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PREFACE

The Nattonal Center for Earthquake Engineering Research (NCEER) is devoted to the expansion
and dissemination of knowledge about earthquakes, the improvement of earthquake-resistant
design, and the implementation of seismic hazard mitigation procedures to minimize loss of lives
and property. The emphasis is on structures and lifelines that are found in zones of moderate to
high seismicity throughout the United States.

NCEER'’s research is being carried out in an integrated and coordinated manner following a
structured program. The current research program comprises four main areas:

&>

Existing and New Structures
Secondary and Protective Systems
Lifeline Systems

» Disaster Research and Planning

»

This technical report pertains to the second program area and, more specifically, to secondary
systems,

In earthquake engineering research, an area of increasing concern is the performance of secon-
dary systems which are anchored or attached to primary structural systems. Many secondary
systems perform vital functions whose failure during an earthquake could be just as catastrophic
as that of the primary structure itself. The research goals in this area are to:

1. Develop greater understanding of the dynamic behavior of secondary systems in a

seismic environment while realistically accounting for inherent dynamic complexities that
exist in the underlying primary-secondary structural systems. These complexities include

the problem of tuning, complex attachment configuration, nonproportional damping,
parametric uncertainties, large number of degrees of freedom, and nonlinearities in the
primary structure,

2. Develop practical criteria and procedures for the analysis and design of secondary
systems.

3. Investigate methods of mitigation of potential seismic damage to secondary systems
through optimization or protection. The most direct route is to consider enhancing their
performance through optimization in their dynamic characteristics, in their placement
within a primary structure or in innovative design of their supports. From the point of
view of protection, base isolation of the primary structure or the application of other
passive or active protection devices can also be fruitful.

iii



Current research in secondary systems involves activities in all three of these areas. Their

interaction and interrelationships with other NCEER programs are illustrated in the accompany-
ing figure.

Secondary Systems

I Program 1

- Structural
Response

- Risk and
Reliability

- Seismicity
and Ground
Motion

Analysis and
Experiments

e e i —— — —— — t———— —

Performance Optimization

Evaluation and Protection

and Design
Criteria

Program 2
- Protective
Systems

Response nonnormality has shown to significantly affect structural reliability based on first-
passage failure or fatigue failure. In an earlier report (NCEER-88-0030), the authors have
considered this nonnormality effect on the absolute acceleration of a primary structure. The
study presented in this report focuses on the nonnormality of the relative displacement of a
secondary system which is attached to a yielding primary structure. In particular, the probabil-

ity of failure in the first-passage failure mode as well as in the fatigue mode of the secondary
system is carefully examined.
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ABSTRACT

Response nonnormality is investigated for a linear secondary system which
is mounted on a vielding primary structure subjected to a normally distributed
ground acceleration. The nonlinearity considered in the primary structure is bilinear
hysteretic (BLH) yielding. The coefficient of excess (COE), which is a normalized
fourth cumulant function, is used as a measure of the nonnormality in the current
study. This work is a follow-up to an earlier study in which it was demonstrated
that the response acceleration of the primary system can be significantly nonnormal

in some situations.

Linear substitute methods are used for analytically evaluating the nonnormality
of secondary response. The basic concept is to use a linear model with nonnormal
excitation to replace the nonlinear primary element with normal excitation, with
the goal of maiching the trispectrum for the acceleration of these two systems.
A two filters model (with a more narrowband fourth cumulant filter) gives good
approximations for the COE values of secondary response in most cases including

both cascade and noncascade analysis.

The probability of failure from either first-passage or fatigue is investigated for
secondary response affected by nonnormality. It is shown that the nonnormality
effect generally 1s more significant for first-passage failure than for fatigue failure
based on the cases in this study, and both failure modes can be significantly affected

by the nonnormality in some situations.
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SECTION I

INTRODUCTION

The term secondary systems is often used to describe various nonstructural
elements, such as piping in industrial structures, computer systems in buildings,
drilling and exploration equipment on offshore plateforms, communication and
control devices on space vehicles, etc. Such subsystems often play critical roles
in maintalning the operation or safety of the primary subsystem to which they
are atiached, particularly in the event of extreme loads. Hence, some secondary
systems must be designed to survive being subjected to the vibratory effects of
an earthquake induced ground motion which is transmitted to such a subsystem

through its supporting primary structure.

The theory of the dynamic response of linear primary-secondary (P-8) systems
is quite well developed [Newmark 1972, Scanlan and Sachs 1977, Sackman and
Kelly 1979, Singh 1980, Der Kiureghian et al. 1983, lgusa and Der Kiureghian
1985, Asfura and Der Kiureghian 1986, Holung, Cai and Lin 1987, Suarez and
Singh 1989]. Unfortunately, structural systems under dynamic loading often exhibit
nonlinear behavior before serious damage occurs. The response of a nonlinear
system, even under normal excitation, is not normal and this nonnormality can
seriously alter the response behavior. However, few studies of nonnormality have
been done in the past due to the analytical complexity and difficulty [Lin and Mahin
1985]. Some recent studies of fatigue damage accumulation 'Hu 1982; Lutes et al.
1984; Winterstein 1985] and of first-passage failure [Grigoriu 1984: have shown that

these two important quantities can be significantly affected by nonnormality of
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the random process studied. This is not surprising since the normal models may
significantly misrepresent the frequency of high response levels. Such nonnormality
is particularly likely to occur in a situation involving significant nonlinearity, like

the yielding effect in a hysteretic system.

A simple and natural way to include nonnormality in the analysis of a random
variable is through consideration of moments higher than the second. In particular,
the fourth moments are important for characterizing nonnormality {especially if
the random variable is symmetric about its mean value so that the third moment
gives no new information). In this study, the kurtosis or the cocflicient of excess
(COE) (i.e. kurtosis minus 3) will serve as the index to represeni the degree of

nonnormality of a random process.

This study investigates a simple nonlinear primary-secondary situation in which
a very light secondary system is attached to a yielding single-degree-of-freedom
{SDOF) bilinear hysteretic (BLH) primary structure. The nonnormality results
only from the nonlinearity of the primary structure. The reasons for using such a
simple model are that not only is it easy to analyze but also it may fairly accurately
represent practical design situations. The use of a SDOF primary system may be
Justified by the fact that the first mode of the primary system is often of the maost
interest [US Nuclear Regulatory Guide 1975 . Since the secondary system is usually
much less massive than the primary, it is commonly assumed that 1t does not affect
the response of the primary structure. This implies that they can be analyzed as
two independent or decoupled sub-systems. This is called cascade analysis and it
has been widely used in many applications. Cascade analysis is very desirable,

when it is justified, since it greatly simplifies the analytical work and also gives
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better intuitive understanding of the system. Both cascade analysis and primary-
secondary interaction will be considered in this study. The excitation of the primary

system will be taken to be a normal white ground acceleration.

[n order to analytically investigate the nonnormal response of the linear sec-
ondary system it 1s necessary to know the four-dimensional fourth cumulant function
for its nonnormal base excitation, which is the primary absolute acceleration. An-
other form of this same information is the trispectrum, which is the triple Fourier
transform of the fourth cumulant function. The COE of the nennormal primary
absolute acceleration was investigated in an earlier phase of this study [Chen and
Lutes 1988' and those results will be extended here to include the trispectrum. Fi-

nally, the response of the secondary system to the nonnormal primary acceleration

will be studied.

A linear substitute method will be proposed for analytically approximating
the COFE values of the secondary response. The basic approach will he to use a
linear model with nonnormal excitation to replace the BLH primary elemnent with
normal excitation. The goal will be the matching of the trispectrum for primary
acceleration of the substitute linear model to that of the BLH primary system. The
cholice of the linear filter will be based on the fitting of the power spectral density,
and the nonnormal delta correlated excitation will be chosen to achieve matching of
the COE of primnary acceleration. The trispectrum, which is the Fourier transform
of the fourth cumulant function, will also be used as a tool in investigating the
acceptability of the linear substitute models. The philosophy in developing the
analytical models is to be as simple as possible while providing a good estimate,

and also providing intuitive insights regarding the P-S system. The method will
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be shown to be appropriate for both cascade and noncascade analysis. Noncascade
situations will be investigated with the mass of the secondary system equal to 0.1%

and 1% of that of the primary system.

The effects of nonnormality on reliability will be investigated for both first-
passage failure and fatigue failure of the secondary system. A nonnormality
correction factor {NCF), which is equal to the ratio of the expected life for a
(Gaussian process to the expected life for the corresponding non-Gaussian process,l
will be used as the index of the influence of nonnormality. Results will be presented
from simple approximations which depend only on the COE of the response. It
will be shown that the reliability of the secondary system can sometimes be very
significantly affected by yielding in the primary system. This is particularly true

for reliability against first-passage failure.
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SECTION II

BACKGROUND ON NONNORMALITY

II-1 Description of Random Processes:

A random process is a parametered family of random variables with the
parameter (or parameters), belonging to an indexing set {or sets) [Lin, 1976]. In this
study, the indexing parameter 1s time. Hence, a random process can be described as
a family of random variables, {X(#) : t £ T'}. Let the indexing set T be discrete, then
the probability structure can be defined by the joint probability density function of
n random variables as px, x,..x. (21,72,... 25, ) where X; = X{¢;). Alternatively,

the probability structure also may be decribed by the joint characteristic function,

Ou1, 15 jUn, tn) = Flexpliug X1 + - + 1un X )] (2.1)

in which F[-] means expected value. Note that any lower order joint probability

function or characteristic function can be obtained if a higher order one 1s known.

[n many situations it is impractical and/or impossible to work with a complete
description of a random process in terms of probability density functions or
characteristic functions. One of the most common ways of giving a useful partial
description of a process is in terms of moments. Let the order r moment function

be written as

ﬂlr(tl,tzj...,fr)ZE[X}Xg-"X?a] (22)



This can be written as an integral using the order r probability density, or as

a derivative of the characteristic function :

7]-_7 63{1&1,“_, seeyln, t?")
" Huq -« D,

me(ty,... ) = (2.3)
An alternative way to present the information contained in the first n moment
functions is in the form of the first n cumulants functions, where the rth cumulant

is given by

Lo InO(ur, try. - jumtr)|

7 Gy - Oy

kot t,) = (2.4)

==, =10

The term In ©(uy,. .., %) is called the log-characteristic function.

Stratonovich {1963] noted that the cumulant functions invelving distinct values
of time related to correlations of the process at those particular times. Thus,
cumulant functions are also called “correlation funtions”. Tt may be noted that
the lower order cumulant functions are simply related to the moment functions.
For a zero mean process, in particular, ky = 0,ky = my and k3 = ms. For r=4,

however, the relation is not quite so simple, since

ka(ti,ta,ta,ts) =malti,ta, t3,80) — ma(ty, ta)ma(ts, ts)
(2.5)
—ma(ty, t3)ma(ta, ta) — ma(ty, 15 )ma(ta. t3)

IE-1-1 Frequency Decomposition of a Stationary Process:

A random process is said to be stationary if its probability density functions
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are invariant under a shift of the time scale. For a stationary process ma(t1,7s)
and ka(ty,tz) are functions only of {; - ¢, and similarly my(11,12,%35,0s) and
kq(ty.t3.13,14) are functions of three time arguments, which can be chosen as

fg - lf}._f;; - fl, and f-:; - fl. LCt

C',(T'L,TQ, N :Tr'_l) = fr(tljtg, P 1tr.) (2{))

in which 7; = 1,1 - {;. For the special cases of r=2 and r=4, these can be written

das

R(r) = (7] = kot 12) (2.7a)

and
Q(m1,72,73) = Calri,72,73) = kal(t1, 12,83, %4) (2.76)

The Fourier transform of E(7), and its inverse, are given by
1 - —iwT

S(w) = 2—/ B{r)exp ™7 dr (2.8)

and

m .

R(r) = f S(wiexp™ dw (2.9}

where S(w) is called the power spectral density {or power spectrum) of the random

process. It can be shown that S(w) is a non-negative, even function of w.

Analogous to eq. 2.9, a frequency decomposition of Q{7;,7s,73) can be made

in the following way
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Q(T1>T2,73):/// D(wl,wg,wg)expi('"’”l_“'””m”)dwldwzdwg (2.10)

where D(w;,ws,ws) is a three-dimensional Fourier transformation of Q(m,72,73)

and is called trispectral density:

! —i(wirtwrm2arwan
D{wy,wa,wz) = (—-2?)3 ///_ (71,72, 73) eXp ( it waa) o de dy
(2.11)

I1-1-2 Properties of Trispectral Density:

Jt is clear that exchanging any two arguments in k4(t1,12,13,%1) will not change
the value of k4. Thus, the symmetry of ks 1s simply that the cumulant is the same

for each of the 24 permutations of the four arguments :

k4(t11t2:t31t4) :k.‘l(t%tlatf}tt‘})
=ky(t3,12, 11, 24)

(2.12)
=kq(tq,ta,t3,11)

Rewnting eq. 2.12, the symmetry of a stationary fourth cumulant function,

Q(71, 72,73}, will be
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Q(ﬁ,‘fzﬁza) :Q(*TI-,Tz —T1,7T3 — 7'1)
:Q(Tl — T2, —72,T3 — Tz)
:Q(Tl ‘—T3.}T2 —T;j?—’i’s) (213)

:Q(TerI:TS)

Therefore, there are also 24 symmetrical points in Q(71, 72, 73).

