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ABSTRACT

The report describes an experimental program devoted to trying

to establish the extenjr to which partitions in buildings influence

the response of the fundamental frame of the building during an

earthquake. On the flip side,we gain insight through the

experiments, of the effect the deformation of the frame has on the
fate of the partition.

Both of these influences depend on the partition, so the

program includes those partitions common in practice. Masonry

partitions of two sizes are tested including a variety of boundary

conditions. Stud partitions both prefabricated and common timber
are included.

The results are probably what one would anticipate. The stiff

masonry partitions had a significant influence on the response of

the frame but were destroyed by the frame when the intensity of

the earthquake input was sufficient to create large deformati~ns

of the frame. The stud partitions on the other hand beil1;g flexible
had little influence on the frame but a remarkable ability to

survive.

Even though the results were predictable, the program leads

to ideas for future research. Ideas on how both masonry and stud

partitions can have not only an influence on the response but can

be made to survive a strong earthquake.
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1. INTRODUCTION

This report contains the results of an experimental program

to study the behavior of frames with infill partitions under

earthquake excitations. The investigation was carried out at the

Earthquake Engineering Research Center, University of California

at Berkeley.

using present methods of analysis, the predicted response of

a building to an earthquake input is considered to be the

response of the bare frame of that building. Internal

construction, such as partitions, is ignored. The neglect-of

interior construction in calculating the stiffness, resonant

frequencies and damping of a building has been challenged many

times in the past, but little substantive data have been

available to show the nature and size of its influence. The

purpose of the experimental program reported here is to provide

some data that will help engineers to understand the advantages

and disadvantages of constructing partitions in such a way that

they interact with a frame.

The extent of the influence of partitions depends on the

type of partition and how it is constructed to fit within the

frame . Partitions in practice vary considerably in their
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composition, ranging from hollow brick masonry to timber stud.

That is why in this study we investigate many types of

partitions. The study will show that the contribution of a

partition to the stiffness of the frame and the survival

characteristics of a partition vary considerably from one type of

partition to another. In fact we find that those that contribute

most to the response of a frame are the ones that incur the most

damage.

The partitions in this study all have the same infill

characteristics. They are prevented from sustaining vertical

load by being built free of the top of the framing. They are,

however, built tightly against the frame columns and are, in some

cases, sealed to them. Accordingly, the partitions are made to

sustain the deformation characteristics of the frame during its

response to earthquake motions.

Inspection of damaged buildings following an earthquake has

shown that in many cases masonry partitions when present were in

various stages of destruction. Some were merely cracked, others

considerably damaged. All damage implies energy absorption, so

that some of the energy absorbed by the building during the

earthquake was absorbed by the partitions. Visual inspection

gives no indication of the extent of the contribution from the

partitions. This can only be ascertained by a careful

experimental program that measures the responses of the bare

frame and the infilled frame to the same excitation. Also, it is
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not possible, without experiments, to understand the interaction

that damages the partition. One of the important findings of the

program was the way in which the damage to the masonry partitions

in particular was inflicted. Before excitation, the partition

was bonded to the frame columns. During the early few seconds of

the signal, the bond held so that the column and wall deformed

together and no damage to the partition was evident. Soon,

however, the bonding began to break down, leaving each element to

deform independently. The partition was subsequently destroyed

by the buffeting action between the frame and the partition. It

was most evident from the response data that, even after

buffeting began, the masonry partition contributed significantly

to the response characteristics of the frame.

Many of the partitions were not masonry and showed quite

different characteristics. All were gypsum board sheeted

partitions in which the stud material varied. We tested

partitions with both metal and timber studs. Their behavior

differed somewhat but as a type they contributed little to the

behavior of the frame. On the other hand, they showed great

ability to survive considerable deformation with little damage.

The program, like many, raises more questions than answers.

It does show that there is a real possibility for partitions of

all kinds to have a significant influence on the seismic behavior

of a building and, at the same time, survive a severe earthquake.

