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Abstract

The basic parameters affecting the design of the Resilient-Friction Base

Isolator (R-FBI) bearings and their inter-relationship together with a procedure

incorporating the SEAONC tentative provisions for the bearing design are

presented. The procedure, while providing the isolator with the design displacement

capability and the control of the maximum base shear that is transferred through

the bearings, also ensures against instability and yields all the dimensions necessary

for the fabrication of the R-FBI bearings. As an example it is used to design

bearings for a five-story 1/3--scale frame model to be tested on the shaking table

at the University of California at Berkeley.
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DESIGN PROCEDURE FOR R-FBI BEARINGS



Introduction

Seismic base isolation is increasingly being utilized as a practical and

economical way to protect structures and their contents against earthquakes. It has

been incorporated into the foundations of a number of new and existing structures

[1-{)]. There are many proposed systems [7-22). The ones which have been tested

and already implemented into structures are laminated rubber bearings (closely

spaced layers of steel and rubber) either with or without lead plugs [23-25) and

laminated rubber bearings with a pair of friction plates [1,2). Design guidelines have

also been suggested [26-28]. In all these systems, the rubber carries both the

vertical and the lateral loads. A new system, Resilient-Friction Base Isolator

(R-FBI), in which the vertical load and the lateral load carrying functions are

separated, was proposed in 1983. The system's details and some of its

characteristics have already been discussed in literature [29-35). In summary, an

R-FBI bearing (Fig. 1) is composed of a set of stainless steel plates with a teflon

sheet bonded to one side, a rubber core (with or without a central steel rod) through

the center of the plates, and cover plates. The rubber core distributes the lateral

displacement across the height of the isolator and carries no gravity loads. The

sliding velocity can be reduced to a desired level by utilizing an appropriate number

of sliding plates. The interfacial friction force ads both as the structural fuse and as

energy absorber. The bearing will not slide unless the excitations exceed certain

levels. As the bearing starts to slide, the rubber deforms, generating the elastic

force, which tends to push the system back toward its original position.

Preliminary tests of the bearings together with computer experiments have

demonstrated the R-FBI's potential as an effective base isolation system. The

analytical procedure for estimating the response of structures supported on R-FBI

. bearings to earthquake ground motions and a design procedure based on a set of
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proposed design spectra have already been discussed [34,36,39]. In this report, a

design procedure for the R-FBI bearing incorporating the tentative provisions

proposed by the Base Isolation Subcommittee of the Seismology Committee of the

Structural Engineers Association of Northern California (SEAONC) [26] is

presented. The procedure, while providing the isolator with the design displace­

ment capability and the control of the maximum base shear that is transferred

through the bearing, also ensures against instability. It yields all the dimensions

necessary for the fabrication of R-FBI bearings. As an example, the procedure is

used to design the bearings for a five-story l/3-scale steel structure model (Fig. 2).

This model has already been used to check the performance of a number of base

isolation systems on the shaking table at the Earthquake Engineering Research

Center of the University of California at Berkeley. It will also be used to check the

performance of the R-FBI system on the same shaking table in the near future.

The performance of the isolation system for this particular frame has already been

checked through computer experiments [36], and it appears that the R-FBI sys­

tem satisfies the proposed performance criteria given in [37].
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Design Parameters

The parameters which control the design of R-FBI bearings are the following:

1. Equivalent Viscous Damping

The energy dissipation capacity of the R-FBI is one of its attractive

features, and while the damping is large it is kinetic rather than viscous, and the

equivalent value can only be approximated. The total energy dissipated, E, by the

system during a full cycle of displacement, 8, is

(1)

where J.L is the coefficient of friction, W is the total weight, (r is the equivalent

damping of the rubber core and Vr is the portion of the lateral load taken by the

rubber core. The equivalent damping ratio (e for the bearing is

(2)

where K is the effective stiffness (Fig. 3a). The total isolator shear ,V, can bee .

represented by

(3)

Alternatively it can be represented by

(4)
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and also by

V=GW, (5)

where C is the isolator seismic coefficient. Substitution for V from eq.(.5) into eq.(3)

yields

(6)

Substitutions from eqs. (1) and (4) to (6) into equation (2) yield

(7)

The quantity pIC represents the fraction of the total lateral force, C\V, which is

resisted by the friction force, pW. It will be seen that this is the basic parameter

controlling the system performance. This parameter will be referred to as the

friction force ratio. A plot of the variations of 'e with p,/C for various values of 'r

is given in Fig. 4.

