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PREFACE

The National Center for Earthquake Engineering Research (NCEER) is devoted to the expansion
and dissemination of knowledge about earthquakes, the improvement of earthquake-resistant
design, and the implementation of seismic hazard mitigation procedures to minimize loss of lives

and property. The emphasis 15 on structures and lifelines that are found in zones of moderate to
high seismicity throughout the United States.

NCEER'’s research is being carried out in an integrated and coordinated manner following a
structured program. The current research program comprises four main areas:

Existing and New Structures
Secondary and Protective Systems
Lifeline Systems

Disaster Research and Planning

-

This technical report pertains to Program 1, Existing and New Structures, and more specifically
to system response investigations.

The long term goal of research in Existing and New Structures is to develop seismic hazard
mitigation procedures through rational probabilistic risk assessment for damage or collapse of
structures, mainly existing buildings, in regions of moderate to high seismicity. The work relies
on impreved definitions of seismicity and site response, experimental and analytical evaluations
of systems response, and more accurate assessment of risk factors. This technology will be
incorporated in expert systems tools and improved code formats for existing and new structures.
Methods of retrofit will also be developed. When this work is completed, it should be possible to
characterize and quantify societal impact of seismic risk in various geographical regions and

large municipalities. Toward this goal, the program has been divided into five components, as
shown in the figure below:

Program Elements: Tasks:
Earthquaka Hazards Estimates,
Seismicity, Ground Mctions Ground Motion Estimates,

and Seismic Hazards Estimates — MNeww Ground Motion Instrumeniatian,
Earthquake & Ground Motion Data Base.

y

R . . Site Aespanse Eslimates,
Geme_Chmcal Studies, SU_&IS Large Ground Deformaticn Estimatas,
and Seil-Structure Interaction - SoilStruclute Interaction,
Typical Structures and Crilical Struclural Components:
System Response: » ®

- Testing and Analysis;

Testing and Analysis Modarn Analytical Tools.

4 Y y Vulnarabilty Analysis,
Reliability Analysis . » Raliability Analysis,

. Risk Assessment,
and Risk Assessment v Code Upgrading.

Architectural and Structural Design,
Expert Systems Evaluation of Existing Buidings.

il



System response investigations constitute one of the important areas of research in Existing and
New Structures. Current research activities include the following:

1. Testing and analysis of lightly reinforced concrete structures, and other structural compo-
nents common in the eastern United States such as semi-rigid connections and flexible
diaphragms.

2. Development of modern, dynamic analysis tools.

3. Investigation of innovative computing techniques that include the use of interactive
computer graphics, advanced engineering workstations and supercomputing,

The ultimate goal of projects in this area is to provide an estimate of the seismic hazard of
existing buildings which were not designed for earthquakes and to provide information on typical
weak structural systems, such as lightly reinforced concrete elements and steel frames with
semi-rigid connections. An additional goal of these projects is the development of modern
analytical tools for the nonlinear dynamic analysis of complex structures.

The analysis of buildings relies on good estimates of the properties of the structure. The stiffness
of a building may be influenced by walls, cracking of reinforced concrete, floor flexibility,
Joundation effects, and complex geometries. This report describes a test program and associated
analytical developments on a 27-story building, and provides conclusions and guidelines for
improved analytical simulation of buildings. Such experimentallanalytical investigations on
realistic structures are essential in order to check and enhance analytical prediction and risk
assessment capabilities,

v



ABSTRACT

This report presents a study o©f three dimensional
analytical modeling of buildings based on the computer program
SUPER-ETABS. A 27-story RC building with unsymmetric cores was
simulated. First, a predictive analytical model was developed
based on the engineering theory for member analysis of the
cores.

A series of forced-excitation dynamic tests were then
conducted of the real building in the context of meodal
testing. TIts glohal dynamic responses were measured to
validate, improve, and identify the parameters of the
predictive analytical model. The first nine frequencies and
the corresponding 3D normalized mode shapes were measured by
modal testing.

After correlating the measured results with those from the
predictive ETABS model, this had to be revised. An improved
model termed "simulative ETABS model" was hence develcoped. The
frequencies, mode shapes, and flexibilities of predictive,
measured, and simulative analytical models were compared,
revealing an excellent correlation between the ETABS
simulative mcdel and measured responses. This was accomplished
without a rigorous adjustment of its parameters. The
predictive model, however, was shown to have poor correlation
with experiments, without any numerical adjustment of its
parameters. This indicated the importance of experimental
identification in evaluating existing bulldings with unusual

attributes.
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SECTION 1

INTRODUCTION

1.1 General Comments

In evaluating seismic vulnerability of unusual, complex,
aged, or damaged constructed facilities and for their reliable
upgrades, accurate analyses are necessary [2]. Recent
developments in high-speed micro-computers permit the analysis
of refined 3D analytical models of buildings, and nunber-
crunching is no longer a problem for structural engineers for
routine problems. But how to establish an analytical model to
accurately simulate a real! structure remains a problem,
especially for complex or irregular structures such as
buildings with thin-walled core systems or wall elements. Such
elements cannot be simulated accurately by 1D analytical
elements [5], and developing their macro-element
representations by a combination of several analytical
elements is recommended. For example, 1n ETAEBS, a shear wall
may be represented by an analytical assembly using panel,
column, and beam elements. In such cases, how to assign
parameters such as moment of inertia, shear area, torsiocnal
inertia, etc. to each analytical element to correctly simulate
the flexibility of the real structure becomes a major problem.
In this report, application of the structural identification
concept to improve analytical modeling of buildings with core
systems is described. The concept of structural identification
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has been advocated by many researchers [1,7,14,16], and has
been applied to solve different types of civil-structural
problems [17]. Using structural identification as a means of
detecting damage is gaining importance, evidenced by recent

research in Eurcpe [12,19].

1.2 Literature Survey

Structural identification is defined as correlating the
measured responses of a structure with those of an analytical
model 1in order to improve, validate, and quantify the
parameters of the model [15]. Recently, several engineers and
scientists have approached identification of buildings and
bridges using general purpose structural analysis programs
such as SAP or ETABS. For example, a multistory steel framed
structure was 1idealized in order to conform to the 3-D
building response model incorporated in ETABS [6], and the
dynamic properties of a 30-story R.C. tower building were
measured and correlated with the results from an ETABS
analytical model [22]. In these reports, ambient and/or
forced-excitation tests were performed. The dynamic responses
measured in these tests and the results from an ETABS
analytical model were compared. The tested buildings were
regular and they did not possess any undesirable attributes or

thin-walled core systens.



1.3 Objectives and Scope

Two distinct cobjectives were defined in this current study
of building structural modeling and identification

(1) A documented effort to model buildings with open or
closed thin-walled core systems by utilizing ETABS does not
exist to the knowledge of the writer. On the cther hand, many
RC medium-rise to tall buildings or composite structures are
typically designed with RC core systems. Availability of ETABS
and other building analysis software for the PC is leading to
their increased use by practicing engineers. Analysis
provisicns of 1988 UBC for the seismic design of "irregqular"
buildings and the provisions of ATC-14 for the seismic
vulnerability evaluation of buildings require 3D modeling and
analysis of complete building—-foundation systems, These
documents further motivate the use of software such as ETABS
for design and evaluation of irregular buildings. Therefore,
explering manners of using ETABS to accurately model buildings
with undesirable attributes and RC core systems was considered
a worthwhile effort which may have immediate significance for
practicing engineers.

(2} While forced-excitation testing of buildings have been
carried out, these were not conducted with the currently
developed hardware and software used by modal test
specialists. Exploring the use of recently developed modal
test tools for building identification conmprises the second

objective of the study.



Organization of the report is as follows :

The second chapter describes the test building, its structural
system, and lists the undesirable attributes of the building.

The third chapter introduces SUPER-ETABS briefly and
describes the procedure followed to generate an ETABS
analytical meodel. Rules followed in modeling the closed thin-
walled core system are presented.

The fourth chapter describes modal testing of the
building, discusses the equipment used, instrumentation and
test procedures, and compares the measured responses with the
results from the predictive analytical model given in chapter
3.

