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Chapter 1

Introduction

This repont concerns the inelastic lateral buckhing and post-buckling behavior of short I-beams sub-
jected to cyclically reversing loads. The eccentrically braced frame, used in the earthguake resistant
design of building structures, provides an application in which lateral buckling of short I-beams under
¢yclic loading is “elevant. Qur main purpose is to establish some ber.chmaiks with which 1o assess the
consequences of lateral buckling of active link beams in ¢ccentrically braced frames. As such, our goal is
practical and our scope narrow. We have, however, endeavored to investigate the problem in a manner
independent of the eccentric bracing contexi, with the hope of illuminating the genera! issues of the
lateral buckling problem.

While the methods used to investigate the problem may seem extravagant, we did not wish to be
encumbered cor biased by questionable mechanics when interpreting the complex phenomena intherent 1o
the lateral buckling phenomena. The tools which we bring to bear on the problem of lateral buckling of
shont beams include nonlinear rods theories, cyclic metal plasticity, numerical analysis of svstems with
limit loads, and experimental methods. Each of these topics has its own history of development, each nac
its own interest and research challenges, and each has its own literature. In many of these areas we strive
10 make a new contribution to the state of knowledge. However, we have tried to maintain harmony and
balance in our approach at the risk of fathng 10 excite the speciahsts in any one of the topical subjects.
The main contribution of the present work is our synthesis of the topics and the results thar issue from the
synergy.

The following sections are presented 10 allow the uninitiated reader to examine the pure strands from
which the fabric is woven. The introduciory comments are largely historical, if not somewhat philosophi-
cal, and are offered as an aid in establishing a context for the study. We begin by motivating the resezarch
with a discussion of the eccentric bracing concept. Subsequently we comment on the origins and issues
related to lateral buckling of beams, nonlinear rod theories, and the modeling of ¢yclic metal plastiony.
Finally, we indicate the scope of the present work and give a brief outline of the content of the chapters
that jollow.

1.1 Eccentrically Braced Frames: A Motivasion for the Stn-*, of Lateral Buckling

The design of eanthquake resistant systems is philosophically different from traditiona! design prac-
tice. Excursions into the inelastic range are accepted for rare but extreme overloads. and hence must be
anticipated in the design process. Many of the members of the structure might repeatcdly reach or
exceed their limit capacity under cyclically reversing loads. Under these circumstances, the strengih,
stability, and toughness of the energy dissipating members is fundamental 10 the integrity of the system.
Roeder and Popov (1978) were the first to demonstrate that eccentrically braced sieel frames were well
suited to meet the difficult demands of an earthquake environment.

The economy of the eccentric bracing scheme is achieved by anticipating large local inelastic defor-
mations in the eccentric elements, facilitating energy dissipation, and thereby endowing the system with
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Fig. 1.1 Typical eccentrically braced frames

ductility and toughness Several possible configurations of eccentrically braced frames are shown in Fig.
1.1, The inelas:ic deformations are {orced to occur in short beam segments (sometimes calied acrive link
beams) which connect the axial force transmitting members (i.¢. braces or columns). Large amounts of
energy can be dissipated through inelastic shearing of these short beams. The shom length of the eccen-
tric elements is imponant both 10 promote 2 high elastic structural stiffness and to insure that shear
yielding occurs rather than flexural yielding since shear yielding is considerably more efficient. Integrity
of the structure is maintained by providing details which lend the structure duculity (Hjelmstad and
Popov, 1983). The need for lateral bracing of the eccentric elements was recognized in the experiments
of Manheim (1982) in which latera] buckling of the beams was first observed. All of the recent research
on eccentrically braced frames has been concerned with laterally braced systems and, for lack of better
informanon. recommendations for deiailing have conservatvely required complete lateral bracing at the
ends of the active link beam. No research has been done on laterally unbraced or panially braced sys-
tems.

The presemt research is concerned with the nonlinear response of beams, with and without latersl
support, subjected 0 cyclically reversing loads in the inelastic range. Such conditions occur in eccentri-
tally braced frames under earthquake excitation. Consequently, the topic is impornant to the under-
standing of eccentrically braced frames. While the report is not really about eccentrically braced frames,
they provide an imponant motivational example.

1.2 Latera} Buckling of Beams

Owing 1o their open thin-walled geometry, I-beams have a relatively low resistance to lateral buck-
ling. The tendency for beams to buckle torsionally when subjected to loads in the plane of their strong
axis has been known for over 2 hundred years. The need to safely and economically proportion struc-
tures has sustained a steady research effort aimed at better understanding the phenomena associatsd
with the lateral buckling of beams.

The technical literature contains hundreds of papers and books devoted to the subject of lateral
buckling of beams. An extensive summary of the literature is contained in the works of Bleich (1952),
Lee (1960), Chen and Awsuta (1977), and Galambos (1988). Much of the research reporied in the



literature on lateral buckling of beams is tangential to the developments reported here. Other research
results are subsumed by the generality of our appreach. We cannot hope to give an accurate account of
the many accomplishments of researchers studying lateral buckling of beams, but we do wish to provide a
historical context for the present study, if only a modest one. The following paragraphs contain a brief
account of some cf the pivotal developments related to the lateral buckling of beams.

The formal theoretical study of lateral-torsional buckling began in 1899 when L. Prandtl and A. G.
M. Michell independently published equations describing the elastic lateral buckling of a thin rectangular
strip. Over a decade later, §. P. Timoshenko formulated equations governing the elastic iateral-torsional
buckling of a beam having an I-type cross section, recognizing that a significant amount of torsiona!
resistance accrues from the restraint of cross-sectional warping in thin-walled open sections (loc. cit.
Bleich, 1952). The literature on lareral buckling is clearly skewed toward elastic beams. Following the
lead of the founders of the subject, latter-day researchers have focussed on determining the fundamental
linearized buckling eigenvalue as an estimate of the capacity 6t the systern.

In 1950, Neal published the first analysis of elastoplastic lateral buckling, treating beams of rectar gu-
lar cross section (Neal, 1950). Horne (1950) soon toliowed with the impartant extension to the 1-type
cross section. Since that time, extensive efforts have been expended toward the goal of estimating the
maximum load that an elastoplastic beam can sustain. Most of the analyical studies of inelastic systems
are based upon some variation of the tangent modulus approach, widely used for axially loaded columns,
to compute a bifurcation load from a linearized theoryt. The analytical models have been useful in
identifying the important geometric and material properties which affect the buckling response of beams.
They have also been used extensively to develop design formulas.

Most of the published results concern the determination of the linearized bifurcation load for sys-
tems with various configurations and properties. A great deal of attention has been placed upon formulat-
ing and solving certain simple cases such as a simple beam subjected 1o end moments about its minor axis
or a cantilever beam subjecred 10 a single point load at its end. Mast of the formulas used in design result
from the investigation of these simple systems. Some of the problem parameters that have been consid-
ered include the relative position of the load with respect to the beam, flexible boundary conditions,
monosymmetry of the cross section, warping restraint, residual stresses, initial imperfections and lateral
bracing.

Horne (1954) cbrained numerical solutions for beams with unequal end moments and developed an
approach whereby the solution to the problem of buckling under unequal end moments could be ob-
tained from that of a beam with equal end maoments simply by multiplying the latter by a dimensionless
function of the moment ratio. The practice of using such functions to account for variations in load form
is ubiquitous in modern design specifications. Zuk (1956) performed analyses of bracing farces at buck-
ling, based upon an assumption about the initial Ja1eral geometric imperfection of the beam. He found
that 2 brace strength of 2% of the compression flange capacity would generally be sufficient to resist
buckling. The so-calied “two percent rule™ was thus born. Winter (1960) determined the axial stiffness
of the brace required 1o prevent simultaneous buckling of the brace and beam. The general issue of
lateral bracing requirements remains largely unresolved today, particularly for inelastic buckling.
Galambos (1963) was the first 10 include the effects of residual stresses on the elastoplastic capacity of
+ Tobe more specific, the theories generally represent sirains up 1o second order in the generalized kinematic variables

and Ihe eanilibrium equations contain terms linear in the kinematic variables. These s¢cond order theories Jead 10 an
sigenvajue problem from which the critical load facior can be estimated.



beams, and established the importance of their consideration. Woolcock and Trahair (1974) considered
the post-buckling behavior of elastic beams and found that they can sustain loads in excess of the linear-
ized bifurcation Ioad. They correctly indicated that the additional capacity would seldom be realized due
to the onset of yielding. Analysis of the post-buckling response of inelastic systems has not been found in
the literature for either monotonic or cyclic loading corditions.

Considerable effort has been directed toward formulating theories and toward developing methods
of solution to the governing equations. Most of the theories that have evolved are complicated and do not
submut to classical solution methods. Various numerical methods have been proposed to deal with such
cases, including finite difference methods (Vinnakota, 1877), finite integral methods (Brown and Trah-
air, 196%), and finite element methods (Barsoum and Gallagher, 1970).

A relatively modest number of experimental investigations have been reported in the literature. The
first known tests were reparted by A. G. M. Michell in 1899 (Joc. cit. Bleich, 1952). The results of 123
tests performed in Japan, Great Britain, Australia, and the United States have been summarized and
analyzed by Hollinger and Mangelsdorf (1981), wherein the original references are cited.

Experimental results are often difficuli 1o interpret because important properties such as initial im-
perlections, end restraints, residual stresses, and material properties are difficult to measure and docu-
ment. Consequently, correlation between analysis and experiment has been relatively superficial. Since
mosi expenimental investigations have been oriented toward verifying the predictions of analytical moo-
els, and since most analytical models predict only the buckling load, reparting of experimental data in the
post buckling range is scarce. However, some data have been reponed on the post-buckling respoise of
monetonically loaded beams (Augusti, 1964; Kitipornchai and Trahair, 1975a.b; Fukumoto, ¢¢. al..
1980). No cyche load tests have been found in the literature.

1.3 Nonlinear Rod Theories

While the theories behind the invastigations of lateral buckling of beams and the modern theory of
rods have common roots, the theory of rods has developed almost independently of the research in
laieral buckling of beamns. Latera) buckling research seems to have focussed on the linearized bifurcation
problem in the quest for formulae to support the design of structures, almaost to the complete exclusion of
ather approaches. Rod theory, on the other hand, is generally viewed as a branch of mathematical
elasucity theory and has grown more from the inspiration of mathematical aesthetics than for practical
engineering design needs.

The foundations of nonlinear rod theories go back to Kirchhoff (circa 1859) who based his theory
on an essentially Kinematic argument (loc. cit. Love, 1944). The kinematic hypathesis, as employed by
Kirchhoff, has become firmly established as the fundamental building block of a reduced theory of
structural mechanics. The classical nonlinear theory of rods, called the Kirchhoff-Love rod model, is
presented by Love (1944). Extensions of the classical model to include finite extension and shearing are
due to Reissner (1973), Antman (1974), and Simo (1985a), in different contexts. These rod theories
are often called geomerricoily exact because the equations of kinematics and equilibrium hold for all
values of the generalized kinematic vanables.

One of the principa!l difficulties inherent in three dimensional rod theories is the parameterization of
the rotation field for numerica! computations. Simo and Vu-Quoc (1986) presented a vanational {ormu-



~:aton of the geometrically exact rod model discussed by Simo (1985a). They used quaternions Lo para-
meterize the rotation field. and develop a novel approach to the configuratior. update based upon the
exprnential map. One of the main contributions of Sitmo and Vu-Quoc is the recognition that the config-
uratica space of rotations is SO(3), rather than the usual linear space. and hence the notion of an
admissible variation must reflect the structure of SO{3). Because their model is cast in variational form, it
is quite suitable for numerical analysis by the finite element method.

For certain classes of beams, most notably those with thin-walled open cross sections, warping out of
the plane of the cross section represents an important mode of deformation, a mode precluded by the
Kirchhoff hypothesis that plane sections remain plane. While the inclusion of warping in thin-walled
beams goes back much further, Vlazov (1961) is largely responsible for formulating the thin-walled beam
theory based upon the sectorial areas kinematic hypothesis for torsion. Warping deformations due to
transverse shearing are impornant for beams which have a ratio of iength to typical cross sectional dimen-
sion on the order of unity. Warping deformations can also be imponant for anisotropic beams with a
small ratio of shear modulus to Young's modulus. Cowper (1966} incorporated the effects of warping
deformations in a planar beam through a systematic definition of the so-called shear coefficient. Simo
(1982) extended the idea of Cowper to a geometrically nonlinear beam theory. Hjelmstad and Popov
(1983) incorporated the effects of warping in problems involving inelastic bending and shearing. Simo
and Vu-Quoc (1989) extended their earlier mode! toinclude the effect of torsional warping deformations
in & geometrically exact rod model.

Most of the work done in the theory of rods, as well as in the lateral buckling of beams. has been
carried out in the context of stress resultgnrs. The concept ¢f the resultant force and resultant bending
moment acting at a cross section Is a natural consequence of the kinematic hypothesis underlying rod
thearies. Although the kinematic hypothesis is not necessary 1o define the stress resultants (they can be
defined as integrals of the stress field over the cross section), it motivates the definition in the following
sense. The generalized displacement quantities do not depend upon the cross sectional coordinates. This
decoupling allows explicit integration of the internal work over the cross section, leading to the definition
of conjugate stress and strain resultants. The stress and strain resultants can also be viewed as projections
of the stress and strain fields on a low order polynomial basis (Hjelmstad, 1987).

One of the difficulties of operating in stress resuliant space is the representation of inelastic constitu-
tive behavior (Hjelmstzd and Popov, 1983). It is difficult to construct a suitable yield surface, let alone
develop models of strain hardening, for a beam which can experience multiaxial states of stress (e.g.
combined shear and normal stresses). Pinsky and Taylor (1980) formulated a finite deformation elastic
planar beam theory in which the integration over the cross section is accomplished by numerical quadra-
ture rather than by explicit integration. The numerical integration over the cross section allows the theory
to be expressed in terms of siress and strain components rather than resultants. The kinematic hypothesis
provides » constraint on the deformation map and thereby preserves the essence of the rod theory.
Pinsky, Taylor, and Pister (1980) extended the finite deformation plane beam theory t¢ one with vis-
coplastic constitution. Simo, Hjelmstad, and Taylor (1984) used this approach again for planar beams in
which cross sectional warping due to transverse shear is imponant. Hjelmswad and Popov (1983) applied
the technique to short I-beams undergoing planar deformations (in the major plane of inertia) 1o over-
come the problems associsted with modeling moment-shear interacuon. The real advantage of working
with a stress compoenent {ormulation is that any local constitutive model can be used. Much more is



known about the behavior of materials at the local level than is known aboul them at the resultant leve!.
The price of representing the constitutive equations locally is computational t=dium.

1.4 Cyclic Metal Plasticity

In most research on the inelastic lateral buckling brhavior of beams, a highly idealized mode! of
constitutive behavior is employed. In particular. the stress state is assumed to be uniaxial, the material is
assumed elasioplastic with linear strain hardening. and unloading in not allowed. The main motivation
for using such a mode! is the prospect of making analytical progress in solving the linearized buckling
eigenvalue problem. The simple model is arguably valid for mild steel in the virgin state and has led to
many useful formulas for the design of steel beams. The simple constitutive models do not manifest the
complex mechanismus of strain hardening known 1o exist in metals and hence are not valid for generalized
loadings.

Phenomenological models of metal plasticity have been under development since the early work cf
R. von Mises. The origins of the idea of adding isotropic strain hardening (simple expansion of the yield
surface) 10 the eguations of elastoplasticity go back at least to Hill (1950) and Hodge (1955). While there
is little experimental evidence supporting the isotropic hardening model, it has proven useful in computa-
tions. The kinematic hardening rule proposed by Prager (1956)t represented the first anempt at model-
ing the Bauschinger elfect, important in metal plasticity, in the context of a conunuum model with a
multiaxial stress state. Prager’'s model was subsequently modified by Ziegler (1959) and others, but
retained the basic feature of a single loading surface translating in stress space.

It has long been known that the simple hardening models do not represent the phenomena inherent
to eyelic metal plasticity well because they do not allow for a gradual transition from the elastic state to the
plastic state. The first attempt to rectify the shortcomings of these models is attributed 10 Duwez (1935)
who proposed the mechanical sublayer model in which the material is idealized as a parallel arrangement
of friction elements with differemt ship coefficients. The sublayer concept was extended o multiaxial
siress states by fwan {1967) and independently by Mroz (1967). Both empioyed a multi-surface model,
endowing each surface with different properties as well as an evolutionary rule for its translation. The
mechanical sublayer mode! and its progeny are purely phenomenological maodels and bear little relation
to the underlying physics. However, these models imitate experimental data well, and have proven useful
in numerical simulations. Mcre recent developments in phenomenslogical models include the
wwo-surface models of Kreig (1975), Dafalias (1975), and Dafalias and Popov (1975, 1976). Rees
(1984, 1987) proposed the idea of using a multi-surface model in strain space to represent hardening.

Efforts have been made to base cyclic metal plasticity models on the dislocation structure and glide
plane slip mechanisms of the polycrystalline structure of the material (Ortiz and Popov, 1982). Such
models have been quite successful in representing the material behavior, but have not achieved the
popularity of the phenomenological models in computational plasticity.

Large-scale numerical computations with rate-independent plasticity models are generally carried

out with return mapping algorithms. At any stage of loading, a trial stress state is computed elastically. If
the siress siate lies outside the yield surface it is resurned to an admissible state on the yield surface. The

t As {s typical of techmical literature, Russian coniributions are ofien overliooked in the English literature. We sdmit
10 not being able 1o read Russian, however, it would appear that the first proposal of the iden of kinemavic hardening
is due to A. Ishlinskii in 1954 (fac. cir. Dafalits and Popov, 1975).



radial return algorithm, initially proposed by Wilkins (1964), is the most popular of the return mapping
algorithms. Simo and Taylor (1984, 1985) have recently introduced the concept of the congsisten: tan-
gent modull for plasticity computations carried out with a return mapping. The use of the consistent
tangent reflects the finite steps taken in the numerical integration of the constitutive equations and pre-
serves the asympiotic quadratic convergence rate of Newton's method. Modern numerical algorithms
have not yet been applied 10 cyclic metal plasticity models.

1.5 Scope of the Present Study

A significant portion of the work reported here is the development of an analytical model capable of
analyzing lateral buckling of short I-beams under cyclic loading. A geometrically nonlinear beam mode!
is formulated in terms of stress components. Transverse warping and worsional warping deformations are
included in the model 10 treat problems involving high shear and torsion. The kinematic constraint
imposed in this model is appropriate for a thin-walled I-section geometry. The novel kinematic model
includes a geometrically exact representation of the primary torsional warping as well as secondary warp-
ing due to torsion and transverse shear. A new cyclic plasticity model, incorporating many of the most
compelling features of existing phenomenological models, is developed and implemented with the consis-
tent return mapping algorithm developed by Simo and Taylor (1985). The new model represents cyclic
metal plasticity well and is suitable for large-scale computation.

The experimental research program comprised five tests of propped cantilever beams subjected to a
cyclically reversing point Joad acting near the fixed end. The experiments include both braced and un-
braced beams subjected to similar loading histories. The number of specimens tested in the present
program was small relative to the large number of parameters that are imponant to the complex respornse
of these cyclically loaded systems. Therefore, we examine the importance of constitutive parameters,
residual stresses, load placement, geometric imperfections, flexible boundary conditions, and lateral
bracing using the analytical model developed earlier. Extensive parameter studies are conducted both to
assess the performance of the analytical model and te gain further insight into the lateral buckling prob-
lem. Once validated, the analvniical model is used 1o extend, interpret, and generalize the resulis of the
experimenta! investigation through the parameter siudies. Most of the parameter studies are carried out
using the propped cantilever arrangement used in the experiments.

1.6 Overview of the Report

Chapter 2 begins with the development of the kinematic hypothesis used 1o describe the nonlinear
deformation of an I-beam. The model includes warping deformations due to transverse shear and tor-
sion. The equilibrium equations, cast in terms of stress components, are expressed in weak form and
reflect the kinematic hypothesis developed earlier. The resulting nonlinear equations are treated numeri-
cally with Newton's method using a finite element discretization of the spatial domain.

A cyclic plasticity model is developed in chapter 3. The basic rate equations are presented first, with
subseguent review of existing hardening rules. After past research on cyclic plasticity is reviewed, the new
cyclic plasticity model is proposed. Numerical aspects ralated 10 the treatment of the constitutive equa-
tions are then considered. These aspects include the development of a return mapping algorithm with



alporithmically consistent tangent moduli. Finally, several examples of the proposed cyclic plasticity
model are presented in support of the validity of the model.

In chapter 4, five experiments on lateral buckling of propped cantilever beams are described, giving
results and general observations on cyclic lateral buckling for these eiements. The parameters of the
analytical model 10 be used as the control ¢ase in the subsequent analytical studies are presented. A
cyclic analysis cf the control mode! is done to demonstrate the ability of the theoretical model 10 repro-
duce the importamt phenomena observed in the experiments.

Various parameter studies affecting the response of the test specimens are performed in chapters 5,
6. and 7. The parameters studied in chapter 5 include constitutive parameters, geometric imperfections
in load placement, geometric dimensions of the test piece, boundary conditions, and residual stresses.
The effect of flexibility of the fixed end is examined in chapter 6 and the influence of lateral bracing is
studied in chapter 7. The linearized buckling load, the inelastic (post-limit} monotonic respornse. and the
inelastic cyclic response are examined to assess the effects of the parameters for each study. The parame-
ter studies are summarized at the end of each chapter.

Chapter § gives a summary and the general conclusions of this study.
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Chapter 2

Finite Deformation I-Beam Model

A large majority of the past research on the inelastic lateral-torsional buckling of 1-beams has em-
ployed an elastic core type of approach with a second order appreximation to the equilibrium equations
(see, for example, Galambos, 1963; Rajasekaran, 1971; Chen and Atsuta, 1977). The elastic core ap-
proach is generally carried out entirely with stress and strain resultants. The inelastic constitutive equa-
tions for the stress resultants are obtained by using a kinematic hypothesis to directly integrate the local
tangent modulus of the uniaxjal stress—strain curve over the cross-section. Such a process is feasible only
if the stress state is uniaxial and the Joading monotonic since the kinematic hypothesis gives an unambigu-
ous state of stress for these conditions. The results of this type of analysis have been found to agree well
with experiments and have demonstrated the imponance of various effects, such as the effects of residual
stresses, on buckling. Uniortunately, this method is not readily applicable to short beams where the
elfects of shear are expected 10 be important.

Considerable progress has been made in recent years toward understanding the differential geometry
of finite beam deformations. Simo and Vu-Quoc (1986) have presented a numerical formulation for a
geometrically exact, elastic, stress resultant beam model reflecting the Beinoulli-Kirchhofl kinematic
assumption that plane sections remain plane. Simo and Vu-Quoc (1989) have also extanded their modet
to include the effect of torsional warping. The pertinent literature in this area has been cited in the above
named references, and will not be repeated here. Because of the restriction to elastic material, these
models have not been applied to study the lateral buckling of beams.

Previous efforts to understand the lateral buckling behavior of beams have concentrated almost
exclusively on applications invalving longer beams subjected ta monotonic loading. The particular prob-
lems associated with the eccentrically braced frame system have not yet been adequately treated. The
purpose of the present chapter is 10 develop an analytical model which is capable of accounting for the
elfects of shear and generalized lpading on the inelastic buckling of short beams subjected to cyclic
loading.

The deformation map has often been restricted 10 2 second order approximation of the deforma-
tions. One assumption that has ofien been used is that the transverse deflections of 2 beam are small
when compared to the lateral deflections. This assumption decouples the transverse equilibrium equation
for flexure from the lateral bending and twisting equations. Research has shown that the wansverse
deRections of shart beams in an eccentrically braced frame may be large (Hjelmstad and Popov. 1983).
Thus, the simplifying assumption is not appropriaie for the current application, particularly since our
main interest is in the post~buckling regime. The model developed here considers finite displacement
and rotation of the beam with superposed infinitesimal warping deformations.

It has been demonstrated by many researchers that the effects of residual stresses on the buckling of
beams is imponant. Usually, the residual stresses are taken 1o approximate the distribution that exists
after the rolling and cooling processes have been completed. The residual stress pattern is generally taken
to be a polynomial function which satisfies self equilibrium requiremenis (Kitipornchai and Trahair,
19755). However, a beam subjected 10 cyclic loading may or may not buckle on the virgin loading, and



inelastic action may alter the residual stress pattern. Hence, the initial distribution may not accurately
reflect the state of residual stress in a beam with loading history.

In maost of the research into the lateral buckling behavior of beams, a highly idealized constitutive
assumption is used for the material. Ofien, a perfect trilinear, uniaxial strain hardening stress-strain
curve 1ypical of virgin ductile steel is assumed. Under this assumption the stress—strain curve is trilinear
and only three possible values of tangent modulus can be realized (i.e. the initial elastic value, zero for
the plastic plateau, and 2 strain-hardening value}. The main motivation for using such an idealized
model is to make analytical progress in achieving a splution. For monoionic loadings the ideal behavior is
often justified. However, it is well known that under generalized loadings this ideal behavior degenerates
into nonlinear behavior exhibiting Bauschinger's effect and strain hardening. In our model we implement
a more general muluaxial cyclic plasticity model.

The advantage of the computatiorial point of view taken here is that the nonlinear constitutive equa-
tions are exactly satisfied at the local leve! within each global iteration of each time step (Simo.
Hjelmstad, and Taylor, 1984). Hence any general constitutive model can be accommodated. Even
within the scope of the restricted kinematics, inelastic lateral-torsional problems can accurately be
solved for difficull cross-sectional geometries like the I-beam. Also, the local treatmen: of constitutive
equations completely obviates the need for keeping track of the location of the shear cenier, which plays
a fundamental role in the lateral buckling response of stress resultant models.

