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ABSTRACT

This investigation of the coupled lateral-torsional response of buildings with unsymmetric plan

to earthquakes is organized in three parts.

In Part I, the elastic response of torsionally-coupled, one-story framed buildings to earthquake
ground motion, characterized by Tesponse spectra of three different shapes, is studied. The earth-
quake response is presented for a wide range of values of the various system parameters, including
the beam-to-column stiffness ratio parameter which characterizes the degree of frame action. The
base shear and torque in a torsionally-coupled system is compared with the base shear in the
corresponding torsionally-uncoupled system, and the effects of torsional coupling on earthquake
forces are identified. Also investigated is the effect of frame action on the forces in frame
members.

In Part II, an effective procedure is developed for estimating the maximum response of a class
of torsionally-coupled, multi-story buildings due to earthquake ground motion characterized by
smooth response spectra. Several properties characterize this class of buildings, the most impdrtant
of which is: all frames (spanning along either of two orthogonal directions) have pt-oporti'onal
lateral stiffness matrices. It is demonstrated that the maximum response of such a torsionally-
coupled, N-story building in its nj"" mode of vibration can be determined exactly by analyzing (1)
the response in the j* vibration mode (j=1, 2, .., N) of the corresponding torsionally-uncoupled,
N-story system; and (2) the response in the n™ vibration mode (n=1, 2 -for a one-way symmetric
plan) of an associated torsionally-coupled, one-story system. The total response is then determined
by an appropriate modal combination rule.

Utilizing the aforementioned analysis procedure, the earthquake response of torsionally-
coupled buildings is presented for a wide range of system parameters. Based on these results, it is
demonstrated that the building response depends significantly on tﬁe static eccentricity ratio e/r, the
uncoupled torsional to lateral frequency ratio Q, the beam-to-column‘ stiffness ratio pr, and the
uncoupled, fundamental, lateral vibration period 7,,. It is concluded that the response contributions

of the higher vibration modal-pairs increase with increasing 7,, and decreasing p. However, if T,
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is in the acceleration- or velocity-controlled regions of the earthquake design spectrum, the first two
vibration modal-pairs are sufficient to estimate the response to a useful degree of accuracy; the fun-
damental vibration modal-pair suffices if T,, is in the acceleration-controlled region of the spec-
trum. By comparing the responses of torsionally-coupled buildings with those of corresponding
torsionally-uncoupled systems, the effects of lateral-torsional coupling on building motions and

forces, arising from lack of symmetry in building plan, are identified.

In Part III, centers of rigidity, centers of twist, shear centers and static eccentricities are
defined and procedures developed to determine their locations for one-story and multi-story build-
ings of general plan layouts. It is found that, unlike one-story systems, the various centers at each
floor of a multi-story building generally do not coincide, and their locations not only depend on the
geometric and stiffness characteristics of the building but also on the height-wise distribution of
lateral forces. Thus, static eccentricities can not be uniquely determined for multi-story buildings.
A special class of buildings is identified, where the centers of rigidity, the centers of twist and the
shgar centers are coincident, load-independent and lie on a vertical liné. Since torsional provisions
in most building codes are based on the evaluation of static eccentricities, the provisions should
strictly be applied to the special class of buildings, and further work is necéssary to develop code

provisions for buildings not belonging to this special class.
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PREFACE

This work on the earthquake response of torsionally-coupled buildings is organized in three

parts:
o  Part I: Earthquake Response of Torsionally-Coupled, One-story Buildings

e Part II: Earthquake Analysis and Response of a Special Class of Tdrsionally-Coupled.‘Multi-

Story Buildings

e  Part III: The Static Eccentricity Cohcept in Building Code Analyses
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PART I
EARTHQUAKE RESPONSE OF TORSIONALLY-COUPLED,
ONE-STORY BUILDINGS



1. INTRODUCTION

Buildings subjected to ground shaking simultaneously undergo lateral as well as torsional
motions if their structural plans do not have two axes of mass and stiffness symmetry. Coupled
lateral-torsional motions can also occur in nominally symmetric buildings-- buildings with structural
plans that have two axes of mass and stiffness symmetry-- if ground shaking includes a torsional
component or due to unforseen conditions such as unbalanced load distributions or differences
between actual and assumed-mass and stiffness distributions. As a result of coupled lateral-
torsional motions, the lateral forces experienced by various resisting elements (frames, shear walls,
etc.) would differ from those experienced by the same elements if the building had symmetric plan

and hence responded only in planar vibrations.

The dynamic response of a special class of torsionally-coupled multi-story buildings with
resisting elements idealized as shear beams have been shown in previous studies to be related to the
response of an associated one-story system with properties derived from those of the multi-story
building [1,2). Furthermore, torsional provisions of most building codes are based largely on
results obtained by analyzing torsionally-coupled one-story systems. Since many multi-story build-
ings consist of moment-resisting frames for which a shear beam idealization may be inappropriate,
it is necessary to reexamine the relations between such multi-story buildings and the associated
one-story systems, and to study the effect of frame action on coupled lateral-torsional response of
buildings. This study of the dynamic response of torsionally-coupled one-story buildings is a first

step in this direction.

The earthquake response of torsionally-coupled one-story systems has been investigated exten-
sively in the past few years. Parametric studies have been performed [3,4,5,6,7,8]; the effectiveness
of the torsional provisions in building codes in capturing the important response features has been
evaluated [4,5,9,10,11]; and different proposals to improve code provisions have been suggested

[5,9,10,12,13,14].

The objectives of this investigation are: (1) to investigate how the elastic response of

torsionally-coupled buildings is influenced by the various system parameters, including the effect of
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frame action, characterized by the beam-to-column stiffness ratio; (2) to evaluate the‘effects of
lateral-torsional coupling in building response; and (3) to investigate the effect of frame action on
the member forces of resisting elements. The ground motion is assumed to be uniform over the
base of the building so that torsional response arises only from asymmetry of building plan. The
results _of this investigation provide a basis for the analysis and understanding of the response of

. multi-story buildings, presented in Part II.



2. SYSTEMS AND DESIGN SPECTRA

The linear systems studied are idealized single-story buildings, each consisting of a rigid deck
(or floor), where the mass of the structure is lumped, supported by massless, axially inextensible
resisting elements. The resisting elements are frames, shear walls, columps or shear-wall cores,
with their principal axes oriented along the principal axes, X and Y, of the system (Figure 1). The
resisting elements are symmetrically located about the X-axis, which is an axis of symmetry for the
building plan. The dynamic response of such systems to the horizontal component of ground
motion along the Y-axis, the direction perpendicular to the axis of symmetry, is investigated. Since
the building is not symmetric about the Y-axis, it will undergo coupled lateral-torsional motions.
The responses are presented for a wide range of the system parameters which will be identified in

Section 3.

The earthquake ground motion is characterized by its pseudo-acceleration response spectrum,
Conservative values of system response can Be obtained by idealizing the spectrum of an actual
earthquake by a flat branch in the short-period raﬁge and by a hyperbolic branch in the long-period
range (Figure 2), and taking the larger of the responses for the two branches [8]. Thus, two ideal-
ized response spectra are considered in this study: flat or period independent pseudo-acceleration
spectrum, and hyperbolic pseudo-acceleration spectrum (or flat velocity spectrum). The two ideal-
ized spectra are especially useful since normalized response quantities of the system do not depend

on the system vibrational periods but only on their ratios [1,3].

The system is also analyzed for the earthquake input characterized by the smooth design spec-

trum of Figure 3, which is developed by well known procedures [15] for excitations with maximum

ground acceleration a,, velocity v, and displacement &, of 1g, 48 in/sec and 36 in, respectively.
For a damping ratio of 5 % and 84.1 percentile response, amplification factors of 2.67, 2.32 and
2.04 are obtained from [15] for thé maximum ground acceleration, velocity and displacement,
respectively, leading to the design spectrum (Figure 3). Comparing the shape of the design spec-
trum to the a,-v,-&, plot, it is apparent from Figure 3 that the response of short-period structures is

controlled by ground acceleration, that of medium-period structures by the ground velocity and that
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of long-period structures by ground displacement. The obtained spectrum can thus be subdivided
into three regions: the acceleration-controlled region, the velocity-controlled region and the

displacement-controlled region.
The design spectrum of Figure 3 is replotted in Figure 4 as a normalized pseudo-acceleration
spectrum to emphasize that the spectral acceleration is constant (flat spectrum) in part of the

acceleration-controlled region, and varies as 1/T (hyperbolic spectrum) in the velocity-controlled

region.
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3. EQUATIONS OF MOTION

Due to the rigidity of the deck and symmetry of the mass and stiffness distributions about the
X-axis, the single-story system has only two dynamic degrees of freedom: translational displace-
ment u, of the center of mass (CM) of the deck along the Y- axis, relative to the ground, and the

rotation u, of the deck about a vertical axis. The equations of motion governing u, the vector of

system degrees of freedom defined by u’ = <u, ru, >, where r is the radius of gyration of the floor

about a vertical axis passing through its CM, will be developed in this section.

The building stiffness matrix, K, is the sum of the resisting element stiffness matrices, K;,

both developed for degrees of freedom u:

K=Y K, (3.1

Frames and shear walls are assumed to contribute to system lateral stiffness only along the
directions of their own planes. Shear deformations are negligible for frame members so that only
flexural deformations are considered for frames. Columns contribute to system lateral stiffnesses
along both the X- and Y- axes. Because the individual tprsional stiffnesses of frames, shear walls
and columns are negligible, the contributions of these resisting elements to the torsional stiffness of
the building are primarily due to the lateral stiffnesses of these resisting elements. On the other
hand, the torsional stiffness of a core eiement is significant, and its contribution to the torsional
stiffness of the building is due to its torsional stiffness as well as to its lateral stiffnesses along the

X and Y axes.
The stiffness matrix K; of the i* resisting element is determined by the following procedﬁ:e:
1.  Define the local degrees of freedom for each resisting element (Figure 1b) as follows:

(a) For a shear wall define one translational degree of freedom at the floor level, along the
plane of the shear wall, (X- or Y- axis), and a rotational degree of freedom about the horizon-

tal axis perpendicular to its plane, (Y- or X- axis).
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(b) For a frame define one translational degree of freedom at the floor level, along the plane
of the frame, (X- or Y- axis), and a rotational degree of freedom per joint about horizontal

axes perpendicular (o the plane of the frame, (Y- or X- axis).

(c) For a column define two translational degrees of freedom at the floor level along the X-

and Y- axes and two rotational degrees of freedom about the X- and Y- axes.

(d) For a coré define five degrees of freedom: two translations along the principal axes of the
core, two rotations about these axes, and one torsional rotation about a vertical axis passing

through the shear center of the core.

Obtain a complete stiffness matrix for the resisting element for the degrees of freedom
defined, taking into account flexural and shear deformations for shear walls and cores, and

only flexural deformations for frames and columns.

Eliminate the joint rotational degrees of freedom of the resisting elements by the static con-
densation process. The resulting condensed matrix, k,, of a core element ‘i’ is diagonal and

of dimension equal to three, satisfying the following equation:

i Qxi kxi 0 0 Vi |
Qi = Qyi = 0 kyi 0 vyi = kl' v; (32)
Qo 0 0 Ky Vi

where &, and k, are the lateral stiffnesses of the element along the two principal directions, X
and Y, and &, is the torsional stiffness of the core about a vertical axis passing through its
shear center. The applied static forces Q,, @, and Q5 and resulting displacements
V.i» ¥y and vy in these three directions are related through &, &, and &, respectively. Since
ke is negligible for columns, shear walls and frames, and k,, is negligible for frames and shear
walls oriented in the Y- direction, (k, is negligible for elements along the X- direction), equa-

tions (3.2) are simplified for these resisting elements. For columns, we obtain:

Q. ki O Vi
Q= 0, =1o ky; vy =k, v, (3.3)
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For shear walls and frames oriented in the X- direction:
Q.= ku v (3.42)
and for resisting elements oriented in the Y- direction:

le; = kyi Vyi (3.4b)

Determine the transformation matrix, a;, relating the resisting element displacement vector, v,,

to the system degrees of freedom, u. For a core, a, is given by:

Vi 0 -—yir
uy
v, = Vyi = 1 x,-/r [ rug } =a;u (35)
Vi 0 r

where x; and y; are the X- and Y- coordinates of the shear center of a horizontal section of

core ‘i’ relative to the CM of the system. Transformation matrix a; of a column is given by:

Vo 0 —yir u,
vi = Vyi - 1 x;/r rug =au- (36)

where x; and y; are the X- and Y- distances of the column principal axes from the CM of the
system. For frames and shear walls, with their planes para]lel to the X- axis, a,; is obtained

from:

, u
V=<0 —yilr> {ruye} =a;u 3.7

where y, is the distance of the frame or shear wall from the X- axis. Similarly, if the plane of

the frame or shear wall is parallel to the Y- axis, a; is given by:

u
v =<1 x/r> { ” J =a; u (3.8)
9

where x; is the distance of the frame or shear wall from the Y- axis.

The contribution of resisting element ‘i’ to building stiffness matrix is K;, and is determined

by:
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1
Kyi 7 Kyei ‘
Ki = a“T k‘ a; = 1 1 (39)
‘,T Keyi F Ko;
where,
Ky" = ky"
KyQI = Kﬂyt =X kyl' and 1 ) (310)

Ko = ko + x} ky + yE kg

As mentioned earlier, k,, is negligibly small for all types of resisting elements except cores,
and that either k,; or k, is negligible for frames and shear walls,"c'lepending on their orienta-
tions.

Using equation (3.1), the building stiffness matrix, K, for deg‘rees of freedom u, is given by:

1
K, - |
K = 1 (3.11)
2

1
— K K
r & r 8

with,

Ky=21<y,.=2ky,

K, = Kg, = 2 Ko = Z x; k, and, (3.12)
Ko =3, Koi = 3, (koi + x7 kyi + ¥7 ki)

The center of rigidity (CR) of a single-story system is the pdint on the rigid deck through
which the application of a horizontal static force causes pure translation of the deck without any
twist. Also, a static torsional moment about a vertical axis causes pure twist of the floor about the
vertical axis passing through the CR. These two properties of the CR legitimize the use of different

terminology for the same point, e.g. center of resistance, center of stiffness, center of twist, center
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Utilizing either one of these two properties, the

...efC..

of rotation, center of torsion, shear center,
distance between the CR and the CM of the floor of the single-story building, usually referred to as

stalic eccentricity, can be shown to be:
x; ky;
e = E’i = _Z‘__y_ (3.13)
K, 2 kyi -
The building mass matrix for degrees of freedom u is:
m 0 %
M=, (3.14)

where m is the mass of the floor.
The undamped equations of motion for the single-story system, assuming linear behaviour,

subjected to earthquake ground motion acceleration, a,(¢), along the Y- axis, are:

1
(3.15)

et

5 uy(t)
rug(t)

£
m 0 (1) r
0 m riig(t) * K 1
y 2

It is apparent from these equations of motion that translational ground motion along the Y- axis

will simultaneously cause both Y- lateral displacement of the CM as well as torsional rotation of

T _
=< vy rug >,

the floor about a vertical axis.
Alternatively, the equations of motion can be written for degrees of freedom v

where v, is the lateral displacement at the CR, along the Y- axis, relative to the ground. Simple

transformation of equations (3.15), yields:
m -_m £
. r i N 0 {vy(t)) { : } (3.16)
io ()| * =-m gy (1) :
-m< m[1+ (elr)] rig()| | o % K| (e —e/r| T

where,
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Kop = Kg — €°K, ‘ (3.17)

Clearly, if the static eccentricity, e, is zero, equations (3.15) and (3.16) become identical and
also become uncoupled. In this case, the earthquake ground motion only causes lateral displace-

ment governed by the first uncoupled equation:

m (1) + K, (1) = —mag(t) o1 ¥ () + ol v,(1) = —a,(t) (3.18)
in which,
K, -
o, = Af 2 (3.19)
m

is the lateral vibration frequency of the corresponding uncoupled system. The second uncoupled
equation leads to the torsional vibrational frequency of the corresponding torsionally-uncoupled sys-

tem:

K, K
w9=4/L’;=,\["2—(£)2w} (3.20)
mr mr r

The uncoupled system is obtained from the actual system by shifting its mass so that the CM coin-

cides with the CR, without modifying the locations of the resisting elements (Figure 5).
Two other definitions of the uncoupled torsional vibration frequency were given in earlier

investigations: a/K,/ mr? in reference (3], and A/Koz/m (e2+r2) in references [7] and [9], for exam-

ple. These are derived from equations (3.15) and (3.16), respectively, by neglecting the off-
diagonal terms of these equations. The frequency 4/K,/mr? can physically be interpreted as the
uncoupled torsional vibration frequency of a system with coincident centers of mass and rigidity
but with torsional stiffness at its center of rigidity equal to K, rather than K., which imblies a
modified configuration of resisting elements compared to the actual coupled sysiem. On the other
hand A/Kgz/m(e*+r?) is the uhcoupled torsional vibration frequency of a system with coincident

centers of mass and rigidity but with radius of gyration defined at its center of mass equal to

~e2 + r* rather than r, which implies modified mass properties. Therefore, both of these definitions
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T

' Earthquake Ground Motion a,,(r)

(a) Coupled Building

i CM and CR h

e=0

‘. W
' a,,(¢)

(b) Corresponding Uncoupled System

FIGURE 35 Torsionally-coupled Building and its Corresponding Uncoupled System
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for the uncoupled torsional vibration frequency imply modification in either the stiffness or mass
properties of the actual coupled system. Hence, the definition of equation (3.20) is preferred since
it is the torsional frequency of an uncoupled system that has the same resisting elements

conﬁguration and mass distribution as the coupled system (Figure 5).

The undamped equations of motion of equations (3.15) are simplified to become:

i, (1) , |1 elr u(t) | - 1 7
rigey | £ [eir @+ em? | | ooy [ =7 0] 900 -2
where,
Q=2 (3.22)
W

is the uncoupled torsional to lateral frequency ratio. Clearly, the coupled lateral-torsional response
of the system to ground motion, a,,(¢), will. depend on the three system parameters: e/r , Q and o,.
Damping is defined in each of the two natural modes of vibration of the system. The damping

ratio, £, is assumed to be the same in each mode of vibration.
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4. ANALYSIS PROCEDURE

The systems described in Section 2, with their equations of motion presented in Section 3, are

analyzed using the standard Response Spectrum Analysis (RSA) method, by which the maximum

earthquake response of the system can be estimated by the following procedure:

1.

Define the smooth pseudo-acceleration design spectrum for the structure at the particular site.
Define the structural properties of the system

(a) Compute the mass, m, of the deck

(b) Compute the stiffnesses, X, , K4 and K,, of the building using equations (3.12)

(c) Determine the radius of gyration, r, of the deck about a vertical axis passing through its

cM
(d) Compute the static eccentricity, e, from equation (3.13), and the eccentricity ratio, e/r

(e) Compute the uncoupled lateral and torsional frequenciés, o, and w,, using equations (3.19)

and (3.20), and the uncoupled torsional to lateral frequency ratio, Q = wy/w,.
(f) Estimate damping ratio, £. In this study & is chosen to be 5 % in each mode of vibration.

Solve the eigen problem

1-(=2y elr
> PN w
elr Qz+(e/r)2-(—w“i)2 o 0 '

y

for the natural vibration frequencies and mode shapes of the system. We obtain:

‘ ¥
2 2 2 2
B, = w, _ [l + (e/;) + Q + Jil 1+ (8/;) -Q ]2 + (e/r)2Q2} (n=1,2) (42)

and,
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N V. B 43
Gy = Cly, _\/ 1_53 (n—7) ()

(elr)+(1-a2)
where the mode shapes have been normalized so that:

al a, = a;,“’,, +al =1 ’ 4.4)

Compute the maximum response in individual modes of vibration repeating the following
steps for each mode:

(a) Corresponding to period T, ( = 2an/w, ) and damping ratio, §, read the pseudo-acceleration

ordinate, S,,, of the earthquake design spectrum

(b) Compute the displacement vector at the CM from:

U, o, o, a,,
url = [ ’ ] = " { ’ } San = . San an (4'5)
Tig), 2 Con 2 ‘

W, w,

The lateral displacement at the CR, v,,, is given by:

2

[4 ayn
Vyn = Uy, + 7(!‘“9") = —zsan (46)

@y

(c) Compute the equivalent force vector, f,, which applied statically at the CM causes dis-

placements u,, and ruy,, from:

fyn ayn "
f, = for | = m o, o, | San=m a,, S,, a, 4.7
The equivalent static torsional moment actually is equal {0 rf,,.

(d) Compute, by statics, the base shear, V,, base overturning moment, M,, and the base torque

at the CM, Ty, from the external forces f,, and rfg,:

Vao=fm=Wal =W, (4.8)
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M= hfr=hV, (4.9)
Sﬂ’l
Tyn=7r fon=Wra, og, T 4.10)

where W is the weight of the one-story buiiding, h its story height, and W, its effective

weight in the n™ mode of vibration, such that:

L]

W, 2
= ol with Y W,=W @.11
] N

w ”

The base torque at the center of rigidity, Tx,, is obtained from:
Tan = Tosa = € Va = Wr ay, (g, = £ ,,) = = 6, V, (4.12)

where e, can be referred to as the effective eccentricity in the n® mode of vibration, satisfy-

ing:

- = - £ (4.13)
p

It is seen later (Section 6) that it is meaningful to express Ty, in terms of W,. Substituling

equations (4.8) into (4.12), we obtain:

L L] SG’I

TRn.=enwn_ = (
8

« Wi WS‘"' 4.14
enw)( g) (4.14)

(e) Compute the internal forces in structural members of a resisting element ‘i’ associated

with the vector of lateral and rotational displacements, determined from u, obtained in step 4

(b), by:

v, =a, u, (4.15)

where the transformation a; depends on the type of resisting element (equations (3.5) to (3.8)).

The joint rotations of the resisting element, which were statically condensed out earlier, are

computed from v, using its complete stiffness matrix, defined earlier in Section 3. Internal
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forces in each member of the resisting element are then computed using the stiffness of the

member and its joint rotations and displacements.

Determine an estimate of the maximum, ¥, of a response quantity by combining its modal

maxima, F,, according to an appropriate combination rule. Since the vibrational frequencies
of such systems may be closely spaced, the cross-corelation between modal responses can be
significant. Thus, the combination rule used, should take this effect into account. A heurisli-
cally motivated combination rule that considers this effect [6,8], was utilized in earlier investi-
gations of the dynamics of torsionally coupled systems [ex. 1,2,3]. The more recent Complete

Quadratic Combination (CQC) rule [17], which leads to essentially identical results as the ear-

lier rule, is utilized in this work. According to the CQC rule, an estimate of the maximum 7

of the response quantity can be obtained from:

n=1m

2 2 va
r=1|% >, Yon T T (4.16)

where 7y,,, is the cross-correlation factor between modes ‘n’ and ‘m’, and 7, and 7, are the
modal maxima of the response quantity in modes ‘n’ and ‘m’, rcspeptively. The cross-
correlation factors, v,,, are, in general, functions of the duration and frequency content of the
ground motion, as well as the natural frequencies and modal damping ratios of the system.
For smooth earthquake response spectra, representative of broad-frequence-band excitations,
for long earthquake durations compared to the natural periods of the system, and for equal

modal damping ratios, &, v,, iS approximated by [17]:

8E2(1 + Gum) o

Yom = . (4.17)
(1= Gon ) + 482G (1 + Gpm ) :
in which,
wll
Gom = (4.18)
a)m

Equation (4.16) can be written as:
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vy o
r= [1; + 15+ 27,7 1'2] (4.19)

in which the first two terms represent the well-known combination rule: the Square-Root of
the Sum of Squares (SRSS) of the modal maxima. The last term accounts for the cross-

correlation between modes ‘1’ and ‘2°, and is espécially important when the natural frequen-
cies w, and w, are close to each other. In computing the modal maxima r, from step 4, using
equations (4.5) to (4.12), .. etc., I, the algebraic sign obtained for r, should be retained. The
last term in equation (4.19) assumes positive or negative values depending on whether 7, and

¥, have the same or opposite algebraic signs.
In order to facilitate the subsequent interpretation of the effects of lateral-torsional coupling,
the lateral displacement at the CR, v, the base shear, V, the base overturning moment, M, and the

base torque at the CR, T, are expressed in normalized form:

i?:—y"_/z—‘t/—’ﬁz and — = R= —7— (4.20)

where v, ,V,and M, are the maximum lateral displacement, base shear, and base overturning
moment, of the corresponding torsionally-uncoupled system, defined earlier, with coincident centers
of mass and rigidity, but all other properties identical to the actual system. The maximum uncou-

pled quantities are determined from:

Sa

Y

Vo= —,V,=m§
2
b4

and M,=mh S, 4.21)

ay
w

where S, is the pseudo-acceleration response spectrum ordinate corresponding to lateral vibration

period (T, =2n/w,) and damping ratio § of the uncoupled system.

The normalized quantity, T, can be interpreted as the dynamic eccentricity, e,, the distance
from the CR of the system where the uncoupled base shear should be applied statically to cause a
base torque equal to T, at the CR of the system {3,7]. The ratio e, /e then represents the dynamic

amplification of the static torque eV,. This definition of e, is preferred over others [7] as it is akin
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to the concept underlying building code provisions for torsional forces.

The parameters controlling the normalized response quantities of equations (4.20) arc

h

identified by considering the contributions of the n™ vibration mode to these normalized response

quantities, which can be determined from equations (4.6) to (4.10) and (4.21), leading to:

V=V, =M 2 San » So 4.22)
V" = = = n = .
T T s, T W s,
and,
€an = e Son en W, S..
r Rn ayn ( Cgp r a_yn ) Say r W Say ( )

The ratio of spectral ordinates S, and S,, is dependent, generally, on the values of T, anq T, and on
the shape of the spectrum. However, S,,/S,, depends at most on the ratio T,/T, for the flat or hyper-
bolic idealized spectra, described in Section 2; it is equal to one or to ®, = w,/o, = T/T, for the
two spectra, respectively. Thus, it can be observed from equations (4.2),(4.3),(4.19),(4.22) and
(4.23) that the normalized responses depend only on e/r , Q and £ in the case of the idealized fat
and hyperbolic pseudo-acceleration spectra, and on e/r,Q, w®, (or T,)and § in the caSe of

arbitrary-shaped spectra.
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5. VIBRATION FREQUENCIES AND MODE SHAPES

The natural frequencies, w, (n=1,2), of the coupled system, normalized by «,, the uncoupled
lateral frequency, are given by equation (4.2) and plotted in Figure 6 agaiﬂst Q= wy/w,, the uncou-
pled torsional to lateral frequency ratio, for three values of lhe: eccentricity ratio, e/r: 0.05, 0.4 and
1.0. Also included for comparison are the uncoupled frequencies w, and wy, normalized by w,, in

order to identify the effects of lateral-torsional coupling on the natural vibration frequencies.

It is apparent from Figure 6 that the uncoupled frequencies, o, and w,, are upper and lower
bounds of the coupled frequencies, so that as e/r increases the fundamental frequency decreases
below wy and w,, while the second frequeﬁcy increases above o, and w,. Naturally, the coupled fre-
quencies are closest to the uncoupled ones for systems with smallest e/r values. For torsionally-
flexible systems, (i.e. Q below unity), w, is the upper bound for w,, while w, is the lower bound for
w,. On the other hand, for torsionally-stiff systems, (i.e. Q above unity), wy‘is the upper bound for
w;, while w, is the lower bound for w,. For systems with closely spaced uncoupled frequencies,
(i.e. Q around unity), the coupled frequencies are closest to one another, with the closeness most
pronounced for systems with smaller values of ¢/r. The system is unstable for Q equal to zero,

since, in this case, the fundamental frequency, ,, is zero.

The displaced position of the deck of the structure vibrating in the n™ mode of vibration is

shown in Figure 7. The lateral displacement at the CM equals ay, while that at the CR cquals

oy, @;. The X-axis of symmelry rotates through an angle equal to c,,/r about a point P at a dis-
tance —roy, /o, from the CM. The lateral displacement at any point on .the X-axis, located a dis-

tance x from the CM, is given by o, + (x/r) og,.

The lateral and torsional components, a,, and a,,, of the n® vibration mode shape, are plotted
p y P P

in Figure 8 against Q for the three values of e/r: 0.05, 0.4 and 1.0. As a result of the orthogonality

property of the vibration modes, ai a, = 0, it can be shown that o, = a4, and o,; = —a,,. Thus,
the lateral component of one mode equals the torsional component of the other. As Q increases,

the lateral component, e, of the fundamental mode increases and its torsional component, «y),

y1»
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decreases. For torsionally-stiff (Q > 1) systems a,, approaches unity and «,, approaches zero as Q
becomes large. Tl;us, in this case, the fundamental mode contains predominantly lateral motions
and the secdnd‘mode predominantly. torsional motions. Torsionally-flexible (Q < 1) systems with
smaller e/r ratios have smaller a,, values than og,, but the modes are not predominantly lateral or
torsional, unless e/r is very small. For systems with closely spaced uncoupled frequencies (Q = 1),
the lateral and torsional motions are of comparable magnitude, especially for systems with small

elr.

The cross-correlation factor, y,, given in equation (4.17), is plotted in Figure 9 against Q for
various ¢/r values and for 5 % dampihg. The variation of y, is closely related to the spacing of
», and »,. Since the two coupled frequencies are closest for systems with Q = 1 and small ¢/r
values, v, is largest at Q = 1. For larger e/.r values, the frequencies o, and w, are widely spaced
for any value of Q resulting in small y,,. The cross-correlation term of equatioh (4.19) is, there-

fore, significant for systems with small e/r ratios and Q = 1, i.e. closely spaced unboupled frequen-

cies.
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6. EFFECT OF LATERAL-TORSIONAL COUPLING

The effect of lateral-torsional coupling on the response of one-story buildings to earthquake
ground motion is investigated in this section. This is achieved by comparing the response of the
torsionally-coupled building to the lateral response of the corresponding torsionally-uncoupled sys-
tem for both the idealized (flat and hyperbolic) acceleration spectra and the general design spectrum

of Figure 4.

Figure 10 shows the variations of the normalized base shear V, (which also equals v and M),
and the dynamic eccentricity ratio e,/r, (equations (4.20)), against the uncoupled frequency ratio €,
for different e/r values, for flat and hyperbolic response spectra. For the corresponding
torsionally-uncoupled system, V =1 and e,/r=0. The effect of lateral-torsional coupling is, there-
fore, measured by the deviation of V from unity and e,/r from zero. The dynamic amplification of
eccentricity is measured by the deviation of e,/r from e/r; the latter is shown‘ in Figure 10 by

dashed lines.

The results of Figure 10 indicate that lateral-torsional coupling has the effect of reducing V
and increasing e,/r. These effects increase as e/r increases and are also dependent on Q. For sys-
tems with smaller e/r values, V reaches its minimum value and ed/r- its maximum value, for values
of Q around unity, i.e. when the uncoupled lateral and torsional frequencies are close to each other.
As e/r increases, V reaches its minimum values at values of Q below unity, while e,/r reaches its
maxima for values of Q above unity. For torsionally-stiff systems (Q > 1), V approaches upity as Q
becomes large, indicating that there is essentially no reduction in the base shear, while ¢,/r
approaches e/r, implying no dynamic ampliﬁc’atipn_of ecéentricity. For lorsiqnally-ﬂexible systems
(Q < 1) with smaller ¢/r, there is little reduction in basé shear. The dynamic eccentricity ratio, e/,
for torsionally-flexible systems (€2 < 1) is less than e/r in the case of hyperbolic spectrum and

approaches zero as Q tends to zero, but ¢,/r is almost equal to e/r in the case of flat spectrum, indi-

cating no dynamic amplification.
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Dynamic amplification of static eccentricity increases with decrease in e/r. For systems with
smaller ¢/r ratios, dynamic amplification is most pronounced when the uncoupled frequencies are
closely spaced, but for systéms with la.rger e/r dynamic ainpliﬁcation ism'éigniﬁcant over a wider
range of Q below and above unity in the case of flat spectrum, and in the range of Q aboye unity in
the case of hyperbolic spectrum. However, the maximum dynamic amplification of static eccentri-

city is about the same for flat and hyperbolic spectra.

For arbitrary-shaped earthquake response specua, the cohpled lateral-torsional response of the
structure depends on the uncoupled lateral vibraﬁon period T, in addition to the system paramelers
e/r and Q, which influenced the response of the structure in case of flat or hyperbolic spectra. In
order to understand the rble that 7, plays in structural response, V and e,/e due to earthquake
ground motion characterized by the design spectrum of Figure 4, are presented in Figures 11 and

12. Responses are presented as a function of Q for different values of e/r ratios and two values of

T, equal to 0.25 and 2.5 sec. Also shown in these figures are V and e /e computed for the flat and
hyperbolic spectra, 1o provide a basis for interpreting the response trends. The T, values chosen,

0.25 and 2.5 sec, fall on the flat and hyperbolic branches of the spectrum of Figure 4, respectively.

Referring to Figure 11, the normalized base shear V for systems with small e/r is insensitive

to the shape of the spectrum or to T,. As e/r increases, V computed for the general spectrum fol-
lows cither that determined for the flat or that for the hyperbolic spéctrum depending on T,. If 7, is
in the acceleration-controlled region, (or the flat portion of the spectrum), V for the spectrum of
Figure 4 is essentially the same as that for the flat spectrum, while if T, is in the velocity-controlled
region, (or the hyperbolic portion of the spectrum), V is esseniially the same for the arbitrary and
hyperbolic spectra. The deviations from the idealized curves increase with increase in e/r, and are
relatively large for torsionally-flexible systems. The deviations are basiéﬁlly due to the coupled
vibration periods of the system falling on different branches of. the spectrum of Figure 4. As

expected, based on Section 2, V due to flat and hyperbolic spectra are upper bounds of V for the

general spectrum.
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Referring to Figure 12, the dynamic amplification of eccentricity, defined by e /e = Tp/eV,, in
systems subjected to ground motion characterized by the design spectrum of Figure 4 is essentially
the same as that for the flat or the hyperbolic spectrum depending on 7,. The discrepancies occur
for torsionally-fiexible systems and are more pronounced for 7, equals 0.25 than 2.5 sec. This is
because the base torque at the CR is dominated by the fundamental mode (see Appendix A), and
for torsionally-flexible systems the fundamental vibration period is very long and falls on a
different branch of the spec@m than 7,. As expected, based on Section 2, e;/e due to flat and

hyperbolic spectra are upper bounds of ¢,/e for the general spectrum.

The maximum lateral displacements v, (x) of the symmetry axis of the building, normalized
with respect to the lateral displacement v,, of the corresponding torsionally-uncoupled system, are
shown in Figure 13 for values of Q equal to 0.5, 1.0 and 1.5, and values of e/r equal to 0.05, 0.4
and 1.0. The curves are computed using both idealized spectra, flat and hyperbolic, and the general
design spectrum of Figure 4 for values of 7, equal to 0.25 and 2.5 sec. For systems with small e/r,
the maximum lateral displacements of the symmetry axis are insensitive to the shape of the spec-
trum and are relatively close to the maximum lateral displacement v, for the corresponding uncou-
pled system. The base-shear plots of Figures 10 and 11 imply that for systems with larger e/r the
maximum lateral displacement of the torsionally-coupled system at its CR (x = ¢) is smaller than v,,,
and this is confirmed by Figure 13. In contrast, the maximum lateral displacements at some other
points on the symmetry axis may be larger than v,. The maximum lateral displacements at points
on the symmetry axis on the flexible side of the building, (the side of the building opposite to
where the CR lies relative to the CM, i.e. x<e), are generally larger than v, increasing as x
decreases below e and as e/r increases, being larger for torsionally-flexible systems compared to
systems with closely spaced uncoupled frequencies or torsionally-stiff systems. The maximum
lateral displacements at points of the symmetry axis on the stiff side of the building, (the side of the
building where the CR lies relative to the CM, i.e. x>e), generally increase as x increases above e
for torsionally-flexible systems and systems with closely spaced uncoupled frequencies, more so for

the former, so that, in some cases, they become larger than v, as x increases over e. For

yo
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torsionally-suff systems, however, the maximum lateral displacements v,(x) vary linearly with x,

decreasing as x increases, and are below v,, for points on the stiff side of the building (x> e).

The maximum base shear, V, due to earthquake ground motion characterized by the design
spectrum of Figure 4, is plotied against the uncoupled, lateral vibration period T, in the form of
response spectra (Figure 14). The value chosen to non-dimesionalize V is the maximum base shear
for a rigid single-degree-of-freedom system with lumped weight W. Results are presented for Q
values equal to 0.5, 1.0 and 1.5 and e/r vah{es of 0.05, 0.4 and 1.0. Also included in this figure for
comparison is the normalized base shear V, for the corrcséonding torsionally-uncoupled system,
which is identical to the pseudo-acceleration spectrum. It is apparent that torsional coupling gén-
erally has the effect of reducing the base shear, with the amount of reduction depending on e/r and

Q, except for very short period systems with large e/r.

Figure 15 shows the base torque at the CR, Ty, normalized by e;W,a,/g, plotted against T, in
the form of a response spectrum for values of e/r equal to 0.05, 0.4 and 1, and for values of Q
equal 0.5, 1 and 1.5, due to ground motion characterized by the design spectrum of Figure 4.

Referring to equation (4.14), the normalization factor chosen is the torque obtained if the maximum

base shear Wa,/g of a rigid single-degree-of-freedom system of lumped weight W is applied at a
distance e;W;/W, measured from the CR of the system. Also included in Figure 15 for comparison
is the quantity V,(e;W;/W), the torque obtained if the base shear of the corresponding uncoupled

system is applied at an eccentricity e;W;/W, also normalized by e;Wa,/g, i.e. V,g/Wa,, which is

equivalent to the normalized pseudo-acceleration spectrum S,/g. It is apparent from Figure 15 that,
for torsionally-stiff systems, the normalized base torque spectrum is similar to the V,(e/W[/W)
spectrum, although it is slightly underestimated by the latter for systems with smaller e/r, and
overestimated for systems with larger e¢/r. For torsioﬁally-ﬂexible systems (Q<1), the normalized
base torque is considereably smaller than the pseudo-acceleration spectrum over a wide range of T,

in the acceleration-, velocity- and displacement-controlled regions of the spectrum, since the
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fundamental vibration period is much longer than 7,, causing its contribution to base torque to be
small. On the other hand, the second mode contribution to base torque is. significant for systems
with small e/r and closely-spaced uncoupled frequencies (Appendix A), and the cross-correlation

term for the base. torque between the two modeé is negative (Figure A.1), causing a reduction in the
base torque, in this case, relative to V,e,W;/W in all regions of the spectrum.

Figure 16 éhows v,, the maximum lateral displacerﬁent at the CR, due to earthquake ground
-motion chg:acterized by the design spectrum of Figure 4, normalized by the maximum ground dis-
placement, ‘Eg. as a function of 7, for various values of e/r and Q. Also shown in Figure 16 is v,,,
the maximum lateral displacement of the corresponding torsionally-uncoupled system, also normal-
ized by u,. The variation of v, with Ty follows that of v,, with minimum discrepancies occuring for
low e/r values. The variation with Q is most pronounced- for long-period systems with larger e/r

values.
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7. EFFECT OF FRAME ACTION

The overall earthquake response of the system was shown in the previous sections to be
influenced by the overail system parameters ¢/r , Q.and 7, (as well as by § and m, & or r). There-
fgre, the overall responses of two buildings with different floor plgns and different types of resisting
elements are identical provided these system parameters are the same for the two buildings. On the
ol_iler hand, the local responses of the system, e.g. member forces in individual resisting elements,
depend on the location of the element, whether it is‘a frame, shear wall, or shear-wall core, in addi-
tion to the overall parameters of the s;"stem. In particular, the forc\es in frame members depend, in

part, on the degree of frame action.