The fifth chapter discusses how the predictive model was
revised. A new ETABS model termed "simulative model" is
described. The frequencies, mode shapes, and flexibilities
from the predictive and simulative ETABS models and those
measured by the modal test are correlated.

The final chapter includes a summary, conclusions and

recommendations for further study.



SECTION 2

DESCRIPTIQON QOF THE BUILDING

2.1 Test Building and Existing Documentation

Photegraphs of the test building are shown in Fig. 2-1.
The bulilding was designed and constructed 1in 1968 as a
residence hall at the University of Cincinnati campus, and was
closed in 1981 due to issues related to fire safety. 1In
additicn to the design drawings, extensive documentation was
available regarding the site geotechnical characteristics, as-
built dimensions, reinforcement detailing and variation in the
concrete properties obtained by sonic tests. Core samples were
taken from the siak concrete at wvarious floors in 1982,
revealing a measure of the attained concrete strength and its

variation within the building.

2.2 Conceptualizing the Seoil-Foundation-sStructure

The data was studied and the building was visited several
times in an effort to understand the site, relation of the
building to other structures on the site, the structure-
foundation systen, and possible interactions between
structural and non-structural conponents. The photographs in
Fig. 2-1 indicate an elevation difference which is
approximately 15 ft. between the grade at E and W faces. A
three-story building adjacent to the north side ls separated

by a construction joint.
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The soil at the site was determined by bore tests to be
hard shale with thin layers of limestone, capable of cver 25
tons/sq.ft. bearing. The foundations were poured directly on
the rock. The structure-foundation system is depicted in the
typical plan shown 1in Fig. 2-2 and the 3D isometric
illustration shown in Fig.2-3.

The foundation system is only 4 feet below grade,
consisting of individual spread footings which are not tied
together. The building plan is observed to be an approximately
60 ft by 160 ft rectangle. The structural elements and their
typical proportions are shown 1in the plan (Fig. 2-2),
indicating a flat-slab system with peripheral walls and two
central cores which are coupled by the slab (coupling beans
were used at the first four floor levels although these would
be least effective at the lower floors). Core footings are 7
ft. deeper than those of the columns, drawings indicate that
these followed the contours cf rock,

The total height of the buiiding from the grcund-flcor
i.e. level 1 is 280 ft. There are twenty-seven floor levels of
typical 9 ft. story height except for those ncted in Fig. 2-2,
A structural steel appendage of 2400 sgquare feet in plan as
well as several TV antenna towers are located on the 27th
floor. The nonstructural elements included interior partitions
made of light wood-products, and glass attached to the facades

through light aluminum framing.
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2.3 Undesirable Attributes of the Building

From Figs. 2-1, 2-2 and 2-3, and the information given
above, several attributes related mainly to lateral response
are noticed. Those should justify a closer scrutiny of the
building had they been noted during a first or second cut
rapid seismic vulnerability evaluation effort:
{a) Elements providing the largest portion cof lateral shear
and overturning stiffness are the central cores‘which have
shallow individual footings susceptible to rocking; (b) all
the peripheral walls are terminated before the foundation
leading to a significant stiffness discontinuity at the third
floor level ({particularly of tcrsicnal stiffness):; (c) plan
aspect ratio of 1/3 indicates significant differences in
lateral stiffnesses and frequencies in the principal
directions; (d) elevation slenderness ratio of nearly 5 along
the narrow plan dimension, raising concern for overturning
stabkility; (e) 7.25 in. thick flat slab without stiffening
along the exterior edges which ralse concern regarding
adequate in-plane diaphragm stiffness and strength; ({f) the
latter attribute also raises concern regarding the shear
strength at the slab—-cclumn connecticons under combined gravity

and bilateral effects.



Fig. 2-3 3D Isometric View of the Structure-Foundation
System






SECTICN 3

ETABS AND PREDICTIVE MODELING

3.1 Description of SUPER-ETABS

"Over the past decade the TABS series [20,23,24] of
computer programs, operating on main frame computer systens,
have demonstrated a record that unconditionally establishes
them as the most practical and efficient tools for the three-
dimensicnal static and dynamic analysis of multistory frame
and shear wall buildings [13]". An enhanced version of the
program named SUPER-ETABS [18], with the same analytical
capablility and versatility, was developed for the personal
computer. This program permits simulating 3D response of large
buildings discretized into column, beam, panel and bracing
elements. The independent degrees of freedom and the
corresponding forces for each typical element are shown in
Fig. 3-1. The c¢olumn and beam element may have rigid end
offsets for stiffness corrections. Columns must be prismatic.
Their bending, shear, and axial deformations are included.
Beams need not be prismatic but must be symmetric about their
vertical midplane. Only bending and shear deformations are
considered for beams.

A speclal panel element is included to medel infill panels
and discontiﬁuous shear walls. Two alternative types of this
element are as follows :

a) a "flexural" model which regists both bending and

3-1
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shear.
b) a "pure shear" model which ig restricted to resisting
only shear.

The typical panel deformations and joint displacements are
shown in Fig. 3-2 from Ref.[25]. It must be noted that a panel
should be defined only within two column-lines. On the other
hand, independent rotations are not incorporated at the four
edges of a panel in the formulation of panel elements. It
follows that panel element's edge rotation at the joint where
panel, edge column, and any beams Intersect will not be
compatible with the rotation of this joint. Therefcore, it is
necessary to supply stiff beams sandwiching a panel element to
force the column rotaticns at the edges of a panel to be
conslistent with overall panel rotations at the top and bottom

[25].

3.2 Analytical Modeling of the Building

A building is considered to consist of a number of 3D
vertical frames for ETABS modeling. The horizontal
displacements of these frames at any floor level are made
dependent to the in-plane displacements and rotation of the
diaphragm at the floocr mass center. The size of problem which
may be analyzed by SUPER-ETABS depends on the size of the
largest frame. Large buildings may be divided into a large
number of frames and analyzed. However, only the in-plane
rigidity of the diaphragm is assumed to couple the different
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frames. Therefore, columns or walls which are ccupled by
beams or which are sufficiently close to each other so that
they are effectively coupled by the out-of-plane flexural
stiffness of the diaphragm should be modeled as elements of
the same analytical "frame'.

The analytical medel of the building was developed by
idealizing the structural system into 4 frames as shown in
Fig. 3-3. The story heights indicated in Fig. 3-2 were
incorporated in the model,

The total mass of each floor calculated from the
structural and nen-structural elements was assumed uniformly
distributed over the plan and lumped at the geometric center
of each floor. A concrete weight density of 150 lb/cubic foot
was used to compute mass.

All the physical beams were modeled as T-beams following
the ACI guidelines for effective slab participation. When only
the slab spanned between two columns, a slab beam was defined
with the same depth as the thickness of the slab and a width
equal toc 30% of the distance between the center-iines of
transverse spans.

The value of E was taken as 57000 (fc', and the value of
concrete compressive strength fe!', was taken from the report
on core tests [21]). These were on the average 50% greater than
the corresponding design value. The value of Poilsson's ratio

was taken as 0.2.
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The joint zones where columns and beams intersected were
assumed to be rigid and these were modeled in ETABS as rigid
ends.

A fictitious story under the foundation was defined in
order to be able to simulate the soil-foundation mass and
flexikility, althcocugh during predictions very large
stiffnesses were assigned to the elements of this fictitious
gstory to simulate total fixity at the foundation level. The
two core systems which are coupled by beams and slab comprised
the largest frame. Since the cores were computed to provide
almost 90% of the shear and over 50% of the overturning
resistance of the building, the importance of their correct
modeling is apparent. Modeling the remaining elements of the
building do not reqguire elaboration and the following

discussion will focus on the cores.

3.3 Investigating the Core Characteristics

To model the cores as an assemblage of analytical elements
available in the ETABS libkrary, the following criteria were
established: (a) The 6x6 3D basic (cantilever) flexibility of
the core (Fig. 3-4) should be replicated by the corresponding
flexibility matrix of the ETABS analytical assembly; (b) the
geometry (geometric center and shear center locations and
principal directions) as well as the estimated deformation
kinematics of the actual core should be correctly simulated
with the ETABS assembly; (c} Coupling of the cores by
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coupling beams and diaphragm should be correctly simulated in
the model.