On the frequency domain, the symmetry of D(wi,wy,ws) can be obtained

similarly by taking the Fourier transformation of each term in eq. 2.13 which gives

D(ngwZawS) ;D( W] — wa —ws,wz,wg)
=D{wy, w1 —wy — w3, ws)
:D(Lu‘l,’uJ2, —y — Wy — wg) (214)

=D(wo,w;,ws)

In general, for the stationary mth cumulant function, which is a function of m-1
arguments, there are m! symmetrical points in D as well as in Q. In particular, D
is the same when its three arguments are any choice of three values, in any order,

from the set {wy,wy, w3, —w; —wy ~ w3 }.

It can be seen from eq. 2.11 that the D) function is usually complex even though
@ is always real. Also it can be noted that D(w;,wy,ws) and D{—-wi, —ws, —ws)

are always a complex conjugate pair. That is,
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D("*u)l, W, ng) = D*(wl,wg,wg) [215)

in which the star denotes complex conjugate. Similar relationships which can be

found are

D(—u)l, *W‘Q,W;ﬁ) - D*(Wl:u"Za 7“”3)

D(—u.?l,w:g}—'w;g) éD*(LLJ],—'QszuJ;g) (216)

Finally, it should be noted that there are certain planes within the frequency domain
on which I is always real. In particular, D(w;, —w;,ws) 1s real for all (wy w3 ) values
since D" (w1, —wi,w3) = D(wi, —wi,wa}, from the complex conjugate and symmetry
properties given above. Of course, there are another five identical planes within

other cctants in this three dimensional space.

II-1-3 Degree of Nonnormality :

The physical significance of multiple correlations (i.e., correlations between
several different random variables) decreases when the order increases. Hence the
first few cumulant functions are most important in describing a random process.
Many physical problems have small values of the higher order cumulant functions.
In fact, for a normal process they are exactly zero for order greater than two. Thus,
a simple and natural way to include nonnormality in the analysis of a random
variable is through consideration of moments higher than the second. In particular,

the fourth cumulant is important for characterizing nonnormality {especially if the
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random variable is symmetric about its mean value so that the third cumulant gives
no new information). However, in practice, it is not always easy to sce the degree of
nonnormality of a process directly from the fourth order curnulant function becaise

of the multidimensional nature of that function.

In this study, the coeflicient of excess (COL), a special case of normalized fourth
cumulant function, will serve as the index to represent the degree of nonnormality of
arandom process. The COE is a normalized one-dimensional form of ks (#1,¢2, 3,4

corresponding to t; =ty = t3 = ¢4, which is same as Q(0,0,0):

(0,0, halt b1t
7 o (2.17)

= Kurtosis — 3
where ¢ is the root-mean-square value.

For a normal distribution, the COE is equal to zero (i.e. kurtosis=3). When
the COF is greater than zcro, it means that more probability mass is in the tails
of the distribution than for a corresponding normal distribution. If the COF is less
than zero, i1t shows that there is less probability in the tails, giving what may be
called an amplitude-limited type distribution. Note, though, that the COE only
relates to each individual X; random variable, whereas the more general fourth

cumulant relates to the joint distribution of up to four such random variables.

1I-2 Response of SDOF Linear System with Nonnormal Excitation:

The second order differential equation governing the motion of a typical mass-
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spring-dashpot system will be
mz +ez +hkr=f=mp (2.18)

in which m, ¢ and k are mass, damping and stiffness of the system respectively, and
p 1s the negative of the base acceleration. Eq. 2.18 can be rewritten as the so-called

standard form
E 4+ 2Bewod +wiz =p (2.19)

where w‘o? = k/m, is the undamped natural frequency, and 3y = ¢/2wym, is the ratio
of the actual damping to the critical damping. It is assumed that p is a zero-mean
random process so that the response is also random with zero-mean. Other terms

are taken to be deterministic.

We shall assume that the random excitation begins at t=0, so that the response

of the system can be expressed as a Duhamel integral as

2(1) = /ﬂm p(rYh(t — 7)dr (2.20)

z(t) = /OO plw)H(w) exp(iwt)dw (2.21)

where
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plw) = %T /:0 p(t) exp(—twt)dt

The function A(t) is called the impulse response function of the system, and

can be written as

1 a.. o P
h(t) ~ { :d—exp(—,jgwgt) sin{wgt) if ¢ >0 (2.22)
0 ift <0 '

in which wy = wy \/rlu ;,5'3, the damped natural frequency of the system. The
corresponding frequency response function is the Fourier transformation of the

impulse response function:

50 1
Hw) = hit)exp(—iwt)dt = . — 2.23
)= [ Mesp(ciend = it (223)
The cumulant function of the response can be expressed in terms of the

cumulant of the excitation and the impulse response function as

tn t1

ko(tita, oo tn) = ko(Ti, T, v,
(1.2 ) . o p(l 2 ) (224)

h(fl - Tl)h(tz - Tz) v h(tn - Tn)dTldTg s d‘f‘n

where %k, and k, are order n cumulant functions of response and excitation,
respectively; and use has been made of the fact that A(t — 7) = 0 for ¢ <« r.
Equation 2.24 shows how knowledge of cumulant functions of excitation can be

used to obtain corresponding cumulant functions of response by linear operations.
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II-2-1 Stationary Processes:

For a stationary excitation, since the probability distributions are invariant
under a shift of the time scale, the nth order cumulant function of response will be

a function of only n-1 time arguments. Using 7; = #;., — 1, gives

C (7157‘2) ' TT!—]. / J/ Vl 1/?1"'11/1171)

R(sih(v — 711 — 1) h(v & Tt — vgee1)dvdey - dvy

(2.25)

Stmilarly in the frequency domain, the n-1 dimensional spectral density of response

has the following relationship with the n-1 dimensional spectral density of excitation:

n—1
Dowy,wa, o ywamy) =H (w1 ) H{wa) o H{wn 1) H(- Y wj)

je1

(2.26)

Dp(w] s Wa, s 7wn71)

in which D{w;,ws,...,w,_1) is the n-1 dimensional generalization of the irispeciral
density D{w;,ws,w3)ineqs. 2.10 and 2.11. {Recall that the n-1 dimensional spectral
density function is the Fourler transformation of the corresponding stationary nth

order cumulant function.}

Note that if p{#) is Gaussian, than z(f) is also Gaussian. Then only the first
two cumulants are non-zero and all other higher cumulants vanish. When n=2,
the second cumulant function, R,(7) of response, can be expressed in terms of the

cumulant of the excitation, Ry{7) and the impulse function as
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‘-]

/ / o7 e — v h{v) ) h{ry )dry duy (2.27)
The spectral density of response is given by
5.(w) = 5,(w) H(w)lE (2.28)

If p{(¢) is not Gaussian, higher cumulants exist. The third cumulant won’t
give any new information if the probability distribution is symmetric. The fourth

curmulant function of response, n=4, can be found as

(Tl T2, 7"3 //// QP T, — V] — 14,79 -'—Vz)l/g‘, TJ*L/J*M@J
(2.29)

h{1 ) h(ve ) h{vg Vh{va ydoy drgdusdiy

and
DI(.LH [V ng) = [f(w‘l )H(wz )H(wg)flr(*u.?l -y — u.);g,)D ( , W2y \.‘J3) (230)

Ii-2-2 Nonnormal Delta Correlated Excitation:

Let the excitation of eq. 2.18 be a non-Gaussian delta correlated (white noise)

process for which

Ry(7) = 2r85,8(7) (2.31)
and

211



Qo(71,72.7m3) = (21)° D, 8(736(m2)8(7a) (2.32)

where 6(7) is the Dirac delta function. Note that the constants S, and D), are the
uniform power spectrum and uniform trispectrum of the excitation, respectively.
Without loss of generality, let the mean of the excitation and the response be zero.

The second cumulant or moment of response is

Ru(r) = gmgpfo h(v)h{v + 7)du (2.33)

"Ew(tnt) = R:c(o)
= 25, /OO hz(v)dz/

=5, /_OO | H ()] dw (2:34)

o0

—25, [ 1) d
0

and the fourth cumulant of response is

Qz(11,72,73) = (271')3Dp ,/o h(v)h(v + T))A(v + 72 )h{v + 73)dv (2.35)
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kr(t,f,t,t) - Qm(oa 0,0

)
50
=(2r)°D, R v)dy
0

_/// Dz(wl,wg,:.ug)dwldwgdwg

= Dp///_o; H(ws ) H (w3 ) H{wg ) H(= Y w;)dwr dwndwy

j=1

oo oo oo 3
= 2Dp/0 /0 /U H(w: ) H(wy ) H(ws ) H(— Y w,)dw;dwsduw
i=1

3

260, [ [T [ e R H Y oo deni

=1

(2.36)
The COE of response will be equation 2.36 divided by equation 2.34 squared.

If the linear system in the above equations is lightly damped, then eq. 2.23
shows that H(w) has peaks with height of O(3; ") near w = twy. From eq. 2.30, it
can be observed that the trispectrum of this narrowband process then has a peak
near (wy, —wp,wo) and this peak has a height of O(3; *). As mentioned in Sec II-
1-2, 7 is real on the plane {w;, —w;,w3) and on the other five “symmetric” planes
in the trispectrum. Thus, D(wq, —wo,wo) is very large and real, as are the other
five peaks with equal D values in other octants. These six high peaks dominate the
D function so that all other points in this three dimensional space are relatively

insignificant.
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I1-3 Response of SDOF Nonlinear Systemn with Normal Exeitation:

An earlier report [Chen and Lutes 1988] has described both simulation and
analytical studies of the nonnormality of the primary absolute acceleration {which iz
the base excitation of the secondary system) for a bilinear hysteretic (BLH} primary
system. The model used for the analytical investigation employed a nonlinear
nonhysteretic substitute primary system. This model had been suggesied previously
Lutes 1970, but it was substantially improved by adjusting the damping in the
substitute system to give a better balance between the energy dissipation rate and
power input. Also it was extended to predict the nonnormality of the absolute
acceleration of the primary response. Obtaining response moments {(RMS and COE)
for the substitute primary structure generally required simple numerical integration,
although closed-form solutions were also obtained for simplifications appropriate to
either large or small valucs of the yield level. Figure 2.1 shows the results from that

study which are most pertinent to the current investigation,

From the numerical results the following observations were made :

1. Nonnormality of the response of a secondary system should definitely be inves-
tigated, since the absolute acceleration of the primary structure is sometimes
decidedly nonnormal.

2. The most nonnormal response acceleration found was in the direction of
amplitude limiting {COE2> -1.5). Nonnormality in the opposite sense (COE~
1.0) was also observed, though, for smaller values of the yield level.

3. The nonhysteretic substitute system gave quite good predictions of both the

RMS and COE of the acceleration response.
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II-4 Reliabilities:

Often when a dynamic system is subjected to random excitation, it is important
to determine the probability that the system will not malfunction during a specific
perind of time. The reliability function R(T), which is the probability of nonfailure
during the time interval 0 < ¢ < 7, is therefore of central interest in many
applications of random vibration theory. The two most common failure modes
in civil engineering are (i) first-passage failure, and (ii) fatigue failure. The former
mode may also be called first crossing failure, and it represents the situation in which
failure occurs the very first time that some response quantity crosses a specified
threshold. An example would be if fracture of a brittle structural member occurs
the first time that the stress in the member reaches a critical level. In the fatigue
failure mode, failure is due to an accumulation of many small increments of damage
inflicted throughout the life of the system. In this study, general reliability estimates
will be presented based on simple approximate theories. Results will be obtained
using only RMS response and a normal distribution assumption, as well as by using
nonnormal approximations, in which fourth order response cumulants are included.
The emphasis will be on the effects of nonnormality, so other effects will be ignored.
In particular, the approximations used for first-passage failure and fatigue damage
will both neglect any effects due to the bandwidth of the power spectral density of

the response process.

I1-4-1 First-Passage Failure:

Let R(b,T) be the probability that the absolute value of the random process

{X(#)} remains below the level b at all times in the interval [0,T]. If the barrier
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level b is sufliciently large then one can assume that |X({}! is sure to start
below the barrier and upcrossings of b by [X{t)]| are independent events. This
latter approximation is most accurate for a very broadband process. Bandwidth
corrections could be obtained, but for simplicity they will be omitted here for both
normal and nonnormal processes. Using the stated approximations for a process

{X(#}} which is symmetric about X = 0 gives the classic Poisson approximation :
R(b6,T) = exp(—2uv,T) {2.37)

One can then take 1 — R(b,T) as the cumulative distribution of the random variable
representing the time until first passage. This gives first-passage time an exponential

distribution and the mean time until first-passage is
ET) = — {2.38)

The term 1, is the stationary unconditional expected rate of upcrossing of the

level b, and its value can be found from a classical result of S.0. Rice 1954 :

Vb—/ py x(b,2)de (2.39)
0

If {X(#)} 1s a zero mean normal process, then equation 2.39 can be simplified to :

1 o b2
Uy = 27&‘—0; P(—QT;»)
* (2.40)
bz
=1 CXP(_@)



in which o; and o, are the standard deviation of X and X and vy is vy for b = 0.

