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PREFACE

The National Center for Earthquake Engineering Research (NCEER) is devoted to the expansion
and dissemination of knowledge about earthquakes, the improvement of earthquake-resistant
design, and the implementation of seismic hazard mitigation procedures to minimize loss of lives
and property. The emphasis is on structures and lifelines that are found in zones of moderate to
high seismicity throughout the United States.

NCEER's research is being carried out in an integrated and coordinated manner following a
structured program. The current research program comprises four main areas:

• Existing and New Structures
• Secondary and Protective Systems
• Lifeline Systems
• Disaster Research and Planning

This technical report pertains to Program 2, Secondary and Protective Systems, and more specifi
cally, to protective systems. Protective Systems are devices or systems which, when incorpo
rated into a structure, help to improve the structure's ability to withstand seismic or other en
vironmentalloads. These systems can be passive, such as base isolators or viscoelastic dampers;
or active, such as active tendons or active mass dampers; or combined passive-active systems.

In the area of active systems, research has progressed from the conceptual phase to the im
plementation phase with emphasis on experimental verification. As the accompanying figure
shows, the experimental verification process began with a small single-degree-of-freedom
structure model, moving to larger and more complex models, and finally, to full-scale models.

Conceptual
Phase

Implementation
Phase

Analysis and Simulation
Algorithm Development

iii

ConltOl Mechanisms
Hardware Development



In the general research area of protective systems, passive systems, such as base isolation
systems, and active systems, such as active mass dampers and tendon systems, have largely been
considered separately. Both types of the protective systems have their strengths as well as
inherent weaknesses. It is the purpose of this report to explore the merit ofhybrid systems which
combine passive and active systems in order to capitalize on their strengths while minimizing
their weaknesses. The hybrid system considered 'in this report consists ofa base isolation system
coupled with either a passive or an active mass damper. The performance of this system is
investigated under simulated seismic conditions and it is shown that it can be effective in re
sponse reduction ofeither high-rise or low-rise buildings under strong earthquakes.
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ABSTRACT

Two aseismic hybrid control systems are proposed for protecting building

structures against strong earthquakes. The hybrid control system consists of

a base isolation system connected to either a passive or active mass damper.

The base isolation system, such as elastomeric bearings, is used to decouple

the horizontal ground motions from the building, whereas the mass damper,

either active or passive, is used to protect the safety and integrity of the

base isolation system. The performance of the proposed hybrid control

systems is investigated, evaluated, and compared with that of an active

control system. It is shown from the theoretical/numerical results that the

proposed hybrid control systems are very effective in reducing the response

of either high-rise or low-rise buildings under strong earthquakes.

Likewise, the practical implementation of such hybrid control systems is

easier than that of an active control system alone.
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SECTION 1

INTRODUCTION

In recent years, considerable progress has been made in the area of aseismic

protective systems for civil engineering structures. Aseismic protective

systems, in general, consist of two catagories; namely, passive protective

systems and active protective systems. The active protective system differs

from the passive one in that it requires the supply of external power to

counter the motion of the structure to be protected.

The application of active control systems to building structures which are

subjected to strong earthquakes and other natural hazards has become an area

of considerable interest both theoretically and experimentally in recent

years. A literature review of recent advancement in active control of civil

engineering structures was made by Yang and Soong [16], Reinhorn and Manolis

[5], and Soong [10]. Since the pioneer works of Yao [201, significant

progress has been made in active control of civil engineering structures.

The horizontal components of the earthquake ground motions are the most

damaging to the building. An important class of passive aseismic protective

systems is the base isolation system. which is able to reduce the horizontal

seismic forces transmitted to the structure. Excellent literature reviews in

this area were presented, for instance. by Kelly [3] and Constantinou and

Reinhorn [2]. Extensive theoretical and experimental research has been

carried out on the lead-rubber bearing systems. The lead-rubber bearings

have the mechanical characteristics of being flexible in the horizontal

direction and stiff in the vertical direction. The purpose of this isolation
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system is to lower the fundamental frequency of the entire structural system

to be outside the range of frequencies which dominate the earthquake

excitation.

While passive base isolation systems are effective for protecting

seismic-excited buildings, there are limitations. Passive systems are

limited to low-rise buildings, because for tall buildings, uplift forces may

be generated in the isolation system leading to an instability failure.

Furthermore, in some base isolation systems, such as lead-core elastomeric

bearings, inelastic or permanent deformation may accumulate after each

earthquake episode. Thus, the passive protective system alone is not

suffieiently proven for the protection of seismic-excited tall buildings.

On the other hand, when an active control system is used alone as a primary

aseismic protective system for tall buildings, the required active control

force and force rate to be provided by the external power source may be very

large. Hence, a large or powerful active control system may be needed. For

the installation of a large active control system with large stand-by energy

sources, the issues of cost, reliability and practicality remain to be

resolved.