The analytical mode! is constructed by imposing a kinematic constraint typical of a thin-walled beam
theory, but generalized to account for finite deformations. It alsc includes shearing deformations and
warping due to transverse shearing {Hjelmstad, 1987). A (locally) plar.c stress condition is assumed for
the web and flange elements, in the spirit of the thin-walled beam approximation. and the general inelas-
tic constitutive equations reflect this assumption. The equilibrium equations are cast in weak (virtual
work) form and treated numerically with the finite element method. Numerical treaiment of the problem
is accomplished through an iterative procedure of first linearizing the equilibrium equations about an
intermediate configuration and then solving the linear problem for the incremental motions. ihe up-
dated configuration determines the state of strain in a body, for which the corresponding state of stress
can be found by solving the nonlinear constitutive equations. The implications of the formulations dis-
cussed here are examined carefully in chapters 5, 6 and 7 through a set of numerical simulations which
represent a thorough parameter study of the experiments presented in chapter 4.

2.1 Kinematic Description

For an I-beam, the classical torsion warping function, based on secrorial areas (Vlazov, 1961), is
equivalent to a generalized Bermoulli-Kirchhoff (plane sections remain plane) assumption for ¢ach of the
elements in the cross-section. Such an assumption is inadeguate to treat problems involving high shear
since the constant distribution of shear stresses obtained from this hypothesis precludes the possibility of
a yield zone propagating from the interior of the cross-section. It also viclates the condition that shear
stresses vanish at the extreme boundaries.

In this section we discuss the geometry of deformation of the nonlinear beam model. Transverse and
torsional warping degrees of freedom are introduced to allow better representation of the varistion in
shear straing over the cross~section. The kinematic description is an extension of the formulation of Simo
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and Vu-Quoc (1986) 1o account for finite torsional warping deformations superposed with infinitesimal
transverse and torsional warping deformations due to transverse shearning. Such an extension is possible
because of the particular cross—sectional geometry of the 1-beam. In common with the geometric model
of Simo and Vu-Quog, finite extension and finite shearing of the beam are accommodated, even in the
presence of large rotations.

A configuration of the beam is described by a vector field giving the position of the current line of
centroids and a three-dimens.onal orthogonal moving frame which models the orientation of the cross-
section. The configurations of the beamn are completely defined by specifying the evolution of an orthogo-
nal matrix, the position vecto; of the line of centroids, and the intensity of warping.

We will focus our attentice iaere on a beam mode! with 1-type cross-section. The model will treat the
cross-section as a ;hin-walled apen section. In contrast with classical approaches to thin-walled beams,
the assumption of vanishing tontr ir shear is ot v here. Rather, the kinematic hypothesis is suitably
generalized, in the spirit of the ~-imoshenko beam, such that transverse shearing deformations can ac-
crue. Such a generalization is important in the present application to short beams because of the pre-
dominating influence of shear. The geomertric assumptions implicit in the present formulation are as
follows:

(i} The length of 1he cross-sectional contour remains approximately unchanged during defor-
mation. The changes in length are of second order and are caused by the linear approxima-
tion to the warping effects due to shearing along the cortour. The kinematics are formulated
such that the primary torsion warping deformation does not induce a change in contour
length.

(i1 The shear strain across the thickness of the cross sectional contour is canstrained (o o¢ 2efo.
This assumption is justifiable {f the thickness of the cross-seciion is small in comparison with
the cross-seciignal dimensions.

(/if) The shear strain along the contour of the section is represenied by the average values
through the plate thickness. S1. Venant torsion is introduced by adding a stress couple which
is propornional 1o the rate of twist of the beam. The constitutive eguation for the S1. Venam
torsion is not coupled with the in-plane stress components,

Notation.- The present development is concerned with an initially straight beam having length L and
cross-section £2 which has a piecewise smooth boundary #§2 . Coordinates in the reference configuration
Bm (0,1) xQC R occupied by the beam at time 1 = 0, are designated by {X;} with the standard
{material) reference basis {E,}. The spatial coordinate system {x, }, along with the associated basis (€, }.
is taken as collinear with {X;}. The deformation map is denoted by ¢ : B C R* — R’ and the deforma-
tion gradient by F = 8¢/0X . The points X € 5 and x € ¢(8) will be identified by their position vectors X
and x respactively. We adopt the convention that the line of centroids of the cross-sections is initially
oriented alonp the X, axis and the principal axes of inertia are oriented ilong the {X,, X,;} »xes. For
notational convenience, we will denote the axial coordinate as X, = §. The summation convention is in
force throughout, unless explicitly excepted. Latin indices take values in {1.2,3}, while Greek indices
take values in {2,3}.
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2.1.1 Kinematic hypothesis

The kinematic hypothesis represents a restriction on the deformation map, and is central to the
formulation of a beam theary (or any reduced engineering theory). In the presant case we wish 1o capture
finite deformation and rotation of the bearn ¢ross-section as well as warping. To develop the kinematics
which accomplish these goals. we will proceed with a sequential a~gument. The development will start
with a kinematic model proposed by Simo (1985). The made!l will tnen be sugmented to account for
finite warping due to torsion and infinitesimal warping due to transverse shearing. As demonstrated by
Simo (1985) finite motion and rigid rotation of the beam c¢ross-section are implicit in the following
expression for the deformation map

G(X) = 9e(5) + X t.(5) (2.1)
where
@o(S) = [S+uis), v(5), w(S (2.2}

represents the position vector of the centroid of the cross—section. The generalized displacements u(S).
v(5), and w(S) represent the components of the displacement of the line of centroids with respect 1o the
basis {E;}.

The orientation of the cross—section is represented by the onthonormal moving basis { t,(5)} attached
to the centroid of a typical cross—section. The vectors are ariented such that {,(S) remains normal 1o the
average rotated sec. on, t;(5) describes the major principal direction, and t,(S) describes the minor
principal direciion. as shown in Fig. 2.1. The orientation of the moving basis can be expressed in terms
of the fixed basis vectors throuph an orthogonal transformation A(S) = A€ ® E; such that

LS) =ASE = A (56 . (1.j=1,2.3) {2.3)

Consider now a warping deformation from the deformed position described by Eq. (2.1) in which the
1op flange roiates rigidiy about iis ¢enter by an amount y in the clockwise direction, while the bottom
flange rotates rigidly about its center the same amount in the anriclockwise direction. For later clarity of
description we refer 1o this mode of warping as primary torsional warping. A new orthogonal frame,
shown in Fig. 2.1, can now be defined for both the top flange and the bottomn flange as

Top fiange Bottam fiange

2 ~ t';
\ L 1 L4

Fig. 2.1 Flange rotation due to primary torsional warping
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6= 0Ny, =00, ij € {1,3) (2.4)

where the Q,(y) are the components of the orthogonal transformation rmatrix

Q) =[ c.osy siny ] ’ 2.5
-siny cosy

The presence of shear stresses along the contour of the cross section tends to cause an out-of-plane
deformation of the cross section known as warping. The exdstence of this warping deformation has been
recognized for a long time, but was accounted for only in elasticity approaches to beam problems. The
justification for neglecting warping due to transverse shear when constructing a beam theory generally
relies on the argument that shearing deformations are small compared with flexural deformations. Such
an assumption fails to be valid for short beams (where the depth is on the same order as the length) or for
beams with extremely low shear modulus. Cowper {1966). was among the {irst to try to systematically
treat the influence of warping in beam theory by developing a method for computing the so-called shear
coefficient which appears in Timoshenko's beam theory. Simo (1982) demonstrated that a kinemaric
assumption could be constructed which lead directly 1o Cowper’s consistent shear coefficient. With an
explicit expression for the kinematic hypothesis, Simo was able to develop a second order beam theory
which consistently accounted for the effect of warping due (¢ tr.nsverse shear. Hjelmstad (1987) devel-
oped a theory, motivated by this kinematic hypothesis, in which the warping was allowed 1o accrue as an
independent degree-of-freedom. In the sequel we introduce adc tional warping modes into the kine-
matic hypothesis to account for the warping caused by the nonuniform shear flow. These additional
warping modes are the extension to three dimensions of the ideas implicit in the aforementioned works.

We now superpose on the previous deformation field a distortional warping deformation which Is
infinitesima! and norma! 1o the primary warped cross—section, as shown in Fig. 2.2. Distortional warping
deformations will accrue from shearing of the elements caused by transverse resultant shears and torsion,
The intensity of warping will be expressed as an expansion ¢of warping basis functions and generalized
warping intensities (Hjelmstad, 1987). In the present case, the distortional warping can be expressed in
the form w.{Xz. X3)8{5), i=1,...,3. Note that the summation convention is in effect.

V‘.(Xz‘ X;)ﬂ,(S)

Fig. 2.2 Distortional warping (bottom flange)
The functions £,(5), £2(S), and £2(5) represent the intensity of warping characterized by the warping

basis functions ¥y (X3, X3), ¥ (X2, X3) and y3(X;. X)), respectively. The specific character of the warping
functions for the [-beam will be discussed later.
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The deformation map can now be written in terms of the defined objects as follows:

t} v
X)) = @u(5) + Xatg + Xyt + (X, X3)B(S)q 1, (2.6)
t t

where the curly bracket notation indicates that the top component applies to the top {lange, the middle
component applies to the web, and the bottorn component applies o the bottom flange. When a term
does not have a curly bracket it applies to 21l three regions. Using the expressions relating the warped
base vectors o the unwarped base vectors, we can rewrite the above expression in the form

B(X) = o + Xty + Xslh(0t +8(06] + BB leNt - A(N] @7

The funcuons g{y) and h(y) are defined as

cosy] -siny
g = 4 1 hy) =4 0 280
cesyj siny

For convenence in subsequent derivations we will recast the deformation map into the {ollowing
compact form:

9(X) = ¢.(5) + a(X)t(5) 2.9)

where g, = X34() + v 88y, a; = X;, and ay = X320 - Sh(¥) can be viewed as the components of
stretch of the base vectors.

Remark.— The above kinematic assumption is paricular 1o the I-beam cross—-sectional geometry
and reflects finite torsional warping. The distonional warping terms are needed to obtain a reasonable
distribution of shearing strains within the cross-section. This is quite important for a lormulation in which
local constitutive equations are used. The kinematics used here can be contrasted with those of Simo and
Vu-Quoc {1989). There the warping is accommodated in a finite deformation context and is geometri-
cally exact. However, the warping function is taken to be the one corresponding with the infinitesimal
case. Since theirs is a stress resultant theory, the effect of making this assumptions does not show up in
the geometry of beam deformation because the stress resultants, particularly the bishear, can be suitably
defined 50 that the stress power of the stress resultants is identical to that of the 3-D continuum. How-
ever, the difference is implicit in the constitutive equations. which are also motivated by the infinitesimal
theory.

2.1.2 Description of finite rotations

The orthogonal transfarmation A(S) can be described in several ways. Among these are the Euler
angles (with one of twelve conventions) and the Cayley-Klein parameters (or quaternions). Simo (1985)
presents a novel parameterization in terms of quaternions with an updating procedure based on the
exponential map to trace the evolution of the moving frame. Here we adopt the Euler angle represenia-
tion. The well known singularity present in this parameterization is not #xpected o influence the prob-
lems of interest here.
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The orthogonal transformation A(S) can be derived as the product of the three {planar) rotation
matrices A;(6,(5)), Aq(0:(S)), and A;(63(S)), where 8, 62 and 0, are the three Euler angles which we
will use to parameterize the finite rotation. Following the xyz convention, the rotation matrix takes the
form

A(S) = A (B (5 A (B:(S))A(6:(5))

= 0 C =51 0 1 0.8 € 0

M1 0 077G 0 8)C -5 0
l il
los, ¢J-50clo o 1]

(2.10)

[ CCy  $15:6- €155 C1S:163+ 5.5y |
= | C;S3 515153'} C]C: C]S;S)'SIC.a
-5 5,C; GG,

| S

where the first rotation is the angle 8; about the iniual X, axiz, the second is the angle #; about an
intermediate X; axis, and the third is the anple 8, about the final X, axis. The notation: C, = cos8,(S),
$,=5in6,(5), i=1,2,3 has been introduced 10 economize the notation.

2.1.3 Secondary warping due (o torsion and transverse shearing

The warping of the cross-section due to torsion is composed of wtwo parts: (/) a finite but plane
rotation of the flanges in opposite directions (primary warping), as shown in Fig. 2.1, and (2) a super-
posed infinitesimal distortional warping displacement due 10 shearing of the flanges (secondary warping),
as shoan in Fig. 2.2, The first 1ype of warping is characterized by the rotation angle ¥, and is the finite
deformation counterpart of the classical torsion warping function based on sectorial areas (Viazov,
1961). The secondary warping is characterized by the warping intensities §, which multiply the warping
functions ¥, . This mode of deformation is usuzlly ignored in formulating beam theories. However, this
warping component is imporiant because it allows for a shear strain gradient. enabling the shear strain.
and thereby shear stress, to vanish at the extreme fibers of the cross section. This mechanism also allows
for a more realistic representation of the propagation of yielding through the cross-section. Again, this
mode of warping is important mainly 10 short beams.

The secondary warping function associated with torsion is given by

r in w
%,_ici‘ , 0 in web @11
120EL, | -2—sgn(X;)(2+v)|20X§-3b’X;] in flange

The secondary warping functions due to transverse shearing can be found a5 in Hjelmstad and Popov
{1983) and have the explicit expressions:

KGA | 0 in web )
W: = b 2 . ( 12)
12081 | (24 v)[20X] - 3b7X,] in flange
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K GA | (2+ v)[20X3 - 3h%X3Cy) in web
¥ = A (2.13)
120EDy | Z5gn(X)[60(2 + )X} - 120(1 4 ¥)b| 3| + H3Cy) in flange
where, the constants, Cp and C,, ate given by
- z - : 2 N
CD=2+10m(1 2nt) + v(1 4+ Sm(l - 5n°)) c =4(1+15mn)+v(2-c-75mn; (2.14)

(1+3m)(2+¥) o (1+3m)

and G is the shear modulus, E is Young's modulus, and v is Poisson's ratio. The function sgn(x) takes
values sgn{x)=1 if x>0, sgn(x)=-1 if x<0, and sgn(x)}=0 if x=0. The geometric properties of the I-beam
have been expressed in terms of the dimensionless parameters m, the ratio of gross flange area 10 web
area, and n, the ratic of flange width to seciion depth:

1
R
"
>l

(2.15)

where k is the distance between the centroids of the flar |, r is the web thickness, & is the flange width,
and f; is the flanpge thickness, as shown in Fig. 2.3.

+ X
i

X; h

1
|
:

?‘_—"b ‘

Fig. 2.3 Typical I-beam cross-section

The warping functions ¥, and y; are quite similar, differing only in sense (fur transverse shearing
the warping is symmetric with respect to the origin while for torsion it is antisymmetric) and in scaling (the
torsion warping function has an additianal Zactor of A/2). This similarity is a consequence of the symme-
try of the saction which leads to a simple mode for resistine primary warping torsion wherein the two
flanges are sheared, as independent beams, in opposite directions.

For reference, we note that the standard cross-sectional properties: arez, A , minor moment of
inertia, f, (about the X; axis), and major moment of inertia, f, (abou the X axis), can be expressed in
terms of m, n, &, and 1 as

kY h*
A=hi{l+m), Lhzs—mr, Iy=—(1+3m) (2.16)
12 12
The two shear caoefficients, x; and xy, were given by Cowper (1966) as follows:
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101 +v)

17
1Z+ 11y @17

Ly R

. 10{1 ¢ ¥){1 + 3m)?
(§2+72m+ 150m? + 90m?) + ¥(11 + 66m + 135m? 4+ 90m>) + 30n2(m + m?) + Svn?(Bm « 9m?)

k3 {2.18)
Note that for zero Poisson’s ratio «; reduces to the familiar value of 5/6 (each flange is a rectangylar
section). The coefficient xy has the approximate value of 4, /A, where A,, is the web area and A is the
total area.

2.1.4 The constrained deformation gradient

The deformation gradient, reflecting the kinematic hypothesis, can be computed from the relation-
ship F = ¢, ® E,. For the specific deformation map given by Eq. (2.9) the deformation gradient takes
the form

FX) = [9,'(5) +a. X)L (5)] ®E, + a,,(X)t(5) ®E, (2.19)
where the derivative of the position vector of the line of centroids is given by,

B0’ () = [1+u'(5), v(5). (5] (2.20)
and the derivative of the moving basis is given by

. - dA déb,
£'(5) = A'E, = A,6'E = ——E, (2.2
5 Oy 26, 45
In the above expressions, a prime denotes differentiation with respect 1o S, ie. (*)' =d(-)/d5, and
subscripts following a comma denote differentiation with respect the coordinate indicated, i.e.
()= 8(*) /23X, . The notation A,, ind’ cates the partial derivative with respect to the argument. 9A/38, .
The gradient of a(X) is a matrix with components @,, and has the explicit form:

Xoh' () +w[Bs(n) + 88 ()] v.2Ba8(y) A +viabey) O
0 ) 0 f (222)

"
L Xog' () =lB'h() « BR' D] = viBA() §(7) = visBh(y) J

Ya =

The dernivaiives of the functions g(y¥) and h{y) with respect to § are given by the expressions

siny -cosy
F =-4 0 2y, Ay = 0 (2.23)
siny cosy

1.1.5 Residual stresses

The distributions of residual stress adopted here are typical of steel I-sections fabricated by the hot
rolling process. A polynomial expression is assumed as an analytical approximation of the residual stress
pattern. Since residual stresses in a section are self-equilibrated, they must satisfy the following condi-
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tions of statics: no resulting axial forces, and no resulting bending moment about two principal axes
(Kitipornchai and Trahair, 1975b). The residual stress patiern considered nere is shown in Fig. 2.4,

Fig. 2.4 Residual stress distribution for typical rolled seciion
wherein the flange tips and the central portion of the web are presumed in compression. Thie expressions
for the residual siresses in the web and in the flange. 0. and o, respectively, are given by:
ar=alcié+ o8+ Dop On = alcy* +ca®® - Voo (2129

where a 1s the amplitude of the residual stress and g is the vield stress. The variations are expressed in
terms of the normalized coordinates £ = X, /b, n= X, /h, and the constants are given by the following
relations

88 - 28mn? + 80m 224 5mn?+ 36m
1 F T €2 - (2.2%)
{1.5n% + 2)m (1 Sn+2)m
_ H 2 _ H 2
- 168 88m2n +60n .= 58 22m:1 +2n (2.26)
(1.5 +2) (1.5n*+2)

2.2 Equilibrium Equations, Weak Form

The local form for the static balance of inear momentum of a non-polar continuum is expressed by
the equation (see, for example, Marsden and Hughes, 1983):

DIVP +0,B 20 XEB {2.27)

where P is the {irst Piola-Kirchholf stress tensor, gy is the density in the reference configuration, B is the
body force, and DJ/V is the divergence operator with respect to the reference coordinates {X,}, i.e. the
divergence of a second order tensor is has components [DJV( )]s = ("}, in cartesian coordinates. Bal-
ance of angular momentum further implies the symmetry PF = FP'.
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In accordance with standard practice, we denote by dB, tha: portion of the boundary where the
deformation map is prescribed and by 48, that portion of the boundary where the tractions f are pre-
scribed. The boundary value problem is well posed if 38, U0B, =08 and dB,N0B, =P .

The local torm of the equilibrium Eq. (2.27) can be expressed as a weak statement of equilibrium in
the following way {Marsden and Hughes, 1983)

G(¢.q)le:(DF'r))dV—IQgB'qu- Ji’-udS:O (2.28)
] [} a8,

for any Kinematically admissible variation n which satisfies the displacement boundary conditions. The
variation of the deformauon gradient has been dencied by DF - i and is computed with the formula for
the direcuonal derivative as

DF(X.u(S)) " n = %[F(X.u'tﬂ])]“n (2.29)

where u(8) = (u, v. w, 6,, 81, 05, ¥, B1. B2, B3} is the vector of generalized isplacements and 5 (5) is the
variation in u{S)

Since the kinematic hypothesis effectively obliterates the contribution of St. Venant torsion, the
effect must be reintroduced to capture this effect. Formally, we accomplish this by augmenting the weak
form as follows

Gg.m) = Glg.m) + Jr,‘ (CTo - ) aVv (2.30)
B

where Ty is the stress couple associated with St. Venant torsion, [, is the generalized strain conjugate to
Tn, and DIy, * # is the variation in strain. We note that the above construction is more an expedient than
an axiomatic necessitv. A more refined kinematic hypothesis can be written which contains a guadratic
variation of displacement through the thickness of the contour which leads directly 10 a weak form
containing the contribution due to §t. Venant torsion (see, for example, Gjelsvik, 1981).

The appropriate strain measure for the St. Venant torsion is one which measures the rate of twist of
the beam relative to the moving frame. To obtain an expression for the rate of twist consider the general
expression for the curvatures of a finitely deformed beam (Simo, 1985):

0 -xf8) xA(S)
QS) = i/\(s) A(S) = | ®XS) 0 -xy(S) (2.31)
as ~al8) ()0

where X1(5) is the torsional curvature and x2(S) and x3(S) are the flexural curvawures of the beam. The
St. Venant torsional strain will be taken simply as I'y, = x,(5), which clearly does not depend upon the
eross sectional coordinates. From the expression for the finite rotation matrix, Eq. (2.10). we can com-
pute the torsional curvature to be
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ki (S) = (cos0,costy)0 - (sin6y)6;’ (2.32)

For configurations near the undeformed state the torsional curvarure reduces to the expression
x,{5) = 6," in accord with the linear theory. In the numerical implementation of the theory we will as-
sume that the linear expression is adequate. For the problems studied here such an assumption is only a
modest compromise, and is in line with the assumption made on the constmtive equations.
Since the St. Venant torsional strain measure does not depend upon the cross sectional cogrdinates,
the second term in Eq. (2.30) can be explicitly integrated 1o give
L
Gulg.m) = Jr, (Dr, ' n) dV = Jm,, {Dx; - m) dS (2.33)
] 0

where m,,(8) is the St. Venari torque resultant acting a- a cross sectior:. We will, however, assume that
the stress couple is distributed uniformly along the contour of the section, in accord with the elementary
theory, and integrate this term numerically over the cross seciion along with all of the other terms. In
addition, we assume that the stress couple evolves according to an uncoupled constitutive equation and
always remains in the elastic state. As a consequence, the exp’cit expression for the stress couple is
1, = GJ x;(5), where J° is the distribution of torsion constant alang the contour in the ¢ross-section and
is expressed as 1,/3 in the flarge and ¢*/3 in the web.

2.2.1 Linearized governing equatians

The linearization of the weak form of equilibrium equation (2.28) ataut an intermediate configura-
tion, g : B — R?, leads to to the exrression (Marsden and Hughes, 1983)

a5

a—E_F]"‘: (DF - Ag); dV + Glp.m) (2.34)

LIG); = I(DF ;i [SR1+F
B
where 1 derotes a unit matrix with components 8, . The subscript é designates that the argument is
evaluated at the configuration ¢ : 5 — R? and A¢ : B — R? is the incremental motion. The integrai
termin Eq. {2.34) gives rise to the tangent stiffness of the system, the first term 2ing the geometric pant
and the last term being the material part. The constant term represents the so called out-of-balance
force at the configuration and has the expression

Ggom) = [(p :DF « y); dV = Ji-», ds (2.35)
B a3,
The linearization of the St. Venant part of the weak form is carried out similarly

L

LIG,; = [Dsy m; 1
0

dri,
dl1

Jo (Dx, Ag); d5 + Galé.m) (2.36)

where the St. Venant out-of-balance is given directly by Eq. (2.33). The material tangent {o; the St
Venant pzrt is dma/ds, = GJ° as mentioned previously. Clearly, G g, n) vanishes if @ is an equilibrium
configuration.
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We note that the deformation gradient F is completely defined in Eq. (2.19), and the directional
derivative, DF * A¢ in Eq. (2.34), is as follows:

DF &g = ¢y’ ® E, + (A'Ag, + aAA)E, @ Ey + (Ada,, +a AAJE, B E, (2.37)

where Ago' = [Au’, Av', Aw’])’. The increment in the orthogonal transformation and its first derivative
¢an be computed as AA = A, Af,, and AA" = A, 60,/ A8; + A, A6, The increment in the coefficients a
(with components a, ) take the form:

. -t
Ao = ygIAB+ (X' () +¥B&' A7 . O Wh()BR+ (Xog') ~yBh M)y | (2.38)
and their derivatives Va (with components a,,) are given by

-
[ X80 v 1 (BAg+ BAG) + (AR + 488" ¥,1(BAe+ A8  Ah+ vy s(BAs+ 848, ‘
A(Ta) = I o o (2.39)

L XaAg - {(BIAN + BAN) + (WA + AABDY =W 2(B8A+ hAB) Az~ yia(BiAh ¢ hAB)

where the incrememt of functions g(y} and h(y} are defined as follows:

e
[N )
o

~z

Agly) = -B'(¥)8y Ag(y) = 2' (V) Ay

and their first derivatives are piven by

zosy {sin y siny ~cosy
By) = -4 0 bydy-4 0 1Ay, AN =4 0 MAy-4 0 fAy (2.41)
cosy [sin bl siny cosy

The directional derivative DF * g, in Eq. (2.34). is the same as DF + Ag except for the difference in
directions ¢ and #.