If X(t) is not normal, then equation 2.39 cannot be integrated casily and
the procedure of obtaining v, may become quite complicated. However, various
alternative simplifying approximations can be made Winterstein 1988]. One such

approximation is of the form

= = (2.41)

This expression is precisely correct for the situation in which X(#) and X(¢) are
independent. Note that they must be uncorrelated for a stationary process but
they are usually not independent for a nonnormal process. Nonetheless, this
approximation has been found to often give quite good results. There are several
possible ways to approximate the ratio of probability densities in equation 2.41
based only on knowledge of a few moments of X. The Charlier and Edgeworth
series [Crandall, 1980] are probably best known, but they have certain difficulties
(including negative probability density values) which do not appear in an alternate
approach introduced by Winterstein [1988!. Let I/ be a standardized normal
distribution and g(-) be a function such that X = g(U') has the desired nonnormal
distribution. Then the probability density function of X can be written as

px(z) = J\/Q_?exp[vluz(m)} di;ij) (2.42)

and substituting this into the approximation of eq. 2.41 gives

Vo  u¥(z) . du(z)
V—D = €XpP— 9 J‘de (2'43)
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Polynomials will be used to obtain appropriate u(z) functions to use in these
equations, but it is necessary to consider separately the two different nonnormal

situations depending on the sign of COE(X).

When COE(X) < 0, then u versus x is concave upward and u{z) = ¢ *{z) can
be readily approximated by a monotonically increasing polynomial. A convenient

form to use is an expansion in Hermite polynomials :
]\f
u(zy =g (z) =z — Z hoHen_1(z0) (2.44)
nz=3

in which zy for the symmetric X is simply #/cx. The Hermite polynomial of degree

n, He, (g}, is defined as a function which satisfies the relationship given by,

d'i’?,

o TL
da

exp(=23/2) = (~1)" Healon)exp(~23/2)  n =012, (245)

and this yields lower order polynominals of : Heq(ag) = 1, Hei(zo) = zo,
Hey(zq) = 28 — 1, Hez(zg) = z) — 3zg, Hea(zo) = x5 — 62) + 3, etc.. The

coefficients £, can be determined from

o = — E[Hen(2o)] (2.46)

n!

so that : hg = 1, by = E[Xo] = 0, hy = 5 E[XJ ~1] =0, hs = ;E[X] = 0,
he = ;E[X§ — 3] = 5COE[X,], etc.. Note that A, for the leading term of the

surnmation in eq. 2.44 is negative so that the u versus x is concave upward.
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When COE(X) > 0, then « versus z is convex upward so that a monotone

transformation is obtained by taking g{/} be in the form of a Hermite polynomial:

in which % is a scaling factor ensuring that X,(¢) has unit variance and its value

can be obtained from the “second-order” approximation [Winterstein, 1987 :
N ) ;]/2 ) )
o [1 +) (n- 1)3}% = (1+2h% 4+ 6R5)1/? (2.484)
n=3

The coefficient k., can be expressed in terms of the corresponding Hermite moment

h, of eq. 2.46 as

VI436hs -1 /1+15(xs—3) 1
18 B 18

= hg )\3

h3 = .~ =
14+6hs 4+2/1+15(xs—3)

hy =

(2.48b)

{2.48¢)
By inverting eq. 2.47, u(xz) can be found as

1/3

u(s) = \/22(7)?:45(@]”3)[ F@ e b)) w249

where

{(z) = 1.55)(0,—}— z ;;:X) - d
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in terms of the constants e = 2 b= -+ and ¢ = (b—1 - a?)®.
3ha 3h4 ’

Let the nonnormality correction factor (NCF) of first-passage failure, @, be
defined as the ratio of the mean time to failure for a normal process to the mean
time to failure for a corresponding nonnormal process. Employing eq. 2.38, the @

value can also be expressed in term of crossing rates as

E{T) for normal process

~ E(T) for nonnormal process

o {2.50a)
7
Note that the term v, /v, can be obtained from eq. 2.43 as simply
:  du(z
ve _ dulz) (2.505)
Uy dr

Figure 2.2 illustrates the values of @ for several different COE values and for a

range of x/c, values.

1I-4-2 Fatigue Failure:

Estimates of stochastic fatigue life are based on knowledge of the S-N curve, or
“fatigue curve” from constant amplitude periodic tests. Commonly, the 5-N curve
is approximated by a straight line on the log-log scale and the equation can be

written as

N(S)=KS§™™ (2.51)
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in which S represents the stress range (=iwice the amplitude), ie., valley to peak
excursion, of the cycle; K and m are constants which depend on the material; and

N{§) is the number of cycles at which failure occurs for constant range 5.

The fatigue life, T, of a structure under stochastic excitation is a random
variable and the primary problem is to estimate its mean value, ur = E[T]. The

commonly used approximation can be written as
(2.52)

in which AD is the damage per cycle and v is the rate of occurrence of cycles. From

the S-N curve the mean of AD 1s estimated as

E[AD] = BIN(S) ' = £ B[S™] = %/ﬂ Mpels)ds (2.53)

In order to evaluate the fatigue life from eq. 2.52, it is neccessary to know
the probability distribution of stress ranges and the rate of occurrence of cycles.
This is not necessarily an easy task except in the special case in which the stress
response is Gaussian and narrowband. The methods presented here are based on

the narrowband condition, but the normality restriction has been relaxed.

If the process {X(t)} is Gaussian, then its amplitude ( or envelope) will be a
Rayleigh distribution. For a narrowband process the stress range 5 is clearly twice
the amplitude, so it also has the Rayleigh probability distribution. In this case

E[AD)| can be evaluated from eq. 2.53 as
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1
EIAD] = . [2v20x]™ (1 + m

) (2.54)

in which ['(-) denotes the gamma function. For this narrowband case one can take
the rate of occurrence of cycles to be the zero crossing rate vy. Combining eq.
2.52 and 2.54, the fatigue life can be readily obtained, and this is the well-known

Rayleigh method.

If the fatigue stress is a nonnormal process, then the Rayleigh method may
not give a conservative result if the process has a higher probability of large
extrema than does the Gaussian process. Lutes et al.[1984 characterized the effects

of nonnormality on fatigue calculations by introducing a nonnormality correction

factor (NCF') defined by:

E(T) for norm%groces?ik (2.55)

E(T) for nonnormal process

I =

in which the normal and nonnormal processes have the same time of occurrence
of extrema and zero-crossings and the same RMS values, but differ in probability

distribution. When the S-N curve is as given in eq. 2.51, this gives

_ E(S™) for nonnormal process

2.56
E(S8™) for normal process (2.56)

Winterstein [1985] recently employed the Hermite series to predict nonnormal
effects on fatigue damage. As in section 11-4-1, let ¢(I/) be a monotonic function
of a standard normal process. Then if the normal process U/(t) has a peak at level

Y, the nonnormal process X(¢) = g[U(¢)] has a corresponding peak at g(Y). Thus,
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if U7(¢) is sufficiently narrowband and ¢ is an odd function, then £[S™] in eq. 2.56

can be expressed as

EIS™ = (@)" E{g(Y)}"] (2.57)

Note that Y has a Rayleigh distribution since U{¢) is narrowband. For the
COE(X) > 0, substituting eq. 2.47 into eqs. 2.56 and 2.57, gives the first-order

estimate of the nonnormality correction factor (NCF) as

L=1+m{m— 1)y (2.58)

Nonnormality with the COE < 0 generally results in a reduced rate of fatigue
damage (for which the NCF is less than unity) compared to a normal process.
However, the above calculation technique does not work so well in this situation.
Recall that the monotone Hermite polynomial for COE<0 (eq. 2.44) is for
u(z) = g7 '(z), whereas, eq. 2.57 requires moments of g(Y). The truncated Hermite
expansion can be inverted (similar to eq. 2.49) to give an expression for g(u),
but evaluation of the expectation in eq. 2.57 is still a probiem. No acceptable
analytical approximation of this calculation has been found so a less clegant type of
approximation (not using Hermite expansions) will be used [Lutes and Hu, 1986].
Let 4 = g(Y) denote the amplitude or peak value of the narrowband nonnormal

process X(¢) = ¢ U(t)], where ¥ is the Rayleigh amplitude of the normal U(t)

process. Rather than using a general series expansion let

A = g(Y) =Y + CQG(Y—) (259)
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in which G(Y) is a specified nonlinear function, and ¢; and ¢z are two constants.
Choosing an appropriate ((Y') function and appropriate constants ¢; and ¢y, allows
a variety of situations to be approximated. The COE value of the narrowband pro-
cess, X can bhe obtained from the moment funtions of A by using the approximations

that

1
E[X7] = §E[A2]

and
4 3 3] 4
EX* = §E[A ]

If m is chosen as an integer then the E[A™] moments can be obtained from a
binomial expansion of eq. 2.59. In order to model a fairly wide range of situations
let G(Y') = Y5, This gives COE(X ) between -1.42 (for ¢; = 0) and 0 (for ¢; = 0).
Note that different ¢; and ¢; values will produce different RMS values of X as well
as different COE values. Equation 2.56 gives the NCF on the condition that the
normal and nonnormal process have the same RMS values. Rather than explicitly
solving for ¢; and ¢, to give this RMS condition, one can normalize eq. 2.56 by the

appropriate RMS values, giving

(E[A™]/oF)

L= mym)/om)

(2.60)

One can then vary the ratio ¢3/cy and plot L versus COE(X).
Figure 2.3 shows comparisons of the results of eqs. 2.58 and 2.60 (depending
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on COE) with simulation results from Hu [1982]. It can be observed that the two

nonlinear transfomation methods give reasonable approximations of the NCF.
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SECTION III

SYSTEM CONSIDERED AND COMPUTER SIMULATION

I1i-1 Description of P-8 System:

The P-S system is modeled as a BLH primary system and a linear secondary

system mounted in series (see figure 3.1). The equation of motion can be written

as :
m,p(.ﬁ — q) + cpd kpc,ﬁ(:c) = cait - heu
or
(E+ ) + 28w, + wod(z) = 28.w,mi + winu (3.1)
and
ms(ﬁ"* &C*Z})“FC‘&UL - ksu:O
or
(i + &+ §) + 2Bswets + wu =0 (3.2)
where:
x denotes the displacement of the primary mass relative to the base,
i denotes the displacement of the secondary mass relative to the primary
mass,

i is the ground acceleration excitation,
™My is the primary mass, m, is the secondary mass,

wp = 1/%”;, primary unyielded, undamped natural circular frequency,
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_
k i
Wy = \/ = secondary undamped natural circular frequency,

g ?
Lag . . . .. .
8y = 57—, primary small amplitude fraction of critical damping,
P 4
3s = ;.* -, secondary fraction of critical damping,
s,

7= %ﬂ, mass ratio, and

@{x) is the bilinear hysteretic restoring force as shown in fig. 3.2.
Note that ¢{z) is chosen to have a unit slope for small amplitudes and a second slope
of a. Tn general, ¢(x) depends on previous values of z(t) but with the limitation
that if #(¢) is periodic, then ¢(z) is also periodic. Note that the right-hand side

of eq. 3.1 is the coupling term in the P-S system. This term will be eliminated if

cascade analysis 1s used.

The SDF BLH system has probably been more widely studied than any other
class of nonlinear hysteretic oscillator Caughey 1960; [wan and Lutes 1968; Lutes
1970, Chen and Lutes 1988]. Two particular values of the slope ratio were chosen to
illustrate important situations. These are @=1/2, a moderately nonlinear system,

and a=1/21, a nearly elastoplastic system.

No exact solutions for the statistics of the response of such a hysteretic system
to random excitation have yet been obtained by an analytical technique. Thus,
a computer simulation program has been used to obtain empirical data for BLH

primary and linear secondary systerns.

III-2 Excitation:

For the present investigation, the excitation #(f) represents a ground accel-

eration. It is taken to be a mean-zero stationary, white, random process with a
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normal probability distribution, and a uniform power spectral density equal to S

(per radian) for all frequency. That is, the auto-correlation function is given by

Bty )i(t2)] = 2mS5:8(t1 — t2) (3.3)

in which é(t) is the Dirac delta function.