The possibilities that emerge from this program and our



4

conclusions indicate the need for further particular experiments

which will be discussed at length in the conclusions.
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2. THE TEST STRUCTURE

To our knowledge the work described herein represents the

first time that a frame embracing an infill partition has been

studied when subj ected to a dynamic load. As will be found

later, the response to dynamic loading is quite different than

that to quasi-static.

The dynamic loading was accomplished by means of the shaking

table at the Earthquake Engineering Research Center at the

University of California at Berkeley. The table is 20 ft by 20

ft, can accommodate a load of 100,000 lbs and can impose

simultaneous vertical and horizontal motions. There is available

a library of earthquake signals both historical and synthetically

generated, several of which were used in this program.

2.1 The Frame

For the test set-up we chose a steel frame for several

reasons. We had had considerable experience with such a frame.

Similar frames with the same top and base platforms had been used

by Clough and Tang [1] and then by Matzen and McNiven [2]. The

steel frame is more flexible than a comparable concrete one so

that the assembly would accentuate interaction between the frame

and the partition.

The top and base platforms were connected by four columns.

The lightest section available (S 4 x 7.7) was selected for the
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frame columns. For the given overall dimensions of the frame it

proved adequate in developing inelastic strains without local or

global buckling. The column webs were aligned with the infill

partitions. The frame was sUbjected to horizontal ground motions

in the plane of the webs and the partitions thus causing column

bending about the strong axis. The column ends were fixed. As

expected from past experience, parabolic straps were necessary in

order to obtain sufficient welding area between the columns and

the end plates. Four bolts secured each end plate to the

platforms allowing for adjustments in the height of the structure

whenever this was required by the partitions.

Matzen and McNiven [2] reported that under the severe

excitations designed to induce inelastic behavior, the

experimental frame developed a twist. They attributed this to

certain inaccuracies in the reproduction of the prescribed signal

by the shaking table. Inelastic effects in the structure would

contribute to the same result, and compound the twist. As a

countermeasure, the X bracings shown in Figs. 1 and 2 were

introduced. While acting against motions perpendicular to the

ground excitation, the bracings did not interfere with the

structural response in the direction of the signal.

2.2 The Partitions

We were anxious in this program to study a variety of

partitions which we felt would behave and interact with the frame

quite differently when SUbjected to earthquake forces. There
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First, hollow clay brick masonry which

would be both stiff and brittle, and second, sheeted stud

partitions which would be flexible and ductile. There were

variations in each group. For the masonry partitions, the units
. . . ~ Hwere both full scale (3.6 ln x 7.6 ln x 3.8 In) and naIf scale

(1.8 in x 3.8 in x 1.0 in). There were three kinds of stud

walls. Two, which were furnished by the Finestone Co. of

Detroit, had a common grid of metal studs, but two different

types of cement composite sheeting. The sheeting attachment to

the studs was a factory process. The final partition was the

common half inch gypsum board nailed to 2 by 4 timber studs at 16

ins. on center.

Figure 2: The Bare Frame Showing

the Concrete Slab Load
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2.3 Masonry Partitions

The masonry partitions were ungrouted and unreinforced, and

as they had to be assembled away from the shaking table the chief

concern was in transporting the partitions from their

construction location to within the frame so that absolutely no

cracks (at least visible cracks) would be created. The following

method was used. Prior to the construction a base plate was laid

down on which the partition was to be erected. Three long rods

the height of the partition were welded to the base plate in a

vertical position the top to accommodate nuts. The masonry was

threaded over the rods so that the latter projected through the

cavities in the masonry with the intent that they would not

influence the behavior of the partition. The mortar (with common

bond) was allowed to cure for 28 days. At the end of this

period, a top plate was placed over the rods and nuts were used

to put the partition in a slight state of compression. For

details, see Fig. 3.