2. Damping Factor

The SEAONC tentative provisions speCify the effects of the damping in the

isolation system in terms of a factor B and give a table of variations of B with 'e

[26]. Using this table it can be shown that

B == 1.1 + 2'e ~ 1.9, For 17% < 'e ~ 40% , (8)

B = 1.5 + 'e ~ 2.0, For 40% ~ 'e ~ 50% . (9)
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As the equivalent damping in the R-FBI system is expected to be larger than 17% ,

the value of (e as given by eq. (7) may be substituted into eqs. (8) and (9). These

substitutions yield

The values of B as given by the above relations are plotted against the friction force

ratio, p,/C, for various values of rubber damping ratio, (r ' in Fig. 5.

3. Design Displacement, Effective and Nominal Periods

The design displacement can be estimated by the application of SEAONC

[26] tentative provisions. These provisions require that the isolation system have a

displacement capacity given by

0= 10 ZNS T
e 'B

(12)

where Z is the effective peak acceleration (EPA), N is a factor ranging from 1.0 to

1.5 to reflect proximity to active fault systems, S is a soil factor that varies from 1.0

to 2.7 over a range of four soil types, B is the damping factor, and Te is the

effective period. From eqs. (4) and (5) it can be shown that

(13)

Considering the fact that
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substitution for 0 from eq. (13) into eq. (12) yields

2
T = 10(211") _1_ (ZNS)

e g C B

Substitution for Te from the above relation into eq.(12) yields

222
0= 10 (211) _1_ (ZNS)

g C B

(14)

(15)

(16)

For the specified levels of the isolator seismic coefficient, C, the above relations can

be used to estimate the required effective period Te and the required minimum

displacement capacity ofor any isolation system. Using (ZNS/B) as a parameter, Te

and 0are plotted versus C in Figs. 6 and 7.

To include the effects of the R-FBI's friction in the above expressions it is

necessary to define the relation between the effective stiffness Ke and the reduced

stiffness K'. Even though there is no vertical load on the rubber core, the lateral

stiffness of the system will be reduced due to the presence of the vertical load \V.

This effect can be represented by a stiffness reduction factor /3. Hence,

K' = fJK , (17)

where K' is the reduced stiffness and K is the lateral stiffness of the rubber core

when there is no vertical load on the isolator. Therefore, for any displacement 0 the

actual lateral force in the rubber core is K' O. Substitution of this quantity for Vr in

7



eq.(6) yields

(18)

Alternatively eqs. (4) and (5) yield

Equating these two relations, one obtains

K'K =-..;;;.;:....--
e 1 -piC

Substitution for K' from eq. (17) into eq. (20) yields

K = {3 K .
e 1 - piC

Considering the fact that

(19)

(20)

(21)

(22)

where T is the nominal period, substitution for Ke from eq. (20) into eq. (14) yields

the relation between the effective period Te and the nominal period T as

Te = ~ 1 - piC T. (23)

Substituting for Te from the above relation into eq. (15) and multiplying

8



both sides of eqs. (15) and (16) by J.I. one obtains

pT = 10(21r)2 [piC (_1_)] (ZNS) , (24)

g ~ 1 - p/C B

2 2
J.tD = 10 (21T') [1... (_1__)2] (ZNS)2 . (25)

g C B

In light of eqs. (10) and (11), the quantities enclosed in the brackets in the above

relations are only functions of J.tIC and the rubber damping ratio, (r. For a rubber

damping of 5% the quantities J.tT and J.to are plotted versus the friction force ratio,

pIC, for various values of ZNS in Figs. 8 and 9.

4. Stiffness Reduction Factor

As was stated before, even though there will be no vertical load on the

rubber core, its lateral stiffness will be reduced in the presence of the vertical load.

This reduction is represented by the stiffness reduction factor, P, in equation (17).