Various methods exist for simulating stochastic processes Shinozuka 1977..
[n this study, the white noise excitation was simulated using a pulse method
‘Brinkmann 1980]. The acceleration at the base of the structure was taken to be
a sequence of uniformly spaced Dirac delta functions, with each acceleration pulse
giving an instantaneous change in the relative velocity #. The pulse magnitude, in
this study, is a standard normal random number, obtained from subroutine RNNOA

in the IMSL-Library {1987], scaled by a constant R, which is given by

R = \/2n8,At (3.4)

where At is the time interval between two adjacent pulses. The interval Al was
chosen to give wp,At =0.1 radian, giving approximately 63 pulses per cycle of the

unyielded system.

It 1s convenient to characterize the excitation level by a measure with dimension
length, so that the ratios of yield levels to excitation level (Y/N) and root-mean-
square response level to excitation level can be plotted as dimensionless quantities.

Such a length measure of the excitation level is

el

N = (250) (3.5)




For a SDOF linear system as an example, the standard deviation (or RMS value)

of displacement response may be expressed in the normalized form as

— S

Tr T
J.M N \/4:]:30

or

o T (N)
Y V4 Y
Similarly, the normalized velocity of responses can be written as

T [

N~V 1,

in which wy and 3y are the natural frequency and damping ratio of this system.

111-3 Integration Scheme and Statistical Accuracy:

The equation of motion for this P-S systems can be written in a matrix form

as

where

]"-C‘- | ompy b 4 kyu
- —*mfs(‘:é + y')

The excitation ¥ is the stationary, white noise, Gaussian acceleration. Because

of the nonlinearity of the restoring force ¢(z), no exact solution to equation 3.6



has been obtained. However an exact stepwise calculation is possible due to
the piecewise linear characteristic of the resistance deformation relationship. The
computational effort of this approach is greatly reduced by using cascade analysis,
for which equation 3.6 will describe two uncoupled systems. Note that the nonlinear
function, &{x), can always be described by one of three linear functions with the
choice of the proper function depending on the position and velocity of the primary

mass, M.

For noncascade analysis, equation 3.6 must be solved as simultaneous equa-
tions, which can be rewritten as four first order differential equations using the four
state variables: z, z, v and #. Any of several numerical integration schemes can
be used to solve the first order differential equations. Iun this study, a sixth-order
Runge-Kutta-Verner method was used from subroutine IVPRK in the IMSL-Library

(19871,

In this simulation, both time averages and ensemble averages have heen
used in order to obtain better statistical accuracy. FEach sample of simulated
response was long enough to contain approximately 2000 cycles of response of the
unyielded system (w,t=4000 7). The first 100 cycles of each sample were omitted
from calculations, though, on the basis of possible nonstationarity due to initial
conditions. Statistical accuracy was improved by using an ensemble of 100 such
samples for each process investigated. The reproducibility of the results was verified
by comparing numbers obtained from different ensembles and from ensembles of
different lengths. The scatter of simulation statistics was investigated empirically
[Chen 1990], and it was concluded that the ensemble size of 100 and length of 2000

cycles gave an acceptable sample,
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The simulation resulis have also been verified for two limiting situations, First,
by decoupling the two subsystems the results for the displacement = of the BLH
primary system were found to agree very well with analog computer results in an
early study [Lutes 1970!. Second, by letting the primary system be linear (o = 1),
the exact solutions of both primary and secondary response could be found. These
results did coincide with the simulation results. Therefore, the overall accuracy and

consistency of this simulation has been studied and considered acceptable.
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SECTION IV

TRISPECTRAL ANALYSIS

IV-1 Introduction;

An carlier report [Chen and Lutes 1988] has presented a method which can
provide satisfactory estimates of the coefficient of excess of the primary system
response, without using computer simulation. This method uses a nonlinear
nonhysteretic substitute primary system. However, knowledge of the coefficient
of excess of the primary acceleration is not enough to allow evaluation of the
coeflicient of excess for the response of the linear secondary system. This is similar
to the problem of evaluating the RMS value (or variance) of the secondary response,
which requires, not only the variance but the autocorrelation function or the power
spectral density of the primary system acceleration. From egs. 2.29 and 2.30,
it can be seen that in order to obtain the coeflicient of excess of the secondary
system, one must know not only the coefficient of excess of the primary acceleration
but the whole fourth cumulant function of primary acceleration, Q(7,,72,73), or
the trispectrum, D{wi,ws,ws). Thus, in order to evaluate the COE value of the
secondary response, both the power spectral density and the trispectral density of
the primary acceleration should be investigated. The trispectrum of the primary
acceleration has not been studied previously and will present a challenging task in

the current study.

Since the primary is nonlinear, no analytical form of the trispectrum of
primary response can be obtained. However, the trispectrum of primary absolute

acceleration can be evaluated numerically from simulated data, and this will provide
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an empirical Dy function for the nonnormal base excitation of the secondary
system. The empirical D: function will also be used for comparisons with the
D: from analytical models in the following chapter. It turns out that finding a
simulated D3{wi,wy,ws) function is not a trivial problem. A direct method of
finding D{w;y,ws,ws) for a given time history consists of first numerically evalnating
necessary moments and cumulants, then implementing eq. 2.11 by a numerical
triple Fourier integral of the fourth order cumulant. This is theoretically feasible
hut involves very considerable computation. Another approach is through the
“Periodogram”, which was first introduced by Schuster [1898]. The basic idea of
Periodogram analysis is to estimate the kth order (k > 2) spectral function by
using a finite Fourier transform of a single time series. This has been practically
applied up to the third order spectrum, which is called the bispectrum [Brillinger
and Rosenblatt 1967a,b; Hasselman et al. 1963; Subba Rao and Gabr 1984]. In
this study, the method is extended to investigate the fourth order spectrum, which
is called the trispectrum. Prior to considering periodogram analysis, though, it is

useful to investigate some general characteristics of trispectral functions.

IV-2 Methods for Comparing Trispectral Functions:

Finding an adequate approximation of the D(w;,ws,ws) function is consider-
ably more difficult than the more common frequency domain problem of approxi-
mating the power spectral function, S{w). In the latter situation one can plot S{w)
versus w and use this plot in making judgements regarding the adequacy of an ap-
proximation. This is made easier by the facts that S{w) is real, and it is an even

function so that only w > 0 need be considered. The D{wi,ws,ws), however, not
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only is defined on a three dimensional space but also is generaily complex. Thus,
fitting D amounts to fitting two functions (the real and imaginary parts), each
being a function of three arguments. The symmetry of D(w;,ws,ws) (see Section
[1-1-2) helps somewhat, but it also is rather complicated inasmuch as it is basically
a four-dimensional symmetry in a three dimensional space. Thus, it is very diffi-
cult to conceive of any simple plotting scheme that would reveal all aspects of the
D{w;,wq,w3) function for all points within a domain having a given finite range
for each frequency argument. Because of these difficulties, the approximations pre-
sented here are compared with simulation data only in certain limited regions of
the three-dimensional space of w values. The following paragraph explains why one

particular region is considered more important than most other regions.

Recall from Section II-2-2 the nature of D, {w:,w2,ws) when » is the response of
a lightly damped linear oscillator having a delta correlated excitation. Then H{w)
has peaks with height of O(3, *) near w = £wy. This, in turn, gives Dy (w1 ,wz,ws)
as having peaks of O(3, ") near (wo, —wg,we) and each of the other five points
“symmetric” to this point. Furthermore, these six high peaks dominate the D,
function, so that all other points are relatively insignificant. In the present situation,
the primary system is nonlinear so the hehavior of Mz(w;,ws,ws) will surely not be
this simple, but some similarity may still be expected. Thus, it is anticipated that
D:(wi,wz,w3) may be dominated by major peaks near points like (wr, ~wn, wn),
where w, denotes a type of “resonant” frequency of the bilinear hysteretic primary
system., The value of w. is unknown, but the existence of such peaks can be
investigated by studying D; in the vicinity of the line (w, —w,w). This line through

one octant of the three-dimensional w space must include the point (w., —wp,w,} if
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it exists, and the existence of a high peak of IJ; along this line will at least partially
confirm the assumed similarity between the present problem and the one involving
a linear primary system. Note, also, that D is a real function at every point on the

(w1, ~wi.ws) plane, simplifying the study of D in this vicinity.

IV-3 Periodogram Analysis:

IV-3-1 Polyspectra:

In order to implement the Fourier transfrom in a digital computer, the
discrete Fourler transform (DFT) has to be used. Cooley and Tukey [1963]
developed an efficient DFT algorithm, called the Fast Fourier transform (FFT),
which tremendously increased the computational speed. Therefore, the FFT has
become a universal standard algorithm for the DFT and also enhanced the feasibility

of using periodogram analysis.

Suppose that an order k stationary process { X,|n = 1,..., N} is known on the
set {At,....7AL,..., NAt} in which At is the sample interval and T = NA¢ is the
total length of the time sample. The finite Fourjer transform of the process {X,}

is defined by

N
d.(rAw) = E(X"‘ - X) exp(—izj\?t) (4.1}

=1

in which X denotes the sample mean and Aw = 27/7 is the frequency increment.
Note that d,{(r + ¥)Aw) = d(rAw) so that d, is a periodic function. Similarly

the inverse Fourier transform of d,(w) :

4-4



: = - 2mnr
X=X - G Zl dz{rAw)exp(i ~ )
gives X,y nv = X.. Thus, we will consider {X,} to have this periodicity in all

calculations involving the Fourier transform. This simplifies certain calculations.
For example, we can write the second cumulant as

N

Ca(r) = kaltyty + ) = Y (X, — X)(Xq0 — X) (4.2)

i=1

in which 7, = nAt. Even though the 7 —n subscript on the final term goes outside
the original range of 1,..., N, the term is unambiguously defined by the periodicity

property. Note from eq. 4.2 that () also has the periodicity property

C (T“rx—HV) - Oy (TnJ

this periodicity also extends to higher order cumulants such as C'y(7,. .., 7%e_1)

which is periodic in each of iis & — 1 time arguments.

The kth-order polyspectrum (or kth-order cumulant spectrum) is defined by
an order (k-1) Fourler transform of the kth-order cumulant function. This is the

same idea as in Sec. II-1-1, but the discrete form can be written as

N N k1
At 4 A _ 1 (4.3)
(5;) 1 E l... > ICk(TIPU’Tk_l)eXP{_LJEIW‘J”‘]‘_\fJE
ny= Np_1= =

where 7; = n;Af 1 <n; < N and wj = r;Aw.
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A suflicient condition to assure that the above Fourter transform exists is,

In general, fr(w1,...,ws)is complex-valued and bounded. The final argument of f

in eq. 4.3 is determined from the condition that the sum of the k& variables satisfy

Points in the general & dimensional frequency space which satisfy this condition
are said to belong to the principal manifold, which is actually of dimension
k — 1. The function fr is only defined on this manifold. Since the second-
order cumulant ('3{7) is just the covariance function, it follows that the second-
order polyspectrum is exactly the same as the conventional power spectrum, i.e.
fo{w,—w) = S{w). The third-order polyspectrum, fz(wi,ws, —w1 — wq) has been
called the bispectrum, and the fourth-order spectrum, fe(wy,ws,ws, —w; —we —wjy)
has been called the trispectrum. Since all polyspectra of higher than second order
vanish if {X.} is Gaussian, the power spectrum is the only necessary information
for a Gaussian process. On the other hand, the bispectrum, trispectrum and
all higher-order polyspectra can be regarded as measures of the departure of
the process from Q(Gaussianity. In this study, the bispectrum vanishes due to
the symmetric distribution of {X,}, so that the trispectrum becomes the most

important representation of the non-Gaussian process.
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IV-3-2 The Estimation of Polyspectra:

The basic idea of the periodogram analysis involves using the finite Fourier
transform of eq. 4.1 on a sampled time series. The relevant products of these
finite Fourier transforms are then “smoothed” by averaging over neighboring sets

of frequencies to produce estimates of the required polyspectrum.

Let In(wr.. .., wp) be called the kth-order periodogram, or briefly periodogram,

and be defined as

(A
In(wiyenywe) = N{2r)tt H dp{w;) (1.4)

It can be shown that the expected value of a kth-order periodogram is an asymp-

totically unbiased estimate of the kth-order polyspectrum (cumulant spectrum) as

Lm £ IN(%...,%)] = falwrs @) (4.5)
provided that the wy,...,ws do not lie in any proper submanifold of the principal

manifold, with the submanifolds defined as

jed

in which J is a nonvacuous proper subset of 1,..., k. The expected value in eq. 4.5
typically diverges as N — oo if the w’s do lie in a proper submanifold [Brillinger

and Rosenblatt 1967a, 1967b].

4-7



[t can, however, be proved that the periodogram is not a consistent estimate in
the sense of mean square convergence. That is, the variance of Ix(wi,...,ws) does
not tend to 0 when N — oo, To construct a consistent estimate one must “smooth”
the function In{ws,...,ws) by using a weight function which becomes increasingly
more concentrated as the sample size N goes to oo [Priestley 1988|. There are many
possible choices for a specific form of the weight function (or window). Two of the
commonly used forms are those of Hanning and Bartlett, but a simpler form is used

here.