The flexibility matrix of the core was first computed
based on gross section properties. The engineering theory for
member analysis, based on the Berncuilli~Navier assumptiocn for
axial-shear-flexure and free warping for torsional response
was used [10].

A,

For a single core cross section, the properties A, A, A,

I I I Y

%! v’ 27

X, Y

or X or X, of the cross section were computed as

shown in Fig. 3-4. The procedures and assumptions used to
calculate these properties are outlined in Appendix A(a). The
properties of two other cross sections which are less complex
were alsc calculated based on the same procedures to better
exemplify the procedure. The results from these conmputations
are compared in Appendix A{b).

The core flexibility was therefore quantified based on the
axial and effective shear areas and moments of inertia about
the reference axes as well as the shear center ccoordinates as
shown in Fig. 3-4.

The analytical assembly which was developed to model the
caore before the experiments is shown in Fig. 3-5«(a). This
assembly was made up by modeling wall segments by panel
elenents, sandwiched horizontally between stiff beam elements
at each floor level connected at floor levels to c<column
elements leocated along each vertical boundary. The geometry
of the analytical assembly therefore coincided with that of
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the core, and the deformaticon kinematics of the core was
considered adequately simulated by the analytical assembly
through the use of stiff analytical beams sandwiching the
panel elements. The shear center ccoordinates of the analytical
assembly was determined by ETABS analyses and verified to
correspond to the ghear center c¢oordinates computed for the
core, this was another verificaticn of the accurate
representation of deformation kinematics. The issue was in
ascertaining that the ETABS element assembly would have the
same flexibility as that of the actual core, This was
accomplished as discussed in the following. The assembly model
which was generated following the experiments and which is

shown in Fig. 5-i{a) will be discussed subseguently.

3.4 Core Modeling by ETABS Prior to Experiments

To define inputs for the panel and column elements which
made up the ETABS assenbly 1in Fig. 3-5{(a), first the
contribution of each wall segment of the physical core to the
axial and shear areas and moments of inertia along the
principal axes at the geometric centroid of the core were
computed. Analytical panel elements are permitted only
in-plane flexural and shear stiffness. Although an axial
degree-of-freedom and an axial force output is shown in the
ETABS manual for panel elements, this is in fact a slave to
the axial displacements along the boundaries. An independent
axial degree-gf-freedom along the centroidal axis is not
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incorporated. Based on this, the following procedures were

devised toc define the inputs. Wall secticon AB shown in Fig. 3-
5(a) will be used to illustrate the procedure as follows
(a) The axial area of core wall segments were assigned as

axial area to the corresponding panel elements:

In the real cross section :
wall segment AB : A = 26.7 ft°

So, in the analytical mecdel :

panel P, : A = 26.7 £t2
column C, and C; ¢ A = 0

(b) Contributicns made by the in~plane moment-of-inertia of
each wall segment to the core crossectional inertia at the

centroid were assigned as mement-of-inertia to  the

corresponding panel.

In the real cross section

wall segment AB : I, = 1/12%1%26.67°+ 26.67%7.34°

= 3018 ft*

(with respect toc cross section centroid)

So, in the analytical model

. &
panel P, : I = 3018 ft

(with respect to its centroid)

column C, and C : Iz = 0

(c) Contributions made by the out-of-plane inertia of each
wall segment were assigned as inertia along the corresponding

direction to the analytical columns at the boundaries.

In the real cross section ¢

3=12



wall segment AB : I = 1/12%26.67%1°+26.67%3.73°
= 374 ft*
Sc, 1in the analytical model :

panel P, : Iv = 0

(nonzero value is not accepted by ETABS)

column C, and C; ¢ I = 0.5%374 = 187 ft"
(dy The total effective shear area along each principal
direction of the core was distributed to the wall segments in
preporticn te their contributicn to the principal centroidal
nomentg-of-inertia,
(e) The in-plane effective shear areas computed for a wall
segment was assigned as shear area to the corresponding panel
element. The total shedar area of the core in the y-direction
is 52.5 ft°. The ratio of wall segment AB's I, to the I, of the
core at the core centroid is given by 3018/18430.

panel P, : A, = 52.5%3018/18430 = 8.6 ft?
(£f) Out-of-plane effective shear area of a wall segment was
assigned as effective shear area to the column elements at the
panel boundaries.

column C, and C; : A, = 16.2%187/1855 = 1.63 ft?
Where 16.2 ft° is A, of the complete core and 187/1855
represent the ratio of the wall segment's I, to the I, of the
core at the centroid of the core.
(g) The torsional stiffness provided to the analytical

assembly due to the shear forces developing in the columns and

panels was computed.



Torsiocnal stiffness provided by the 7 panel elements :
GL /L = % [ Q*-c-==rmr————omoe— e ]

= 1092 G/L
where G : shear modulus

elastic modulus

=

L : clear height

Ixp : torsional inertia of panel elements

d; : distance from panel P, to G.C. of cross
section

A, : shear area of panel P,

V1

Torsional Stiffness from coclumn elements
G*I, /L = x G*I /L. = 3548 G/L
where I . is torsional inertia of each column
element i.
(h) Difference between the torsional constant T, cemputed for
the real core and the effective torsional ¢onstant of the
analytical assembly provided by the shear resistances of the
analytical elements was assigned as individual torsional
constants of the analytical columns, dividing equally between
all the columns.
Column C, and ¢, ¢ I, = (I, - I - ixp)/a = 37.9 ft*
Where I _ and Ixp represent the effective tceorsional
constant of all analytical columns and panels, respectively
and I, represents thé torsicnal constant computed from the
real core.

Hence, while the boundary columns were not assigned an
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axial stiffness, they were assigned flexural, shear and
torsional stiffnesses. The flexibility of the ETABS assembly
was generated numerically by appropriate ETABS analyses of a
cantilever-core, and was determined to nearly coinclide with
the flexibility computed for the actual core based on gross
section properties. This is illustrated in Fig. 3-6 under the
ETABS model-1. The results given for ETABS model-2 will be
discussed subsequently in relation to the simulative model,
Since the compared flexibility ccefficients of the real core
and the predictive ETABS medel were sufficiently close, this
was considered appropriate as a reference for dynamic testing
and identification of the building, and was used to generate

the mode shapes and frequencies.

3.5 Analysis Results

From the ETABS output file, frequencies of the first 9
predicted modes ranged from 0.44 Hz to 6.52 Hz. Since the
principal axes and glckal axes of the complete structure did
not exactly coincide, each bending mode had amplitudes in both
lateral directions. However, the effective mass of the
coupling terms were small, as shown in Fig. 3-7. The mass
contributions of the first 9 modes in the lateral direction as
well as in torsion added up to meore than 92% of the
corresponding total mass 1in each direction. Therefore, only
the first nine modes were used in the identification of the
building. The mode shapes cbtained from these analyses are
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given in Fig. 4-15.
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SECTION 4

MODAL TESTING OF THE BUILDING

4.1 General Description

Dynamic tests were conducted in the context of modal
testing for the global identification of the building i.e. to
verify the ETABS model and to quantify its critical parameters

such as core stiffnesses.