Once the partitions were in place in the frame, the nuts

were removed. The rods served a further function of restraining

fallout of the crushed units during some of the tests. Because

the rods had to extend beyond the top plate, a space had to be

left between the top plate and the top horizontal member of the

frame. During installation the bottom plate was bolted to the

shaking table. The partition size was such that a one-half inch

gap existed on the sides between the partition and the frame

columns. Some experiments were performed where this gap was
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others the gap was filled with a bonding material called Hydrocal

which provided quick hardening and was easy to apply.

The compressive strength of each type of masonry was

established through tests of individual bricks and prisms of

brick and mortar. The prisms were tested at a higher rate of

loading than the individual bricks. The results are tabulated in

Table 1.

TABLE 1: Tests of Bricks and Prisms

Individual Full Scale Bricks

Specimen Dimensions (in) Gross Area Ultimate Compressive
Number ·w L H (in2

) Load (lb) Strength (psi)

1 3.62 7.64 3.82 27.66 122800 4440
2 3.60 7.60 3.81 27.36 130800 4780
3 3.63 7.65 3.80 27.77 139400 5020
4 3.62 7.65 3.80 27.69 127600 4610
5 3.61 7.59 3.82 27.40 139600 5100
Avg. 4790

Prism Test

Type of Prism

2 brick prism

Failure Load (lb)

92,000

Loading Rate (lb/min)

20,000

Individual Half Scale Bricks

Specimen Dimensions (in) Gross Area ultimate Compressive
-Number W L H ( in2

) Load (lb) strength (psi)

1 1.87 3.88 1. 09 7.26 29400 4060
2 1.83 3.87 1.13 7.24 29450 4070
3 1.85 3.84 1.15 7.10 28250 3980
4 1.85 3.85 1.12 7.12 30550 4290
5 1.84 3.85 1.20 7.12 28650 4020
Avg. 4080

Prism Test

Type of Prism

3 brick prism

Failure Load (lb)

12,000

Loading Rate (lb/min)

20,000
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2.4 stud Partitions

The metal stud partitions supplied by the Finestone Co. were

tailored to fit the steel frame. The panels were bolted to the

floor platform and were attached to the frame with Hydrocal.

Details of the panels are shown in Fig. 3.

The timber stud partitions were built inside the frame.

They were bolted to both the top and base platforms; consequently

bond was not applied to the vertical edges. Details of these

partitions are shown in Fig. 3.

2.5 Instrumentation

Equally important in describing the test set-up is the

instrumentation. In a set-up of this kind the responses sought

are the acceleration and displacement time histories at strategic

locations. strain gages attached at various locations recorded

the strain time histories.

Acceleration time histories are recorded using

accelerometers. These have the advantage of needing no reference

frame as they record acceleration at a point where the data is

needed.

Displacement time histories are more complicated in this

test set-up because the reference frame is remote from the table.

Our first choice was to use an LVDT to record the displacement at

the top of the frame and a linear potentiometer to record the

displacement at the base. What was required was the relative
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displacement at<the base. What was required was the relative

displacement of the top of the frame to the bottom; that is, the

difference of the two readings. In some experiments this

difference was so small that it fell below the sensitivity of the

potentiometers. An alternative scheme had to be adopted. The

ideal scheme would be to ignore the reference frame and measure

the relative displacement between the top and bottom by measuring

the changes in length of a diagonal spanning from the bottom at

one end to the top of the other end. The change in length of the

diagonal would be recorded by transducers. This idea led to

difficulties of its own. The length of the diagonal was

approximately 125 inches. A rigid diagonal was ruled out because

of the weight of such an element and the inaccuracy introduced by

its end connections. The idea of a wire was offered but it had

to satisfy the following criteria:

(a) the weight of the wire should not create a substantial

sag;

(b) the counteracting spring, while keeping the wire taut,

should not affect its length appreciably.