To estimate fi{w,...,wy) at any point that is not in a submanifold, one can
simply “smooth” or average the periodogram in the neighborhood of the point. For
an estimate at a point in a submanifold, one must average the periodogram for w’s
in a neighborhood of the point, but not actually in the submanifold Brillinger and

Rosenblatt 1967a, 1967b].

The estimation of bispectra has been investigated quite extensively [Hasselman
et al. 1963; Subba Rao and Gabr 1984; Choi et al. 1985], but is not within the
scope of this study. It appears that very little has been done on the estimation of
trispectra. The principal manifold for the trispectrum is w1 — ws | wa +ws = 0,
and the possible submanifolds of interest have any w; +w; = 0,for 4,5 € {1,2,3,4}.
Unfortunately, a region of particular interest is along the line {w, ~w,w, ~w) and
all points on this line do lie in these submanifolds. This somewhat complicates the
estimation of trispectra in the periodogram analysis. In order to obtain information
about the trispectrum on submanifolds, as mentioned early, one necds to take the
average of values fairly near the submanifold. This can be accomplished with any

simple weighted average over some range of the k-th order periodogram. However,
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the crucial issue is how large a range to use for the average? To investigate
this problem, a rectangular window {an “on-off”average) has been employed for
simplification. The periodogram, I, smoothed by the rectangular window with

width equal to (2n + 1)Aw, can be defined as

LEFANTD nAw

= L
IL?\T(&)]_.'...,Wak) - Z Z If\,’(u.)l—%—bl,..._,w:;“l—b4)

M bi=—nAw by mAw (46)

I«V(wl -%—61,...,@04 +b4)

in which W{(n;,m2,75,74) — 1 if the four frequencies do lie in the manifold
m + 12+ s = na — 0 but off the submanifolds, n; + n; £ 0 for ¢« # j and
W (i, n2,m3,74) = 0 otherwise. The normalization term M in eq. 4.6 is the total

number of /5 within the range of [our dimensional smoothing,

AW AW

M = Z Z W(W1+bi,...,w4+bé)

bi=—nAw by= -nAw

When a proper average width (2n - 1}Aw is chosen, eq. 4.6 will give a consistent

estimate of D(w,ws,w3) on the submanifolds.

A simple first-order linear system with damping has been employed for obtain-
ing an appropriate value for n in eq. 4.6. The equation of motion for the linear

system subjected to a delta correlated excitation can be written as

B br o= y(t) = Y A;6(t— jAL) (4.7)

in which the A’ s are independent random variables. The impulse response function
] p p ?

h(t), and the transfer function, H(w}, are given by
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Therefore, both the response power spectral density, S;(w) and the trispectrum

D (w,w,—w) (on a submanifold) can be obtained analytically as

and
A4 _ 3 _42 2
Defw,w, —w) = = ()271')3&5 ) (wz ibz )2 (4.9)

Note that At is the time increment of the process. The fourth moment, £{4%) and
second moment, E{A?), of the excitation can be chosen so as to completely define
the respouse trispectrum. The ratio of D(w,w, —w)/S(w)? can he used as an index
of the normalized tripectrum which is somewhat similar to the COE value. It is
clear from equations 4.8 and 4.9 that [3/5? for this process X(¢) is a constant and
is equal to the COE(A) times % Thus, the extent to which X (¢) is non-Gaussian
is directly related to the COE(A4), and if 4 is Gaussian then X (¢) is also Gaussian.
For the numerical simulation the parameters have been chosen as Af = 0.1(sec),
and b = 0.5(sec”'). The COFE(4) values have been chosen to be 0 {{for a Gaussian
process) and 22.2 for a non-Gaussian process which gives D/S* = 0.353. Figs. 4.1
and 4.2 illustrate the implementation of eq. 4.6 to find D{w,w, -w)/5%{w) values

at three different frequencies. It can be seen that when n is between 14 and 17,

the smoothed periodogram gives a quite good estimate for the trispectrum. Tt
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should also be noted that when n is larger than L8, the estimate becomes chaotic,
but these values have not been plotied in the figures. Overall, one can conclude
that the estimation of the trispecirum on the submanifolds is feasible, however, it
requires averaging over a fairly large range of frequencies. One disadvantage of this
approach is that the frequency averaging causes the estimations of the trispectrum
from the periodogram analysis to appear guite broadband, even if the process of

interest is narrowband.

IV-3-3 Trispectrum of Primary Acceleration:

This section presents the results of using eq. 4.6 to estimate the trispectrum
for the primary absolute acceleration of the nonlinear primary system for the case:
a=0.35,73, = 1%, Y/N = 1. In order Lo obtain accurate simulated results, both
ensemble averaging and block averaging have been used. The term block averaging
refers to a procedure of generating a very long {ime history then dividing it into a
number of biocks covering different time intervals, The finite Fourier transform of
each block is then calculated and these transforms are averaged over the different
blocks {Priestley 1981]. Thus, block averaging is essentially the same as ensemble
averaging except that the time samples (blocks) in the former approach are related
to each other, rather than being independent. In this study, a block contains 4096
(or 2'?) time increments. The normalized time increment, w, At has been chosen to
be 0.1 radian giving approximately 63 excitation pulses per cycle of the unyielded
system (the same as in the other simulations for the P-S system). The ensemble
consists of four long time histories, each of which 1s divided into 10 blocks. The

resulting block and ensemble averaging seems to give satisfactory simulation results



for trispectral analysis.

To avoid the difficulty of describing the full four dimensional behavior of
D(wy,wa,ws}, one possible approach is to restrict attention to some particular plane
within the frequency space. In particular, it seems desirable {0 to study a plane
containing a line like (w, —w,w, —w}, since it 1s anticipated that D) may have major
peaks on such lines. Obviously, there are infinitely many planes containing the
line, (w, —w,w, -w) in the (w;,ws,w;, w1 — wo — w3z) domain. One simple choice
is the plane described by w; and wj, and given by (wi, ~wi,ws, —w3). The line

(w, —w,w, —w) is clearly the diagonal of this plane.

A D: contour map plotied for the (wy, —wy,ws, —w3) plane is shown in fig-
ure 4.3 (recall that D has no imaginary part on this plane). The plot has been
split into two parts, with figure 4.3a giving more detail on negative D: valucs
and figure 4.3b concentrating on positive I};. Note that the trispetrum has been
“srmoothed” over a fairly wide range (n=15), so that each number on the map
does not represent the “real” trispectrum value but an averaged value. It can
be seen that a very high positive peak occurs at normalized frequency (w/w,)
coordinate {0.72,-0.72,0.72, - 0.72) and two negative troughs appear symmetri-
cally to the line (w, —w,w, ~w) at coordinates of about (1.0, -1.0,0.8,-0.8) and
(0.8,--0.8,1.0, -1.0). It should be noted that the frequency (0.72) giving a peak
of this function is exactly the same as the frequency giving the maximum power

spectral density of this yielding BLH system.

In order to investigate further the negative troughs, another plane which is

orthogonal to the line {wy, —w;, w3, ~ws) and which contains these two troughs
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has been investigated. This plane can be defined as (wi.w3,2¢ — w;, —2a - wy)
where @ is the distance from the origin to the plane and it has been chosen as
a = 0.85w,. A contour map of the real part of [): for this plane has also been
plotted in fig. 4.4, with major emphasis being placed on the negative D3z values.
It is interesting to note that the negative part is basically shaped like a ring (or
donut). The center of the ring seems to be located at about (0.9,-0.9,0.9,-0.9)
which is a little higher than the positive peak on (w, ~w,w,  w). Figs. 4.3 and 4.4,
provide some valuable qualitative as well as quantitative information. Fig. 4.3 can
also be used to compare these simulation results with the “smoothed” D function
from substitute linear models in the following chapter. This will allow assessment
of the acceptability of schemes for “matching” the trispectrum for a BLH system

with that for a substitute linear system.
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SECTION V

RESPONSE OF LINEAR SECONDARY SYSTEM

V-1 Concept of an approximate model:

A central interest of this study is to develop an analytical model, which can
approximate the trispectrum, [{w;,ws,ws) for the absolute acceleration of ihe
nonlinear primary system, as simulated in the preceding chapter. This will give a
description of the nonnormal base excitation of the linear secondary system, so that
the COL value of the secondary response can then be evaluated analytically. Note
that in order to evaluate the COE value of the secondary response, the analytical
model also must adequately approximate the power spectral density of the primary
acceleration. However, the estimation of a power spectral density is much simpler

than the approximation of a trispectrum.

The basic approach used here consists of simultaneously replacing the nonlin-
ear primary system with a substitute linear primary and replacing the Gaussian
excitation of the original primary with a non-Gaussian excitation. Obviously, the
non-Gaussian excitation is required in the substitute system, since a Gaussian exci-
tation of a linear primary would give a Gaussian primary response (and a Gaussian
secondary response). A major advantage of using a linear substitute system is that it
allows the use of linear methods (such as state space moment equations) to find the
secondary response. The major question is whether it is possible to find a substitute
primary system and a substitute excitation such that the D(w;,ws,w3) function for
the primary response acceleration is adequately approximated. It should be noted

that the substitute excitation and the original excitation are both delta-correlated,
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so that they differ only in probabiliiy distribution.

The term “equivaleut linearization technique” as generally used in analysis
of nonlinear vibrations refers to a somewhat different method from the “linear
suhstitute method” used here. The former term is often used to reler ta some
version of the Krylov and Bogoliubov method {1943], in which the parameters
of the equivalent linear system are obtained by minimizing some measure of the
difference between the original and the linearized system. The RMS value of
the response of the “equivalent linear system” can then be found and the power
speciral density can also be approximated [Caughey 1959, Spanos and Twan 1978 .
In this study, the linear substitute system also has a substitute excilation. This
makes it infecasible to evaluate parameters by a strict minimization technique, so
more intuitive and approximate methods are used. Also, the linearization has
been extended for approximating the ahsolute acceleration in the mean sguare
sense, whereas linearization has usually concentrated on displacement and velocity

response.

In some situations a much simpler concept is used in lieu of matching the
D:(wy,wy,wy) function at any particular point. Recall that the COE is a normalized
fourth order cumulant for the special case when all time arguments are the same,
ka(t,1,1,1), and is the triple integral of the D(w;,wy,ws} function over the entire
frequency space. Thus, a good approximation of D:{w;,ws,ws) would necessarily
give a good approximation of the COE of Z (although the inverse is not necessarily
true). In some situations one can determine some parameters in an approximation

of Di(w),wz,ws) on the basis of maiching the approximate COE to a simulated

value. Matching of the COE value is a reasonable condition to impose on any good
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approximation for D{w;,wy,wsy ), and COE matching is generally much simpler than
D matching, even along a prescribed line in the w space. The idea involved here is
exactly equivalent to noting that matching a target variance value is a reasonable

condition for any good approximation of a target S(w) function.

V-2 Simulation Results for COE of Secondary Response:

Before proceeding tc the linear substitute method for the P-§ system, it is
appropriate to summarize the results from simulation and seek to understand the

physical phenomenon of secondary response.

V-2-1 Cascade Analysis :

The simulation results for the coeflicient of excess of secondary response,
('OE(u), versus the frequency ratio (w,/w,) can be found in figs. 3.1 to 5.6 for
the BLH systems with &« = 0.5 and 1/21 and with the excitaiion level varied to
give the Y/N and o,/Y values shown. The other curves on these figures represent

analytical approximations which will be explained later.

It can be seen from the figures that the COE(u)} is nearly 0 (Gaussian)
at a low frequency ratio, goes to an asymptotic value when the frequency ratio
becomes large {usually about 5 or 6), and generally has a peak (local extremum)
at some intermediate frequency. At low w,/w, values, the secondary response (u)
is proportional to the absolute displacement of primary response {z + y}. The
low frequency C'OFE(u) values show that z 4 y is essentially normal. At first this

may seerm surprising, but it can be explained by considering the magnitudes of the
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component terms. In particular, consider the variances. Since the variance of the
normal delta correlated excitation, y, is infinity compared to a finite variance of the
nonnormal displacement, z, the sum should be dominated by y, so should be nearly
normal. When the secondary becomes very stiff, u becomes proportional to the
primary absolute acceleration (# + ¢ or ), and the COFE(Z) is usually nonnormal
because of the nonlirearity in the primary sysiem. The COE of primary absolute
acceleration has been mentioned in Section I, and the values there agree with the
asymptotic values in figs. 5.1 to 5.6. It is presumed that the local peak of COE(u)
at an intermediate frequency is due to an effective “tuning” between the sccondary
system and a “resonant” frequency of the nonlinear primary system. This resonant
frequency, which will be denoted by w,, is smaller than w,, particularly for small
Y/N values. Note that the tuning peak value of COE(u) has the same sign as the
COE(u) for w,.>> w,.