The joini rotation index, p, of a frame, is defined as the ratio of the sum of the stiffnesses of
all beams at the mid-height story of the frame to the summation of the stiffnesses of all the

columns at the same story [18]. It is expressed by:

S ELIL,
p= (7.1)

S CELIL,

columns

For a one-story, single-bay frame with column moment of inertia, /, bay width Z and story height

h, p becomes:

_h b 5
P=5T 7T (7.2)

The parameter p is a measure of frame action. The limiting case p =0 represents a flexural column
with beams imposing no constraint to joint rotations, and the othef iimiting case p = oo represents a
shear frame in thch joint rotations are ‘corni)letely restrained and the deformations occur only
through double curvature bending of the columns. Intermediate values of p represent frames with
both beams and columns undergoing bending deformations with joiht rotations.

To study the effect of frame action on local member forces, consider a frame spanning in the
Y direction at a distance x from the CM of the building (Figure 1). The maximum lateral displace-

ment of the frame v,(x), which is the combination of the contributions of the two vibration modes
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of the building, depends on the system parameters e/r , Q, T, and &, as well as on x, but is indepen-
dent of p. Member forces in the one-story frame are proportional to v,(x). For a single-bay frame

with joint rotation index p, the frame base shear

El 6(1+12p)

V(x) = W 1+3p Vy(x) | (7.3
The column base moment is given by:
_ EI 3(1+6p)

and the beam moment, M,(x), and column axial force, P.(x), by:

_pn Lo El _18p
Mb(x)—Pc(x)z = %2 1+3p

vy (x) (7.5)

Figure 17 shows the variations of the proportionality constants of equations (7.3) to (7.5) as a
function of p. As p decreases to zero, i.e. the beams become increasingly flexible, the beam
moment and column axial force tend to zero while the base shear and column base moment tend (o
the corresponding values for cantilever columns, i.e. to 6E1v,(x)/h3 and 3Elv,(x)/h2, respectively.
As p increases to infinity, V(x), M.(x) and M,(x), and P.(x) tend to 24EIv,(x)/h?, 6EIv(x)/h? and
12EIv (x)/Lh?, respectively, the values for a shear building. Also it is apparent from Figure 17 that

all member forces increase with increase in p, provided other parameters are kept constant.

As the member forces in a frame are proportional to the lateral displacement v,(x), their varia-
tion with positions x of the frame along the symmetry axis, can also be interpreted from Figure 13
presented earlier. It was shown that the lateral displacements of frames on the flexible and stiff
sides of torsionally-flexible systems may be significantly larger than the lateral displacement of the
corresponding torsionally-uncoupled ‘system, and these displacements increase as e/r increases. The
lateral displacements of frames on the flexible side of torsionally-stiff systems with large e/r, or
systems with closely-spaced uncoupled frequencies may also be larger than in the uncoupled sys-

tem. Therefore, the frames on either the flexible or the stiff side of the building may experience
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larger member forces due to lateral-torsional coupling, depending on the location of the frame, as

well as on the overall system parameters.
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8. CONCLUSIONS

This study of one-way symmetric buildings subjected to the horizontal component of ground

motion, perpendicular to the axis of symmetry, leads to the following conclusions:

ey

2)

3

4)

)

The coupled laleral-torsibnal response of buildings to an earthquake depends on: the static
eccentricity ratio e/r,‘fhe uncoupled torsional to lateral frequency ratio Q, the uncoupled
lateral- vibration period T,, and the damping ratio & of the structure. In addition to these
parameters, p, the joint rotation index or the beam-to-column stiffness ratio of the resisting

elements influences the member forces in individual elements of the building.

Lateral-torsional coupling modiﬁes the natural vibration frequencies of the system, with the
effect decreasing with décreaging e/r and being smallest at Q = 1. »

The coupling -between the lateral and torsional components of mode shapes is weak for
torsionally-stiff systems (2> 1), and for systems with small e/r and widely spaced uncoupled
frequencies; for such syslerﬁs each mode shape is predominantly lateral or torsional.
Lateral-torsional coupling has the effect of reducing the bvase shear, base overturning moment
and lateral displacement at the center of rigidity, but increasing the torque. These effects
increase as e/r increases and are most pronounced for systems with Q close to 1. For
torSionally-stiff systems with Q considerably greater than 1, there is essentially no reduction in
base shear and the torque is essentially equal to the base shear times the static eccentricity,
i.e. there is no dynamic amplification of static eccentricity. Systems wﬁh closely spaced
uncoupled frequencies exhibit maximum dynamic amplification of static eccentricity, espe-

cially for smaller e/r ratios.

The respbnse spectra for base shear, base overturning moment and the lateral displacement at
the center of rigidity of torsionally-coupled systems are similar in shape to the corresponding

spectra for the uncoupled system, but with smaller ordinates with the amount of reduction
depending strongly on e/r and Q, but to a lesser degree on T,, except for torsionally-flexible

systems with large e/r ratios where the dependence on 7, is more pronounced.




(6)

N

(8)
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The normalized base torque spectrum for torsionally-stiff systems is similar to the

V,(eyW/W) spectrum, the product of the base shear for the uncoupled system and the
dynamic eccentricity in the fundamental mode of vibration, although it is slightly underes-

timated by the latter for systems with smaller ¢/r and overestimated for larger ¢/r. However,
for torsionally-flexible systems the base torque is grossly overestimated by V, (e;W;/W ).

The maximum lateral displacements of\ the symmetry axis at points on the flexible side of the
building are generally larger than the lateral displacement v, for the uncoupled system,
increasing as e/r increases and are larger for torsionally-flexible systems compared to
torsionally-stiff systems or systems with closely spaced imcoupled frequencies. The maximum
lateral displacements of the symmetry axis at points on the stiff side of the building are also
generally larger than v, for torsionally-flexible systems and systems with closely spaced
uncoupled frequencies, more so for the former than the latter. For torsionally-stiff systems,
however, the maximum lateral displacements vary almost linearly with distance and are gen-

erally smaller than v,, on the stiff side of the building.

Any member force of a resisting element is proportional to the lateral floor displacement of
the resisting element. As a result, maximum member forces of resisting elements of the cou-
pled system may increase or decrease due to lateral-torsional coupling, depending on the posi-
tion of the element and on the controlling parameters of the system. Thus, elements on the
flexible or stiff side of the building may experience larger member forces than the correspond-

ing uncoupled system.
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APPENDIX A: MODAL CONTRIBUTIONS

| In the interpretation of the effect of lateral-torsional coupling on the response of ihe building,

it is necessary to study the conlfibuﬁons of the two modes to various resi)onse quantities.
Fifst, the concept 6f unit modal respohsé is iniroduced. It is the rééponse of the structure in
an individual mode of vibration with unil value for the pseudo-acceleration response ordinale, S,,.
' The unit response in the n* vibratién mode is given by equations' (4.6), (4.78), (4.9) and (4.14) with
S., = | tor the lateral displacemem of the cent-er of rigildity, basé sheaf, base overturning mbment.
and base torque at the center of rigidilry, respectively. The maximum value of any respbnse quan-
tity duer to an individual vibration mode is the product of the unif respoﬁse in that mode and the

ordinate S,, of the pseudo-acceleration response spectrum corresponding to that mode.
In discussing the contributions of the two coupled modes to the response, it is useful to nor-

malize the unit responsc in the n™ mode by the unit response of the uncoupled system. The unit
modal base shear, base overturning moment and lateral displacement at the CR, normalized respec-

tively by the unit base shear, base overturning moment and floor lateral displacement of the

corresponding uncoupled system, are all represented by W,/W, as is obvious from equation (4.22).

From equation (4.23), the unit modal base torque at the CR normalized by the product of r and the
unit base shear of the uncoupled system is given by e,W,/rW. The normalized unit modal lateral

and torsional quantities W,/W and e,W,/rW are presented in Figure A.l against Q for various e/r

values.

Referring to Figure A.1, the comribution'bf the second mode to the unit translational response
of the systém is negligible compared to that of the fundamental mode for torsioﬁally-stiff systems.
For torsionally-flexible systems, the fundamental mode contribution to unit translational response of
the system is si_gniﬁcantly lower than that‘ of the _seéond mode for smaller e/r values but is quite
la.rgé for large e/r ratios. For‘syslems with closely-spaced uncoupled frequencies, the two modes

contribute almost equally to the unit translational response of the sysiem for low to medium e/r

values, but the second modal contribution is significantly smaller than that of the fundamental mode
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when e/r is large.

The second modal contribution to the unit base .torque at the CR of the building is
significantly smaller than that of the fundamental mode for medium to la:ge‘ values of e/r. The
contribution of the fundamental mode to the unit base torque increases with increase in e/r, while
that of the second mode decreases with the increase in e/r. The maximum modal contribution to
unit base torque of the buildihg occurs at values of Q very close to one for small to medium e/r
and larger than one for large e/r. When elr is very small, the contributions of the two modes arc
almost equal when the uncoupled frequencies are closely-spaced.

The conclusions dréwn from Figure A.1 combined with the observations of Section §, lead us
to the following conclusions:

(1) The unit translational response of coupled systems with predoﬁlinantly lateral and predom-

inantly torsibnal modes, is dominated by the predominantly lateral mode.

(2) The unit torsional response of coupled systems is dominated by the fundamental mode, excépl
for sySlems with small e/r and closely-spaced uncoupled frequencies. In this latter case, the

contributions of both modes are almost equal.

The actual contribution of a vibration mode to the response is the product of the unit modal
contribution and the pseudo-acceleration ordinate. The actual modal contribution may be higher or
lower than the unit modal contribution depending on the ordinate of the spectrum, which in turn

depends on the vibrational period value and the shape of the spectrum.




)

agy(t)

€4

K_y ’ KBy »

Kor

- 53 -

APPENDIX B: NOTATION

ransformation matrix of element ‘i’, defined by either of equations (3.5), (3.6), (3.7)

or (3.8)

maximum ground acceleration

ground acc;eleration as a function of time

stali'c eccentricity defined as the distance between the centers of mass and rigidity
dynamic eccentricity defined as the distance from the CR where the uncoupled base
shear should be applied to cause base torque at the CR equal to T,

effective eccentricity in the n™ mode of vibration, defined by equation (4.12)

dynamic eécentricity in the n® mode of vibration, defined by equation (4.23)
equivalent static lateral force in the n™ mode of vibration, defined by equation (4.7)

equivalent static torsional force in the n'" mode of vibration, defined by equation (4.7)

T=<f yn Sfen>

height of single-story system

moment of inertia of beams

moments of inertia of columns

lateral stiffnesses of element ‘i’ along the X and Y directions

torsional stiffness of core ‘i’ about a vertical axis passing through its shear center

stiffness matrix of element ‘i’ with respect to degrees of freedom v,

e and Ky

elements of K, defined by equations (3.12)

building torsional stiffness about a vertical axis passing through its CR, determined

by equation (3.17)
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Koy, » Ky, and Ky;

elements of K,, defined by equations (3.10)

building stiffness matrix defined with respect to dégrees of freedoﬁ u
stiffnesé matrix of element ‘i‘_’,computed for degrees of freedom u

lengths of beams

length of columns

mass of deck |

building mass matrix deﬁned with respect to u

base overturning moments of coupled and uncoupled systems, respectively
base overturning moment .of coupled systém due to the n* mode of vibration
normalized cqupled base OVerturning mbment, deﬁqed by equation (4.20)

normalized coupled base overturning moment in the n™ mode of vibration, defined by

equation (4.22)

M, (x), M.(x)and P(x)

q’lﬂl
an and Qyi
Qo

Qi

maximum beam moment, base column moment, and column axial force, respectively,

of a frame spanning along the Y-axis at a distance. x from the cM

coupled frequency ratio, w,/w,,

applied iaterai forces at element ‘i’, along the X and Y direc[i.ons, respectively
applied torsional moment at element ‘i” about a vertical axis -

vector of applied forces to element ‘i’, defined by either of equations (3.2) or (3.3)

radius of gyration of deck about a vertical axis passing through its CM
maximum of a response quantity of the coupled s‘ystem

maximum of 7 in the n'" mode of vibration




u,(1)

ug(t)
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pseudo-acceleration response spectrum ordinate corresponding to T, and &

pseudo-acceleration response spectrum ordinate corresponding to T,, (n=1,2), and &

n" natural vibration period of coupled system
natural lateral vibration period of uncoupled system

base torque of coupled system at its CR

base torques of coupled system at its centers of mass and rigidity, respectively, duc

the n®* mode of vibration

normalized coupled base torque at the CR, defined by equation (4.20)

normalized coupled base torque at the CR, in the n™ mode of vibration, defined by

equation (4.23)
maximum ground displacement
lateral displacement of CM alqng the Y-axis
deck rotation about a vertical axis
T

u' =< u, rug >

lateral and torsional displacements in the n'" mode of vibration
lateral displacements at the CR of the coupled system
lateral displacement of uncoupled system

lateral displacement at the CR in the n™ mode of vibration

normalized coupled lateral displecment of CR, defined by equation (4.20)

normalized coupled lateral displacement, in the n™ mode of vibration, defined by

equation (4.22)



Vix)
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maximum ground velocity

v =< vy Tug >
vector of displacements of element ‘i’, defined by either of equations (3.2) or (3.3)

lateral displacements of element ‘i’, along the X and Y principal directions of the cle-

ment

rotation of core ‘i’ about a vertical axis passing through its shear center

lateral dispacment of a frame spénning along the Y-axis at a distance x from the CM
lateral displacement of element ‘i’ in lhe n™ mode of vibration

base shears of coupled and uncoupled systems, 'respectively

base shear of coupled system due to the n® mode of vibration

normalized coupled basg sheqr.‘ defined by equation (4.20)

normalized coupled base shear in the n™ mode of vibration, defined by equation

(4.22)

maximum base shear of a frame spanning along the Y-axis at a distance x from the

M

total weight of the building

effective weight in the n'" mode of vibration, defined by equation (4.8)

7 X and Y coordinates of element ‘i’

a: =< ayn Qg >, (D=1,2)
lateral and torsional components of natural coupled mode
lateral and torsional components of the n™ natural coupled mode shape -

frame joint rotation index or beam-to-column stiffness ratio




CM

CR
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natural vibration frequeﬁcy of coupled system

n™ coupled natural vibration frequency, (n=1,2)

lateral natural vibration frequency of uncoupled system, defined by equation (3.19)
torsional natural vibration frequency of uncoupled system, defined by equation (3.20)

uncoupled torsional to lateral frequency ratio, w,/w,

1
w, /o

Y
cross-correlation factor between coupled modes ‘n’ and ‘m’
damping ratio, chosen to be 5 %

center of mass

center of rigidity






PART II
EARTHQUAKE ANALYSIS AND RESPONSE OF A SPECIAL CLASS
OF TORSIONALLY-COUPLED, MULTI-STORY BUILDINGS






1. INTRODUCTION

Buildings subjected to ground shaking simultaneously undergo lateral as well as torsional
motions if their structural plans do not have two axes of mass and stiffness symmetry. Coupled
lateral-torsional motions can also occur in nominally symmetric buildings-- buildings with structural
plans that have two axes of mass and stiffness symmetry-- due to unforseen conditions such as
unbalanced load distributions or differences between actual and assumed mass and stiffness distri-
butions, or if ground shaking includés a torsional component. As a result of coupled lateral-
torsional motions, the lateral forces experienced by various resisting elements (frames, shear walls,
etc.) would differ from those experienced by the same elements if the building had symmetric plan

and hence responded .only in planar vibrations.

The dynamic response of torsionally-coupled buildings can be determined with the aid of
general-purpose computer codes [e.g. 1,2] based on standard modal analysis procedures. However,
for a special class of buildings, it has been demonstrated [3] that the total response (including all
vibration modes) of a torsionally-coupled, N-story, shear building with rigid floor-diaphragms-- a
system with 3N degrees of freedom (DOF)-- to ground motion characterized by smooth response
spectra may be determined by analyzing the total responses of two smaller systems: (1) a
corresponding torsionally-uncoupled, N-siory system-- a system with N DOF; and (2) an associated
torsionally-coupled, one-story system-- a systeh with 3 DOF. This analysis procedure; was shown
10 lead to "exact" results if the variation of earthquake spectral acceleration with vibration period is

flat or hyperbolic. For arbitrary-shaped smooth spectra, the procedure was shown to lead to results

that are not "exact" but are accurate to a useful degree.

One of the major objectives of this investigation is to extend the aforementioned analysis pro-
cedure o buildings consisting of moment-resisting frames, shear walls and other resisting elements
for which the shear-beam idealization is inappropriate. For such a building, the procedure is
demonstrated to be equally applicable provided it belongs to a special class of buildings identified
later. Tt is also shown that, contrary to earlier conclusions [3], the procedure is not "exact" for

shear buildings (or other types of buildings) even for flat or hyperbolic spectra. However, it is
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demonstrated that, even for an arbitrary-shaped earthquake response spectrum, the response in a
vibration mode of the building can be "exactly” determined from appropriate modal responses of
the aforcmentioned smaller systems. The total response of the building can then be determined

"exactly” using an appropriate modal combination rule.

Mosl previous studies of the responsc of lo'rsionally-coupled buildings have also been con-
cerned with multi-story buildings idealized as shear-bearﬁ mddels [4,5]. Response results obtained
by the rcsponsc-'speclrum method for a ten-story shear-beam building wilh medium eccentricity
ratio énd uncoupled torsional to lateral frequency ratio slightly larger than ﬁnity, were compared to
time history analysis and 1o static approaches that are inherenl in building codes [4]. This study
has shown that the response spectrumlapproach is quite accurate if corréclly applied, while the
static approaches give inconsistent results. The square root of the sum of squares (SRSS) of modal
maxima as an estimate of maxixﬁum response was compared [5] to a more refined combination rule
that takes into accdunl the cross-corrclation between modes [6] for twelve-étory shear-beam build-
ings with fundamental unco‘ui)led lateral vibration period of one sec, and uncoupled lorsional-to‘
lateral frequency ratios ranging between 0.7 and 1.4. It was shown that the SRSS combination rule
overes.limates the base torque especially for systems with small eccemricily ratios and for uncou-

pled torsional to lateral frequency ratios between 0.75 and 1.25.

Rgcent work [7,8] has demonstrated that the earthquake responses of buil‘dings‘ undergoing
only lateral vibration (i.e. no torsional motions) are significantly influenced by various parameters
including the beam-to-column stiffness ratio (of the joint rotation index). The second objective of
this study is to bring this paramelei into . the study of torsionélly-‘couplé\d buildings. Thus, the
earthquake response of torsionally-coupled buildings is" investigatéd for a wide range of values of
the beam-to-column stiffness ratio, the fundamental uncoupled lateral vibration period, the ratio of
uncoupled torsional and lateral vibr‘ation. frequencies, and the eccentricity between the centers of
mass and centers of rigidity of the building. The effécts of lateral-torsional coupling oﬁ building
response are idemiﬁed, the influence of the beam-to-columh stiffness ratio is investigated, and the

significance of the higher mode contributions in building response is established in order to provide




a basis for simplified analysis procedures {7].
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2. SYSTEMS AND DESIGN SPECTRA
2.1 A Special Class of Buildings
The center of rigidity of a one-story system with a rigid deck is the point in the plan of the
deck through which a horizontal static force must be applied for the deck to translate without tor-
sion. If the force is along either of the principal axes, which are orthogonal and pass through the

cenler of rigidity of the syslcml the deck translates in the same direction as the force. If a pure tor-

sional moment is applied at the deck, torsion of the deck takes place around the center of rigidity.

Unlike one-story buildings, 1t is generally not possible 1o uniquely define the centers of rigi-
dity of the various stories of a multi-story building. However, the centers of rigidity can be

uniquely identified for buildings having the following properties:
1.  The centers of mass of all floors lie on a vertical line

The resisting elements (frames, columns, shear walls or shear-wall cores) are arranged such

o

that their principal axes form an orthogonal grid in plan and are connected at each floor level
by a rigid diaphragm.

3. The lateral stiffness matrices of all resisting elements along one direction are proportional 1o

each other; i.e. the lateral stiffness matrix of the i

resisting element in the X direction
K, =C,K,, where C, is a proportionality constant and K, is a characteristic stiffness matrix
for the resisting elements. Similarly, the stiffness matrix of the i™ resisting element in the Y

direction K, = C,; K,. The two reference matrices K, and K, may not be identical.

For buildings having the last two properties listed above, it is shown in Appendix A that the centers
of rigidity of all stories lie on one vertical line. Thus, for this speciai class of buildings, the static
eccentri‘city for each floor, which is d:eﬁned as the distance between the center of mass of the floor
and its center of rigidity, is the sﬁme.

Muili-slory buildings with mixed types of resisting elements, such as frames and columns or
frames and shear walls, spanning along the same direction, do not belong to this special class of

buildings, since lateral stiffness matrices of such elements along the same direction are not




proportional.
2.2 Systems Considered
2.2.1 One-Way Symmetric Plans

The analysis procedure developed in Section 4 is for the special class of buildings defined in
Section 2.1 with the additional restriction that all resisting elements spanning in any of the two
orthogonal directions have proportional lateral stiffness matrices, i.e. K, = K,. Buildings considered
are assumed to have floor plans symmetrical about one axis (e.g. Figure 1), although most of the
analytical development is readily extendable to the more general case with no axes of symmetry.
The buildings considered consist of several massless moment-resisting frames arranged in an
orthogonal grid (e.g. Figﬁre 1), connected at each story level by a rigid diaphragm. The mass of
the building is lumped at the cehters of mass of the various floors. The. centers of mass and the
centers of rigidity of such buildings lie on two vertical lines, a distance ¢ apart. All floors have the

same radius of gyration r about a vertical axis passing through their centers of mass.
2.2.2 Simple Plan

Utilizing- the analysis procedure of Section 4, the response of buildings described in Section
2.2.1 with a simple plan is investigated in Sections 5 to 8. It is shown in Section 3.1 that this sim-

ple plan building is useful in studying the dynamics of the buildings described in Section 2.2.1,

The systems analyzed are idealized five-story buildings with all floors having an identical rec-
tangular plan, symmetrical about the X-axis and consisting of three moment-resisting planar frames
(Figure 2a), connected at each story level by a rigid diaghragm. The mass of the structure is
lumped equally at the centers of mass of the five floors, which are assumed to coincide with the
geometric centers of the floors, which lie on a vertical line. The mass at each floor is denoted by
m, and r is the radius of gyration of each floor about the vertical axis passing through its center of

mass.

The two identical frames oriented along the X- direction are located symmetrically at a dis-

tance y, on each side of the X-axis; each is identified as frame (2). The third frame, identified as
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Frame (2)

— Frame e8]
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(a) Typical Floor Plan
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(b) Typical Frame Elevation

FIGURE 2 Five-story Building with a Simplg Floor Plan
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frmc (1)',‘ is oriented in the orthogonal directioﬁ and is iocaled eccentrically al a distance e away
from the Y-axis. Since this is the only frame’ '6rieﬁted' zil‘ong the Y-ékis. ahﬁ the X-axis is the axis
of symmetry, the center of rigidity of each floor lies on its X-axis at a distance ¢ from the center of
mass of the floor. It follows that the static eccentricities of all floors are the same, equal 10 ¢, and
the centers of rigidity of the floors all lie on a vertical line. The idealized building, therefore,

belongs to the special class of multi-story buildings, described in Section 2.1.

The properties of each frame are uniform over height: constant story hgight, h, and one bay of
width 24 (Figure 2b); all beams of a frame have the same flexural stiffness, EJ,, and the column
stiffness, E!,, does not vary with heigh(.‘ It is assumed that each frame contributes to the stiffness
of the building only in the direction of its own plane, and that the torsional stiffness of each frame
about any vertical axis in its own plane is negligible. All frame members are prismatic with con-
stant cross-seclions. Axial and shear deformations of members are neglecléd so that only flexural .

deformations are considered.

Damping is defined directly in each modc of vibration of the system. The damping ratio, &,

expressed as a fraction of critical damping, is assumed to be the same in each mode of vibration.

Frame action is measured by the -joint rotation index, p, which, as first introduced by Blume
[9], is delined as the ratio of the sum of beam stiffnesses 10 the sum of column stiffnesses at the

mid-height story of the frame:

S - ELIL,
= beams
PTUS T ELIL ' @D

columns

in which L, is the beam width and L. the column height. For the uniform frames considered, equa-

tion (2.1) becomes:

A I

p:

-
‘P-|r—-

By varying the stiffness ratio p, the entire range of behavior of a frame can be covered. For p=0,

the frame behaves as a flexural column with beams imposing no constraint to joint rotations. For




- 67 -

p =oo, joint rotations are restrained so that the frame behaves as a shear beam. Intermediate values
of p, therefore, present frames with both beam and column deformations and joint rotations. The
joint rotation index of frame (1) is denoted by p,, and that of frames (2) by p,. In this study, it is
assumed that p,=p,=p, a condition which, as will be seen later, implies that frames (1) and (2)

have proportional lateral stiffness matrices.

The dynamic response of the systems described to the horizontal component of ground
motion, assumed to be uniform over the base, along the Y-axis is investigated. Since the building .

is not symmetric about the Y-axis, it will undergo coupled lateral-torsional motions.
2.3 Ground Motion and Response Spectra

For earthquake response spectra of arbitrary shape the design forces need not be greater than
those for either a hyperbolic or a flat spectrum that constitute upper bounds to the design spectrum
in the range of periods less than the fundamental period of the structure (Figure 3). These two
idealized spectra are useful since normalized response of the system does not depend on the system
vibrational periods but only on their ratios [10], and because they arev representative of the
acceleration- and velocity-controlled regions of smooth design spectra.

The smooth design spectrum selected is shown in Figure 4. This spectrum is developed by
well known procedures [11] for excitations with maximum ground acceleration, a,, velocity, v,, and
displacement, i, of 1g, 48 in/sec and 36 in respectively. Using a damping ratio of 5 % and 84.1
percentile response, amplification factors of 2.67, 2.32 and 2.04 are obtained from [11] for the
acceleration-controlled, velocity-controlled and displacement-controlled regions of the spectrum,
respectively. It is apparent from the shape of the design spectrum that the response of short period
slructureé is controlled by ground acceleration, that of long period structures by the ground dis-

placement and that of intermediate period structures by the ground velocity.
The design spectrum of Figure 4 is replotted in Figure 5 as a normalized pseudo-acceleration
spectrum to emphasize that the spectral acceleration is constant (flat spectrum) in part of the

acceleration-controlled region, and varies as I/T (hyperbolic spectrum) in the velocity-controlled
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3. EQUATIONS OF MOTION
3.1 Torsionally-Coupied, Multi-Story Buildings
3.1.1 One-Way Symmetric Plans
Each floor of a one-way syrﬁmetric building (e.g. Figure 1) has two degrees of freedom when

subjected to ground motion along the Y-axis: translation along the Y-axis and rotation about a vert-

T

ical axis. The displacement vector u for the sysiem is defined by u' = <u! rul >, where u, is the
vector of Y-lateral displacements of the centers of mass of the floors, relative to the ground; and u,
is the veclor Vof deck rolations aboul a vertical axis; and r is the radius of gyr'alionr of each floor
about a vertical axis passing through its center of mass.

The stiffness matrix of the idealized building, defined with respect to degrees of freedom u, is

given by:

K= ZK, 3.1

where K, is the contribution of the i frame to the building stiffness matrix. K, is related to the
lateral stiffness matrix of the i'" frame which is determined by the following. steps (see Appendix B
for additional information):

(1) Decfine one lateral displacement degree of freedom per floor and one rolational degree of {ree-

dom per joint as shown in Figure 2b.
(2) Obtain a complete frame stiffness matrix with reference to the degrees of freedom defined.

(3) Statically condense out all the rotational degrees of freedom, since there are no external
moments applied at the joints, to obtain the lateral stiffness matrix of the i frame, which is

denoled by k,, if the frame spans along the X-axis, and by k,, if it spans along the Y-axis.

The contribution of the i frame to building stiffness matrix K, is given by:

a

u

. or K, = a; k,, a; ‘ (3.2)

depending on the orientation of the frame plane. The transformation matrices a, and a,, relating the
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lateral degrees of freedom of the i frame to the system degrees of freedom, u, are given by:
a, = [0 —(y,/r)I] and  a, = [1 (/)1 ] (3.3)

where r, is the distance of the i™ frame oriented in the Y- direction from the centers of mass and y,
is the distance of the i** frame oriented in the X- direction from the centers of mass; and I and 0 are

unit and zero matrices, respectively, of dimension N, the number of stories.

Substituting equation (3.3) in (3.2) and the latter in (3.1) leads to the building stiffness matrix:

~

K = (3.4)

where,

K, =Ko = Y xk, and, (3.5)

Ky, = 2 (X.z k,, + k)

The building stiffness matrix, K, given by equations (3.4) and (3.5) is applicable to any build-
ing with orthogonal-system of frames symmetrical about the X-axis. If the resisting frames
oriented in the Y- direction have proportional lateral stiffness matrices, the building belongs to the

special class of buildings identified in Section 2.1 and K, is proportional to K,. In other words, if:

k. =C,.k (3.6)

» »
where k is the characteristic stiffness matrix for the frames, and C,; is a proportionality constant for

the i* frame, then:

K,=(YCi)k=Ck (3.7
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Co

K, (3.8)

Ky =Koy = (D, Cixi ) k=Cpk=

y

The proportionality constant relating K, to K, can be shown to be the static eccentricity, defined in

Section 2.1, of the building (Appendix A), i.e.
P N (3.9)

The building stiffness matrix, K, for buildings with constant static eccentricity is therefore given

by:

<K,
"

| (3.10)
=K, ‘

! ° r2

In the rest of this study, all resisting frames, spanning along either the X- or the Y-axis, are
assumed 1o have proportional lateral stiffness matrices (see Section 2.2.1), i.e. k,, is given by equa-

tion (3.6) and
“ = C.ri k (311)

then, in addition to equations (3.7) to (3.10):

‘ C ., Ca ™ '
Ko=(Y Cx2+Coyi)k=Cok= —= K, = (6 + —2)K, (3.12)
. ‘ G G :
where,
CBR CO 2
er _ Lo 3.13
. c e (3.13)

will be shown in Section 4 10 be directly related to the ratio of the j* uncoupled torsional frequency

to the j*

uncoupled lateral frequency of the building, and, for the class of buildings considered
here, this ratio is independent of *j’. The stiffness matrix of equation (3.10) can now be expressed

as:
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K £K,

r i .
K= Cor (3.14)
e € .2 [2)
—K, —)

K LG eIk

Y

The undamped equations of motion of the building subjected to grou'nd acceleration a,,(f)

along the Y-axis are:

{m 0} i, (1) K, K | {u}.(r)} {m 1] ( 3.15)
0 . + C == 0 [ % 1) .
m| \rig(s) ’EK [ (%)2 + R 1K, rug(r)

¥
Y

2

where m is a diagonal mass matrix of dimension N, the number of stories, with diagonal entries
equal to m;, the mass at the j* floor, j=1, .., N; 1 and 0 are vectors of dimension N with all ele-
ments equal to one and zero, respectively.

3.1.2 Simple Plan

For the system of Figure 2a, equations (3.5) specialize to:

K,o = Kq, = ¢K, (3.16)

K9 = ezkyl + Zy% kxz

The stiffness matrix for the system of Figure 2a is, therefore, obtained by substituting equations

(3.16) into (3.10):

€
k)‘] ‘;‘k),l

K = ,, (3.17)
Kk, (52K, + 2(22)K,,
r r r

If the joint rotation indices of frames (1) and (2) of the simple system of Figure 2a are equal,
i.e. if p, = p, = p, (a condition which is assumed throughout this study), then the lateral stiffness

matrices of the two frames are proportional (Appendix B):



ko = = k| | (3.18)

where /, and /, are the moments of inertia of the columns of frames (1) and (2), respectively. Sub-

stituting equation (3.18) into (3.16c¢) leads to:

I : '
kg (3.19)
1

Ky = (e +2y3

Substituting equations (3.18) and (3.19) into (3.17), the stiffness matrix of the system of Fig-

ure 2a with p, = p, = p is therefore given by:

€
k,\'l “'k},l
r

K= (3.20)

. 2 Y2, I?.
Tk [P 2T kg
! r r

The undamped equations of motion of the system of Figure 2 subjected to ground acceleration

a,(t) along the Y-axis are:

, :
[m 0:| ﬁ"‘(t) kyl 7ky] { uy(t) } {m IJ (3 21)
0 N + e rug()[ =71 0 | T '
m| i rig(t) ﬁk},] [(£)+ 2(£)-_:] k| 6
r r ro

Damping of the system is directly defined in each of the 2N natural modes of vibration of the
system. The viscous damping factor &, expressed as a fraction of crilica1- damping, is assumed to
be the same in each mode of vibration. .

The stiffness matrices for a building with general plan (e.g. Figure 1) (equation (3.14)) and for
a building with the simple plan of Figure 2a (equation (3.20)) are identical provided the static
eccentricity ratio e/r is the same for the two buildings, the lateral stiffness matrices are identical,
i.e. kyy = K,, and 2(vo/r)* /I, = Cep/r*C,. The last of these conditions will be shown later to imply
that the uncoupled torsional to lateral frequency ratios of the two buildings are equal. If in addition

to these three conditions, m, the mass of each floor, and the damping ratio £ are the same for the

two buildings, it is apparent from equations (3.15) and (3.21) that the equations of motion of the
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two buildings are identical, and hence their displacement responses to the same ground shaking are
also identical. Thus, the conclusions from studying the dynamic response of the building of Figure
~ 2ain Sections 5, 6, 7 and 8, are also applicable to buildings, described in Section 2.2.1, with more

general plans, e.g. Figure 1.
3.2 Corresponding Torsionally-Uncoupled, Multi-Story Systems

Equations (3.15) and (3.21) govern the coupled lateral (u,)-torsional (uy) motions of the build-
ings described in Sections 2.2.1 and 2.2.2, respectively. If the centers of mass of these buildings
coincide with the centers of rigidity, i.e. ¢=0 (Figure 6), the building would not experience any tor-
‘sional molions, i.e.. uy =0, when it is subjected (o translational ground motion only. The undamped
equations governing the motions of the corresponding torsionally-uncoupled, multi-story system

with all properties identical to the torsionally-coupled, multi-story building except that ¢ =0 are:
mv, (1) + K, v,(¢) = —-m1a,(r) (3.22)

where v,(1) 15 the vector of lateral floor displacements. These are also the equations of motion for
the planar vibration of frame (1) of Figure 2a subjected to translational ground molion in its own
plane.
3.3 Associated Torsionally-Coupled, One-Story System

It will be shown in Section 4 that the response of a torsionally-coupled, multi-story building
with properties described in Section 2.2.1 can be related to the responses of two systems: the
corresponding torsionally-uncoupled, multi-story system introduced in Section 3.2, and an associ-
ated torsionally-coupled, one-story system with the following properties: (1) the static eccentricity
ratio e/r for the associated torsionally-coupled, one-story system is the same as for all the floors of
the torsionally-coupled, multi-sibry building; and (2) the ratio Ky/r’K, of the associated
torsionally-coupled, one-story system-- where Ky, 1s the torsional stiffness defined at its center of
rigidity, K, its lateral stiffness along the Y-axis, and r its radius of gyration about a vertical axis
passing through its center of mass-- equals the ratio Coe/r>C, of the torsionally-coupled, multi-story

building, an equality which implies that the uncoupled torsional to lateral frequency ratio is
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identical for the two systems (Section 4).

The equations of motion of the associated torsionally-coupled, one-story system subjected to

ground acceleration a, (¢) along the Y-axis, are:

£

: ; AR N S 3.23
r-iig T e Ke rug| — |0 ag,(1) (3.23)

where, the two degrees of freedom of the rigid deck are: u,, the lateral displacement of the center
of mass, along the Y-axis, relative to the ground, and ug, the deck rotation about a vertical axis; w,
is the lateral vibration frequency of the corresponding torsionally-uncoupled, one-story system-- a
system with coincident centers of mass and rigidity (e =0) but all other i)roperties identical to the
associated torsionally-coupled, one-story system; and K, is the torsional stiffness defined at the
center of mass. It can be shown that the torsional stiffness of the associated torsionally-coupled,

one-story system defined at its center of rigidity is given by:

Kop = Ko — €°K, (3.24)
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4. ANALYSIS PROCEDURE

The maximum value (over time) of any response of a torsionally-coupled, N-story bﬁilding,
with onc-axis of symmelry in plan, to earthquake ground motion in the horizontal direction perpen-
dicular to the symmetry axis can be estimateq by the Response Spectrum Analysis (RSA) procedure
applied to the 2N-DOF system. In this section it is shown that, for buildings belonging to the spe-
cial class (Section 2.1) with the additional restriction that all frames having proportional lateral
stiffness matrices (Section 2.2.1), the earthquake response can be determined by analyzing two
simpler systems: (1) the corresponding torsionally-uncoupled, N-story system described in Section
3.2; and (2) the associated torsionally-coupled, one-story system described in Section 3.3.
Although this analysis procedure is developed for one-way symmetric buildings (e.g. Figure 1), it is
extendable to the more general case of no axes of symmetry, as demonstrated earlier [3] for shear
buildings. /

4.1 Frequencies and Mode Shapes

The natural vibration frequencies and mode shapes of the N-story building are solutions of the

eigen-vproblem of order 2N associated with equation (3.15):
2 e

Ky L | 7Ky {¢y } {0]
= 1 4.1)
C 0
‘K, [({72+ =2 1K, - o'm \C
r r C

y 2
. r‘-

¥

It will be shown that these solutions of these equations can be expressed in terms of the frequencies
and mode shapes of two systems: the corresponding torsionally-uncoupled, multi-story system,
defined in Section 3.2; and the associated torsionally-coupled, one-story system introduced in Sec-

tion 3.3.

For the corresponding torsionally-uncoupled, multi-story system e = 0 and the lateral and tor-

sional components of motion are uncoupled; equation (4.1) then reduces to:

(K, -o/m)y=0 (4.2a)

and,




.81 -

—wim]ly=0 (4.2b)

The lateral vibration frequencies »,; and mode shapes y; of the uncoupled system are solutions of

¥/
equations (4.2a). It is apparent that y, are also the torsional mode shapes of the uncoupled system

and the torsional frequencies w,; and lateral frequencies w,; are related by:

‘ C.
= or (4.3)

2
Dy r=C,

Equation (4.3) indicates that the ratio of the j* uncoupled torsional frequency w,; to the j* lateral
frequency w,; does not depend on 'j’. The ratio of the j" uncoupled torsional frequency lo the j"

lateral frequency of the building is, from this point on, denoted by Q, where:

Q=22 o [ Lo | (4.4)
o, reC,

Next it is shown that the natural vibration mode shapes ¢ of the torsionally-coupled building

are of the following form:

¢ & Vj 4
$= - PR N e 5 v, . (4.5)

For ¢ as given by equation (4.5) to be a mode shape, it must satisfy equation (4.1); thus:

2 €
K,—o'm | - K, o v 0 )
e e 2 2 - a, W “lo (4.6)
<K, [(7)'+,Q']Ky-co2m 0¥
r

wherein equations (4.3) and (4.4) have been utilized. Substituting equations (4.2) into equations

(4.6), and premultiplying each of the two sub-matrix equations by ( l/w}; ) y/ results in:

) 1l - o —
) ’ SR B T 4.7
£ (EpLoa {“e}_{o] @7
r r

where @ = w/w,;. Thus, ¢ as given by equation (4.5) is a mode shape of the torsionally-coupled,
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T

multi-story building provided a, where @’ = < a, o, > is an cigenvector of equation (4.7). the

natural frequency of this cdupled mode of vibration, w = & o,;, where & is the cigcnv;iluc of equa-
tion (4.7).

It is possible to physically inlefprel eqﬁﬁlions (4.7) as the eigen;edualioné of the assoctated
one-story system introduced in Section 3.3. Starting"frorri equations (3.23), it can be shown that a
natural vibration frequency « and mode shape -a of the associated one-story system would satisfy

the eigen-equation:

L@y e .
_ o - : = SRR - (4.8)
€ (£)2+QZ_(£)2 ay, 0
r r o, . ” , o
where:
' J's
Q=28 o oS (4.9)
w, rrK .