We found, as have others, using a piano wire which is thin

and stiff, and with a spring of the appropriate stiffness, that

when the diagonal changes length, the wire and spring account for

no more than three of four percent of the change, and that the

rest is accommodated by the transducer as it should be. The

choice of transducer remained. We tried transducers of three

sensitivities. In the most sensitive, the rotation of the wire

during the motion tended to jam the transducer and it was
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Another response characteristic measured during some of the

tests was the strain in the columns. The locations of the strain

gages are shown in Fig. 4. The flange areas in the zones of

maximum deflection were monitored on the inside flange surface

since it is better protected. Care was taken to avoid the effect

of the parabolic straps.

The choice of the gage type was motivated by the need for a

sensitivity range covering both the elastic response (+1%) and

the post yield response (±3%) of the steel.

Initially the output of the measuring equipment was recorded

at a scanning rate of 50 Hz. After a few experiments, however,

this was changed to 100 Hz i.n order to avoid omitting peak values

when the natural period of the structure was particularly small.

Figure 4 shows the location of each of the recording

devices. Accelerometer 1 recorded the acceleration time history

of the base or table; accelerometers 2 and 3 the time histories

of each side of the top. LVDTs 1 and 2 recorded the time

histories of the changes in length of the piano wires resulting

in the relative displacements of the top and bottom of the frame.

sixteen strain gages recorded the strain histories at the top and

bottom of each of the four columns.
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2.6 Free Vibration Tests

Free vibration tests were carried out before the test

program with earthquake inputs, partly to obtain a qualitative

feeling for the influence of the partitions on the natural

frequency of the frame but mainly to establish their influence on

damping when the amplitude of motion is small. Only those

partitions were tested that were attached to the frame by

Hydrocal, and care was taken to make sure the amplitudes of

motion were such that the seal was not broken.

The free vibrations were induced by pullback tests. A cable

was attached to the top platform of the frame. Tension was

applied to the cable and monitored using a load cell. At a load

of either two or three kips p depending on the assembly stiffness,

the cable was cut allowing the frame to vibrate freely. A

reading of the displacement prior to release corresponding to the

load cell reading gave an estimate of the frame stiffness.

The motion following release was' recorded using

potentiometers, DeDTs and accelerometers. The potentiometers did

not work well and their data was discarded. The best data were

obtained using the transducers. The accelerometers were used to

check the natural frequency of the bare frame.

This testing program involved tests of the bare frame, a

masonry wall (one-half scale brick) and one stud wall (timber

studs). When the bare frame was tested the natural period was

0.2612 sec and the damping coefficient was .0051. This checked
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exactly using data from the accelerometers. The masonry wall was

tested next. The natural period was reduced to .0538 and the

damping coefficient increased to .0114. The last to be tested

was the timber stud partition, again attached to the column by

Hydrocal, and the results were much the same as with the masonry

partition. The natural period was reduced to .0514 sec and the

damping coefficient increased to .0148. We must keep in mind

that these tests all involved very small displacement amplitudes.

Figure 5 shows the acceleration time history of the response

of the bare frame. The best data was the displacement time

history of the response recorded by the DCDTs.

in Fig. 6.

These are shown

9. 000

150. 00 0r-------.-------,r------~-----___,

I
- 150 . 000'-'-'-----'----'------'----__---l- --J
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Figure 5: Free Vibration Response of the Bare Frame



18

~ ~ A
A~AI\"I\

V U y v V v V V
V

• 050

o

-.050
J. 000 1.500 6.000 7.500

DISPLACEMENT (IN)I TIME (SEC)
9.0 a0

fa)

{bJ

5.5002.500 3.500 1.500
DISPLACEMENT (IN)I TIME (SEC)

,L~ A l\ n ~

V~1Vvt'l

_J

o

.005

-.005
1 .500

(c)

6.50 a3.500 1.500 5.500
OISPLACEMENT (IN)I TIME (SEC)

1

f\

f\ f\ '"' ......

vVV ..... ...

w

o

.050

-.050
2 • 500

Figure 6: Displacement Responses of the Free Vibration Tests
of (a) The Bare Frame, (b) Half-Scale Masonry
Partition, and (c) The Wood Stud Partition