2.2.2 Finite element discretization

Equation (2.34) has a form that is suitable for treatmem by the finite element method. To carry out
the solution, a knowledge of the current state of stress S; and the materiz! tangent {98/0E); is required.
These tangent moduli can be obtained from the constitutive equstions, which are discussed in the follow-
ing chapier. We will obtain the sclution from the equilibrium equations developed above by utilizing the
finite element method. The beam is discretized into elements having 10 degrees of freedom st each of
the 3 nodes of the element, one for each of the gencralized variabies.

Following standard procedures the generalized displacements u(S)={u, v, w, 8,. 8, 85, B1. F2. B,
9}’ are interpclated from the nodal displacements U={U, V, W, ©,, 8;. ©,, B,. B;, B;, T, as
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N
u(s) = > h(SHU, (2.42)

151

where k,(5) are the interpolation functions, U, is the vector of nodal displacements at nade /, and N is the
number of nodes associated with each element, Inasmuci: as the admissible variations lie in the space
H'(0,1), C° continuity of interpolation is sufficient (sce, for example, Strang and Fix, 1973). One
should be aware, however, that the character of the soluticn for the warping intensities 8,, 82, fs, and y is
one of exponential decay, leading to boundary layer phenomena (i.e. rapid variations of the field vari-
ables over small distances) at points of restraint and point loadings. The ramifications of using €% shape
functions for the warping intensities was considered by Hjelmstad (1987).

After introducing the interpolation of the nodal parameters, the expressions for the directional de-
rivatives at each node can be pu( :ntv matrix form as a linear transformation of the increments (or
variaucns) as

DF - Ag = B(X.u(5))AU, DF "n=B{X. u(5)y (2.43)

where, the rows of B(X,u(S)) are placed in one~to-one correspondence with the components of
DF - A¢ . The actual expression for the maurix B is extremely complicated, and hence will not be pre:
sented here. It is, however, straightforward to compute from the definitions given previoush:,

Using the above results we are lead to the siandard discrete problem for the incremental nodal
displacements AL.

KAl =T, {2.44)

where the taricent stiffness martrix is given by sum over ali of the elements ¢ as
Le
K, = Z”B' (S® 1+ FD¥F], B dA dS + K, (2.45)

* 0A

where K, is the stifiness contribution from the §t. Venant part of the weak form. The out-of-balance
force has the expression

Le
f:=Fr-ZJ‘JB’:P;dAdS-f,V (2.46)
fon
in which F; is the vector of currently applied nodal forces, dA is the element of integration over the
cross-section, L, is the length of element ¢, and the arguments of the summation are understood to be
those quantities appropriate to that element. Again, f, is the residual force arising from the St. Venant
term. The summation over the elements is taken 10 infer standard assembly procedures.

Since the siress §; and the compliance [D*]; generally vary nonlinearly over the cross-section due
to inelasticity, the X, ~ X dependence must be integrated over the cross-section A numerically. For the
I-beam, the cross-sectional domain is subdivided into five regions: four half flanges and one web. Within
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each region, Gaussian quadrature is employed and the 1otal integral is taken (0 be the sum of the integrals
over the five subrepions. Reduced integration is used in the § direction to prevent shear locking effects
(Hughes, 1987). The solution procedure is employed using the algorithm outlined in Table 2.1.

Table 2.1 Global solution algorithm

Initialize solution at [ = fg
For each load step do
| While |If,| > 10!
i Form K, . f, as follows:
‘ ’ For each element ¢ ;
| ! Compute deformation gradient F strains E
i ; Compurte stresses by return mapping (Table 3.1)
oo Compute element tengent stiffness matrix and residual force

Assemble element matrices into global martrices
. Solve K, AU =T,

; | Update U« U+AU

Increment load step ¢ «~ (+ A&
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Chapter 3

A New Model for Cyclic Metal Plasticity

It is generally agreed that the inelastic behavior of mild steel can be approxumately modeled with the
classical plasticity theory with an associated flow rule. Finite ¢lement analyses of complex inelastic sys-
tems are often done with extremely simple constitutive models because they sitnplify the development of
algerithms and they expedite computations. In a monotonic loading environment, material strain hard-
ening effects are generally modeled with a simple isotropic hardening rule (expansinn of the yield surface
in siress space). In a cyclic loading and unloading environment, the anisotropic behavior of the material
(e.g. Bauschinger's effect) 1s often modeled with a simple kinematic hardening rule (rigid translation of
the yield surface in stress space).

1t has been known for some time that these simple models do not represent real plastic behavior well,
especially in the transient softening stage from the initial elastic unloading stage to the permanent sofien-
ing stage for reversed loading. The first attempt to overcome the inadequacies of the simple hardening
models poes back to Duwez (1935) who proposed the mechanical sublayer mode! wherein the (one
dimensional) material is idealized as a series of friction elements with different friction coefficients and
shp values. The basic idea of Duwez was subsequently extended by Bessieling (1953) and Iwan (1967).
Mroz (1967) generalized the sublayer model 1o multiaxial states of stress by introduciag @ multi-surface
mode! with fields of work-hardening meduli. Mroz's multi-surface model was simy ified to 3 two surface
theory by Krizg (1975} and independently by Dafalias (1975) and Dafalias and Popov (1975, 1976).
The main idea behind the two surface modeis is that the elastoplastic modulus is dtermined from the
distance of the stress point {rom the yield and bounding su-’aces. A more refined appr-oach 10 the bound-
ing surface model was proposed by Petersson and Popov (1877} and Popov and Petersson (1978},
wherein auxiliary surfaces between the yield and bound surfaces are used 10 imerpolate a more realistic
variauion of the hardening moduli. Rees {1981, 1882, 1983) extended the idea ot a ki.zematic hardening
rule by expressing it in terms of a field of uniform hardening potentials. More recently, Rees (1984,
1987) has proposed the idea of using a2 multi-surface, equi-strain potential for the hardening.

While the more recent cyclic plasticity models represent rez! material behavior quite well, they are
not well suited for large-scale computation. There is need for a computaucnally efficient mode! which
possesses the advantages of these existing models. Such a model is developed in this chapter. The solu-
tion of the nonlinear constitutive equations will employ the consistent return mapping algorithm of Simo
and Taylor (1985) in conjunction with a new kinematic hardening law which is generated from an iso-
tropic hardeniny field at each stage of the cyclic loading. A monotonic tension or torsion test is all that is
required to set the parameters of the model.

The chapter starts by laying the general foundation for the plasticity model. The details of some of
the models mentioned above are reviewed and useful concepts are collected. The new ¢yclic plasticity
model is then described along with the details oi its implementation. Finally, the qualitative performance
of the model is assessed by using it to simulate response for non-proportional loading histories which
have been examined experimentally and are published in the literature.
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3.1 Basic Framework for the Constitutive Equations

The equations of classical plasticity provide the basic framework for the development of the ¢yclic
plasticity mode! used here. Assuming that the strains wili generally be small, but that the motions will be
finite, we cast the constitutive equations in terms of the second Piola-Kirchhoff stress tensor and its
conjugate Lagrangian strain tensor. We adopt the fundamental hypothesis that the strains are made up of
an elastic pant and an inelastic pant as {ollows:

E=-iFF-1)=-F+F ERY

where F is the deformation gradient. The stresses, §, are given in terms of the elastic part of the strain
and the initial elastic moduli, D, as

$ = DE' = D(E-F), (3.2)

The evolution of the inelastic strains can be expressed in terms of a plastic potentiai, for which purpose
we adopt one of the von Mises variety:

$U.7) = 38§ - ) (3.3)

where § = 5-a’is the effective stress, that 1s, the dif:-rence bciween the stress deviator s = § —%rr(S)l
and the deviator a’ of the backstress a . A vield surface can be described by the condition ¢ = 0. Points
inside the yield surface, ¢ <0, are elastic and points outside the yield surface are inadmissihle The
radius of the yield surface is given by the function & = x (&), which defines an isotropic hardening law in

rerms of the equivalent plasiic strain:
i

= (e By (3.9
i}

where EF is the plastic strain rate. With these definitions, the plastic strain can be expressed as an equa-
sion of evolution as

e o 128 35
) 24 las (3.5)

where 4 is a plastic Lagrange multiplier which can be determined from the consistency condition. The
elastoplastic loading/unloading {consistency) conditions can be expressed in standard Kuhn-Tucker
form as

¢ <0, Lzo, ¢ = 0. (3.6)

Taking the rate form of Eq. (3.2), substituting the evolution equation for plastic strains, Eq. {3.5),
and enforcing the consistency condition leads to the following rate equations for the evolution of stress

$ = Q(S, F, o) G.7
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where } is the fourth order elastoplastic tangent wensor, depending on the current state of stress, the
plastic strain, and the backstress. The evolution equation for the backstress will be defined differently
from the classical plasticity for the present cyclic plasticity mode! and will be described in sertion 3 4.
The integration of the rate consuwtive equations plays a central role in the numerical analysis of the
bearn model and will be discussed later.

3.2 Modeliag of Isotropic Hardening

A model of nonlinear hardening law with 2 linear pant and an exponential (saturation} pan is
adopted 10 describe the isotropic hardening in Eq. {3.3) as foliows (Simo and Taylor, 19835).

(B = ko + KT + (ko =xo)[1-2T) m &y + A(P) (3.8)

where x; 15 the inptial radius of the yield surface, x,is the ultimate radius of the yield surface, X is the rate
of linear hardening, and ¥ is the initial rate of exponential hardening. The parameter ¥ is a shifted
equivalent plastic strain, allowing the modeling of a yield plateau, given by the expression

g=[ 0 0 =7, (3.9)

& - Tin s &

where &, is the length of the plastic plateau. The nonlinear isotropic hardening law is shown schematical-

Iy for K=0 {no lincar haidewing) in Fig. 3.1

«(#)
]

Ko

L&l

inital yieldt plateau
+ — 7

Fig. 3.1 Nonlinear isotropic strain hardening model

Popov and Petersson (1978) performed uniaxal experiments and orsion iests, and compared both
results by plotting the effective stress and effective strain for bath cases on the same graph. The agree-
ment between the two curves was satisfactory in both the monotonic and cyclic cases. The use of effective
stress and strain allows the hypothesis of a universa) siress—strain curve applicable to any state of stress.
One can use the stress-strain curve obtained from a monotonic tensile test on the virgin marterial to
construct the universal curve. A field of loading surfaces can be constructed from the siress-plastic strain
curve, taking the radii of the Joading surfaces from the crdinates of the ur.iversal curve as shown in Fig.
3.2. Each surface in the stress space is assigned a particular value of equivalent plastic strain, as deter-
mined from the universal curve. The radii of the [oading surfaces are computed as
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Fig. 3.2 Multi-strain potential representation for virgin state
fy = k(). 3.10)

Figure 3.3 illustrates the concept of equivalence between corresponding stress-plastic strain paths
and a uniaxial x vs. & curve in a initial multi-strain potential field under a radial stress path OP in o vs.
Vir space. 11 is convenient to obtain the uniaxial +* - & curve directly fram a monotonic tension experi-
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Fig. 3.3 Initial multi-strain potentinl field under = radial stress path OF in
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ment because the norma! stress and the extensional strain are identical to the effective stress and strain
for the uniaxial case.

The next step is to define a rule to describe the inelastic state for the cyclic loading condition. In the
monotonic loading condition, nonlinear isotropic hardening rules can be employed, while a more intri-
cate hardening rule is nveded 1o represent cyclic response.

3.3 Review of Kinematic Hardening Models for Cyclic Plasticity

Due to the complexity of nonlintar material behavior, niary idealized models have been proposed.
A combined isotropic~kinematic plasticity model. illustrated in Fig. 3.4, has often been adopted for
applications in computational plasticity. The discrepancy between this simple model and experiments,
however, is particularly pronounced on load reversal because real materials exhibit a phenomenon
known as Bauschinger's effect. The simple kinematic hardening model also does not provide a smooth
transition from the elastic to the fully plastic state, a phenomenon which is observed experimentally for
most materials.

Many efforts have been made 10 improve the representation of cychc material behavior. An early
attempt may be traced to the sublayer model of Duwez (1935), with extensions by Bessieling (1953} and
Iwan (1967). In this ;rodel, the material behavior is represented by some layers in parallel, each layer
having a different yield sirength. The model can replicate the transition softening stage between the
elastic stage and virgin strain hardening stage for reversed loading much better than a kinematic harden-
ing model can. This model has been generalized for multiaxial stress states by Mroz (1967), who intro-
duced the concept of a field of work-hardening moduli which was defined by the configurations of
surfaces with constant plastic tangent moduli. The surfaces in Mroz's model correspond to the sublayers
in the uniaxial case. During plastic flow, the yield surface translates, contacts, and pushes the adjacent
loading surfaces. The plastic modulus at any instant during plastic flow is the value associated with the
outermost moving surface. On load reversal, the surfaces sequentially disengage, as shown in Fig. 3.5.

Loading surtace 02

o
p B B
A 44
T’ |
. op
Oy 204 \
_Y ¥
o 11 € o o
C ¥ o,
G
D ] surface
H
,‘/J E
F Knematic hardening

Fig. 3.4 ldealization of material behavior on load reversal
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For nonproporntional loading, the surfaces move by some prescriped rule such that the individual surfaces
do not intersect but continuously contact and push each other. Although this model provides betier
representation of cyclic behavior than does the classical kinematic hardening model, many surfaces must
be used to obtain the smooth behavior observed experimentally. This model has another difficulty asso-
ciated with a proper choice for the parameters involved, especially for multiaxial response. These short-
comings notwithstanding, this model is the best known of the multi-surface iepresentations of inelastic
detormation.

Fig. 3.5 Approximation of the stress-strain curve and the corresponding fields of
work-hardening moduli for uniaxial cyclic lpading (Mroz, 1967)

A modification of Mroz’s lields of work-hardening model was proposed by Krieg (1975). This modi-
fied model, called the two-surface plasticity model, replaces all but two of the discrete surfaces of Mroz's
model by a continuum of intermediate loading surfaces whose distribution is prescribed. The two surfaces
are represented by an inner surface. called the lpading surface, and an outer surface, termed the limit
surface. Both the loading and limit surfaces can vary according to a combined isotropic and kinematic
hardening behavior. The motion of the loading surface is identica) to that of Mroz's model. This theory
requires a memory of three vectors and three scalars, a small increase over the two veclors required for
kinematic hardening alone. Independently, a more comprehensive and sausfying generalization of the
concept of a two surface plasticity theory was proposed by Dafalias and Popov (1975). In this theory the
concept of a bounding surface is introduced. This model also provides a smooth hardening model and
relatively good computational efficiency, which was demonstrated from the almost exact prediction of
the experimental data of cyclic uniaxial siress-strain curve. The vield region is constrained 10 move
always within bounds, as shown in Fig. 3.6, where the bounding region is referred to as the bounding
surface in the multiaxial case. The material behavior can be described by considering the plastic modulus
E? 10 be a function of two plastic internal variables, § and §,,, where § is the distance from the active
point on the loading surface to the bounding surface, and §,, is the initial distance at the most recent
initiation of yield and provides a memory of the most recent loading history associated with the previous
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excursion in reverse plastic loading. The expression for the plastic modulus F? suggested by Dafalias and
Popov (1978, 1976) is

E -+ h(3.) (311

5
d.-6

where F} is the bounding value of plastic modulus, and A(3,)is a shape parameter determined from
experimental data. By projecting on the ¢ -axis and then generalizing in multiaxial stress space, the end
points such as @’ and b’ become the yield surface, and the end points & and b, the bounding surface, as
shown Fig. 3.6. During the course of plastic deformation, the two surfaces translate simultaneously in the
stress sp:~¢, and in general, may aiso deform. During plastic deformation, the continually ¢changing
distance & in stress space, between the stress state ' on the yield surface and the corresponding point &
on the bounding surface, determines the value of the generalized plastic modulus in a manner analogous
to the uniaxial case.

At the numerical implementation level, the above bounding surface model may give rise to an inac-
curate results in some cases. Petersson and Popov (1977) took the uniaxial eyclic loading pattern shown
in Fig. 3.7 to demonstrace the problem. If the load s reversed before any plastic flow occurs, the updat-
ing of the parameter 8,, will be done incorrectly. A number of these events in a cyclic loading history can
significantly bias the plastic moduli. Petersson anc Popov (1977) and Popov arnd Petersson (1978) gener-
alizedd the Dafalias-Popov mode) by introducing intermediate surfaces between the yield and bound
surfaces based on the experimemal data. The intermediate surfaces were used for purpases of interpola-
tion, and in principle are not relatad at all to those of the Mroz model. There is no basic change from the
Dafalias-Popov model except for the introduction of the unermediate surfaces.

The initial stress-plastic strain curve can be defined with the aid of projections onto the stress axs
using a pair of inclined bounding lines 1ogether with specified plastic strain increments, as shown in Fig.
3.8¢a). The plastic strain increments, €;. &, ¢ . are chosen for equal stress increments, and the segment

-8
_ ] A ﬁound) Bound surace

Fig. 3.6 The bounding surface model in uniaxial and multiaxial stress space
(Dafalias and Popov, 1975)
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7 ¢

Fig. 3.7 Deficiency of the two-parameter model (Petersson and Popov, 1977)

AA’ on the stress-axis defines the elastic range. For the muluaxial case, the hardening model is defined
by the yield, bounding, and intermediate surfaces. First ioad reversal is illustrated in Fig. 3.8(b;. During
2 load reversal, a new stress—plastic strain path is generated by the points between the inclined lines and
the decreasea plastic strain increments. The inclined lines are parallel 1o the lower bounding line, and
start from the stress points projected onto the stress-axis an equal distance in the opposite sense of plastic
strain. A similar procedure is repeated during the subsequent load reversals, as shown in Fig. 3.8(c),
which brinpgs in the history dependence of the cyclic process at each load reversal.

Inciead of using this procedure for describing the loading surfaces and their translations at ary stage
of cyclic loading, Peterssor. and Popov (1977, 1978) made use of two different stress—strain curves
obtained from uniaxial experiments. The first of these stress-strain curves is determined from a
monotonic tensile test on the virgin material, and the other is half of a hysteretic loop with halved ordi-
nates afier several loading cycles. The monotonic hardening function «,, shown in Fig. 3.9(a), is ob-
tained from the virgin tensile stress-strain curve. The cycled hardening function «,. shownin Fig. 3.9¢4).
can be systematically constructed as shown in Fig. 3.10. From the half hysteretic loop, an elastic region
and the bounding lines can be easily determined. A generic point A on the curve at a horizontal distance
A¢ from the origin is distance 2x, above the horizontal axis. Half the values of the quantities 2% and 2x,
are used in the «,-& curve, and the vertical distances, 2x, establish the bounding lines in the x,-&
curve, as shown in Fig. 3.10(b). By using the scalar weighting function W, shown in Fig. 3.9(c), the
surface size is approximated as

K, = WEW@) + [1-WE)K(E) (3.12)

where W is a function of the total accumulated equivalent plastic strain & at the current time, whereas x,
and «, are functions of an incremental equivalent plastic strain # , accumulated since the last load rever-
sal. The back stress of a loading surface is also assumed to be a function of , and each surface is
associited with an unique vaiue of . The weighting function can be fit 1o experimenta! data by a iral-
and-error procedure. Once the sizes of loading surfaces are determined by the above procedure, their
motions are updated during plastic flow. A restriction is also imposed to avoid intersections of the sur-
faces with each other. A numerical procedure is employed in updating the partial derivatives of «, and a,
with respect to the equivalent plastic strain # and its increment # . Comparisons of theoretical predic-

31



el
2 2 1
Bl 1 !
B j ! ii
b1y : |
c A
N1t |
7. <) — i
| .

(b, First load reversal

(¢) First hysteresis curve

Fig. 3.8 Representation ol -nnstitutive relations (Petersson and Popov, 1978)
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Fig. 3.9 Functions for defining surface sizes (Petersson and Popov, 1977 and 1978)

tions of hLysteresis curves with the experimental ones were made {or both the uniaxial tests, as well as for
the torsional experimental experiments, and good agreement batween the thecry and experiments were
found by Petersson and Popov (1977) and Popov and Petersson (1978).

Rees (1981, 1962, 1983) presented a combined hardening mode} {or anisotropic materials in which
the isotropic hardening potentiai remains tangential at the stress point 10 a yield surface which rigidly
translates 10 the stress vector OP, as shown in Fig. 3.11. The field potentials, F,. are identical 10 the
anisotropic yield loci, f,, only at initial yield (f; = F,) when both enclose the elastic region. This mode!l
exhibits the Bauschinger effect and linear plastic strain paths under radially outward loading. Since bath
surfaces contact 1angeniially at points F,, yield loci translate along the vector connecting @, to £, ., which
is identical to the modified Ziegler (1959) rule. Pees (1984, 1987) attributed the unrealistic prediction of
the mechanica! hysteresis and cyclic creep behavior to the undefined extent of anisatropy of a combined
hardening rule, and introduced a multi-surface mode! which is especially representive of cyclic behavior
under full anisotropic hardening. Another drawback of a combined hardening model might be its charac-
terization of a field of isotropic potentials under repeated loading-unloading conditions. Some madifica-
tions to this model will be presented in the next section.

Rees’ multi-surface model stars from the concept of an equi-strain potential in which each surface
in stress space is assigned a particular value of equivalent piastic strain . The Bauschinger effect and
siress-strain hysteresis under cyclic loading can be realistically represented by this model, as shown inthe

natt hysterstic loop

e

*! ae i+

Fig. 3.10 Construction of multicycled hardening curve {Petersson and Popov, 1978)
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Fig. 3.11 Uniform-hardening plane-stress fields (F.) showing anisotropic yield
joci (f») for proportionate loading (Rees, 1981, 1982)

papers by Rees (1984, 1987). The unstrained state of the material is assumed to be isotropic, and the
initial yield condition conforms to the von Mises yield criterion. The isotropic hardening rule, i ¢, the
repre<entation of 2 muki-suifave funcuion, 1s the same as Eq. (3.6). The initial configuration of surfaces
15 ¢continuously alered by translation during plastic deformation. The model can also be augmented to
allow for contraction ang rotation, as may be induced by anisotropic deformation. The contraction and
translation function are scalar valued sirain invarianms which can be established from simple experimental
tests in tension or torsion. Although the multi-surface model of Rees is powerful, it is difficult to imple-
ment in a computer code betause the translations of all surfaces have 1o be traced at each loading step.
The concept of this medel will be used subsequently in the development of the new cyclic plasticity
mode!.

3.4 Proposed Muitiaxial Cyclic Plasticity Model

In the previous section, several cyclic plasticity models were reviswed. In this section 2 new multi-
axial cyclic plasticity model is developed, taking advantage of the previous models. The concept of the
universal stress-plastic strain curve and its determination from a uniaxial test are taken from the work of
Petersson and Popov. We modify the procedure making it necessary only to have » uniaxial tension test
to determine the hardening functions. Rees’ idea of a combined hardening model will be employed for
tracing the translation of a yield surface. 1f load reversal takes place after any plastic flow has occurred in
the opposite sense, the field of equi-stiain potentials will be replaced by new hardening functions, and
the most recent backstiess of the yield surface will be taken as the origin of the new field of equi-strain
potentials. In each instance, the field of isotropic hardening potentials is obtained from the monotonic
nonlinear isotopic hardening curve, Eq. (3.4), using the concept of Rees’ multi-surface model. These
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concepts will be employed in conjunction with the consisient return mapping algorithm developed by
Simo and Tavylor (1985) to numerically treat the constitutive equations.

A cyclic hardening function can be systematically obtained from the monotonic isotropic hardening
curve, using the concept of Rees’ multi-surface model as follows. A concentric ¢onfiguration of von
Mises surfaces centered at the stress origin is assumed for the unstrained material, as shown in Fig. 3.2,
in which equi-strain potentiais were chosen in equal stress increments for the equivalent plastic strain.
We assign an equivalent plastic strain value to the gth equi-strain potential, f,. For convenience, the
potentials f, are chosen at equal equivalent plastic strain increments rather than the equal stress incre-
ments shown in Fig. 3.2.

The subsequent multi-surface configurations in Fig. 3.12(b) are in the prestressed and prestrained
state {To. 23} . There is. of course. no translation of the multi-surface configurations in the stress stale on
the initia! vield plateau. The subsequent configurations, f,. are assigned new equivalent plastic strains,
A¥. The forward and reversed equivalent yield stress points, and respectively, for a surface f,, will be
obtained by marking off the corresponding strain AZ on either side of #; as shown in Figs. 3.12(a). As
the translation of 7, is rigid, it follows that

IF-0° = 2x, , (3.13)
where x, is the radius of the surface f; and can be computed as foliows:

K, ¥ Ko+ A(AF) (3.14)

37 = o+ A(T + AP) (3.15)

From Egs. {3.13), (3.14) and (3.15), the reversad e uivalent yield stress point, &7, will be as follows:

k(&) o
; } . lge Invtial yielt surlace
; ‘ aF —_’zi- atter ransigtion
Inital yiaid | B /7
plateau -\1\?0 /’
|
Ko t — -

N

> /3y

‘.5‘,:-];' A Initial yleld surface
(@ (&)

Fig. 3.12 Representation of initially prestrained material with the equi-strair model
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70 = - Ko+ AT + AP) - 2A(AF). (3.16)

The predictions from Eq. (3.16) are consistent with Bauschinger's effect, as llustrated in Fig. 3.12(a). It
can be seen that the curve of unloading, BB'C’, i uniquely defined by the curve of primary loading,
QOAA'C . The segment BB’ defines the elastic range in Fig. 3.12(a) which is the radius of the current
yield surface in the two dimensional stress space, as shown in Fig. 3.12(b). The point T is the center of
the current yield surface. Choosing a new coordinaie system {kq), #3,) with the origin at §", 2 new
hardening curve, I'B’C’, can be found, which can be represented by the vertical distance between the
center of the current initia! yield surface, ', and the reversed equivalent yield stress point, C*. For the
qth surface j, we have

%1 (APP) = TA(0) ~ ko~ THAP) = Ko+ 2A(AF) + A(P)) - A (¥ + AF). (3.17)

where 77(0) in Eq. (3.17) represents the equivalent stress at the point B in Fig. 3.12(a). Since the
equivalent plastic strain is always positive, that is, it does not decrease during the plastic deformation, the
actual relationship between F and 7, leads to the following:

7, (A%) = &(FH+ AP) (3.18)

If the current reversed stress at point B were to continue beyond point B', as shown in Fig 3.12, a new
field of isotropic hardening potentials would be created as shown in Fig. 3.13. The new field of equi-
strain potentials is created according 1o Eq. (3.17). and the new center of this field is the final center of
the yield surface from the previous cycle. Each cyclic loading stage is represented by the sequential
number m, as shown in Fig. 3.13, where m=0 means the initial field of equi=strain potenuals,

! i \ [m=1]

Fig. 3.13 Hardening plane stress felds
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The center of the new field is referred to as the backstress, a, and is constant for each field of
equi-strain potentials. Note that this definition of backstress is different from the one used with the
traditional kinematic hardening model. If the stress path were 10 reverse again before reaching point B’,
the current field of isotropic hardening potentials would be retained; if the stress path passes point B, the
field of isotropic hardening potentials is updated. The currem stress point in or on the yield surface is
constrained to lie in the updated yield surface. throughout the course of plastic deformation, according to
the consistent return mapping algorithm of Simo and Taylor {1985). The updated stress point will be
returned to the subsequent Joading surface by a normal projection onto the yield surface which corre-
sponds to the the mid-step time f..,. as shown in Fig. 3.16.