Through stability analysis of a set of stacked plates with an elastic core [40], it has

been shown that

13 = 1- pW
K(l - 7J)Dto

where Dto is the outer diameter of the teflon covers and 77 is defined by

(26)

(27)

Here Dti is the inner diameter of the teflon covers. Substitution for K from eq. (17)
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into eq. (26) yields

111 = -----=-----
1 + Jlg/[(1-TJ)02Dto]

(28)

where 0= JK'g/W = 21r/T. One more equation is needed in order to find both the

stiffness reduction factor, 11, and the outer diameter of the teflon rings, Dto '

By considering Fig. 3b and assuming a shear type behavior (i.e. no

rotations), the relation between the applied moment and the resisting moment can

be represented by

(29)

where h is the clear height of the rubber core and r is the moment capacity

reduction factor accounting for the presence of the axial load. From the analysis of

stability of the R-FBI bearing, it has been shown that [40]

r = rr . (30)

Considering this relation, substitution for V from eq. (5) into eq (29) yields

Dto = [ 1 + P.11 ] 8 ,

rr(Jl/C)

where "'1 is the shear strain in the rubber and is defined by

10
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Substitution for Dto from eq. (31) into eq. (28) yields

[ pg I1];- f + (m)1J - m = 0. (33)
(1-7])020 p/C p/C

Considering eqs. (3) and (5) and noting that Vr=K'o, the friction force ratio, It/C,

can be represented by

1p/C=-----

1 + 020/ pg

implying that

Substitution for 0 20 from eq. (35) into eq. (33) yields

(34)

(35)

From eq. (27), it is observed that 1/8 < 7] < 1/4. Using p/ '1 as a parameter and a

TJ=1/6, the smallest positive root of the abov~ equation is calculated and plotted

versus the friction force ratio, Il/e, in Fig. 10. To show that IJ is insensitive to

variations of TJ , a plot of IJ versus p/C for 7]=1/5 and 7]=1/7 is also presented in Fig.

11.

Considering the fact that for the R-FBI system, Ke ~ K , eq. (21) implies

that

{J ~ I-p/C. As may be observed from Fig. 11, using
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f3 ~ 1-Jl,fC , (37)

will yield a conservative value for f3 for /ll; ~ 0.04 independent of f/. This

approximate approach has been utilized recently to formulate a design procedure

based on a postulated design spectrum [39].

Once f3 is known, the outer diameter of the teflon rings, Dto' can be found

from eq. (31). This equation may be rewritten as

where

;\ = 1 + _=J.t.l-1...L.1_

(/lIC) r?

(38)

(39)

Using the values of f3 given in Fig. 10, the values of ;\ are evaluated and plotted in

Fig. 12. This figure is for TJ=1/6. Since f3 is not sensitive to variations of TJ , this

figure may be used to estimate ;\ for all values of TJ. This figure also shows, for

various values of /ll; ,the existence of minimum values for ;\ which may be used for

optimization purposes.

5. Dimensions of the Rubber Core

Assuming the behavior of the rubber in shear is linear, the stiffness of the

rubber core can be expressed by

(40)
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where A is the cross--sectional area of the rubber core and G is its shear modulus.r

Considering the engineering definition for shear strain (l.S given by eq. (32),the

cross-sectional area for the rubber core can be represented by

A = K6
r 'YO

Considering eqs. (17) and (18), it can be shown that

Kl5 = (_1_) [ 1 - pIC ] (p, \V)
/3 JtIC

Substitution for Ko from eq. (42) into eq. (41) yields

A = ( p W I1G )( I-pIC ) .
r /3 Jt/C

(41 )

(42)

(43)

The cross-sectional area of the rubber core as given above can also be defined by

(44)

where dri is the inner diameter of the rubber core, and dro is its outer diameter.

Substitution for Ar from eq. (43) into eq. (44) yields

where

d == J(F //3) [ I-p I C ] ,
ro 1 p,/C

13
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(46)

Using FIIfJ as a parameter, the required outer diameter of the rubber core, dro, is

calculated and plotted in Fig. 13.

6. The Sliding Velocity

The maximum total sliding velocity , °, for design purposes may be

estimated from

Substitution for o/Te from eq. (12) into the above relation yields

'0 = 10(211") ZNS
B

(47)

(48)

Considering relations (8) and (9),a plot of this total sliding velocity versus the

friction force ratio, p.IC, is presented in Fig. 14.. The interfacial velocity 0p is given

by

.
'op = _0-'---­

N+l

where N is the number of sliding plates.