19

3. THE GENERAL EXPERIMENTAL PROGRAM

Whereas the free vibration tests gave indications of the

influences of the different partitions on the natural frequencies

and damping coefficients of the frame when the amplitude of

vibration is small, the main experimental program was directed to

studying the response of the structure to an earthquake input of

an intensity that would be considered "strong" and that would

damage the assembly. The control system of the shaking table is

capable of imposing any earthquake signal. They can be either

derived from the records of a recent earthquake or the signal can

be concocted. Here we decided to use three separate historical

signals from earthquakes that had occurred at EI centro, Taft and

Pacoima Dam.

A large number of low intensity signals were used and we

found that the most significant responses resulted when we

appl ied both the EI Centro and Taft to the base frame, the

Pacoima Darn to the full-scale masonry partition infill, the

Pacoima Darn and the Taft to the half-scale masonry partition, the

Pacoima Dam to the two types of prefabricated partitions, and the

Pacoima Darn to the timber stud partition.

With the load on the shaking table being rather small, the

input time history and the time history recorded on the table

differed by an insignificant amount. The weight of concrete

slabs on the top deck of the structure was increased from that of
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the bare frame when the infill partitions were inserted. The

slight twist of the structure experienced with the free vibration

experiments did not occur with the earthquake inputs. An outline

of the tests is shown in Table 2.

TABLE 2: LIST OF TESTS
.

SUPER SCAN-
TES1 TYPE OF PARTITION IM- NING EXCITATION MAX.

POSED RATE ~CCEL.
1,OAD ~,KIPS g

1 BARE STEEL FRAME 19 50 TAFT 0.36

2 DO 19 50 EL CENTRO 0.67

MASONRY
100 PACOIMA 1. 653 HYDROCAL BOUNDARY 26.6 DAM

4 ~ SCALE MASONARY 22.8 100 PACOIMA 1. 68HYDROCAL BOUNDARY DAM

5 ~ SCALE MASONARY 22.8 100 TAFT 0.63FREE BOUNDARY

6 PREFABRICATED 26.6 100 PACOIMA 0.89MODEL "A" DAM

7 PREFABRICATED 26.6 100 PACOIMA 1. asMODEL "B" DAM

8 TIMBER STUD 22.8 100 PACOIMA 0.88'DAM

For each experiment the following data were recorded:

(a) table acceleration time history;

(b) table displacement time history;

(c) acceleration time history of the top of the structure;

(d) the relative displacement time history of the top versus
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the base;

(e) the strain time histories at selected points on each

column.

The DCDT-100 transducers yielded poor results. In the other

cases, wherever comparison was possible, there was close

agreement between the transducer and potentiometer readings.

Yield did not occur simultaneously at corresponding points

in different columns.

3.1 The Bare Steel Frame

Even though the steel frame used in these tests was similar

to one used previously, the sections used for columns were

sUfficiently different from the ones which were part of the frame

tested previously, to require a study of the response

characteristics of the new frame. It was decided to restrict

these tests to the linear response of the frame, reserving the

nonlinear response for the tests involving infill partitions.

stt::ain gages were used to signal the approach of yield.

Both earthquake inputs from the Taft and El Centro earthquakes

were used. The intensity reflected by the maximum acceleration

for the El Centro earthquake could be almost double that for the

Taft while preserving a linear response.

The tests were necessary to ascertain the influence of each
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type of partition on the response characteristics of the frame

within the linear domain. The extreme earthquake motions

resulting in nonlinear frame behavior were used in later tests to

incur severe damage to partitions similar to that seen following

a severe earthquake.

The tests are listed as 1 and 2 in Table 2. Figure 7 shows

the Taft input and Fig. 8 the response of the bare frame to it,

while Fig. 9 shows the EI Centro input and Fig. 10 the response

of the bare frame to it.