4.2 Instruments and Procedures

A number of excitation devices, excitation types and data
acquisition procedures were explored to design the test and to
arrive at the following procedure. To find an excitation
device which would effectively excite the building at
fregquencies below 1 Hz. proved to be a problem. One of the
largest portable excitation devices designed for nuclear
facility testing was provided by SDRC of Cincinnati and this
was used in the research. Random excitation was continuously
generated at the 26th floor of the building by a linear 2500
1bf reactive-mass actuator with a 2 in. maximum stroke leading
to a dynamic force of 75 1lbf at 0.5 Hz. (exciter is shown in
the photograph in Fig. 4-1). The actuator was mounted against
the column indicated in Fig. 4-2 and excitation was first
applied along the N-S direction. After measuring the lateral
and torsional dynamic c¢haracteristics, the exciter was
rotated to the E-W direction and the complete testing was
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Fig. 4-1 Linear Inertia-Mass Exciter Used for
Modal Testing of the Building
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repeated along the E-W direction. Responses were measured at
nine floor levels while the actuator remained stationary on
floor 26. At each floor tested, 10 PCB model 393-B seismic
accelerometers were located as shown in Fig. 4-2. A CGenRad
2515 dynamic analyzer was used to control the test as well as
to measure and store the data in the frequency domain. MODAL-
PLUS which 1s a modal analysis software package developed by
SDRC was used to determine the dynamic characteristics of the
structure from frequency response functions. A TEAC digital
tape drive was used %fo record the data also in the time
domain. Fig. 4-3 shows a phote of the equipment used for the
excitation contrel, while Fig. 4-4 shows the photo of
instruments used for the data acguisition and storage. Flow
charts of both the excitation control and data acguisition and
storage are given in Figs 4-%, and 4-6. The hardware used in

modal test are listed in the following :

<A>». For Excitation Control :
<1l>». HP 356la Dynamic Signal Analyzer.
-~ Generates very low frequency band limited random

force signal

<2>. WAVETEK VCG/Necise Generator, Model 132.

~—- Generates broadband random force signal



1] -
i Reproduced from
{ aest avallable capy.

ig.a~3 Pholograph of Instrumenls Used to
Control the Excilalion



Fig a-4 Photograph of Instruments Used in the Dala
Acquisition, Processing and Slorage System
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<3>. Summing Amplifier.
—— Added the signals from WAVETEK and 3561A to provide

variable gain for each of these signals

<4», KH (Krohn-Hite) Filter, Model 3550.
-- Low pass filter which concentrates the force energy

at low freguencies

<5»,., Set Point Controller. (Zonic Technical Laboratories
INC.)
—— Feedback servo-controller to control the inertial-

mass actuator

<6>, Electro-Hydraulic Servo—-Control Inertial-Mass
Excitation Generator, (SDRC manufactured 3000 lbs
inertia-mass 2 in. stroke actuator used with 2500 lbs
nass)

-—- Generates force excitation

<B>. For Data Measurement and Store :
<1l». 10 PCB Accelerometers Model 393BR.

-- Measures low-level vibration

<2». PCB PIEZOTRONICS Model 483A07.
-- Power supply for accelerometers

4-9



-— Integral amplifiers with max. 100 time gain

<3>, DIFA Measuring System.
-- Low pass filter and signal amplifier
-- Used to make better use of the dynamic range of the

recorder (TEAC) and GenRad

<4>». TEAC XR-710 Cassette Data Recorder.
-- 21 channel analog FM data recorder
-— Stores all data time histories on magnetic tape for

re-analysis if desired

<5>». GenRad Channel Expansicn.

-- Allow up to 16 channels of data input to GenRad

<6>. GenRad Computer-Aided Test System 2515.
~— Acquires Data
~-- Calculates frequency response functions (FRF)
-=- Stores FRF's to a hard disc
-- Computes modal parameters from stored FRF's using

SDRC developed Modal Plus software

Three different sets of data were acgquired at each floor
(1) Ambient Test data (15 min.): {2) Forced excitation test
from 0 to 4 H,, 200 freguency domain averages; (3) Forced
excitation test from O teo 16 H,, 400 frequency domain
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averages.

Coherence (Fig. 4-7) between force and responses were
checked and seen to be close to 100% above 1 Hz. and somewhat
less below 1 Hz. This remained a problem although tests were
conducted by random excitation which was filtered in order to
accentuate the frequencies below 1 Hz. It was noticed that the
coherence became less when the ambient response due to wind
became higher. In fact, the freguencies were noticed to shift
in the course of testing through a day with the changes in
ambient conditions. Since the level of excitation at lower
frequencies did not permit to study the influence of ambient
phenomena on mechanical characteristics of the building, these
were not explored further.

The modal amplitudes were found at the measurement
locations by taking the ratio of corresponding peaks in the
transfer functions after these were conditioned by
curve-fitting. Possikle diaphragm distortion was implicated by
slight differences in the modal amplitudes measured at
diaphragm corners. The low level of force was not Jjudged
adequate to isoclate this phenomenon from other possible error
sources confidently. Therefore lateral mode amplitudes
measured at diaphragm corners were averaged. Similarly, while
it was not possible to measure foundation displacement or
rotation within the margin of errcocr which affected the test
results, possible rigid-body rocking of the core footings was
not ruled out at slightly higher excitation levels. A new

4=11
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excitation device which will have sufficient energy input
capability at frequencies under 1 Hz. is being developed to
repeat the tests of the building for more rigorocus and
reliable identification of these phenomena discussed above.

In spite of the fact that input excitation was low under
1 Hz., the characteristics of 9 lower modes along a bandwidth
of 0.58 Hz. - 6.56 Hz. could be confidently identified.

It is impeortant to note that due teo the design cf light
wood~-product nonstructural elements, thelr interaction with
the structural system was not a preblem. It is impertant that
characteristics of some of these modes may change with higher
excitation 1levels, particularly 1if phenomena such as
foundation rocking may be initiated. Alsc, had stiffer and/or
heavior nonstructural components were used, the interaction of
these with the structural system would have led to differences
in dynamic characteristics with the exc¢itation level,

Reliable measurement of the shapes of the first three
modes was accomplished by selecting the '"response ratio
algorithm". This algorithm 1is not influenced by the
interference of ambient and applied excitaticons and was in
fact aided by the fact that input excitation was complemented
by ambient excitation as long as this could be assumed as
broad-banded. This is further illustrated in Fig. 4-8 which
shows the lower 2 mode shapes obtained from the experiment
based on the '"transfer functicn" and ‘'response-ratio"
algorithms. The importance of selecting an appropriate
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algorithm in improving the reliability of modal test results
is evident from this figure. Alsc evident is the need for
specialized expertise in modal testing for reliable

identification of constructed facilities.

4,3 Results of Modal Test

The frequency respcnses measured from 0 to 4 Hz in N-S and
E-W directions were shown in Fig. 4-9 and Fig. 4-10
respectively. Frequency responses in the 0 to 16 Hz kand in N-
S and E-W directions follow in Figs 4-11 and 4-12
respectively. The corresponding force power spectrums are also
shown in Figs 4-13 and 4-14.

A reasonably "broad-banded" force input in the frequency
band of interest is indicated from these figures. However, a
new excitation generator 1is being developed to improve the
power in the 0-2 Hz band. Comparing the force power spectrums
in Figs 4-13 & 4-14 and the correspeonding frequency responses
in Figs 4-9 and 4-10, 1t is observed that frequencies of the
structure correspond to peaks in the power spectrum.

The nine measured mode shapes and frequencies of the
building are shown in Fig. 4-15, compared with the predicted
values from the predictive ETABS model. The first three
predicted frequencies are approximately 25% lcwer than the
neasured frequencies while the difference is about 5% for the
remaining six frequencies. Predicted modal amplitudes are
observed to be quite c¢lose to the experimental counterparts.
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The large discrepancy in the lower three predicted and
measured frequencies indicated a significant shortcoming of
the analytical model in spite of the expertise and careful
study based on which it was generated. The fact that only the
three lower predicted frequencies significantly differed from
their measured counterparts, and that the analytical model
appeared "more flexible" than the real building in spite of
assuming "gross section properties" and '"no foundation

flexibility" was intriguing.
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SECTION S
CORRELATION OF PREDICTED AND MEASURED RESPONSES
AND DEVELOPMENT OF THE SIMULATIVE MODEL

5.1 Improving the ETABS Model to Incorporate Coupling

In the ETABS analytical assembly of the core which was
discussed in vrelation to Fig. 3-5, the columns at panel
boundaries were ncot assigned any axial area and the axial
areas of wall segments were assigned to the corresponding
panel elements. After observing the experimental results it
was realized that thig did not permit to simulate the coupling
action between different walls of sach core & between the two
cores correctly. The stiff beams which sandwiched the panels
were connected to the edge columns. Since the columns did not
have axial rigidity, the coupling acticn was not simulated.
The axial forces which developed in the panels were not
adequate for this purpose. So, the core model was modified as
illustrated 1in Fig. 5-1, by defining additional colunn
elements at panel boundaries to which axial areas of the wall
segments which contributed to coupling action were assigned.
In this manner, the analytical beams which represented the
connecting beams and effective slab-beans were connected to
columns which could develop the axial forces and therefore
effectively simulate the overturning stiffness due to the
coupling mechanism.