The simulation values in figure 5.7 illustrate the C'OQF{u) values at tuning for
a = 0.5 and a = 1/21. The tuning COE(u) values are plotted versus o, /Y for the
response of the primary system. In general, each tuning value occurs for a different
frequency ratio, and these w,/w, values are given in parentheses adjacent to data
points on the figures. It may be noted that COF{u) varies from negative values
for small o,/Y to positive values for large ¢./Y. This is similar to the trends
previously found for COFE(Z) (Chen and Lutes 1988) as shown in figure 2.1, but
the magnitudes of the COE are different. The COE(u) changes sign at o,./Y ~ 2
for @ = 0.5, and 0,/Y ~ 25 for @« = 1/21. The most significant nonnormality of
secondary response at tuning can be up to COFE{u)} = 1, which occurs at ,/Y

values of 5 to 15 for « = 0.5, and down to COE(u) = —1 at ¢,/Y about 0.5
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for both a values. The tuning frequencies, w,/w,, are usually smaller than unity

P
since the resonant frequency of a yielding BLH system is less than «,. Normally,
w,/w, decreases as the excitation level is increased and varies from 1 to 0.71 for

e = 0.5 and 1 to 0.22 for & = 1/21. The other information in figure 5.7 relates to

an analytical model which will be discussed later.

It is interesting to note that the C'OE(u) values for « = 1/21 arc generally
smaller than for o« = 0.5, indicating that an increase of the second slope, «, has
increased the nonnormality of secondary response in this case. This is consistent
with the earlier result that the nonnormality of primary absolute acceleration {input
to the secondary system) is more significant for the @ = 0.5 case :Chen and Lutes

1988].

v-2-2 Noncascade Analysis :

The basic assumption of the P-S system is that the mass ratio m,/m, is
relatively small such that the interaction between primary and secondary can usually
be neglected. For RMS values, 1t has been shown that ignoring the interaction effects
would be acceptable so long as the {requencies of the two systems are not close, hut
a significant error on the conservative side may occur when tuning exists  Crandall
and Mark 1963, Kelly and Sackman 1978]. For COE values, however, the effects
of interaction on the nonnormality of the secondary system is of inlerest and is

investigated in this Section.

For the noncascade study of P-S systems, the Rugge-Kuita method has

been employed for solving the coupled BLH primary and linear secondary in the
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simulation, as has been mentioned in Section 1. The first case that has been studied
is for a mass ratio of 7 = 1%. The C'OFE(u) values, along with analytical results
which will be discussed later, are shown in fig. 5.8 for both @ = 0.5 and 1/21. Tt
can be seen that the effects of interaction are significant at tuning, for which the
change in the COE value can be 50% for the 1% mass ratio. However, the influences
of the secondary system are rclatively small at other frequencies. Note that in the
asymptotic frequency range there is almost no effect due to the existence of the
secondary system. Therefore, the study of interaction effects on nonnormality can
be focused on the tuning situation only. Since a 1% mass ratio is usually an upper
bound for P-S systems and cascade analysis (n = 0) is the lower bound, another
intermediate mass ratio of 0.1% has also been investigated. For different excitation
levels, the tuning peak values of the COE of secondary response have been siudied
from both simulation and the analytical approach. Figures 5.9 and 5.10 illustrate
the results from simulation and from an analytical model using n = 0, 6.1%, and

1% for different excitation levels.

V-3 Single Linear Filter Model:

Figure 5.11 illustrates the principle of using a linear substitute method for the
analysis of a P-S system. The basic idea is to use a linear filter having a nonnormal
excitation to replace the BLH primary element having a normal excitation; with the
hope that both the second and the fourth order cumulants of the primary absolute

acceleration for the substitute system will match those of the original system.

The choice of the linear substitute element has been primarily based on

matching the power spectral density (or its area which is the mean square value)
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of the primary absolute acceleration. A third order linear substitute system has
been used in some previous studies [Hseih 1979, Tutes and Jan 1983 for predicting
the power spectral density for the response displacement of a BLH system. This
model was considered for approximating the power spectral density of response
acceleration, along with a second order linear substitute system with parameters
chosen to achieve approximate matching of the RMS values of velocity and absolute
acceleration of responses {Appendix A). It was found [Chen 1990] that the response
of the second order linear system better approximates that of the BLH systermn,
especially when o is small (like 1/21}. Therefore, the second order linear system

will be employed in the current study as the linear substitute system.

A delta correlated excilation with parameter value Dy {see eq. 2.32) was chosen
in this study. The value of [}; was chosen such that the model matched the COE
of the primary response acceleration. Let k,(-) denote the stationary nth cumulant
function. Since COE(Z) or ky(Z) is known, the constant Dy can be oblained from

the equation:

ky(3) = (2m)° Dy /ﬂmh;ﬁ(t)dt (5.1)

in which hy(#) is the impulse response function for the primary acceleration. The

fip for the second order linear substitute system can be found in Appendix A.

After the nonlinear primary of the P-S system has been replaced by a linear
substitute system, the fourth and second response cumulants of the secondary
response (k4(u) and kyz{u)) can be calculated by applying any linear method to

the fourth order system representing the composite of the linear secondary and the
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linearized primary systems. In this study the cumulant functions for the fourth
order linear system subjected to delta correlated excitation were found from state
space moment equations [Chen 1990|. Figures 5.1 and 5.4 show representative COE
values of the secondary response from this single linear filter substitute method for
comparison with the results of cascade computer simulation. It can be observed that

the linear model works well for the two limiting ranges of w, << w, and wy > wy.

When w, << w,, the displacement response of the secondary system 1is
proportional te the absolute displacement of the primary response, which is nearly
(Gaussian in general. Thus, C'OE(u) approaches zero for w, << w,, and this is true
for either a linear or nonlinear primary. At the other extreme of w, » > w,, the
displacement of the secondary response is proportional to the absolute acceleration
of the primary response. Recall, though, that the linear substitute primary has been
chosen to match COE(Z) to that of the nonlinear primary. Thus, the substiiute
systern inust match C'OE(M) for w, = Wp. For intermediate values of ._,.;_,,j'uJ;,,
though, the single lincar filter model in figs. 5.1 and 5.4 completely misses the

tuning peak of C'OFE(u) which appears in the simulation data.

If the linear substitute model had adequately matched the general D funciion
{or (} function) of the BLH primary acceleration, then it would also have have
matched the nonnormality of the secondary response of the original system. In
fact, though, the C'OFE{x) for the simulated secondary response was not matched
by the response of this particular linear model. Thus, the D function for the
primary acceleration must not have been adequately matc ed cven though k(%)
was matched. A case of @ = 0.5, 3, = 1% and Y/N = | has been studied in order

to experimentally investigate the matching of the primary acceleration D functions
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between the linear model and the BLH system. Fig. 5.12 illustrates the *smoothed”
Dy function from this single linear filter model for comparison with the [ function
from the BLH system (periodogram analysis) as shown in fig. 4.3. From the contour
maps, it can be observed that the BLH D; function is not accurately matched by

the linear system especially, ncar the peak, cven though the total volume under the

D; (i.e., the COFE(Z} value) has been matched.

The failure of the single linear filter model to predict a tuning peak of COE(u)
can perhaps best be seen by considering the response of the secondary system
to an “equivalent” delta correlated excitation. The idea of an equivalent delta
correlated excitation is to seek to accurately model 5, (w) and D, (w;,wy,ws) only
in the ncighborhood of the major peaks of these two functions. If almost all the
significant comtributions to ko{u) and ks(u) come from these neighborhoods, then
this technique will give accurate estimates of the cumulants. Tn general one can
expect the approximation to be acceptable when the secondary system is lightly
damped, since 5, {w) will then be very large for w >~ tw; and D,{w1,ws,ws) will be
very large near (w,,w;, —w,) and its five symmetric points (see Section 11-2-2). The
constant values for §: and I’; for this delta correlated excitation of the secondary
should then be S:{w,) and D:(w,,w;, —w,) in order to properly model §, and D,
in the neighborhoods of these points. Tt should be noted that this delta correlated
excitation approach may not work well if Sy(w;) and D:(w,,w,, —w,) are much
smaller than 3 and D; at some other points in the frequency space. For example,
if §3{w,.) »> S:{w,) then 5. {w)} can be expected to have major peaks both near
w = Tw, and near w = tw;, and the delia correlated excitation approach would

ignore the contribution of the former of these pecaks.
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One expects S:{w) and Ds(wq,we,ws) to achieve their largest values near points
w, and (wy,wns, —w,), respectively. So long as S:(w,} and D:(w,,w,, ~w;) are not
miuch much smaller than 5:(w.) and I}:{w,,w,, —w, ), the equivalent dclta correlated

excitation approximation gives

Sulw) = Silew) Ho(w)P (5.20)

and

(=]

-y

-Du("-"f'l-.“-’?ﬂ-’-’li)}: Dlz‘(ws:ws:_ws}Hs(wl}Hs(“"2)Hs(W3)Hs{_ wj) (:)25)

1

J
For the single linear {ilter model for the primary these can be rewritten as

Su(w) ~ SolHolw )2 Hy(w),? (5.3a)

and

o

!

Dy(wy,we,ws) = Do|Hy(w ) Ho{w VH(w) ) Hy(wi H(— Y w;) (5.35)

i

1

Integrating eq. 5.3a with respect to w, and eq. 5.3b with respect to wy,wy and
wy then gives the approximations for kp(u) and k4(u). Dividing the latter of these
by the former squared gives the approximation of C'OF(u). Note, though, that
the characteristic H, of the linear primary enters eqs. 5.3a and 5.3b only as the
constant value H,(w,) and it completely cancels out of the COE( ) approximation.

Thus, using the equivalent delta correlated excitation of the secondary system causes
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('O E(u) to be completely independent of the characteristics of the single linear filter
substitute primary system. In particular, COF(u) is independent of w, and this

precludes the possibility of obtaining a C'OFE{u) peak at tuning (w, =~ w.).

It should be noted that w, << w, and w, »>» w, are situations in which
the equivalent delta correlated excitation approximation may not be justified, since
they may give S:(w,) << Si(w.) and Di(w, . ws, ~ws) << Dilwr,w,, —w,). As
noted above, the single linear filter model does work well in these extreme cases.
For «, ~ w,, though, the equivalent delta correlated result should be reasonably
accurate, and the absence of a tuning peak in (OF£{u) appears to confirm this

conclusion.

The tuning peaks of C'OFE(u) for the simulation data in figures 3.1 to 5.6 show
that D: must be more sharply peaked in the vicinity of (w.,wr, —w,) than was
predicted by the single linear filter model. This is confirmed by the contour map
comparison of D in figures 4.3 and 5.12 (even though the smoothing in these latter
plots hides much of the details}. The following section presents an alternate model
chosen to give this more peaked D: by using a more narrowband filter for the fourth

cumulant.

V-4 Two Filters Model:

The fact that P-S frequency tuning causes a peak (local extremum) of the COE
value of the secondary response provides evidence that the fourth cumulant of the
primmary response is more narrowbanded than is the second cumulant. In order

to approximate this tuning peak, another model, called the {wo filters model, is
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proposed as shown in figure 5.13. The only change from the single filter model is
in the addition of a separate filter, H,4(w) for finding the fourth cumulant of Z in
the analytical model. The parameters of this fourth cumulant filter are chosen on
the basis of matching the peak COE value of the secondary response at tuning for

cascade analysis.

V-4-1 Cascade Analysis:

The maximum values of S{w) and D{w, —w,w) appear to occur at essentially
the same frequency, in general. Thus, the linear fourth cumulant filter will be taken
to have the same resonant frequency as the second cumulant filter (as investigated
in the previous section). This leaves the damping ratio (or bandwidth)} as the only
parameter to be determined for the fourth cumulant filter, and this can be chosen
to match the height of the peak in COE(u} at P-S tuning. A convenient way to
present the results of this parameter choice will be as a bandwidth ratio, B,, which
is defined as the ratio of the damping of the second cumulant filter to the damping
of the fourth cumulant filter. A preliminary study of the bandwidth ratio based
on matching the tuning peak COE{u) values showed that B, should generally be
in the range of 2 to 3. Figure 5.7 illustrates the estimates of COFE{u) at tuning
by using several B, values in the two filters model {The frequency ratios, w,/w,
corresponding to these peak COE values are given 1n parentheses}. Compared
to the simulation data in the figure, it can be seen that the ("OF{u) predictions
obtained by using a single bandwidth ratio such as B, = 2.5 may be acceptable for
many purposes, but sometimes have significant errors. To obtain better estimates,

one can use a larger B, value (like 3) for & = 0.5 when ¢,/Y > 2 and a smaller B.
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value (like 2) for all the other situations shown.

Using the B, as 2 and 3 (according to the preceding observations), COFE{u)
values have been obtained for several different ¥/N values for 1% damping and
a = 0.5 and 1/21. These results fram the two filters model are shown in figures 5.1
to 5.6 for comparison with those from simulation and with those from the single
filter model (in figures 5.1 and 5.4 only). Onec can see that the C'OFE(u) at tuning has
been significanily improved by using the two filters model with a narrower fourth

cumulant filter.