3.2 Masonry Partitions

As many partitions in practice are masonry and many have

been damaged severely during an earthquake, testing masonry

partitions was mandatory. The masonry here was brick rather than

clay tile, and the bricks were of two sizes. Because masonry

partitions are both stiff and brittle their behavior as infill

partitions in a steel frame could be predicted. There were

variations in the behavior, but in general the pattern was very

much the same for each test set-up.

The partition significantly changed the seismic response of

the frame by making it much stiffer, but, during excitation, the

more flexible frame began to buffet the partition, eventually

destroying it.
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Figure 7: Taft Input to the Bare Frame
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3.3 Full Size Bricks

One of the purposes of this series of tests was to ascertain

the significance of the loading being dynamic as opposed to

quasi-static. As quasi-static testing is much more widely

performed and the results are often used to demonstrate how a

structure would behave under dynamic loading, it was considered

important to question this kind of extrapolation. So identical

test set-ups were subjected to dynamic and quasi-static loadings.

The responses to the two types of loading were quite different.

3.4 Quasi-static Loading

In these tests the partitions were made snug to the frame

along their boundaries and sealed along these boundaries with

Hydrocal. The load was applied by a hydraulic jack in both

forward and backward motions. Even though the loading was

applied with relatively high speed, the Hydrocal bonding remained

unbroken along the complete boundary. The partition initially

offered significant stiffness but when the length of travel of

the jacks was increased the partitions began to fail in shear, or

more correctly, in diagonal tension, along lines at 45 degrees

with the horizontal. The mortar was weaker in tension than the

bricks so the 45 degree crack followed the mortar line forming a

step type crack. From our work with free masonry walls, and

given the geometry of the partition, we speculate that there

might have been some evidence of a flexural failure if the

partition had not been confined. Figure 11 shows the progressive

failure of the partition during the test showing the failure of
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Figure 11: Progressive Failure of the Masonry Partition
due to Quasi-Static Loading
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the mortar in the step crack at approximately 45 degrees.

3.5 Dynamic Loading

The set-up was identical to the previous test with the

Hydrocal seal around the complete perimeter. Figure 12 shows the

full size masonry partition within the frame ready for testing.

The test is listed as 3 in table 2.

Figure 12: Masonry Partition

within the Frame Ready for

Dynamic Loading

It is appropriate to note here that the superimposed mass on the

bridge between frames was increased over that used in the free
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vibration' tests to increase the force exerted by identical

intensities. The signal for this test was the Pacoima Dam

acceleration time history. The response of the frame and

parti tion was quite different from that induced by the

quasi-static load. Very early in the excitation, the seal along

the boundaries began to break down and bUffeting began. The

stiffness of the set-up was very large at the beginning and

became progressively less as the cracking of the partition

spread. The crack pattern was also different from the

quasi-static test. Here the cracks occurred in the layers of

mortar but parallel to the base. This started near the bottom of

the partition and as damage progressed horizontal cracks would

form elsewhere. Figure 13 shows the virgin partition and the

progression of damage. The horizontal cracks are quite visible.

with the bUffeting which occurred with the dynamic tests the

breakdown of the resistance of the partitions was more rapid than

with the quasi-static tests. Figure 14 shows the shaking table

input to the full scale masonry partition and Fig. 15 the

partition responses.

3.6 Half-Size Bricks

We had access to one-quarter-size bricks 'and even though

these would be used infrequently in practice we decided to carry

out a separate series of tests devoted to these partitions. The

choice was motivated by the relatively smaller stiffness of these

bricks, providing a distinct contrast to the full size ones.

This series was also designed to study an additional variation in
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Figure 13: Progressive Damage to the Masonry Partition caused
by Dynamic Loading
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the test set-up. One set-up had the boundary of the partition

sealed to the frame using Hydrocal, as before. In the other

set-up, a one-half inch gap was left between the partition and

the frame. For both of these series, the superimposed mass was

reduced by about sixteen percent, as we anticipated that the

partitions would be more fragile than those made using full size

bricks. For the sealed boundary set-up the excitation was the

Pacoima Dam signal; for the free boundary we used the Taft

signal.