‘The mation of the vield surface in the proposed mode! is shown schematically in Fig. 3.14. Some
restrictions are imposed to avoid the intersaction of the yield surface with the loading surface: the yield
surface may rotate 10 be tangential to the lozding surface as they contact each other, however the shape
and the size of the yield surface are assumed not 1o be changed during the course of plastic deformation.
These surfaces are defined by the equations

fi(sn‘ﬁm)-’%s f"‘(S,.,‘-ﬂ“‘“)-xo.
P(Sk-ailﬂ)) =« P”{Suﬂ-a(n)) - gt

(319

where x, is the size of the yield surfaces, f* and f4*1, and «* and »**" are the radii of the loading
surfaces F* and F**!, respectively. Superscript k+1 represents the sequential number of the (%+1)th
updated values of things such as the yield surface f**?, the loading surface F**!, the size of loading

— Yieid surface
iy Common tangent plane after updatng )
{ o
Saep %JA*\ Vid rtace
~ // s‘/ N before updating (/***)
2/ g N
/ gy N 7 - Loading surface
/ A/ B j \\ afwer upcating (F**1)
/ s
! 4 \ /
P L e
{ . pe { /
S . —_——
4 /ﬂ(l) w !
| s 7 C ]
s i
Rote T
5y Qo Loading surtacs /
/ “ X belore updating (F)
2
—- o
o

Fig. 3.14 Translation of yield surface to the subsequent loading surface
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surface «#*", and the center of the yield surface g%*¥. The backstress g, of the mth field of isotropic
hardening potentials is constant during the mth cyclic loading stage. When the yield surface contacts tc
the loading surface 2t point A’ from A, the center of the yield surface should move to the point B' along
the straight line A'C from B. The relationship between the yield surface and the loading surface at the
updated state is given by

+1)
Seer-Qm = f(:——(s,,]-p“*”). (3.20)
0

From this relation. the updated center of vield surface, §7*Y, can be computed as follows:

K,
ﬂrhl) =8 .~ (5aey "a(m)-zhi;ﬁ'

(3.21)

The updated center of yvield surface, g%+ 1, will be the center of new field of equi-strain potentials, @y
when the reversed siress continues 1o produce plastic deformation in the opposite sense.

The reversed yield points in the hysteretic loading condition are considered as illustrated in Fig.
3.15. Reloading occurs al the prestrain origin } = 2§ + AZ;, which was shifted from 2}, and the reversed
yvield points can be obtained from Eq. (3.16) by replacing A% by A% + AZ in the unloading state BB'C.
The modified reversed equivalent yield stress point, C. in the unloading state, BB'C. in Fig. 3.15(a). is
given by

T = -kt AT + AZL + AP) - 2A4(AT) + AF) = ~ ko + AT + AF) - 2A(BT5 + AF). (3.22)

Similarly. the forward equivalent vield stress point, ', in the reloading state. BDO'D'C’. can be also
obtamned from Eqgs. {3.13y, (3.14) and (3.2D)

K(F) “7
— pp — r
| ’J"—'—C,

Y
Jo
h;p?fz) — o) ﬁt
(3 > (j
B
D fe

M)

)

Fig. 3.15 Representation of equi-strain model for hysteresis
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FF = kg + A(F] + AP) - 24 (AT + AF) + 2A(AP). (3.23)

Again, choosing a new coordinate system (K, &) with the origin at 5, the curve &'D’'C’ can be
obtained as the vertical distance between the forward equivalent yield stress point, C’, of Eq. (3.23) and
the center of the current initial yield surface, 0.

k@) (A®) = BF(AF) - (B (0) + o)

(3.24)
= ko + AT, + AP) - A(Z)) - 2A(A%; + AF) + 2A(AP) + 2A (AF).
From Fig. 3.15, the relationships among the equivalent plastic strains, &, ?'(’l) and ?‘(’1), is
T (A%) = & (AT + AF) = B (T + AT + AF). (3.25)

Following the previous procedures, the strain hardening function under the general cyclic loading
condition can be generalized as follows {from the monotonic nonlinear isotropic hardening function.

Ky = Ky + (= 1) A@ s + AF) + (- 1)) AE,) + 24(AF)
m-2 m-2 -2 (326)
+ SN 245 A+ AF) + (-1 24D AZ)]
=0 i= t-y
where, #,., is the equivalent plasuc sirain at the mh reversed loading condition, and A, _, is the dis-
1ance between the equivalent plasiic sirains &, , and #,. and is given by

=, + A, . (3.27)

As mentioned before. the subscript m indicates the sequence number of the reversed loading state. The
value of 0 indicates no reversed loading condition, that is, the initial monotonic 1sotropic hardening state.
Equivalent plastic strain values having negative integers of subscripts m and / have no meaning.

To implement the above model conveniently, some internal plastic variables are needed. These
include the sequence number of the reversed loading state, the value of the equivalent plastic strain, the
centers of yield surfaces, and the center of the field of isotropic hardening potentials. The most recent
center of yield surface during previous cycle will be updated to the new center of field of equi-strain
potentials. The yield criterion for the mth load reversal can be expressed as

Qmy = "‘z'Em tbm - ";x}m)(?‘) <0 m=s-a'(m (3.28)

where a,, is the mth deviatoric center of the field of equi-strain potentials and is constant under the mth
cyclic loading state.

3.5 Numerical analysis of the constitutive equations

From a computational standpoint, the elastoplastic problem is treated as str3in cunwrolled in the
sense that the stress history 15 obtained from the strain history by means of an integration algorithm
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(Moss, 1984). An effective imegration procedure for the elasto-plastic problem is to employ return
mapping algorithms (Sime and Taylor, 1984). In what follows, a consistent return mapping algorithm
(Simo and Taylor, 1985) will be used for the integration scheme of constitutive equations.

A Jocally plane stress condition in the web and flange elements is assumed, in the spirit of the thir-
walled beam approximatior), with the concomitant elastic stress-surain relations. The components of
elastic stress, stra‘n, and elastic tangent modulus are as follows.

E O
S=[S1.5u),  E'= [En, Ey), n=[ ] (3.29)
o G

where S, and E, are the shear stress and strain, respectively, and they depend on the direction at the
subelement of I-secuon.

S (web) = 815, S, (flange) = S15, {2.36)
Ey(web) = Eya,  Eylflange) = E,;.

The basic idea of the algorithm used here is 10 project the slastoplastic equations gnto Lhse subspace
defined by the plane strets condition. and there construct a return mapping algorithm by applying the
generalized midpoint rule as graphically shown in Fig. 3.16, which illustrates how stresses are updated.
An essential step in the algorithm is the computation of consistent elastoplastic tangent moduli, which
preserves the guadratic asympiotic rate of convergence of Newton's method (Simo and Taylor, 1985),

S, =S,+D|E,, - E})

DEﬁou = D(Ain,..,)

Sne1 = S£.1 - DE‘!:#!

¢(Snfh)vu]) =0

Elastc Domain (Upcated yisid surface}

#(S.4,) =0
{Initial yielct suriace}

Fig. 3.16 Geometric interpretation of the generalized midpoint rule

A step-by-step implementation of the consistent returning mapping algorithm is summarized to-
gether with generalized kinematic hardening rule in Tables 3.1, 3.2 and 3.3. Substituting Eq. (3.31) into
the lincarized equation of equilibrium (2.34) reduces the latter to 3 system which is now linear in the
incremental motion Ap and provides a basis for an iterative solution procedure.
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Table 3.1 Consistent return mapping algorithm for plane siress

() Update strain tensor and compute trial elastic siresses.
Eni =En+%u,  §5=D(En;-E)., n=S$f-am, {F=8-§@.

(f/) Check the trial elastic stresses for vielding state under the mth cyclic loading stage
from Table 3.2

(iif) Solve @A) = 0 for 4, enforcing consistency condition at 1,,, from Table 3.3.
(iv) Compute modified elastic tangemt moduli : Z@) = (D' +1 Q]!

where. Q = 1 [ 2 0 ] _ mapping matrix from the plane stress subspace
3 0 6 to the deviator subspace

(v) Update stresses. plasue strains and back-stresses of yield surface.

ﬂnvl = E())D-l nal v Sn‘l = Pass +a(m) » Eﬁﬂ = Eﬁ"'floﬂn-l )
= \/315(1-)- ($(A) from Table 3.3.)

[
F =5, (sn.ram));ﬁ:“,—)- from Eq. (3.21)
(vi) Compute consistent elastoplastic tangemt moduli :

[as] o _(FQn.)EQ.)
A+

oE

~ Q.. (3.31)
71 QEQha1 + ¥rar

(LI
(ﬁm)) nel
™ ’ﬂ..}Q’]nn

1

where, Yo, = tm———t
3 2

1 -3 (K(m)] 'ncl‘i

Table 3.2 Check of the trial stresses for yielding state under the mth cyclic loading stage

I9f] = 137t =5 Kim) S 07 {«(m) from Eq. (3.26))

YES : Check the stresses state for the current yield surface.

VAl = (455 t5 = 3] s 07
) . YES : ¢ Update the current strains and stresses, and QUIT
i NO : @ Update the center of the new field of isowropic hardening poiential
from the center of the current yield surface, (ﬂé!‘.,’, =~ Qimen))
® Set @oniy) =a(my. and compute 5f = SE—agmy.

; ® GO TO (i) in Tzble 3.1.

| NO : GO TO (iii) in Table 3.1.
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Table 3.3 Determination of plastic Lagrange multiplier

B 1k L, )
(14+3EA™)? (1+2G1%)?

(@ @@=

) PP ert ¢ [Lamga®)
() (%) = %31(,1(:)) -%,ﬁ(?-p’('l))

¢ (1(&3)

@ A0 e - Sy

FE)? X 4G ()’
(1+3E2%)} (1+2G2*)}

¢ (M) = - (1-3x2W) [ - 3T AY)

ey If !-;%| >tol , then k<« k+1 and go to {(a)

3.6 Numerical examples of proposed cyclic plasticity modet

An application of the proposed plasticity model for representing random uniaxial ¢yclic loading
behavior is shown in Fig. 3.17. It is assumed that the mechanical properties of the material are alike in
tension and compression. Curves OABC and OA’B’C’ are monotonic tension and compression curves,
respectively. in the virgin state. The vield plateau, the strain hardening region, and the Bauschinger's
effect can be easily identified. The consideration of the yield plateau seems to be very imporiant in steel
structures, as most regions of the structure remain in the elastic state and a substantial part of the rest is
more or jess on the yield plateau, even near failure of the structure. After yielding, a series of load
reversals and reloadings is randomly applied: the solid curve is the loading process, while the dashed
curve represents the loading path if joading continues. It can be seen that the dashed curves approach the
monotonic tension and compression curves. Curve DD’ shows that load reversal takes place before any
plastic flow oceurs in the opposite sense and this demonstrates this plasticity model can exclude unrealis-
tic overshooting. No point returns to the same place after a complete cycle, but rather undershoots the
initial point.

In addition to the uniaxial cyclic loading behavior as shown in Fig. 3.17, the behavior of nonpropor-
tional loading path is needed to examine the plasticity model. The biaxial strain-stress response can be
represented by four kinds of diagrams: axial strain vs. shear strain, axial stress vs. shear stress, axia! strain
vs. axial stress, and shear strain vs. shear stress, where both the total strain and plastic strain histories are
considered in the axial strain vs. shear strain diagram. In Figs. 3.18 and 3.19, 1wo kinds of strain-stress
hisiories are presented: One under a 90 degree out-of-phase tension-torsion strain-controlled cycling
and the other under a square path of strain-controlled cycling. Experimental results for these cases can
be found in the repont by Doong {1989). The predictions of the analytical plasticity model can be found
to be very similar to those of experimenta) results, qualitatively. A major discrepancy between analytical
prediciions and experimental results may come from the different material properties such as the elastic
an‘. shear moduli, the yield strength, and the type of strain hardening, erc. Another nonproportional
cvche strain path is applied as shown in Fig. 3.20. Experimental results for this case can be found in
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Lamba and Sidebottom (1978). These predictions of the snalytical plasticity model also seem 1c be
qualitatively similar to those of experimental results.

From ihe overall qualitative similarity between the above predictions of analytica! plasticity model
and the experimental results under the uniaxial and biaxial strain~controlied paths, the current cyclic
plasticity model would appear 10 be reliable.
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Fig. 3.17 Uniaxial random cyclic loading behavior
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Chapter 4

Experiments on the Cyclic Buckling of Short I-beams

The results of experiments on the cyclic, inelastic, lateral buckling and post-bucklinp response of
short beams are presented in this chapter. Experimental tests of [ive propped cantilever beams subjected
10 a cyclically reversing point load acting near the fixed end were carried out in the laboratory at the
University of Illinois at Urbana-Champaign. The experiments included both unbraced and braced sys-
1ems with similar loading histories. The results of the expenments are presented here alorg with a de-
tailed analysis of the experimental configuration.

The experimental program described herein is clearly limited in Scope. Consequenty, it is difficult wo
put the results into proper perspective. To ameliorate this condition we provide a thorough analysis of the
experiments using the {inite deformation, inelastic beam model developed in earlier chapters. Chapters
5, 6, and 7 are devoted to various analytical parameter studies on the model tested in the labaratory.
The analyses that follow including (a) elastic inearized buckling analyses, (&) inelastic limit Joad analy-
ses, and (¢) an inelastc cyclic load analysis similar 10 the loasing program used in the experiments. The
parameter studies should help 10 provide a {rame of reference for evaluating the experimental results.
The parameler studies are organized around a ftandard case which was optimized to be a close approx-
mation of the response exhibited by the unbraced test specimens. The standard analytical model is
documented at the end of this chapter.

4.1 Experimental Procedure

In the present section we describe the details of the experimental program, including the testing
arrangement, the dimensions of the test pieces. and the instrumentation used to measure the response.

Testing configuration and loading apparatus.- The testing configuration used in these experi-
menzts is shown schematically in Fig. 4.1. Translation, rotauon, and warping were restrained at one end
of the test piece (hereafier valled the fixed end). Vertical and lateral translation and torsiona! rotation
were restrained at the other end while axial exiension and flexural rotations were unrestrained. The fixed

Lond Call Loading Ram (with load cel)
Raaction : R T
Bleck ' Link Region Wi0x12 F '
i 1
I®Cin _J
t : 82 in R
£ »

Fig. 4.1 Experimental test configuration
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end was realized by welding the end of the test piece 10 a rigid end plate. bolting that end plate to the end
plate of the load cell. and bolting the other end of the load cell to 2 massive concrete reaction block.
Because of the presence of the load cell, the fixed end actually had a finite flexibilny. The support
flexibility was determined from elastic leve] tests and accounted for in the data analysis phase.

It is well known that the height of the load with respect to the shear center of the beam has a
significant effect on the buckling response of the system. The point of load application for eyclically
reversing loads depends strongly on the load transfer mechanism. The load transfer mechanism chosen
for the tests is shown schematically in Fig. 4.2. The load was applied to the specimen by a hydraulic
actuator which reacted against an overhead frame. The ram was endowed with a universal joint at both
ends of its length and hence did not provide restraint to the ipecimen. The ram load was wransferred to
the specimen through a collar which was prestressed so as to act as & unit with the test piece. The integrity
of the prestressing was verified for each of the 1ests. The collar received the ram through a universal clevis
having a center 4.5 in above the top flange. The clevis bearing had a diameter of 3 in and Lence the poimt
of action of the load was approximately 3 in above the top flange for the push direction and 6 i above the
top flange for the pull direction.

Loading
Ram

Presiressed
Rods

Fig. 4.2 Load transfer mechanism

In most practical applications, the brace-to-beam connection would be accomplished through a
gusset plate or similar connection in which the load is transferred directly to the flange where the connec-
tion is made. In such a circumstance, the point of load transler from the brace 10 the beam is always on
that side of the beam. While the loading mechanism used in these experiments does not mode! any
specific detail, it preserves the important one-sided nature of the practical application.

The tests were carried out under displacement control using the ram exiension as the control dis-
placement. A complete sweep of the instruments was made at intervals 0.1 in of ram extension,

Specimen properties.— All five of the test pieces had the same nominal cross-sectional geometry, a
W10x12 section, and the same nominal material properties, ASTM A36 steel. Three of the five speci-
mens were cut {rom one piece, the other two from a second piece. The material properties of the two
pieces were determined by uniaxial tension tests, with two coupons taken from the web and one from
each of the flanges. The material properties (desipnated as A and B) are listed in Table 4.1. One can
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Table 4.1 Material properties

Material Set A Material Set B

Web Flange Web Flange
Yield Strength (ksi) 46.3 47.5 48.2 46.7
Ultimate Strength (ksi) 68.3 67.9 68.4 67.7
Ultimate Elongation 0.20 0.20 0.20 0.16

observe that the strength of the steel greatly exceeded the nominal value, but the material was highly
ductile.

The cross-sectional dimensions of the test pieces were measured and the values are given in Table
4.2. Observe that the half flange widths were not equal. Although the measured values are within stan-
dard mill tolerances. the imperfections caused a measurable torsional response to a loading acting in the
plane of the web. The measured response indicates that the direction of initial rotation, and thereby the
direction of rotational buckling., was determined by the geometry of the {lange imperfections.

The configuration of a typical specimen is shown in Fig. 4.1. To prevent web buckling due to high
transverse shear, fitted transverse web stiffeners were placed at approximately 6 in intervals in the region
of the beam between the load and the fixed end in accordance with the recommendations of Hjelmstad
and Popov, {1983). Transverse stiffeners were also placed at the peint of load and at the point of suppon
at the far end of the specimen to prevent web crippling at regions of concentrated force transfer. The
specimen was welded 10 the massive end plate with full penetration grove welds. The flanges were pre-
pared for welding by beveling thern at 45 degrees. To insure weld integrity, a fillet weld was made on the
back side of each flange. The web of each specimen was filiet welded on both sides, directly 10 the end
plate.

Lateral bracing arrangements were of three varieties: (1) No lateral bracing, (2) Lateral bracing near
the top flange, and (3) Lateral bracing near the bottom flange. The lateral bracing method used is shown
in Fig. 4.3. The brace was pinned at both ends, attaching to one of the stiffeners under the load approxi-

Table 4.2 Measured section properties

; ; Material

Material Location Set A Set B

1 2.070 1.880

Half Flange 2 1.8%0 2.030
Width (in) 3 2.030 2.083
4 1.980 2.030

Half Flange 1 0.220 0.212
Thickness (in) 2 0.199 0.227
3 0.196 0.213

4 0.210 0.200

Depth (in) 9.841 9.851
Web Thickness (in) 0.177 0.179
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Fig. 4.3 Lateral bracing arrangement

mately 1 in away from the nearest flange. A summary of the distinctive features of each test are given in
Table 4.3, which records the initial sense of the load, the bracing arrangement and the material used.

Response Measurement.~ A load cell capable of measuring axial force, biaxial shear forces, biaxial
bending moments, and 1orque resided between the specimen end and the reaction block (Fig. 4.1). A
uniaxia) load cell located in the loading ram measured the applied {orce. The force measurements ren-
dered the test configuration statically determinate.

Displacements of centain points on the specimen were measured with linear variable differential
transformers (LVDTs) deploved as shown in Fig. 4.4. The dispiacement measurements monitored the
motion of the specimen in the plane normal to the axis of the beam, at the point where the Joad was
applied. The motion at the fixed end and the extension of the loading ram were also monitored. The
LVDTs were connected to rods which were 28 in long and had universa! joints on both ends to allow free
movement. As such, these instruments measured the change in length of a line connecting a point on the
specimen and a stationary ground point.

The experimental data were acquired in digital form using a low speed electronic data acquisition
system. The scan rate was approximately 25 channels per minute. Care was exercised 1o ensure that the
syvstem was steady during each scan.

Loading program.- Each of the five tests were similar in the sense that the specimen geometry was
the same and the position of the load was the same. The importam differences among the 1ests included
differences in the character of lateral bracing, and slight differences in the loading histories.

The loading programs used in these 1ests consisted of cycles of applied load and was executed by
controlling the ram extensions. The imposed displacement history for each of the five specimens is shown
schematically in Fig. 4.5, in which each bar represents a continuous movement of the ram head {/.¢. one

Table £.3 Summary of test configurations

. Initia! Bracing Material
Specimen Loading { Arrangement Set
1 pull none A
F3 push none B
3 push wop A
4 push bottom A
5 push top B
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Ram LVDT

Fig. 4.4 Displacement response measurement at point of load

half cycle). Nolice that specimen 1 began with a pull (s1abilizing) half cycle while the others began with 2
push (destabilizing) half cycle.

4.2 Experimental Results

Narrative descriptions of the five tests.~ The following paragraphs give a narrative account of each
of the five tests. These descriptions begin by documenting the first observed phenomena (generalized
buckling, local buckling, material yielding, and fracture), and referernce these occurrences to a cogent
graphical representation of the response history. Discussions of each specimen will reference a plot of
load versus ram extension and a plot of load versus specimen rotation at the point of load. For simplicity,
the ram displacement is called simply vertical displacement, which is approximately true for the point
where the ram antaches to the loading collar. Venical displacement of the specimen as a whole has no
meanir.g. One should note that the plots of load versus ram displacement have not been corrected in any

PULL

Displacement b nEER ol
" 0 - " I |
1
3 4

2= 1 2

PUSH

Fig. 4.5 Loading sequence for the five specimens

51



way for suppornt flexibility. In their present form, the abscissa and crdinate are conjugates in the sense
that the area enclosed under the graph represents the energy input 1e the system.

In the descriptions of the individual tests the following convention will be employed for describing the
location of local events such as local buckling of the elements of the beams. To distinguish right from lefi
we shall assume that the observer stands at the pinned end of the test piece and looks toward the fixed
end. Local buckling generally involves 2 flange wiiich can be located on the right or left: top or bottom of
the beam: and may occur at the fixed end, at the point of Joad inside the link region, or at the point of
load avutside the iink region. When buckling is described as inside or outside the link region it should be
understood that reference is to regions at the point of load. Typical load point designated (A, B, etc.) are
often indicated in the descriptions of the responses of the specimens. These load points are defined in
Fig. 4.11. and are discussed in the section on general observations on cyclic response.

Specimen 1.- Specimen 1 was unbraced and the force was applied in the pull direction first. The
force-deformation characteristics of Specimen 1 are shown in Fig. 4.6.
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for specimen 1 (Hjelmstad and Lee, 1990)

Generalized yielding was evident during the first pull cycie at a load leve! of approximately 50k,
Displacement was increased to 1,15 in in tris direction with no evidence of generalized buckling, local
buckling. or flange yielding. Upon reviewing the data it appears that there was some torsional movement
due to the fact that the load was not perfectly placed. However, the torsional motion was not discernible
1o the naked eye.

Flange yielding at the point of load and at the fixed end was noted during the first push excursion. At
incipient buckling (load point B) there was a small amount of local flange buckling noticed on the top
right flange, outside the link region. Dramatic snap-through buckling took place immediately after load
point B was passed. While the vertical movement (the control displacement) was on the order of hun-
dredths of an inch the top flange moved laterally about 1.25 in while the bottom flange remained essen-
tially stationary (lateral bracing would have had lintle effect if it were placed on the bottom flange). The
specimen lost more than half of its load carrying capacity after buckling. Forcing in the push direction
continued with little change in the load sustained. Loading continued until a ventical displacement of
approximately 1.25 in was achieved. At maximum push displacement (load point C) only slight flange
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buckling had occurred. indicating that Jocal buckling was not necessary to accommodate the large latera)
motions. The initial flange buckle outside of the link region had increased slightly in amplitude.

The loading was reversed and the specimen was pulled back (o a positive displacement of 1.15 jn
Buckling did not occur in the pul! direction, but considerable strain hardening accrued and the specimen
was nearly straightened.

The loading was reversed again to push. The specimen buckied again, but was unable to sustain a
load greater than the post buckling load of the previous push cycle.

A substantial local flange buckle, accompanied by web buckling, formed in the lower right flange
outside the link region, and the response curve changed from concave upward (o concave downward
during the second pull excursion. A force in excess of 60k was sustained prior to slight lateral buckling of
the specimen. Buckling in the pull direction was apparent from lateral movement of the specimen; how-
ever, the limit point was quite flat and hence litle loss of carrving capacity resuhed.