It should be noted that theoretically B, should go to unity in the two limiting
cases: Y -+ oc or 0, since the nonlinear primary tends to a linear system (a single
linear filter primary) in these situations. However, the COF(u) values also approach
zero in these two extreme situations. Using B, = 2 or 3 even in these situations
seems to give acceptable errors in COE(u), since the absolute values are so small.
Table 3.1 shows all the parameter values used in the two filters model for the

situations studied here.

Even though the tuning peaks of ('O FE{u) have been quite accurately matched
by using the two filters model, the error in the COFE(u) for an intermediate
frequency range (say wy = 2w, ] still has not been significantly improved. In order
to allow more detailed investigation of this remaining discrepancy, the smoothed
D; function for the two filters model has been evaluated for comparison with the
simulation results for the BLH system. Fig. 5.14 shows the “smoothed” : function
contour plots for the linear model for the case: a = 0.5, 3, = 1% and Y/N = 1.

When this plot is compared with figs. 4.3 and 3.12, it can be observed that the peak



(a). BLH: 0 =05, 3, = 1% :

(bj. BLH : & — /21, 3, — 1Y

TIN wiw, damping of Ay damping of kg Dyw,/ 5,
300 | 1.0 1.0 % 0.5 % -30.04
13. 1.0 133 % 0.76 % -139.84
L 0.87 28T % 144 % -101.64
L5 02 T 861 % [ 28T % | 100
L | 0 8% | 26 % 35.74
0.2 0.71 2.15 % | 0T % 41.69

o

damping of ky |

| damping of ks |

Table 5.1 Parameters in Two ilters Model
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P i Dyl 52
30, L0 1.0 % 0.5 % -32.55 i
7. | 0.99 1.75 % 24 % | -72.48
3. 0.91 1725 % | 86 % | -33.0
7. 0.85 50. % 25. % ] -31.71
0.6 0.22 224 % 89 % | 7.01
o4 | o2 ] 166 % 676%*_} 53.08
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in the contour map has been significantly improved by using the more narrowband
fourth cumulant filter. However, figs. 4.3 and 4.4 also show negative [7: values
on a “ring” area centered at {w,w, ~w) for a frequency w higher than w, at the
positive peak. These negative values do not appear in fig. 5.14. In fact, they could
not possibly appear for any linear substitute primary since the trispectrum of the
output of any linear model cannot be negative if the input constant Dy is positive.
This reveals an inherent shortcoming of any linear model for approximating the
trispectrum of a BLH system. Namely, the BLI system sometimes has frequency
regions giving a trispectrum of the “opposite” sign, and a linear model with delta

correlated input never gives this behavior.

One can again consider the idea of an equivalent delta correlated excitation to
seek to explain the discrepancy of the two filters model for intermediate [requencies
above tuning. Consider o = 0.5, 3, = 1% and Y/N =1, since that is the situation
for which the smoothed trispectrum from simulation has been presented (figs. 4.3
and 4.4). The negative values of Dy(w, —w,w) for w/w, > 1 could be expected,
based on the equivalent delta correlated excitation model, to give negative COE{u)
values for w, =~ w,. Fig. 5.1 shows that this does, in fact occur. The results
are not exactly in agreement with the delta correlated excitation predictions since
the bandwidth of the secondary system is finite. Nonetheless, the negative D:
trispectrum values in the vicinity of (w, —w,w) for w =~ w, should be expected to
reduce the COFE(u) values for w, anywhere in this vicinity. Since the linear model

never gives these negative D; values, it should overpredict the C'O#/() in this area.

Thus, one can conclude that the discrepancy of COE(u) in the intermediate

frequency range is inevitable when using the linear models. Fortunately, the linear
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system estimate is always on the conservative side for positive COE(u) values
(which are of most interest), and the largest COE values usually occur either
at tuning or in the asymptotic region. Thus, the discrepancy for intermediate

frequencies may not be a problem for practical applications.

V-4-2 Noncascade Analysis:

The two filters model can be exteaded with little effort to provide a noncascade
analytical approach, once the parameters of cascade analysis have been established.
The model is illustrated in flg. 5.15 in which the parameters of the two linear
substitute primary systems and of the nonnormal excitation can be obtained from
the previous discussion. In particular k,4 = k,2, with the value chosen according to
eq. A.7, and cpe = cp2/ By, with ¢p chosen according to eq. A.6. The influence of
the secondary system can be studied by considering the mass ratio (p = m,/m,) in
the state space equations, in which n = 0 was used for cascade analysis. From figs.
5.8, 5.9 and 5.10, it can be seen that these analytical predictions normally agree

well with simulation results for different mass ratios.

Since the effects of interaction in P-S systems ai tuning can be significant
for the most nonnormal situations, the influence of the secondary system should be
taken into account if the nonnormality of secondary response is significant. The two
filters model seems to give a simple way to perform this analysis with reasonable

accuracy.
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V-5 Reliabilities Affected by Nonnormality:

Approximations were presented in Section [I-4 which used COE information
in order to obtain improved reliability estimates for both first-passage and fatigue
reliability. Recall that the nonnormality correction factor (NCF) was defined as the
ratio of the mean time to failure for normal process to the mean time to failure for a
corresponding nonnormal process. This NCF was denoted by Q for first-passage and
L. for fatigue failure. Note that an NCF > 1 denotes a situation in which neglecting
nonnormality would be nonconservative, inasmuch as it would overpredict the life

of the siructure.

The magnitude of the Q and L values for the secondary system can be easily
calculated by using the COE{u) values presented earlier in this section along with
the equations in Section II, or along with figs. 2.2 and 2.3. Results of this calculation
are presented here for only a few of the situations studied, in order to demonstrate
the extent to which yielding in the primary system can affect the reliability of the
secondary systern. Most of the results shown are for o = 0.5, since the largest

nonnormalities were observed in that situation.

As noted above, the most significant nonnormality of secondary response occurs
when the secondary frequency (w;) is either tuned to a resonance of the primary
system or 1s much larger than the frequency of the primary system. These two
secondary frequency situations will be referred to as tuning and the asymptotic
region, respectively. The numerical results for the nonnormality correction factors
(NCF) are presented here only for these two critical situations. The NCF has also

been evaluated for both cascade analysis (m,/m, = 0) and noncascade analysis
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(ms/my = 0.1%,1%).

The NCT for first-passage failure (Q) of secondary response can be evaluated
from eq. 2.50 (or fig. 2.2). The two u/o, values which have been considered are 3
and 4. Note that u is the displacement of the secondary system and o, is the RMS
value. For tuning, fig. 5.16 shows the Q values plotted versus the RMS ductility
(7./Y) of the nonlincar primary system. Each Q value shown corresponds to the
local extreme value of (/OFE(u) achieved at P-S tuning. In general the value of
w,/w, giving this tuning is different for each ¢,/Y value. These tuning values of
wy/w, are given in parentheses adjacent to selected data points on the figures. Fig.
5.17 illustrates the NCF of the first-passage failure in the asymptotic region for
which the secondary displacement response becomes proportional to the primary
absolute acceleration. Only cascade analysis is shown in fig. 5.17 since the mass

ratio has no practical significance in this asymptotic region.

As noted earlier, and illustrated in fig. 2.2, nonnormality has a much greater
effect on first-passage when the barrier level is higher. This is supported by figs.
5.16 to 5.17 in which the Q values for u/o, = 4 diverge from unity much more than
those for /7, = 3. For /o, = 4 it can be seen that the NCF can be much greater
than unity, indicating that neglecting nonnormality may significantly underestimate
the probability of first-passage failure. In particular, ) is approximately 6 at tuning
for &« = 0.5 and ¢./Y in the range of 2 to 10. Similarly large values occur in the
asymptotic frequency region for this same system. Neglecting nonnormality in these

situations would clearly be unacceptable.

When COFE(u) < 0, the NCF is less than unity. Figs. 5.16 to 3.17 show that



Primary : BLH, alpha=0.5, damping=1%
Secondary : Linsor, damping=1%
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(0.72) T
P . A 4

o 1.0+¢ +1.0
1 \ : T
. s ;
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{First—passags foilurs}
0.1 S e e ———— 0,1
0.1 1.0 10.0

~ Primary : BLH, alpha=0.5, damping=1%
Secondary : Linear, damping=1%

10.0 4 D . s NPT

% {First—passage failure} Y VT~ 3
+ “\‘\ji
1 !

1.0 x (0.71) = 1.0
I b+ :

g 0.1 E1 = 0.1
' 1 - \ v / ,

)i Cds/mp . / i
1.0E~2 & VT, e +1.0E-2
3 D \ / u/RMS(u)=4 %

1 &

[ e n=0; —— 7=0.1%: v 7=1%: — [
1.0E-3 oot 5 —— o 1 O3

0.1 1.0 10.0

RMS(x}/Y

=
Fig. 5.16 NCF of first—passage fallure at tuning for a=0.5
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these deviations are sometimes huge. For example, neglecting nonnormality for the
asymptotic frequency region would underestimate the time to first passage by over
6 orders of magnitude for the system with & = 1/21 and o,/Y 2= 4. While this
discrepancy is very large, it does not have as much practical significance as the Q>1
situnations. For Q< 1 neglecting nonnormality may sometimes cause large error, but

it is a conservative procedure in that it overestimates the probability of failure.

From fig. 5.16 one notes that noncascade analysis brings the NCF values at
the tuning frequency closer to unity. This, of course, 1s because the nonzero mass
ratio reduces the nonnormality of the response of the tuned secondary, as shown in

the previous section.

The NCF of fatigue failure (L) for the secondary response can be calculated
from eq. 2.58 for positive COE values and eq. 2.60 for negative COE. The fatigue
constant, m, have been chosen to have values of 3 and 5, in order to present results
appropriate to usual welded structures. The results are presented in fig. 5.18 for
tuning and in fig. 5.19 for the asymptotic region. The form of the plot is the same
as in the preceding figures for Q. For m = 3, the L values are generally less than
1.25, indicating that it may be acceptable to neglect the nonnormalily effects in this
situation. However, when m becomes as large as 5, the NCF can be up to 1.75, so
that the effects probably should not be ignored. Tt is also interesting to note that
for the same degree of nonnormality, the NCF of fatigue failure (L) values seem
much smaller than the NCF of first-passage failure (Q) values for the m and u/o,
values considered. This is an indication that first-passage failure is more sensitive
than fatigue failure to the probability distribution of the extreme values. Thus,

consideration of nonnormality effects is more critical for first-passage failure than
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Fig. 5.18 NCF of fatigue failure at tuning for a=0.5
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for fatigue failure.

Gwerall, it can be seen that the NCUF can be significanl in some situations,
indicating that reliability predictions for secondary response can he greatly in crror
if nonnormality is ignored. It also can be observed that if nonnormality is neglected,
then the probability of failure of secondary response will generally be overestimated
for small o, /Y values and underestimated when o,/ Y becomes large. Fortunately
the former sitnation will more commonly ocenr when the vielding takes place 1o the
seismic response of a primary system. [t may aiso be noled that for the same value
of o./Y, & = 0.5 usually gives a larger nonunormality correction than « = 1/21,
and the difference is quite significant. In addition, it has been shown that the
reliability cffects of nonnormality arc as large in the asymptotic region as at tuning.
This is significant since secondary systems are commonly designed to operate in the
asympiotic frequency region, and nonnormality effects have usually been neglected

in the past.






SECTION VI

SUMMARY AND CONCLUSIONS

Some recent studies have shown that the reliability of a structure can be
significantly affected by nonnormality of the stochastic structural response. This
is not surprising since use of a normally distributed model may significantly
misrepresent the frequency of the high response levels, which are likely to contribute
to failure. Such nonnormality is particularly likely to occur in a situation involving
significant nonlinearity, like the ylelding effect in a hysteretic system. In this
study, response nonnormality has been investigated in a system composed of a
bilinear hysteretic (BLH) vielding primary structure and a linear secondary system
subjected to a normally distributed ground acceleration. The secondary system is
miuch less massive than the primary structure and it would usually represent some
nonstructural elements. The behavior of secondary system is very important since
they often play critical roles in maintaining the operation or safety of the primary
structure in the event of extreme loads. This study has focused on nonnormality
due to structural yielding in the primary system, and has considered the effects of

nonnormality on the probability of failure of the secondary system.

The fourth cumulant function and the simplified, normalized form called the
coefficient of excess (COE) have been used to characterize nonnormality in this
study. An earlier report [Chen and [.utes 1988] considered this nonnormality for
the absolute acceleration of the response of the primary system, which is the base
excitation of the secondary system. This study focuses on the nonnormality of the

relative displacement of the secondary system,

6-1



Nurnerical simulation has been used to obtain COE values for comparison with
the results of various analytical methods. In order to obfain results with small
statistical variation a combination of ensemble averaging and time averaging has
been used. Bach ensemble has contained 100 samples and each sample has contained

approximately 2000 cycles of response of the privarcy structure

The trispectrum, which is the Fourter transiorm of the fourth cumulant func-
tion, has been investigated In a few situations in order to gain betler onderstanding
into the nonnormeal behavior. Autention on the trispecivum has focused on the
vicinity of a single line within the three dimensional frequency space, since that line
has been shown to contain the deminant frequency components in at least some
important situations. urthermore, the trispeciviam is real along this particular
line whereas It is complex over most of the frequency space. Periodogram analy-
sis has been used to obiain smoothed trispecira from discrete Fourler transforms
> simulaied time historics. This has required emipirical determination of appro-
priate averaging schemes and development of plotiing schemes to reveal the most

important features of the complex and complicated trispeetruimn.