3.7 Sealed Boundaries

The one-quarter scale partition with sealed boundaries is

shown within the frame ready for testing in Fig. 16.

is listed as 4 in Table 2.

This test

Figure 16: Half-Scale Masonry

Partition within Frame Ready

for Dynamic Testing



35

The behavior of this set-up differed somewhat from the

similar set-up with the full size bricks. The first cracks

formed around the boundary, but here there was no spalling off of

the boundary material so no gaps formed around the perimeter.

Shortly thereafter, cracking of the masonry began. Here again

the pattern was different. The cracks formed a "bell shape"

which gradually enlarged as the resistance of the partition

lessened.

Figure 17 shows the progressive damage to the partition when

sUbjected to the dynamic load. Figure 18 shows the table input

time histories and Fig. 19 shows the partition responses.

The data from strain gages was abundant and space does not

permit including all of the data. We choose to show the time

history of strains for gages 4, 12, 7, 15 for the half scale

masonry partition when the partition is attached to the frame

using Hydrocal. Figure 20 shows the time histories of gages 4

and 12, Fig. 21 gages 7 and 15.

The hysteretic behavior is divided for clarity into two time

intervals; 7.5 to 12.5 seconds and 12.5 to 16 seconds, all for

strain gage number 2. Figure 22 shows column strain versus top

displacement and Fig. 23 shows column strain versus lateral
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Figure 17: Progressive Damage to the Half-Scale Masonry
Partition due to the Earthquake Input
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force.

It is noted that the traditional force - strain relationship

graphs were marred by mUltiple disturbances caused by bUffeting.

The less common, but analogous strain - displacement graphs, in

contrast, proved useful in depicting the hysteresis behaviour

during the yielding of the columns.

3.8 Gap in the Boundary

This is test' 5 shown on Table 2. Here it was intended that

the partition would offer no contribution to the stiffness of the

frame but would remain intact. This was true as long as the

intensity of the motion was small. However, when the intensity

applied corresponded to a major earthquake, the base frame

deformed significantly, bUffeting began, and the partition was

readily destroyed. Foam rubber was tried as a filler for the

gap, but its influence on the response behavior was minimal. The

type of damage incurred is shown in Fig. 24.

Figure 24: Damage to

the Half-Scale

Partition from an

Earthquake Input

When a Gap is Left

Between Partition

and Frame
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Figure 25 shows the table input for this test and Fig. 26

shows the partition responses.

3.9 Prefabricated Partitions

When the experimental program was being designed, we

received a request from the Finestone corporation of Detroit

asking that we test a prefabricated partition which they

manufacture. They were anxious to find out how the partition

behaved when sUbjected to earthquake loading. We were pleased to

accede to this request and at the appropriate time sent the

Finestone Corporation the inner dimensions of the frame.

The partitions consisted of a steel perimeter with vertical

metal studs at about twenty inch centers. See Fig. 3b. Figure

27 shows the back~ide of the panel. There were two models

distinguished only by the cladding. For model "A" only one layer

of gypsum board was used; for model "B" two layers of board were

used. The tests are listed as 6 and 7 respectively in Table 2.

As they were made-to-measure, the partitions fit snugly into

the frame. They were bolted to the frame at the base and were

attached to the sides and top with Hydrocal. To ascertain the

influence of the second layer of gypsum board, both partition

experiments used the same superimposed mass and the same Pacoima

Dam excitation. For both models, cracking along the perimeter

started early in the excitation, the seal spalled off leaving a

slight gap between frame and partition. The influence of the
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Figure 27: The Prefabricated
Partition Showing the Pel..i.m-=;"~

Members and the Metal Studs

Figure 28: Damage to the Prefabricated Partition
Due to an Earthquake Input
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partitions was noticed early but quickly deteriorated as the

partitions were forced to deform. The perimeter steel frame was

sizable but not designed to withstand horizontal loads.