The clear height of the bearing, h , can be represented by

14
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h = Ntp + (N+l)tt ' (50)

where tp and tt are the thicknesses of the sliding plates and the teflon covers

respectively. Once the final values of hand dro are selected, the nominal period

can be calculated through eqs. (17),(22), and (43) as

T= 211" fwfgK' = 211" (l/I3)(W/ ArG)(h/g) . (.51)

7. The Bearing Stress on Teflon

The outer diameter of the teflon covers, Dto ' is given by eq. (38). Once the

outer diameter of the rubber core, dro ' is known, the inner diameter of the teflon

covers, Dti ' can be estimated by

bDt · >d +-~­] - ro
N+l

Also the lateral dimension of the bearing, Db ' can be estimated by

b
Db ~ Dto +-~-

N+l

(52)

(53)

These relations ensure that the inner and the outer edges of the steel rings will not

travel over the teflon covers. Having Dto and Dti ' the bearing stress on the teflon,

O't ' can be estimated from

w
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Design Steps

Given W, the total weight on the bearing, J,l , the friction coefficient, i, the

allowable shear strain in the rubber, and the postulated seismic intensity, ZNS , the

various dimensions of the bearing can be estimated through the following steps:

1. Decide on the value of the isolator seismic coefficient C and find the

friction force ratio, /-L/C. By selecting C, the designer at the outset decides how

much force he is allowing to be transferred through the isolator.

2. Use the given ZNS value together with the value of J,l/C found in step 1 to

find J,lT and J,lh from Figs. 8 and 9, respectively. Then use the given value for J,l to

find the nominal period T and the required isolator displacement capacity b.

3. Calculate J,l/ i and use it together with J,l/C found in step 1 to find J3 and ,\

from Figs. 10 and 12, respectively.

4. Substitute the values of band ,\ from steps 2 and 3 into eq. (38) to find

the outer diameter of the teflon covers, Dto'

5. Find the value of F1 from eq. (46). To find F1 ' one needs an estimate of

dr/dro. As dri is the inner diameter of the rubber core it is equal to the diameter

of the central steel rod. This rod is positioned inside the rubber core to prevent

strain concentration at the sliding interfaces. There is ,as yet , no analytical way of

estimating dr/dro . Its value ranges from zero to perhaps 1/2. Use dr/dro
=1/4

together with the values of J,l/i and J3 to find F1 and F1/J3. Use this value of F1/J3

together with the value of J,l/C to find dro the outer diameter of the rubber core

16



from Fig. 13.

6. Use eqs. (52) to (54) to estimate the inner diameter of the teflon cover,

Dti ' the lateral dimension of the bearing, Db ' and the bearing stress on teflon, O't·

7, Use the values of ZNS and /-lIC to find the total velocity 8 from Fig. 14.

The number of the sliding plates , N , should be chosen such that the ma..ximum

interfacial velocity bp , as given by eq. (49), will be sufficiently small. This is

necessitated by the fact that the teflon's friction coefficient increases with sliding

velocity and decreases with the bearing stress. For the given values for /-l and the

.
bearing stress found in step 6, estimate bp either from direct tests or available

experimental results [38,41]. Once bp is known, then N = [(8/ Cp) -1] and the clear

height of the bearing, h , can be found from eq. (50). In using this equation one

should use sliding plates thick enough to prevent any damage to the plates due to

handling or operations.

17



Design Example

The procedure described above will be used to design the R-FBI bearings for

the frame shown in Fig. 2. This frame is a 1/3--scaled model which has been used

to check the performance of several isolation systems on the shaking table at the

Earthquake Engineering Research Center of the University of California at Berkeley

[23-25]. It will also be used to check the performance of the R-FBI system on the

same shaker table. The total weight of the model frame is 80 kips. Four bearings

will be used to support the frame. The following values will be assumed for the

purpose of this example:

W = total weight on one bearing
J1, = friction coefficient
"1 = allowable shear strain in rubber
(r = damping of the rubber core

G = effective shear modulus of the rubber
ZNS= postulated seismic intensity

=20,000 Ibs
=0.06
=100%
=5%

=150 psi
=0.4

Step 1. Assuming the lateral force to be transmitted to the superstructure to

be 10% of the structure's weight, the isolator seismic coefficient C=O.I. Therefore,

p,jC= 0.6.

Step 2. For ZNS=O.4, /L/C=0.6 and /L=0.06, Figs. 8 and 9 yield a nominal

period T=3.3 sec. and a displacement 0=4.5 inches. The effective period is

calculated from eq. (23) to be T
e

=2.1 sec.