The analyiical approaches vsed for calculaling the nonnorms! secondary re-
sponse have been based on ihe concepi of using a linear mode! with nonnormal
excitation to replace the BLH primary element with normal excitation. The goal
has been the matching of the trispectrum for primary accelerations ol the substi-
tute linear model to that of the BLH primary system. The choice of the linear [ilter
has been based on the fitting of the power spectral density, and the nonnormal
delta correlated excitation has been chosen to achieve maiching of ithe COE of the

primary acceleration. This approach called the single {ilter model, was eventually
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extended to allow use of two different substitute primary system. In this “two filters
model” the only difference was that a more narrow band filter was used to predict

the fourth cumulant of the response.

Most of this study has considered cascade analysis, in which the response of
the primary structure is assumed to be unaflected by the presence of the secondary
systemn. Some study has also been given to noncascade analysis of P-§ systems,
using both analytical and simulation approaches. In these noncascade analysis the
mass of the secondary structure has been taken as 0.1% and 1% of the primary

mass (7 = 0.1% and 1%).

Finally, the effects of nonnormality on the probability of failure of secondary
systems have been studied for both first-passage failure and stochastic fatigue
fallure. A nonnormality correction factor (NCF), has been defined as the ratio
of mean life to failure for a normal process to the mean life to failure for the
nonnormal process. Analytical approaches have heen used to approximate the
NCF values. In most sifuations a Hermite moment series, based only on the first
four cumulant functions, has been employed for representation of a non-Gaussian
process. However, evaluating the fatigue failure for a COE value less than zero,
required a different approach, so the non-Gaussian process was represented by a

cruder nonlinear transformation of a Gaussian process.

Several observations and conclusions can he drawn based on the results of the

above studies :

1. The response of the secondary system was nearly normal when the secondary

frequency was much less than the primary frequency {w,/w, -« 1). The
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secondary COE was the same as that of the primary response acceleration
when w,/w, >> 1 (called the asymptotic frequency region). In addition the
secondary COE had a “tuning peak” when w, approximated the resonant fre-
quency of the primary structure. The single filter model accurately approx-
imated the COE in the low frequency and asymptotic frequency region, but
completely failed to predict the tuning peak of the COE.

The two filters model gives quite good estimates for the COE of secondary
response in most {requency regions. In particular, the empirical tuning peaks
of the COE can be adequately approximated by proper choice of the bandwidth
ratio. The optimal bandwidth ratio varies from 2 to 3 for the cases studies
here. Using a single bandwidth ratio of B, = 2.5 may be acceptable for many
purposes, but sometimes gives significant errors.

The trispectrum of the primary acceleration is somewhat different from that of
a linear system with delta correlated excitation. Based on the periodogram
analysis, the trispectrum has a dominant peak at the expected location
(wpy, —w,,w,) but also has a nearby “donut” shaped region having a trispectrum
of the opposite sign. This unexpected region of the opposite sign precludes the
possibility of accurately fitting the entire secondary COE curve by any linear
substitute model of the type used here. The two filters model gives reasonably
good matching of the dominant peak of the trispectrum.

The two filters model somewhat mispredicts the COE of secondary response
in an intermediate frequency range between the tuning and the asymptotic
regions. This discrepancy i1s due to the “opposite sign” portion of the
trispectrum, and is inevitable for any linear system. Fortunately, the linear

system estimate is always on the conservative side for positive COE values of
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secondary response, and also the largest COE values usually occur either at
tuning or in the asymptotic region. Thus, the discrepancy for the intermediate
frequencies may not be a problem for practical applications.

The interaction forces in noncascade analysis can significantly reduce the
nonnormality of secondary response, especially at tuning. At other frequencies,
the interaction effects are relatively small and can be neglected. The reduction
of the COE of secondary response can be up to 100% for a 1% mass ratio at
some tuning frequencies. The two fillers model adequately approximates this
effect in general.

The NCF for first-passage of a level four tirnes the RMS value can be much
greater than unity, indicating that neglecting nonnormality may significantly
underestimate the probability of first-passage failure. In particular, the NCF
is approximately 6 both at tuning and in the asympiotic frequency region for
certain parameter values. Neglecting nonnormality in these situations would
be unacceplable. If the exponent (/m) in the fatigue law is small as 3, then
the NCF of fatigue failure of the secondary response is generally less than
1.25, indicating that it may be acceptable to neglect the nonnormality effects
in this situation. However, when m becomes as large as 5, the NCF can he
up to 1.75, so that the effects probably should not be ignored. The influence
of nonnormality in first-passage failure generally is more significant than in
fatigue failure based on the cases in this study. Consideration of nonnormality
effects is more critical for first-passage failure than for fatigue failure, since
first-passage failure is more sensitive than fatigue failure to the probability of
the extreme values.

Qverall, it can be seen that the NCF for failure can be significant in some
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situations, indicating that reliability prediction for secondary response can
be greatly in error if nonnormality is ignored. The probability of failure of
secondary response will generally be overestimated for small ¢, /Y values and
underestimated when 7. /Y values become large. It may also be noted that for
the same yielding level, « = 0.5 usually gives a larger nonnormality correction
than & — 1/21, and the difference is quite significant. In addition, it has
been shown that the reliability effects of nonnormality are as significant in the
asymptotic region as at tuning, which is particularly perlinent since secondary
systems are commonly designed to operate in the asymptotic {frequency region

and the nonnormality effects have usually been neglected in the past.
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APPENDIX A

LINFAR SUBSTITUTE PRIMARY SYSTEM

The equation of motion of a sccond order linear system subjected to a ground

acceleration can be written as :

The transfer function of the absolute acceleration (Z = Z - §) can be derived from

the relationships:

—(# 1 §) = 28w,k b wia

which gives

Hi(0) = — H,(w)(28w: (i) + w?)
—{w? = 23;;,13;) (A4.2)
(w‘% —w?) 4 25w wi

If the excitation is delta correlated and g is its constant power spectral density,

then the power spectral density of absolute acceleration can be obtained as

Sg(w) = bofH,(_u)‘z (}1_3)

The mean square response for absolute acceleration of this second order linear

system has been found by Crandall and Mark [1963] as

2 T Spwr . . 2
L= — (1 =+ 453 A4

[va
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Hence, the damping ratioc which will cause matching of a given #: value can be

obtained from a second order algebraic equation :

45° b3 +1=10 (A.5)

where

T35 oy ,wo, b Y)2
wSY ww N

b=
Note that wy is the unyielded, undamped natural frequency of the BLH system, and
Y /N is the yielding level. This gives

g b= VBT
3 - -

(4.6)

One choice of the parameters which is valuable in the current study is to
simultaneously match mean square velocity and acceleration of the second order
linear system to those of the BLH system. A simple solution which gives a good

approximation of this matching is to use

Sl (A7)

&

3
el

and determine 3 [rom eq. A.6. The power spectral density for respounse absolute
acceleration can be evaluated from eq. A.3 once the parameters of the second order

linear system have been determined.
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Education in OQur Schools,” Edited by K.E.K. Ross, 6/23/89,

"Proceedings from the Conference on Disaster Preparedness - The Place of Earthquake Education in
Our Schools,” Edited by K.E.K. Ross, 12/31/89.
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NCEER-89-0021
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NCEER-89-0027

NCEER-89-0028

NCEER-89-0029

NCEER-89-0030

NCEER-£9-0031

NCEER-89-0032

NCEER-89-0033

NCEER-§9-0034

NCEER-89-0035

NCEER-85-0036

NCEER-89-0037

"Multidimensional Models of Hysteretic Material Behavior for Vibration Analysis of Shape Memory
Energy Absorbing Devices, by E.J. Graesser and F.A. Cozzarelli, 6/7/89, (PB90-164146/A8).

“Nonlinear Dynamic Analysis of Threc-Dimensional Base Isolated Structures (3D-BASIS),” by S.
Nagarajaiah, A.M. Remhom and M.C. Constantinou, 8/3/89, (PB90-161936/A8).

"Structural Control Censidering Time-Rate of Control Forces and Contrel Rate Constraints," by F.Y,
Cheng and C.P. Pantelides, 8/3/89, (PB90-120445/A8).

"Subsurface Conditions of Memphis and Shelby County,” by K.W. Ng, T-S. Chang and H-HM.
Hwang, 7/26/89, (PB90-120437/A%).

"Seismic Wave Propagation Effects on Straight Jointed Buried Pipelines,” by K. Elhmadi and M.J.
O’ Rourke, 8/24/89, (PB90-162322/A8).

"Workshop on Scrviceabilily Analysis of Water Delivery Systems,” edited by M. Grigoriu, 3/6/89,
(PBS0-127424/AS).

"Shaking Table Study of a 1/3 Scale Stecl Frame Composed of Tapered Members," by K.C. Chang, 1.8,
Hwang and G.C. Lee, 9/18/89, (PR90-160165/AS).

"DYNAI1D: A Computer Program for Nomlinear Seismic Site Response Anatysis - Technical Documen-
tatiorn,” by Jean H. Prevost, 9/14/89, (PBO0-161944/A%).

"1:4 Scale Model Studics of Active Tendon Systems and Active Mass Dampers for Aseismic Protec-
tion," by AM. Reinhomn, T.T. Scong, R.C. Lin, Y.P. Yang, Y. Fukac, H. Abe and M. Nakai, 9/15/89,
(PB90-173246/A8).

"Scattering of Waves by Inclusions in a Nonhomogeneous FElastic Half Space Solved by Boundary
Element Methods,” by P.K. Hadley, A. Askar and A.S. Cakmak, §/15/89, (PBO0-145699/A8).

"Statistical Evaluation of Deflection Amplification Factors for Reinforced Concrete Swuctures,” by
H.H.M. Hwang, I-W. Jaw and A.L. Ch’ng, 8/31/89, (PB90-164633/AS).

"Bedrock Accelerations in Memphis Area Due to Large New Madrid Earthquakes,” by H.H.M. Hwang,
C.H.8. Chen and G. Yu, 11/7/89, (PB20-162330/AS).

"Seismic Behavior and Response Sensitivity of Secondary Structural Systems,” by Y.(Q. Chen and T.T.
Soong, 10/23/89, (PB90-164658/A8).

"Randem Vibration and Reliability Analysis of Primary-Secondary Structural Systems,” by Y. Ihrahim,
M. Grigoriu and T.T. Socong, 11/10/89, (PB90-161951/A8).

"Proceedings from the Second U.S. - Japan Workshop on Liquefaction, Large Ground Deformation and
Their Effects on Lifelines, September 26-29, 1989,"” Ediwed by T.D. O'Rourke and M. Hamada, 12/1/89.

"Deterministic Model for Seismic Damage Evaluation of Reinforced Conerete Structures,” by JM,
Bracci, A M. Reinhom, J.B. Mander and §.K. Kunnath, 9/27/89, to be published.

"On the Relation Between Local and Global Damage Indices,” by E. DiPasquale and A.8. Cakmak,
8/15/89, (PBY0-173865).

"Cyclic Undrained Behavior of Nonplastic and Low Plasticity Silts,” by A.l, Walker and H.E. Stewart,
7/26/89, (PB90-183518/AS).

"Liquefaction Potential of Surficial Deposits in the City of Buffalo, New York,” by M. Budhu, R. Giese
and L. Baumgrass, 1/17/89.

"A Determinstic Assessment of Effects of Ground Motion Incoherence,” by A.S. Veletsos and Y. Tang,
T/15/89, (PB90-164294/A5).
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NCEER-89-0041

NCEER-90-0001

NCEER-9G-0002

"Workshop on Ground Motion Parameters for Seismic Hazard Mapping," July 17-18, 1989, edited by
R.V. Whitman, 12/1/89, (PBS0-173923/A5).

"Seismic Effects on Elevated Transit Lines of the New York City Transit Authority,” by C.J, Cos-
tantino, C.A. Miller and E. Heymsfield, 12/26/89.

"Centrifugal Modeling of Dynamic Soil-Structure Interaction,” by K. Weissman, Supervised by TLH.
Prevost, 5/10/89,

"Linearized Identification of Buildings With Cores for Scismic Vulnerability Assessment,” by I-K. Ho
and AE. Aktan, 11/1/89.
"Geotechnical and Lifeline Aspects of the October 17, 1989 Loma Prieta Earthquake in San Francisco,”

by T.D. O'Rourke, H.E. Stewart, E.T. Blackburn and T.S. Dickerman, 1/90.

"Nonnormal Secondary Response Due to Yielding in a Primary Structure,” by D.C.K. Chen and L.D.
Lutes, 2/28/90.