The frequencies o, and w, are the torsional and lateral vibration frequencies of the corresponding
torsionally-uncoupled, one-story system-- a system with coincident centers of mass and rigidity
(e = 0) but all other properties identical to the associated torsionally-coupled, one-story system.

is identical to equation (4.'17), it is apparent that the latter is

Because equation (4.8) with o, = o,,

the cigen-cquation of the associated torsionally-coupled, one-story system, defined in Section 3.3,
with eccentricity ratio equal 10 e/r, uncoupled torsional 1o lateral frequency ratio equal to Q, and

with the uncoupled lateral ‘frequehcy w, equal to w

)./f, the j* lateral frequency of the corresponding

lorsionally-uncoupléd, multi-story system.

Hence, the natural frequencies, o,;, and mode shapes ¢, pf a lorsionally;coupled, multi-story
building belonging to the speciai class of buildings, defined in Sectién 2.1, with the additional res-
triction of proportional lateral stiffness matrices of all resisting frames, introduced in Section 2.2.1,

are given by:




©, =B, o, ' (4.10):

and,

Onj a),;, ¥, | 411
¢nj B ¢9nj - Cgn V, ( ' )

for n=1,2and j=1,..,N, where o, and y, are the natural frequencies and mode shapes in lateral

vibration of the corresponding torsionally-uncoupled, N-story system; @, and «, are the normalized
frequencies and mode shapes of the associated torsionally-coupled, one-story system. Solving these
two eigen-problems is simpler than the standard method of solving equation‘(4.1), an eigenvalue

problem of order 2N.

Clearly, equations (4.10) and (4.11) are satisfied due to the special form of the building
stiffness matrix, given by equation (3.14), when the lateral stiffness matrices of all frames are mutu-
ally proportional. If this is not the case, the building stiffness matrix is given by equation (3.105,

and it is not possible to achieve the simplification displayed by equations (4.10) and (4.11).

The coupled lateral-torsional responses of buildings, for which equations (4.10) and (4.11) are
valid, to earthquake ground motion can be determined by analyzing the earthquake responses of the
corresponding torsionally-uncoupled, N-story system, described in Section 3.2; and the associated
torsionally-coupled, one-story syslerﬁ, introduced in Section 3.3, for the same ground excitation.
The Response Spectrum Analysis (RSA) procedures for earthquake analysis of the two simpler sys-
tems are described in the next two sections. The results of these two analyses are utilized in Sec-
tion 4.4 to simplify the RSA procedure for the torsionally-coupled buildings of Section 2.2.1, and

the resulting analysis procedure is summarized in Section 4.5.
4.2 RSA of Corresponding Torsionally-Uncoupled, Multi-Story System

The planar vibration of the corresponding torsionally-uncoupled, N-story system due to
ground motion along the Y-axis is governed by equation (3.22). The maximum response of this

system can be estimated from the earthquake design spectrum by the following procedure:



S
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Delermine structural properties:

(a) Compute the mass matrix, m, defined in Section 3.
(b) Compute the lateral stiffness matrix K,, by thf: procedure outlined in Section 3.
(c) Estimate modal damping ratios, &.

Solve the eigen-problem:
(K, -wlm)y=0 | ' . T (4.22)

to determine the natural vibration frequencies w,; (natural periods 7,,=2n/w,) and mode
shapes y; for j=1, .., N.

Compute the maximum response in individual modes of vibration by répeating the following

steps for each vibration mode contributing significantly to the response:

-

(a) Corresponding to-period T,, and damping ratio & of the j* mode, read the ordinate S,; of

the pseudo-acceleration response spectrum of the ground motion. -

(b) Compute the floor displacements vector, v,, from:

‘VJ‘ = — ‘ 2_ Saj w} o ‘ . ) ' (412)
M;wj; '

where,

'LJ.:.ijml and,M,—=W,-TmV,-.‘ , S ‘ -(4-'.13)

(c) Compute the equivalent, static lateral forces, f;, required to cause lateral displacements v,

from: N

. , LJ “ t N
f = W, my, = —-— Saj m V] (414)

J vi j
. M;

(d) Computc the vector of story shears, V;, and the vector of story overturning moments, M,,

from:




- (4.15)
(4.16)

in which, for a five-story building for example, S and H are summation matrices of the form:

1111 1] 12345
01111 01234
§S=100111 and H=4|001 23 (4.17)
00011 000012
00001 00001
In particular, the base shear, Vg, and base overturning moment, My, are given by:
. r L/Z ) . Saj’ .
VBj =1 fj = ﬁj‘saj = WI g and » (418)
MBj =h<]l 2 3 4 5 > fj = h; ij (4.19)
where,
. L? ., h<12345>my,
W=l and h=— v | (4.20)
M, s L

are known as the effective weight and effective height for mode *j’. The effective weight can

be interpreted as the portion of the total weiglit of the building which is effective in producing
the base shear due to the j** mode of vibration [12]. Since the base shear is equal to the resul-
tant of the equivalent lateral forces f;, )z,f may be interpreted as>the height of the resultant
force above the base [12]. |

(e) Compute forces Fj‘in structural members of a frame ‘i’ spanning along the Y-axis at a dis-
tance x; from the centers of mass, by a static anaiysis of the frame subjected to the equivalent

lateral forces, [ C,, /( Z C,;)]1f;, where C,; was defined in equation (3.6). This is implemented
!

by first recovering the condensed joint rotations corresponding to the floor lateral displace-
ments v;, using the complete stiffness matrix of the frame. Beam moments, column moments

and column axial forces are then computed using the relevant joint rotations and lateral
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displacements, and the element stiffness matrices. (See Appendix C for additional details).

4,  Determine an estimate of the maximum value 7, of any response quantity r,(¢), by combining

its modal maxima, ¥, according to:

[&]

~

y Va
r,= [i r; } 4.21)

=1
The Square-Root of the Sum of Squares (SRSS) combination rule is satisfactory because the
planar vibration frequencies ,; of the corresponding torsionally-uncoupled, N-story system
are invariably well separated. As demonstrated in [7], the earthquake response of building
frames may be satisfactorily estimated by including only the first two terms, i.e. the contribu-
tions of only the first two vibration modes, in equalioﬁ (4.21); only the first mode contribution

usually suffices if the fundamental vibration period is in the acceleration-controlled region of

the earthquake design spectrum.
4.3 RSA of Associated Torsionally-Coupled, One-Story System

The response of the associated torsionally-coupled, one-story system defined in Section 3.3 to
ground motion along the Y-axis is governed by equation (3.23). The maximum response of the
system can be estimated from the carthquake response spectrum by the following procedure (see

Part T for additional details):

1. Solve the eigen problem of equation (4.8) to obtain the natural vibration frequencies and mode

shapes of the system, given by:

_ o, 1+ (elr)® + Q2 J 1+ (elr) -
Bpy=- = | et T2 4 S
. o 2 2

V2

+ (el QP L n=12  (4.22)

and,

1 ~elr

a\'l
= ’ = =1,2 .
a, [aen} J = et n=1, 4.23)
(el/r) i n

+ (1 -&2)
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where the mode shapes have been normalized so that:

n

o’ a, = a)? +al =1 (4.24)

Compute the maximum response in individual modes of vibration by repeating the following
steps for each mode:

(a)y Corresponding to period T, ( = 2n/w,; ) of the n™ vibration mode and damping ratio, &, read
the pseudo-acceleration ordinate, S,,, of the earthquake design spectrum

(b) Compute the displacement vector at the center of mass from:

Hyn o Cyn o,
= — _
ta = { Fig, ] T w2 { Ggn ] San — 2 San % C (4.25)

(% o,

The lateral displacement along the Y-axis at a distance x; from the center of mass of the asso-

ciated torsionally-coupled, one-story system is given by:

Uyn(X;) = Uy, + —':4 (rug,) - (4.26)

In particular, the lateral displacement at the center of rigidity, v,, is determined by:
e n
Vo = Uy, + -f—(rue,,) = —y_‘ San @.27

(c) Compute the equivalent external forces which applied statically at the center of mass cause

displacements u,, and rug,, from:

fyn Oyp ’ . ’ T
fn = fon | =7 O | o, San = M Cyn San @ o (4.28)

where m denotes the mass of the system. The equivalent static lateral force is f,» and the tor-
sional moment is rf,,.
(d) Compute, by statics, the base shear, V,, base overturning moment, M,, and the base torque

at the center of mass, Ty,, from the external forces f,, and rfg,:
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Vo= fo=Wal 22 oy 2 (4.29)
M,=h f,=hV, ‘ (4.30)

an

TM’l=rf9n= Wrayn Qgy

(4.31)

- where W is the-total weight of the building, & its story height, and W, its effective weight in

the n™ mode of vibration, such that:

»
W, 2
=

w b

with Y Wy =w (4.32)
1

The base torque at the center of rigidity, Tg,, is obtained from: -

' - : : ’ ; San .'t" ’ ’ ' » '
TRn = TMn - € Vn =Wr ayn(aen - %ayn)? = é, Vn (433)

where ¢, can be referred to as the effective eccentricity in the n™ mode of vibration, satisfy-

ing:
ML (4.34)
;

Determine an estimate of the maximum, 7", of a response quantity by combining its modal

maxima, I, according to an appropriate combination rule.- Since the vibrational frequencies
of torsionally-coupled systems may be closely spaced, the cross-corelation between modal
responses can be significant, and should be considered iﬁ the combination rule used. A heu-
ristically motivated combinaﬁon rule that considers this effect [6,13] wvas utilized in earlier
investigations of the dynamics of tdrsionally-cpupled systems [3,10,14]. The more recent
Complete Quadratic Combination (CQC) rule [15], which ‘leadvs to essentially identjcal results

as the earlier rule, is utilized in this work. According to the CQC rule, an estimate of the

maximum ¥ of the response quantity can be obtained from:
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n=1 m=|

. 2 v
r= [ i > Yum T r,,,} (4.35)

where v,,, is the cross-correlation factor between modes ‘n’ and ‘m’, and 7, and r,, are the
modal maxima of the response quantity in modes ‘n’ and ‘m’, respectively. The cross-
correlation factors, y,,, are, in general, functions of the duration and frequency content of the
ground motion, as well as the natural frequencies and modal damping ratios of the system.
For smooth earthquake response specira, representative of broad-frequency-band excitations,
long earthquake durations compared to the natural periods of the system, and equal modal

damping ratios, &, 7., iS approximated by [16]:

8% (1 + ) Gum
= (1 + gum) g (4.36)

(1- qr::-m)z +4€2qnm(l + qnm)2

in which,

g

Ynm = (4.37)

g

Equation (4.35) can be written as:

Va
r= (e vzgann] . (4.38)

in which the first two terms represent the well-known combination rule: the Square-Root of
the Sum of Squares (SRSS) of the modal maxima. The last term accounts for the cross-

correlation between the two modes of the one-story systems and is especially important when
the natural frequencies o, and w, are close to each other. In computing the modal maxima r,

from step 4, using equations (4.25) to (4.34), the algebraic sign obtained for r, should be

retained. The last term in equation (4.38) assumes positive or negative values depending on
whether 7, and 7, have the same or opposite algebraic signs.

It will be seen later that it is useful to express the lateral displacements u, at the center of

mass, u,(x;) at a distance x, from the center of mass and v at the center of rigidity; the deck rotation
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—

around a vertical axis u,, the base shear V, the base overturning moment M, and the base torques

T, and T; at the centers of mass and rigidity, respectively, in normalized form:

u, ru _ u(x;) _ )
By= =,y = — , Byx) = =, 7= — (4.39)
v, Yy ’ Vo Vo
=V o= M Ty e - Ty
V = —, M = —, T = , — = T = — . 4_40
v, M, M rv, r k rv, ( )

where v,, V, and M, are the maximum lateral displacement, base shear and base overturning
moment of the corresponding torsionally-uncoupled, one-story system, a system with coincident
centers of mass and rigidity, but all other properties identical to the associated torsionally-coupled,
one-story system. The uncoupled system responses are determined from the standard formulas for

single-degree-of-freedom systems [12]:

vy =2 v,=mS, and M,=mhS (4.41)

ay ay

where §,, is the pseudo-acceleration response spectrum ordinate corresponding to lateral vibration

period (7, =2n/w,) and damping ratio & of the uncoupled system.

The normalized quantity, Tr, can be interpreted as the dynamic eccentricity, e,, the distance
from the center of rigidity of the system where the uncoupled base shear should be applied stati-
cally 1o cause a base torque equal to T, at the center of rigidity of the system [10]. The ratio e,/e

then represents the dynamic amplification of the static torque eV,,.

The contribution of the n™ vibration mode to the normalized response quantities can be deter-

mined from equations (4.25) to (4.34), leading to:

— ﬂyn ayﬂ ay" San
g=1_ 1= {aen} S - (4.42)

Uyn(x;) = Uy, + - Hgy (4.43)




— ‘—/ _ A_l _ 2 San _ W‘ San (4 44)
Vp = Vo = n - ayn Say - n Say .
_ San
TMII a),,, Og, (4.45)
Say
and,
€in = = e S e: ] San
T = iRy F TMn -—V,=— Wn (446)
r r r Say

where W, is the effective weight of the associated torsionally-coupled, one-story system expressed

as a fraction of its total weight.

An estimale of the maximum normalized response 7, can be determined by CQC of its modal

maxima 7, i.e.

1 m=1

2 % ‘
F - [ Y T F,,,} @.47)

4.4 RSA of Torsionally-Coupled, Multi-Story Buildings

It was shown in Section 4.1 that the natural frequencies «,; and mode shapes ¢,; of a

nj
torsionally-coupled, N-story building belonging to the special class of buildings (defined in Section
2.1), with the additional restriction of proportional lateral stiffness matrices of all its frames (Sec-

| tion 2.2.1), can be determined from the j* frequency and mode shape of the corresponding

torsionally-uncoupled, N-story system and the n" normalized frequency and mode shape of the
associated torsionally-coupled, one-story system. It will be demonstrated next that the response in
a natural vibration mode of the building can also be determined by analyzing the two smaller sys-

tems.
4.4.1 Modal Displacements

Transforming the equations of motion [equation (3.15)] of the torsionally-coupled, multi-story

building to modal coordinates, it can be shown that the peak value of the displacement response in
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the njh vibration mode is:

S N PRI | 4.48
unj = ruenj - wstnj anj ’nj ( . )

where §,,, is the pseudo-acceleration response spectrum ordinate corresponding to ,; (or period
J p nj P

T,; = 2nlw,;) and damping ratio & for the nj vibration mode; and

—aT — T —
Lnj = ¢}'"j ml=g« vj ml= a),,, Lj (4.498)

yn

in which equations (4.11) and (4.13a) have been introduced; and the generalized mass:

M, = ¢, m &n; + %Tn,‘m $or; = (000, + OG,) vimy, =M, (4.49b)

in which equatioﬁs (4.11), (4.24) and (4.13b) have been utilized. Substituting equations (4.10),
(4.11) and (4.49) into (4.48) leads to the first parts of equations (4.50a) and (4.50b), and using

equations (4.12) and (4.42), leads to the second parts:

(12 L, a2 S . .
R R S Cw = (— e =V,
Uy, = ., 5 San/ v, = ( 2 S ) v, Uyn; V; (4503.)
o, ;M . o, 9

and,

—) Vj = Eﬂnj Vj (4.50b)

where v; is the vector of maximum lateral displacements of the  corresponding torsionally-

uncoupled, N-story system in the j'» mode of vibration [equation ' (4.12)]; «,,, and iig,; are the nor-

malized maximum values of the lateral displacement at the center of mass and the deck rotation,
respectively, in the n™ vibration mode of the associated torsionally-coupled, one-story system [equa-
tions (4.42)} with uncoupled lateral vibration frequency w, equal to w,;.

The vector of lateral displacements of a frame ‘i’ spanning along the Y-axis at a distance x;

from the centers of mass of the system, due to the nj* mode of vibration is given by:
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Xi _ X; _ _ .
uynj(xt) = u_\‘nj + —r_ (ruenj) = (uynj + 7 uanj) vj = uynj(x:) vj (451)

in which equations (4.50) and (4.43) are utilized to obtain the second and the third parts of the

result; i,,;(x;) is the normalized lateral displacement at a distance x, from the center of mass in the
n" vibration mode of the associated torsionally-coupled, one-story system {[equation (4.43)] with
uncoupled lateral vibration frequency w, equal to w,;. In particular, the vector of lateral displace-

ments at the centers of rigidity of the building in the nj* vibration mode is determined from:
4 — e _ —
Vi =Wy, + 7(ru9,,j) = (U, + - ‘9,,/) V=V, (4.52)

wherein equations (4.23), (4.44) and (4.50) have been introduced to obtain the second and third
parts of the result; ¥,; is the normalized maximum lateral displacement at the center of rigidity in
the n* mode of vibration of the associated torsinally-coupled, one-story system [equation (4.44)]

with uncoupled lateral vibration frequency o, equal to ;.
4.4.2 Modal Story Shears and Overturning Moments

The equivalent static, lateral forces f,,; and torsional moments rf,,; required to cause lateral

displacements u,,; and deck rotations ug,; are given by:

fon; mu,,;
_ ynj _ 2 ynj
f,.j = {fenj } = W, lrm(rllg,,j)} (453)
The vector of maximum story shears V,, and the vector of maximum stdry overturning

momenlts M,; in the nj" vibration mode are obtained by statics from the equivalent static lateral

,nj

forces f,,;:

V,, =S8f,

nj yaf

and M, =Hf,, . (4.54)
where § and H are summation matrices given earlier by equations (4.17). Substituting equation
(4.50a) in equation (4.53) and the latter in equation (4.54), and ulilizihg equations (4.10), (4.14) to

4.16), (4.42) and (4.44), results in:
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1 ) L) San' =
Vo = @, ly,j 05 SMY; = (0, S ’ )(SF) =V, ¥V, (4.55a)
. "
and,
M, = &2i,, 0 Hmv, = (a2, ~2L) (Hf;) = M, M; (4.55b)

aj
where V; and M; are the vectors of maximum story shears and story overturning moments in the
corresponding torsionally-uncoupled, multi-story system in its j* vibration mode [equations (4.15)
and (4.16)]; \7,,j and A_'I,,j are the normalized maximum base shear and base overturning moment in
the o vibration mode of the associated torsionally-coupled, one-story systerﬁ [equations (4.44)]

with uncoupled lateral vibration frequency o, equal 0 ;.

In particular, the maximum base shear Vian; 18 given by a special case of equation (4.55a):

Vv Ry Ve, = Wt anj wo Saj _ W‘ Sanj 4 56
Brj = Vaj Vg = ( "Sa,-)( 17)— W g (4.56)

wherein equations (4.18) and (4.44) have been utilized; and
Wi = W W) (4.57)

is the effective weight in the nj* vibration mode of the torsionally-coupled, multi-story building. It
equals the product of the effective weight W/ in the j* vibration mode of the corresponding

torsionally-uncoupled, multi-story system [equation (4.20a)], and the effective weight W, in the nt
mode of the associated torsionally-coupled, one-story system expressed as a fraction of total weight
[equation (4.44)].

Similarly, the maximum base overturning moment is obtained from equation (4.55b), which

afler utilizing equations (4.44), (4.19) and (4.56) leads to:

MB"j = H"l MBI = ‘—/"l h; VB] = h; Van = h’:j VB’lj ‘ . (4583.)

where,




hy. = h; : (4.58b)

i.e. the effective height /,; of the torsionally-coupled, multi-story building in the nj® mode of vibra-
tion is equal to the effective height #; of the corresponding térsionally-uncoupled, multi-story sys-
tem in the j* mode [equation (4.20b)]. |

4.4.3 Modual Torques

The vector of maximum story torques at the centers of mass of the building in the nj* vibra-

tion mode is determined from f,,; by statics:
TM"/ =rS fenj (4.59)

Substituting equations (4.50b) in equation (4.53) and the latter in equation (4.59), and utilizing

equations (4.10), (4.14), (4.15), (4.42) and (4.45), results in:

San _
Tpgej = 1 B, lign; @3 SMV; = (0, ap, ?A ) rSE; =Ty (rV;) (4.60)

aj

where Ty, is the normalized maximum base torque at the center of mass in the n'™ vibration mode
of the associated torsionally-coupled, one-story system [equation (4.45)] with uncoupled lateral

vibration frequency w, equal to w,;. The vector of maximum story torques at the centers of rigidity

yj*

in the nj™ vibration mode is given by:

TR"j = TMﬂj.— eV,,j‘ (4.613)
Utilizing equations (4.46), (4.55a) and (4.60), equation (4.61a) can be rewritten as:
Tan = (Tata = = Vi) (V) = Ty (V) | (4.61b)

in which TR,,j is the normalized maximum base torque at the center of rigidity in the n™ vibration
mode of the associated torsionally-coupled, one-story system [equation (4.46)] with uncoupled
lateral vibration frequency o, equal to w,;. In particular, the base torques at centers of mass and

rigidity, Ty, and Tgg,;, are special cases of equations (4.60) and (4.61b):
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Tostnj = Tagoj(r V) (4.62)

and,

Toraj = Troj (rVa;) = €,V Vi = €, Va,j = €5 Vg (4.63)
in which equations (4.44), (4.46) and (4.56) have been substituted, and e;,- is the effective eccentri-
city of the torsionally-coupled, multi-story building in the nj* coupled mode of vibration, equals the

effective eccentricity e, of the associated one-story system in the n mode, from which we conclude

that ¢,; is independent of ‘j'. It will be shown later that a more meaningful expression for Tg,; is

obtained by substituting equations (4.18) and (4.44) into (4.63), to get:

. ., Gt Sanj . Saj- e " Sanj
TBRn' = €y Vn' VBj = e, (W, )(W/ — )= (enwn)(Wj -—) (4-64)
g / Saj £ 4 }

444 Modal Member Forces

(34}

The maximum force F,; in a structural member of frame ‘i’, spanning along the Y-axis at a
distance x; from the centers of mass of the system, may be determined by a static analysis of the
frame associated with the vector of lateral floor displacements u,,;(x,), at- the location of the frame

[equation (4.51)]. Since, according to equation (4.51), u,,;(x;) is the product of the normalized

ynj
lateral displacement i, (x;) in the n" vibration mode of the associated torsionally-coupled, one-

story system with o, equal t0 w,; and the vector v; of lateral displacements in the j* mode of the

corresponding torsionally-uncoupled, N-story system, the member force F,; in the frame can be

expressed as:

Y

(.X,)F ’ (4.65)

where F; is the force in the same member due to the j* vibration mode of the corresponding
torsionally-uncoupled, multi-story system, determined by the analysis procedure described in Sec-

tion 4.2,
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4.4.5 Summary
It is demonstrated by equations (4.50) to (4.52), (4.55) to (4.56), (4.58a), (4.60), and (4.61b)

to (4.65) that the maximum value of any response quantity, 7,;, of the torsionally-coupled, multi-

story building due to its nj™ mode of vibration is given by:

",U- = F"] rj n=1,2; j=l,...,N (4.66)

where 7, is the maximum value of the same (or related) response quantity in the corresponding

torsionally-uncoupled, multi-story system in its j* mode of vibration (see Table 1); and 7, is the

normalized response quantity corresponding to F,; (see Table 1) in the n™ vibration mode of the
associated torsionally-coupled, one-story system with uncoupled lateral vibration frequency o,
equal o o,;.

4.4.6 Modal Combination

An estimate of the maximum, 7, of a response quantity is determined by combining its modal

maxima, t,;, according to the CQC rule:

Ve

2 2 .
Z 2 Yn/ mk ’n] mk r rk (467)

n=1 m=1

™M=
M=

1]
=

k

J

where v,; . is computed by equation (4.36) for frequency ratioS Gnjme giVED by:

W, W, w,;
Gnjmk = —— = & : : (4.68)

@pp @, Oy

Cross-correlation factor v, » depends on g,; .. or the relative spacing of w,; and w,,; if ¢,j me 1S
below 0.8 or above 1.25, v,; . is negligibly small [15]. Because the lateral earthquake response of
torsionally-uncoupled systems can usually be satisfactorily estimated by considering the contribu-
tions of only the first two modes of vibration, N may be replaced by 2 in the ﬁrst two summations

of equation (4.67), thus reducing the computational effort.
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Table 1 Definitions of 7; and 7, in equation (4.66) for various I,

]

~

nj

1" story shear

'™ story shear

normalized base shear

I'" story torque

I'" story shear xr

normalized base torque

1" story overturning

moment

" story-overturning

moment

normalized base

overturning moment

lateral displ.
of 1" floor at

location x,

lateral displ.

of 1" floor

normalized lateral
displ. at

location x,

member force

in a frame

at location x;

member force in

same frame

normalized lateral
displ. at

location x;
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Equation (4.67) is rewritten as:

., N2 . . N ‘ N=1 N - ‘
F=Y 3,42 2 Yija; Ve + 2 Z 2 TRV RETRAT:
. j=1l n=1 J=1 =1 k=441 }
o N=l N . N=l N 7 Nl N ‘ ‘
+2 z Z Yijou Ty T + 2 2 2 Vijae e + 2 2 2 Y226 T2j Vs (4.69)
s=1 k=y+1 =) k=j+1 j=1 k=j+1

in which the ﬁrst double >summa|ion represents the SRSS combiﬁalioﬁ rule,:and the next ‘ﬁve sum-
mations represen’t the cross-correlation .lerms between vla:ious groﬁ.pé.df vibration modes. The ﬁ‘rsl
of these summations represents cross-correlation between vibration modes *1j’ and ‘2j’ of the same
pair ‘j’ and the second represents cross-cone!ation petween vibration modes ‘2j’ and ‘1k’, (j=1 to
N-1 And k=j+1 to N), such as modes 21° and ‘12’, or ‘21" and ‘13’. The last three summations
represent cross-correlation terms between modes with 'vibration frequencies o,; and w,,, ®,; and
o, and ,; and w,,, (j=1 to N-1 and k=j+1 to N); in Section 5 these frequencies will be shown to
be widely spacgd, implying that y; 2, 71,14 a0d 72,2 (=1 to N-1 and k=j+1 to N) are negligibly
small, and the last three double summations of equation (4.69) may bé dropped (more details are

available in Appendix D). Equation (4.69) can, therefore, be reduced to:

2 2, N=l N
Fo= z Vaj +~2‘z Yj2j Ty Fap+2 2 z TRV R TRAVE .. (4.70)

j=1 n=l j= j=1 k=j+1

M=

The last double summation of equation (4.70) was neglected in [3]. However, this summation
can have significant contribution to the total response when frequencies w,; and @, (e.g.
wy, and ;) are close, as will be shown in Section 8. In cases where this term is insignificant,

equation (4.70) is approximated further to:

3 ". L, N ) N 2 2 ; . . :
r = Z I',,j +2Z Ylj,2j,1j rzj = ZZ I',,j +2’)’12 2 ru ’.Zj (4.71)
Jj= j=1 n=l j=I1

n=1 j=

in which the _facl that v,;,, is independent of ‘)’ is utilized [equations (4.36) and (4.68)].
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4.4.7 Flat or Hyperbolic Earthquake Response Spectra

Equation (4.71) can be simplified greatly if the pseudo-acceleration spectrum varies hyperboli-

cally, or is constant, with vibration period. For these two spectra, the ratios of the pseudo-

accelcration ordinates §,,,/S,; are @, or 1, respectively, which are independent of ‘j’. Therefore, the

normalized response quantities 7,; of the associated torsionally-coupled, one-story system with

uncoupled lateral vibration frequency o, equal to o,

given by equations (4.42) to (4.46), become
independent of ‘j'; i.e. 7,; = F,. Thus, equation (4.71) simplifies to:
N. " 8 " ' o 7} _ ' '
F= (L F)(F +Fy +2yp )| =71, 7 (4.72)
j=1 . . .
in which equations (4.21) and (4.47) have been utilized to obtain the second part of the equation.

Thus, the total (considering all natural vibration modes) response » of the torsionally-coupled,

multi-story building is the product of (1) the total value ¥, of the same (or related) response (juan-

tity in the cbrresponding torsiohally-uncoupled,v‘multi-story system (Table 1) corriputed by“équati"on

(4.21); and (2) 7, the total value of thé¢ normalized response quantity corresponding to r (Table 1)
in the associated torsionally-coupled, one-story system, computed using equation (4.47). The result
given by equation (4.72) was obtained for shear buildings in [3] since the third summation of equa-
tion (4.70) had been neglected on an intuitive basis. It is apparent from the preceding discussion
that equation (4.72) is applicable only in the case of the idealized pseudo-acceleration spectra and
only if the contribution of the third summation of equatiofl‘ (4.70) is negligiblé. The latter restric-

tion was not recognized in [3].
4.5 Step-By-Step Summary of RSA of Torsionally-Coupled Buildings-

Based on the preceding sections, the earthquake response of a torsionally-coupled, N-story
building belonging io the special class of buildings defined eﬁrli‘ef‘, with the additional restriction
that the lateral stiffness matrices of all its frames are proportional to each other, can be determined

by analyzing two smaller systems: (1) the corresponding torsionally-uncoupled, N-story system and
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(2) a set of N associated torsionally-coupled, one-story systems with uncoupled lateral vibration fre-
quency o, equal t0 w,;, j=1, .., N, where o,; is the vibration frequency of the corresponding

torsionally-uncoupled, multi-story system. The analysis procedure can be implemented by the fol-

lowing steps:

1. Define the corresponding torsionally-uncoupled, N-story system: a system with coincident
centers of mass and rigidity but all other properties identical to the actual torsionally-coupled,
multi-story building.

2. Compute the lower few vibration frequencies w,; and mode shapes y; of this system defined

in Step 1 by solving the eigen-problem of equation (4.2a).
3. Compute for each mode of vibration ‘j’ the maximum value of any desired response quantity

¥; in the system defined in Step 1 due to the selected earthquake response spectrum; the pro-
cedure outlined in Section 4.2 is used in these computations. This step needs to be imple-
mented only for the lower vibration modes contributing significantly to the response of the

system. Based on Reference [7], it will usually be sufficient to implement this step for j=1,2.

4, | Determine the static eccentricity, e, of the torsionally-coupled, N-story building using equation
(3.9); the radius of gyration 6f each floor, r, about the vertical axis passing through the
centers of mass; and the static eccentricity ratio, e/r.

5. Compute the uncoupled torsional to lateral frequency ratio Q of the torsionally-coupled, N-
story building by equation (4.4).

6. Déﬁne an associated torsionally-coupled, one-story system as having the same eccentricity
ratio e/r (Step 4) and uncoupled torsional to lateral frequency ratio Q (Step 5) as the N-story

building.

7. Determine the normalized natural vibration frequencies @, and mode shapes «, (n=1,2) of the

system defined in -Step 6 from equations (4.22) and (4.23).
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Compute the natural vibration frequencies w,; and mode shapes ¢,; of-the torsionally-coupled,

N-story building by substituting the frequencies w,, and mode shapes y,, computed in Step 2,

pY)
and normalized frequencies ®, and mode shapes a«,, computed in Step 7, in equations (4.10)
and (4.11). Computation of ¢,, is not necessary unless the mode shapes of the building are
desired.

Define an associated torsionally-coupled, one-story syétem as the system defined in Step 6

with uncoupled lateral vibration frequency w, equal (0 w,;.
Compute for the n™ mode of vibration (n=1,2) of the system defined in Step 9 the normalized
response quantity r,;, corresponding to the desired response quantity r,,; (Table 1). by equa-

lionis (4.42) to. (4.46). This cah be Jone e[ﬁciénlly by revcognizing- Lthat each r,; is lhé bfoduct
of (1) a quantity that needs to be computed only once because it is independent of ‘j', but
depends on ¢/r and Q; and (2) the ratio of the pseudo-acceleratvion‘ fesponse spectrum ordi-
nates S,,; and S correspoﬁding to w,,; and o réspeclively.

ay» oA

Compute for the nj'® mode of vibrali.on‘ of the torsionally-coupled, N--stf‘)ry building lh;a max-
imum value of the desired response quantity r,; from.equation (4.66) gs the productr of r; and
7,,, (Table 1), determined in Steps 3 and 10, rcspéctive!y.

Combine the modal maxima r,; according to the: CQC rule [‘equation (4.67)] to obtain an esti-

mate of the response, 7.

4.6 Computer Programs Implementation

Special purpose computer programs were developed t0 implement the analysis procedures out-

lined in the preceding sections. The programs take advantage of the special properties of buildings

belonging to the special class with proportional lateral stiffness matrices:of all resisting frames.

The details of the implementations of ‘the analysis procedures, flow charts.of the programs and the

nccessary input data are presented in Appendix C. The programs compute normalized response

quantities, defined in Sections 6 and 8, for buildings with the simplified plan of Figure 2a,
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characterizing ground motion by idealized flat or hyperbolic pseudo-acceleration response.spectrum
or the general design spectrum described in Section 2.3.

The simplified plan (Figure 2a) described in Section 2.2.2 is a special case of the buildings
described in Scction 2.2.1 with more general plans, such as Figure 1, than Figure 2a; the analysis
procedure developed for buildings with general plans is, therefore, applicablg to the system (Figure
2a) of Section 2.2.2; the overall dynamic responses of the buildings of Sections 2.2.1 .and 2,22 are
identical provided they have the same structural properties identified in Section 3.1; thus, the results
in subsequent scctions 3, 6, 7 and 8 are oblaingd fpr the simplified model of Section 2.2.2 in terms
of meaningful parameters, so that the results are applicablq to buildings with more general ;;lans

than Figure 2a.

The response qautities »; of the corresponding torsionally-uncoupled, multi-story system. of

the simplifed model of Figure 2a depend on p, T,,, and §&. On the other hand, The normalized

quantities F,,j {equations (4.42) to (4.46)] of the associated one-story system with uncoupled lateral
vibration frequency w, equal t0 o,; are products of quantities that depend solely upon e/r and Q
and the ratio of the pseudo-acceleration response spectrum ordinates S,,;/S,;, which depends on the
shape of the spectrum and on the relative positions of w,; and o,;, which in turn depend on the
basic parameters e/r, Q, p and T,,. Thus, the response of the torsionally-coupled, multi-story build-
ing of Figure 2a depends on parameters e/r, Q, p, T,, and §. Obviously when the idealized flat and

hyperbolic pseudo-acceleration spectra are assumed to characterize ground motion, the ratios S,,/S,;

equal to 1 or ®,, respectively, and hence —,,j, in these (wo cases do not depend on p or T,,. Thus,
the input to the programs for the case of the idealized spectra is the static eccentricity ratio, e/r, the
uncoupled torsionél to lateral frequency ratio, €2, the joint rotation index, p, and the damping ratio,
&. In addition to these, the fundamental uncoﬁpled lateral period, T,,, isralso input for the case of

the general design spectrum.
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4.7 Numerical Examples
4.7.1 Example 1

Consider the five-story building described in Section 2.2.2 with the ratio of its overall dimen-
sions B/A = 0.6. Frames (1) and (2) are identical with column moment of inertia = 7; each beam is
of width = 24, where 4 denotes the story height, and moment of inertia = 2/. The ratio El/mh® =
564.4. Frames (2) are located at a distance y, from the X-axis, with yZ/B: = 0.476. Frame (1) is
located ar a distance e from the Y-axis, with ¢/A = 0.135. The damping ratio in each mode of
vibration &€ = 5 %. The building belongs to the special class of buildings considered in this study
(Section 2.1). The response of the building to ‘ground motion, characterized by the résponse spec-
trum of Figure 5, along the Y-axis is to be determined.

The analysis follows the step-by-step summary of the procedure presented in Section 4.5:

1.  The corresponding torsionally-uncoupled, five-story system is shown in Figure 6b.

2. Solution of the eigen-problem of equation (4.2a) leads to natural vibration frequencies w,; and

mode shapes ; of the system defined in Step 1:

El
mh3

= 20.944 rad/sec, and T

y1 = 0.3 sec.

w,, = 0.882

o, = 65.645 rad/sec, and T, = 0.096 sec.
vl =< »0.121 0.294 0447 0.559 0.621 >

and
~|y27 =< -0.357 -0.612 -0413 0.106 0.562 >

The mode shapes have been normalized so thatﬂvfmvj =m,

3. Utilizing equations (4.12) to (4.20) leads to the maximum responses in the first two vibration

modes of the system of Figure 6b.

Table 2 shows the following results: story shears normalized by W/a,/g, where W/ is the
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effective weight of the system in its fundamenlaf mode of vibration, and a, is the maximum
ground acceleration (Section 2.3); story overturning moments normalized by W 4;a /g, where
h is the effective height of thé system in ils‘ fundamental mode of-vibralion. and f}ame (i)
colurﬁn moments, beam moments and column axial forces normalized by (EI/h?) ug,
(EI1h*)y i1, and (El/h’) @, respectively, where ,E‘ is the maximum ground displacement (Sec-
tion 2.3). -For this example, W;/5m g = 0.835 and k,/54h = 0.724.

Since frame (1) is the only frame spanning along the Y-axis, equation (3.9) leads to the obvi-
ous conclusion that the static eccentricity e equals the distance of the frame from the Y-axis.

For rectangular plans, the radius of gyration is given by:

Thus,

‘ o) )
e _ €A _gi3s ‘/ 2 - 2. = 0.4
r A r 1+0.6°

The uncoupled torsional (o lateral frequency ratio is given by equation (4.4) with Cg/C, =

2 23 in this example leading to:
2= 8 ~—~[2-—(0476)(06)(7970)~/— 1.2

For the associated lorslonally coupled, one-story system, eccentricity ratio e/r = 0.4 from Step

4, and the uncoupled torsional to lateral frequency ratio = 1.2 from Step 5 .

The normalized natural vibration frequencies @, and mode shapes a, (n=1,2) of the system

defined in Step 6 are computed from equations (4.22) and (4.23), léading to:

@, = 0894, and &, = 1.342,




8.

10.

11.

12.

From equation (4.10):

W, = ®;, o, =(0894)(20.944) = 18.729 rad/sec;

[OF))

Define an associated torsionally-coupled, one-story system

=0 wy) = (1.342)(20.944) = 28.094 rad/sec:
W= B wp=(0.894)(65.645) = 58.703 rad/sec:

D, 0, =(1.342)(65.645) = 88.055 rad/sec;

T, = 0.335 sec
T, = 0.224 sec
T, = 0.107 sec
VTZZ = 0.071- sec

as the system defined in Step 6

with uncoupled lateral vibration frequency w, equal to w:vj; for j=1, o, = 20.944 rad/sec, and

for j=2, o, = 65.645 rad/sec.

From equations (4.44) and (4.46):

and,

anj

S,

']

= €
Tan = a_\'n(aen - 7ayn)

Substituting for «,, and «,, from step 7, and reading ofS,,; and S,; from the response spec-

trum of Figure 5 corresponding to periods T,; and 7,, leads to the results of Table 3.

For each nj™ mode of vibration of the torsionally-coupled, N-story building the maximum

value of the desired response quantity r,; is given by the product of r; (Table 2) and I

(Table 3) determined in Steps 3 and 10, respectively. The results are shown in Table 4 for

base shear and torque.

