes, 

Cx, CY' Cry, C"e and Cye 

c 

I 

proportionality constants defined by equations (4.3) for buildings with any orienta

tions of elemental principal axes, and by equations (4.16) for buildings with orthogo

nal orientations of the elemental principal planes 

proportionality constants defined by equations (4.29a,b) 

diagonal matrix of dimension N with jth diagonal entry equal to COSllj 

perpendicular distances from reference points OJ to the major and minor prinCipal 

planes of the i th resisting element, same for all floors 

static eccentricity of j'h floor defined as the distance between its centers of mass and 

rigidity 

Xj and Y j components of static eccentricity ej 

diagonal matrices of diagonal entries equal to exj and eyj. respectively 

unit matrix 
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major and minor principal axes of the jlh floor 

polar moments of inertia of the t floor about vertical axes passing through its center 

of mass, reference point 0), and center of rigidity, respectively 

JM,J O and J R diagonal matrices of diagonal entries equal to fMi' f o), and f R), respectively 

k 

K 

K' 

K, 

lateral stiffness matrices of the jlh resisting element along its major and minor princi

pal planes 

lateral stiffness matrices of the jlh resisting element along the X and Y directions, 

which are also along its principal planes 

characteristic matrix defined for special class buildings with any orientations of ele

mental principal planes, given by equation (4.1) 

characteristic matrices defined for a special of buildings with orthogonal orientations 

of elemental principal planes, given by equations (4.15) 

building stiffness matrix with respect to degrees of freedom u defined at refernce 

points 0) 

building stiffness matrix with respect to degrees of freedom Ii defined at the centers 

of rigidity of the building 

building stiffness matrix with respect to degrees of freedom u' defined at the centers 

of rigidity of the building 

matrix contribution of the i1h resisting element K 

submatrices of K, given by equations (3.8) and (3.9) 

Kxo; or K ox, ,Kyo; or KBy; and KOi 

submatrices of K; given by equations (3.8) and (3.9) 
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submatrices of K defined by equations (3.10) and (3.11) 

submatrices of K defined by equations (3.10) and (3.11) 

submatrices of K defined by equations (3.15), (3.24) and (3.25) 

submatrices of K' defined by equations (3.19), (4.29) and (4.22) 

mass of the r story 

m diagonal matrix with diagonal entries equal to mj' given by equation (3.14) 

building mass matrix defined at story centers of mass 

o 
J 

reference point of the r floor lying on vertical axis Z 

N number of stories 

load vector; pT = < p; p[ T~ > 

equal to SP .. and SPY' respectively 

load vectors applied at the centers of rigidity, along X j and Y j reference directions, 

respectively 

diagonal matrix forms of vectors p .. , P y ,P~ and p~, respectively 

vector of forces applied at floors of the ilb resisting element, given by equations (3.2) 

and (3.3) 

Qa. and Qhi vectors of static lateral forces applied at the floors of the i th resisting element along 

its major and minor principal planes, respectively 
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vector of static torsional moments applied at the floors of the jlh resisting element 

about the vertical axis of intersection of its principal planes 

s summation matrix given by equation (3.47) 

s diagonal matrix with diagonal entries equal to sinrrj 

T diagonal matrix with diagonal entries equal to tanl1j 

vector of torsional moments applied at the centers of rigidity of the building 

lateral displacements at reference points OJ of the r floor. along Xj and Y j • respec-

tively 

Ii~j and Ii)'j lateral displacements at the center of rigidity of the jlh floor. along Xj and Y j• respec-

• d' U'j an uJ/j 

u 

li 

• U 

v· I 

tively 

lateral displacements at the centers of rigidity of the r floor. along its principal axes. 

I j and II j • respectively 

rotation of the t floor about a vertical axis 

degrees of freedom defined at OJ; u T = < u; uJ u~ > 

degrees of freedom defined at (;enters of rigidity; liT = < li; li; u~ > 

degrees of freedom defined at centers of rigidity; u·
T 

= < U;T ~;: u~ > 

vectors of displacements U~j and Uyj. respectively 

vectors of displacements Ii xj and Ii yj. respectively 

vectors of displacements U;j and u;/j. respectively 

vector of rotations ufjj 

diagonal matrix form of vector Ufj 

displacements vector of the jth resisting element. given by equations (3.2) and (3.3) 
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Vai and v h, inters tory shear forces of the ith resisting element along its major and minor principal 

planes, respectively 

V xi and V Y' vectors of the X and Y components of interstory shear forces experienced by the ith 

resisting element 

reference axes of the jth floor, same direction for all floors 

Xr coordinates of the center of mass, center of rigidity" shear center and center of 

twist of the lh floor 

YMj' YRj, YSj and YTj 

Y r coordinates of the center of mass, center of rigidity, shear center and center of 

twist of the j'h floor 

diagonal matrices of XMj' XRj, XSj and Xrj' respectively 

YM. YR. Ys and Yr 

diagonal matrices of YMj' YRj' YSj and Yrj' respectively 

(XR). (xs) and (xr) 

vector forms of diagonal matrices XJi, Xs and Xr, respectively 

(YRI,{Ysl and {Yrl 

o 

vector forms of diagonal matrices YR, Ys and Yr, respectively 

zero matrix 

counterclockwise angle between Xj and the major principal plane of the ith resisting 

element, same for all floors 

counterclockwise angle between Xj and I j of the jth floor 
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1 vector of ones of dimension N 
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