At the end of the test the specimen had substantial local bucking both outside the link region and at
the flange-end plate connection on the top right side. Coupled flange and web buckling had occurred.
While amplitudes of local buckling were high, there was no visual evidence of weld distress.

Specimen .- Specimen 2 was also unbraced and the initial loading was in the push direction. The
response of the specimen to the imposed loads is shown in Fig. 4.7,
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Fig. 4.7 Cyclic ioad response for specimen 2 (Hjelmstad and Lee, 1990)

Al incipizmt buckling, lines of loosened mill scale indicated that yielding had taken place, albeitto z
modest degree, even in the web region. There was no evidence of flange local buckling either inside the
link region or outside it. The specimen snapped 10 a twisted position during the first inelastic excursion in
the push direction (load point A). The value of the buckling load was observed to be a bit lower than
Speciman 1 which was yielded in the pull direction before buckling. Several data points were measured
on the downhill side of the post-buckling curve, giving # good indication of the shape of the post~buck-
ling response characteristic. At the extreme push displacement (load point B) only slight buckling of the
10p right flange inside the link region was evident.
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Generzlized yielding commenced at a load of about 50k in the first excursion in the pull direction,
followed by considerable strain hardening. The local buckle in the flange had straightened at maximum
pull, and a new buckle formed at the top left flange at the fixed end.

When the specimen buckled again in the second push excursion, the top right flange buckle had
reappeared, the flanges at the fixed end had vielded, and the top lefi flange buckle at the fixed end bad
straightened.

At load point G, significant buckling had occurred at the bottom left flange outside the link region
and at the top left flange at the fixed end. Web buckling outside the link region was also evident. At this
point, the loading collar had rotated about the axis of the loading ram.

Specimen 3.- Specimen 3 was braced at the top flange and initially loaded in the push direction. The
response of Specimen 3 is shown in Fig. 4.8.
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Fig. 4.8 Cyclic load response for specimen 3 (Hjelmstad and Lee, 19%0)

Generalized yielding and subsequent strain hardening, without local or lateral buckling, took place
during the first excursion in the push direction and reversed with no apparent distress. Flange yielding
outside the link region was noted at load point B. Two cycles were completed without buckling.

Just prior 1o load point E, slight local buckling was observed in the top lefi flange outside the link
region. Dramatic snap-through buckling of the specimen and the bracing rod occurred simultaneously,
at load peint E. Local buckling of the top right flange outside the link region and local buckling of the
upper half of web in this same region also occurred in conjunction with the lateral-torsional buckling of
the specimen.

The specimen was unloaded, the buckled bracing rod was removed, and loading was resumed in the
pull direction without bracing.

The specimen exhibited a limit point in the third pull excursion (just prior te Joad point G). As
expected, the post~buckling loss of load carrying capacity was slight. Antisymmetric local buckling of the
bottom left and right flanges outside the link region with compatible local buckling of the adjacent web
accompanied the post-limit loss of Joad. Substantial local buckling of the bouom left flange inside the
link region ¢nd the top flange at the fixed end was also noted.
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Pronounced local buckling of the top flange at the fixed end was observed prior to genera! lateral
buckling in the fourth push excursion. Buckling in the fourth pull cycle showed a considerable loss in load
carrying capacity.

Specimen &.- Specimen 4 was braced at the bottom flange and was initially loaded in the push
direction. The response of Specimen ¢ is shown in Fig. 4.9,
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Fig. 4.9 Cyclic load response for specimen 4 (Hjelmstad and Lee, 1990)

The specimen achieved generalized shear yielding :n the first push excursion without buckling. The
specimen buckled during the second push excursion at a load level greater than its initial yield load. The
increase in capacity can be attributed (0 strain hardening accrued during the previous yelding cycles.
Upon buckling, the load carrying capacity of the specimen dropped to the asymptotic level of approxi-
mately 20.54. Subsequent load cycles demonstrated increasing capacity in the pull direction due 10 strain
hardening and repeated achievement of the asympiotic buckling capacity in the push direction.

Prior to initial buckling there was no visual evidence of Jocal buckling, but considerable yielding had
taken place n the top and bottom flanges outside the link region, adjacent to the applied ioad. No
yielding had taken place inside the link region. Slight local buckling occurred in the top flange inside the
link region after generalized lateral buckling had occurred and motion was still i the push direction.
Local buckling of the top flange at the fixed end occurred as the specimen approac!ced its maximum load
in the second pull cycle. The amplitude of the local flange buckles increased considerably as the loading
progressed. It would appear that the flange buckles did not significantly aflect either th2 maximum pull
capacity nor the asymptotic push capacity.

Specimen 5.~ Specimen 5 was braced at the top flange and loaded in the push direction first. The
first cycle covered a 50% greater displacement than the other four specimens. The response of Specimen
5 is shown in Fig. 4.10,

Buckling occurred during the first cycle well afier shear yielding and considerable strain hardening of
the web had taken place. Due to the brace, the drop in carrying capacity after buckling was not as
dramatic as in previous tests. Unlike previous tests, the buckling in the second push cycle exhibited a
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Fig. 4.10 Cyclic load response for specimen 5§ (Hjelmstad and Lee. 1990)

hmit load with degrading post-limit response. The post-limit response mn this cycle approached an as-
ymptotic buckling capacity of 2B 3%, a value somewhat larger than the unbraced tests.

There was no evidence of local buckling at imitiai lateral buckling. The first flange local buckling
occurred on both sides of the loading collar during the first pull excursion. Flange buckling was accompa-
nied by web buckling outside the link region. The local buckling of this specimen was more intense than
in the other specimens because of the restraint provided by the brace. The local buckles helped 10
accommodate the large specimen rotations at the point of load whereas lateral movement of the section
had accomplished the same thing for the unbraced specimens. Failure of the specimen in tne fourih pull
cvcle was due to complete fracture of the bouwom flange at the fixed end.

4.3 General Observations on Cyclic Lateral-Torsional Buckling

Several qualitative observations can be made about the cyclic response of short beams based upon
these tests. Most of the qualities of the response are aiributable 10 the effect of geometry of load place-
ment with respect to the test piece. Clearly, the response in the pull direction is quite different {rom the
response in the push direcuon when the load does not act at the shear center, since for either direction of
lateral motion a pushing force tends to amplify rotational motion, while a pulling force tends to diminish
rotational motion.

In this section we discuss the general aspects of cyclic lateral buckling that were observed in the tests.
The discussion will refer to Fig. 4.11, which represents a typical cyclic response of a3 beam like those
tested in the present program. Load points A through F are identified for a ¢cycle which includes initial
buckling, subsequent straightening by pulling in the opposite direction, followed by a subsequent buck-
ling.

Initial Buckling and Post-Buckling.~ Since initial buckling in a cyclic test is like a monotonic
buckling test. one would expect that observations made in previous research on monotonic lateral buck-
ling would apply to the present situation. However, the buckling and post-buckling response of shon
beams is quite different from the response observed in existing lateral buckling tests of Jonger beams.
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Fig. 4.11 Typical lateral buckling response

Specifically, lateral buckling of short beams exhibits a severe limit load with rapidly descending post
buckling degradation. The existence of an asymptotic post-buckling strength is more apparent for shon
beams than it 1s for longer beams.

One might expect that estimates of the limit load could be made with existing analytical techniques.
However, several phenomena are imponant 1o the behavior of cyclically loaded short beams which are a1
odds with the assumptions generally used in deriving analytical values of lateral buckling loads. Due 10
the ¢yclic nature of the loads, it is possible to sustain an inelastic loading in the pull direction prior to 2
push loading. Such an occurrence would have several ramifications: (a) the residual stress patern would
be altered from that of a virgin beam, (b) a residual (hogging) deformation would be induced, {¢) some
straightening of inutial rotational imperfections would occur. {d) the material would strain-harden from
its virpin state, and (¢) softening of the material tangent modulus (Bauschinger's effect) would take
place. One would expect that effects 4, ¢, a:d d might act to strengthen the beam against buckling,
whereas effects b and e might tend 10 Jower suckling resistance. For extremely short beams (the test
pieces in the present experiment are arguably such beams), the limit load is very nearly equal to the shear
yield capacity of the beam. The effect of beam. length will be thoroughly investigated analytically in the
following Chapter 5.

Comparison of the buckling loads of spectrens 1 (pull first) and 2 (push: first) would indicate that the
favorable factors dominate, and thai strain-hardening has the greatest influsnce. It is difficult 10 assess
the exten: 1o which rotational imperfections were straightened. However, it .hould be noted that these
imperfections were relatively Jarge in the test specimens because of the poor tolerances on the rolling of
the Manges (see Table 4.2). On the other hand the initial rotatic-nal imperfections were quite small as
compared 10 those left by severe lateral buckling. No information was obrained from these tests to quan-
tify the effect of residual stresses and Bauschinger's effect.

Buck!ling in the push direction was a snapping phenomenon which was difficult to control experimen-
tally even under displacement control. Consequently, the post-buckling slopes (shown in Figs. 4.6
through 4.10 as dotted lines) represent the suzight line between the pre-buckling state and the nearest
stabje post-buckling state, not the actual post-buckling behavior. Specimen 2 gives the best indication of
the shape of the post-limit response. The response approaches a non-zero asymptotic post-buckling
capacity, as shown in Fig. 4.11, which is sustainable under repeated cycles of loading.
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Pull Response.- Four distinct regions of response are exhibited upon reversed lpading in the pull
direction from a push buckled state. The first stage {BC in Fig. 4.11) comprises elastic recovery from
loading in the opposite direcuon. The second stage (CD) consists of straightening of residual twist lef: by
inelastic buckling. The response curve stiffens during this stage because the initial flexible untwisting gives
way to stiff planar bending as the residual lateral and torsional deformations diminish. The third stage
(DE) consisis of generalized yielding in the pull direcuon.

In the third stage it is possible to experience lateral buckling. However, such buckling is always
accompanied by severe local buckling and often tzaring of the flanges. In these cases some post-buckling
degradation would occur prior to load point E. Pull buckling did not occur in the tests until late in the
loading program, usually long after push buckling had shaken down in1o behavior which did not exhibit a
limit load. The most important ramification of pul! buckling is its association with failure by fracture in
the flange welds. The local buckling which is invariably associated with pull buckling can lead 1o low cycle
faugue in the regions of high cyclic curvature reversals. When the stresses and strains associated with
lateral motion accrue, the possibility of material tearing is quite high. While push buckling is also associ-
ated with significant local buckling in the latter stages, the sustained loads are considerably smaller,
offering some protection from ultimate failure.

Buckling in Subsequent Cycles. — A beam reloaded in the push direction, after it has buckled once
and straightened. safters from several effects that tend to weaken it; (@) The beam might not be well
straightened, eve with considerable yielding in the pull direction. The residual imperfection decreases
the magnitude of the limit load in the next push cycle. {b) The pull cycle can leave the beam permanently
bowed from vielding. Initial camber is known 1o have an important effect on the lateral-torsional buck-
ling capacily of a beam. The situation worsens under cyclic loading because buckling commences earlier
in each subsequent push cycle, and the torsional motion of buckling does not counteract the residual
cambers. Consequently, the beam creeps cyclically in the pull direction. (¢) Material softening (Baus-
chinger's effect) may also weaken the subsequent buckling behavior.

Subsequent lateral-torsional buckling can demonstrate a limit lozd type of response (load point F in
Fig. 4.11). However, the limit load is generally dramatically ciminished from the initual buckling load. In
the tests reported here, only Specimen 5 exhibited a second limit Joad which was more than marginally
greater that the asympiotic post-buckling load. Specimen 5 was braced at the top flange and hence
post-buckling deformations were controlled 1o a greater degree than for the other specimens. These
observations would suggest that the residual deformation is the most imporiant factor affecting subse-
quent buckling behavior.

When the point of loading is closer 10 the shear center the push and pull responses will tend to lock
more like #ach other. Therefore, care must be exercised in extrapolating the results of these experiments
to cases in which the point of loading is closer to the shear center. For the case of ioading exactly at the
shear center, symmetry would indicate the same behavior in both the push and pull directions. Experi-
mental evidence is lacking, but one might expect that under a shear center ‘ading, unstable behavior
would be exhibited in both directions albeit with much less severe post-buckling degradation.

Table 4.4 presents a summary of the specimen response features. The table gives initial buckling
loads. the cycle in which initial buckling occurred, the asymptotic posi=-buckling capacity, the maximum
pull load, and the energy dissipated throughout the loading program. The energy dissipation is hisiory
dependent, and insofar as etach specimen underwent a slightly different history, the values are not di-
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Table 4.4 Summary of experimental results

Specimen Buckling Buckling | Asymptotic Push | Maximum Pull | Energy Dissipation
Load (k) Cycle Bucklirg (k} Load (&) (in-k)
1 57.8 1st 1.4 61.0 260
? 47.4 1st 20.5 7.3 225
i 63.9 3rd | 220 64.7 380
4 59.9 2nd 20.5 66.9 350
5 €0.2 15t § 28.5 66.9 420

rectly comparable. They do, however, provide a qualitative indication of the ductility and toughness of
the test specimen.

Influence of Local Buckling.- Loca! buckling in steel members generally refers 1o buckling of
individual plate segments such as a flange or web, and may occur independently or in conjunction with
generalized buckling such as lateral-torsiona) buckiing. The kinematic feature that distinguishes local
buckling from generalized buckling is that generalized buckling 1akes place without deforming the cross-
sectional geometry whereas local buckling deforms only the cross-section. For extremely thin-walled
members (e.g. as in cold formed steel sections) the coupling between local and generalized buckling is
quite important and has been the subject of extensive research (Vliasov, 1961). This coupiing has been
largely ignored for the I-sections used in heavier building construction.

The theoretical medels which have been used 1o study lateral-torsional buckhing are universally
based upon the hypothesis that cross-sectional shape remains invariant as the beam deforms; precluding
local buckling effects. Lateral buckling experiments have indicated that generalized buckling usually
precedes local buckling in slender beams, even for elastoplastic buckling. The present tests suggest that
the same is largely true for the push buckling of extremely short beams; however, slight local buckling of
the flanges was noted at or prior to buckling in Specimens 1 and 2. Local buckling commenced shonly
zfier peneralized buckling in the other tests. Based upon observations made during the tests, it would
appear that local flange buckling is not necessary to accommodate the large rotations of the beam.
Assuming cross-sectional invariance for analytical purposes appears to be reasonable for short members,
but the effects of coupled lange buckling and lateral-torsional buckling need further investigation. As
mentioned above local buckling is strongly coupled with generalized pull buckling in short beams (prob-
ably longer ones too0).

Local buckling generally degrades the performance of structural members in a cyclic load environ-
ment. Local buckling in a cyclic load environment often leads to tearing of material in the zones where
local curvatures are high due to cyclic changing of the buckled shape. Consequently, local buckling
directly limits the ductility of steel members under cyclic loading through low cycle fatigue. Documented
examples of low cycle fatigue caused by local buckling are plentiful. For example, local buck!ling of the
wall was found 1o cause significant degradation in the axial buckling of tubular struts (Zayas, Popov, and
Mahin, 1980). Web buckling in shear beams shows limit~load behavior which is arrested by the forma-
tion of a tension field. Eventual failure of these beams is caused by tearing in the high curvature zones of
the web (Hjelmstad and Popov, 1983).

Local buckling was observed in all of the test specimens in the current studv. Flange buckling with
litlle web deformation was the most common mode of local buckling, but in some cases flange buckling
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was accompanied by signiticant web buckling. The location of initial local buckling varied, sometimes
occurring at the fixed end. sometimes ai the point of load inside the link region, and sometimes at the
point of 1oad outside the link region. Asthe loading program progressed the amplitude of local buckling
increased dramatically, ofien becoming as [arge as the half flange widih. In the lauer portions of the
loading program local buckling was gencerally distributed among all candidate regions {i.e. highly com-
pressed flanges and adjacent webs).

The imponance of local buckling in the cyclic post-buckling response of ihe test pieces is difficult to
determine from these (or any other) experiments. Slight local buckling was present at the point of lateral
buckling in some, but not all, specimens. This observation would s sggest that the value of the limit load s
not sirongly affected by local buckling, a hypothesis which can t: ¢xplored analytically. In some of the
specimens local buckling was still slight after snapping through to the post-limit asvmptotic load. Since
the asymptotic buckling capacity was achievable under repeated cycling, in which the amplitude of ioczl
buckling grew dramatically, it would appear that this asympiotic load level, and thus the post-buckling
response, was not strongly affected by the amphtude of local buckling. The experimental data also sug-
gest that Jocal buckling dees not always affect the respanse of the beams in the pull direction, as yielding
pull loads were repeatable in the presence of considerable local buckling. If deformations are large
encuph, local buckling will generally lead to pull lateral buckling.

Influence of Lateral Bracing.- One of the main parameters investigated in this serizs of tests was
the effect of lateral bracing atthe point of loading. An idealized bracing system was configured to restrain
laieral motion, but not rotation, at either the top flange (Joad paint) or the boutom flange as shown in Fig.
4.3 Specimens | and 2 had no lateral bracing, Specimens 3 and 5 had top flange bracing. and Specimen
4 had bouom flange bracing. The effects of lateral bracing are discussed below.

The most favorabie location for bracing is the top flange, since the top flange is compressed under
the unstable push loading. However, in certain applications it might be costly to implement such a bracing
arrangement. As an example consider the eccentrically braced frames shown in Fig. 1.1. The links would
be subjected 10 a bouam flange loading. Eracing is ofien done with joist beams which are more shallow
than the main beam. Since it is desirable 10 use these joists to provide a level fioor surface, they would
frame intc the main beam at the top flange, providing bracing 7t the flange opposite the loaded flange.
Specimen 4 was tested to determine if far-flange bracing is effective in controlling lateral buckling.

The responses of Specimens 3 and 5 show that near-flange bracing effectively controls, but does not
preclude, lateral-torsional buckling. Lateral buckling of Specimen 3 did not occur until the third push
cycle, whereupon the brace buckled simulianeously. Specimen § buckled during the first cycle, but
snap-through was controlled by the lateral bracing allowing a load of 50k 10 be sustained in the buckled
configuration. (Specimen 3 had less post-buckling resistance because the brace was buckled. The brace
was completely removed frum Specimen 2 afier it buckled). Specimen § showed a limit load of 28,54 in
the second buckling cycle, and the asymptotic buckling capacity was 35% higher than the owher speci-
mens.

Specimen 4 did not buckle until the second cycle, indicating that far-flange bracing has some effect
on the response of the system. However, the post-buckling characteristics of Specimen 4 were similar to
the unbraced specimens. One can conclude that far-flange bracing is only marginally effective at improv-
ing the response of laterally buckling beams. It is interesting 10 note that the lateral motion of the bottom
flange was small {or both of the unbraced specimens in the post-buckling regime, indicating that the
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center of rotation during lateral buckling was near the bottam flange. Under these circumstances one
would expect bottom flange bracing 1o be ineffective. However, the location of the center of twist will be
different for different cross-secticnal geometries. The specimens tested may be a coincidental worst case
for far-flange bracing.

The buckling of the brace in Specimen 3 is particularly significant in that it gives us information on
inadequate lateral bracing. The brace was made of 3/4 in threaded steel rod, was 33 /n long, ang was
pinned at both ends. Hence. the ratio of the area of the brace to the area of the compression flanpe is
app.oximately 0.45. The brace easily meets the requirements of strength and stiffness proposed by Lay
and Galambos (1966). The bu "'ng load of the brace was about §% of the squash load of the compres-
sion flange (i.e. oobt,, much greater than the 2-2.5% traditionally suggested for such applications). The
brace buckled simulaneously with the beam and can therefore be considered undersized.

It would be difficult 1o make specific recommendations about lateral Yracing of short beams based on
the experiments, however, the foliowing observations seem appropria‘e

(a) Since the beam can adjust its center of rotation, single point bracing (or any bracing which
approximates it) is far less effective than bracing which also provides roiational restraint. If single
point bracing must be used, then bracing of the [lange closest to w. & point of load transfer is
superior 10 any other position. It seems prudent in the case of ecceatrically braced frames 1o
brace at the point of load with full rotational restraint.

(b) Tradio- ' estimates of the required size of the bracing member are inadequate for short beams,
possibly by a factor of two. However, in typical applications the size of the brace often far ex-
ceeds the minimum required to resist buckling.

The important thing to remember is that short beams represent an extreme case of latera! buckling. and
that the cyclic load environment presents some fundamentally different phenomena beyond the
monotonic loading case. The design of these elements requires due regard of these exuremes.

4.4 Apalytical Model of the Test Specimens

In order to put the experiments intoc proper perspective, we will further explore the behavior of the
prorped cantilever beams by perturbing the constitutive and geometric parameters of the theoretical
model. These parameter studies will be described in the following three chapters. It is important to
execute the perturbations about a configuration of the analytical model] which represents the experiments
well. This standard model was determined by adjusting the parameters (within the constraints of mea-
sured values) until reasonable correspondence with the experiments was attained. The standard model
will be the basis of all future parameter studies and is presented in this section.

The values of the parameters are given in Table 4 .5. The total length of the beam, L, is taken tobe
82 in and the distance from the fixed end of the beam ta the point of load, !/, is taken to be 20 in, as
measured in the experiments. The dimensions of the cross section of the beam are taken equal to the
measured values of the test piece. The elastic moduli of the material are set to values generally accepted
for steel while the yield strength and ultimate strength are as measured in the material tests. The load
transfer mechanism is idealized using a rigid link as shown in Fig. 4.12. The point of load application is a
distance ¥ above and 7 to the right of the shear center. The standard value of the 10ad height is taken to
be the distance from the shear center to the center of the loading clevis 2s measured in the experiments.
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Table 4.8 Dimensions and properties of the standard model

Section dimensions (in)

Member properties (in)

Material properties (ksi)

Depth, & 9.82 | Length, L 82.00 | Youngs modulus, £ 30,000
Width, b 4.00 | Load position, { 20.00 | Shear modulus, G 12,000
Web thickness, ¢ 0.18 | Height of load, & 9.41 | Yield strength, 0o 48
Flange thickness,r,  0.20 | Eccentricity of load, ¥ 0.01 | Ultimate strength, g, &9

The rigid link is modeled with a finite deformation box-section beam element. The element is made very
stiff and remains in the elastic state throughout the loading histories, The validity of modeling the load
position in this manner should be clear. The kinematics of the analytical model are referred to the line of
centroids, which coincides with the line of elastic shear centers, only for convenience. Because the mode!
is formulated in terms of stress components, the constitutive equations are treated locally, obviating the
need for keeping track of the instantaneous location of the inelastic shear center. Stress resultant beam
theories relyv crucially on knowing the location of the shear center, but they do so only 1o get the constitu-
tive equations ¢orrect.

Fig. 4.12 ldealized load transfer and bracing mechanism

The finite flexibility of the fixed end, due to the presence of the load cell, is examined in Chapter 6.
Since the load cell used in the experiments was a circular tube, its torsional flexibility is negligible in
comparison with that of the test piece I-section. On the other hand, the flexura! flexibility of the load cell
was on the same order as the test piece. The load cell is modeled with a box section in the analytical
studies as shown in Fig. 4.13. The length of load cell is designated as /. . The box section is a reasonable
mode! of the load cell because it has a similar ratio of torsional to flexural stiffness and was much easier to
implement numerically than a circular beam. In Chapter 6. various end flexibilities are examined by
changing the length and cross-sectional dimensions of the load cell.

The effects of lateral bracing sre examined in Chapter 7. The lateral bracing arrangement was ideal-
ized as shown in Fig. 4.12. The position of the brace was enforced by placing a rigid link (modeled with
the box section) between the shear center and the brace point as shown. The brace was pinned to the
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Fig. 4.13 Idealization of test beam with load cell

rigid link and enther pinned or fixed at the support. In the parameter studies the brace elevation A was
varied while the length of the brace and its lateral position (about 1 in left of the web) were held fixed.

In addition 1o the properties listed in Table 4.5, the following consttutive parameter values also
characterize the standard mode): (a) the equivalent plastic sirain at the onset of strain hardening, & =
0.0235 and 7b) the nonlinear isotrepic hardening moduli of the exponential hardening model, X'=0and
y = 25. The values of the constitutive parameters were approximated based on the experimenta! tensile
tests. The hardening moduli will be the same for all parameter studies.

The analyses were carried out with displacement control at the point of lcad. The vertical displace-
ment and rotation at the shear center under the point of load are used 10 characterize the displacement
history in the parameter studies,

4.& Validity of the Propoesed Analytical Model

In this section we present the cyclic response of the standard model as evidence that it represents the
phenomena observed in the experiments well. In particular, we note that most of the typical features
noted in the experiments are reproduced faithfully by the analytical model. Only qualitative comparisons
between analysis and the experiments are made because the measurements of the movement of the fixed
end in the experiments were not sufficient o produce an accurate model of the end flexibility.

The cvclic inelastic response for the standard model (without load cell), under the load history of test
Specimen 2, is shown in Fig. 4.14. Observe that the qualitative behavior is well represented by the
analviical model, particularly the initial buckling response., the recovery and yielding in the pull direction,
and subsequen: push buckling.

ince the analytical model is based on a beam-1ype kinematic hypothesis, the analytical mode! is
unable 10 represent local buckling of the web or flange elements. In view of the fact that the mode)
reproduces nearly all aspects of the ¢yclic load response of short beam. except possibly the final failure
mode, one can conclude that local buckling plays a secondary role in the response of these systems. In
panticular, the asymptotic post=buckling capacity is not affected by the local buckling. It would appear
that proper modeling of the finite rotation of the cross—section is sufficient 10 accurately capture the
lateral buckling and post-buckling response of these beams. The excellent qualitative correlation be-
tween analysis and experiment lends credence 10 the model and to the parameter studies that follow.