The drop-off of resistance of the partitions coincided with

crack patterns in the siding. The model "B", with two layers of

board, withstood about thirteen percent larger input than model

"A." Model "A" lost resistance at an intensity of 0.891 g

whereas model "B" required 1.045 g. The prefabricated

partitions both survived the earthquake with damage that could

easily be repaired by replacing the gypsum board, but affected

,the stiffness of the frame very little.

The damage to the prefabricated partition can be seen in

Fig. 28. Figure 29 shows the table input to the prefabricated

partition model "A", and Fig. 30 shows the partition responses.

Figure 31 shows the table input to partition model "B" and Fig.

32 shows its responses.

3.10 Wood stud Partitions

The wood stud partitions were constructed following

standard practice. The 2 in. by 4 in. studs were spaced 16 in.

center to center with a 2 in. by 4 in. wood perimeter. Gypsum

board was nailed to the studs and perimeter using nails and

spacing recommended by the Uniform Building Code. See Figure

3c. When they were placed within the steel frame, the

partitions were bolted along the top edge and the base,
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leaving the vertical edges free.

The assembly was sUbjected to the Pacoima Dam earthquake.

The response of the assembly resembled closely that of the bare

frame, meaning that the partition had very little influence on

the response of the frame. Even though the influence of the

partition was small, the deformation of the assembly tended to

damage the partition. The damage was probably not what was

expected. The gypsum board did not crack as it did with the

prefabricated panels; instead it sprang free of the studs by

releasing itself from the nails, leaving holes where the nails

had held it.

Figure 33 shows the wood stud partition in the frame ready

for testing.

Figure 33: Wood Stud Partition

in Place in Frame Ready for

Testing
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This test is listed as 8 in Table 2. Figure 34 shows the table

input for the timber stud partitions and Fig. 35 shows the

partition responses. Figures 36 and 37 show the time histories

of column strains recorded by gages 4 and 12, and 7 and 15,

respectively. Figure 38 shows the hysteretic behavior of top

displacement versus strain and Fig. 39 shows the same but for

lateral force versus strain.

Once again the hysteresis of the strain vs. displacement is

smoother than the one of strain vs. force. However, the wood

stud partition minimized the bUffeting to such an extent that a

comparison between the two hystereses graphs was easy to draw.
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4. CONCLUSIONS

Reviewing the test program and its results leads to several

conclusions.

The first has to do with quasi-static versus dynamic

testing. When the material being tested is brittle, such as

masonry, the failure patterns for the two types of loading are

quite different. This can be concluded from the failure patterns

of the masonry partitions when separately subj ected to

quasi-static and dynamic inputs.

The program, as it should, stimulates ideas for future

research. From the tests on masonry partitions, we learn that

the partition adds significantly to the stiffness of the frame

and alters its dampening characteristics. We also learn that the

partition cannot accommodate large frame deformations with the

result that the partition is destroyed by buffeting from the

frame. What is indicated here is a program of research where a

gap is left between partition and frame, and in that gap,' at

intervals to be established, there shoUld be some kind of spring

mechanism whose stiffness is such that it exerts a force on the

frame to stiffen it an effective amount, but so that the size of

this force is less than that required to destroy the partition.

For the stud partition a different kind of research is
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indicated. This program found that whereas the partitions

survived, they had an insignificant influence on the frame

behavior. The lack of influence can be laid to the gypsum board

cladding. In one case it cracked readily and in the other it

sprang free leaving the stud frame to deform easily.

What is indicated is a series of tests to ascertain

precisely how much the resistance to deformation would be

increased if the cladding were plywood rather than gypsum board.

A series of tests is indicated where gypsum board is compared to

different thicknesses of plywood. Different ways of attaching

the plywood should be studied, including nails, screws, glue and

then nails.

It is the plan to use the data from this program to

construct mathematical models of the various test set-ups. A

report devoted to the construction of these models will follow in

due course.
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