For example, the axial area of the wall segment BC shown
in Fig. 5-1 is assigned as described in the following
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real wall segment BC : A = 26.7 £t

soc, in the analytical model :

r

panel P, : A = 0
and the area of the the wall segment is assigned to
columns C, and €, : A = 0.5%26.7 = 13.3 ft?
Those are shown in Figs 5-1(a) and (b); Analytical Mcdel-
2. Since a stiff beam B, was asgigned to connect column ¢, and

C the coupling action due to axial forces developing in

a2
panels P, and P, was represented. The reasoning behind this
procedure is clearly explained in Appendix (B).

The element flexibility of the refined model was verified
to be sufficiently close to the flexibility of the actual core
as shown)in Fig. 3-6. It is noted that the displacements from
ETABS output only show 2 transverse displacements and the
twist angle at the mass c¢enter of each floor. Therefore in
judging the accuracy of the predictive model, only u, u, and
¢, were compared and were seern similar. On the other hand, the
displacements u,, O and &, in ETABS model (1) and the actural
core were hot compared. Obviously, these were considerably
different and led to the errors in the predictive model. The
difference between the u,, 8, and &, of the core obtained by

predictive and simulative ETABS models are 1illustrated in

Appendix {B).



5.2 Refining the ETABS Model to Simulate Measured Modal
Characteristics

After correlating the analytical results obtained with the
improved simulative model and the experimental results, the
three lower analytical frequencies were observed to be 8%
higher. This pointed out that the analytical model now
simulated a higher stiffness than the measured frequencies
indicated. It was not possible to Justify assuming an
infinitely stiff foundation or modeling the walls based on
gross sections when a number of narrow cracks were observed.
Foundation flexibility was simulated based on the flexibility
of columns, walls and footings under the first floor and abkove
the footings. Cracking was simulated by reducing the flexural
and shear terms of element stiffness by 30% only at the lower
four fleoors. This reduction of element stiffness was not based
on a rigerous study of how cracking influenced the stiffness
of cores but was to study the sensitivity of frequencies and
mode shapes to such a reduction.

Simulated foundation flexibility led te a reduction in the
fundamental frequency by 2% while reducing the flexural and
shear stiffness by 30% to simulate cracking reduced the
fundamental frequency by an additional 5%. Higher frequencies

were affected less.



5.3 Flexibility Matrix

To conceptualize the influence of varying analytical model
parameters to the response characteristics, it is important to
select a proper "space" for parameter optimization. In most
studies, the modal space 1is selected for this purpose.
However, since frequencies and mode shapes are difficult to
conceptualize, it has been suggested to conduct parameter
optimization in the "“flexibility space™ [4]. Displacement
flexibility coefficients provide a better measure of current
conditions, and provide a better guide to selecting the
mechanisms and parameters which should be used in
optimization. Therefore, the measured modal characteristics
were used to derive the lateral flexibility discretized at the

nine flcecr levels at which the modal amplitudes were measured.

The formulation to calculate the flexibility matrix based
on frequencies and mass normalized mode shape was as follows
[9]:

The standard eigenvalue preoblem is stated as
K¢, = w Mo, (5-1)
where K = Stiffness Matrix

¢, = Mass Normalized Mode Shape n

I

w Natural Circular Freguency

M = Mass Matrix



After premultiplying each side of Eqg.(5-1) by (l/wf) ¢J
M f and (1/wS°) ¢ ' M £, respectively, and by virtue of the
orthogeonality cof normal nodes, the following results are
obtained
1/wé=¢"'MEM ¢ (5=-2)

0 = ¢ M fM P (5-3)
where £ is the flexibility matrix.
By combining Egns. (5-2} and {5-3) into matrix form, the
following equation is obtained
' M £ M ¢ = DIAG [1/w?] (5-4)

where ¢ is the matrix comprised of the modal vectors.

Making use of the mass ortho-normality of the mcde shapes,

i.e., [¢@]' M [¢] = (T], the following expressions hold
(01" = [M o]
(] = [¢" M] (5-5)

Egqns. (5-4) and (5-5) lead to the flexibility matrix

[(f] = [¢] DIAG [1/w?] [¢]T

The modal coefficients were subsequently mass-normalized by :

(pir = /A Mr )0'5



h

a. : Mode coefficients at r'" mode

b nmode

M. : Mode mass for r'
The modal mass was calculated based on following formula
Mo=a, *a, *w / (2*4A )

w_ ¢ Angular frequency for r" nmode

h

A. : Driving point residue for r'" mode

i
The theocry of the normalization procedure and definition of

the residue term are given in ref.([8].

5.4 Correlating the Results of Modal Test with Those from
The sSimulative Analytical Model

The fregquencies and meode shapes cbtained after refining
the ETABS model are compared to their measured and predicted
counterparts in Fig. 4-15. Tt is observed that a remarkable
improvement in correlation is achieved and the difference
between analytically simulated and measured frequencies became
less than 5%, the analytical model being stiffer. Correlation
between analytically simulated and measured mode shapes also
improved. In general the c¢lose correlation between the
experimentally measured and analytically simulated results
indicate confidence in both the modal test as well as the
analytical model used to simulate the responses. At this point
it is possible to initiate a rigorous parameter cptimization
prceccess and to "calibrate™ the analytical model for even
closer correlation. Reduction of analytical model stiffness by
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further reducing the core flexural and shear stiffnesses as
well as axial and coupling stiffness is possible.

Some of the columns of the flexibility matrix generated
from the measured frequencies and mode shapes are correlated
with the corresponding columns of the flexikility generated
from analytical frequencies and mode shapes from the refined
ETABS model in Fig. 5-2. Flexibility coefficients
corresponding to the lateral displacement profiles of the
building show good agreement while the <c¢eoefficients
representing in-plane twisting of floor diaphragms show some
discrepancy (Fig. 5-2(c¢)}. Particularly, a discontinuity in
torsional stiffness at the 16th floor level is apparent from
the flexibility based on the experimental modal parameters,
this 1s not correctly simulated by the analytical model.
Furthermore, the analytical flexibility indicates a
significant torsional stiffness discontinuity at the 3rd flcor
level, and a need to measure experimental response at this

level in future tests is apparent.
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SECTION 6

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY

6.1l Summary

To evaluate seismic wvulnerability rationally, it is
necessary to estimate the bounds of credible seismic demands
and the corresponding supplies of a facility within a
reasonable confidence interval. An analytical model which
simulates the critical response mechanisms of the
soil-foundation-structure and local supplies such as element
stiffness, strength, energy dissipation and deformability
characteristics with reasonable accuracy 1s therefore needed.
beveloping such an analytical model may prove difficult in
case a facility has irregular attributes, damage and/or

deterioration.

The report outlines efforts for developing a 3D analytical
model of a 27-story RC flat-plate building with several
irregqular attributes, unsymmetric thin-walled cores and
shallow foundatiens. Although literature exists on analysis of
thin-walled elements, thelir validated 3D analytical modeling
in conjunction with computer programs such as ETABS has not
been reported. Since such programs are used widely by
engineers, research into proper macro-element analytical

modeling techniques of cores was considered important.



An analytical model of the facility was developed and this
was followed by modal testing the building. By correlating the
predicted and measured modal characteristics, it was possible
to improve, validate and quantify critical parameters of the
analytical model. The identified model simulated the measured
characteristics of the building accurately. Results from the
initially developed model, however, correlated poorly with the
measured characteristics and errors in the order of 100% were
noted in the predicted and experimentally determined lateral

flexibility of the building.

Although forced-vibration testing and identification of
mid-rise buildings with isclated walls have been reported,
these did not have RC cores and the experiments have not been
carried ocut in the context of modal testing. The study
therefore helped to reach conclusions regarding correct
modeling procedures for RC cores as well as walls which are
not planar, i.e. such as those with T or L shapes. The study
alsoc revealed the critical requirements for successfully
exciting and mcdal testing large constructed facilities with

periods near two seconds.