Substituting the modal maxima into equation (4.67) leads to the total values of base shear and

torque (Table 4).
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Table 3 Normalized Modal Responses of Associated Torsionally-Coupled,

One-story System of Example 1

Mode

nj ayn . Cyn ' Vn‘ TRn— I San} Saj . V-nj ' Tan

11 | -0.894 | 0447 | 0.8 | 072 | 2.67 | 267 | 08 | -0.72
21 | -0447 | -0.894 | 0.2 | 032 | 2.67 . 2.67 | 02 | 032
12 || -0.894 | 0447 | 0.8 | -0.72 | 1.87 | 1.71 | 0.875 | -0.787

22 -0.447 | -0.894 | 0.2 | 0.32 1.35 | 1.71 | .0.158 | 0.253
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Table 4 Modal Responses of Torsionally-Coupled,

Five-story Building of Example 1

Base Shear + Base Torque +
Wid,/g rWia,lg
Mode
nj VB/' an Vo, ‘ Vi, fan Tgnj

11 2.670 | 0.8 | 2.136 | 2.670 | -0.72 | -1.922
21 2.670 | 0.2 | 0.534 | 2,670 | 0.32 | 0.854
12 0.209 | 0.8 | 0.167 | 0.209 | -0.72 | -0.150

22 0.209 | 0.2 | 0.042 | 0209 | 0.32 0.067

Total - - {2240 | - - 2.870
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Computations similar to Table 4 for other response quantities leads to Table 5, wherein results
are presented considering the contributions of four vibration modes (j=1, 2; and n=1, 2), as in
the computations of Table 4. Also presented are the responses considering all ten vibration
modes (j=1, 2, 3, 4, 5; and n=1, 2). It is apparent that for this example, it is sufficient to con-
sider only the first two pairs of vibration modes associated with the first two vibration modes
of the torsionally-uncoupled system. Because the fundamental vibration period 7, is in the
acceleration-controlled region of the spectrum (Figure 5), according to {7] even the fundamen-
tal modal-pair alone would suffice.
4.7.2 Example 2
In order 1o compare results obtained from equations (4.67) or (4.69), (4.70), and (4.71) or
(4.72), consider‘ the building analyzed in Section 4.7.1 with the following modiﬁca[ions: the plan of
the building is square, i.e. B/A = 1; each frame is assumed to behave as iwo columns, i.e. the
moments of inertia of the beams are taken as zero; each column of frames (2) have a moment of
inertia I, equal 0.57; and the static eccentricity e is chosen such that e/A = 0.163. Using the step-
by-step procedure of Section 4.5, the fesponse of the building to earthquake ground motion, along
the Y-axis, characterized by idealized flat and hyperbolic résponse spectra, is computed for two

cases: (a) yo/B = 0.408, and (b) y,/B = 0.490,

The static eccentricity ratio of the building considered is given by:

e e A 12
e_€eA_ 0163 ,/—————= 0.163)¥6 = 0.4
r = ar l ) 1+ (B/IA) ( )

and the uncoupled torsional to lateral frequency ratio Q is determined from:

C I
o= o) S i hh_n_nmBA_ng
rCy r I ro B Ar B

Thus, in case (a):

Q= -y—;—JE=0.4os~J€= 1
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and in casc (b):
Q = 2246 = 04906 = 1.2

For cach of the five vibration modes of the corresponding torsionall‘y-uncoupled, five-story
system, the maximum base shear V,; and the base overturning moment My, (or the base column
moment in frame (1)], computed by Steps 1 to 3 of Section 4.5, are presenled in Table 6, for flat
and hyperbolic specira. The response in each vibration mode has been normalized with respect (o

the contribution of the fundamental mode.

The normalized frequencies &, and mode shapes a, of the associated torsionally-coupled,
one-story system are given by:

for case (a),

-] 08198 and (—62 = 12198

and for case (b),

@, =08944 and &, = 13416

oy ~0.8944 o, ~0.4472
1= g | T | 04472 |0 %27 | o, | T | -0.8940

The normalized modal quantities 7°,; of the associated torsionally-coupled, one-story systems

nf
for j=1, 2, ..., 5 are determined by implememing computational Steps 6 through 10 of Section 8

leading to the results presented in Table 7.

The modal responses of the torsionally-coupled, five-story bu‘ilding are given in Table 8a and
8b, for the flat and hyperbolic spectra, respectively, normalized with respect to the corresponding
forces due to the fundamental mode of the corresponding torsionally-uncoupled system. Combina-

tion of the normalized modal responses according to equations (4.67) or (4.69), (4.70), and (4.71)
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Table 6 Normalized Modal Responses of Corresponding Torsionally-Uncoupled, Five-Story System

of Example 2 for flat and hyperbolic spectra

Mode Flat Spectrum Hyperbolic Spectrum

Vﬂj/VBl MBj/MH'I VBj/VBI Mﬂj/MBI

1 10 | 10 1.0 1.0

2 | 03040 | 0.0873 | 1.9411 | 0.5576
3 | 0.1033 | 0.0182 | 1.8685 | 0.3298
4 | 0.0485 | 0.0064 | 1.6969 | 0.2240

5 0.0176 0.0020 0.9151 0.1041
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Table 7 Normalized Modal Responses of Associated Torsionally-Coupled, One-Story System of

Example 2 for Cases (a) Q = 1.0, and (b) Q = 1.2

Case (a): Q2 =1.0

‘Spectrum . Vv, V, . Tg) Tg2

Flat 0.5981 | 0.4019 | -0.7295 | 0.3295

Hyperbolic || 0.4903 | 0.4903 | -0.5981 | 0.4019

Case (b): 2 =1.2

Spectirum v,

<l
1

N)
o

ﬂ
m

2

_Flat 0.8000 | 0.2000 | -0.7200 0.3200:

Hyperbolic | 0.7155 | 0.2683 | -0.6440 | 0.4293




Table 8a Modal Responses of Torsionally-Coupled, Five-Story Building of Example 2 for Flat
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Spectrum in Cases (a) Q = 1.0 and (b) @ = 1.2

Case (a): Q=1.0

Van/V,?,
]
n
1 2 3 4 5
1 0.5981 | 0.1818 0.0618 0.0290 0.0105
2 0.4019 0.1222 .| 0.0415 0.0195 0.0071
TBan/’ Vai
1 -0.7295 -0.2218 -0.0753 -0.0354 -0.0128
2 0.3295 0.1002 0.0340 0.0160 0.0058
My My,

1 0.5981 0.0522 | 0.0109 0.0038 0.0012
2 0.4019 0.0351 0.0073 0.0026 0.0008
Case (b): Q=12
VBﬂj/Vlﬁl

)
n
1 2 3 4 5
1 0.8000 0.2432 0.0826 | 0.0388 0.0141
2 0.2000 0.0608 0.0206 | 0.0097 | 0.0035 |
Tprai/r Vi)

1 -0.7200 -0.2189 -0.0744 | -0.0349 -0.0126
2 0.3200 0.0973 0.0330 | 0.0155 0.0056
MBnL/MBI
1 0.8000 0.0699 0.0146 0.0051 { 0.0016
2 || 0.2000 0.0175 0.0036 0.0013 0.0004
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Table 8b Modal Responses of Torsionally-Coupled, Five- Slory Building of Example 2 for Hyper-
bolic Spectrum in Cases (a) Q@ =1.0,and (b) Q2 =1.2

Case (a): Q=1.0

VB'LL/ VB 1
J

1 2 3 4 5
0.4903 0.9517 0.9161 0.8320 0.4486
0.4903 0.9517 0.9161 0.8320 0.4486 |
Tugnj/r Ve ‘
-0.5981 -1.1609 -1.1174 -1.0148 -0.5473
2 0.4019 0.7802 0.7510 0.6821 0.3678
I Man/MBl

1 0.4903 0.2734 0.1617 0.1098 | 0.0510
2 0.4903 0.2734 0.1617 0.1098 | 0.0510

BN —

—

Case (b): Q=12

‘ Van/Vai
l J

1 2 3 4 5
0.7155 1.3890 1.3370 1.2142 0.6548
2 0.2683 0.5209 | 0.5014 0.4553 | 0.2455
' Taresr Vi
-0.6440 -1.2501 -1.2033 -1.0928 -0.5893
2 0.4293 0.8334 0.8022 0.7285 0.3929
My, i/ Mg, ‘
0.7155 0.3990 0.2360 | 0.1603 0.0745
0.2683 0.1496 0.0885 0.0601 0.0279

—

—

o =—




- 117 -

Table 9a Responses of Torsionally-Coupled, Five-Story Building of Example 2 for Flat Spectrum

computed by equations (7.19), (7.22) and (7.24)

Modal ‘ Case (a): Q=1.0 Case (b): Q=1.2

Combination

by  Ve/Veo | Ter/tVe, | Mg/Mg, | ViV, | Tapl/rVe, | MgiMpg, |

Eq. (7.19) 0.7412 | 0.7826 0.7398 | 0.8366 | 0.7712 0.8355
Eq. (7.22) 0.7405 | 0.7821 0.7397 | 0.8359 | 0.7706 0.8354 |

Eq. (7.24) 0.7396 | 0.7830 0.7396 | 0.8353 0.7715 0.8353

Table 9b Responses of Torsionally-Coupled, Five-Story Building of Example 2 for Hyperbolic

Spectrum computed by equations (7.19), (7.22) and (7.24)

Modal Case (a): Q=1.0 Case (b): Q=12
Combination
by Vp/Vy, | Tpr/rVe, | Mg/Mpg, | Vg/Vy, | Typ/rVg, | MgiMy,

Eq. (7.19) 0.7820 | 0.6502 0.7252 | 0.8337 | 0.6989 0.7879
Eq. (7.22) 0.7697 | 0.6384 0.7221 | 0.8203 | 0.6863 0.7847

Eq. (7.24) 0.7131 0.7011 0.7131 | 0.7780 0.7539 0.7780
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or (4.72) are included in Tables 9a and 9b.

It is clear from Table 9a that for this example equation (4.72) leads 10 accurate results in the
case of flat spectrum. For the hyperbolic spectrum, equations (4.67) and (4.72) differ by about 6 to

8%, being larger for Q = 1.0 than for Q@ = 1.2.
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5. VIBRATION FREQUENCIES AND MODE SHAPES

It is apparent from equations (4.10) and (4.11) that the natural vibration frequencies w,; of the
torsionally-coupled, multi-story building are closely related to the frequencies o,; and mode shapes
y; of the corresponding torsionally-uncoupled, multi-story system (Section 4.2) and to the normal-
ized frequencies @, and mode shapes a«, of the associated torsionally-coupled, one-story system

(Section 4.3).
The coupled natural frequencies o,; normalized by w,; are independent of ‘j’ (equation (4.10))

with the ratios o,/o,; equal to ®,, which depend only on the eccentricity ratio e/r and the uncou-
pled torsional to lateral frequency ratio . Thus, the normalized frequencies o, ;/w,; and ,;/w,; of
the j* modal pair vary with Q and e/r in the same manner as @, and @,, respectively, The ratios
w,/o,; (=,) are plotted in Figure 7 against Q for three values of e/r: 0.05, 0.4 and 1. Also
included for comparison are the uncoupled frequencies w,; and w,;, both normalized by e,;, in order
to identify the effects of lateral-torsional coupling on the ﬁatural vibration frequencies. It is
apparent from Figure 7 that the uncoupled frequencies w,; and w,; are upper and lower bounds of
the coupled frequencies; as e/r increases, w,; decreases below w,; and w,;, while o,; increases
above w,; and w,;. Naturally, the coupled frequencies are closest to the uncoupled oﬂes for systems
with smallest e/r values. For torsionally-flexible systems (i.e. Q<1), ay; is the upper bound of o,;,
while w,; is the lower bound for w,;. On the other hand, for torsionally-stiff systems (i.e. Q>1), o;
is the upper bound for w,;, while w,; is the lower bound for «,;. For sysiems with closely spaced
uncoupled frequencies (i.e. Q around unity), the coupled frequencies are closest to one another,

with the closeness most pronounced for systems with smaller values of e/r. The building is

unstable for Q equal to zero, since, in this case the fundamental frequency w,, is zero.

The coupled natural frequencies w,; normalized by the fundamental uncoupled lateral fre-

nj
quency o, equals the product of @, and the ratio of the vibration frequencies of the corresponding
torsionally-uncoupled, multi-story system o,;/w,, (equation (4.10)). The frequency ratio w /o, is

presented in Figure 8, which indicates that the corresponding torsionally-uncoupled, multi-story
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system behaves as a cantilever beam for small values of p and as a shear beam for large
p. For intermediate values of p the corresponding torsionally-uncoupled, multi-stor
behaves as a frame. The ratios o,/w,, are showp in Figure 9 against Q for e/r equal 0.
three values of p equal to 0, 0.125 and oo, representing the three different ranges of p.
the preceding observations the fundamental normalized frequency pair, consisting of o,
@y /@, which are equal to &, and-cT)z, respectively, are independent of p. However, higl
tion frequency pairs vary with p due to the dependence of o,/ on p (Figure 8).

The coupled mode shapes are directly related by equation (4.11) to the mode shag
corresponding torsipnally-uncoupled, multi-story system, shown in Figure 10. Both latera
sional components, ¢,,; and ¢,,, of the coupled mode shape ¢,,j- are proportional to the
shape of the corresponding torsionally-uncoupled system (Section 4.2) y;, with proportion

stants a,, and o,,, shown in Figure 11, equal to the lateral and torsional components of the

of vibration of the associated torsionally-coupled, one-story system (Section 4.3). As a res

orthogonality property of the one-story mode shapes, af @, =0, it can be she
@, =0, and @ ,=~a,,. Thus, the lateral component of a coupled mode of pair ‘j’ equal

sional component of the second mode of pair ‘j’, i.e. ¢,),=¢q,; and ¢,,,=—¢,,;.

It is apparent from Figure 11 that as Q increases a,, (Or og,) increases while o,
decreases. For torsionally-stiff (Q>1) systems o, approaches unity and o,, approaches :
increases. Thus, in this case, the coupled modes ¢,; contain predomiﬁantly lateral motior
predominantly torsional motions, as demonsirated by Figure 12a. Torsionally-flexible (
tems with smaller e/r ratios have smaller a,, values than «,, but the modes are not pred
lateral or torsional, as ‘is clear from Figure 12b. For systems with closely spaced uncor
quencies (Q close to 1), o, and a,, are of comparable magnitudes especially for sys!
small e/r, Therefore, the lateral and torsional components of a coupled mode shape are of
order of magnitude for systems with closely spaced uncoupled-frequencies, as exhibited

12c.
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system behaves as a cantilever beam for small values of p and as a shear beam for large values of
p. For intermediate values of p the corresponding torsionally-uncoupled, multi-story system
behaves as a frame. The ratios w,j/w,; are shown in Figure 9 against Q for e/r equal 0.4 and for
three values of p equal to 0, 0.125 and oo, representing the three different ranges of p. Based on

the preceding observations the fundamental normalized frequency pair, consisting of ,/e,; and

w,y /@y, which are equal to @, and @,, respectively, are independent of p. However, higher vibra-

tion frequency pairs vary with p due to the dependence of o,/w,, on p (Figure 8).

The coupled mode shapes are directly related by equation (4.11) to the mode shapes of the
corresponding torsionally-uncoupled, multi-story system, shown in Figure 10. Both lateral and tor-
sional components, ¢,,; and ¢,,;, of the coupled mode shape ¢,,,-‘ are proportional to the j" mode
shape of the corresponding torsionally-uncoupled system (Section 4.2) y;, with proportionality con-

stants a,, and o,, shown in Figure 11, equal to the lateral and torsional components of the n'® mode

of vibration of the associated torsionally-coupled, one-story system (Section 4.3). As a result of the

orthogonality property of the one-story mode shapes, al @, =0, it can be shown that

a

1=y and & ,=—ag,. Thus, the lateral component of a coupled mode of pair ‘)’ equals the tor-

sional component of the second mode of pair ‘j’, i.e. ¢,,,=¢5,; and ¢, =—¢s,;.

It is apparent from Figure 11 that as Q increases «,, (or op,) increases while o, (or o)
decreases. For torsionally-stiff (Q>1) systems «,, approaches unity and «,, approaches zero as
increases. Thus, in this case, the coupled modes ¢,; contain predominantly lateral motions and ¢;
predominantly torsional motions, as dempnstrated by Figure 12a. Torsionally-flexible (Q<1) sys-

tems with smaller e/r ratios have smaller «,; values than «,, but the modes are not predominantly

y1
lateral or torsional, as is clear from Figure 12b. For systems with closely spaced uncoupled fre-
quencies (Q close to 1), a,; and o, are of comparable magnitudes especially for systems with
small e/r. Therefore, the lateral and torsional components of a coupled mode shape are of the same

order of magnitude for systems with closely spaced uncoupled-frequencies, as exhibited by Figure

12c.
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100

10E

A B Bl Ml M b 4 s ]

D / @y

2 3
Uncoupled Torsional to Lateral Frequency Ratio Q

FIGURE 9 Vibration Frequency Ratios w,;/ w,. (e/r = 0.4)
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— P:=0
---- P=0.125
——- P =00

FIGURE 10 Natural Vibration Mode Shapes of the Corresponding Torsionally-uncoupled

five-story System. (Adapted from [12]).
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The variation of the vibrational mode shapesr of the torsionally-coupled building with p is con-
trolled by the dépendence of the uncoupled lateral mode shapes y; on p (Figure 10). The lateral
and torsional ;:omponenls of two modes ‘1j’ and ‘2j’, belonging io the same pair ‘j’, are propor-
tional to y; (equation (4.11)). Thus, the shapes of the components of the first pair of modes ‘11’
and ‘21’ is the same as y,, of the second pair ‘12’ and ‘22’ is the same as y,, .., etc. . Since y;
vary significantly with p, as is portrayed by Figure 10, the components of each coupled mode also
vary significantly with p, as displayed by Figures 12. It should be clear, however, that p plays no
role in the amount of coupling that exists between the lateral and torsional components of a mode

shape, since «,, and a,, do not depend on p.

Finally, the variations of the cross-correlation modal factors, ¥,; ., With system parameters are
considered. These factors are computed from equation (4.36) for frequency ratios, g,; ., computed
by equation (4.68), and therefore directly related to the closeness of frequencies w,; and ,,. Thus,
the factors are dependent on e/r, Q and p. It is clear from Figure 9 that frequencies o,; and w,,,

w,; and w;;, and w,; and w,;, with j=1 to 4 and k=j+1 to 5, are well separated. It follows that

J
1,26 Y1j1x a0d 7,5, for j=1 to 4 and k=j+1 10 5, are very close to zero. Hence, cross-correlation

between such modes is relatively small, justifying equation (4.70).

- Cross-correlation factors yljé, are independent of p or ‘j’ since ¢,;,; equals ®,/@,. The fac-
tors y,;,; are, therefore, equal to 7y, obtained in the case of the associated torsionally-coupled,
one-story system (equation (4.38)). These are plottéd in Figure 13 against Q for various e/r values
and for 5% damping. The variation of y,;,; Or v, is closely related to the spacing of ®, and @,.
Since the two coupled frequencies are closest for systems with Q = 1 and small e/r ratios (Figure
7). 71;2; 18 largest at Q = 1. For larger e/r values, @; and @, are widely spaced for any value of Q
(Figure 7) resulting in small y,;,;." The cross-correlaition terms of equation (4.70), given by its
second summation, are, therefore, expected to be significant for systems with small e/r ratios and Q

= 1, i.e. closely spaced uncoupled frequencies.
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Cross-correlation factors v,, , (for j=1 to 4 and k=j+1 to 5) depend on the relative spacing of

.w,, and ;. Referring to Figure 9, it is clear that these frequencies are equal at two values of Q

/
that depend on e/r, p, j and k. It follows that 7, ,, has two maxima equal to one corresponding to
these two values of Q. Figure 14 shows v, ;; and y,;,3 against Q for e/r equal to 0.4 and values of
| p equal to 0, 0.125 and o=, These factors are chosen without inference that their corresponding
terms of equation (4.70) are the most important, but rather as representatives of y,;,. As e/r
increases or as p increases the two peaks of y;;;, approach each other, widening the range of Q
where v,, ;, is large. As k increases with the same j the ltwo maxima of y,;,, are drawn farther
apart, narrowing the range of Q where ij_‘,,; is significant. On the other hand, as j increases for the

same k, (example 7y,, 3 and vy, ,3), the two maxima of v,; ,, approach each other widening the range

of Q with large v, 4.
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6. EFFECT OF FRAME ACTION

The effect of frame action on the maximum response of the torsionally-coupled, multi-story
building, computed by the RSA procedure described in Section 4, is investigated next. The max-
imum response is plotted against T,,, the fundamental lateral vibration period of the corresponding
torsionally-uncoupled, multi-story system in the form of response spectra. Such plots are presented
in Figures 15 and 16 for values of the beam-to-column stiffness ratio p equal to 0, 0.125 and oo and
seven response quantities: base .shear Vg, base torqué ai the cenier of rigidity Tpg, base overturning
moment My, top floor lateral displacement at center of rigidity vs, beam moment M,z in the first
story of frame (1), column moment M, in the first story of frame (1), and the column axial force
P.p in the first story of frame (1). The response quantities Vg, Tpr , Mp and vs (Figure 15) are
selected as representatives of overall behavior of the torsionally-coupled system, and
M, , Mg and P (Figure 16) as indicative of its local behavior. The response spectra are presented
for systems with eccentricity ratio e/r equal 0.4 and uncoupled torsional to lateral frequency ratio Q
equal to one. The range of T,, values included in the response spectra is much wider than reason-
able for a five-story building. However, the dynamic response behavior of taller buildings is gen-
erally similar to that of a five-story building with the same 7,;,. Thus the presented results are indi-
cative of the earthquake response of buildings of varyiiig number of stories.

The response quantities are presented in dimensionless form as defined in Figures 15 and 16

and with the normalizing factors given in Table 10, where %, and @, are the maximum ground dis-

placement and ground acceleration, respectively; W; and h;, given by equations (4.20), are the

effective weight and height for the fundamental vibration mode of the corresponding torsionally-
uncoupled, multi-story system; e; is the effective eccentricity of the associated torsionally-coupled,

one-story system in its first vibration mode, given by equation (4.34); and W, is the effective
weight in the fundamental vibration mode of the associated torsionally-coupled, one-story system
normalized by its weight, given by equation (4.44). The normalization factors for base shear and

base overturning moment are the maximum base shear and overturning moment for a rigid (i.e. zero
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Table 10 Normalization Factors

Response Quantity Normalization Factor

Story Shears wia,/g

Story Torques

.t Centers of Rigidity (eyW[ )W a,/g

Story Overturning Moments Wihia,lg

Lateral Displacements

at Centers of Rigidity | i,
Frame (1) Column Moments (EL/R?) i,
Frame (1) Beam Moments (EIIR*) &,
Frame (1) Column Axial Forces (EL/R®) u, )

Table 11 Effective Weight and Height in the Fundamental Mode

of the Corresponding Torsionally-uncoupled System

wi | w
P Total Weight | Total Height |
0. 0.6737 0.7963
0.125 0.7963 0.7420
L oo 0.8795 0.7027
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vibration period) single-degree-of-freedom system with height k; and lumped weight W;. Referring

to equation (4.64), the normalization factor for the base torque is the torque obtained if the base
shear W)a,/g of the rigid sihgle-degree-of—freedom system is applied at a distance e;W, from the
CR of the system. The effective weight and height, W, and h;, depend on p, (Table 11), while e]

and W, depend on e/r and Q (equations (4.34) and (4.44)). Similarly the normalized response
quantities depend on p, e/r and Q and on the variation of the earthquake response spectrum with

vibration period but not on its intensity.

It is apparent from Figure 15 that the base shear, Vg, overturning moment, My, and torque Tgg
vary significantly with p in the velocity- and displacement-controlled regions of the design spec-
trum, with the variation of My not as great as Vp or Tg;. In the acceleration-controlled region of

the spectrum the normalized responses do not vary appreciably with p, but the actual response

values depend on p because this parameter influences W; and h; (Table 11). The top floor dis-
placement v of frame (1) is essentially independent of p over a wide range of vibration periods
T,

The general trends in the variation of the three local response quantities-- beam moment,
column moment and column axial force-- with p ‘are the same (Figure 16). As p decreases, the
normalized forms of both M,; and Pz tend to zero, while the normalized form of M.; decreases to

the moment in a cantilever bending beam. For a fixed T,,, the column stiffness may increase as p

decreases, and therefore M may increase even though its normalized value decreases.

The effects of frame action, characterized by the beam-to-column stiffness ratio p, identified
in the preceding paragraphs for torsionally-coupled buildings are similar to those observed in lateral
response of torsionally-uncoupled systems [12]. The variation in response of torsionally-uncoupled
systems with p was shown [12] to be related to- the significance of higher mode contributions in
response, which generally increase with decreasing p and with increasing T,, and also depend on

the response quantity considered. Similarly, the variation of the response of torsionally-coupled
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buildings with p will be shown in Section 7 to be closely related to the significance of the higher

modal-pair contributions in response.

In Figure 16 M,z is the moment in the first-story beam of frame (1), and M and P the
moment and axial force in the first-story column. In order to examine the locations of largest"'
member forces, response spectra for the forces in the beams and columns of each story of the frame
are presented in Figures 17 to 19. These results demonstrate that for the range of ‘p.arameters con-

sidered, the maximum forces occur in the base story of the frame. The magnitudes of these forces

decrease at higher stories with the rate of reduction tending to be greater for the larger values of p.
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7. MODAL-PAIR CONTRIBUTIONS

The maximum responses of the torsionally-coupled, multi-story building computed by the
RSA procedure presented in Section 4.4 are plotted against 7,;, the fundamental vibration period of
the corresponding torsionally-uncoupled system, in the form of response spectra. Obtained by con-
sidering varying numbers of vibration modal-pairs in RSA, such plots are presented in Figures 20
to 26 for three values of p = 0, 0.125 and oo, e/r = 0.4, Q = 1, and the seven normalized response
quantities defined in Section 6.

For the subsequent interpretation of the response results, it is useful to introduce the concept
of unit modal-pair response. This quantity defined for the j'» modal-pair is the CQC combination of
the unit modal response of the structure in the two vibration modes ‘1j’ and ‘2j’, where the unit
modal response of the building iﬁ the nj* vibration mode are given by equations (4.48) to (4.66)

with unit pseudo-acceleration. It is apparent from equation (4.66) that the unit response of the

building in the nj" vibration mode is the product of the unit modal response 7, in the j" vibration
g ) P p J

mode of the corresponding torsionally-uncoupled, multi-story system (equations (4.12) to (4.19)

with §,; = 1), and the normalized response I_‘,,, in the n' vibration mode of the associated
torsionally-coupled, one-story system with S,,;/S,; =1 [equations (4.42) to (4.46)]. Combination of
the unit responses in vibration modes ‘1j’ and ‘2j’ by equation (4.35) gives the unit responses in
the j** modal-pair to be equal to the product of the unit modal response in the j* uncoupled mode
and the ﬁormalized unit modal resﬁonse of the associated torsionally-coupled, one-story system,
determined by equation (4.47). In discussing the contributions of various vibration modal-pairs
(=1, 2, .., N) to the response, it is useful to normalize the unit modal-pair response as a fraction of
the corresponding value for tﬁe first modal-pair. Since the normalized unit modal response of the
associated lorsior;ally-coupled, one-story system [equation (4.47)] is independent of ‘j’, i.e. it is the
same for any pair, the normalized unit response for the j* modal-pair equals the ratio of the unit
modal responses in the j* and fundamental lateral vibration modes of the corresponding

torsionally-uncoupled system. Normalized unit modal-pair responses such as for story shears,
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torques, overturning moments, and frame (1) lateral displacements vary with p but not with 7,
e/r, Q or the design spectrum. Numerical values of these unit modal-pair responses for a few of
these quantities are presented in Table 12, The period dependence of the relative modal-pair contri-

butions to a response quantity is all represented by the spectral ordinates for the various modes.

Although the contribution of a modal-pair in response is closely related to its unit modal-pair
response introduced in the preceding paragraph, it is also dependent on the cross-correlation
between each of the two vibration modes of the pair to modes of different pairs. These cross-

correlation terms are well approximated by the terms in the third summation of equation (4.70).

The response contributions of the vibration modal-pairs higher than the fundamental modal-
pair increase with increasing T, in the velocity- and displacement-controlled regions of the earth-
quake design spectrum. For fixed e/r, Q and p values, the mode shapes, the normalized unit
modal-pair responses of the building, and the ratios of vibration frequencies do not change with T,,.
Thus the increased contribution of the higher modal-pairs is due only to the relative values of the
design spéclrum ordinates, which in turn depend on the spacing‘of vibration periods and on the
shape of Fhe spectrum. For the selected spectrum, as T,, increases within the above mentioned
spectral régiox{s, the ratio of the pseudo-acceleration spectrum ordinate for a higher vibration mode
to that of the fundamental mpde generally increases, resulting in increased response contributions of
higher modal-pairs.

The increase in response contributions of higher modal-pairs varies witﬁ the response quantity.
As suggeétcd by the normalized unit modal-pair responses of the building (Table 12), for ﬁxed‘
values of e/r, Q and p, Figures 20 to 23 demonstrate that the higher modal-pair contributions are
much more significant for the base shear, Vg, and base torque at center of rigiciity, Ty, than for the
base overturning moment, Mp or the top floor displacement vs of frame (1). Figures 24 to 26 indi-
cate that the higher modal-pair contributiéns are relatively small in the local response quantities for
frame (1). Among the local response quantities, these contributions are larger for the base-story
column moment, M_z, than for the base-story beam moment, M,z, or the base-story column axial

force, P.g. Column moments are closely related to story shears which are affected more by higher
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Table 12 Normalized Unit Modal-Pair Responses

Top Floor Displacement at Center of Rigidity

p =0.125

. Modal-pair p=0 p =00
1 1.0 1.0 1.0
2 -0.0094 -0.0292 -0.0340
3 0.0004 0.0034 0.0060 |
4 0.0000 -0.0005 -0.0014
5 0.0000 0.0001 0.0003

Base Shear and Base Torque at Center of Rigidity

Modal-pair p=0 | p=0.125 p=oo
| 1 1.0 1.0 1.0

2 0.3040 0.1475 0.0991

3 0.1033 0.0647 0.0275

4 0.0485 0.0325 0.0085

5 0.0176 0.0111 0.0018

Base Overturning Moment

Modal-pair p=0 p = 0.125 p =0
1 1.0 1.0 1.0

2 0.0873 | -0.0030 | -0.0340

3 0.0182 0.0143 0.0060

4 0.0064 0.0028 -0.0014

5 0.0020 | 0.0014 0.0003
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modal-pair contributions whereas beam moments and column axial forces are closely related to

story overturning moments which are affected less by higher modal-pair contributions.

Obviously the higher modal-pairs also affect the shear, moments and torques in all stories in
addition to the base shear, base overturning moment and base torque. These effects are summarized
in‘Figures 27 to 29 wherein the height-wise variation of story shears, story torques and story over-
turning moments, expressed as a ratio of the respective values at the base, are presented for build-
ings with selected values of T,; = 0.5 and 2.5 sec, for ¢/r = 0.4 and Q = 1. The height-wise varia-
tion of only the fundamental modal-pair response, which is the same regardless of T,;, is also
included. The presented story shears and overturning moments are also the story shears ahd over-
turning moments of frame (1), since it is the only frame in the plane of the ground motion (Figure
2a). In a lumped mass system, such as the structure considered here, the shear remains constant in
each story with discontinuities at each floor. However, such a plot would not be convenient in
displaying the differences among various cases and the alternative presentation with shears varying

- linearly over story height is used. It is apparent that the higher modal-pair contributions not only
influence the magnitude of the story shears, moments and torques but also their distributions
because the various vibration modal-pairs affect different portions of the building to varying
degrees. The distribution, but not necessarily the actual values of forces in the upper stories, is

especially affected by the higher modal-pair contributions.

It is apparent from Figures 27 and 28 that the height-wise variations of story shears and
torques are similar, with differences increasing as 7, increases. Since the height-wise variations of
story shears and story torques are exactly the same when only the fundamental modal-pair is taken
into account, and the normalized unit modal-pair responses of shears and torques are exactly the
same (Table 12), the differences between the height-wise variations of story shears and story
torques are only due to cross-correlation terms between vibration modes of different pairs, given by

the third summation of equation (4.70).

We next examine how the higher modal-pair contributions to the response of the building are

affected by the beam-to-column stiffenss ratio, p. As p decreases the normalized unit modal-pair
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responses of the multi-story building associated with the higher vibration modal-pairs, especially
the second modal-pair, increase for the base shear, base torque and base overturning moment (Table
l12). Al the same time the ratios of the modal vibration frequencies with respect to the fundamental
uncoupled lateral frequency increase, spreading the frequencies over a wider portion of the spec-
trum, thus increasing the effects of the spectrum shape, with these increases depending on the loca-
tion of T,,. For the selected spectrum and within the period range considered, the effects of the
spectrum shape are especially significant if 7,, is long, with the effects decreésing as T,, decréases

within the velocity- and displacement-controlied regions of the spectrum (Figures 20 to 22).

The effect of p on the contributions of the higher modal-pairs varies with the response quan-
tity. ;A.s suggested by the normalized unit modal-pair responses (Table 12), Figures 20 to 22
demonstrate that p affects the higher modal-pair contributions in the base shear and base torque at
the center of rigidity more than in the base overturning moment. The top floor displacement (Fig-
ure 23) displays trends opposite torbase- shear, base torque and base overturning moment, in the
sense that the higher modal-pair contributions decrease with decreasing p, but this reverse trend is
supported‘v by the normalized unit modal-pair responses of the building (Table 12). However these
contributions are so small that they are of little consequence (Figure 23). The stiffness ratio p
affects the higher modal-pair contributions in the base-story column ﬁlorﬁem in the same manner as
the base shear but to é lesser degree (Figure 24). The higher modal-pair contributions in the beam
moment and column axial force, which are closely related to the base story overturning moment,

are smaller aﬁd are affected little by p- (Figures 25 and 26).

Thus, higher modal-pair contributions to the response of the torsionally-coupled, multi-story
building generally increase with decreasing p and with increasing 7,, and also depend on the
response quantity considered. These conclusions are similar to those observed for the higher mode

contributions in lateral response of torsionally-uncoupled systems {12].

Finally, the dependence of higher modal-pair response contributions on e/r and Q is investi-
gated. The base shear, base torque at the center of rigidity and base overturning moment are plot-

ted against T, in the form of response spectra for systems with p = 0, considering various numbers
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of vibration modal-pairs. Such plots are presented in Figures 30 to 32 for systems with e/r = 0.4
and for three values of Q = 0.5, 1 and 1.5; and in Figures 33 to 35 for systems with Q = 1 and for
three values of e¢/r = 0.05, 0.4 and 1. Figures 30 to 35 indicate that, although the variations of the
system response with 7,, depend on e/r and Q, the higher modal-pair contributions relative to the
contribution of the fundamental modal-pair are relatively insensitive to e/r or Q. This is partly due
to the fact that the normalized unit modal-pair responses are independent of e/r and Q (Table 12);
and for fixed values of p and T,;, the uncoupled vibration periods of the building are fixed and the
vibration periods of a modal-pair of the torsionally-coupled building vary with e/r and Q (Figure 9)
in such a way that the resulting variation in the spectral ordinates corresponding to these periods

combine in a way that the higher modal-pair responses are relatively insensitive to e/r or Q.

The height-wise variations of story shears and torques, expressed as a ratio of the respective
values at the base, are presented in Figures 36 and 37 for systems with p = 0, ¢/r = 0.4, two values
of T,; = 0.5 and 2.5 sec, and three values of Q = 0.5, 1 and 1.5; and in Figures 38 and 39 for sys-
tems with p = 0, Q = 1, two values of T,; = 0.5 and 2.5 sec, and three values of ¢/r = 0.05, 0.4 and
1. The variation of only the fundamental modal-pair response, which is the same regardless of T,
is also included in these figures. As coﬁcluded earlier, Figures 36 and 37 also indicate that for
fixed e/r and p the height-wise variations of story‘ shears and torques are similar, with differences
miore pronounced for torsionally-flexible systems (@<, especially for values of T,, in the velocity-
or displacement-contrqlled regions of the spectrum. Similarly, Figures 38 aﬁd 39 indicate that for
fixed Q and p the differences between the height-wise variations of ston:y shears and torques slightly
increase with increase in e/r. These effects are attributed to the increase in the cross-correlation
terms given by the thifd summation of equation (4.70), as explained earlier in this section.

Taking advantage of the fact that the earthquake response of the torsionally-coupled, multi-
story buildings considered in this investigation can be estimated by considering only the first two
vibration modal-pairs, and in some cases only the fundamerital vibration modal-pair, it is possible

to develop simplified procedures for the analysis of torsionally-coupled buildings. The natural fre-

quency and mode shape in the nj® mode of vibration of the torsionally-coupled, multi-story building
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can be computed from equations (4.10) and (4.11) knowing the j‘h vibration frequency and mode

shape of the corresponding torsionally-uncoupled, multi-story system and the n™ normalized fre-
quency and mode shape of the associated torsionally-coupled, oné-story system. Thus, estimates of
the vibration frequencies in the first two modal-pairs of the torsionally-coupled building can be
_determined using estimates of the first two vibration frequencies of the corresponding torsionally-

uncoupled, mulii-story system determined by following the simplified procedure developed in [12].
The maximum response in the nj* vibration mode of the torsionally-coupled building was also

found in Section 4 to be related to the maximum response in the j* vibration mode of the

corresponding torsionally-uncoupled, multi-story system and the normalized maximum response in
the n* mode of vibration of the associated torsionally-coupled, one-story system with uncoupled

lateral vibration frequency equal 10 ,;, the j* uncoupled lateral vibration frequency. Utilizing the

v
estimated vibration frequencies in the first two vibration modal-pairs of the torsionally-coupled,
multi-story building, and the modal response maxima of the corresponding torsionally-uncoupled,
multi-story system estimated by the simplified procedure developed in [12], the maximum response
of the torsionally-coupled }building is estimated by following the analysis procedure described in
Section 4 considering only the first two vibration modal-pairs of the building. It is believed that
such simplified response analyses can be applicable to more general buildings than those considered
in this study. |

The results obtained in.this study may'also be utilized in developing code-type analysis pro-
cedures by recognizing the similarity in the height-wise variations of story shears and story torques

and utilizing the aforementioned fact that the response can well be approximated by the first two

vibration modal-pairs.
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8. EFFECTS OF LATERAL-TORSIONAL COUPLING

The lateral and torsional motions of the buildings considered were shown in Section 3 to be
coupled. The effects of lateral-torsional coupling on building response are investigated by compar-
ing tﬁe response of a torsionally-coupled, multi-story building with that of the . corresponding
lorsionally-uncoﬁpled, multi-story system. This comparison is presented for flat and hyperbolic
pseudo-acceleration spectra, as well as the design spectrum of Figure 5. The response quantities
selected to study the overall behavior of the building are: the base shear V;, the base torque Ty at
the center of rigidity, the base overturning moment- My, and the top floor ‘later—al displacement vs at
the center of rigidity. These quantities comp_yule.d By the procedures of Section 4.4 are ngnnalized,
respectively, by Vp,. e Vg,, Mp, and vs,, \A;here Vg, and. My, are the base shear and basLe 0\v/~ertuming
moment of the corresponding torsionally-uncoupled system. The _nprrhalized torque 'TBR'/; Vg, Can
be interpreted as the ratio of the dynamic eccent‘ricity_qf the system to its stalic eccentricity: e,/e,
where the dynamic eccentricify eq = Tpr/Vp, is the distance.from the center of rigidity at which
static application of Vjp, resulls in the dynamic base torque Tgz at the center of rigidity. The
response quantities selected as indicative of the local behavior of the building are: column moment
Mg, bea.rnv moment M,z, and column axial force P.g in the first story of ,frame (1). These quantities
are normalized, respectively, by the responses M.z, Mg, and fcaa of the corresponding

torsionally-uncoupled, multi-story system,

These normalized response quantities are presented for flat and hyperbolic spectra in Figures
40 to 46, wherein they are plotted against Q for systems with p = 0, 0.125 and oo, and rvalues of
elr = OA.05;‘(.).4 ‘and 1. Also shown in these figures are the normali_zed responses V, ‘M, or v, and
Ty, of the associated torsionally-cqu[;led, one-story system, defined b)r/‘equations (4.39) and (4.40),

which are independent of p. It is apparent from Figures 40 to 46 that the effects of lateral-torsional

coupling on structural responses are similar for the multi-story and the associated one-story sys-

tems. For this reason, the general trends of V (M, or ¥) and T for the one-story system, which are

independent of p, are described first, and then the differences that occur for the multi-story
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building, in which case p influences the response are described next. Lateral-torsional coupling has
the effect of reducing V and increasing e,/e. These effects increase as the eccentricity ratio e/r
increases, and are dependent on the uncoupled torsional to lateral frequency ratio Q = w,;/w@,;. For
systems with smaller e/r values the effect is most pronounced, i.e. V reaches its minimum value
and e,/¢ its maximum value, for values of Q around uhity, i.e. when the uncoupled lateral and tor-
sional frequencies are close to each other. As e/r increases, V reaches its minimum values at
values of Q below unity, while e /e reaches its maxima for values of Q above unity. For
torsionally-stiff systems (Q>1), V approaches unity as Q becomes large, indicating that there is
essentially no reduction in the base shear, while e,/e approaches one, implying no dynamic
amplification of eccentricity. For torsionally-flexible systems (Q<1) with smaller e/r, there is
essentially no reduction in base shear. The dynamic eccentricity ratio, e,/e, for torsionally-flexible
systems approaches zero as Q tends to zero in the case of hyperbolic spectrum, implying no torque,
but approaches one in the case of flat spectrum, indicating no dynamic amplification.