63



/

—1

i

0.0 04
vertical Displacament (in)

(¥ ]

-4

-30

Applied Load (k)

80 T 1 T T
40 4
- «
-40 =
b 4
-8 1 i [ i
-~0.1 0.0 0.1 0.2 0.3 0.4

Rotation (rod)

Fig. 4.14 Cyclic load response for the standard model

64

08



.

Chapter §

An Analytical Study of the Parameters Affecting
the eneral Response of the Test Specimens

The general cyclic lateral buckling response of the test specimens without #nd flexibility and latera!
bracing is examined in this chapter. Parameters studied include constitutive parameters, residual
stresses, geometrical imperfections due to the eccentricuy of loading, cross-sectional dimensions, total
length, locations of load, and remote boundary conditions. The response of the systems with perturbed
parameters are compared with the response of the standard model described in the previous chapter.
The configuration of 2 standard model is shown in Figs. 4.13 and 4.12, and its properties and dimensions
are listed in Tahle 4.5.

§.1 Effect of Constitutive Parameters

Several constitutive parameters are expected (o have an impontant effect on the buckling resistance
of beamns, Among these are the yield strength, the fength of the yield plateau, and the strain hardening
parameters. These parameters are important because ylelding tends to reduce the beam's resistance o
buckling, especially for short beams. The following parameter study is designed to assess the imponance
of these material parameters for both cvelic and monotonic loading conditions.

The material properties of the standard mode! are as follows: yield strength (g, or &) = 48 ksi,
ultimate sirength (o, or x,) = 69 ksi, and equivalent plastic strain at the onset of strain hardening €, =
0.0235. Ulumare strengths 89 ksi, 79 &s5i, and 89 ksi correspond to yield strengths 48 ksi, 58 ksi, and 68
ksi. respectively (except for the perfectly plastic case). which means (he shape of the strayn hardening
curve is the same regardless of the value used for the yield strength. Kinematic hardening employed in
the proposed cyclic plasticity mode] was automatically included in all cases, except where this patameter
is explicitly studied. Fig 5.1 describes the above mentioned constituti s parameters.

As expected. the yield strength influences the initia) buckling load and post-buckling capacity of the
beams, as shown in Figs. 5.2{q,b). While the responses of initial-buckling are the same for the strain
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Fig. 5.1 Description of the constitutive parameters
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hardening case as for the perfectly plastic case at the same yield strength, the post-buckling capacity of
the strain hardening case is larger than that of the perfectly plastic case for the same yield strength. The
difierences beiween them ire almost the same regardless of the yield strength. The response curves of
the perfectly plastic case and the strain hardening case in the post-buckling regime do not coalesce at
farge deformation because strain hardening has its greatest influence there. Judging from these observa-
tions, yield strength has a preponderant influence on the initial-buckling load and the post-buckling
behavior. Inizial-buckling generally occurs before strain hardening starts and hence strain hardening
affects only the post-buckling response. Figs. 5.2(c~/) show the influence of ezch yield strength on cyclic
response. As yield strength in.creases, pull yield load and asymptotic post-buckling capacity also increase
notably.

Difierences in the cyclic responses between the strain hardening and the perfecuy plastic casas are
illustrated in Figs. §.2(g-1). The latter case has 3 slightly smaller pull load and asymptotic post-buckling
capacity than the former one in the first cycle. The difference becomes smaller with additional cycling.
Observe that yield strength also has an influence on the cyclic response even in the perfectly plastic case
and the effect of strain hardening on the response to cyclic ioading.

The influence of the length of the inftial yield plateau is examined in Figs. 5.3(a,b). The response
{including strain hardening) without an initial yield plateau has a slightly larger initial buckling load than
any case witk an initial yield plateau. The post-buckling respanses are bounded above by the case with
no plateau and below by the perfectly plastic case (infinite length plateau) for the entire range of
monotonic¢ behavior. The response curves for various platéau lengths do not converge on each other at
large deformaticn probably because of strain hardening. Initial buckling occurs while most of the yietded
material is on the yield plateau at plastic strains less than & = 0.01175, as evidenced by the fact that the
responses for cases having a yield plateau greater than this value are identical at buckling. The effects of
length of the initial yield plateau on the cyclic response of the test beams are examined in Figs. 5.3(c.d).
The siandard case (# = 0.0233) is compared with the case in which there is no yield plateau in Figs.
5.3(c.d). As noted previously the initial buckling load is slightly larger than with no plateau. Because
strain hardening manifests earlier in this case the pull yield load and subseqnent buckling loads also tend
10 be greater than the case that has a yield plateau. The observations are reinforced by comparing the
other bounding case (perfectly plastic) with the standard case (Figs. 5.2(£.h)). In general, one might
conclude that the effects of the length of the yieid plateau are minor.

Figures 5.4(a.p) show the influence on the cyclic buckling response of the kinematic hardening
model used 1o simulate cyclic plasticity here. Due to the change in the way Bauschinger’'s effect is mod-
eled in the absence of kinematic hardening, notable differences in the response during the pull recovery
{rom buckling can be seen. The response of kinematic hardening reduces the carrying capacity at compa-
rable levels of deformation. Kinematic hardening alsc reduces the subsequent buckling loads. Qualita-
tively comparing these results with the cyclic load response of test specimen 2 in the experiments (Fig.
4.7), ont can recognize the importance of kinematic hardening (o the model.

§.2 Effect of Eccentrically Placed Load

Systems which exhibit limit Joads with unstable post limit behavior are generally senstive 10 geometric
imperfections. One of the imponant geometri¢ imperfections in the propped cantilever test system is

68



Applied Lood (k)

Applied Load (k)

Applied Lood (k)

— T T T T
s 1
[ A1
- 0.00000 -4 40
0.01175
0.02350
- -
I
o 20
[ <4
(a}
. 1 i —te 1 " L " ()
0.0 0.1 0.2 0.3 0.4 05
Vartico! Displocamant (in)
v R 80
L 4 40
L 1
0
o v - -
- ~ ~%0
1
| 0.02350 4
© | eseeeeeaes 0 00000
——— PO ——— -%0
-0.5 Q.0 Qs .0
Verticol Displocement (in)
Fig. 5.3 Effect of length
. Ty —y——r— 80
3 .
- 1 40
Q
3 -
- 1
L w/! kinematic hardening 4
@ ===+ wio kinematic hardening
P S By PR ST U G R i <80
=05 2.0 03 1.0

Vertical Displocemant (in)

0

I
&)
4] i A " )] i
-1} o 02 03 0.¢
Rototion {rod)
0 —r - -
i 1
el 1
o
S ]
-40
7
3 0.02350
(d) 0.00600
-80 — — A 1 i
-0.3 0.0 0.3 0.6
Reotation (rad)
of initial yield plateau
80 ~———r —_
L 1
40 -1
o
[ ]
40 | 4
| ——— w/ kinematic hardening 4
[()] -=~=+ w/o kinematic hardening
) — " I 1 —
-0.3 0.0 6.3 0e

Rotation (rad)

Fig. 5.4 Cyclic load response for kinematic hardening with isotropic hardening

69



eccentricity of the line of action of the load with respect to the shear center (and centroid) of the cross-
section (Fig. 5.5). An eccentrically placed load will promote rotation of the cross-section prior 10 the
buckling and will therefore reduce the magnitude of the limit capacity. In this section we examine the
effect of eccentric placement of load on the monotonic and cyclic response of the test sysiem.

-
‘P

o oy U0

Fig. 5.5 Eccentricity of load position

In general, it is impossible to achieve perfect placement of load in a physical test, although every
effort was made to do so in the 1es1s reported here. In nature, even a perfect system will buckle if it passes
through a bifurcation point. A perfect numerical model wil' not necessarily do so. In the studies per-
formed here values of the eccentricity smaller than 0.01 in gave identical response of the sysiem with
respect 1o lateral buckling. Therefore the 0.01 in eccentricity is adopted as the perfect system for the
analytical model. This value is designated e, in the subsequent study. Comparison of the perfect analyu-
¢al model with the experimenis would indicate that perfect load placermnent was nearly achieved in the
experimental system.

The results of initial monotonic buckling with values of eccentricity of e;, Se,, 10e;, 20¢; and 50¢,
are shown in Figs. 5.6(a,b). One can observe a considerable reduction in limit capacity {or the modest
eccentricities examined. The sharp imit response with sudden loss of capacity prevalent at small eccen-
tricities begins to disappear at large eccentricities. One could surmise that the limit-type behavior would
disappear entirely for a large enough eccentricity. For all values of eccentricity the post-buckling capac-
ity is the same, even though for large eccentricities censiderable deformations are required to achieve it.
The tendency toward the same post-buckling capacity highlights the fundamental importance of this
resistance parameter 1o the general response of these systems.

The cyclic response of the beams with initial load eccentricities is illustrated in Figs. 5.6(c~f). cover-
ing eccentricities of e;, 102, and 50 ¢;,. One can observe that these eccentricities play a minor role in the
cyclic response, the extent of influence being directly related to the magnitude of the eccentricity. This
loss of memory of the initial eccentricity is expected for systems like these which experience consideralle
yielding.

5.3 Effect of the Height of the Load Point

It is well known that the height of the load with respect 10 the shear certer of the cross—section has a
significant effect on the linear elastic iateral buckling load. One would also expect it to have an important
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influence on the inelastic buckling response. The effect of the height of the load on the elastic linearized
buckling loads for the test configuration 1s shown for both pull and push loading directions in Fig. §.7. In
the experiments, the height of the load, measured from the center of the clevis was approximately 9.4 jn.
This value is taken as the standard value for the present parameter study which examines the response
for both cyclic and monotenic loading conditions. A rigid link was used 1o apply the load remote from the
shear center, as shown in Fig. 4.12.

LI T

Buckling Load (k)

' sxperiment
o) 1 L A 3 SR § -
] S e 18 20
F {in)

Fig. 8.7 Effect of height of load on linearized buckling load

The monotonic buckling and post-buckling response curves for the propped cantilever for Ipad
heightsof 5, B, 9.4, 11 and 14 /n are shown in Figs. 5.8(a,b). As expected, the initial-buckling load and
post-buckling capacity increase with a decrease in 1n the height of load, and the rate of loss of post-buck-
ling capacity is lessened as the height of load decreases. The response curves of post-buckling do not
coalesce at large deformation. Buckling is quite delayed for a load height of 5 in. One would thus expect
that the beam would be more reluctant 10 buckle as the load is zpplied nearer 10 the shear center.
Response to loads applied in the pull direction are expected to be stable.

The effects of load height on cyclic response are shown in Figs. 5.8{c-/fy. The height of § in is
compared with th.e standard case in {c,d) while the height of 14 in is compared with the standard case in
(e ). There is virtually no difference in the pull yield load, but the asymptotic post-buckling response is
greatly influanced by the height of the load. The height of the load application has a significant influence
on the limit Joad, the posi-buckling response at large deformation, and the response 10 subsequent cyclic
loading.

5.4 Effect of the Load Location slong the Beam Length

The propensity of a beam ta buckle laterally is directly related to the distance of the potentially
destabilizing force from a point where torsional motion is restrained. In design this distance is ofien
calied the faterally unsupported length. Qualitatively, the torsional stiffness accrues linearly with length
from St. Venamt resistance and cubically with length from warping torsion resistance for an elastic beam.
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For short beams the warping torsional stiffness becom.es so great as to practically prectude buckling. This
tendency is illustrated in Fig. 5.9 which gives the linearized buckling load as the position of the load is
varied over the entire length of the propped cantilever beam. Here, the minor length, !, can roughly be
considered the unsupported length of the beamn. As the point of loading approaches the supports the
linearized buckling load becomes large, indicating less propensity toward buckling. The beam loaded
remote from the supports shows a relatively great propensity to buckle. The length of beams examined
herein lie in the tracsition range between clearly long beams and short beams which are generally reluc-
tant 1o buckle.

Buckling Load (k)

200 |

o m 1
Fig. 5.9 Effect of location of load on linearized buckling load

The purpose of the present secuon is to put the buckling of short beams into the wider context of
longer beams which are more common in applications and which have been more thoroughly studied.
There is basically one issue at stake here: Fven if 2 beam is akle to reach its fully plastic capacity. might it
vet buckle and thereby sulfer imporant design canseguences. These issues are exarmned in the sequel
both for monotonic and cyclic loading.

As expected, the location of load along the length of the beam has a great influence on the initial-
buckling ioad and the post-buckling response, as shown in Figs. $.10{a,&). The limit point can be seento
be sharper as the location of the load approaches the middle of beam, and initial buckling is delayed as
the location of the load approaches the fixed end. The response curves of post-buckling do not coalesce
at larpe deformation. The dot symbols (#) on the monotonic response curves (Figs. 5.10(a.b.8)) repre-
sent the points where the loading direction changes from push to pull in the cyclic loading histories

The beam of length / = 15 in exhibits 2 strong reluctance to buckle. However, as shown in Fig.
5.10(g) even this short beam buckles at 2 vertical displacement of over 1in. For the cyclic loading history
this beam survives the first cycle without buckling but buckles in the second cycle, demonstrating that
inelastic cycling greatly increases the tendency for a beam to buckle. Since a great degree of strain
hardening had occurred prior to buckling, the subsequent push and pull capacities were greater than the
comparison beam {/ = 20 in). However, buckling did have a typically debiltating effect.
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Fig. 5.10 (cont.} Effect of the location of the load aiong the length of the beam

The cyclic response of a longer beam (/ = 30 fn) is compared with the standard (! = 20 in} in Figs.
5.10(¢.?. While the 30 in beam clearly exhibits inferior behavior. the qualitative aspects of response are
similar for the two cases.

5.5 Effect of Cross-Secticnal Dimensions

Resistance to lateral buckling clearly depends upon the geometric properties of the beam. In panicu-
lar. the cross—sectional dimensions are expected to strongly influence the behavior. The W10x12 section
examined in the experiments is geometrically similar to many of the available “beam” type sections in the
W18 and deeper classes, which are characterized by deep webs with relatively narrow flanges. For short
beams a great deal of the resistance to buckling comes from warping resistance which is dominated by the
major moment of inertia of the flanges and the distance between them. Conseouently, beam depth and
flange widith can be considered the most important geometric properties of the beam.

In this section we present a parameter study which is ue:igned to assess the effect of width and heigh:
of the cross—section both for monotonic and cyclic Ioading conditions. Since a variation of the cross-sec-
tiona! dimensions with no chanpe of length would give exaggerated results, the total lengths of the
propped cantilever are chosen to give the same elastic deflection at the point of loading as that of the
standard case. All the dimersions of the beam studied are described in Table 5.1. Note that for the
height of beam 1.5 times that of the standard case the height of load application is increased accordingly.
The dot symbols have the same meaning as those of the previous study.

The monntonic buckling response for a beam of depth 9.8 in(standard) and width of 4, § and 6 in
are given in Figs. 5.11(a.b.g). The cyclic response of these cases is given in Figs. 5.11 (c=f}. One can
observe that initial buckling is delayed by increasing the ratio of width to height of the cross-section
without a change in the depth. There is a dramatic delay in initia’ buckling 1t the width of 5 in, and at the
width of 6 in the beam does not buckle until well into the st-ain hardening regime. One remarkable
featwure of the monotonic response is that the load versus rotauon curves are nearly paralls! for the thiee



Table 5.1 Description of cross-sectional dimensions

htin) | b Gm L (in) ! (@in) a (in)

98 | 4.0 J 82.0 20.0 9.4 (standard case)
9.8 50 85.4 20.8 9.4

9.8 6.0 \ 88.3 21.5 9.4

147 | 40 | 114.6 27.9 11.9

cases, despite the differences in vertical displacements. The asymptotic post-limit capacity also increases
with the width of the beam.

Contrary to the case of variation in the width, changing the depth results in a relatively small change
in the limit load, as shown in Figs. §.12(e-d). However, the deeper bearm. exhibits a much sharper limit
point than the standard case. The post-limit response curves converge right afier initial buckling for
monotonic loading. and the asymptotic post-buckling capacity is almost the same for both. The load-ro-
tation curves are nearly identical for the two cases.

The ¢yclic responses of the two cases are shown in Figs. 5.12(c,d). A peculiar feature can be noted
in the first pull yielding region wherein a limit load occurs in the pull direction. Otherwise, the deeper
secuon behaves like the shallower beam in the cyclic regime. One might conclude that increasing the
flange width is an effective way to control buckling whereas increasing depth is not.

5.6 Effect of Total Length and Ratio of Load Location to Total Beam Length

The 1012l length of the beam and the location of the load alorg the length are two other important
geometric parameters, The location of load along the length of the p2am has already been discussed. but
it must also be considered in the study of different length beams. The effect of beam length will be
examined in this section. Figure 5.13 shows the effect of total leng:h with a constant ratio of the ioad
location to the total beam length, I/L = 20/82, and the effect of the total length wath constant location of
load, I = 20 in, respectively, on the elastic linearized buckling loads. The effect on the linearized buckling
load of the load location along the beam length (with constant total length, 82 in) can be found in Fig.
5.9. The buckling load is quite sensitive 10 these parameters with the shorier beams showing a reluctance
to buckle. The experimental values of these parameters, shown on the sketch as dots, are generally in the
transition region. In this section we study these parameters for both ¢yclic and monotonic loading cases.

The limit load and asymptotic post-limit capacity decrease rapidly with an increase of the tortal length
of the beam., at the constant ratio, I/L = 20/82, as shown in Figs. 5.14(a k). The post~limit degradation of
capacity decreases as the total length of beam increases, with flexible beams hardly showing a limit point.
As shown in Figs. 5.14(c.d), there is a great decrease of pull yield load and and asymptotic post-buckling
capacity in cyclic loading response.

Figures 5.15(a.b) show the monotonic behavior of the beam for various total lengths but with a
constant location of load at ! = 20.0 in. In contrast to the orevious case, iniual buckling load and asymp-
totic post-buckling capacity > not decrease very rapidly with an increase in length. Also the limit point
does not get sharper with an increase of the total length. This aspect might be anticipated from Fig.
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5.13(k}), where the experimental value of this case is on 2 less sensitive region of the curve than the
previcus study.

The response to cyclic loading is shown in Figs. 5.15{(c~f) Winle the asymptotic post-buckling ca-
pacity shows no difference from that of the standard case, the pull yield load decreases and the sharpness
of the limit point disappears, as the tota! length of beam increases with constant location of load. From
these observations the total beam length has a great effect on the initial-buckling, and the load ¢ cation
has the predominant infiuence on large deformation behavior and ¢yclic response.

5.7 Effect of Residual Stresses

Residual stresses have long been recognized as having an imporntant influence on the 1nelastic buck-
ling of beams and columns. The beam stiffness is reduced by early yieldmg due to the presence of
residual stresses, increasing the propensity 1o buckle. The pattern of residual stresses is well established
for virgin secuons, but this pattern may be changed by cyclic inelastic straining. Therefore we must
reexar.ine our understanding of the effects of residual stresses for cyclic loading conditions. The pattern
that exists in the cycle pr..r to buckling will determine the buckling characteristics of the beam {or the
subseguent cycle. A study of the influence of the distribut‘on of residual stresses on beam buckling is
made for bath monotonic and cyclic loading conditions. A basic polynomial residual stress pattern is used
for the analytical approximation, as shown in Fig. 2.4, and the maximum values range from 0 to g, in
steps of 0.250, without changing the pattern.

Since yielding with residual stresses occurs well before initial buckling, the limit capacity decreases
and the limit point blunts with an increase in the maximum value of residual stresses, as shown in Figs.
$.16(a.b;. The response curves in the post-buckling range coalesce ai large deformation. There is no
difference in the asymptotic post-buckling capacity and pull yield load on the cyclic loading response.
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This feature indicates that the residual stresses have na effect on large deformation behavior. They also
have little effect on response to cyclic loading as shown in Figs. 5.16(c~f). Even though there are some
differences a1 and afier initial buckling, compared with the response of the standard case, the response
seems to be almost recovered through the straightening of the residual twist left by inelastic buckling.
Judging from this observation, the effect of the residual stresses is weaker than the influence of the
residual twist of the beam left by the buckling

§.8 Effect of Right End Boundary Condition

The degree of fixity at the boundary remote from the load is important 10 the buckling behavior. The
clean support conditions realizable in an analytical environmenyt are difficult to implement experimental-
ly. Consequentlv, the end conditions in the experiment are unknown and need 1o be examined. Three
idealized righ. end boundary conditions are considered here: simple(translation and torsional rotation
fixed), torsional warping{simpie plus warping fixed). and fixed (2ll fixed). These ideal conditions should
give insight into the boundary conditions that existed in the experimenis. A siudy of the effect of the
right end boundary conditions is made for both monotonic and cyclic loading cond:tions. The boundary
condition of the standard model is the simple support.

As expected, initial-buckling and subsequent post-buckling capacities increase as right end fixity is
increased, as shown in Figs. 5.17(af). Torsional warping restraint delays initial buckling and increases
limit capacity. For the fixed support, the limit capacity increases much more over the simple suppoit than
does1the addition of only 1orsional warping restraint but initial buckling occurs at almost the same vertical
displacement as the simple case. This difference in buckling behavior could be auributed to the differ-
ence in inital stiffness. The lpad-rotation curves are nearly parallel and have different asymprotic post~
buckling capacities. The pull yield load and asymptotic post-buckling capacity of the fixed support are
much greater than those of the simple suppont condition. However, qualitative aspects of rasponse for the
three cases are similar for cyclic loading. From these observations, it can be recopgnized that restraint of
torsional warping helps resist the initial buckling only. while full {ixed has an effect on the response
throughout the cyclic Joad history.

5.9 Summary

The general behavior of the test specimens with respect to various constitutive, topologic, and geo-
metric parameters has been examined in this chapter. The main observations are summarized as follows:

(1) Effect of constitutive parameters.~ The effect of material yield strength has a strong impact on
the limit capacity. However, the limit capacity appears simply 1o be proportional 1o the material
yield strength. Initial buckling generally occurs belore the onset of strain hardening for the current
loading history. Most yielded zones remain on the vield plateau for a litle while after initially
buckling, but some points reach strain hardening with increased cycling. The influence of Baus-
chinger’s effect, as realized through the kinernatic hardening parameter of the current cyclic plas-
ticity model, was also found to be important 12 cychc response.

(2) Effect of eccentrically placed load.- Tha limit capacity is very sensitive to slight horizontal load
eccentricities. However, only large initial load eccentricit:es have an effect on large deformation
post-buckling behavior and subsequent cyclic response.
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3)

4

5)

(6)

(7)

(8)

Effect of the height of load application.- Initial buckling capacity and asymptotic post-buckling
capacity is very sensitive 1o the height of the load. The limit canacity snd post-limit capacity
increase with a decrease of the height of load application. The buck'ing of the beam is delayed as
the application of load approaches the shear center of the cross-section of beam in the push
direction of Joad. The beam is quite reluctant to buckle when the load is spplied near the shear
center, and is generally stable in the pull direction.

Effect of the load location along the beam length.~ The location of load along the length of
beam significanty influences the initial-buckling load, the asympuotic post-buckling capacity, and
pull yield load. Initial buckling is delayed as the location of the load moves toward the fixed end,
even to the point of occurring after the first cycle in the cyclic loading condition in the current
displacement history if the load is close enough to the fixed end

Effect ¢, ¢ Joss—sectional proportions.- The depth of the beam has much less impact on the
initia” 1 xling capacity, large deformation post-buckling behavior, and subseguent response to
cyclic loading than does the flange width. The importance of warping resistance for short beams is
a plausible explanatuon for this observation.

Effect of total length and ratio of load location to tota! beam length.- Both the 1otal length
{with constant ratio of the location of load 10 the total length) and the ratio of the distance of the
load from the fixed end to the 10tal length (with consiant location of load) have a large influence
on the limit capacity. The total length (with constant ratio of the location of load to the total
lengih) alsc has a large effect on the asymptouc post-buckling behavior under cyclic loading.

Effect of residua) stresses.- The residual stresses have an influence on the limit capaciv of the
beam, but have no effect on large deformatior post-buckling behavior and subsequent response
o cyclic loading. The influence of the residual siresses is apparently overshadowed by the effects
of the residuzl twist in the beam left after inelastic buckling.

Effect of the boundary condition at the right end.- The fixity of the end remote from the load
affects the limit capacity, the pull yield load. and the asympiotic post~buckling capacity. Clearly
full foaty has a greater effect than does the addition of only torsional warping restraint. However,
the latter form of restraint has a surprisingly large amount of influence on initial buckling behavior
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Chapter 6

An Analytical Study of the Effects of End Flexibility and Pre-yielding
on the Response of the Test Specimens

The “fixed” end of the propped caniilever beam in the experiments was actually flexible because o
1the existence of the load ceil and the bolied connections between the test piece and reaction block. This
added flexibility has an impornant influence on the response of this type of system. It is, for example, well
known that the linearized buckling load of elastic systems is reduced by the presence of additional flexi-
bility (the proof is in the Rayleigh quotient). It is also known that camber and pre-buckling deflections
have an effect on the buckling response of a systemn. Some of the differences in response of the more
flaxible systrm will come from the presence of greater pre-buckling deflections.