6.2 Conclusions Regarding Analysis Modeling

In 3D analytical modeling of constructed facilities,
collecting, documenting and synthesizing information regarding
the as-built characteristics and current conditions of the

6—2



facility is the most important step. Befeore completing the
model, it is helpful to first establish the critical
attributes of the facility so that they may be included in the
model. This, however, is an art and some important attributes
are not easy to detect without experience even when

informaticn and time are available.

Reliable analytical modeling of buildings with cores is
observed tc depend on first an accurate calculation of core
characteristics: (a) The gecmetry {shear and geometric center
locations and principal directions) ; (b) the force
distripbution within the core section and its 3D flexibility
including the axial, flexural, shear, torsional flexibilities
and their coupling:; and, (c) 3D displacement Kinematics of the

core element.

It 1is then poessibkble to construct an  analytical
macro-element assenbly to simulate the core geometry, feorce
distribution, 3D flexibility and deformation kinematics using
¢olumn, panel and beam elements. If software and hardware
permit, it would also be possible to represent the core by a
micrescopic finite-element assembly while other elements of
the facility may be modeled at the element or macroscopic

level.



Ascertaining that the analytical representation of the
core correctly simulates all of the 3D geometry, force
distribution, flexibility and the deformation kinematics is
important. In the reported study, an incomplete check of the
deformation kinematics was carried out. This comparison
indicated good agreement between calculated core displacements
and those simulated by the analytical assembly. Experiments
indicated, hcowever, that due to neglect in checking ana
simulating the complete 3D defermation kinematics of the
actual core and its analytical representation, more than 100%
error accumulated 1in the predicted roocf-level lateral

flexibility of the building.

6.3 Conclusions Regarding Experimentatiocon

The most appropriate tool which is suggested for
experimental identification of most constructed facilities is
modal testing. There are important prerequisites for
successful modal testing and identification, starting with
conceptualizing the facility and developing its 3D linearized
analytical modeling. This forms the basis of instrumentation,
excitation, data acquisition and processing which are designed
in a facility-specific mnanner utilizing the linearized
analytical model.

Except for excitation generation, the currently availabile
hardware and scftware used in the modal testing industry for
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modal testing mechanical structures are suitable for
accurately modal testing constructed facilities. For best
results, the level of excitation should considerably exceed
the excitation due to ambient sources or specilal hardware and
signal processing techniques which can differentiate bhetween
responses induced by forced excitatieon and those induced by
ambient effects should be used.

Importantly, for identificaticn to serve as a basis of
evaluation, the level of exclitation should be such that the
measured responses should not be significantly affected by
nonstructural elements which are not considered in analytical
modeling. Furthermore, the excitation should be able to
activate any service-level soil-foundation-structure
interactions sc that these may ke measured. Measurement of
soil-foundation flexibility requires special instrumentation

during modal testing.

6.4 Conclusions Regarding The S8ignificance of Identification

The significance of identifying linearized models of
constructed facilities utilizing modal testing appear
debatable since: (a) constructed facilities are nonlinear and
their linearized identification is not raticnal; (b) very few
cases of successful modal tests have been reported for
constructed facilities where the information generated led to
a reliable identification; modal tests of irregular
facilities or those with undesirable attributes have not been

6-5



reported at all; (c) even 1f successful modal testing of a
facility leads to meaningful identification of a linearized
model, this model cannot be used tc simulate local supplies
and compute local demands at nonlinear 1limit states; (4)
periodic modal tests cannot be used to monitor for damage
either since global modes are not perceptively influenced by

local damage.

The study reported here refutes these peints. A linearized
3D analytical model of the irregular facility was successfully
identified at the element level. &Although this linearized
model cannot be used directly for nonlinear analysis, it does
reliably simulate the critical response mechanismsg and the
existing conditions of the facility. This moeodel can therefore
be used for: (a) Estimating local demands at the onset of
inelastic 1limit states: (b) as a basis fcr local
identification by localized modal testing and non-destructive
probes; (¢) as a vreliable starting point for modeling

nonlinear respanse.

By adopting a correct strategy for nonlinear analysis,
uncertainties related to estimating nonlinear element
responses may be minimized. However, unless the 3D geometry,
deformation kinematics and all critical response mechanisms of
the facility at its existing state are not correctly
simulated through linearized identification, reliability of
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unusual, large and complex, irregular, deteriorated or damaged
constructed facilities cannot ke confidently evaluated. The
fact that experimental identification 1is essential in
evaluating vulnerability of such facilities with reascnable

confidence has been exemplified by the reported research.

6.5 Recommendations for Further Research

Confidently evaluating wvulnerability of those types of
construction in the Midwestern and Eastern United States which
have not yet experienced an earthguake is an important
problem. Unless vulnerability is reliably estimated it is not
possible to overcome societal complacence towards seismic
hazard in many regions of USA. Since there is no data-base
regarding past earthgquake performance of many types of
facilities designed and constructed without regard to seismic
risk, their accurate analytical modeling and correctly
simulating their failure limit-state responses become
critical. It is reccommended that studies similar to those
reported here to be carried out on different types of
construction in a facility-specific manner.

Research on reliable 3D nonlinear analysis of facilities
to simulate their failure limit-state responses and capacity
supplies 1s recommended. Although nonlinear analysis has been
researched for the last fourty vears, the state-of-the-art has
not yet advanced to yield reliable nonlinear analyses of

constructed facilities.



Particularly in view of the uncertainties in estimating
expected ground motion characteristics at a site, and the
sensitivity of ncnlinear time-history analyses to this and
many other parameters, it does not make sense to promote this
type of analysis for evaluating facilities. Research should
first concentrate on improving the state-of-the-art in 3D
static nonlinear analyses to predict failure limit-state
response characteristics of constructed facilities. Such
analyses may reveal sufficient information regarding the
vulnerability of construction if they are based on an

identified linearized analytical model of the facility.
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APPENDIX A

COMPUTING SECTION PROPERTIES FOR CLOSED THIN WALLED
CORE BASED ON THE ENGINEERING THEOQORY

The objectives of this Appendix are :

<1> To illustrate calculating the properties of a closed
two-celled thin-walled creoss section based on the engineering
theory. This is shown in part <a>.

<2>» To illustrate the difference between 3 cross sectiens
which have only slight differences in geometry. Two of the
cross sections are less complex than the one shown in part
<a>. The properties of these were calculated as shown in part

<b>.

<a>
In the following, a single core cross section is used to

illustrate how to calculate the properties A, A, A, 1 I
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<l> Axial Area along X-axis :

<2> Locatio

A =
X

n of

Z =

[

9.917+(9.917+4+1.75)+9,5b+2%25 . 67+2*12 .67

107.8 ft?

G.C.
[9.917%(9.917%0.5-0.5)+(11.667%0.5-0.5)+9.5%
(9.5%0.54+2.167-0.5)+25.67*(9.917~1)+12.67%
(11.667-1)+12.67%2.167]/107.8

5.19 ft
[11.667+(25.67+1)+9.5%(13.67+26.67)+25.67%2%
*(25.67%0.5+0.5)+12.67%2* (26.67+0.5+0.5%
12.67)]1/107.8

20.68 ft

<3> Moment of Inertia along the Y-axis :

I

¥

1/12*%27.67%9.917°+27.67%9.917%(9.917%0.5-0.5~
5.186)%-1/12%25,67%7.917°-5.67%7,917%(7.917
*0.,5+0.5-5.186)%+1/12%14,67%9,5°+14,67%9, 5%
(9.5%0.5+2.,167~0.5-5.186)°-1/12*%12.67*7 .55~

12.67%7.5%(7.5%0,5+0.5+2.167-5.186)%-1/12%

7.75%=7.75%(7.75%0.5+2.167-0.5-5.186)°

1855.2 ft*

<4> Moment of Inertia along the Z~axis :