These observations on how torsional coupling affects the normalized base shear and torque for
the associated torsionally-coupled, one-story system generally carry over to a multi-story building.
However, unlike the one-story system, the normalized quantities of the multi-story building depend
on p. The differences between the normalized responses of the two torsionally-coupled systerns-;
m‘ulti-story and its associated one-story-- are due to the contributions of the terms arising from
cross-correlation between coupled vibration modes ‘2j’ and ‘1k’ (j=1 to 4; k=j+1 to 5) of the

multi-story building, given by the third summation of equation (4.70) and developed further in

Appendix D. These cross-correlation terms contain #,;, which is defined by equation (4.66), and,
for a particular response quantity, depend on e/r, Q, p, and the shape of the respense spectrum.
The magnitude of the cross-correlation terms also depends on the higher modal-pair contributions,
discussed in Section 7, to a particular response quantity. Thus, the deviations of the normalized
responses of the multi-story building from those of the associated one-story system depend on e/r,

Q, p, the response quantity, the significance of higher modal-pair contributions, and the response
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spectrum considered. Since the cross-correlation terms lﬁay assume positive or negative values
(Section 4), the normalized reéponses of the multi-story building may be larger or smaller than the
corresponding normalized responses of the associated one-story system (Figures 40 to 46). The
deviations between the normalized responses of the two systems are more pronounced in the ranges
of Q wher¢ cross-correlation factors y,;,, and v, 3, shown in Figure 14, are maximum. These
deviations are more significant for Vg, Tge and M.z than for Mg, vs, M,z O Py as demonstrated by
Figures 40 to 46, sin;e higher modal-pair contributions were observed in Section 7 to be more
significant for the former response quantities compared to the latier. Also, the deviations increase
with decrease in p in the case of Vy; and Ty, and to a lesser degree for My and M g, trends which
also are related to the importance of the higher modal-pair contributions,.c“liscussed in Section 7
(see als.o Table 12). The deviations increase with increase in e¢/r and are more signiﬁcant for the
- hyperbolic spectrum than the flat spectrum; these trends are related to magnitudes of the cross-

correlation terms (Appendix D).

For a general pseudo-acceleration spectrilm, the response of the torsionally-coupled multi-
story building, normalized by‘lhe response of the corresponding torsionally-uncoupled, system,
depends on T,, in addition to the parameters: e/r, Q, and p, affecting the normalized response in
case of flat or hyperbolic spectra. In order to understand the role that 7, pléys in the effect of
lateral-torsional coupling, the building response was computed for ground motions characterized by
the design spectrum of Figure 5. The seven normalized quantities, Vg/Vy,, Tgp/r Vg,, Mg/Mg,, vs/vs,,
M.giM_ g, MygiMy, and P g/P_p,, are plotted in Figures 47 to 53, respectively, against Q, for
different values of e/r and p and two values of 7,, equal 0.5 and 2.5 sec. Also included in these
figures are the Same responses computed for the flat and hyperbolic spectra, which are independent
of 7,, and were shown earlier in Figures 40 to 46, to provide a basis for examining the role of T,,.
The T,, values chosen, 0.5 and 2.5 sec, are in the flat and hyperbolic brancﬁes, respectively, of the
design spectrum.

The following observations are based on Figures 47 to 53. The normalized responses of sys-

tems with small e/r are relatively insensitive to the shape of the spectrum or to T,,. As e/r
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increases, the normalized response computed for the design spectrum of Figure S follows that deter-
mined for the flat spectrum if T, is in the acceleration-controlled region of the spectrum, and it fol-
lows the results for the hyperbolic spectrum if 7, is in the velocity-controlled region of the spec-
trum. As mentioned in Section 2.3, the results for the flat and hyperbolic spectra are upper bounds

of the normalized quantities computed for the general spectrum.

The normalized responses for the design spectrum of Figure 5 deviate from the idealized
curves for flat or hyperbolic spectra, as the case may be depending on T,,, because of the vibration
periods fal:ling on different branches of the spectrum than T,,, and affecting the contributions of
higher modal-pairs. In other words, the deviations from the idealized curves are related closely to
the contributions of modal-pairs in response. Thus, based on the earlier interpretation of higher
modal-p?;ir responSes, the deviations increase with increase in e/r; they are larger for torsionally-
flexible systems (Q<1), and afe dependent on the response quantity in question and on the value of
p. The deviations for Vg, Tp; and M, are larger for emaller p, which is supported by Table 12, and
less pronounced for My than Vg or Tgp. for torsionally-flexible systems the base torque (Figure 41)
is very small even for T,, values in the acceleratien-controlled region of the spectrum. This is
because, in this case ‘the base lorque is dominated by the fundamental modal-pair (Section 7), and
for torsionally-flexible systems the fundamental vibration mode is very long and falls on a different
branch of the spectrum than T,,, causing its contribution to the base torque to be >very small.

The effect of lateral-torsional coupling on the height-wise distribution of forces is summarized
in Figures 54 to 56, wherein the height-wise variations of story shears, story torques at the centers
of rigidity, and story overturning moments expressed as ratios of the respective values at the base,
are presented for both idealized flat and hyperbolic spectra for systems with p = 0, values of e/r
equal to 0.05, 0.4 and 1, and values of Q equal 0.5, 1 and 1.5. In order to identify the effect of
lateral-torsional coupling on the height-wise variation of forces, also included in these figures are
the height-wise variations of story shears and story overturning momenis for the corresponding
torsionally-uncoupled, multi-story system (e/r =0), which depend on p but not on Q. It is apparent

from these figures that for a flat spectrum the height-wise variations of all forces shown are
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insensitive 10 the values of e/r or Q and follow the respective variations in the corresponding
uncoupled multi-story system. This can be explained by noting that the response of torsionally-
coupled buildings with 7,, in the acceleration-controlled region, or the flat portion of the spectrum,
i$ mainly due to the fundamental vibration modal pair-- modes ‘11’ and ‘21’ (Figures 20 to 23)--
and the cross-correlation terms are relatively small, thus ensuring small contributions of higher
modal-pairs. As a result, the responses of the torsionally-couﬁled building, normalized by the
responses of the corresponding torsionally-uncoupled, multi-story system, are very close to the nor-
malized responses of the one-story system, causing the height-wise distribution of responses for the
torsionally-coupled building to follow very closely those for the corresponding uncoupled system.
The effect of lateral-torsional coupling on the height-wise distribution of forces is more pronounced
for the hyperbolic spectrum, or the velocity-controlled region of the spectrum, with the effect
increasing as e/r increases and as p decreases, primarily because the cross-correlation terms are
more significant in this case, and increase with increase in e/r and decrease in p (Figures 40 to 42).
For the values of ©Q shown in Figures 54 to 56, the effect is generally most pronounced for systems
with closely spaced uncoupled frequencies ( close to 1), more so for story shears and story
torques than for story overturning moments, because cross-correlation terms are more significant for
the former quantities than the latter (Figures 47 to 49). However, the overall effect of lateral-
torsional coupling on the height-wise variations of forces is not large.

The effect of lateral-torsional coupling on the résponse spectra can be examined for the results
presented in Figures 57 to 63. The seven response quantities of the coupled system, normalized as
before, are plotted in the form of response spectra against T, for values of e/r equal 0.05, 0.4 and
1, along with the response quantities for the corresponding uncoupled multi-story system (e/r=0) to
study the effect of lateral-torsional coupling.

Observations based on Figures 57 and 59 to 63 are very similar for the following response
quantites: base shear Vj, base overturning moment My, and top floor lateral displacement v; at the
center of rigidity; and column moment M_z, beam moment M,; and column axial force P.; for base

story of frame (1). For systems with small e/r (e.g. 0.05 or less), the response spectra are
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essentially unaffected by lateral-torsional coupling. For torsionally-stiff systems (& > 1), lateral-
torsional coupling has relatively little effect on the response spectrum shape over a widé range of
T,, in the acceleration-, velocity- and displacement-controlled regions of the spectrum, even for
" structures with larger e/r, although there is some reduction in responses with increase in e/r, with
the decrease being more pronounced for vs, M5, M,z and Py in the velocity- and displacement-
controlled regions of the spectrum. For torsionally-flexible systems (Q < 1), lateral-torsional cou-
pling also has the effect of decreasing the responses below the uncoupled values as e/r increases.
This reduction occurs over a wide range of T,, in the acceleration-, velocity- and displacement-
controlled regions of the spectrum, but the reduction depends significantly on T;l making the shape
of the response spectra for the coupled systems to differ significantly from the uncoupled system,
especially for larger e/r values. The reductions due to increase in e/r are more pronounced in the
acceleration- and velocity-controlled regions than in the displacement-controlled region of the spec-

trum.

In Figure 58, the base torque at the center of rigidity normalized by e;W W;z,/g, is plotted

against T,,. The normalization factor, as explained in Section 6, is the torque obtained if the base
shear W a /g of a rigid single-degree-of-freedom system of lumped weight W, is applied at a dis-
tance e;W,; from the center of rigidity of the system. The torsionally-uncoupled system obviously
d;)es not experience any torque when subjected to pure translational ground motibn. However, the
quantity Vz,e;W;, also normalized by e;W,W,a,/g, i.e. Vp,g/W;a, which depends only on p and T,,,
is included for comparison. For torsionally-stiff systems, or systems with closely spaced uncoupled

frequencies and larger e/r values, Vg,e;W, is a good approximation of base torque, although it may

slightly underestimate it for torsionally-stiff systems with smaller e/r values. For torsionally-

flexible systems Vp,eiW| overestimates the base torque over a wide range of T,, in the
acceleration-, velocity- and displacement-controlled regions of the spectrum. Also, it is apparent
from Figure 58 that for torsionally-flexible systems (e.g. Q = 0.5), there is a shift of the base torque

response spectrum relative to that of the base shear for the corresponding torsionally-uncoupled,
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multi-story system. The shift can be explained by the fact that for torsionally-flexible systems the
fundalﬂenfél coupled vibration period T}, may be much longer than T,,, causing the contribution of
the fundamental mode to be very small when T,, is in the acceleration-controlled region of the
spectrum. Since the fundamental modal-pair is the main contributor to base torque when 7, is in

the acceleration-controlled region (Figure C.1), it follows that the base torque is smaller in this

a

region than Vg,e;W,. For systems with small ¢/r and closely spaced uncoupled frequencies, the
two vibration modes within a modal pair contribute almost equally to the base torque with negative

cross-correlation between the two modes of the same pair (Figure C.1). This explains the reduction
of base torque relative to Ve.eiW, for e/r equal to 0.05 and Q equal 1 (Figure 58). It is apparent

that, in general, the base torque is not satisfactorily approximated by Vp,e;W,.
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9. CONCLUSIONS

A special class of buildings has been identified és buildings consisting of resisting elements
(frames, shear walls, columns and shear-wall cores) arranged such that their principal axes form an
orthogonal grid in plan which are connected at each floor level by a rigid diaphragm, with the fol-
lowing properties: (1) the centers of mass of all floors lie on a vertical line; and (2) the lateral
stiffness matrices of all resisting elements along one direction are proportional (lateral stiffness
matrices of the same or different elements along two orthogonal directions are not necessarily pro-
portional). The centers of rigidity of the floors of such buildings are uniquely defined and lic on a
vertical line. Thus, the static eccentricity of each floor, which is defined as the distance between
the centers of mass and rigidity of the floor, is the same for all floors. This investigation has been
concerned with the earthquake analysis and response of buildings belonging to this special class
with the additional restriction that all frames (spanning along either of the two orthogonal direc-
tions) have proportional lateral stiffness matrices. Furthermore, the floor plans are assumed to have
one axis of symmetry, although most of the development is extendable to the more general case of

no axes of symmetry.

It has been shown that the natural vibration frequency w,; and shape ¢,; of the nj™ mode of a

torsionally-coupled, N-story building are given by:

(D,U' = (I_)n wyj (4.10)
and,
¢ynj ayn Vj
¢, = {4’9"/ } = { Son ¥ 4.11)
(withn=1,2and j=1, .., N, N being the number of stories); where w,; and y; are the j* natural

vibration frequency and mode shape of the corresponding torsionally-uncoupled, N-story system-- a
N-DOF system with coincident centers of mass and rigidity but all other properties identical to the
actual torsionally-coupled, N-story building, @, is the n™ vibration frequency of the associated

torsionally-coupled, one-story system-- a 2-DOF system with the same eccentricity and uncoupled
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torsional to lateral frequency ratio as the -torsionally-coupled, multi-story building, normalized by
" the lateral vibration frequency of the corresponding torsionally-uncoupled, one-story system-- a sys-
tem with coincident centers of mass and rigidity but'a]l properties identical to the associated

.

torsionally-coupled, one-story system-- and e,,” where @, = <a

n Ogn>, is the n™ mode shape of the

associaled torsionally-coupled, one-story system.

The maximum value (over time) of any response quantity 7,; of the torsionally-coupled, N-

story building with the aforementioned properties due to its nj* vibration mode is given by:
P = 7,,, F,  n=12 j=1...N (4.66)

where t; is the maximum, value of the same (or related-- see Table 1) response quantity of the
corresponding torsionally-uncoupled, N-story System in its j* lateral vibration mode; and 7,,j is the

normalized maximum value of the response quantity corresponding to F,; (as given in Table 1) of

~

the associated torsionally-coupled, one-story system with uncoupled lateral vibration frequency o,

® vibration mode, where the normalization is with respect to the maximum

equal (o o, in its n
value of the corresponding response quantity 'in the corresponding torsionally-uncoupled, one-story

system. Responses of.all the syétems are computed for the same earthquake design spectrum.

It has been demonstarted that the earthquake responses of two buildings with different floor
plans are idenctical provided: (1) the static eccentricity ratio is the same for both buildings, (2) the
two buildings have identical lateral stiffness matrices along the direction of ground motion, (3) the
uncoupled. torsional to lateral frequency ratio is the same in both buildings, and (4) the mass of

each floor and the damping ratio are the same for both buildings.

As a result of this observation, the parametric response study is concerned with buildings hav-
ing a simple floor plan, consisting of three morﬂent resisting planar frames, only one of which is in
tﬁe direction of the ground motion. This investigation has led to the following principal conclu-
sions, which are also applicable 10 the special class buildings with more general plans than the

simplified model:
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The coupled lateral-torsional response of the building depends on the static eccentricity ratio
e/r, the uncoupled torsional -to lateral frequency ratio Q, the joint rotation index or beam-to-
column stiffness ratio of the frames p, 7,,, the fundamental lateral vibration period of the
corresponding‘ torsionally-uncoupled, multi-story system and £ the damping ratio of the build-
ing.

For fixed values of e/r, Q and p, the response contributions of higher vibration modal-pairs
increase with increasing 7, in the ve'ldcity- and displacement-controlled regions of the earth-

quake design spectrum.

For fixed values of e/r, Q and T,,, the response contributions of the higher modal-pairs

increase with decreasing p.

The response contributions of higher modal-pairs vary with the response quantity in question.
Among the overall response quantities, the higher modal-pair contributions are much more
significant for the base shear and base torque than for the base overturning moment or the top
floor lateral displacement. Among the local response quantities, the higher modal-pair contri-
butions are more significant for the column moments than the beam moments or column axial

forces.

The height-wise variations of story shears and story torques are similar, with differences
increasing as T, increases in the velocity- and displacement-controlled regions of the spec-

trum,

The contributions of higher modal-pairs to the response of a building, expressed as fractions

of the response due to the fundamental modal-pair, are relatively insensitive to e/r or Q.

The effects of lateral-torsional coupling on the responses of a multi-story building and its
associated one:slory system are similar. Lateral-torsional coupling causes a decrease in the
base shear, the base overturning moment and the top floor lateral displacement at the center of
rigidity, but an increase in the base torque; these effects increase as e/r increases and are most

pronounced for systems with closely-spaced uncoupled frequencies.
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The differences between the effects of lateral-torsional coupling on the multi-story building
and its associated one-story system arise due to cross-correlation terms between vibration
modes belonging to different modal-pairs. These differences increase with increase in e/r,
they are more pronounced for the base shear and base torque than the base overturning
moment and the top floor lateral displacement; and are more pronounced for the column

moment than the beam moment or column axial force in the base-story.

The effect of lateral-torsional coupling on the height-wise variations of forces seems not to be
very significant, being more pronounced for story shears and story torques than story overturn-
ing moments. The effect increases as e/r increases and is more pronounced when 7, is in the
velocity-controlled region than when it is in the acceleration-controlled region of the spec-
trum.

Lateral-torsional coupling also affects the response spectra, i.e. the variations of forces with
T,,, to varying degrees depending on the system parameters and the response quantities. For
systems with small e/r, the response spectra are essentially unaffected by lateral-torsional cou-
pling. For torsionally-stiff systems, lateral-torsional coupling has little effect on the shape of
the response spectra.over a wide range of T, in the acceleration-, velocity- and displacement-
controlled regioﬁs of the spectrum, although there is some reduction in responses with
increase in e/r. For torsionally-flexible syétems, laterél-torsional coup]ing also has the effect
of decreasing the responses below the uncoupled values, with reduction depending greatly on
T,,, thus making the shape of -the response spectra for the torsionally-coupled systems to differ
signiﬁcamly from those for torsionally-uﬁcoupled systems.

For torsionally-stiff systems, or systems with closely-spaced uncoupled frequencies and larger

e/r values, the base torque at the center of rigidity is approximated by the quantity Ve, W;,

the product of the base shear Vjp, in the corresponding torsionally-uncoupled, multi-story sys-
tem, the effective eccentricity e; in the fundamental vibration mode .of the associated one-

story system and W/, the effective weight in the fundamental vibration mode of the associated
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one-story system normalized by its total weight. In particular Vg,e;W/| slightly underestimates
the base torque for torsionally-stiff systems with smaller e/r ratios, but overestimates it for
torsionally-flexible systems over a wide range of T,; in the acceleration-, velocity- and
displacement-controlled regions of the spectrum, and for systems with small e/r and closely-

spaced uncoupled frequencies.

Taking advantage of the fact that the earthquake response of the torsionally-coupled, multi-
story buildings considered in this investigation can be estimated by considering only the first two
‘vibration modal-pairs, and in some cases only the fundamental vibration modal-pair is sufficient, it
is possible to develop simplified procedures for the analysis of torsionally-coupled buildings. The
vibration frequencies and mode shapes of the first two modal-pairs of torsionally-coupled buildings
can be determined utilizing estimates of the first two vibration frequencies and mode shapes of the
corresponding torsionally-uncoupled, multi-story system obtained by simplified procedure presented
in [12]. Similarly, utilizing the procedures developed in Section 4, modal-pairs of the torsionally-
coupled system can be determined from the modal response maxima of the corresponding:
torsionally-uncoupled system estimated by the simplified procedure presented in [12]. It is believed
that such simplified response analyses can be applicable to more general buildinés than those con-

sidered in this study.
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. APPENDIX A: ON STATIC ECCENTRICITY
A.1 Concepts and Definitions

The center of rigidity of a one-story system with a rigid deck is the point in the plan of the
deck through which a horizontal static force must be applied in order that it may cause the deck to
translate without torsion. If the force is along either of the principal axes, which are orthogonal
and pass through the center of rigidity of the system, the deck translates in the same direction as
the force. If a pure torsional moment is applied at the deck, torsioﬁ of the deck takes place around
the center of rigidity.

Extension of this deﬁﬁitiorj to multi-story building§ is not a‘simple matter. As a matter of
fact, it is generally not possible to determine unique centers of rigidity for multi-story buildings. It
will be shown, however, that there is a special class of buildings where the centers of rigidity are

uniquely determined and fall on a vertical line.

Consider a multi-story building consisting of a number of momenl-resisting-frames (shear
walls, columns or shear-wall cores), aJTanged in an orthogonal grid, and joined at each story level
by a rigid deck (e.g. Figure 1). The centers of mass of the building are assumed to lie on a vertical
line. Without loss of generality, the resisting elements are assumed to be located symmetrically

about the X-axis.

The centers of rigidity of the floors of the building are the points in the planes of the floors
through which any set of static horizontal forces (of arbitrary magnitude and direction) must be
applied in order that it may cause all decks to translate without torsion. If the forces are along
either of the principal axes, which are orthogonal and pass through the centers of rigidity of the
floors, the ‘decks translate in the same direction as the forces. If a set of pure static torsional
moments is applied at the decks, torsion of the decks takes "place around the centers of rigidity, i.e.
the centers of rigidity remain at rest.

The static eccentricity of a floor is simply the distance between the centers of mass and rigi-

dity of the floor. When the static eccentricities of all floors are zero, lateral motions of the building

are independent of its torsional motions, and the building is said to be uncoupled.
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A.2 Locations of Centers of Rigidity

The building is subjected to a force vector P defined by P” = <P? Tf;>, where P, is a vector
of static horizontal forces applied at the centers of mass along the Y-axis; and T,, a vector of static
torsional moments applied at the decks about a vertical axis. The Y-lateral displacements at the
centers of mass u, and deck rotations u, about a vertical axis are determined by solving the equa-

tions of static equilibrium:
P =Ku (A.1)

where K is the building stiffness matrix with respect to u, the displacements vector given by
u’ = <u! uf>. Equations (A.1) are written explicitly as:

P, u, |
= o (A.2)

where K,, K4, Ko, and K, were given earlier in equations (3.5).

K.v Ky@
Key KO

Alternatively, equations of static equilibrium can be written in terms of u® defined by

o7

u” =<v! ul>, where v is the Y-lateral displacements vector at the centers of rigidity:
P =K'u' (A.3)

where P° is a force vector equivalent to P given by:

) P, 10 P, o
P =1 [=|-e1 T, =2 P (A4)

in which I and 0 denote identity and zero square matrices; e is a.diagonal matrix with entries equal

to the static eccentricities of the floors; and a’ is a simple transformation matrix, also relating u to

l.l), I —-e v . .
u={u9}= 0 Il{u9}=au | (A.5)

Substituting equations (A.1) and (A.5) into (A.4), we obtain:

u’ by:
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PP=a"P=a"Ka'u' ’ "~ (A.6)
Comparing equations (A.3) and (A.6), it is clear that:
K'=a"Ka’ | (A.7)
.Substituting equations (A.2) and .(A.5) into (A.7), we get:

K K,, - K,e

N Y

K' =
Key - eK, Kgr

(A.8)

where,
KQR = Ke - Kaye + e(Kye—Kye) (A.9)

Ulilizing equations (A.8) into (A.3), we obtain:

. p}’ v
5 H

Recalling the definition of centers of rigidity given in Section A.l, it is clear that for any

K, K,o-K,e

Kg, — €K, Kor

P,#0and Tg =0, v = 0 but ug = 0. It follows that:

P, =K,v (A.11)
and

0=(Kg -eK))v (A.12)
from which we can write:

eP, = Ko K;'P, (A.13)

Also, the definition of centers of rigidity implies that for any T, # 0 and P, =0, v=0 and u, = 0,

from which we obtain:

eu, = K;'K gu, (A.14)

Equations (A.13) and (A.14) should be satisfied for any P, or Tz. Thus,
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e = Key K;l = K;l Kye (A.IS)

Since e was defined earlier to be diagonal, it is obvious from equation (A.15) that it is gen-
erally not possible to obtain unique centers of rigidity satisfying the definition given earlier in Sec-

tion A.1.
A.3 Application to the Special Class of Buildings
For the special class of buildings described in Section 2.1, the lateral stiffness matrices of all

frames spanning in the same direction are proportional. This leads to equation (3.8) of Section 3:

Cye

Kye = Key = C_Ky (3.8)
y
Substituting equation (3.8) into (A.15), we obtain:
c 9
e= —C’—"K, K;' = —C"’—I (A.16)

y y
Thus, for buildings belonging to the special class of buildings, identified in Section 2.1, the static

eccentricities of all floors are the same, given by:

e = — (3.9)

Since the centers of mass lie on a vertical line, the centers of rigidity also lie on a vertical line and

are uniquely defined. |
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APPENDIX B: FRAME LATERAL STIFFNESS MATRIX
B.1 Model Frame

The frames considered are idealized as single-bay, five-story momenf ‘resisting plane frames
with constant story height = &, and bay width = 24 (Figure 2b). All members are prismatic with
constant cross-section. Only flexural deformations are considered in the analysis of the frames. All
the beams have the same flexural stiffness £/, and the column stiffness EI. does nof vary with

height.
B.2 Formulation of Lateral Stiffness Matrix
The lateral stiffness matrix of any frame can be determined by the following steps:

1.  Define one rotational degree of freedom per joint and one translational degree of freedom per

floor, as shown in Figure 2b.
2. Obtain the element stiffnesses:

(a) Beams contribute to rotational degrees of freedom only. Two rotational degrees of free-

fo 6
) (]

where fq, and f,, are the beam end moments; 6, and 6, the corresponding end rotations. For

dom are defined per beam:

the special frames considered, the joint rotation index p is given by:

1,
I

_ /)
p= =47 (2.2)

|-

from which,

so that:

El] |4 2
kb=2p7[24] (B.3)
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(b) Columns contribute to four degrees of freedom: two rotational (6, and 6,) and two transla-

tional (v, and v,):

f op P
f 8¢ q
foo | k. v, (B.4)
fuq Ve

where fq, and fq, are the column end moments; and f,, and f,, the lateral end forces.

Column stiffness matrix k. is given by:

4 2 -85 ¢
h h
2 4 -y
El
k=% | 6 6 12 12 (8:3)
h h h2 h2
6 6 12 12
\- h h h2 h2
which in partitioned form becomes:
k k
E[ c68 cOv
k(«= T kcve kcvv} (B6)

Assemble element stiffnesses in frame global stiffness k;:

(ol

where v are the lateral floor displacements and f, the corresponding external lateral forces; @

are the joint rotations and f, the corresponding external moments. One can write:

l‘vv kvO
k= | B.
T ka keo ( 8)
Note that beam stiffness k, contribute to kg, only, k g0 tO keg, k.o t0 kg, k.6 to ko and k_,,

to k,,.
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4. Condense out the rotational degrees of freedom to obtain the frame lateral stiffness matrix.

Since the external moments corresponding to joint rotations are zero, i.e. fo =0, it follows that:

0=k v+kyg

from which
6 = -kzlko,v=Tv
where
T = —kg; ke,
Finally:
f,=k, v+keg0=[k, +k,T]v
and,

k=k, +kgT

is the frame lateral stiffness matrix.

B.3 Dimensionless Lateral Stiffness Matrix

The beam stiffness matrix k,, given by equation (B.3), is rewritten as:

El |42 El

where

4 2
k§=2p‘ 2 4

(B.9)

(B.10)

(B.11)

(B.12)

(B.13)

(B.14)

(B.15)

is dimensionless and depends on p. Similarly, the column stiffness matrix, given by equation (B.5),

is rewritten as:
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EI EI ,
_k" __ko
El kcw kcev h c68 hZ v i
ko= Tk, k., | = By, El, (B.16)
hz cvl h3 cvy
where k2, k%,, k%o and k?,, are dimensionless submatrices given by:
4 2
koo = |2 4 (B.17a)
DT _6 6
v =keo = | 6 6 (B.17b)
, 12 -12
kew=|_12 12 (B.17¢c)

Since the individual stiffness submatrices contribute only to parts of the global stiffness matrix kr,

introducing equations (B.l4) and (B.16) into (B.8) leads to:

B, EIL,
kvv kve h3 kVV h2 ?‘VO

R P R (B.18)
hz v h [: ]

where k9, kg, k% and kg, arecdimensi'onless submatrices, with kg, the only submatrix dependent on

p, due to dependence of ki on p. Substituting equations (B.18) into (B.10) yields:

lﬂ o

h2 oY

-1 -h .
- = = = —(k
0 ko ke, v=Tyv EI( o)

1 Lo \-1po l o
= _—’: (kee) ]kav = —': T’y (B.lg)
with

T® = - (kg ) ™' ks, (B.20)

and
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T = %T" (B.21)
Equations (B.12) become:
f, = %[kﬁv+kffeT”]v= —E—fk”v - * (B.22)
h h
/
where
k? = k9, + k% T° (B.23)

is a dimensionless matrix that depends on p due to the dependence of T° on p. Therefore, the

frame lateral stiffness matrix k is given by:

B

k=h3

k° (B.24)

B.4 Derivation of Equation (3.18)

Specializing equations (B.24) to frame (1) yields its lateral stiffness matrix, which also equals

the building lateral stiffness matrix K,:

= ——k° (B.25)

where 7, is the column moment of inertia of frame (1) and ky, is a dimensionless lateral stiffness
matrix which depends only on p,, the joint rotation index of frame (1). Similarly, the lateral

stiffness matrix of frame (2) is given by:
—5 ko o ' (B.26)
where I, is the column moment -of inertia of frame (2), and k2, is a dimensionless matrix which
depends on p,, the joint rotation index of frame (2). Clearly, when p, = p, =p the_n:

ke, = k9 = k° | (B.27)

and,
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(3.18)
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APPENDIX C: IMPLEMENTATION OF ANALYSIS PROCEDURE

The lateral stiffness matrices of the frames were shown in Appendix B to be proportional to a
dimensionless stiffness matrix that depends only on the joint rotation index p. Utilizing this result |
and the analysis procedure described in Section 4, the response of the torsionally-coupled multi-
story building of Figure 2a with p, = p, = p is expressed in terms of dimensionless response quanti-

ties, with the purpose of improving computational efficiency.
C.1 Vibration Frequencies and Mode Shapes
C.1.1 Corresponding Torsionally-Uncoupled, Multi-story System

The lateral vibration frequencies o,; and mode shapes y; are determined by solving the
eigen-equations (4.‘2a):

(K, -o)m)y; =0 j=1,...N (4.2a)

where m is a diagonal mass matrix of dimension N, the number of stories, of diagonal entries equal
to m, the mass of each story, i.e.

m=mm°=ml (C.1)

where m° and I are identity matrices of dimension N. Substituting equations (B.25), (B.27) and

(C.1) into (4.2a), and dividing by mh*/EI,, we obtain:

(k® ~ A7m°) gy, =0 (C.2)
where
M=y | (€3)
El,
from which,

El i
a)yj = ;h—aﬁ.yj _]=1,...,N (C4)
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e TR . A T (C5)

and,

El,
@,y = P A’yl (C.6)

Since k° depends on p, the dimensionless fréquencies A, the ratios 4,;/A,, or @ /w,, as well as the

vJ*
mode shapes y; depend on p. Thus, the fundamental uncoupled lateral frequency o,; (or period

T, =2n/w,;) can be varied by adequately varying the geometric constants £I,, m and h.
C.1.2 Torsionally-coupled, Multi-story Building

The vibration frequencies w,; and mode shapes of the coupled multi-story building are deter-
mined from equations (4.10) and (4.11):

(4.10)

and,

N Pynj B oy, W & 411
Onj = $orj | | an ¥ ’ @.11)

for n=1,2 and j=1 to N, with ®, and a,, where a! = <Oy, Og,>, the normalized frequencies and

mode shapes of the associated Aone-story system. Substituting equation (C.5b) into (4.10), we get:

(CN

= Ay/’
w,; = @, _2. ) Wy
y

Since @, and a, depend on eccentricity ratio e/r and uncoupled torsional to lateral frequency ratio
Q, (equations (4.22) and (4.23)), and Ayl2,, and y; depend on p, it follows that the coupled fre-

quencies o,; depend on e/r, Q, p and T,, (or w,,), while ¢,; depend on e/r, Q and p.
C.2 Modal Response Maxima

C.2.1 Corresponding Uncoupled Multi-story System
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Taking advantage of the invariance of the mode shapes w; and the frequency ratios o,/e,
when T, varies, the responses of the corresponding uncoupled multi-story system in each mode are

expressed in terms of dimensionless response quantities. Substituting equation (C.1) into (4.13), we

obtain:
L= wfml =m \vfm"l =mlL} - (C.8a)
and
M= wimy,=my[my;=mM (C.8b)
and the ratios
L L?
J J
i A (C.9)
M, pme

Using equations (C.5) and (C.9), the floor displacemems vector, given by equation (4.12),

becomes:

L
ViT T 6V T 2 Vi T
M; oy oy (RaifAy) @)

S, LMy S,
LSy = e (C.10)

J

where \};’ is dimensionless and depends only on p.

The equivalent static lateral forces, given by equations (4.14), are written as:

fj=wy2jmvj=msaj ’o m’y; =mS,; f; (C.11)
/

- in which equations (C.1) and (C.10) have been introduced.
Using equations (C.11) in (4.15), the vector of story shears becomes:
I=Sfj=mS,,ijj’=mSaj V;’ (C12)

where V¢ is dimensionless and depends on p; S is a summation mairix given by equation (4.17).

Similarly, the vector of story overturning moments, given by equations (4.16), is written as:
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M, =Hf,=mhS,; H' 2= mh S, M? . (C.13)

where H is given by equation (4.17),

HU

= |-

H (C.19)

and M7 is dimensionless and depends only on p.
Joint rotations of equations (B.19) are expressed as:

S, 1 S,

0, =Ty, =— "L Toye= - "% @g¢ 15).
P= Y h 2 N (C.15)
yl1 y1

where @7 are dimensionless and depend on p.

Beam moments are computed using equations (B.1) and (B.14) and the corresponding end

joint rotations extracted from @;, given by equation (C.15). We can write:

_ {fep,-] =§1_lkg{epj] _EL Sy 6
foyj h 6, B2 8°;

—_——
S8
< T

~———
|

El, S, | Mip;
=024 (C.16)

2
h “’yzl Mboqj
Similarly, the column end moments are computed using equations (B.4) and (B.16) as well as
the corresponding end joint rotations and end joint displacements extracted from @; and v;, given

by equations (C.15) and (C.10), respectiveiy. We obtain:

MCPJ'] _ {fﬂij _ EIL Ko 6y . El, ] Vi
qu/' f 84/ % 6, h? cov Vai

o a

_EL S, ., | % LB Sy, Vpj
- 2 c6o 9 coy

2 o 2 .

h Wy 0, h g Vei
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El, S, | M4
= — ” ) (C.17)
h Dy My

For the first story M.,; = 0.

Column axial forces are computed using statics. The column axial force in the /" floor is

obtained from:

Pl = [M,,,,, + M,,q,] + Pl (C.18)

with P/} = 0 for 1 = 5. Thus, we can write:

EI, S,
PCIj:—Tl ’ [ (Mbpj bw)"’Pc’jﬂo
h™ 2
y! :
E,l S"f o . »
- plo (C.19)

In summary, the modal responses of the uncoupled multi-story system can be expressed in the

form:

r.=r.S,;7r ‘ (C.20a)

J aj ~ 7

where r;, defined by equations (C.10) to (C.19), are dimensionless and depend only on p, while 7.

are constants, also given in equations (C.10) to (C.19), that depend on m, h, El, and/or w,,.
C.2.2 Torsionally-coupled, Multi-story Building

The modal responses of the torsionally-coupled multi-story building are given by equations

(4.48) to (4.65), with their special form summarized in equation (4.66):

Ty =Tt (4.66)

) T

with 7,; the normalized response quantity, given by equations (4.42) to (4.46), in the associated

one- slory system with uncoupled lateral vibration frequency equal to w,;. These can also be written

vi*

as products of dimensionless quantities that depend only on e/r and Q, and the ratio of the pseudo-
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acceleration response spectrum ordinate §,,;/S,;:

F, = 7 oo

nj n S .
aj

Substituting equations (C.20) into (4.66), we obtain:

o

r.= rc Sanj Ffr

nj
Thus, the lateral displacements at the centers of mass are given by:

Sa

= Zan —o Lo
Uynj = ) Uyp ¥
O)yl
deck rotations: ’
San‘
j —
Ug,j = 2 uzn V;-)
[

y 1

lateral displacements at the centers of rigidity:

S .
Vn, = a;” V:V?
CD),I
story shears:
V. =mS,,; VVs

story overturning moments:

story torques at the centers of mass:

— T 0
TM"j =m rSarlj TM’I Vj

story torques at the centers of rigidity:

Traj = M1 Sz Tn V9

anjy

a beam moment of frame m:

(C.20b)

(C.21)

(C.22)

(C.23)

(C.24)

- (C.25)

(C.26)

C.27

(C.28)
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EI, S, ‘
= VM (C.29)
wy-l
a column moment of frame (1)
- 21 2 g c30
Mrnj = 7 —2 Vo M ( * )
wy
and a column axial force of frame (1) by:
_EL S ., c31
z-nj"?wz Val¢j ( . )

y
Equations (C.21) to (C.31) give the modal responses of the torsionally-coupled building
expressed in terms of quantities 7} and F, that are invariant as 7,, varies. Thus, for fixed values of
p, e/r and Q, 1} and T, need to be computed once. Taking advantage of the invariances of rj‘-’ and

T, when T,, changes, these were computed in advance for each e/r, Q and p case, and then used
for each of the different fundamental uncoupled lateral period 7,, considered, avoiding in this way

a considerable amount of numerical computation.
C.3 Maximum Response

Maximum response of the torsionally-coupled building are computed by combining the modal

maxima acording to CQC, as given by equation (4.67):

Va

2 Ynj,mk Fn Fm rj rk (4.67)

I m=1

e

Sh»

j=lk=ln

where v,; .., is given by equation (4.36) for frequency ratios g,; .., given by equation (4.68).
C.4 Normalization Factors

The responses are presehted in dimensionless forms by normalizing each by a meaningful nor-
malizalion factor, given in Table 8 for the response quantities in interest. The choices of the nor-

malization factors for floor displacements, frame (1) beam moments, frame (1) column moments

and frame (1) column axial forces are rather obvious from equations (C.24), (C.29), (C.30) and
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(C.31), respectively. In these u,, the maximum ground displacement, is chosen.to nondimensional-

ize S,,/w}. On the other hand, the normalization factors for story shears, story overturning

anj

moments and story torques are of special forms that require further explanation.

The normalization factors for the story shears and story overturning moments are W a,/g and

Wih/a/g, where @, is the maximum ground acceleration, Wy and h, were defined in Section 4.2 as
the effective weight and height of the uncoupled multi-story system in its fundamental vibration

mode, and given by equations (4.20). These normalization factors are the base shear and base over-

tuming moment of a rigid single-degree-of-freedom system with lumped weight W; and height ;.

Substituting equations (C.1), (C.8) and (C.9) into (4.20), we obtain:

L} Ly .
W/, =—g=mg =mg W,° (C.32)
M, M?
and,
,_h<12345>my, _ <123 4 5>m°y,
1, = =h
1 L Lo
=h h° (C.33)
Thus, referring to equations (C.25) and (C.26) the normalization factors:
» Eg —_ »
Wi— =ma,W° (C.34)
and
LR ag - 0 1. %
Wl h] ? =mh a‘z Wl hl (C.35)

nondimensionalize m §,,; and m h S,,;, respectively.

The normalization factor for story torques at centers of rigidity is ¢;W,W,a,/g, which as was

explained in Section 6, is the torque of the rigid single-degree-of-freedom system at an eccentricity
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of e;W/, given by equation (4.46) and plotted in Figure C.1, and which équals the dynamic eccen-

tricity of the associated one-story system in its fundamental mode, computed for unit pseudo-

acceleration. The story lorques given by equation (C.28) normalized by e;W ;W a,/g become:

Suni T2 "
__._:g' — Trej = — __Rn ‘_1‘ V7 (C.36)
elwlwlag aR T}g] Wlo
with T2, (n=1,2) and T¢, depending on e/r and Q only.