Step 3. For /L/C= 0.6 and 14,=0.06, Figs. 10 and 12 yield ,8=0.45, >-=1.5.

Step 4. For 0=4.5 inches and "\=1.5 eq (38) yields Dto=6.7 inches. Use

Dto=7.5 inches.

18



Step 5. For the given values of W, j.t, " G, assuming dr/dro=1/4, eq. (46)

yields F1=10.86. Therefore, F1//3=10.86/0.45 = 24.13. Considering this quantity

and /l,jC = 0.6, Fig. 13 yields dro = 4.0 inches.

Step 6. For d =4.0 inches, considering relation (52), assume Dt·=4.5ro 1

inches. For Dto=7.5 inches, considering relation (53), assume Db=8.0 inches. For

W=20,000 lbs. and Dto=7.5 inches eq. (54) yields the bearing stress on teflon,

O't=707 psi.

Step 7. For ZNS=OA and j.t/C= 0.6 Fig. 14 yields 0=13.2 in.jsec.=66

ft./min ..Using N=24 sliding plates the interfacial velocity is calculated from eq. (49)

.
to be Op=2.6 ft./min.. In this range of velocity and the bearing stress of 707 psi the

value of the friction coefficient j.t for teflon is about 0.06 [41]. Using steel plates with

thickness tp=1/8 inches and teflon with thickness tt=1/16 inches, eq. (50) yields

the clear height h=49/ 16 inches.

The shop drawings incorporating the above dimensions with a 1/32 inches

tolerance are given in Figs. 15 to 19.
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Discussion

The parameters which affect the design of the R-FBI bearings are: the

isolator normal load W, the friction coefficient /.L , the allowable shear strain, '1, the

damping, (r ' and the effective shear modulus, G , for the rubber core, the isolator

seismic coefficient, /.LIC , and the postulated site intensity, ZNS. As the central

steel rod may have some contribution to the lateral stiffness of the rubber core, the

effective shear modulus may be larger than the actual shear modulus for the rubber.

Its value should be determined through bearing tests. Once the value of the reduced

stiffness, K' , is found experimentally, then using relations (17) and (40) one can

show that the effective shear modulus is given by G=K'hl(JAr' As may be

observed from Figs. 8 to 14, the isolator seismic coefficient, /.LIC, is the main

variable which controls the response of and the various dimensions of the R-FBI

bearing. It represents the fraction of the total lateral force which is transferred to

the super-structure by friction. The rest of the lateral force is transferred by the

rubber core. As expected , for given values of ZNS and /.L, Fig. 9 shows that the

smaller the /.LIC , the smaller is the required displacement capacity of the bearing,

while Fig. 13 shows that the diameter of the rubber core increases with the

reduction of p,1C.

Figure 12 shows that for a given value Of p,1"'( there exists a p,IC for which A

or equivalently the outer diameter of the teflon ring Dto attains its minimum value.

For a given structure and a postulated seismic intensity, it may be possible to use

an optimum value for /.LIC. The object of the optimization would be to minimize

the sliding base displacement and acceleration and at the same time use a realizable

value for Jj. This value of Jj should be large enough to prevent sliding under low

level excitations and wind.

The friction coefficient JJ is a function of the bearing stress, the interfacial

20



. .
velocity b ,and the smoothness of the steel surface. But b is also a function of Jl ,

P P
C , and the postulated seismic intensity ZNS. Therefore, it is necessary to check

the realizability of the friction coefficient. In the example design the value W=O.06

was assumed. For the bearing stress of O't=707 psi and the calculated interfacial

.
sliding velocity bp=2.6 ft./min., the value of JJ ~ 0.06 [41].

The diameter of the rubber core for the designed bearing (with 1/32 inches of

tolerance) is 31/a2 inches. This was based on rubber with an effective shear modulus

of 150 psi. By replacing the rubber core with softer or harder rubber, one can

change the dynamic properties of the isolator. Therefore, by stacking plates with a

limited number of geometric dimensions and rubber cores with compatible

dimensions and various properties, one can design an R-FBI bearing with almost

any desired dynamic properties by merely using appropriate numbers of the proper

size sliding plates together with a geometrically compatible rubber core which has

the requisite properties. This implies the promise of R-FBI bearings as an

off-the-shelf item.
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