IZ

1/12%9,917%27.67°+27.67%9.917%(27.67%0.5=-0.5~
20.67)%-1/12%7_.917%25,67°-5.67%7.917% (25.67%
0.5+0.5-0.67)%+1/12%9.5%14.67°+14.67*% 9.5%
(14.67%0.5+25.67+0.5-20.675)%=1/12%7.5%12,67°
~2.67%7.5%(12.67%0.5+27.67-0.5-20.675) %=

A-2



1/12%7.75-7,75%{(5.495+0.5)%

= 18430.1 ft*

<5>» Cross Moment of Inertia :

I, = 8.917%(~20.675)%(~0.728)+10.667%5.995%
0.148+8.5%15.665%1.231+26.67*%(~7.34) % (—
5.186)+ 26.67%(~7.34)%3.731+13.67%12.83%
5.481+13.67%12.83%(=3.019)

= 1066.1 ft*

<6> Orientation of the Principal Axes :

o, = 2%L / (I, - L)

= 3.6 degree
Since the principal axes are rotated only 3.6 degrees
with respect tc the reference axes, they were assumed
to ceoincide with the reference axes in the following
shear flow calculaticn.
Location of the §.C.
Computed as Y = 0.242 ft, Z = 0.176 ft as described
in the following :
In corder to determine the coordinates of the shear
center, the folleowing superpecsition is carried out. For
shear forces applied at the shear center, the shear

flow ¢ can be represented by the sum of two shear flows

g = 4y + 4.
q, is shear flow of the cross section which is rendered
an cpen section by cutting as shown in Fig. Al.
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Assuming plane sections remain plane, g, is calculated

from the general expressicn [11].

(=V,*I 4V T )Y 4 (V,1,-V. I ) *2
qy = ——m———mmm——— P * A, %t
( I*I,- 1% * ¢t
Vy, Vv, : shear forces along Y, 2 direction.
Y., Z_ coordinates of the centroid of sectorial area

A

5.

A, is the sectorial area of the cross section.

t is the uniform thickness of the wall.

d, 1s a constant shear flow in the closed section which
is released when the section is rendered open, which
can be calculated based on the condition of zero twist.
This condition arises from the fact that the shear
force was applied through the shear center.

The shear-flow ¢, and ¢, were calculated and are shown
in Fig. A-1.

Therefore, the location of shear center Y  ,Z. can now

be calculated from the moment at G.C.

[

V. % Y =% g; * r. ds = 0

J

Where V_ : Shear force in 2z direction

Y  : Distance at y direction from S.C. to G.C.
d; : Shear flow at segment 1
r. : Distance from segment to G.C.

j
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<a> Horizontal Force 100 kips Acted on 5.C

Fig.a-1 Shear Flow Diagram
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«b> Verlical Load 00 kips Acted on 5.C

Fig.a-1 Shear Flow Diagram
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<8». Effective shear area in the y and z directions

A, = 52.45 ££2, A, = 16.18 ft?

Based on the " Principle of Virtual Forces [10]%

The internal work is computed as :

[
W= (7 %*r1r)dv
J
[ Q V*Q
= ee——— ¥ —mm———— * £ * ds * dx
J t*I G*t*T
Vadx [
= —————-= o % ds
G t*T1% |
Where 7 : Shear stress due to dummy force
r : Shear strain due to shear force V
Q : First moment of area

t : Width of segment
G : Shear modulus

The External Work is :

Where A, is effective shear area

Because W, = W,
1 1
== ————— = ————— Q2 * ds
A, I*I*t |
1 1 r
===> ————— = - (g,)® * ds {
A AES



<9>. Torsional Constant was computed as ;
I, = 4943 rfté

The Twist Angle ¢ and Torgue T were obtained from [11]

Torque T = 2 * & ( I'. * g, )

I' : Area enclesed by the medial iine.

t : Uniform thickness of the cross section.
G : Shear Modulus.

Torsional constant I = T / G¢



<b>». Case 1 and case 2 correspond to two similar cross
sections, the dimensions of which are shown in Fig. A-2. The
properties of each cross section was calculated ky the

procedures discussed 1in part <a>» and compared in the

following:

Preperties Case 1 Cage 2 Case 3
A, (£t°) 98.4 107 .3 107.8
A, (Ft?) 75.2 48,74 52.45
A, (ft?) 15.52 15.98 16.18
I, (fth 5229 5244 4943
I, (FE*) 1720 1779 1855
I, (ft") 18137 18488 18430

The change in the properties of the section in case 2 as
compared to that in case 3 is very small. This indicates that
the assumption of principal inertia axes coinciding with the

reference axes was Jjustified.
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APPENDIX B

STUDY OF ALTERNATIVE ETABS MODELS FOR
A CLOSED-BOX CORE SECTION

B.1 Introduction

In order to illustrate the prcoccedure for correct ETAEBS
modeling of a closed box-section core, a one-story, cantilever
element with a symmetric box creoss section was considered as
an example. The displacements due to an eccentric lateral
force acting con the top of this element are shown in Fig. B-1.
These were obtained from a variety of ETABS analytical
assemblies,

Based o¢n the engineering theory, displacements at the mass
center of top floor were calculated. There were used to check
the accuracy in the results of analyses using five different

ETABS analytical assemblies.

B.2 Closed Form Displacement Calculation
Based on the 3D cantilever flexibility matrix shown as
Fig. B-1, the displacenments of the core structure were

calculated as following:

Y = 2 = 0 due coinciding shear and geometric
centers

F, = 2000 Kips

M = 10000 Kip-ft
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= 0.2081 ft

M, * L

§, = —————————- = 0.0035 rad.
G o* T,
F_ * 172

&, = R A = 0.0091 rad.
2%kE*T

B.3 ETABS Modeling

In order toc model the core structure shown in Fig. B-1 by
using SUPER-ETABS, panel, column, and beam elements were used
to assemble each wall segment. Five different modeling cases
were considered and wall secticens AR and BC (Fig. B~1) will be
used to illustrate the parameter assignment in each following

medeling cases

Case 1 :

Based on the false assumption that the program will
transform the wmoment of inertia and torsional inertia to the
mass c<enter automatically, only the in-plane moment of
inertia, axial area, and shear area of each wall segment were
assigned to the corresponding panel elements. Four fictitious
column lines were defined at each corner and a stiff beam
was defined to connect the boundary c¢olumns in each wall

B-3



segment.

The analytical model is shown in Fig. B-2 and assigned
parameters are based on the following procedures:
fa) The axial area of core wall segments were assigned as
axial area to the corresponding panel elements:
Tn the real cross section

wall segment AB : A 6.0 ft?

X

wall segment BC : A 10.0 ft°

x

Sc, in the analytical model

panel P, : A = 6.0 ft?

panel P; : A 10.0 ft?

x
column C,, C, and C; : A = 0
(b) Contributions made by the in-plane moment-of-inertia of
each wall segment to the core crossectional inertia at
the centrecid were assigned as moment-of-inertia to the
corresponding panel.

In the real cross section :

wall segment AB : I = 1/12*%1%6.0° = 18.5 ft*

Z

wall segment BC : 1 = 1/12%1%10.0° = 83.8 ft*

(with respect to cross section centroid)

So, in the analytical model :

18.5 ft*

I

panel P, : I,

panel P, : I 83.8 ftf

il

¥

(with respect tc panel centroid)

coiumn <, C, and ¢, ¢+ I = I =0
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(c) The in-plane effective shear areas computed for a wall
segment was assigned as shear area to the correspeonding
panel element. The total shear area of the core is 12.0
ft? in the y-direction and 20 ft? in the z-direction.
The ratio of wall segment AB's I, to the I, of the core
at the core centroid is given by 18.5/220.7. The ratio
of wall segment BC's Iy to the Iy of the core at the
core centroid is given by 83.8/472.7.

1.0 ft?

1
1l

panel P, : A 12.0%18.5/220.7

Y
3.5 ft?

1l
1l

panel Py ot A 20.0*%83.8/472.7

z

column C,, ¢, and C; @ A, = Ay = 0

z

Case 2 :

The analytical assembly was modeled similar to Case 1.
However, scme parameters were assigned to the analytical
column elements as follows (Fig. B-3)

(a) The out-of-plane moment of inertia of each wall segment
was calculated with respect to sec¢tion centroid and
assigned as inertia alcng the corresponding direction to
the analytical columns at the boundaries.