With these proper normalizations, the structural characteristics (E, /;, m, r and k) are not

included in the computation of the response quantities.
C.5 Computer Program Qutline

A complete, although not very detailed, flow chart of the computer program developed to
carry out the computations described above is given in this section. The program is written in

FORTRAN and was checkerd against SAP80 [1].
PROGRAM SPNRMB
Read parameters p, e/r and Q
For p
Form the total stiffness matrixﬁ of the corresponding torsionallly-uncoupled, multi-
story system k%
Compute the lateral stiffness matrix of the corresponding torsionally-uncoupled,
multi-story systerﬁ k°
Form mass matrix m°
Compute the uncoupled lateral frequencies A,; and mode shapes y;

Compute dimensionless modal responses 7; of the corresponding torsionally-

uncoupled, multi-story system
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For e/r and Q

Compute normalized frequencies &, and mode shapes a, of the associated

torsionally-coupled, one-story system

Compute normalized dimensionless responses r, of the associated torsionally-

coupled, one-story system
Read number of fundamental uhcoupled lateral périod cases
For each fundamental uncoupled lateral period case
Read fundamental uncoupled lateral period T,
Compute frequencies w,; = &, (1,;/1,,) oy,

Read pseudo-acceleration response spectrum ordinate S,,;

Compute modal maxima S,,; 7, 1}
Estimate maxima of response by CQC
Normalize responses

Print results
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APPENDIX D: INFLUENCE OF MODAL CROSS-CORRELATION

D.1 Derivation of Equation (4.70)

Estimate of the maximum 7 of a response quantity is determined by combining its modal
maxima ¥,; according to CQC:

2 V2

5 2 _
F= | XYY Y Yjm Tl s (4.67)

j=1k=1n=1m=1

where v,; ., is computed by equation (4.36) for frequency ralios g,; ., given by equation (4.68).

The cross-correlation factor y,; , is negligible if ¢,; . is below 0.8 or above 1.25 [15].

The summation given by equation (4.67) involves (2N )? or 100 terms, which are all taken into
account in this study. However, in order to. interpret the results of Section 8, equation (4.67) is

explicitly written as:

4 5
Y1j.zjr|jr2j+22 2 TRV LA TRAL
i j=1 k=jel

5.2
r =22r,fj+2

S

~
1]
3
1]

~

4 s 4 s 4 s
+22 2 Yljzkrljr2k+2z 2 71/,1kr1jr|k+22 2 Y226 V2j Vo (4.69)

j=1 k=j+1 j=1 k=j+1 j=1 k=j+1
While the first double summation of equation (4.69) represents SRSS, the next five summations
represent the cross-correlation terms between various modes of vibration: the first represents cross-
correlation between modes ‘1j’ and ‘2j’ of the same pair ‘j’; the second represents cross-correlation
between modes ‘2j> and ‘1k’, (j=1 to 4 and k=j+1 to 5), which are of different nature and belong to
different pairs ‘j’ and ‘k’, such as modes ‘21’ and ‘12’°, ‘13°, ‘14’ and ‘15’°, or ‘22’ and *13’, ‘14’
and ‘15°, ... etc.; the third represents cross-correlation terms between modes ‘1j’ and ‘2k’, (j=1 to 4
and k=j+1 to 5), which are of different nature and belong to different pairs ‘j° and ‘'k’, such as
modes ‘11’ and ‘22°, 23°, ‘24’ and ‘25°, or ‘12’ and ‘23°, ‘24’ and ‘25’, ... etc.; the fourth
represents cross-correlation terms between modes ‘1j° and ‘1k’, (j=1 to 4 and k=j+1 to 5), which
are of the same nature but belong to different pairs ‘j° and ‘k’, such as modes ‘11’ and ‘12°, ‘13°,

‘14’ and ‘15°, or ‘12’ and ‘13’, ‘14’ and ‘15, ... etc.; and the fifth represents cross-correlation
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terms between ques ‘2’ and 2k 0;1 to 4 and k=j+1 to 5), which are of the same nature but
belong to different pairs ‘j“’ and ‘k’, such as modes ‘21’> and ‘22°, ‘23, ‘24’ and ‘25’, or ‘22’ and
‘237, ‘24’.émd ‘25°, ... etc.. It is shown in Section 5 that frequencies w,; and w,,, wy; and wy,, and
wy, and way, (j=1 to 4 and k=j+1 to 5), are widely spaced. It follows that v, 7i;1. and 73,24
(for j=1 to 4 and k=j+1 to 5), are negligibly small, and the last three double summations of equa-
tion (4.69)‘are negligible. Equation (4.69) can, therefore, be approximated by:

"= i i Fay + 2 i V2 Tyl +2 i 25: (TATRETRAT: (4.70)

j=1 n=1 j=1 J=1 k=j+1
D.2 Normalized Coupled to Uncoupled Responses for the Idealized Spectra

The maximum response F, of the corresponding uncoupled multi-story system is determined

by combining its modal maxima r; according to SRSS:

ri=Yrl (D.1)

j=1
The effect of lateral-torsional coupling is studied by comparing the coupled responses to the

corresponding responses in the uncoupled system. The ratios r/r, are given by:

2 5 4 :
2
22 rnj"'ZZYIj,zjrl,'rzj Z Z IRV RATEATY;
(L)?- ~ j=1n=1 j=1 +2 j=1 k=j+1 (D.2)
rO
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3 7 :

Y
j=1

Mo

J

~
n

Noting that y,;,; is computed for ¢,,,; = Q,/€,, it is obvious that y;;,; equals y,,, the cross-
corelation factor between the two vibartion modes of the associated one-story system. Using this

fact and substituting equations (C.20) and (C.21) into (D.2), we obtain:

5 2 s
ZZ(F:r;)sanj)2+2712?77;z(r/"’)zsaljsalj

r j=1 n=1 j=!
(—)P=4

S
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4 5
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j=!

Specializing equations (D.3) 1o a flat pseudo-acceleration spectrum where:

Saﬂj = Saj = Sal = SaZ (D4)
we oblain:
4 s .
Y 2 2 Z Z 72/ 1k r] ’k
(Lp e R T e 29a T « 27 S 3
o >y
j=1
or,
4 5 .
r 2 Z Z Y2ie b b
(—X=T +2FF; S0 (D.6)

in which equations (4.47) have been introduced and 7 is the normalized coupled to uncoupled

. \
response of the associated one-story system computed for a flat spectrum.

For a hyperbolic pseudo-acceleration spectrum we can write:

San' @y Sa' Wy; A '.
) N Q" and Bl Bt /A }.’L (D7)
y1

Saj wyj al wyl

Using equations (4.22), it can be shown that Q, Q, = Q, then equations (D.3) become:

4 5
, ) ) 2 T (Al Ay ) (Auddyy)
—p —— —_——0 =1 k=j
(=) = (77 Qi+ T; QG+ 20,QFT3) + 271,020 (D.8)
Fo > (7] (Ala,,) P
j=1

or,
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4 S
) 2 X T TR0 (o)
(—P=TF +27 Q==

7
— 5 D.9)
v, > (7 (A 1a,0))?

Jj=1

where 7 is the normalized coupled to uncoupled response of the associated one-story system com-

puted for a hyperbolic spectrum.
D.3 Influence of Cross-Correlation Terms

Equations (D.6) and (D.9) indicate that the normalized coupled to uncoupled responses of the
mulli-slor‘y‘building in the case of the flat or hyperbolic idealized spectra, equal the sum of the nor-
malized coupled to uncoupled responses of the associated one-story system computed for the flat or
hyperbolic spectrum, as the case may be, and terms that arise due to cross-correlation between
vibration modes ‘2j’ and ‘1k’ (j=1 to 4 and k=j+1 to 5). In other words, the differences between |
the normalized responses of the two coupled systems-- multi-story and its associated one-story-- are
due to the contributions of the terms arising from crqss-correlalion between vibration modes ‘2j’

and ‘1k’ for j=1 1o 4 and k=j+1 to 5.

For the flat spectrum, each of the cross-correlation terms is propor.tional to the cross-
correlation factor y,,;, (2112 and y;;,; are shown in Figure 14), the product of the normalized
modal responses 7,7, of the associated one-story systém and the product of the modal responses
rir; of the corresponding uncoupled multi-story system. For the hyperbolic spectrum, each of the
cross-correiation terms is proportional t0 vy, s, 7175, Fjr{ and the frequency ratios A,/A,, and
Aw/Ay. Therefore, the values of the cross-correlation terms depend on the values of vy 4, irs,
Fire and A ;/A,; which in turn debend one/r,Q, p and the response quantity in question. Referring

to Figure 14 it is clear that at two values of Q (depending on e/r and p), the cross-correlation fac-

tors v,;,, are maximum. The products 27,7, (for the flat spectrum) and 2r,7,Q (for the hyperbolic
Ja p P yp ;

spectrum) are shown in Figure D.1 against Q for values of ¢/r equal to 0.05, 0.4 and 1, for the base

shear, i.e. 2V{Vy, (base overturning moment or lateral displacement at the center of rigidity) and
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the base torque at the center of rigidity, i.e. 2T§,T5%,, of the associated one-story system. The

dependence of the cross-correlation terms on r; and ry indicate that they are affected by the higher
modal contributions to responses, given in Table 12 in normalized form. Combining observations

of Figures 14 and D.1 and of Table 12, it is clear that the cross-correlation terms may have positive
or negative values depending on whether rf and 7y are of the same or opposite algebraic signs.

Due to the variations of 2V{V§ for the flat spectrum (Figure D.1), the cross-correlation terms for
slory shears, story overturning moments and all frame (1) member forces are significant for

torsionally-flexible systems with larger e/r, especially when v, ;, is maximum. For a hyperbolic

spectrum V{VyQ of Figure D.1 is significant over a wide range of , indicating that cross-
correlation terms are significant for torsionally-flexible systems, torsionally-stiff systems or systems

with closely-spaced uncoupled frequencies. Also it is clear from Figure D.1 that the significance of
the cross-correlation terms increases with increase in e/r. Similar interpretation of T3,T§, and

TR TR, of Figure D.1 leads to the conclusion that cross-correlation of torsionally-stiff systems or
systems with closely-spaced uncoupled frequencies are significant for both idealized spectra, less
for the flat than the hyperbolic spectrum, increasing as e/r increases. The terms are more
significant for base shear, base torque and frame (1) column moment in the first story thah for base
overturning moment, frame (1) top floor lateral displacement, frame (1) beam moment or column
axial force in the first story, due to the higher modal contributions significance for the former quan-
tities (Table 12). The cross-correlation terms are larger for smaller p in the case of base shear,

base torque, base overturning moment, which is also supported by Table 12.

The observations made here for the cross-correlation terms explain the differences between the
normalized coupled to uncoupled responses of the multi-story building and its associated one-story

system discussed in Section 8.
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APPENDIX E: NOTATION
maximum ground acceleration
ground acceleration along the Y-axis as a function of time
transformation matrices defined by equations (3.3)

proportionality constants for frames ‘i’ defined by equations (3.11) and (3.6), respec-

tively
proportionality constants defined by equations (3.7) and (3.8), respectively
proportionality constants defined by equation (3.12), and related by equation (3.13)

static eccentricity defined as the distance between the centers of mass and rigidity of

a floor

dynamic eccentricity defined as the distance from the center of rigidity where the
uncoupled base shear V, should be applied to cause base torque at the center of rigi-

dity equal to Tg
dynamic eccentricity in the n" vibration mode of the associated one-story system;
ed"/r = Ter

effective eccentricity of the associated one-story system for its n™ vibration mode

effective eccentricity of the associated one-story system in its fundamental vibration

mode

effective eccentricity in the nj™ coupled vibration mode; e,; = e,
modulus of elasticity
lateral and torsional components of f,

force in structural member of a frame in the j* vibration mode of the corresponding

uncoupled multi-story system
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force in structural member of a frame in the nj"’_coupled vibration mode

equvivalenl force vector in the n™ vibration mode of the associated one-story system;
=< fyn fon >

vector of equivalenf lateral forces in the j* vib;a(ion mode. of the corresponding

uncoupled multi-story system

vector of equivalent forces in the nj™ coupled vibration mode; 7, = < f],. f3, >

lateral and torsional components of f,;

gravitational acceleration

. story height

effective height in the j* vibration mode of the corresponding uncoupled multi-story
system
effective height in the fundamental vibration mode of the C(;rresponding uncoupled

multi-story system

effective height in the nj* coupled vibration mode; k,; = h/

summation matrix defined by equation (4.17) for a five-story building
moments of inertia of columns -
moments of inertia of beams ‘ ‘ :
moments of inertia of columns of frames (1) and (2), respectively
unit matrix of dimension N

lateral stiffness of the associated one-story system along the Y-axis

torsional stiffnesses of the associated one-story system defined at its centers of mass

and rigidity, respectivley
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- frames characteristic matrix

lateral stiffness matrices of frames ‘i’ along the X- and Y- directions, respectively
lateral stiffness matrices of frames (1) and (2), respectively

building stiffness matrix defined with respect to u

stiffness matrix of frame ‘i’ computed for u

building lateral stiffness matrix along the Y-axis, defined by equation (3.5a)

stiffness submatrices of K, defined by equations (3.4) and (3.5)
width of beam
height of column

participation factor for the j™ vibration mode of the corresponding uncoupled multi-

story system

participation factor for the nj" coupled vibration mode
mass of one-story system

mass at the j* floor level

base overturning moments of the associated one-story system and its corresponding

uncoupled one-story system
MM,
base overturning moments of coupled and uncoupled multi-story buildings

modal mass in the j* vibration mode of the corresponding uncoupled multi-story sys-

tem
base overturning moment of the associated one-story system in the n* vibration mode

MM,
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My , My frame (1) base-story beam and column moments, respectively, of coupled multi-story

‘building

My; base overturning moment in the j® vibration mode of the corresponding uncoupled
multi-story system

M,, modal mass in the nj* coupled vibration mode

iVI,,j : equal M, of the associated one-story system with uncoupled lateral vibration fre-

quency o,

Mg, , M.y, frame (1) base-story beam and column moments, respectively, of the corresponding

uncoupled multi-story system

Mg, base overturning moment in the nj™ coupled vibration mode
m mass matrix of the corresponding uncoupled multi-story system
M, vector of story overturning moments in the j* vibration mode of the corresponding

uncoupled multi-story system

M, vector of story overturning moments in the nj™ coupled vibration mode

N number of stories

P.p frame (1) base-story column axial force of coupled multi-story building

Py frame (1) base-story column axial force of the corresbonding uncoupled multi-story
system

T @p/ Wy

Dnjmk ©p il Opy

r radius of gyration of a deck about a vertical axis passing thro;Jgh,its center of mass

r maximum of a response quantity of coupled systems

~

Fir,
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maximum of a response quantity of the corresponding uncoupled multi-story system

in its j*" vibration mode

maximum of a response quantity of the associated one-story system in its n™ vibra-

tion mode

maximum of a response quantity of corresponding uncoupled systems (one- and

multi-story)
rJr,
maximum of a response quantity in the nj*" coupled vibration mode

equal 7, of the associated one-story system with uncoupled ‘lateral vibration fre-
quency w,;

pseudo-acceleration response spectrum ordinate corresponding to 7T,; and §;
pseudo-acéeleration response spectrum ordinate corresponding to T, and §
pseudo-acceleration response spectrum ordinate corresponding to T, and §
pseudo-acceleration response spectrum ordinate corresponding to 7,,; ahd &nj
summatioh matrix defined by eduation (4.17) for a five-story building

n'" coupled vibration period of the associated one-story system

uncoupled lateral vibration period of the associated one-story system

maximum base torques at centers of mass and rigidity, respectively, of the associated

one-story system
base torque at the center of rigidity of coupled multi-story building

base torques at the centers of mass and rigidity, respectively, of the associated one-

story system in its n'" vibration mode
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nj*" coupled vibration period

j" uncoupled vibration period

fundamental lateral‘uncoupled vibration period
Tyl/rV,

TR/rV,

Tyl rV,

TRtrV,

equal, respectively, to Ty, and T, of the associated one-story system with uncoupled

lateral vibration frequency o,

base torques at centers of mass and rigidity, respectively, in the nj"® coupled vibration

mode

vectors of story torques at centers of mass and rigidity, respectively, in the nj* cou-

pled vibration mode
maximum ground displacement

lateral displacement of the associated one-story system at its center of mass along the

Y-axis

“lateral displacement along the Y-axis of the associated one-story system at a distance

x; from its center of mass
deck rotation of the associated one-story system about a vertical axis

lateral displacement along the Y-axis of the associated one-story system at its center
of mass in the n™ vibration mode

lateral displacement along the Y-axis of the associated one-stdry system at a distance

x, from its center of mass in the n'™ mode of vibration
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deck rotation of the associated one-story system in the n™ vibration mode

ulv,

uy(x‘-)/vo

ruglv,

uy,lv, and rug,/v,

w,,{x;)/ Vv,

"—‘Onj

equal, respectively, 10 #,, u,(x) and u,, of the associated one-story system with
uncoupled lateral vibration frequency e,

displacements vector; u” = < ul ruf >

displacement vector of the associated one-story system in the n™ vibration mode;
T

u, = < u, rig, >

vector of lateral displacements at the centers of mass of the multi-story building,
along the Y-axis
vector of deck rotations about a vertic;cll axis
u,/v,
T

displacements vector in the nj*® coupled vibration mode; u,f,- = < Uy, rug",. >

vector of lateral displacements at the centers of mass in the nj* coupled vibration

mode
vector of deck rotations in the nj™ coupled vibration mode

vector of lateral displacements of frame ‘i’ spanning along the Y-axis at a distance x;

from the centers of mass of the building in the nj* mode of vibration
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lateral displacement at the center of rigidity of the associated one-story system

lateral displacement at the center of rigidity of the associated one-story system in the

n vibration mode

lateral displacement of uncoupled associated one-story system

frame (1) top floor lateral displacement of coupled and uncoupled multi-story build-
ings

viv,

maximum ground velocity

valv,

equal v, of the associated one-story system with uncoupled lateral vibration fre-
quency o,

base shears of the associated one-story system and its corresponding uncoupled one-

story system

base shears of the coupled and uncbupled multi"-slory buildings

base shear of the associated one-story system in the n® vibration mode
ViV,

V.V,

equal V, of the associated one-story system with uncoupled lateral vibration fre-
quency o,;

base shear of the corresponding uncoupled multi-story system in the j* vibration
mode

base shear in the nj® coupled vibration mode

vector of lateral floor displacements of the corresponding uncoupled multi-story sys-

tem in the j* vibration mode
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vector of lateral .floor displacements of the corresponding uncoupled multi-story sys-
tem

vector of lateral floor displacements at the centers of rigidity of multi-story system in

the nj* coupled vibration mode

vector of story shears of the corresponding uncoupled multi-story system in the j®

vibration' mode
vector of story shears in the nj" coupled vibration mode
total weight of structure

effective weight of the corresponding uncoupled multi-story system associated with

the j™ vibration mode
effective weight of the associated one-story system in its n' vibration mode

effective weight of the corresponding uncoupled mﬁlti-story systém associated with
its fundamental vibration mode

WaiW

effective weight associated with the nj* coupled vibration mode; W,; = W, W,

X- and Y- distances of frames ‘i’ from the centers of mass

distance of frames (2) from centers of mass

lateral and torsional components of &«

lateral and torsional components of the n™ mode shape of the associated one-story

system

mode shapes of the associated one-story system; @’ = < a, & >

n** mode shape of the associated one-story system; af = < o, ag, >
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cross-correlation factor between coupled vibration modes ‘n’ and ‘m’ of the associ-

ated one-story system

cross-correlation factor between coupled vibration modes ‘nj’ and ‘mk’ of multi-story

building; n,m=1,2; jk=1, .., N

natural vibration frequencies of coupled systems

n'® natural vibration frequency of the associated one-slory'syslem; n=1,2

natural lateral and torsional ‘vibrz;tion frequencies of the uncoupled one-story sysiem

w/w, for the associated one-story system> or w/w,; for the torsionally-coupled multi-

story building

w,/w, for the associated one-story system or w,/w,; for multi-story building and asso-
cialed one-story system with uncoupled lateral vibration frequency w,; .

j™ uncoupled lateral and torsionél natural yibration frequencies_; j=1, ., N

nj** natural vibration frequency of coupled multi-story building

uncoupled torsional to lateral frequency ratio of multi-story building and its associ-
ated one-story system

mode shapes of coupled multi-story building; ¢” = < ¢] ¢7 >

lateral and torsional coﬁponenls of ¢

nj® mode shape of coupled multi-story building; ¢, = < ¢T,; ¢f,; >

lateral and torsional components of ¢, |

mode shapes of the corresponding uncoupled muiti-story system

j® mode shape of the corresponding uncoupleq multi-story syst'cm _

joini rotation index or beam-to-column stiffness ratio for frames
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P P2 joint rotation indices of frames (1) and (2), respectively
& - damping ratio
0 zero square matrix of dimension N, or zero vector of dimension N

1 vector of ones of dimension N






PART II1
THE STATIC ECCENTRICITY CONCEPT
IN BUILDING CODE ANALYSES
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1. INTRODUCTION

Buildings subjecteq to earthquake ground motions may undergo latefal as well as torsional
motions. In the case of buildings with plans having iwo axes of symmetry, torsional vibrations
arise due to the rotatioﬁal component in ground motion or due to unforseen conditions such as
unsymmetric load distributions. Such torsional vibrations ére usually réferred to as "accidental” [1]
and can not easily be taken into account in dynarni‘c analysis. Torsional vibrations induced in a
building during an earthquake can also be dﬁe to its structural asymmetry. In most building codes
[e.g. 2,3,4,5], Fhe torsional effect is treated by analyzing the building statically for the equivalent
lateral forces applied eccentrically away from the centers of mass of the various floors. The eccen-
tricity value at a floor level is computed as the sum of its so-called "accidental eccentricity” and its
"structural or static eccentricity”. The accidental eccentricity of a story is normally given as a frac-
tion of the plan dimension of the story, perpendicular to the direction of lateral forces, whereas the
static eccentricity at a floor 'level is commonly defined as the distance between its center of mass
and center of rigidity, but in at least one code [4] it is defined as the distance between the center of
mass and shear center of the story. | In some codes, the static eccentricity is multiplied by a con-

stant exceeding unity to account for dynamic amplification.

The determination of the locations of centers of rigidity at all floor levels is a key step in the
application of building codes provisions. However, most building codes, do not provide unequivo-
cal definitions of centers of rigidity or specify computational procedures to determine their loca-
tions. For this reason, it is still unclear what exactly is meant by centers of rigidity of multi-story
buildings and whether the‘locations of these centers are intrinsic properties of the building, or if

they are dependent on the height-wise distribution of lateral loads.

Several investigators have studied this problem over the past few years, giving different
definitions of the centers. Most of the studies are restricted to buildings with resisting elements
(frames and shear walls) located in an orthogonal grid in plan. The centers are referred to, in the
literature, by different terms, apparently with the implication that these are different terms for the

same points. Some of the terms that have been used are: centers of rigidity, centers of resistance,
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centers of stiffness, shear centers, load centers, centers of twist, centers of rotation and centers of
torsion. Poole [6] defines the center of rigidity of a story as the location of the resultant of the
shear forces in that story of the various_ resisting elements when the building is subjected to a static
lateral loadiﬁg that causes no torsion in any of the stories. In other words, centers of rigidity are
identified as the shear centers of the building. Based on this deﬁnitidn, a procedure- to determine
the‘ centers of rigidity is given in [6]. Humar and Awad [7]) define the center of resistance of a
floor as a point such that when a lateral force is applied through it, the level under consideration

does not undergo any rotation.

The work of Tso and Cheung (8] ‘dislinguishes ‘between centers of rigidity, shear centers and
centers of twist of a multi-story building. It is recognized thal‘ these terms as well as the term
center of stiffness are interchangeable for a single-story system because in this case all the centers
are coincident, Mathematical expressidns are presented for the locations of centers of rigidity and
centers of twist of multi-story buildings with orthogonal frame orientations in terms of the lateral
forces and building stiffness submatrices. Expressions of the centers of rigidity are interpreted phy-
sically as the locations of the resultants of the elemental loads applied at each floor level, or load
centers, and not as shear centers, It is also shownv that the centers of twist do not generally coin-
cide with the centers of rigidity. For a special class of buildings, with lateral stiffness matrices of
all resisting frames mutually proportional, the locations of centers of twist and rigidity were shown

to be coincident, independent of the lateral forces and lie on a vertical line.

Riddell and Vasquez [9] concludé that the centers of resistaﬁce exist only for a particular class
of structures and that for a general multi-story building such concepts are meaningless. These par-
ticular buildings, reférred to as "compensable buildings", are shown to have centers of resistance
that are load independent and lie on a vertical line. The conditions satisfied by this class of build-
ings is in a'g'reement with that identified in [8]. For buildings that are "nearly compensable",
expressions, based on perturbation theory, are given in [9] to determine approximate locations of

the centers of resistance, all lying on a vertical line.
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This brief review of past studies shows clearly the inconsistencies in the definitions given for
centers of rigidity. Although boih studies [8] and [9] identify a class of buildings where the centers
of rigidity of all floors lie on a vertical line, their authors disagree on whether the centers of rigi-
dity exist for any multi-story building. The question of whether there is any need to distinguish
between centers of rigidity, centers of twist and shear centers also remain unanswered. Conse-
quently; it is unclear which of these centers should be chosen to define static eccentricities in the

application of code provisions.
-

The objective of this study is to investigate further the definitions of each of the centers men-
tioned above. The locations of these centers are then sought for buildings with general plan lay-
outs. The conditions to be satisfied for the centers to be coincident and uniquely defined are inves-

tigated. A number of examples is included to illustrate the findings.
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2. ONE-STORY SYSTEMS

The ﬁenter of rigidity, the center of twist, the shear center, the center of stiffness, ‘and the
static eccentricity are defined in this section for one-story systems. Expressions are derived for the
locations of these centers as well as for the orientations of the principal axes of buildings with gen-
eral plan layouts (e.g. Figure la). It is shown that these various centers are coincident for one-
story buildings and its location depends on the stiffnesses and locations of the various resisting ele-
ments but not on the applied load. Although this study of one-story sys‘tems is straightforward, it is

presented (o serve as a basis for the study of the corresponding concepts in multi-story buildings.

2.1 Basic Concepts and Definitions

Consider a one-story system that eonsists of a rigid diaphragm or deck of an arbitrary shape
(Figure 1a). The horizontal motion of the diaphragm is resisted by a number of resisting elements
(frames, columns, shear walls or shear-wall cores), with arbitrary locations and with principal axes
of arbitrary orientations.

The center of rigidity is the point on the diaghragm through which the application of a static
horizontal force causes no rotation of the deck, no matter in what direction the force is applied.
The principal axes, I and II, of the system are two orthogonal axes passing through the center of
rigidity, such that if a static horizontal force is applied along one of the principal axes of the sys-

tem, the diaghragm translates only in the direction of the force without any twist.

The center of twist is the poim on the diaghragm which remains stationary when the a

diaghragm is subjected to a statically applied horizontal torsional moment, i.e. the diaphragm

undergoes pure twist aboul this point.

The shear center is the point on the diaghragm through which the resultant of the shear
forces of all resisting elements passes wheniii"t;ﬁe diaphragm is subjected to a system of lateral static
loads whose resultant passes through the center of rigidity of the building, thus causing no rotation
or twist of the diaphragm. Since the elemental shear forces in a one-story system are directly pro-

portional to the elemental stiffnesses, the shear center is also reférred to as the center of stiffness.
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It is shown in a subsequent section that the center of rigidity, the center of twist, and the

shear center or center of stiffness of a one-story system are actually coincident.
The center of mass of the system is the point on the floor thrcugh which the resultant of the

inertia forces of the floor passes. . If the masses of individual resisting elements are negligible, the

center of mass of a deck with a uniform mass distribution coincides with its geometric center.

The static eccentricit& e of the system is defined as the distance between its centers of mass
and of rigidity. In some building codes [e.g. 4], the static eccentricity is defined as the distance
between the center of mass and shear center of the building. Because the shear center and center of
rigidity of a one-story system are coincident, which will be proven later, the two definitions lead to
the same value for the static eccentricity in this case but, as will be seen later not for multi-story

‘buildings.

2.2 Equations of Motion

The three degrees of freedom of the system defined at an arbitrary reference' point O of the
deck are: two horizontal translational displacements of the deck, u, and u, relative to the ground,
along twc orthogonal axes, X and Y, and the rotation u, of the deck about a vertical axis. The
building stiffness matrix K defined at the reference point O with respect to degrees of freedom u,
where u’ = <u, u, ug >, is the sum of the stiffness matrices K; of individual resisting elements, also

computed with respect to u:

K=Y K, @2.1)

The stiffness matrix K, of the i™ resisting element is derived from its lateral stiffnesses along its
two principal axes-- the two crthogonal axes in a horizontal section of the element which pass
through its shear center [13], such that any static lateral force passing through the shear center

to translate in the same direction as

applied along one of the principal axes of the section cause
the force without twist-- and its torsional stiffness about a vertical axis passing through its shear

center. Lateral stiffnesses of frames and shear walls along their minor principal axes, i.e. along the




- 255 -

direction perpendicular to their own plane, are assumed to be negligible. Shear deformations are
negligible for frame members so that only flexural deformations are considered for frames. A
column contributes to system lateral stiffnesses due to its lateral stiffnesses along both of its princi-
pal axes. Because the individual torsional stiffnesses of frames, shear walls and columns are negli-
gible, the contributions of these resisting elements to the torsional stiffness of the building are pri-
marily due to the lateral stiffnesses of these resisting elements acting at some distance from O. On
the other hand, the torsional stiffness of a shear-wall core element is significant, and its contribution
to the torsional stiffness of the building is due to its torsional stiffness as well as to its lateral

stiffnesses along its principal axes.

The stiffness matrix K, of the i™ resisting element .is determined by the following procedure:
1. Define the local degrees of freedom for each resisting element (Figure 1b) as follows:

(a) For a shear wall define one translational degree of freedom at the roof level, along the
plane of the shear wall, i.e. along its major principal axis, and a rotational degree of freedom

about its minor principal axis, i.e. the horizontal axis perpendicular to its plane.

(b) For a frame define one translational degree of freedom at the roof level, along the plane
of the frame, i.e. along its major principal axis, and a rotational degree of freedom per joint
about horizontal axes perpendicular to the plane of the frame, i.e. along the direction of its
minor principal axis.

(c) For a column define two translational degrees of freedom at the roof level along the prin-

cipal axes of the column and two rotational degrees of freedom about these axes.

(d) For a shear-wall core define five degrees of freedom: two translations along the principal
axes of the core, two rotations about these axes, and one torsional rotation about a vertical

axis passing through the shear center of the core.

2. Obtain a complete stiffness matrix for the resisting element for the degrees of freedom
defined, taking into account flexural and shear deformations for shear walls and shear-wall

cores, and only flexural deformations for frames and columns.
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Eliminate the joint rotational degrees of freedom of the resisting elements by the static con-
densation process. The resulting condensed matrix k; of a shear-wall core element ‘i* is diag-

onal and of dimension equal to three, satisfying the following equation:-

Qai kai 0 0 Vai

Q=40 =10 %k, O Ve b =k, v, (2.2)
Qe 0 0 & Voi

where k, and k,; are the lateral stiffnesses of the element along its two principal axes, and &,
is the torsional stiffness of the core about a vertical axis passing through its shear center. The
applied static forces Q,;, @, and Qg and resulting displacements v, , v,; and v, in these three
directions ‘are related through &, , &, and kg, respectively. Since kg is negligible for columns,
shear walls and frames, and &, is negligible for frames and shear walls, equations (2.2) are

simplified for these resisting elements. For columns, we obtain:

Qai kai 0 Vai -
Q‘. = Qb, = | 0 kb,' Vo; = k,‘ \ A ‘ (23)

. For shear walls and frames:

Qau = kai Vai . ' (24)

Determine the transformation matrix a,, relating the resisting element displacement vector v,,

to the system degrees of freedom u. For a shear-wall core, a; is given by:

Vai cosf; sinf; td,, U,

vi={ v, }=|-sin8, cosB, td, u, t =a; u 2.5)
Voi 0 0 1 Ug
and for a column, the transformation matrix a, is given by:
o ) . U ‘
Vi cosf; sinf;  td, =
Vi = Vi = —Sinﬁ,‘ COSB,- :tdbi f‘)’ g =a u (2'6)
. Ug

in which B, is the counterclockwise angle between the X-axis and the major principal axis of
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the shear-wall core or column; 4, and d4,; are the perpendicular distances of the major and
minor principal axes, respectively, from reference point O. In equations (2.5) and (2.6), the
choice of a positive or a negative algebraic sign to accompany d,,; (or d,;) depends on whether
a unit u, rofation causes a displacement along the major (or minor) principal axis in the same
or opposite direction to v, (or v,,). For frames and shear'walls, a, is obtained from:

Uy

Vg = < cosP; sinB;, td, > { u,

Ug

=a,u 2.7)

where g, is the counterclockwise angle between the X-axis and the plane of the frame or shear
wall, and 4, is the perpendicular distqnce from reference point O to the plane of the frame or
shear wall. Again, the choice of a positive or a negative algebraic sign to accompany d,; in
equation (2.7) depends on whether a unit u, rotation causes a displacement along the plané of

the frame or shear wall in the same or opposite direction to v,

The contribution of resisting element ‘i‘ to building stiffness matrix is K;, and is determined

by:
le nyi K,tez
K, = a"T k,' a;, = Kyu- Ky,' Kyg, (2.8)
KOxx KOyi KBI
in which,

K, = k, cos’B; + k,; sin’B,
;= kai Sinzﬁ; + kbi Coszﬂ,‘
Ko = ko dZ + ky d + kg,

nyi = nyi

= (kg — kp; ) sinf; cosp; (2.9)

Ko = Koy = Tk, d,; cosB; — (L)ky,; dy,; sinp,
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Kya,‘ = Koy, = :tkai dqi SinBl x kbi dbi Cosﬁl

As mentioned earlier, k,, is negligibly small for all types of resisting elements except shear-

wall cores, and &,, is negligible for frames and shear walls.

The building stiffness matrix K for degrees of freedom u’ = < i, u, ug >, defined at O,_is
given by superposition of the element stiffness matrices (equation (2.1)) resulting in:
Kx Kry Kxe

K=|K, K, K, (2.10)
Ko. Koy Ko

with,

Kx=ZKxi ’ Ky =VZK)«' ’ K9=ZKBI

KJB = KB: = 2 KxOl' ’ KyO = KBy = Z Kyei (211)

K.ry = ny = Z nyi

The undamped equations of motion for the one-story system, assuming linear behavior, sub-
jected to earthquake ground motion accelerations a,,(¢) and a,,(¢) along the X- and Y-axes, are:
m 0 -myy Uy K, K,, Ko u, a.(t)

+|K, K, Ky u, t =-m a,(t) (2.12)

—myy My Jo ue ‘KBJ: KOy KG Up _yMagx(t)+xMagy(t)

0 m mxye u)
where m is the mass of the deck; x,, and y, are the X and Y coordinates of the center of mass; and
Jo is the polar moment of inertia of the deck about a vertical axis passing through reference point

O, given by:

Jo=m(r’+ xy +y) (2.13)

in which r is the radius of gyration of the deck about a vertical axis passing through the center of
mass of the deck. It is apparent from these equations of motion that translational ground motion

~ along either the X- or the Y-axis will simultaneously cause both X- and Y- lateral displacements of
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point O as well as torsional rotation or twist of the floor about a vertical axis.

The equations of motion written with respect to degrees of freedom deﬁnéd at any point other
than O can be determined by standard transformation of equation (2.12). However, the general
form of the equations of motion (the mass and stiffness matrices) remains as equation (2.12) unless
the degrees of freedom are defined at the center of ‘mass or the center of rigidity, which will be
shown later to coincide with the center of twist and the shear‘vcenter, of the system. When the
equations of motion are written with respect to degrees of freedom defined at the center of mass,

the building mass matrix becomes diagonal, given by:

[ ]

MM=

o o 3
o 3 o

However, the coupling of degrees of freedom in the building stiffness matrix remains of the form

given in equation (2.12). The equations of motion are then given by:

m 0 0 ﬁ‘ Kx ny KxB Ue agx(t)
‘0m 0 iy r+ | K, K, Ky u, t =—m{ a,(t) (2.14)
00 m| |4, Ko, Koy Ko | | o) 0

On the other hand, if the equations of motion are written for degrees of freedom i, where

i =<, i, ug> with &, and &, the lateral displacements at the center of rigidity along the X- and

Y -axes, the building stiffness matrix assumes the form:

K, K, 0
K=k, Kk, o (2.15)
0 0 K,

since any horizontal static force applied through the center of rigidity causes only lateral displace-

ments and no rotation of the deck (see the definition of the center of rigidity given in Section 2.1).

The equations of motion written with respect to i@ are then given by:
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m 0 —me), fi‘ I?.z I?,ry 0 ﬁx ag,(r)
0 m me, i1+ I?y, I?), 0 it =-m a,(1) (2.16)
~me, me, Jp iig 0 0 K, Ug | —e,a, (1) + e a,,(t)
where the X and Y components of static eccentricity e are:
e.=xy —xg and e, = yy — yp (2.17)

in which x; and y, the X and Y coordinates of the center of rigidity; J; is the polar moment of

inertia about a vertical axis passing through the center of rigidity, given by:
Jp=m(e?+r?) (2.18)

The stiffness values X, , K,, , K, and K, with respect to i, the degrees of freedom at centers of rigi-

Xy 2
dity, are related to stiffness values K, , K, , K, and K, for u, the degrees of freedom at point O, in
Section 2.3. The special form of the building stiffness matrix given by equation (2.15) is the basis

used in Section 2.3 to locate the centers of rigidity of the system.

A static horizontal lateral force applied through the center of rigidity along either of the sys-
tem principal axes, causes the deck to displace laterally in the same direction as the force, without

any twist (see Section 2.1). It follows that the building stiffness matrix defined with respect (o

T N .
degrees of freedom u’, where u* = <u; w; uy>, with u; and uj, the lateral displacements at the

center of rigidity along the principal axes of the system, is of the form:

K, 0 0
K'=|0K; 0 (2.19)
0 0 K,

with K/, K;; and K expressed in terms of X, , K, , K,, and K, in Section 2.5. The special form of

the building stiffness matrix given by equation (2.19) is the basis used to determine the orientations

of the principal axes of the system. The building mass matrix with respect to u’ remains in the

same form given in equation (2.12).