In this chapter we study the effects of end flexibility on the behavior of the test specimer.: in order 1o
make qualitative judgements about the comparison between experiments and theory and to generalize
the experimental results. The end flexibility is modeled with a beam segment which can have propenties
different from the test span. The model is reminiscent of the load celi in the tests and thus will be called
the “load cell” in the sequel, even though there is no need for a load cell in the theoretical moadel. The
main differenice between the load cell and the test span is the difference in the torsional rigidity. An
element with a square tube cross—section (called box-section in the sequel), without warping degrees—of-
freedom, is used to model the load cell {the foad cell in the experiments was a circular tube). The
response will also be compared with that of two beams having load cells of low torsional rigidity, either a
beamn with the same cross—section as the test piece or one with one quarter again as much depth. The
cross-sectional dimensions of the model load cells are given in Table 6.1. The placement of the load cell
is as shown in Fig. 4.13, and its length will be designated as /,.

Another important influence on the buckling behavior of beams is the history of inelastic deforma-
tion. In particular, the initial buckling reponse of the test specimens seemed to be affected by pre-yield-
ing from an initial pull loading. The beam properties which may be influenced by pre-yielding include the
residual stresses ang the initial camber of the beam as it enters the mitial push buckling cycle. While the
issue of pre-yielding is not directly related 1o end flexibility, it is studied here because we wish 1o examine
the eifect of end flexibility for beams which have no pre-yielding and for beams which do have pre-yield-
ing.

In this chapter, the eftect of end flexibility in the fixed end is ex2mined for monotonic push and pull
loading sequences as well as cyclic loading, varying the length and cross-sectional dimension of the load
cell. The imponant effects of end flexibility are summarized in Section 6.4.

Table 6.1 Cross-sectional properties of the model load cells

Section T h . { & El GJ
ection 1ype Gn) | Gm) (in) Gn)  [10% (in*-k) | 10° (in-k)
box-section 6.0 6.0 0.5 05§ 2.16 1296
I-section 1 9.82 4.0 0.18 0.2 1.58 0.485
J-section 2 12.3 4.0 0.18 0.2 2.64 0.542
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6.1 The Effect of End Flexibility on the Linearized Buckling Loads of the System

As before, we will use the elastic linearized buckling analyses as a point of departure in studying the
effects of end flexibility on the buckling of the propped caniilever system. The linearized buckling lead is
interesting because it exhibits the effects of geometry on the equilibrium of the system aparnt from the
effects of the constitutive model. One can thus learn a great deal about the stability characteristics from
these analyses even though the system of interest exhibits inelastic buckling. This same reasoning lies at
the hean of most design formulas for inelastic buckling. The iinearized buckling analyses are useful for
establishung 2 context for discussing stability, and become truly useful only when resulis on inelastic
buckling are also examined. Inelastic buckling will be treated in the subsequent sections.

The presence of a Joad cell at the fixed end of the beam gives rise (0 essenually two effects: end
retation with concomitant in-plane vertical deflection from the rotational flexibility and end displace-
ment with concomitant in-plane verical deflection from translational flexibility. While the load cell
couples these effects, it is instructive 10 examine them independently first. Figure €.1 shows the effects of
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Fig. 6.1 Comparison of linearited push and pull buckling foads for end fiexibility

(a) rotational flexibility in the absence of translational flexibility and (5) wranslaticnal flexibility in the
absence of of rotational flexibility on the elastic linearized buckling load of the propped cantilever sys-
tem. For both of these cases the load is applied at the standard value of 9.4 in above the shear center of
the cross-section. The length of the beam is L = 82 in, with load positioned at / = 20 in from the left end,
The bearm has the standard cross—section {(W10x12) and the simple end resists vertical and lateral dis-
placement, torsional rotauon, and warping. Results are given both for the push (down) and pull (up)
directions, and are expressed in terms of & nondimensional ratio of beam stifiness to spring stiffness.

The elastic linearized buckling load decreases with increased flexibility of the suppon, as expected.
in both cases. One can again observe the effect of load height with respect to the shear center in the
greater buckling loads for pull as opposed to push loading. Note the extreme sensitivity of the pull buck-
ling Joad 10 end flexibility. For example, the system with a rotational spring has a value of 435 k for the
nigid case, which decreases 1o a limiting value of about 150 k as the flexibility increases. The push load
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case is not nearly so sensitive, going from about 108 £ to a limiting value of 76 k. It is interesting 10 note
that there is little difference between the push and pull buckling loads for a system with a relatively
flexible translational spring. It is apparent that the translational flexibility has a much greater influence on
the buckling load than does the rotational flexibility.

The load cell provides a coupled influence of rotational and wanslational flexibility. In fact, the
linearized stiffness matrix for the rotational and translational degrees of freedom already defined is given
by the expression

K = :’-ﬂ[z‘a 31‘] (6.1)

where /_ is the length of the load cell and the moment of inentia, J, is roughly proportional to the depth of
the load cell cubed.

The variation of linearized buckling load with the length, ! . and depth, k. of the (box-section) load
cell is chown in Fig. 6.2. The properties of the test piece and loading are all held fixed at their standard
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Fig. 6.2 Comparison of linearized push and pull buckling load far thc model load cell

values as the two parameters indicated are varied. In (a) the cross-section of the load celi has depth h=6
in and thickness 7=0.5 in, while in (b) the length of the load cell is J, 212 in. The dots (®) on the curves
indicate the standard value of the parameter. As in the case cf the uncoupled springs, the buckling load
with the load cell decreases rapidly with increasing flexibility, realized either by increasing the length of
the load cell or by decreasing its depth. For long load cells it would appear that the translational flexibility
controls the buckling behavior. This tendency is expected since the translational flexibility is proportional
to I while the rotational flexibility is proportional 1o /, . For the shor load cell {f, =12 in) the push and
pull buckling loads remain quite different for all values of A uniil A approaches zero. In general, the
buckling load is not very sensitive to the depth of the load cell particularly in the push direction of

loading.
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The differences in the buckling loads for the cases studied so far are due to differences in the planar
stiffness of the system. Since torsion is the predominant mode of buckling deformation, one might sus-
pect that the torsional stiffness of the load cell would have an influence on the buckling behavior. To
examine the effect of the torsional stiffness of the load cell we consider the three cross-sections de-
scribed in Table 6.1: the box-section of the previous studies and twe 1-sections of different depths. The
variation in buckling load with the length of the load cell for push loading for these three load cells is
shown in Fig. 6.3. The curve of /-section I represents the response with a load cell with the same

12¢ T ¥ Y

Buckling Lood (k)

{ (in)

Fig. 6.3 Eflect of torsional rigidity of the mode! load cell
on the elastic linearized buckling load

cross-sectional dimensions as the test piece, waile the curve of /-seciion 2 represents the response with a
load cell with an I-section 1.25 times as deep as the test piece. Table 6.1 shows the (in-plane) flexurai
and torsional rigidities of each cross—section. I-sections 1 and 2 have very small torsional rigidities {(G.J)
compared with that of the box—section, but have comparabie flexural rigidities (E/). The flexural rigidity
of I-section 2 is even larger than that of the box-section. As expected, the lower is the torsional rigidity,
the lesser is the buckling load. However, the torsional stiffness of the load cell appears to have a smaller
influence on buckling than does in-pl>r= flexibility. For short load cells, the differences in buckling
loads are much less because of the influence of warping resistance in the I-beams.

6.2 The Effect of End Flexibility on the Monotonic Inelastic Response of the System

In the previous section the test piece and load cell were assumed 10 remain elastic during buckling.
For the geometric dimensions considered here. elastic buckling will seldom, if ever, occur. Consequernt-
Jy, we must re—examine the buckling pehavior in the light of inelastic material behavior. The constitutive
parameters studied in Chapter 5 will not be as extensively studied here. Rather we will adopt the standard
values 1o ze—examine the effects of the length and depth of the load cell. In this section we consider the
monotonic response both for push loading and for pull loading. The subseguent section is devoted 10 the
consideration of cyclic loading.
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6.2.1 Variation of Parameters for Pull Loading

We have established from the elastic analyses that pull loading is inherently more stable than push
loading. One would expect this increased tendency toward stability to carry over to the inelastic case. In
fact, one can reason that the inelastic case exhibits this characteristic more strongly because of the
likelihood of generalized yielding intervening before buckling can take place. The relatively large inelas-
tic deformations act to camber the beam into 2n even more favorable position for resisting buckling by
moving the point of application of load further from the average Line of shear centers of the system. For
this reason we will generally consider pull loading to be stable, recognizing that buckling may take place
at very large deformations.

The monotonic response of the beam/load cell system is shown in Fig. 6.4 for (a) various lengths,
from |, =0 (without load cell} to/, =50, and (&) for various depths, from A=2 10 A=oc {without load cell),
of the standard box-section load cell. One can observe generally the same behavior for both parameters.

Applied Lood (k)

[ 0 ~— T —r
-
]
40 Z o
3 -
. i -
-an b ]
wid ioad oalh
[ ] L - i M i
0.0 0s 1.0
Vertical Displacement (in) Vertica! Displacement (in)

Fig. 6.4 Monotonic response for pull load with model load cell

For short load cell lengths and for deep load cell sections the initial stiffness is quite large, giving wayto a
yield plateau on which the resistance remains approximately constant. For parameter values which make
the systern more flexible, greater deformations are required to achieve the full plastic capacity. The limit
capacity for long or shallow load cells is reduced because of yielding of the load cell rather than the beam
itself. The limit capacity of the system can be reasonably predicted by simple plastic theory to be

M,
Vi + 1 for beam yielding

£ MyL + 1)) o
Mr l( + i ! {
retweip-g  forloadcellyielding

where ¥, and M, are the shear and bending capacities of the beam, respectively, M, is the bending
capacity of the load cell, L is the length of the beam, / is the distance between the end of the beam and
the point of load, and ¢, is the length of the load cell. The beam mechanism equations assume that the
short beam segment yields in pure shear while the load cell mechanism assumes that the load cell yields in
pure flexure The capacities taken from Fig. 6.4 (finite element model) are plotted along with the values
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Fig. 6.5 Pull capacities for various load cell dimensions

from Eq. (6.2) (plastic analysis) in Fig. 6.5 which also shows the twg possible collapse mechanisms. The
parameter value determining which of the two mechanisms contrels can be found by equating the two
expressions in Eq. (6.2}, For the values used here the transition occurs at/ =18 in and h=5 in. The curve
is flat for the beam mechanism because the load cell plays no role. As one would expect, the capacity
drops as the length of the :0ad cell increases and as the deph decreases. The pull response for the system
having an 1-section for the mode! Joad cell is compared with the box-section load cell of depth h=$§ in
Fig. 6.6. The responses are qualitatively similar.

6.2.2 Variation of Parameters for Push Loading

Unlike pull loading, push loading is generally unstable, showing a limit load with declining post=limit
behavior. The main difference between elastic and inelastic buckling is that the latter exhibits a limit load

®© ——————
»-—-""'_" -
— heSin {
340'- | -section J
3| <
3
1 53 ]

¢ i " — " i P e

[ X4) 10

03
Vertical Displocemant (in)

Fig. 6.6 Monotonic response {or pull load with I-section load cell
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with unstable posi-buckling behavior whereas the former exhibits stable post-buckling behavior. One
might e¥pect that the effects of end fexibility for the inelastic case would be qualitatively similar to the
elastic one, that is that end flexibility reduces the monotonic limit capacity. We demonstrate through the
parameter study in this section that such is not the case.

The monotonic response under push loading is studied for variations in the length of the modtl
(standard box-section) load cell in Fig. 6.7 and for variations in the depth of the mode! load cell in Fig.
6.8. Several important features can be seen in the study of the variation of end flexibility. For short load
cells, the systermn buckles Jaterally shortly afier yielding initates. For longer load cells, buckling does not
take place until considerable yielding has taken place. This behavior can be explained by observing that
for lozd cells of length 15 in and shorter the load cell remains elastic and yielding occurs in the beam.
Loss of torsional stability is then governed by the reduced modulus of the yielded material in the beam.
Load cells 18 in and longer yield before the beam, but since the load cell is a tube the yielding does not
compromise the torsional resistance of the system to the same degree as the case in which beam yielding
occurs. As 3 consequence, the system is able 1o deform inelastically in the plane of loading longer if the
load cell yields. Note that for the sysiems with load cell yielding, buckling occurs with a snap back in
vertical deflection to accommaodate the rotation. The load versus rotation curves are remarkably similar
for all of the systems for variations in load cell length, with all curves coalescing at a moderate value of the
rotation. Significant differences in the load-rotation response can be seen for cases in which the depth of
the load cell is less than 4 in. In these cases. the asympiotic post-limit capacity is strongly affected by the
cross—sectional dimension of the load cell.

The influence of torsional rigidity of the load cell can be seen by examining Figs. 6.8{e,f}, in which
the sysiem with I-section (J-section I} load cell is compared with the system with $x0.5 in box~section.
The dimensions of the two sections are such that the in-plane elastic stiffnesses are the same. The length
of the load cell is 12 in, so yielding of the box-section load cell rather than the beam end is expecied.
Since /-section [ is the same as the 1est piece, yielding is also expected in the load cell. The I-section
load cell is deeper and thus it yields well in advance of the box section, and has a much smaller Limit
capacity. Interestingly, the post-limit behavior of the two systems is nearly identical. It is evident that the
tarsional stiffness of the load cell has an important influence on the monotonic buckling response of the
system.

The limit loads for the various values of the parameters, taken from Figs. 6.7 and 6.8, are plotted
against the values of the parameters in Fig. 6.9. Remarkably, the limit capacity of the system initially
increases with an increase in flexibility. One possible explanation for this anomalous behavior is that,
while torsional flexibility is reduced with these parameter variations, the main influence is a reduction in
n-plane flexural stiffness. As the system becomes more flexible in the plane of loading, it can deflect
more under smaller loads. With the load applied above the shear center, as k is for push loading, the
in-plane deflection represents movement of the point of load application closer to the average line of
shear centers of the system. Such a deflection would be favorable from the point of view of torsional
stability. Eventually, the negative effect of reduction in torsional stiffness catches up with the posfrive
effect produced by vertical deflection, and the limit capacity then decreases with increased flexibility as
expected.

‘The variation of limit capacity with parameter values for pre-yielded beams is also shown in Fig. 6.9.
The response of pre~yieided beams will be discussed in Section 6.3. Briefly, a pre~yielded beam is one
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Fig. 6.9 Variation of limit capacity with end flexibility

which is first pulled to a prescribed value, generally causing yielding, and then pushed 1o its limit capacity.
The difference in buckling response would therefore be a ramification of pre-yielding and might include
material softening. residual stresses, and residual inelastic camber. The pre-yielded beams show the
same anomalous tendency 10 increase strength with increasing end flexibility, but to a greater degree.
The value of the parameter giving the maximum capacity is about the same for both virgin and pre-
yielded beams.

6.3 The Effect of End Flexibility on the Cyclic Inelastic Response of the System

There are several features of the response 1o cyclic loading which transcend the linearized buckling
and monotonic response studies. Among these are the hysteretic stability of the response, particularly in
the pull regime, the rate of recovery from buckling when the load direction is reversed, and the ability of
the system to dissipate energy. In this section we study the cyclic response of the propped cantilever beam
while zpain varying the length and cross-secuwonal dimensions of the load cell in an effort to expose their
influence on cyclic response. Ths influence of pre~yielding, whereby the cyclic loading program is started
with an {possibly) inelastic pull half-cycle, is also examined.

The paramerter studies are organized in essentially the same manner as the inelastic monaotonic re-
sponse studies. For each parameter variation, a complele tyclic response history is generated, and
ploued along with the response history of the standard case. As before. both the vertica! displacement
response and rotation response are presented. The loading programs for all cases are the same, with the
displacement history specified at the point of load application. Since the vertical displacement is reported
a1 the shear center, the loading histories appear different but are not.

The influence of the length of the load cell on the cyclic response is shown in Fig. 6.10 for values of
the length of I, = O (wirthout load celi), 6, 12, 18, 21, 24, 27, 30, 33, 36, 40, and 50 in. Several interesting
features of the response can be noted. For small vaiues of the load cell length the increased flexibility is
readily apparent in the initial buckling response as well as in the elasti¢ unloading from the pull yielded
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state. On the other hand the response curve for the pull direction of loading remains similar 1o the case
without a load cell, particularly as full yielding develops in the pull direction. As the length of the load cell
increases beyond 24 in this similarity begins to vanish because the flexible system is less able to reach the
full yield value as it is still unwinding from the buckled state. Also at a length of 24 in the increased
flexibility causes initial buckling to be delayed until the second cycle. In general, as the flexibility of the
system increases, the response looks less characteristic of the short beam (because it is actually no longer
a short beam), degenerating more and more toward flexible elastic response.

The influence of the cross-sectional dimension of the load cell on the cyclic response is shown in Fig.
6.11 for values of the depth of k=8, 5.25, §, 4, and 2 in. In Figs. 6.11 (k. I) the cyclic response with
I-section 1 is compared to the cyclic response without load cell. The variation of the load cell dimensions
has a similar effect 10 changing the Joad cell length. Pull yielding remains achievable for large values of
depth, with degradation due 1o flexibility for depths of 4 in and less. The 1-section 10ad cell also shows a
similar type of response.

H the load is applied in the pull direction first, the system can experience yielding before buckling
These loading cases are termed pre-yielding. The previous two parameter studies on end flexibility have
been repeated for a loading history that includes pre-yielding and are shown in Figs. 6.12 ard 6.13. As
indicated in the previous section, pre-yielding has a noticeable effect on the subsequent buckling cycle
because of the zlteration of the residual stress pattern, the presence of residual cambering, and material
sofiening. These effects generally act 1o reduce the limit capacity. After the initial buckling cycle, very
little difference from the case without pre-yielding can be seen. This observation is not surprising since
the important effects all relate in one way or another to materia! inelasticity and would tend not to be
remembered as cycling progresses.

6.4 Summary

The linearized buckling analyses shewed that the {elasuic) buckling load of the propped cantilever
beam is quite sensitive Lo the presence of in-plane end flexibility, exhibiting a sharp drop in capacity for
small values of flexibility. Contrary tg our intuition, which is generally based upon the results of linearized
buckling analyses, the inelastic limit capacity of the system increases with an increase in the end flexibility
for small values of flexibility. The optimal length and depth of load cell for the test pieces examined here
were around {, =12.0 jn and A=6.0 in. Buck..g ;5. on the whole, delayed by greater in-plane flexibility
because the deformation demands on the flexible system are less than the rigid system. The presence of
low torsiona) flexibility along with low flexural flexibility reduces the improvement obtained from flexura!l
flexibility alone. Torsional flexibility at the fixed end greatly influences the buckling capacity of the
beam, and has an effect on the large deformation behavior and the response to the cyclic loading.

Small values of flexibility influence only the initial buckling cycle of the cyclic loading response to any
important degree. Subsequent response is quite similar to the rigid end case. The most important aspect
of cyclic loading is that buckling will eventually occur at modest deformations if cycled enough times.
This tendency to buckle may not be apparent from a monotonic analysis.
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Chapter 7

An Analytical Study of the Influence of Lateral Bracing
on the Lateral Buckling of the Test Specimens

The primary mode of response of a beam which buckles laterally is lateral motion and rotation of the
cross-section. If restraints are added to the system to prevent these motions, while at the same time
allowing planar motion, the performance of 2 torsionally flexible system can be greatly improved. Laterai
bracing, as it is called, has long been used in design practice to enhance the carrying capacity of I-beams
and other sections which show a propensity toward lateral buckling. While design specifications address
the issue of lateral] bracing. essentially through the artifice of the so-called larerally unbraced length, the
understanding of what conslitutes adequate lateral bracing remains rather primitive.

Lateral bracing can be realized in a variety of ways, either through the attachment of discrete ele-
ments with axes perpendicular to the main member, or through the continuous attachment of 2 lateral
restraining system such as a floor slab. In most practical circumstances the degree of fixity of the bracing
member to the beam is not well known, making an assessment of the effectiveness of bracing difficult, if
not impossible. These problems have hampered the development of rational design criteria for lateral
bracing. Just as imporient parameters (such as the height of load action) are often not reflected in design
formulae, many factors which are critically important to lateral bracing performance do not appear in
design formulas. Some of these factors will be discussed herein for the application to short beams.

The lateral bracing system is an integral part of the beam/bracing system, and the response will
depend upon the interaction of the two components. While this observation is true for all laterally braced
systems, it is particularly important for the application to short beams because the in-plane forces can be
quite large at incipient buckiing. After buckling, a component of these large forces must be absorbed by
the bracing system. If the strength of the brace is not sufficient to resist compressive buckling, then the
brace/beam system buckles simultaneously. If the strength of the brace is sufficient to resist the induced
forces without buckling, then the beam buckles into a shape which respects the persisting constraint. In
many cases it may not be feasible to completely prevent buckling, but it may be imporant to delay it. In
this chapter we examine bracing systems which are in that intermediate range where the brace itself is
near {15 critical size. We consider only bracing against lateral motion and not against rotation; so even if
the brace does not buckle, lateral buckling of the system may not be completely prevented.

A number of studies have been made on the effectiveness of various types of lateral restraint and on
the strength and stiffness required to inhibit buckling of elastic beams. Mutton and Trahair (1973) inves-
tigated the stiffness requirements for midspan rotational and translational bracing of perfect, elastic
beams acted upon by either top-flange loading or by shear-center loading. Nethercot (1973) also stu-
died the effectiveness of translational and torsional restraints on simply supponed elastic I-beams, focus-
sing on the relationship between the height of the applied load and the geometric placement of the
bracing system. Kitipornchai, Dux and Ritcher (1983) investigated the influence of the restraint location
along the length of an elastic cantilever beam.

Lay and Galambos (1966) treated the probiem of laterally bracing beams which have a propensity to
buckle inelastically, and developed design criteria for cases in which the required plastic strain is high.
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These rules are based on a rotational capacity consistent with the beam unbraced length slenderness
ratio. They calculated a required cross-sectional area for axial strergth where the stiffness of brace must
be satisfied, and also indicated that flexural strength and stiffness requirements must be satisfied in
addition to the axial strength and stiffness when the compression flange is braced.

P
l brace locaton
raM TJ Q /- ,
N X |
. . : & :
: 33 in | l.,

Fig. 7.1 Geometry of the lateral bracing system

In this chapter, the effect of adding a discrete translationa!l bracing system, similar 10 thai used in the
experiments, to the test specimens is examined analytically. Figure 7.1 shows the position of the brace
with respect 10 the cross-section and with respect to the beam axial coordinate. The influence of the
height of the bracing above the shear center of the beam, the location of the brace along the length of the
beam, and the strength and stiffness of the brace are examined through parameter studies with the
analytical model. The brace positions examired in this study include A = 4.31, 3.81, 2.81, 1.81, 0.0,
-1.81, -2.81, =3.81, and -4.31 in. The height of 3.81 in (=3.81 ir) corresponds roughly with the brace
position used in the experiments, that is, one inch below (above) the top (bottom) flange. Rectangular
tube (box) sections, ranging in area from 0.032 in® 1o 0.128 in?, are used here to analytically model the
braces. Table 7.1 lists the properties of the braces examined in the main parameter studies. The braces
used are quite slender, having (4/0),, = 24. The location of the brace along the length is varied from,, =
15 in to 50 in in Increments of 5 in.

Table 7.1 Properties of the lateral bracing members

t Ag, EI) - EI: = 0.6G/
(in) (@n?) (in?=k)

0.016 0.032 40

0.020 0.040 60

0.032 0.064 80

0.048 0.096 120

0.064 0.128 160

The brace configurations examined here consist of a brace on only one side of the beam. Depending
upon the geometry of the initial lateral imperfection (which determines the direction of buckling), the
brace will be either compressed (brace on the same side as the eccentricity) or tensed (brace on the
opposite side of the eccentricity). Clearly, the response in these two cases will be different if the com-
pressed brace buckles since the tensed brace cannot buckle. The effect of the position of the bracing with
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respect to the side of the load eccentricity is also studied, using a fully nonlinear mode! for the brace as
well as the beam to capture system buckling.

In the experiments, the bracing rods were pinned at both ends. Here we consider two brace models:
one in which the brace is fixed at the end remote from the specimen and pinned 1o the specimen and the
other in which the brace is pinned at both ends. In the latter case it is necessary to give the brace initial
geometric imperfections in order to analytically model brace buckling. In the former case the deforma-
tion of the system before buckling causes flexure in the brace making it possible to buckle without initial
geometric imperfections. Because the amplitude of the initial geometric imperfection of the brace may
affect the response, the pin-fixed brace is employed for most of the parameter studies in this chapter.
The two different brace boundary conditions are compared subsequently.

The main advantage of analytic modeling over experimental analysis is the ease with which different
geometric configurations can be implemented. The geometric and material properties of the model
beams studied in this chapter are the same as those used in the experiments and in the previous analytical
studies. The fixed end is considered to be rigid for the purposes of these studies and the lozding programs
do not include pre-yielding. Standard values are used for the height and eccentricity of the applied load.
The responses are compared to the (analytic) response of the 1est beam without bracing wherever possi-
ble.

The parameter study is organized in the following way: First the effect of brace locaticn along the
length of the beam is examined holding the brace size and bracing heigh fixed. The effec: of brace size
and bracing height are examined for bracing piaced at the point of loading, first for a brace on the same
side as the load eccentricity and subsequently for a brace on the opposite side of the load eccentricity.
The effect of different brace cross-sectional types is then examined while holding the area of the brace
and the location gonstant. Finally, the effect of end fixity conditions of the bract '~ examined. In each
case inelastic monotonic and cyclic responses are considered.

7.1 The Effect of Brace Position slong the Length of the Beam

The positicn of the load along the length of the beam is of fundamental importance to the buckling
behavior. There are, of course, many possibilities for bracing arrangements and we will restrict our atten-
tion here to a single discrete brace placed somewhere in the span. It is perhaps obvious in the present
case, with a single point loading, that the best brace location will be at or near the point of loading. In
fact, many design specifications require laterzl bracing at points of load (or at points where plastic hinges
are likely ta form) as a conservative precaution and in lieu of more rigorous knowledge. In this section we
demonstrate that the above observation is true and make an effort to quantify the trade-off represented
by other bracing locations.