In the real cross section

1/12%6.0%1°+6,0%5.0% = 152.5 ft’

i

wall segment AB : Iy

i

wall segment BC : I 1/12%10.0%1°+10.0%3.0° = 91.8 ft*

Z
(with respect to cross section centroid)

So, in the analytical model

panel P, : Iy = 0
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(c)

panel P, ¢+ I = 0

z

(nonzero value is not accepted by ETABS)

0.5*152.5 = 76.3 fth

column C, and C2 : Iy

column C2 and C3 : I 0.5%91.8 = 45.9 ft*

z
Where Iy and I, are with respect to column centroids and
local y and z directions are as shown in Fig. BR-3,
The torsional stiffness provided to the analytical
assembly due to the shear forces developing in the
columns and panels was computed first, the difference of
torsional inertia between the real cross section and
analilytical assembly due to the element shears was
assigned as torsional stiffnesses of the analytical
columns equally.
Based on the formulations shown in Chap. 3.4 (g} and as
given in Fig.B-1, torsional constant of tThe complete
section is 450 ft%, the torsional constant provided by
the 4 panel elements is 32.5 ft* and provided by the
column elements is 54.5 ft°.
So, in the analytical model :
Column C,, C, and C; : I = (450~32.5-54.5)/4 = 90.8 ft*
out-of-plane effective shear area of a wall segment was
assigned as effective shear area to the column elements
at the panel boundaries.

column C, and C, : A, = 20.0%76.3/472.7 = 3.2 ft°
Where 20.0 ft? is A, of the complete core and 76.3/472.7

represents the ratioc of the wall segment's local Iy to
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the Iy of the core at the centroid cf the core.

column C2 and C3 4 AY = 12.0%¥45.9/220.7 = 2.5 £t?
Where 12.0 ft? is A, of the complete core and 45.9/220.7
represents the ratio of the wall segment's local 1, to

the I, of the core at the centroid of the core.

Case 3 .
Same modeling and parameter assignment as in Case 2, but
the stiff beams were removed. The analytical model and

assigned parameters are shown in Fig. B-4.

Case 4 :

Same modeling and parameter assignment as in Case 2, but
removing the axial area of each panel element. These areas
were assigned by equally dividing between the corresponding
column elements.

In the real cross secticn

wall segment AB : A 6.0 ft?

I

wall segment BC 10.0 ft?

e
I

S¢, in the analytical model

. - ?
panel P, and P; : A = 0.0 ft

column ¢, : A = 0.5*(A of wall segment AB or BC)

= 0.5%(10.0+6.0) = 8.0 ft?
The analytical model and assigned parameters were shown in

Fig. B-5.
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Case 5 :

Similar modeling and assigned parameters as in Case 4,
except that additional column elements are defined at panel
boundaries. Half the axial area of a panel element is assigned
to the corresponding column element, which would gimulate the
contribution of that panel to the coupling action. For
example, as shown in Fig.B-6, the column elements C; and C,
simulate the contribution of panel P, to the coupling action
in the z-direction. Note that column elements C; and C, are
connected by the stiff beam sandwiching panel P, and providing
the coupling mechanism due to the axial force contributions of
wall segments AB and BC in the z-direction.

In the real cross section :

wall segment AB : A 6.0 ft?

X

10.0 ft?

wall segment BC @ A

X

So, in the analytical model

panel P, and P; : A = 0.0 £t?

X

I

column C,, C, ¢ A

5 « 0.5%({A of wall segment AD or BC)

= 0.5*%10.0 = 5.0 ft?

column C,, C, : A 0.5% (A, of wall segment AB or DC)

X

= 0.5%6.0 = 3.0 ft?

The corresponding displacements for the five different
cases studied and the computation based on the flexibility of
the complete element at its centrold are compared in the
following. The internal forces of analytical elements arising

B~-12
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Fig.B-7 LElement Forces Obtained for Case 2
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from the analyses of Case 2 and Case 5 are shown in Figs B-7

and B-8.

TABLE B.i Displacement and Roetations Obtained by the
Analysis of 5 ETABS Assemblies Modellng the Wall

Displacement Rotaticns

Type U, (ft) &, (rad) &,_{rad)
Case 1 0.568 0.036 0.0403
Case 2 0.208 0.004 0.clo¢%
Case 3 0.269 0.005 6.0118
Case 4 0.131 0.003 0.0075
Case 5 0.208 0.004 0.0093

Theoretical Disp. 0.208 0.004 0.0091

Here, Uy and 0, are given as output from the program.
However, @, is not. Therefere &, was computed from the final

row of the element flexibility shown in Fig. B-1 [10].

In this expressicn M, and v, are already provided by the

s+ S. are obtained from member stiffness

ETABS output. S
expressiocns [25].
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Sa:' ——————————— K e ———
L (1 + 28 )
2% E* I, (1-8)
SC: ——————————— N e, —————
L (1 + 2B )

6 % E % T

B = ————r——_———————

where $ is the shear flexibility factor, A, is the effective
shear area with respect to the axis of bending under

consideration and the octher symbols were already defined,

B.4 Conclusions

To model a wall segment using analytical panel and c¢olumn
elements, it is lmportant to note that rotations of the panel
and the boundary cclumns at common nedes should be consistent.
An undeformed analytical element assembly for a real wall
segment is shown in Fig. B-9(a). Since 1in the program the
rigid diaphragm assumption provides the same lateral
displacement at each floor, panel and column were considered
to be constrained by the links at each side. Fig. B~9(b) shows
the deflected shapes ¢f each element when a lateral force acts
at the top of the wall. It is obvious that the rotations of
panel and column elements at the common nodes are not
consistent. In order to enforce the same vertical displacement
and rotaticens at the commen nodes of panel and column
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elements, a stiff beam should be defined sandwiching the panel
and connecting to the two boundary columns. Then the
deformation kinematics of the assembly comprised of the panel
and two boundary columns will be consistent with the
deformation kinematics of the real wall segment. This is shown
in Fig. B-9(c).

To further explain the above reasoning, the flexural
gtress distribution at the core of a cantilever element with
a box cross section when subjected to a lateral force as shown
in Fig. B-1 was computed ( Fig.B-10(a)). The deformed shape of
the element if it was mnodeled in ETABS using the modeling
procedure described in Case 3 (no stiff beam connected between
boundary columns) is shown in Fig.B-10(b). The deformed shape
of the element simulated by ETABS when it ig modeled by usging
stiff beams as described for cases 2, 4 & 5 is shown in Fig.B~-
10(c). In the model of case 2, the coupling mechanism is not
simulated correctly due te assigning the axial area tc panel
elements instead of the column elements as described in
Chap.5.1. In case 4, each boundary column is assigned moment
inertia in both directions. Therefore, the flexural rigidity
will increase due to the connection by a stiff beam and the
analytical model becomes stiffer than the real structure. In
case 5, by defining additional column elements at panel
boundaries, the axial coupling is simulated and the flexural
rigidity is not artificially increased, since the boundary
columns were assigned out-ocf-plane moment of inertia only.
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Fig. B=10 The Delormalion Kinemalics of a

Slructure With Box Cross Section
Modeled by Different ETABS Assemblies
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this is why Case 5 is the only correct analvtical model and
the othercases are not.

It is noted that the analytical assembly 1in case 2
corresponds to the predic¢tive model of the core described in
Chap. 3.4. The analytical assembly in case 5 corresponds to
the simulative model described in Chap. 5.1. Comparing the
results shown above, case 2 and case 5 are observed to have
similar lateral displacements and twist angles as given by the
closed-form computation. However, the element forces which are
shown 1in Figs B-7 & B-8 reveal that these models have
significantly different force distributicns. By comparing the
roctaticon anglies &,, case 5 is shown to have the same & as
given by closed-form computation. This further indicates that
Case 5 is the correct wmodel for the core.

These results 1llustrate why the simulative model
described in Chap. 5.1 led to successful correlation with the

experimental resulis while the predictive model did not.
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