- 261 -

2.3 Location of the Center of Rigidity

From the building stiffness matrix K defined with respect to the degrees of freedom u at refer-
ence point O, where u’ = <u, u, u,>, the building stiffness matrix at any other point can be deter-
mined by simple transformation of K. In particular, the building stiffness matrix K with respect to

degrees of freedom @, where &’ = < i, @, ug > is defined at the center of rigidity of the system, is

3

related to the building stiffness matrix K by:

K=-aTKsa : | (2.20)

in which # is a trunsformation matrix relating u to a:

Uy 10 Yr E‘
u=3u =101 -x u,r=2ad 2.2
Ug 00 1 Ug
Substituting equations (2.21) and (2.10) into (2.20), leads to:
KJ K.xy nyR - K.ryxR + Kx&
K= K),‘. Ky nyyR - nyR + KyO (2.22)
K91+ yRKx - xRKyJ: KBy + yRKry - xRKy I?O
in which,
Comparison of equations (2.22) and (2.15) leads to the following conditions:
nyR - K‘yxR + sz = 0 (2.233)
nyyR - Ky Xgp + Kyg =0 . (223b)
K=k ,K=kK and K, =K,=K, (2.24)

and:

EezKe—Xl%Ky

- Y2 K, +2 xz v K., (2.25)
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in which equations (2.23) have been utilized. Solution of equations (2.23) yields the coordinates of

the center of rigidity:

K, K, - K_K, :
Xp = y6 f‘" 6 2.26)
, K K, - K2

and,

_ Ky Kx& - ny Kye

YR = 2.27)

K K, -K}
Similar equations were also obtained by Dempsey [10].
Thus, the building stiffness matrix K, defined at the center of rigidity for lateral degrees of

freedom %, and &,, along the X and Y directions, and deck rotation u, about a vertical axis, is given

by:

K,

K=k,

[« R ]

(2.28)

o A ;‘1
all

-]

with K, given by equation (2.25). The location of the center of rigidity is defined by its coordi-
nates xz and vz, given by equations (2.26) and (2.27), relative to reference point O. It is obvious
from these equations that the location of the center of rigidity of a one-story system is independent

of the applied loading.
Equations (2.26) and (2.27) can be simplified further in two cases:

1.  If the building has one axis of stiffness symmetry (e.g. Figure 2a), then one of the principal
axes of the system coincides with its axis of symmetry, and the other is perpendicular to it.
In this case, it is only natural to choose the reference X and Y axes to be in the same direc-
tions as the principal axes of the system. If the X-axis is chosen in the direction of the sym-
metry axis, then, referring to equations (2.9d) and (2.9e), it is apparent that the terms X, in

equation (2.11c) and K, in equation (2.11b) occur in pairs that are equal in absolute values

but are of opposite algebraic signs. It follows that:
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(a) One-way Symmetric Systems
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(b) Systems with Orthogonal Orientations of Elemental
Principal Axes

. FIGURE 2 Special Cases of Systems .
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Kt)‘ = K."" = O and Kxe = Kex = 0

from which equations (2.26) and (2.27) are simplified to become:

Xp = Ky and yp = utl
R % R =~
Ky Kr

=0

(2.29)

If the resisting elements of the building are arranged such that their principal axes form an

orlhogonal grid in plan (e.g. Figure 2b), then the principal axes of the system are also in the

directions of the elemental principal axes. It is only natural in this case to choose the direc-

tions of the reference X and Y axes in the directions of the principal axes. It follows that §;,

the counterclockwise angle between the X-axis and the major principal axis of any resisting

element is either zero or 90 degrecs, and d,; and d,;, the perpendicular distances from refer-

ence point O to the major and minor principal axes of the element, are measured along the X-

and Y-axes. Thus, equations (2.11) become:
Kx=szi=zkxi
= z K, = Z k

Ko = 2 Ko = z ko; + k“,y,? + ky; x?

r9 = KOJ( Z K = - z k,,'_V,‘
Ko = Ko, = 21{ =2 kx

(2.30)

where &, and &, are the lateral stiffnesses of the i™ resisting element along its principal axes,

which are oriented along the X and Y reference axes; x; and y, are the X and Y distances of

the principal axes of the i" res‘isling element from the X and Y axes.

(2.30) into (2.26) and (2.27), we obtain:

Substituting equations
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z'kyi X Z ki yi

x:——&=—i——andy=——l<”—9="— (2.31)
D YT A W |
i J

Equations (2.31) are well known in the literature [e.g. 11] since most past studies have been
concerned with buildings consisting of resisting elements arranged such that their principal

axes form an orthogonal grid in plan.

2.4 Coincidence of Center of Twist, Shear Center and Center of rigidity
2.4.1 Center of Twist

The center of twist of the one-story system is defined in Section 2.1 as the point in the plane
of the diaphragm that does not undergo any translational displacement when the diaphragm is sub-
jected to a static horizontal torsional moment. Thus, if degrees of freedom of the diaphragm are
defined at its center of twist, the building stiffness matrix obtained should be of the same form
given by equation (2.15). The location of the center of twist is, therefore, determined by following
the same steps as in Section 2.3 to determine the location of the center of rigidity, with x; and yr,
the X and Y coordinates of the center of twist, substituted for x; and y; in equations (2.21) to
(2.23). Solving the modified equations (2.23) for x; and y; yields the same expressions for the
coordinates of the center of twist as the center of rigidity (e-quations (2.26) and (2.27)). Hence, the
center of twist of a one-story system coincides with its center of rigidity. The same conclusion is

reached in [8] using an approach based on energy principles.
2.4.2 Shear Center

The shear center of the one-story system is defined in Section 2.1 as the point in the plane of
the diaphragm through which the resultant of the shear forces of the resisting elements passes when
the diaphragm is subjected to a system of horizontal lateral forces causing no twist (ug=0) of the

diaphragm. Substituting u, = 0 in equations (2.5), the lateral displacements of the i™ resisting ele-

ment along its principal axes are given by:
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Ve = (cosB ) u, + (sinB;) u, (2.32a)
vy = — (sinB; ) u, + (cosp; ) u, - (2.32b)

The shearing forces Q, and Q,; experienced by the i% resisting element along its principal axes are
g p y g g P P

therefore given by:
Qi = ko Vai = (kaicOSPi Y, + (kgiSing; Yu, | (2.33a)
Qb,‘ = k/,,‘ Vi = (—kaSinﬁi )ux + (kblcosﬁi )uy (2'33b)

"The shearing forces Q,, and Q,, experienced by the i* resisting element along the X and Y reference

axes are the sum of the components of 0, and Q,; along the X and Y axes, respectively, i.e.:
Q.= Q.cosB, — Oy, sinp, , ‘ '(2.34a)
Qi = Qusinp, + Qy; cosB, ' (2.34b)
Substituting equations (2.33) in.to (2.34) and utilizing equations (2.9), results in:
Q. = [k ;cOS°B, + ky,sin®B; Tu, + [ (ko;—kpi)sinB;cosB, u, = K u, + Kou, (2.35a)
Q,; = [ (k,—ky)sinB,cosp, Ju, + [k, sin’B, + kyicos’B, Ju, = K, ;u, + K, u, (2.35b)

The resultant of the shearing forces has X and Y components equal to 3 Q. and Y, Q,, respec-

tively, and passes through the shear center with X and Y coordinates denoted by xs and y;. Refer-
- ring to Figure la, equilibrium of moments of all shearing forces acting in the plane of the

diaphragm about a vertical axis passing through O, gives:
Z 1Q,dy + 2 T0p dpi — x5 Z Q, +ys E Q.= 0‘ (2.36)

The algebraic sign accompanying Q, and @, in equation (2.36) depends on whether the forces
cause positive or negative moments about the vertical axis passing through O. Substituting equa-

tions (2.33 ) and (2.35) into (2.36) and utilizing equations (2.9) and (2.11), leads to:

(Ko + K.ys— Koyxs g + (Kyg + Ky ys = Kyxs Y u, =0 (2.37)
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Since u, and u, are independent, equation (2.37) results in the following two equations:

+Koys - Kyxs =0 (2.38a)
Kyﬂ + K.ry Ys — Ky Xs = 0 (2.38b)

Equations (2.38) are equivalent to equations (2.23) which proves that the shear center is coincident

with the center of rigidity.

It is apparent from the preceding results that the center of rigidity, the center of twist, and the
shear center for a one-story building with rigid diaphragm are the same point. Thus, the definitions
given in Section 2.1 for these three centers describe different roles of this unique point in the static
response of a one-story system; i.e., there is a unique point in the plane of the diaphragm with the
following properties: (1) a static horizontal force acting through the point causes no twist of the
diaphragm, (2) the resultant of the shear forces experienced by the various resisting elements also
passes through the point if the external applied forces cause no twist of the diaphragm; and (3) the
diaphragm twists or rotates about a vertical axis passing through this point when subjected to any

static torsional moment. The unique ‘center’ depends on the stiffness and locations of the various

resisting elements but not on the applied loads.

2.5 Orientations of the Principal Axes

The orientations of the principal axes of the system are determined from the special form of
the building stiffness matrix K', given by equation (2.19), with respect to degrees of freedom u’,
where u”" = <u] uj; ug> with u] and uj; the lateral displacements at the center of rigidity élong prin-
cipal axes I and II, respectively. The matrix K" is related to K, the building stiffness matrix defined
by equation (2.28) with respect to degrees of freedom ii, where &" = <, i, ug> with @, and 7, the
lateral displacements at the center of rigidity along the X and Y axes, by:

K'=a"K a’ (2.39)

The transformation matrix a’ relates G to u”;
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iy cosn — sinn 0 “
i=1{i,=]sinp cosn O uy [ =a"u (2.40)
w| L0 0 1]y

where n is the counterclockwise angle between the reference X-axis and the principal axis I of the

systcm. Substituting equations (2.40) and (2.28) into (2.39) and comparing with equations (2.19),

leads to:
K/ = K, cos’n + K, sin*n + 2 K, sinn cosn (2.41)
_K,', = K, sin’n + K, cosznr -2 K, sinn cosn - (2.42)
Ko =K, | (2.43) |
and,
- (K, - K,)sinn cosn + K, (cos’n —sin’n ) =0 ) 2.44)
which results in:
tan 2 = 7(%1—(_}‘;(7 (2.45) |

The orientation of principal axis I is defined by the angle n, and the principal axis II is perpendicu-

lar to axis I.

Determining sinn and cosn from equation (2.45) and substituting these in equations (2.41) and

(2.42) leads to:

+ K

x y

S

(KJ;K}’ )2+K2

Xy

KK = (2.46)

Thus, the building stiffness matrix K* defined with respect to degrees .of freedom u’, where

T

u” = <u uj ug>, is given by:
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K/ 0 0
K'=|0 Kk 0| (2.47)
0 0 K,

with K; and K; given by equations (2.46) and K, by equation (2.25).
For the two cases-- the case when the building has an axis of stiffness symmetry and the case
when the principal axes of all resisting elements are parallel or perpendicular-- discussed in Section

2.2, equations (2.45) simplify to:

2K
tan2n = Y _ =9 (2.48)

K, - K,

since K,,=0. Thus the principal axes of the system are along the X- and Y- axes and equations

(2.46) specialize to become:

K/ =K, and K=K, (2.49)

2.6 EXAMPLE

Consider a one-story building consisting of four frames of identical lateral stiffness k, located

as shown in Figure 3. Thus:

kay = ka3 = kag = k
and,
kpi = kpy = ky3 = kpg = 0
For frame (1) da; =0 and B, = 907 for frame (2) d,, = a and bz = (07, for frame (3) d,; =0 and

B; = 0°; and for frame (4) d,, = 2a and B, = 135°. Using equations (2.9) and (2.10), the contribu-

tions of each frame to the building stiffness matrix is given by:
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(1)

s @

(3)

135°

FIGURE 3 Plan of Example (Section 2.6)
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0 00 k 0 —ka
Ki=|0kO0|,Ky=| 0 0 0 |,
000 —ka 0 ka?
k00 0.5k -0.5k -1.414ka
Ki=|000],andK, = -0.5 0.5k  1.414ka (2.50)
000 -1414ka 1414ka  4kd®
The building stiffness matrix is given by:
K, K; Ko
K=K, K, K, (2.10)
Kex Koy Ke

with,

K,=0+k+k+05k=25k

1.5k

K,=k+0+0+05k
Kg=0+ka*+0+4ka®=5ka®
K,=K,=0+0+0-05k=-05k (2.51)
Ko=Kg=0-—ka+0-14l14ka=-2414%a
Kg=Kg=0+0+0+ 1414k a=1414ka

Substituting equations (2.51) into (2.26) and (2.27), the coordinates of the center of rigidity (center

of twist or shear center) are given by:

Xy = (2.5)(1.414a)—(—0.5)(—22.414a) - 0664
(2.5)(1.5)-(-0.5)
and,
- _ (15)(=2414a) — (-0.5)(1414a) _ ¢4,

(2.5)(1.5) - (-0.5)?

The orientation of principal axis I is determined by substituting equations (2.51) into (2.45):
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or n = 135°
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3. MULTI-STORY BUILDINGS

It was demonstrated in Section 2 that the shear center, the center of rigidity, and the center of
twist of a one-story system are all coincident. The location 6f this unique point is independent of
the applied loading and can easily be determined knowing the stiffnesses and locations of the vari-
ous resisting elements of the system. In this section, these concepts are extended and anaiyzed for
multi-story buildings; It is found that the defined centers are, in general, not coincident, and their
locations depend on the applied lateral or torsional loadings in addition to the stiffness properties.
For a special class of multi-story buildings, identified in Section 4, the centers for each floor coin-

cide, the centers of all floors lie on a vertical line, and are load-independent.

3.1 Basic Concepts and Definitions

Consider a multi-story building consisting of vertical resisting eleménls (frames, columns,
shear walls or shear-wall cores), with arbitrary locations and arbitrary orientations of their principal

planes, joined at each story level by rigid diaphragms or decks of arbitrary shapes (Figure 4a).

The centers of rigidity of the floors of the building are points on the floor diaphragms
through which any set of static horizontal forces of arbitrary magnitude and direction causes no
rotation or twisting of any of the floors. The principal axes of a floor are two orthogonal axes
passing through its center of rigidity, such that any set of static horizontal forces applied simultane-
ously along one of the principal axes of each floor, causes each floor to displace laterally in the
direction of its applied force without any twist. It is generally not possible to determine the orien-
tations of the principal axes of the floors of a multi-story building satisfying the definition given
here. Only for a special class of buildings, identified in Section 4, the principal axes of each floor
can be determined, and for all floors they are found to be oriented along the same two orthogonal
direction.

The centers 6f twist of the floors of the building are the points on the floor diaphragms which
remain stationary when the building is subjected to any set of static horizontal torsional moments,

applied at the floor levels, i.e. the floor diaphragms undergo pure twist about these points.
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The shear center of a floor of the building is the point on the floor fhrough which the resul-
tant of the interstory shear forces at that level (due to static forces applied at the floors above and
including the floor in consideration) experienced by all resisting elements passes when the floors of
the building are subjected to static horizontal forces passing through lhé centers of rigidity of the
floors, thus causing no twist in any of the floors.

The center of mass of a floor of the building is the point on the floor through which the
resultant of the inertia forces of the floor passes. If the masses of individual resisting elements are
negligible compared to the masses of the floors, the centers of mass of a building with floors having

uniform mass distribution coincide with the geometric centers of the floors.

The static eccentricity ¢; of the j* floor is defined as the distance between its center of mass
and its center of rigidity. In some building codes [e.g. 4], the static eccentricity of a floor is
defined as the distance between its center of mass and its shear ceﬁter. Since, as will be seen later,
shear centers of multi-story buildings do not generally coincide with its centers- of rigidity, there is

more than one definition possible for static eccentricity.

3.2 Equations of Motion

A vertical axis Z, chosen as a reference axis, intersects the j* floor at O;, through which two
horizontal orthogonal axes, X; and Y; are defined as reference axes for the j* floor. The reference
axes X; (or Y;) of all floors are chosen to be in the same direction, so that the angle between the
major principal planes of the i™ resisting element and the plane defined .by Z and X; is the same for
all floors and is denoted by B;, measured counterclockwise from X;, and the lperpendicular distances
* from O; to the major and minor principal blanes of the i™ resisting element are the same for all
fioors and are denoted by d,; and 4,,, réspectively. Each floor ‘j° contributes three degrees of free-'
dom to the total number of degrees of freedom of the system: two horizontal displacements u,; and
Uy r’elative to the ground, along reference axes X jand Y;, and the rotation ug; of the j* floor about

a vertical axis. The displacements vectors u,, u, and u, are of dimension N, the number of stories
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of the building, with entries equal to u,;, u,; and ug;, respectively.” The building stiffness matrix K

defined with respect to the 3N degrees of freedom u, where u’ = <ululul>, is the sum of the

stiffness matrices K; of individual resisting elements, also computed with respect to u:

K= 2 K, 3.1

The stiffness matrix K; of the i resisting element is derived from its lateral stiffness matrices along
its two principal planes-- the two mutually orthogonal vertical planes which intersect the floors of
the resisting element at their principal axes, which in tumn inlerseét at the shear centers of the ele-
ment, such that any static horizontal force applied through the shear center at a floor level along
either of its principal axes would cause the floor to translate in the same direction as the force
without any twist [13]-- and its torsional stiffness maLri‘x about the vertical axis of intersection of
its two principal planes, i.e. about the vertical axis on which the shear centers of the resisting ele-
ment lie. Lateral stiffness matrices of frames and shear walls along their minor principal planes,
i.e. along the direction perpendicular to their own plane, are assumed to be negligible, Shear defor-
mations are negligible for frame members so that only flexural deformations are considered for
frames. A column contributes to system lateral stiffness matrices due to its lateral stiffnesses along
both of its principal i)lanes. Because the individual torsional sliffnesseS of frames, shear walls and
columns are negligible, the contributions of these resisting elements to the torsional stiffness matrix
of the building are primarily due to the lateral stiffness matrices of these resisting elements acting
at some distance from O;. On the other hand, the torsional stiffness of a shear-wall core element is
significant, and its contribution to the torsional stiffness matrix of the building is due to its torsional

stiffness matrix as well as to its lateral stiffness matrices along its two principal planes.
The stiffness matrix K; of the i® resisting element is determined by the following procedure:
1. Define the local degrees of freedom for each resisting element (Figure 4b) as follows:

(a) For a shear wall define at each floor level one translational degree of freedom along the
plane of the shear wall, i.e. along its major principal plane, and one rotational degree of free-

dom about its minor principal plane, i.e. along a horizontal axis perpendicular to its plane.
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(b) For a frame define one translational degree of freedom at each floor level, along the plane
of the frame, i.e. along its major principal plane, and a rotational degree of freedom per joint
about horizontal axes perpendicular to the plane of the frame, i.e. along the direction of its
minor principal plane,

(©) For a column define two translational degrees of freedom at the floor level along the prin-

cipal planes of the column and two rotational degrees of freedom about these plénes.

(d) For a shear-wall core define 'ﬁve degreés of freedom at each floor level: two translations
along its principal axes in the floor, two rotations about these axes, and one to;sional rotation
about the vertical axis of intersection of its two principal planes. »
Obtain a complete stiffness matrix for the resisting element for the degrees of freedom
defined, taking into account flexural and shear déformations for shear walls and shear-wall
cores, and only flexural deformations for frames and columns.

Eliminate the joint rotational degrees of freedom of the resisting elements by the static con-

densation process. The resulting condensed matrix k; of a shear-wall core element ‘i’ is of

dimension equal to 3N, N the number of stories, satisfying the following equation:

Qai l(ai 0 0 | Vai
Q=4Qu =]0 k, 0 Ve t =k v, 3.2)
' Qi 0 0 ky Voi

where k,; and k,, are the lateral stiffness matrices of the shear-wall core along its two prihci-
pal planes, and kg, is its torsional stiffness matrix about the vertical axis 6f intersection (;f its
two principal planes; and 0 denotes a zero square matrix of dimension N. The applied static
force vectors Q. Q and Q,; and resulting displacement vectors v, v, and v, in these three
directions are related through k,, k, and kg, respectively. Since kg is negligible for
columns, shear walls and frames, and k, is negligible for frames and shear walls, equations

(3.2) are simplified for these resisting elements. For columns, we obtain:
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: Q.i | kai O Vai '
Q= Q) | 0 ky Vi | K vi 3:3)
For shear walls and frames:

Q. = kg Vai ’ 3.4)

Determine the transformation matrix a,, relating the resisting element displacement vector v,,

to the system degrees of freedom u. For a shear-wall core, a, is given by:

ai | cosp;1 sin, I~ xd,1 u,
v,=( v, = |-sinB, I cosB I td,l u, ¢+ =au (3.5)
\ 0 0 | ug
and for a column, the transformation matrix a, is given by:
A\ cosp; I sin; I  xd,1I b
Vi = v, | = | -sing; I cosB;1  xd,1 U =au (3.6)

Uy

in which B, is the counterclockwise angle between the X -axes and the major principal plane
of the shear-wall core or column; 4, and d,; are the perpendicular distances from reference
points O; l6 the major and minor principal planes, respectively; and :I is a diagonal unit
matrix. In equations (3.5) and (3.6), the choice of a positive or a negative algebraic sign to
~accompany d,; (or d,;) depends on whether a unit ug; rotation of the )™ floor causes displace-
ments along the major (or minor) principal planes in the same or opposite direction to v,; (or
vy;). For frames and shear walls, a; is obtaihed from: |
U,
a, = [cosﬁ‘,-l sinﬁ,ﬂl‘ idail} u, » =au | 3.7)
Ug
where B; is the counterclockwise angle between the X/--axes and the plane of the frame or
" shear wall, anclil d, is the perpendicular distance from reference point O; to the plane of the

frame or shear wall. Again, the choice of a positive or a negative algebraic sign to
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accompany d in equation (3.7) depends on whether a unit u,; rotation of the j'* floor causes a

displacement along the plane of the frame or shear wall in the same or opposite direction to

ai*

(3.8)

5. The contribution of resisting element ‘i’ to building stiffness matrix is K;, and is determined
by:
K,u' Kryi Kxei
Kn = alT ki a, = Ky,n' Kyl Kyei
Ko KByi K
in which,

K, = cos’B; k,; + sin’B; ky;

K,; = sin’B, k,; + cos’B; k,;

i

Ky

= d% Ky + df Ky + kg
ny.' = K,; = sinf; cosB; (k, — k;;)
K.oi = Ko = £ d,; cosp; k,; — (£)d,; sinf; k,,

Ko = Kgy, = d,;sinB; k,; £ dy; cosB; ky,

As mentioned earlier, k, is negligibly small for frames, shear walls

3.9)

and columns but is

significant for shear-wall cores, and k,; is negligible for frames and shear walls.

The building stiffness matrix K for degrees of freedom u” = < u, u, u, >, defined at reference

points O, is given by superposition of the element stiffness matrices (equation (3.1)) resulting in:

K. K, K |
K=|K, K, Kg
Kex Ke) Ke

with,

(3.10)
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’Kx'= Z K:i ’ Ky = Z Kyi ’ KO = Z KO:'
Ko =Ko =3 K . Kjp=Kg = 3 K (3.11)

Ko=K,= 2 Ko

The undamped equations of motion for the multi-story building, assuming linear behavior,

subjected to earthquake ground motion accelerations a,,(r) and a,,(¢) along the X;- and Y -axes, are:

m 0 -myy| |0 K, K, Kg| |u, mla,, (1)
0 m mxy | {ii, g+ K, K, Kg| {ut =~ mla, (1) - (3.12)
—yym x;m  J, iy Kq Koy Ky | v —yymla, (¢)+xymla, (1)

where 1 denotes a vector of ones of dimension N; m is a diagonal mass matrix of dimension N with
diagonal entry m, equal to the mass of the j* floor; xj and y, are diagonal matrices of dimension N
with diagonal entries equal to x,; and yy;, the coordinates of the center of mass of the j* floor rela-
tive .10 reference axes X; and Y;; J, is a diagonal matrix of dimension N with diagonal entries J,;,
the polar moment of inertia of the j* ﬂbor diaphragm about Z, the reference vertical axis passing

through reference points O;, given by:

where r; is the radius of gyration of the j** deck about a vertical axis passing through its center of

mass. It is apparent from these equations of motion that translational ground motion along either
the X- or the Y-axes will simultaneously cause both X- and Y- lateral displacemenis of points O, as

well as torsional rotations or twists of the floors about a vertical axis.

The equations of motion written with réspect"to degrees of freedom defined at any points
other than O, can be determined by standard transformation of equation (3.12). However, the gen-
eral form of the equations of motion (the mass and stiffness matrices) remains as equation (3.12)
unless the degrees of freedom are defined at the centers of rigidity provided these centers uniquely .

exist for the building, or at its centers of mass. When the equations of motion are written with
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respect 1o degrees of freedom defined at the center of mass, the building mass matrix is of a special
form, given by:

0

MM = 0

c o 3

0
m
0 Ju

where J,, is a diagonal matrix of dimension N with diagonal entries Jy,; =m; r; the polar mass
moment of inertia of the j* floor about a vertical axis passing through its center of mass. However,
the coupling of the degrees of freedom in the building stiffness matrix remains of the form given in

equation (3.12). The equations of motion are then given by:

m o0 0 u, K. K, K| {u, mla, (1)
0 m 0| {i+|K, K, K| {u,}=—{mla,r) (3.14)
0 0 Ju| (g, Ko, Ko, Ko | |ug 0

On the other hand, if the equations of motion are written for degrees of freedom i, where

~

i =<1, i, u,> with i, and @, the vectors of dimension N of j'* entries #,; and @, equal the
lateral displacements at the center of rigidity of the j”* floor along the X;- and Y;-axes, respectively,

the building stiffness matrix assumes the form:

K, K, 0
K=|K, K, 0 (3.15)
0 0 K,

since any set of horizontal static forces applied through the centers of rigidity causes only lateral

displacements and no rotations of the decks (see the definition of the centers of rigidity given in
Section 3.1). However, the mass matrix defined with respect to @i remains in of the form given by

equation (3.12), so that the equations of motion written with respect to i are given by:
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mla, ()

-

m 0 -me U, K, K, 0] [q,
0 m me |{li,j+ K, K, 0]{d5=- mla, (1) (3.16)
-em em  Jp i, 0 0 i{e u, -e,mla,(¢)+emla, (1)

where e, and e are diagonal matrices of dimension N with diagonal entries e,; and e ;, the X and Y
components of the static eccentricity e, of the j* floor, given by:
€x; T XMj ~ XRj and €y = YM;j — YRj (3.17)

in which xz; and yg; are the X and Y coordinates of the center of rigidity of the j* floor relative to
its reference axes X; and Y;; Jp is a diagonal matrix of dimension N with diagonal entries J,; equal
the polar moment of inertia of the j" deck about a vertical axis passing through its center of rigi-

dity, given by:

Jrj

7

=m;(e} +r}) _ (3.18)

The form of K given in equation (3.15) follows from the definition given for centers of rigi-
dity as the points on floor levels at which stalic‘ horizontal forces cause no twist in any of the
floors. Clearly, if the centers of rigidity are not unique, it would not be possible to determine a
building stiffness matrix in the form of K given by equation (3.15). In the next sectioﬁ, an attempt

is made to determine the conditions for existence of unique centers of rigidity utilizing the special
form of K given by equation (3.15).
Horizonlal torsional moments applied statically at each floor level cause no lateral displace-

ments of the centers of twist. The form of K, therefore, also satisfies the definition of centers of
twist, given in Section 3.1. Again, if the centers of twist are unique, then the stiffness matrix at the
centers of twist has the form given by equation (3.15). The submatrices, K,. f(y . f(,,. or
l~(),4, and K,, are related to K, , K, , K, and K,, by expressions given in Section 3.3. The form of
the building stiffness matrix given by equation (3.15) is the basis for locating the centers of rigidity

and twist of the building if they can be uniquely defined (Sections 3.3 and 3.4).




- 283 -

Static horizontal lateral forces applied -through the centers of rigidity élong either principal
axis I, or 1I; of each floor, causes each floor to displace in the direction of the force applied to it |
(along its I, or 1)) without any rotation (see the definition of principal axes in Section 3.1). It fol-
lows‘ that the building stiffness matrix dehned with respect to. u’, where u"’ = <u u}; uy> with uj
and uy; the vectors of lateral displacements u;; and uy; at the center of rigidity of the j* floor along

its principal axes I, and II, is of the form:

K; 0 0
0 0 K;

with K;, K}, and K; expressed in terms of K, K,, K, and K, in Section 4.3. The form of building
stiffness given by equation (3.19) is the basis used to determine the orientations of the principal

axes of the floors of the system, again only if the centers of rigidity are uniquely defined. The

building mass matrix with respect to u’ remains of the form given in equation (3.12).

3.3 Locations of Centers of Rigidity

3.3.1 Unique Centers of Rigidity

The building stiffness matrix K written with respect to the degrees of freedom

i’ = <@l @ ul> defined at the centers of rigidity is related to the building stiffness matrix K writ-

ten with respect to degrees of freedom u, where u” = <u’ u? ul> at reference points O;, by:
Y gr y Ue P j» DY

K=a"Ka (3.20)

in which the matrix 3 is a transformation matrix relating u to @:

u, IO ¥Yr ﬁx
u=4{u, =01 —xp G, (=3u (3.21)
U, 00 1 Ug

where x; and y; are the diagonal matrices of the X and Y coordinates of the centers of rigiditybf
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the building. Substituting equations (3.21) and (3.10) inte equation (3.20), leads to:

K.r K.\'y KXYR - nyxR + sz i
K= K,, " K, K, yr-Kxz+K, T (3.22)
YRKX_XRK)'X+KOJ yRny—xRKy+K9)' RG

in which,

RB = KB + KO.\'YR - KeyxR = Xp ( K)-xYR - nyR + Kye ) + ¥z (KxYR - nyxR + KxB )

Comparison of equations (3.22) and (3.15) leads to the following conditions:

Kyr - Koxg +K;g=0 (3.23a)
-K, vy + Kxp - K, =0 ' (3.23b)
R.=K,, R =K, and K, =K, (3.24)
and,
Ko = Ky + Ko,yr — KoXz (3.25)

in which equations (3.23) have been utilized. Solving the simultaneous algebraic equations (3.23)

yields the coordinates of the centers of rigidity:

xp = (K, - K, KK )™ (Ko - K, K'Ky) (3.262)

and,

YR == ( Kx - Kx)vK;Iny )-] (Kxo - K:)VK;IK)/B ) (3.26b)

The inverses of matrices K,, K,, (K, - K,,K;'K,)) and (K, - KUK;‘KW) are shown in Appen-
dix A to always exist, implyiﬁg that x; and y, can be determined from equations (3.26). However,
the matrices x; and y, were defined as diagonal matrices and the expressions given by (3.26) do
not, in general, yield diagonal matrices (see Example 1), implying that unique centers of rigidity do
not always. exist. A special class of buildings with uniqﬁe centers of rigidity, i.e. buildings for

which equations (3.26) yield diagonal matrices, is identified in Section 4. Only for such cases is
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the building stiffness matrix at the centers of rigidity of the form given by equation (3.15).
3.3.2 Load-Dependent Centers of Rigidity

However, centers of rigidity can be defined for buildings even if equations (3.26) do not yield
diagonal matrices, but in such a case the locafions of centers of rigidity depend on the applied set
of static lateral forces. The equations of static équilibrium written with respect to & defined at the

centers of rigidity are given by:

P=Ki
with K given in equation (3.22); or,
P K, K, K.yr - Koxg +K,o | |
i;y = ny K). nyYR - K}'XR + KyB ﬁ)‘ (3.27)
'i‘e YRKJ_XRK}'1+K91 YRKx)'—xRKy+K9y‘ KO Ug

where P" = <P! P! T{> with P, and P, being the vectors of static lateral forces applied at the

centers of rigidity along the X; and Y; directions; and T, the vector of applied static torsional

moments about vertical axes passing through the centers of rigidity. For a particular set of forces

~ .

P, with B,=0 and P, =0 but T, =0, it is possible to determine x; and yg, the coordinates defining
the locations of centers of rigidity where, according to the definition of Section 3.1, @, =0 and @,#0

but ug=0. Thus, equations (3.27) specialize to:
P,=K. +K,i, and P, =K,i, +K,i (3.28a,b)
and:
0=(y:K, - xzK,, + Ko, )i, + (yzK,, - K, + K¢, ) @, (3.28¢)
Utilizing equations (3.28a) and (3.28b), equation (3.28¢) can be written as:
Y P —xg P, + Ko, G, + Ko, i, =0 (3.29)

Solving equations(3.28a) and (3.28b) for @, and @,, leads to:
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6, = (K, - K KK, ) (P, - K, K;'B,) = A" (B, -K,K;'B,) (3.30a)
and,

= (K, -K.K'K, )" (P, -K,K'F,)=B" (F,-K,K;'F,) (3.30b)
Substituting equation (3.30) into (3.29), the latter becomes:

(¥r + Ko A™ - Ko BT'K k7' ) B, - (xp — KgB™' + Kg, A”'K K;' )P, = 0 (3.31)

yathe xyey

Since P, and l~>), are independent, equation (3.31) leads to two conditions:
xzP, = [B] (xz} = (KgB™' - Ko, AT K K;' ) P,
and,
yeP, = [P] (yz] = - (Ko A™' - Kp,B'K, K" ) P,

where (P,] and [P,] denote the diagonal matrices of vectors P, and P, and {x;} and {yg) the vector

form of diagonal matrices xz and yz. Thus,

(xp} = [B,J"' (KoyB™' - Ko A'K K;') P, (3.323)

Y
and,
(yr} = - P17 (KeA™ - KgBT'K K;') P, : (3.32b)
Utilizing the following identities derived in Appendix A:
-K;'K,,A"' = -B7'K,K;' and -A7'K_,K;'=-K;'K,B"'

equatioﬁs (3.32) can be simplified to become:

{xg) =[P (Kg - Ko K'K,)) (K, - K, K;'K, )" P, (3.33a)
and,

{yal = = [P (Ko - K4K 'K, ) (K, = KKK P, (3.33b)

xythy
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Since [iiy] and [P,] are diagonal matrices, equations (3.33) are simplified to equations (3.26)
when the product mat;ices (Kq, - Ko K7'K,)) (K, - K K'K_ )™ and
Ko, - Ko K;'K ) (K, - K K]'K,,)™' are diagonal, so that the locations of the centers of rigidity are
unique and independent of the applied loading.

3.3.3 Example |

Consider a five-story multi-story building consisting of four identical columns and a frame,
located as shown in Figure 5. The lateral stiffness matrices of the columns along their principal

planes are equal, i.e..

and,
ky =k, =ky3 =k, =k
with

18820 —11901 4774 ~-1.193 0.199

_11901 14652 10707 4.177 —0.696

k=21 | 4774 -10707 14055 -9.514 2.586
) 21193 4177 -9514 9878 -3.646
0.199 —0696 2.586 -3.646 1.608

where 7 is the moment of inertia of the column, assumed to be the same for all floors, and 4 is the
story height of the building. The frame is uniform with all its columns of identical moments of
inertia, also equal to /; all its beains have the same moment of inertia equal to 0.8/, and are of
width 24. The lateral stiffness matrices of the frame along its principal planes are given by:

k,s=k and k,5;=0

with
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40.512 -2394)] 7.182 —-1.403 0.211
~23941 33870 -22582 6757 ~-1.015
K=ZL| 7182 -22582 33545 -21733  5.069
_1403 6757 -21733 29.453 —13.344
0211 -1015 5069 -13.344 9.120

The stiffness matrix contributions of the various elements to the building stiffness matrix defined

with respect to degrees of freedom at reference points O, are:

for the columns:

k 0 —ak k 0 0
K, = 0 kK 0 |, K,=[0Kk O],
—-ak 0 4%k 000
k 0 -ak kK 0 0
K, = 0 k ak |, K;,=[0 k ak
-ak ak 2a%k 0 ak 4’k
and for the frame:
0.5k’ ~-05k ~-14ld4ak
K; = -05k 0.5k 1414 ak’

—1414ak" 14l4ak’ 44°K
Equations (3.9) and (3.10) lead to:
K,=k+k +k +k + 05k = 4K + 0.5k’
K,=k+k+k+k+05k =4k + 0.5k
Ko =a’k +0 + 20’k + a®k + 4a°k =4a*(k + k)
K,=K,=0+0+0+0-05k =-05k
Ko=Kg =-ak+0-ak+0-1414ak = -2ak — 14144k’
K,o=Kg =0+0+ak+ak+1414ak =24k + 14142k’

The building stiffness matrix at reference points O, is therefore given by:
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© 4k + 05K -0.5k’ -2ak - 1414 aK’
K= -0.5k’ 4k + 0.5k 2ak + 1414k’
-2ak - 14l4ak 2ak + L4ldak’  4a’(k+k')

Equations (3.26) yield:

0791 0.055 0.011 0.004 0.009
-0.103 0911 0.086 0.012 0.042
Xz =Yg = | -0.196 0034 0957 0.057 0.121
~0.225 -0.054 0.093 0.854 0.318
~0.242 -0.092 0.032 -0.202 1.498

which clearly is not diagonal. Thus the building considered does not have unique centers of rigi-

dity. However, load-dependent centers of rigidity can be determined for the building. Assuming
uniform load distributions along both the X and Y directions, i.e. P, = P, =1, equations (3.33)

yield:

0.025
0.855
(xg} = lyg) = { 1.180
0.726
1.988

For a triangular height-wise load distribution of P =P] =<1 2 3 4 5>-- a distribution which is
recommended in building codes such as UBC [3] for buildings with constant story height and equal
lumped story weights, equations (3.33) lead io different locations of the centers of rigidity given
by:

-2.112
0.651
{xg) = {yr) = { 1.196
0.652
1.843

Actually any other load distribution would lead to different locations of the centers of rigidity.

3.3.4 Special Building Plans
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Equations (3.33) can be simplified further if the principal planes of all resisting elements are
parallel or orthogonal. In this case, the principal axes of the building are paraliel to the elemental
principal planes, and it is natural to choose the X; and Y, reference axes of each floor to be in the
direction of the principal axes of the building. It follows that B;, the counterclockwise angle
between X; and the major p;incipal plane of the i resisting element, is either zero or 90 degrees,
and 4, and d,,, the perpendicular distances from reference points O; to the major and minor princi-
pal planes of the element are measured along the X; and Y; reference axes. Thus equation (3.11)

becomes:
K.(= ZK.xi:zkxi
Ky:ZKyi=Zkyi
K, = Z Ko = 2 (kg + y7k, + xizkyt)

K,=K, =0 (3.34)

Kx9=K9x=Z Ko =—z)’ikn‘
K, =Ko, = 2 Ko = 2 xKy;

where k,; and k,, are the lateral stiffness matrices of the i resisting element along its principal
planes, which are oriented along the X; and Y, axes; x; and y, are the X and Y distances of the
principal planes of the i* resisting element from the X; and Y, axes. Substituting equation (3.34d)
into equations (3.33), leads to:

{xg) = [P,)7' Ko K;' P, , (3.35a)

and,

IYR] =- [ﬁxl_l KOJ K;I isx (3'35b)

These equations were also obtained in Reference [8] wherein only buildings consisting of frames
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arranged in an orthogonal grid in plan were considered. -In Reference [7], the center of rigidity of a
floor is defined as the point in the floor through which a static horizontal force should be applied to
cause the floor to translate without rotation or twist; other ﬂoors;' however, may twist or rotate. In
other words, Reference [7] specializes the applied loads P, and ﬁy to be vectors of zeros except for
the eniry corresponding to the floor in consideration, which can assume any value. The resulting

coordinates of the cenleré of rigidity are in this case given by the diagonal entries of matrices
Ko K;' and Kq K7

Equaiions (3.33) can similarly be simplified if the building has a vertical plane of stiffness
symmetry, then the lines of intersection of the symmetry plane and the floor planes are the principal
axes of the floors. Hence, it is natural to choose one of the reference axes X; or Y; in the same
direction ﬁs the principal axes of the floor. If the X; axes are chosen in the directions of the sym-
metry plane, then, referring to equations (3.9d) and (3.9e), it is apparent that matrices K, in equa-

tions (3.11c) and K in equation (3.11b) occur in pairs that are equal but of oppposite algebraic

signs. Thus:
K,=K, =0 and K,=K, =0

from which equations (3.33) are simplified to become:

{xg} = [P, Ko, K;' P, and {yg} = - [B,]7' K, K;' P, =0 (3.36)

Similarly, if the Y; reference axes are chosen in the direction of the symmetry plane, then:
(xg) = [P,)7 Ko K P, =0 and {yz) = - [P Ko, K" P, | (3.37)

3.3.5 Example 2

Consider a five-story building (Figure 6) consisiting of four identical columné and a frame, all
being the same as described in Section 3.3.3 for Example 1. The elements are arranged such lhai
their principal planes form an orthogonal grid in plan, and the ?building has a plane of symmetry.
The buildihg stiffness matrix defined at reference points O, (Figure ‘6) is obtained from equations

(3.34) as: ‘
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4k 0 0
K=|0 4k+k 2a(k + k')
0 2a(k +k) 6a%k +44°k’

Utilizing equations (3.36) for uniform height-wise load distribution, results in:

-0.280

1.082
{xg} = 1615 -+ and (yg} =0
’ 0.871

2.941

3.3.6 Load Centers

Equatioﬁs (3.35a) and _(3.35b), obtained in the case of buildings consisting of frames arranged
in an orthogonal grid in plén, were physically interpreted in [8] as the equations yielding the cen-
troids of the lateral forces "applied” in the planes of the frames at each floor l¢ve1 when the build-
ing is subjected to a static loading that causes no twist in any of its floors (i.e. ug = 0). This con-
clusion was reached by recognizing that K;'P, and K;’f’y are actually the vectors u, and u, of the
X- and Y- lateral displacements expeﬁenced by each frame when the building is subjected to loads
P, and l"ix. Then, utilizing equations (3.34e) and (3.34f); equations (3.35a) and (3.35b) are

simplified to become:
{xg) = [P, Ko, K, B, = [P,]”! Z'x,— k, u,.= [B,]"' in Q,, (3.38a)
and,
(ya) = - (B Ko K7 B, = - (B Zy Kou, = - [P 25Q  (338D)

in which Q. is the vector of lateral forces "applied” along the X- direction in the plane of a frame

oriented along the X- direction, and Q,; is the vector of lateral forces "applied” along the Y- direc-
tion in the planc of a frame oriented along the Y- direction. Since [P,] and [l3y] are diagonal
matrices, xg; and yg;, the X and Y coordinates of the center of rigidity of the j* floor (also the j*

entries of {xz} and {yg}), are given by:
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z X Qyij 2 Yi Quij
= ———— and yp = —— (3.39)
7] xj

XRI' },;,

where 0, Q,;, P,; and P are the j" entries of vectors Q,;, Q,,;, P, and P, respectively. It is clear
from equations (3.39) that the X- and Y- coordinates of the center of rigidity of a floor can be
determined by finding the location of the resultant elemental loads at that level. Thus, the centers
of rigidity of such buidings are identified as the load centers [8]. A computational procedure to
determine the locations of the centers of rigidity using a standard frame computer program was also

presented in [8].