The inelastic monotonic responses of the propped cantilever beam with bracing alternatively at/,, =
18, 20, 25, 30, 35, 40, 45, and 50 in are shown in Fig. 7.2 for the brace having area A,, = 0.064 in® and
bracing elevation & = 3.81 in. The response of the beam without lateral bracing is also shown in the figure
for comparison. One can observe the clear superiority of bracing in the vicinity of the applied load.
Interestingly, the response for bracing up to 10 /n past the load point is nearly identical 10 the response
for bracing at the load point. This observation makes sense because the load is located so near 10 the
fixed end. One can also observe that there is virtually no improvement in behavior for bracing focations
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Fig. 7.2 Effect of the position of the ilcad along the length of the heam

even moderately remote from the point of loading. In the sequel, the brace will be positioned at the point
of loading.

7.2 The Effect of Brace Size and Elevation with Respect to the Shear Center

The primary parameters studied in this section aré the siz¢ of the brace and its elevation with respect
1o the shear center of the cross-section. Since push loading is critical with respect 1o lateral stability, and
since the top flange is in compression for this sense of loading, it is expected that bracing above the shear
center will be most effective. We demonstrate the veracity of the previous asseriion and make an effort o
quantify the importance of this effect. The brace sizes are chosen to bracket the transition from cases
where the brace remains straight while the beam buckles 1o cases where the brace and beam buckle
simultaneously. The parameter domain is covered by ahernatively varying brace size and brace dimen-
sion with resulis for both monotonic inelastic buckling and cyctic buckling. The responses for braces
placed on the same side as the eccentricity {compression braces) are examined first and then compared
to those of braces placed on the opposite side as the eccentricity (tension braces).

The effect of varying the size of the brace while holding the elevation fixed a1 3.81 in is shown in Fig.
7.3. As the brace size increases both the limit capacity and the vertical deformation capability increase.
Braces larger than A,, = 0.096 in’ allow the achievement of the full plastic capacity of the beam in planar
bending before buckling. it is noted that for braces smaller than 0.096 in? the brace buckles in the plane
in which it is bending, while those larger do not buckle. It is clear that this type of point bracing will delay
but not prevent buckling. The load-rotation relationship is nearly independent of the brace size. The
response curves for the cyclic loading cases demonstrate that after buckling the system behaves as if it
had not been braced, even for relatively large brace:. This same observation was noted in the experi-
ments. The dot symbols (®) on the curves for monotonic loading response represent points of equal
vertical disptacement at the point of load application, and the point were the load direction is reversed in
the first cycle of the cyclic loading.

The effect of varying the elevation of the brace while hoiding the area fixed at 0.040 in? is shown in
Fig. 7.4. In (a.b) one can pbserve that the sysiem exhibits higher limit loads and has greater vertical
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deformation capability the higher the brace is placed above the shear center. The brace elevated to ¢.31
in allows the beamn to reach f1s full planar capacity before buckling. In (¢,d) and (e,f) one can observe the
ineffectiveness of bracing below the shear center. The fact that the Tesponse for an elevation of ~1.81 in
is identical to the response for the systam without bracing indicates that during buckling the beams rotates
about that point in the cross-section. It is interesting 10 note that the center of rowtation remains fixed
even in the presence of progressing inelasticity and large rotations. The cyclic responses again demon-
strate the ineffectiveness of bracing in the post~buckling regime.

The combined effects of brace size and elevation are shown agsin in Fig. 7.5. In each plot, four
different bracing sizes (A, = 0.000, 0.048, 0.064, 0.080) are shown for a single value of the elevation.
Each subsequent piot has a lower brace elevation (& « 4.31, 2.81, 0.00, -1.81, -2.81, -4.31). While this
figure presents no new information, it helps to more clearly show the trade-off between brace size and
brace elevation. Again, the ineffectiveness of bracing below the shear center is demonstrated.

The previous studies were for beams braced on the same side as the load eccentricity. Under these
conditions, the brace is compressed at the point of buckling and. if it is slender enough, it will buckle 100.
We next examine the behavior of the system with brace buckling precluded by bracing on the opposite
side of the eccentricity. The previous parameter variations are repeated for the oppaosite side bracing
case. The responses of the two configurations are compared for the cyclic loading history.

Figure 7.6 shows the effect of brace area for 2 {ixed elevation of 3.81 in for the case where the beam
is braced on the opposite side as the eccentricity. Some important differences from the case with bracing
on the same side as the eccentricity can be seen by comparing Fig. 7.6 with Fig. 7.3. For monotonic
buckling, the responses for the smaller braces are quite similar to those of the present case. However, the
tensile braces show a much greater vertical deformation capacity for the larger sized braces. One can also
observe that the load-rotation curves for the tensile braces clearly depend on the brace size, even at large
deformations, whereas the curves for the compression braces did not show this dependency. One conse-
quence of this behavior is that the tension braced systems do not tend toward the same asymprotic
post—buckling capacity. Comparing the cyclic responses of the two cases one can see the clear superiority
of the tension }.-=ce. Note that the tension brace exhibits subsequent buckling loads which are greater
than the asympiotic post-buckling capacity. This phenomenon was also observed in specimen $ of the
experiments. In spite of the bener behavior, the tension braced system still shows oenly marginally better
performance over the unbraced system in the post buckling range.

The effect of brace elevation for fixed brace area is shown in Fig. 7.7 for the case of opposite side
bracing. These results can be compared with eccentri¢ side bracing in Fig. 7.4. Considerable increases in
the load carrying capacity and venical deformation capability are gained by opposite side bracing for
elevations above the shear center. Virtually no benefit accrues from opposite side bracing below the
shear center. Again, opposite side bracing has a large effect on the first cyc!2 of loading, but litle effectin
subsequemt cycies. Most of the observations on the response carry over from the study on brace size. The
two parameters are further studied in Fig. 7.8, wherein similar observations can be made. It i§ interesting
to note that the brace huckles for the elevation of —1.81 in but does not for any other elevation studied.

7.3 The Effect of Brace Cross-Sectional Geometry

In the previous study the ratio of brace area 1o moment of inertia was held fixed. In this section we
examine braces which have the same cross-sectional area but have different moments of inertis. Three
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brace cross—sections are considered as outlined in Table 7.2. The first brace type is the bax-section used
in the previous study, with a depth of 0.5 in and a wall thickness of 0.032 in. The second brace type is an
I-section with considerably larger major moment of inertia, but smaller minor moment of inertiz than the
box. The third brace type is a smaller box-section with one quarter the moments of inertia of the stan-
dard box-section.

Table 7.2 Properties of alternative brace iypes wi.h equal same brace area

type h b f I A‘r Elg EI; GJ
(in) (i) (in)  (in) (in’) | (n*-k)| Gn*-k) | Gn’-k)
box 0.50 0.50 0.032 0.032 0.064 BO 80 48
1-section 1.60 0.40 0.020 0.040 0.064 819 12.8 0.256
box 0.25 0.25 0.064 0.064 0.064 20 20 12

The monotonic buckling responses with the various braces are given for brace elevations of 4.31,
2.81, 0.00, -1.81, -2.81, and -4.31 in in Fig. 7.9. It is evident from this study that the axiai stiffness,
which is the same for all braces, is not an important influence on the limit capacity and vertical deforma-
tion capability of the system. Even though the I-section brace had the largest major flexural moment of
inenia it buckled the sconest, because buckling in the minor direction occurred even before the beam
buckled lateral .. One can conclude that the limit load of the beam-brace system depends most signifi-
canly on the minor moment of inertia of the brace.

7.4 Effect of Brace End Fixity Conditions

In this section. we examine the influence of the end boundary conditions of the brace. An initial
imperfection increasing linearly from zero at the ends to maxima of 0.003 in in the major direction and
0.0005 in in the minor one was used to induce buckling in the pin-pin brace. No imperfection was
required for the pin-fixed brace because deformations due to bending were sufficient 10 drive the buck-
ling mode. Figure 7.10 shows the influence of the two different brace boundary conditions for brace
elevations of 3.81, -1.81, and -3.81 in with a (standard) cross-sectional area of A, = 0.064 in?. While
the initial buckling of pin-fixed brace is slightly delayed relative to that of the pin-pin brace for a brace
elevation of 3.81 in, there is no difference between these two cases for braces below the shear center.
The two end conditions lead to the same value of limit capacity and the same value of asymptotic post-
buckling capacity.

Figure 7.11 shows the influence of different brace boundary conditions for various brace areas with
braces elevated 3.81 m toward the top Nange. The pin-fixed brace still shows an improvement in limit
capacity of the beam with a small brace size, but the effect is clearly diminished as the size of the brace
decreases. The pin-fixed brace does not buckle in the minor direction at the brace area of 0.096 in?,
while the pin-pin brace does.

Figure 7.11 (e.f) also demonstrates that the response is not sensitive to the magnitude of the inirial
imperfections chosen for the pin-pin brace. There is no visible difference in the behaviors with various
{major, minor) initial imperfections of (0.003, 6.0005 in), (0.003, 0.0000 in), (0.002, 0.0005 in) and
(0.001, 0.0005 /n). The response of the system with a perfectly straight brace is also shown on this figure.
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As expected, the perfectly straight pin-pin brace does not buckle and therefore provides more restraint
against lateral buckling. This behavior 's an anifact of the numerical model and illustrates the importance
of proper analytical modeling in inel: stic stability problems.

7.8 Summary

Lateral bracing is clearly effective in delaying buckling, but it does not necessarily prevent it and it
has little impact on the post buckling response. In practice, since it is difficult to appty the load on the
opposite side of the brace by intention, both sides of of the beam should be braced, as high above the
shear center (toward the compressed flange) as possible. Lateral bracing below the shear center provided
no benefit for the configuration studied here because the center of rotation during buckling was about 2
in below the shear center.

Minor flexural stiffness of bracing is the size parameter most important to the buckling response
because simultaneous brace buckling seemed to cause the greatest difference in behavior. The most
desirable location 1o brace along the beam is at or near the position of the applied load. The position of
brace with respect to the side of the load eccentricity has a large effect on the limit capacity and the
vertical defcrmation capability. It also has an effect on the large deformation behavior and the response
to the cyclic loading. This difference in behavior can be attributed 10 the fact that a brace on the apposite
side of the eccentricity will be tensed during lateral buckling of the beam and therefare will not buckle
simulianeously.
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Chapter 8

Summary and Conclusions

The overall objective of this study was to develap insight into the lateral-torsional beam buckling
problem. The specific emphasis of the research was on applications tc short 1-beams subjected 1o cycli-
cally reversing loads. The study included five experiments on propped cantilever beams subjected to a
cyclicaliy reversing load applied near the fixed end. An analytical model was developed 10 perform
extensive parameter studies 10 extend and help interpret the results of the experiments.

The experiments exposed several {eatures typical of the cyclic lateral-torsional buckling of shon
I-beams. Those features include a sharp limit behavior with rapid loss of post-limit capacity Joaded in the
virgin state and an asymptotic post-buckling capacity which persists under cyclic loading. Three distinct
regions of response in the pull direction were noted. It is presumed that each of these regimes relates to
the progress in untwisting the inelastically buckled beam. The experiments also demonstrated the effects
of lateral bracing on the cyclic lateral buckling of the test beams.

A gecmertrically nonlinear beam model, capable of tracking finite displacement, rotation, and cross
secrional warping was developed and implemented in a general purpose finite element program. The
beam kinematics include infinitesimal warping due 10 transverse shear and torsion superposed upon a
finite torsional warping deformation. The primary warping due to torsion is the finite deformation gener-
alization of the classical “sectorial areas” hypothesis due to Vlasov. The secondary warping due to trans-
verse shearing of the flanges is included to properly represent shearing phenomena imponant to shont
beams. Numerica! treatment of the problem was accompiished through an iterative procedure of first
linearizing the equilibrium equations about an intermediate configuration and then solving the linear
problem for the incremental motions. The updated configuration determined the strain state in 2 body,
and the corresponding state of stress was found by solving the nonlinear constitutive equations. The
essentially three-dimensional formulation was treated as a one-dimensional problem by numerically
integrating the equations of moticn over the cross-section. In this way one can completely trace loca!
phenomena such as propagation of yielding through the cross-section. Because the governing equations
are treated locally it is not necessary 1o wack the location of the inelastic shear center or the elastoplastic
interface of the beam cross section. In addition, the location of the applied loads are referred 10 the
centroid of the cross section, simplifying the analysis of effects due to load position.

A new multiaxial ¢yclic plasticity model, suitable for large scale computation, was developed and
implemented. The new model is a synthesis and extension of some of the most compelling concepts
implicit in existing phenomenological cyclic metal plasticity models. One of the nove] features of the
present model is that once the isotropic hardening rule is approximated (e.g. from a monotonic tensile or
torsion test) the kinematic hardening rule is automatically obtained as 2 consequence, significantly sim-
plifying the physical testing needed 10 determine the model parameters. The proposed model was tested
with proportional, non-proportional, uniaxial, and multi-axial load paths, for which experimental results
are available in the literature. The model was found to be credible when compared with those experimen-
tal results. The plasticity model was implemented with a robust numerical scheme. using the consistent
tangent concept in conjunction with a radial return mapping algorithm.
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Comparison of the analytical and experimental results indicates that the analytical mode] is able to
reproduce in a qualitative way all of the important features of cyclic lateral buckling of short beams.
Consequently the analytical mode! was deemed reliable for carrying out the extensive parameter studies
reponied herein. The kinematic constraint imposed in constructing the analytical model precluded local
buckling of the web and flange elements. Based on the observation that the analytical mode! qualitatively
reproduces all aspects of the cyclic buckling response of the beams, we posit that Jocal buckling is rela-
tively unimportant to the overall lateral buckling response of short beams. Our one-dimensional, geo-
metrically nonlinear beam mode! appears to be an eminently suitable framework for modeling the latera!
buckling of I-beams.

In chapter 5 the general response of the test beams was examined through various parameter studies
around a standard (control) configuration . A number of distinct features were found in these studies
that should be of value in the design against lateral buckling of short beams. The following conclusions
can be drawn from the general parameter studies:

(I) The yield strength of the material has a great influence on the initial lateral buckling capac-
ity, the behavior at large deformation, and the response to cyclic loading. The characteristics
of the yield plateau and strain hardening of mild steel strongly influence the post-buckling
response but not the initial buckling. The details of modeling kinematic hardening were
found o affect the response significantly. The current cyclic plasticity mode! did an ade-
quate job of modeling the Bauschinger effect in cyclic response. Residual stresses have an
influence on the limit capacity of a beam, byt have no effect at large deformations nor inthe
response 10 cyclic loading. Residual stresses are less important in cyclic response because the
residual twist in the beam lefi by buckling tends 1o overwhelm the influence of the residuat
stresses.

{2) The initial horizontal eccentricity of the load with respect to the shear center has a strong
influence on the limit capacity of the beam but has little effect on the post-buckling response
and the response to cyclic loading, except when the initial eccentricity is quite large. The
iimit Joad is very senstive 1o small load eccentricities. The Lieight of the load with respect to
tre cross-section of the beam has a noticeable effect on both the limit capacity and asymp-
totic post~buckling capacity. Both capacities increase as the load is placed close to the shear
center. Furthermore, for loads placed closer 10 the shear center, buckling is delayed. Pull
loads (loads on the other side of the shear center) help stabilize the beam.

(3) The location of load alang the length of beam also has a significant effect on the limit capac-
ity, the post-buckling capacity, and the deformation at which buckling commences in a
cyclic loading program. As the length of beam increases, the buckling capacity decreases.
The proximity of the load to the fixed end is the most imponant influence on the lateral
buckling capacity.

{4) A wide-section beam is better at resisting lateral buckling than is a deep-section beam.
While a deeper beam can slightly improve the limit capacity, a wide-section delays or even
prevems the lateral buckling of beam, because of the importance of warping resistance.
Therefore, a wide I-beam would be more useful than a deep one in an application where
lateral buckling resistance is important.
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(5) The fixity of the end remote from the load has a great influence on the lateral buckling of the
beam. Even the addition of torsional warping restrain 1o the simple support condition in-
creased the buckling load dramatically. The fully fixed support had the highest limit load,
but because of the increased stiffness, the beam tended to buckle at smaller deformations.

Unexpected results were obtained in chapter 6 from the parameter study concerning the influence of
flexibility of the fixed end on the lateral buckling. The studies of the influence of fexibility of the fixed
end on the lateral buckling of the beam allowed the following observation:

(6) One would expect that a beam with a perfectly fixed end would not buckle as readily as one
with additional flexibility. However it was observed that some degree of end flexibility im-
proves the Jateral buckling limit capacity and delays buckling. A plausible explanation for
this unexpecied behavior is that bifurcation 1akes place from a deformed shape in which the
applied load is lower than its initia] position with respect to the average line of shear centers.
The flexible end allows the more deflection under the load prior 1o lateral buckling, thereby
increasing the buckling load over the fully fixed case. For large enough end flexibilities, the
reduction in capacity due 1o the additional flexibility exceeds the increase gained from pre-
buckling vertical displacement. This behavior was observed both for beams which were pre-
yielded and those which were not. In practice, it might be helpful to increase the flexibility of
the fixed end of a short beam to increase the limit capacity and delaying the buckling.

1t is well known that lateral bracing is the best way to improve or delay lateral buckling of a beam.
However, few previous investigations had been made into the inelastic lateral buckling of beams with a
bracing system. Chapter 7 examined the influence of lateral bracing on the lateral buckling of beams.
The following conclusions can be drawn from the parameter study an the inelastic lateral buckling with
translational bracing system:

(7) The best level to place translational bracing in the ¢ross section of beam is near the flange
that is compressed by a push loading (the top Nange in the experiments). Bracing placed
below the shear center has little effect on Jateral buckling. The center of rotation of the
beams studied here was near the bottom flange, and remained fixed during lateral buckling,
as evidenced by the inefiectiveness of bracing placed there.

(8) Flexural rigidity and axial strength of the bracing is important 10 the lateral buckling of
beam. Increasing the flexural and axial stiffness has a greater elfect on the latera! buckling of
beam when the level of brating is near the top flange.

(9) The 2% rule, traditionally used for the minimum brace size, does not automatically insure
adequate strength of the brace, as it often does in applications involving lateral buckling of
longer beams. It is clear from these studies that the brace size should, at the very least,
depend on the position of the load and the position of the bracing in addition to the strength
and stability properties of the the beam. Further research on the lateral bracing problem
seems to be warranted.

(10) Another factor which influences the effect of bracing on the buckling of a beam is the man-
ner in which the bracing resists lateral motion. Positioning the bracing on the opposite side of
the eccentricity of the load delays buckling over the case in which the brace is positioned on
the same side of the eccentricity because the brace is extended in the former case and
cannot buckle. N is desirable to locate the brace at the point of the applied load or between
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the applied load and the point of largest deflection. Bracing both sides of the beam may also
be useful.
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Appendix A

Load Cell

A load cell capable of measuring the six stress resultant quantities was designed for the purposes of
the tests reporied herein. The load cell, which resided between the specimen end and the reaction block,
was a circular tube 12 in long with 5.6 in outside diameter and 0. 445 in wall thickness. The tube was
edpe prepared and welded 10 2 in thick end plates. These end plates were welded o a second setof 2 in
thick plates which were used for bolung the lcad cell in place. The 4 in end plate thickness was necessary
10 insure & consistent stress transfer mechanism into the load cell which thereby insured a reliable meas-
urement of load. The circular ¢ross section was chosen because, within a thin-wall approximation, the
circular shape does not experience cross sectional warping due to transverse shearing or twisting. The
load cell was gaged with 90 degree strain gage rosettes (0.125 in gage length) placed at the guarter point
stations along the sength of the cell. At each station four roseties were placed at 90 degree intervals
around the circumference. The load cell configuration is shown in Fig. A 1. The response of each gage
was measured independenily during the load cell calibrations and the tests and the data were combined
in the data reduction phase.

12 in )
WV e |
0.445 in. b — b —
N ) | 3
T 7
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a. 5 I ] /3 ( é 2
¢ NG
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d° o
' ! Rossette
A B C

Fig. A.1 Load Cell Geometry

Two analytical models of the 1oad cell were used in the calibration phase. First, the i0ad cell was
treated using the exact linear elastic solution to St. Venant's problem, i.e. a beam subjected 1o end
loading (Sokolnikoff. 1956}. Using this solution, one can write a relationship between the strains at a
cross-section and the streéss resultants acting there as follows:

€ = BR (A1)

where € = (¢;, ..., €3} is a vecior of the 12 strain measurements at longitudinal station or cross section
(Fig. A.1), R= (T, M,;, M;, N, V,, Vj)is the vector of six stress resultants, and B is the coefficient
matrix given by the theory of elasticity. The strain gages are numbered clockwise around the circumfer-
ence at a station starting with 8—1 and ending with d-3. The nomenclature used for the stress resuhanis
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is: T is the torque, M, is the flexural moment about the x, axis (horizontal}, M, is the flexural moment
abour the r; axis (vertical), N is the axial force, V| is the shear along the x, axis, and v, is the shear along
the xy axis.

Equation (A.1) is clearly overdetermined. The stress resultants can be determined from the strain
measurements by a least square projection as

R=(B'B]"' B¢ (A.2)

Interestingly, the coefficient matrix B’ B is diagonal, making it possible 1o write an explicit formula for
the stress resultants:

T= -(2;—;-1-(,+c;-z.+c.~c1+£y-c,u¢e,,] (A3)
M, = Wfi‘f)‘l(l*")(€5—€11)-"(Ca*fa'fxn'flz)l (A.4)
M; = E(_fi—;‘j;[u*V)(fi'&)'V(ﬁ*(s'ﬁ-f:)] (A.5)
N = m%[(l+v)(q+q+q+tn)-v(c]+c;¢c.+q+c7+cg+cm+c,;)] (A.6)
vy = %J’(h-fs'fw*(u) (A7)
vV, = -%]—(-t,+c,+e7-€9) (A.8)

where E, G, and v are Young's modulus, the shear modulus, Poisson’s ratio respectively; b is the outside
radius of the cylinder, A 15 the cross sectionas are., J is the polar moment of inenia, and a is defined
through the relationship

_B+2va’» (1420} (A9)
B 2(14¥)

where 3 is the inside radius of the cylinder.

Equations (A.3)-(A.8) are inaccurate because end effects induced by welding the tube to the end
plates, which precludes changes in the tube diameter, are important to the recorded strains. The St.
Venant solution systematically ignores these end effects.

To estimate the end tffects the load cell was modeled using shell finite elements to determine new
coefficients, B, which sccount for the end restraint. While the cosfficients have different numerical
values, the form of B . (repeated values, zeros, etc.), is nearly identical to the elasticity solution of the St.
Venant problem, B. Hence, the St. Venant solution and the finite element solution concur on how to
combine the information supplied by the gages, but not on the values of the gage factors. This observation
simplifies the determination of scale factors by calibration in the sense that very few tests are required.
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The number of tests can be further reduced through the symmetry properties of the load cell. Similar 10
the elasticity solution, the form used for calibration of the stress resultants at a cross section take the
form:

T =al-€+€3-€Ct -1+ €=€10~ &3} (A-10)
M, = digs- ) +c(tav €€~ + B~ 164 6 ) (A.11)
My = dleg-€)vc(ertes~€ ~t3) +b{~ £+ €6+ €10~ 3) (A.12)
N o= e+ €+6+€) +f(E, 464 Eat €+ €24 €+ €0+ €13) (A.13)
Vi = glea-€— €0+ €3) (A.14)
Ve = g(~€,+ 62+ €:-€) (A.15)

where a, b, ¢, d, ¢, f, and g are the calibration constants, The finite element solution gives some addi-
tional relationships among the constants. In particular it was found that 40b=d, 3c=d, and 3e=f, leaving
four independent constants to be determined by calibration. The constants were found from two calibra-
tion tests, the first a torque~free cantilever bending test about the horizontal axis (Fig. A.2, load position
A) and the second a torsion and bending cantilever test about the horizontal axis {Fig. A.2, load position
B). Ideally, two additional tests might have been performed. However, the axial forces in the test pieces
were expected to be negligible and hence an axial calibration was not deemed necessary. Symmetry was
used instead of 2 bending test about the verucal axis. The coefficients obtained from the horizontal axis
1est were used for bending and shear in the horizontal plane. The cantilever bending test is sufficient to
calibrate both moment and shear in a single plane.

The calibration tests consiants were determined by a least square error fit of the calibration data. The
least square error procedure assumed that both the ordinate and the abscissa were subject to error. The
unbiased value of the slope of the line under these condutions is given by

Ly - ()} (A.16)
n(x'x) - (I'x)?

where x and y are the vectors of abscissa and ordinate data respectively, 1is a vector of ones, and n is the
number of measurements in the sample. In determining the calibration constants the contributions of
stations A, 8. and C were averaged before fitting the least square line. The excellent correlation present
in the calibration data is evident in Fig. (A.3), which plots the expected and measured values of the stress
resultants in the two calibration tests. There appears to be greater scatter for the torsion calibration in the
bending tests, however the values of the torque were small for load position A, due only 10 imperfaction
in load placement, Similarly, there appears 10 be greater scatter in the moment and shear values for the
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" 21 in.
33 in.

Fig. A.2 Load Points for Calibration Tests

torsion test, but the Joad levels were much smaller for this test than they were for the bending test. The
values obtzined are given in Table A.) below.

Table A.1 Calibration Constants

‘\ 152065 in-k ]
9388 jn~k
125167 in-k
375500 in~k
not calibrated
not calibrated
33545 &

o *wm O non
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