This physical interpretation of centers of rigidity is examined, in this section, for buildings

with more general plans than those considered in [8]. Referring to equations (3.27), the application
of horizontal forces f’y, along the Y-axes, causing no twist in any of the floors of the building

(ug = 0) leads to the lateral displacements u, and u,, satisfying:
K.u +K,u =0 and K,u, +K,u, =P, (3.40)
from which:
u,=-K'K_u, and u,=(K, -K,K;'K,)"' B, (3.41)
Equation (3.33a) is simplified to become:
(xx) = [B,)"'(Kq, - Ko K;' K,y )u, = (B,1"(Kg,u, + Kgu,) (3.42)
Equations (3.9e), (3.9f) and (3.11) are substituted in equation (3.42) leading to:
{xg} =[P [ X (£d,c08B;Ky — (£)dy;sinBky ) u, + 2. (xd,sinBk,,  dycospky ) u,]
or,

[xR] = [i;y]-] [z idai(cosﬁikalux + Sinﬁikaluy) + Z idbz (—Sinpikbiuz + Cospikbiuy) (343)

However, equations (3.5) and (3.2) imply that:
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Qai = kai Vai = COSB,‘ kaiux + Sinp" kaiuy (3-448.)
and,
Qpi = kyi vy = —sinB; k,; u, + cosB, kv, (3.44b)

where Q,; and Q,; are the vectors of "applied" loads of the i resisting element along its major and
pp g g i}

minor principal planes, due to P,. Thus, equations (3.43) can be written as:

{xz} = [ﬁy]—l Z 1d,Qui + (£)dhiQy, (3.45)
Since [f)),] is a diagonal matrix, the j* entry of {xg} or the X- coordinate of the center of rigidity of
the j*» floor is given by:

z [1d.iQai; + (£)d,, Q]

(3.46)

Xp, = ~
!
P,
s

where Q,, and Q,; are the j™ entries of Q,; and Q,,. A similar derivation would lead to the Y-

coordinate of the center of rigidity of the j* floor as:

2 [£daQu; + (£)dyi Qi)

;= = 347
yR_/ P” ( )

Aithough equations (3.46) and (3.47) are similar, they involve different terms Q,; and Q,;;; those
entering equation (3.47) are determined for the applied forces P,, and, those appearing in equation
(3.46) are computed for P,.

Thus, the centers of rigidity (CR) of buildings with general floor plans, can also be identified

as load centers. However, because the X- and Y- lateral motions of the building are no longer

independent, the X- coordinates {xz) of the CR are determined by finding the locations of the resul-

tants of the lateral loads experienced by all the resisting elements due to lateral forces P, applied
along the Y- direction, causing no twist in any of the floors of the building; and the Y-coordinates
{yr} are determined by finding the locations of the resulatnts of the lateral loads experienced by all

the resisting elements due to lateral forces P, applied along the X- direction, causing no twist in
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any of the floors of the building. This complication is not necessary if the principal planes of the
resisting elements form an orthogon<al grid in plan, because the X- and Y- lateral motions of such
buildings are independent. Furthermore, unlike such buildings, the centers of rigidity of buildings
with more general plans can not be located using a computer program for plane-frame analysis,

again due o the dependence of the X- and Y- lateral motions of such buildings.

3.4 Locatiens of Centers of Twist

The centers of twist were defined in Section 3.1 as the points at various floor levels which
remain stationary when the building is subjected to any set of static horizontal torsional moments
applied at the floor levels. In accordance with this definition, the building stiffness matrix written
with respect to degrees of freedom defined at the centers of twist would be of the special form of
K, given by equation (3.15). Hence, the locations of the centers of twist are determined by follow-
ing the same steps performed above for the centers of rigidity, with x; and y,, the diagonal
matrices with entries xr; and yr;-- the X and Y coordinates of the center of twist of the j* floor--
substituted for x; and y; in equations (3.21), (3.22), (3.23) and‘(3.25). Solving the modified equa-
tions (3.23) for xr and y; yields the same expressions for the coordinates of the centers of twist as
the centers of rigidity. Hence, in expressions (3.26) yield diagonal matrices, centers of twist and

centers of rigidity of the building coincide.

However, centers of twist can also be defined for buildings even if equations (3.26) do not
yield diagonal matrices, but in such a case the locations of the centers of twist depend on the

applied set of static torsional moments. The equations of static equilibrium, written with respect to

ii defined at the centers of twist, are:

ﬁx K_( ny nyT—K,yxT+K,9 ﬁx
P} = K, K, K, yr-Kx7+K, | {1, (3.48)
T, yrK, - x7K,, +Kqo,  y7K, -x7K, +Ko, K, ug

For a particular set of forces P with P,=P,=0 and T, #0, it is possible to determine x; and yr, the

coordinates locating the centers of twist, where, according to the definition of Section 3.1,
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U, =1, =0, but ug 20. Thus, equations (3.48) specialize tq:
(K.y7 - Koyx7 + Kg)up = 0
and,
(K yr - Kyxr + Kyg)u9»=_ 0
Solution of equations (3.49) for xr and yr leads to:
(xr} = [we]™ (K, ~ KKK, )™ (Kyo ~ K, K 'Kyo ) ug
and, |

{YT] =- [“e]-l ( Kx - KryK;lex )—l (Kxe - KJyK;leB )uB

"(3.49a)

(3.49b)

| (3.50a)

(3.50b)

where [u,] represents the diagonal matrix form of vector u, and {x;} and (y;} the vector forms of

diagonal matrices x; and yr. The deck rotations are determined by a static analysis of the building

subjected to torsional moments T, (see Example 3).

Since [ug] is a diagonal mairix, equations (3.50) are simplified to equations (3.26) when the

products of the stiffness submatrices in equations (3.50) are diagonal.

Equations (3.50) can also be simplified further in the two cases discussed in the previous sec-

tion:

1. If the principal planes of all resisting elements are parallel or orthogonal, then equations

(3.34) are satisfied. Substituting equations (3.34d) into equations (3.50), leads to:

(xr} = [we] " K;'K g ug and (yr} = —[ue]™ K;'Kp ug

3.51)

These equations were also obtained in [14] for buildings consisting of frames arranged in an

orthogonal grid in plan.

2. If the building has a vertical plane of stiffness symmetry, then choosing the X; direction along

the symmetry plane leads to:
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KJ.\. = K)’X = 0 and KXQ = Kex =0

from which equations (3.50) become:

[x7} = [ug]™ K;l Kjoug and {yr}=- ] K;'K,gug = 0

Similarly, if Y; are chosen in the direction of the symmetry plane, then:

{xr} = W] ' K;'Kigug =0 and {y;) = — [ug]” K;'K,6 u,

(3.52)

(3.53)

Equations (3.50) to (3.53) show clearly that the locations of centers of twist depend upon the

applied torsional moments (since u, depends on T,). The locations are unique and independent of

the applied forces onl& if equations (3.26) yield diagonal matrices, in which case the centers of

twist and rigidity are coincident and the building stiffness matrix defined at these centers is of the

form given by equation (3.15). The conditions to be satisfied for the centers of twist and rigidity to

coincide, be unique and load independent are examined in Section 4.

3.4.1 Example 3

For the building of Figure 5 (Section 3.3.3), the centers of twist are determined for T, = I, i.e.

for the case when all floors are subjected to equal torsional moments. Since B, = B, = 0, the deck

rotations can be determined from the solution of the static equilibrium equation written at reference

points O, i.e.:

0 K,
00X
TB KO:
from which we obtain:
ux KX
u, =" K,

Thus,

K, K,

Ky Ky@

Koy Kp

u,

u,
Uy
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ux
Te =[ Ko, Ky, ] {U,} + K up

or,

K, K, ]

K, K,

K.xa
i Kyo

B

Solution of these equations leads to u,. Using this procedure the coordinates of the centers of twist

.Te=[Ke‘[Kex KG)]

of the building in Example 1 is found to be:

1.208

1.251

{xr} = {yr} =1 1.282
‘ 1.305

1.323

3.5 Locations of Shear Centers

The location of the shear center of a floor is determined by finding the centroid of the inters-
tory shear forces experienced by individual resisting elements due to a static loading that causes no
twist (ug =0) of any of the stories (see the definition of shear centers given in Section 3.1). Substi-

tuting uy=0 in equations (3.5), the vectors of lateral dispalcements of the i" resisting element along

its principal planes are given by:
Vg = cosp;u, + sinf; u, (3.54a)
vy = —sinf, u, + cosp; u, (3.54b)

The vectors of applied lateral loads on the i* resisting element along its principal planes are given

by equations (3.2). Thus,
Qai = kaivai = kai(COSﬁ,' u, + Sinpi uy) ’ (3553)
Qi = ky; Vi = ky; (—sing; u, + cosp;u,) | (3.55b)

The vectors of interstory shear forces V,, and V,, experienced by the i* resisting element are related
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to Q. and Q,, by:
Vi = 8Q, = Sk, (cosp; u, + sinf;u,) (3.56a)
Vi, = 8Q, =Sk, (-sinf; u, + cosp; u,) (3.56b)

where S is a summation matrix which is upper triangular, of dimension N and of the form:

— —

S= N (3.57)

The vectors of shearing forces V,, and V, experienced by the i resisting element along the X; and

Y, axes are given by:
V, = Vm:cosﬁ,- - V,, sinp, (3.58a)
V,i =V sinB; + V,, cosp, (3.58b)
Substituting equations (3.56) into (3.58) and utilizing equations (3.9), results in:
V. =S [(cos’B; k, + sin’B, ky; Ju, + (k,—ky, )sinBcosBiu,] =S [Ku +K ,u,] (3.592)
V,; =S [(k,—ky ) sinp,cosB;u, + (sin’B; k, +cos’B Ky, )u,] =S [K ,u, +K,u,] (3.59)
The vector of the résultants of the shearing forces has X and Y components equal to ZV,,- and
Evy,, respectively, with the resultant of the shearing forces acﬁng on the j* floor passing through

its shear center with X and Y coordinates equal to x;; and ys;. Referring to Figure 4a, equilibrium
of moments about reference axis Z of all shearing forces acting at each floor level, and presenting

the results in vector form, leads to:

Z td, V., + z tdy; Vi — Xs Z Vyi+ys Zvn =0 (3.60)

where x; and y; denote the diagonal matrices of entries équal to x5; and ys;, respectively. The alge-

braic sign accompanying V_ and V,, in equation (3.60) depends on whether the forces cause
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positive or negative moments about reference axis Z. Substituting equations (3.56) and (3.59) into

(3.66) and then utilizing equations (3.9) and (3.28), leads to:
S(Kexﬁ,{+Keyﬁy)—XSSl~’y+ySSi5,=0 ' (3.61)
Substituting equations (3.30) into (3.61), and using equations (A.7), we get:
(y5S+SKg,A™ - SKo K} 'K ,A™ )P, - (xS~ SK(, B~ + SKo, K 'K, B~ ) B, =0 (3.62)
Since P, and P, are independent, we can write:
(ysS+SKo A - SKo K;'K,,A™ )P, = 0
and,
(x5S - SKg,B™' + SKo K;'K, B )P, = 0
froﬁl which we get:
xsSP, = S (Ko, - Ko K;'K, ) B~ P,
and,
ysSP, = S (K, - KeyK;‘ny)A_“ P,

Let [P,] and [P,) denote the diagonal matrix forms of vectors SP, and SP,, respectively, and {x;)

and {ys) the vector forms of diagonal matrices x; and y;, respectively. Then,

{xs) = [P,]7'S(Kq, — Ko, K:'K,, ) (K, - K, K'K,)'P, (3.64a)

and,

(ys} = —[P.]7'S (Ko, - Ko, K; 'K, ) K, - K, K;'K,, )" P, (3.64b)

Yy

Although there is great similarity between equations (3.64) and (3.33), they yield different
coordinates for the shear centers and centers of rigidity (see Example 4). Thus, in general, shear
centers do not coincide with centers of rigidity. When the product of the stiffness submatrices of

equations (3.64) leads to a diagonal matrix with equal diagonal entries, equations (3.64) simplify to
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equations (3.26) and become load-independent. In this case, shear centers ccincide with centers of

rigidity as well as with centers of twist.
Simplification of equations (3.64) is possible in the sp‘ecial cases mentioned in Section 3.2,
where K, = K,, = 0, leading to:
x5} = [P]7'SKo K;'P, . (3.65a)

and,
[)’s} == [P:x]—lSKOxK;llf’.x N ) (3-65b)

3.5.1 Example 4.

Using equations (3.64) for the building (Figure 5) desribed in Section 3.3.3, the locations of

the shear centers of the building are found to be given by:

0.955

1.187
{xs} = {ys} =1 1298 .
' 1.357

1.988
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4. A SPECIAL CLASS OF MULTI-“S‘TO.RY BUILDINGS
It is apparent from the preceding( section that the centers of rigidity, the centers of twist and
shear centers of multi-story buildings do nbt generally coincide. In order for the building to have
unique, load-independent centers of ﬁgidity that are coincident with centers of twist and sﬁear
centers, it is necessary thaf equations. (3.265 yield diagonal matrices. The conditions to be satisfied

for a building to have unique centers of rigidity are examined in this section.

4.1 Buildings with Arbitrary Orientations of Elemental Principal Planes

Consider a special class of multi-story buildings with every resisting element having lateral

stiffness matrices along its principal -planes of the form:

kai = Cal' k and kbi = Cbi k - ' ‘ (4.1)

th

where C,, and C,; are constants for the i" resisting element and k is a characteristic matrix for the

building. Utilizing equations (4.1), equations (3.9) become:

K, = (C,cos’B, + Cysin’B; ) k = C; k
K)‘l = (Cai Sinzﬁ‘ + Cbi COSzﬁ,‘ ) k = C-V" k
KX)’i = K)‘Xl = [( Cai - Cbi )Sinﬁicosﬁl ] k = CX.Vi k (4.2)

K =Ko =[x2C, dgicosf; — (£)Cy; dy,; sinB; 1 k = Cpp K
Ko = Kg, = (£C,; d,; sin; £ C,,; dy, cosp; )k = Cpp; k

Substituting equations (4.2) into (3.11), leads to:

K, = Y K= Y,(Coicosh; + Cysin) k = (T, Cdk = Gk
K, = 2 K, = Z(Cai sinzﬁi + Cpcos’B; ) k = (z C,i)k=C)k

K,=K, =Y K, = > [C,—Cpsinicosp; 1 k= (Y, C,i)k = C k 4.3)
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Ko = Koo = Y, Kuoi = X[ £C, dic0sB, = () Cpi dyi sinf; 1 k = (3, Crai )k = Cro k

1

Ko =K = 2 Ko = Z[ica; dy;sinB; £ C; dy, cosp; 1 k = (Z Cuwilk=Cpk

Substituting equations (4.3) into (3.26), leads to:

C.Co - C,C,
xR=_‘_L__uI (4.42)

2
C.C, - C2
and,

_GCs = CoCye
2
C.C, - C%

I (4.4b)

Yr =

where I is a unit matrix of -dimension N, the number of stories. Since I is diagonal, x; and y,
obtained from equations (4.4) are also diagonal. Similarly, in order to obtain xy and yr, the coordi-
nates vector of the centers of twist, and x; and yjg, the coordinates vector of the shear centers, equa-

tions (4.3) are substituted into (3.50) and (3.64), respectively, resulting in:

Cnye - nyCxO 1

{xr} = {x5) = (4.5a)
, : L ¢.C, - CE :
and,
c,C, - C.C
{y7) = {yr) = = -2 279 4 (4.5b)
c.C, —~ C}

where 1 is a vector of ones.

It is apparent from equations (4.4) and (4.5) that the centers of rigidity, the centers of twist
and the shear centers for the special class of buildings considered are coincident, and their locations
are independent of applied forces. Since all reference points O, are colinear and axes X; (and Y;)
are all in the same direction, the centers of rigidity..the cénters of twist and the shear centers of the
building lie on a vertical line located at distances from the Z reference axis, measured along the X;

and Y; axes, given by:
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. Cxc 8 Cx CJ:Q.,.
ij = XTj = ij = —C),C‘—CT,‘,— (4.63)
Ly —Cy

and,

C,Co — C,Chp
YRj = ¥1j = Vs; = —_y‘_—_‘y_)—y (4.6b)
Cc.C, - C,

in which xg; and yg;, xr; and yr;, and x5; and y;; denote the X and Y coordinates of the centers of
rigidity, the centers of twist and the shear centers of the building, respectively; these coordinates
are the same for all floors. Equations (4.6) for the special class of multi-story buildings resemble

equations (2.26) and (2.27) for one-story systems.

The building stiffness matrix K defined at these unique centers is given by:

C,k Cyk 0 ,
K=|c,k Ck 0 , , : (4.7)
0 0 K,

Figure 7 shows two simple examples of buildings with unique centers of rigidity. System ‘A’
of Figure 7a consists of three framesr with equal lateral stiffness matrices k,, i.e.

C,=Cpp=Cyy= 1. Using equations (4.3) leads to:
C# = cos?135 + cos*90 + cos®0 = 1.5

C} = sin’135 + 5in90 + sin0 = 1.5

C4 = sinl3s coslB§ =-0.5 - _ 4.8)
CA = acos135 + acos90 + acos0 = 0:293 a
Cy;}, = ﬁsinl33 + asin96 + asin0 = 1.707 a‘
Substituting eqqatioqs (4.8) into equatjons (4.6)f leads to:

(15)(1.707a)-(-05)(0.293 a)

= 1.354 : 4.92
(15)(15)=(-05) a (4.92)

Rj =
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and,

A - _(15)(0293a)-(-05)(1707a) _

R (1.5)(1.5)=(-05)

~0.646 a (4.9b)

The other example, system ‘B’ of Figure 7b, has three frames of equal lateral stiffness matrix,

kgz. Using equation (4.3) leads to:
C7 = c0590 + 05?135 + cos?135 = 1
C2 = 5in’90 + sin?135 + sin’135 = 2
Ca = 2sin135cos135 = -1 _ o (4.10)
'Cg. = 1.354 a c0s90 + 1.25 a cos135 - 0.25 a‘cosl35 =-0707 a

Cl = 1.354 a sin90 + 1.25 a sin135 — 0.25 a sinl35 = 2.061 a
Substituting equations (4.11) into equations (4.6) leads to:

s (1)(206la)-(-1)(=-0707a)
XRj = 2
: (1)(2)-(-1)

=1354 a 4.11a)

and,

_(2)(-0707a)-(-1)(2.06! a)

> = -0.646 a - (4.10b)
(1)(2)-(-1)

B8 _
.))R_/_

Thus, the two systems, ‘A’ and ‘B’, belonging to the special class of buildings presented
above have unique centers of rigidity that are of equal coordinates xz; and yg;. Consider a multi-
story sytem ‘C’, shown in Figure 8, that consists of the two subsystems ‘A’ and ‘B’, with the loca-
tions of the frames in ‘C’ relative to Oy, being- the same as in ‘A’ and ‘B’. Denote by K, and K,
the building stiffness matrices defined at reference points O; of systems ‘A’ and ‘B’, respectively.

Then, the building stiffness matrix K¢ at O; of building ‘C’ is given by:

Consider points R; of system ‘C’ that lie on a vertical line and have coordinates equal to xg; and yg;
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of systems ‘A’ and ‘B’. The building stiffness matrix, Kgc of building ‘C’ at points R;, is given

by:
Kec =8 Kcd=8"K,a+3 Ky 5=K, +K, (4.13)
where & is given by equation (3.21), with x; and yp the diagonal matrices of entries equal t0 xg;

and yg;. Using equations (4.7) to compute K, and K, of systems ‘A’ and ‘B’, equations (4.12)

become:

l

Ciky + CPhy Coky + Clkp 0
Kpc = | Coka + CBky Clky + Clyp 0 = K¢ (4.14)
0 0 Koy + Koz

Due to the form of Kgc, it is obvious that points R; are the centers of rigidity of building ‘C’.

Therefore, when a multi-story building consists of two or more subsystems of resisting ele-
ments, with each subsystem having unique centers of rigidity that are coincident, the system itself

has unique centers of rigidity that are also coincident with those of the individual subsystems.

4.2 Buildings with Orthogonal System of Resisting Elements

Consider a building consisting of resisting elements with principal planes of each element
oriented along the X- and Y- axes. Suppose that the lateral stiffness matrices k,; and k; along each

one of the principal planes of all resisting elements are proportional, that is:

kn' = Cxi k.z and ky,' = C),,' k

(4.15)

y

where C,; and C,; are constants of the i resisting element relating its lateral stiffness matrices to k,
and k,, the characteristic matrices of the building along the X and Y principal directions. Then

equations (3.34) become:

K= Ki= Y ki= (3 Ck.=C.k,
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K, = Z'Kyi: Z ky, = (Z' Gk, =Gk,
K, =K, =0 (4.16)

JB—KB\' ZKIBI_—Zyl x,=—[Z(C,nyi)]kx=C:9k:

Kyo =Koy = 3 Koo = 3, x y,—[2<c.-x,)]ky=cye_k,

Substituting equations (4.16) into (3.35), leads io:

26

C,e
X (4.17a)
Z ,
and,
C,e’ Z C,,y.

(4.17b)

T Zc,.

Since I is a diagonal matrix, x; and y; are also diagonal. Thesé equations for the coordinates of
the centers of rigidity for a multi-story building are similar to equations (2.31) obtained for one-
story systems.

Therefore, buildings consisting of an orthogonal system of resisting elements with lateral
stiffness malrices.of all resisting elements along each principal direction proportional to each other

have unique centers of rigidity, aligned on a vertical line. The same conclusion was reached in

reference [8]. In this case, the building stiffness K defined at the centers of rigidity is given by:

ck, 0 0
K=| 0 ck, .0 (4.18)
0 o0 K,

It should be apparent that the coordinates of the centers of twist and of the shear centers are also
given by equations (4.17), so that all the centers are coincident, uniquely defined independent of the

applied loading and lie on a vertical line.
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Using the result of Section 4.1, if the building with orthogonal elemental principal planes con-
sists of two or more subsystems, with each subsystem having unique centers of rigidity that are
coincident, the building itself has unique centers of rigidity that are also coincident with those of

individual subsystems.

4.3 Orientations of the Principal Axes for the Speéial Class of Buildings
Finally, the orientations of the principal planes of the building belonging to the special class,

identified in Section 4.1, is determined in this section. The lateral displacements @, and @, of the

centers of rigidity along X, and Y, directions are related to lateral displacements u; and uy; of the

centers of rigidity, along the principal planes of the system by the transformation matrix a":

i, C-So uy,
i={d, (=S C ofjuy[=a’v (4.19)
u, 0 0 I |y,

in which C and S are diagonal matrices with diagonal entries equal to cosn ; and sinn;, respec-
tively, where n; is the counterclockwise angle between the X; reference axes and the major princi-
pal axis in the j* floor. It follows that the building stiffness K" defined with respect to u®, is given
by:

K'=a"Ka' (4.20)

Substituting equations (4.19) and (3.15) into (4.20), and comparing with (3.19), leads to:

K; = Ck,C + Sk,S + Ck,S + Sk,.C (4.21a)
K; = SK,S + Ck,C - Ck,,S - Sk,,C | (4.21b)
K; = K, ‘ (4.22)

and,
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Ck,S - Sx,C - Cx,,C + Sk, S =0 k  (423a)
SK.C+CKS+CK,C-Sk.S-0 (2.230)

Addition of equations (4.23), pre-multiplying and post-multiplynig the result by'C_l. yields:
&, +K)T=TK,+K) o ' (4.24)

where T is a diagonal matrix with diagonal entries equal to tann,.

For systems such as those described in Section 4.1 with stiffness submatrices given by equa-

tions (4.3), equations (4.24) simplify to become:
kT = Tk ‘ (4.25)

Pre-multiplying and post-multiplying equations (4.23a) by C—], and substituting equations (4.3) for

K., K, and K,,, leads to:
ckT -, Tk -,k + c,TkT =0 (4.26)

Using equation (4.25) and pre-multiplying by k™', results in:

«,-cy)T -c a- T’ =0 4.27)
or,
-(C,A— C,) tann; - C, (1 - tan’n;) =0
from which,
2C,,
tann,; = c.-C : (4.28)

Thus, all principal axes of individual floors are parallel to one another and their orientation is given

Equations (4.21) can now be written as:
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VA

. C.+C, -6, ’ . .
Kl = 2 2 ) + CJ')’ k = C, k (4.298)
and,
. . Cx + Cy Cx - Cy ) ) " .
K" = 3 - 2 )" + C;y k = C” k (4.29b)

The building stiffness matrix K" defined with respect to u* is given by:

C’k 0 0
K'=| 0 Cjk 0 (4.30)
0 0 K,

The similarity with the results obtained for one-story systems (Section 2.5) is apparent.

Note that for buildings with a plane of stiffness symmetry, the plane is also a principal plane
of the building. Also, if the elemental principal planes are parallel or orthogonal, the principal
planes of the system are in the same directions as the elemental principal planes. For buildings
such as building ‘C’ studied in Section 4.1, it is not possible to find principal axes that satisfy the
definition given earlier, unless the principal axes of the building subsystems are oriented along the

same directions.
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5. CONCLUSIONS

In a one-story system, it is always possible to locate in the plane of its deck a unique point
which has different roles in the static response of the system. A static horizontal lateral force pass-
ing thrpugh this point, causes the floor of the system to displace laterally without any twist, with
the resultant of the shear forceé experienced by various‘ resisting elements also passing through this
point. If the force applied through this point is directed along one of the principal axes of the
system-- two orthogonal axes passing through this point-- the floor displaces in the direction of the
applied force without any twist. If the floor is subjected to a static torsional moment about a verti-
cal axis, the point remains at rest, i.e. the floor rotates about a vertical axis passing through this
point. For ihis reason, the terms center of rigidity, shear center and center of twist are interchange-
able in one-story systems, since they refer to a unique point with different roles in the response of
the system.

Unlike one-story systems, centers of rigidity, centers of twist and shear centers of the floors of
a multi-story building do not generally coincide. Their locations not only depend on the geometric
and stiffness characteristics of the building, but also on the applied loading.. For a special class of
buildings, however, the centers of rigidity, the centers of twist and shear centers of the floors of the
buildings are coincident at locations that are independent of the applied loading and lie on a verti-
cal line. Buildings belonging to this special class consist of resisting elements that have propor-
tional lateral stiffness matrices along both their principal planes, if the planes have arbitrary orienta-
tions, or they consist of resisting elements that have proportional lateral stiffness matrices along
each of their principal planes, when these form an orthogonal grid in plan. It is possible to deter-
mine, for this épecial class of buildings, two principal directions along which application of lateral
forces causes the floors to displace laterally without any twist. There is great similarity between
the expressions of the locations of the centers and the orientations of the principal axes obtained for

one-story systems and buildings belonging to this special class.

Torsional provisions in most building codes are based on the evaluation of static eccentrici-

ties, usually given as distances between the centers of mass and the centers of rigidity of a
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building, with little or no explanation of how these eccentricities can be determined. Although
some codes [e.g. 5] recognize the complexity of "determining the centers of rigidity in some build-
ings, they do not provide any reasonable alternatives. It is clear that torsional provisions based on
static eccen;ricities are strictly applicable only to ‘lhe special class of buildings described above, and
further work is necessary to develop code provisions for buildings not belonging to this special

class.
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APPENDIX A: USEFUL MATHMATICAL FACTS
The lateral suffness matrlces ki and k,,, of the i’ resisting element along its major and minor
prmapal pianes respectlvely, are posmve deﬁmte mamces because each is symmetnc and real.
Since submatrices K,; and K, given by equations (3. 9) are sums of multiples of k_; and k,,,, it fol-
lews that K; and K,; are also positive definite matrices. System submatrices K, and K, given by

equations (3.11), are summations of K,, and K, and, therefore, are also positive definite matrices.

yis
"Since the inverse of a positive definite matrix always exist [12], it follows that the inverses of K,
and K,, K;' and K} exist.

The building stiffness matrix K being a positive definite matrix, its minors are .also positive

definite. Consider the minor matrix:

K, K,
N= K, K, (A.1)
The inverse N™' of N exists because N is positive definite. Let N™' be given by:
o Nll NIZ .
NS Ny N B2)
Since NN~' = N™'N = I, we have:
KNy + K Ny =1 :
K, N, + KNy =1
K, Nj; + KNy =0 (A.3)
and,
KN +K Ny =0

Thus,

N 12 == K—l K qu (A4a)
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Ny =-K;'K, N;

Substituting equations (A.4) in (A.3a), we get:

(K, - K KJ'K, )N, =1

and,
(K, - K, K;'K, )Ny, =1
from which:
Ny =(K, -K K;'K, )y'=A"
and,

Np = (K, - K,K'K,)"' = B~
Therefore, (K, - K, K;'K,, )" and (K, - K, K;'K,, )™ exist.
Finally, since N is symmetric, N7! is also symmetric, and:
Ny =Nf; or N =N,
Therefore,
-K;'K,,A™' = - B'K  K}!
and,

=1 l—l — ~1 -
- ATK K = - K;'K, B!

(A.4b)

(A.5a)

(A.5b)

(A.6a)

(A.6b)

(A.7a)

(A.7b)
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APPENDIX B: NOTATION

B.1 One-Story Systems

a,(t) and a,(t)

a2

dai aIld dbl !

e and e,
Iand I1

Jo and Jg

k, and kg,

k, and k,

K

Xt

K, and K

earthquake ground motion accelerations along the X and Y axes

transformation matrix of the i resisting element defined by equations (2.5) to (2.7)
transformation matrix defined by equation (2.21)

transformation matrix defined by equation (2.40)

perpendicular distances from reference point O to the major and minor principal axes
of the i™ resisting element

static eccentricity of the building defined as the distance between its centers of mass
and rigidity

X and Y components of static eccentricity e

principal axes of the system

polar moments of inertia of deck about vertical axes passing through reference point

O and the center of rigidity, respectively, given by equations (2.13) and (2.18)

lateral stiffnesses of the i resisting element along its major and minor principal axes,

respectively

th

lateral stiffnesses of the i" resisting element along its principal axes which are

oriented along the X and Y axes

torsional stiffness of the i shear-wall core about a vertical axis passing through its

" shear center

xyi or Ky.ti

- submatrices of K; defined by equations (2.8) and (2.9)
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K. Or Ko, Ky OF Ky, and K,

submatrices of K; defined by equations (2.8) and (2.9)
Kl" K_\' a‘nd K.r)‘ or K\'.t

submatrices of K defined by equations (2.10) and (2.11)

K OF Ky, K, OF Ky, and Ky

submatrices of K defined by equations (2.10) and (2.11)

K. K, K, or K, and K,
submatrices of K defined by equations (2.15), (2.24) and (2.25)

K/ ,K;; and K,

submatrices of K" defined by equation (2.19), (2.49) and (2.43)

k, stiffness matrix of the i resisting element defined in equations (2.2) and (2.3)

K building stiffness rhalﬁx with respect to degrees of freedom u defined at O

K building stiffness matrix with respect to degrees of freedom @i defined at the center of
rigidity

K’ building stiffness matrix with respect to degrees. of freedom u" defined at the center
of rigidity

K, contribution of the i resisting element to K

m mass of deck

M,, building mass matrix defined at its center of mass

Q. and Q, lateral forces applied at the floor level of the i™ resisting element along its major and

minor principal axes, respectively
Q. and 0, X and Y components of the shearing force experienced by the i® resisting element

Qi torsional moment applied at the floor level of the i*" shear-wall core
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Q, vector of forces applied to the i resisting element (equations (2.2) and (2.3))

r radius of gyration of the deck about a vertical axis passing through its centér of mass
u, and u, lateral displacements at reference point O, along the X and Y axes, respectively

lg deck rotation about a vertical axis

u,and @, lateral displacements at the center of rigidity, along the X and Y axes

u and uy lateral displacements at the center of rigidity, along principal directions I and II of

the building

u degrees of fri:edom defined ‘at O; ul =<, u U >

i degrees of freedom defined at the center of rigidity; & = < &, Ty ug >

u’ _ degrees of freedi)m defined at the center of rigidity; =< ugpoup >

v, and v,,. lateral displacements of the floor of the i™ resisting element along its major and
minor principal aixes, respectively

v, vector rof displac;ements of the’ilh resi§ting element (equations >(2.2) and (2.3))

x; and v, X and Y distances from O to the principal axes of the i* resisting element when they

are oriented along the X and Y axes

xy and yy X and Y coordinates of the center of mass

xz and y X and Y coordinates of the center of rigidity

xg and yg | X and Y coordinates of the shear center

xr and yr X and Y coordinates of the center of twist

B, ~counterclockwise angle between the X axis and the major principal axis i)f the i*

resisting element

n counter-clockwise angle between the X axis and principal axis I of the system
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B.2 Multi-Story Buildings

a, transformation matrix of the i* resisting element defined by equations (3.5) to (3.7)

-2

transformation matrix defined by equation (3.21)

a’ transformation matrix defined by equation (4.19)
A matrix equal to K, - K K;'K,,
B matrix equal to K, - K, K;'K,

C, and C,; proportionality constants for the i resisting element defined by equation (4.1)

h

C,and C,, proportionality constants defined for the i™ resisting element defined by equations

(4.15) in case all the elemental principal planes are oriented along the X and Y axes,

C.,C,.C, CoandCy
proportionality constants defined by equations (4.3) for buildings with any orienta-
tions of elemental principal axes, and by equations (4.16) for buildings with orthogo-

nal orientations of the elemental principal planes
C/and Cjy proportionality constants defined by equations (4.29a,b)

C diagonal matrix of dimension N with j* diagonal entry equal to cosn;

d, and d,;,  perpendicular distances from reference points O; to the major and minor principal
planes of the i resisting element, same for all floors

static eccentricity of j* floor defined as the distance between its centers of mass and
rigidity

e;and e,; X; and Y, components of static eccentricity e;

e,ande, diagonal matrices of diagonal entries equal to ¢,; and e

yj» TEspectively

I unit matrix



JijJOj and JR/‘

JM,J() and JR
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major and minor principal axes of the j floor

polar moments of inertia of the j* floor about vertical axes passing through its center

of mass, reference point O;, and center of rigidity, respectively
diagonal matrices of diagonal entries equal to Jy;, Jo, and Jg;, respectively
lateral stiffness matrices of the i® resisting element along its major and minor princi-

pal planes

lateral stiffness matrices of the i™ resisting element along the X and Y directions,

which are also along its principal planes

characteristic matrix defined for special class buildings with any orientations of ele-

mental principal planes, given by equation (4.1)

characteristic matrices defined for a special of buildings with orthogonal orientations

of elemental principal planes, given by equations (4.15)
building stiffness matrix with respect to degrees of freedom u defined at refernce
points O;

building stiffness matrix with respect to degrees of freedom @ defined at the centers

of rigidity of the building

building stiffness matrix with respect to degrees of freedom u® defined at the centers

of rigidity of the building

matrix contribution of the i* resisting element K

K,and K, orK ,

submatrices of K, given by equation.s (3.8) and (3.9)

KxGi or Kf)x: 'Kysi or Keyi and KBi

submatrices of K; given by equations (3.8) and (3.9)
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K,.K, and K,, or K,

submatrices of K deﬁ{led by equations (3.10) and (3.11)
K, or K, K, or Kq and K,

submatrices of K defined by equations (3.10) and (3.11)
K,.K, K, orK, and K,

submatrices of K deﬁned by equations (3.15), (3.24) and (3.25)
K; K} and K;

submatrices of K' defined by equations (3.19), (4.29) and (4.22)

m, mass of the j* story

m diagonal matrix with diagonal entries equal to m,, givén by equation (3.14)
My, _ building mass matrix defined at story centers of mass

o, - reference point of the j** floor lying on vertical axis Z

N number of stories

a-11

load vector; B” = <P] P! T} >

P, and P,  equal to SP, and SP,, respectively

load vectors applied at the centers of rigidity, along X; and Y; reference directions,
respectively

[P.].[P,]. [P,]and [P)]

diagonal matrix forms of vectors P, ,PB,, P, and P, respectively

Q vector of forces applied at floors of the i resisting element, given by equations (3.2)

and (3.3)

Q. and Q,, vectors of static lateral forces applied at the floors of the i" resisting element along

its major and minor principal planes, respectively



Qo

=1

* '
Wy and Uy

uej

=t

u, and u,

. and @

=l

u; and uy;
Ug

(ue]
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vector of static torsional moments applied at the floors of the i resisting element

about the vertical axis of intersection of its principal planes

summation matrix given by equation (3.47)
diagonal matrix with diagonal entries equal to sinn;
diagonal matrix with diagonal entries equal to tann;

vector of torsional moments applied at the centers of rigidity of the building

lateral displacements at reference points O; of the i floor, along X; and Y/, reSpec-

tively

lateral displacements at the center of rigidity of the j* floor, along X; and Y, respec-

tively

lateral displacements at the centers of rigidity of the j* floor, along its principal axes,

I, and II, respectively
rotation of the j* floor about a vertical axis
degrees of freedom defined at O;; u” = <u? u! uf >

degrees of freedom defined at centers of rigidity; &’ = <@’ @

vectors of displacements u,; and u,;, respectively

vectors of displacements &,; and #@,;, respectively

vectors of displacements uj; and uyy;, respectively

vector of rotations uy;

diagonal matrix form of vector u,

displacements vector of the i resisting element, given by equations (3.2) and (3.3)
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V., and V,,  interstory shear forces of the i® resisting element along its major and minor principal

planes, respectively

V,and V,,  vectors of the X and Y components of interstory shear forces experienced by the i

resisting element

X; and Y, reference axes of the j* floor, same direction for all floors

xMj!ij’ij and ij
X;- coordinates of the center of mass, center of rigidity, shear center and center of
twist of the j* floor

Ymj» Yrj» ¥s; and yr;

Y,- coordinates of the center of mass, center of rigidity, shear center and center of

twist of the j floor
Xy Xg, Xg and xg

diagonal matrices of xy,;, xz;, x5; and xr;, respectively

Yum Yr:¥s and yr

diagonal matrices of y,;, yg;, ¥s; and yr;, respectively
{xg}), (x5} and [x7}

vector forms of diagonal matrices x, x5 and x7, respectively

(yr}.1ys} and {yr}

vector forms of diagonal matrices yg, ys and yr, respectively
0 Zero matrix

B; counterclockwise angle between X, and the major principal plane of the i resisting

element, same for all floors

n; counterclockwise angle between X; and I; of the j** floor
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vector of ones of dimension N
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