The purpose of this report is to study the feasibility of the hybrid control

concept and to specifically propose two types of hybrid control systems for

seismic-excited tall buildings. These hybrid systems consist of a base

isolation system, such as elastomeric bearings, connected to either passive

or active mass dampers. Vith such hybrid systems, the advantage of the base

isolation system, whose ability to drastically reduce the horizontal motion
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of the building, is preserved, whereas its safety and integrity are protected

by either the passive or active mass damper. The idea of such aseismic

hybrid control systems was suggested by Yang, et al, [17-19]. Other types of

hybrid protective systems have also been considered recently [e.g., 4,6,7].

The performance of these two hybrid control systems is evaluated and compared

with that of an active control system for a twenty-story bUilding and a

five-story building model subjected to a strong earthquake. It is shown that

the proposed hybrid control systems are very effective in reducing the

response of building structures under strong earthquake excitations and that

they may be more effective and advantageous than the application of an active

control system alone.

Under strong earthquake excitations, tall buildings may undergo significant

lateral displacements. During a lateral motion, the gravitational load of

the building results in an overturning moment. The effect of such an

overturning moment is referred to as the P-delta effect [e.g., 1,9,11], since

the overturning moment is approximately equal to the weight "P" of the

building multiplied by the lateral displacement "delta". For well designed

building structures with small lateral displacement under seismic loads, the

P-delta effect is usually of the second order and it may be negligible.

However, for buildings implemented by a base isolation system, the lateral

displacement of the base isolation system may be significant and hence the

P-delta effect may be important.

The P-delta effect on the dynamic response of buildings implemented by two

types of hybrid control systems proposed herein; namely, passive and active

hybrid control systems, is also investigated. It is shown that the P-delta
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effect should be accounted for in the analysis of building structures

implemented by the proposed hybrid control systems.
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SECTION 2

FORMULAliON

Consider a base-isolated shear-beam building structure implemented by an

active mass damper as shown in Fig. 2-1(b). The structural system is

idealized by an n + 2 (including the base isolation system and the mass

damper) degrees of freedom system and subjected to a one-dimensional

earthquake ground acceleration XO(t). The matrix equation of motion of the

entire structural system can be written as

(2.1)

in which the quantity with an under-bar denotes either a vector or a matrix;
,

!(t) e [Yd'Yb'Yl" ",Yn ] - a (n+2) response vector, where a prime' indicates

the transpose of a vector or matrix; Yi - relative displacement of the ith

floor with respect to' the ground; Yd and Yb are relative displacements of the

mass damper and the base isolation system, respectively, with respect to the

ground; ~ - [1,1,1, ... ,1] - a (n+2) unit vector; ! - [-1,0,0, ... ,0] - a

(n+2) vector with a non-zero element; and ~(t) is the active control force

vector. In Eq. (2.1), ~ - a (n+2)x(n+2) diagonal mass matrix with the dia-

gonal elements ml,l = md - mass of the mass damper, m2 ,2 - ~ - mass of the

base isolation system, mi +2 ,i+2 - mi - mass of the ith floor (i - 1,2, •.. ,n).

C and K are (n+2)x(n+2) damping and stiffness matrices, respectively. If the

mass damper is passive, Fig. 2-1(a), ! - ~ and ~(t) - O. For the building

implemented by an active mass damper on the top floor alone as shown in

Fig. 2-2(a), the number of degrees of freedom is n+l.

The axial force at a story level, which is the sum of the structural weight

2-1
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above that level, is assumed to be constant during the earthquake-excited

motion. The P-delta effect is taken into account by a constant geometric

stiffness matrix!c, i.e.,

K - K - K"-e -...
(2.2)

where K is the elastic stiffness matrix and K" is the geometric stiffness
-e -u

matrix [e.g., 9,11,18J. The geometric stiffness matrix ~G and the stiffness

of the rubber bearing with and without the P-delta effect are described in

the following.

The additional overturning moment applied to the ith story unit, denoted by

*Hi' resulting from the axial force, Pi' that is the total weight above and

including the ith story, is given by [e.g., 9,11J

in which

*H ,.
i

(2.3)

(2.4)

*To balance such an additional moment Hi' an equivalent lateral force Vi

should be applied to the upper and lower ends of the ith story unit; with the

results [e.g .• 9J

(2.5)

where hi is the height of the ith story unit. This approximation is made by

assuming that both the upper and lower ends of the columns of the ith story
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unit are free to rotate (hinged-ends). In the formulation for the equations

of motion, Eq. (2.1), however, the rotation of both ends of the columns was

assumed to be zero. With the fixed-ended boundary conditions, the equivalent

lateral force Vi can be *c9mputed from Hi in terms of transcendental

functions. It can be shown, however, that the hinged-ends approximation is

conservative and reasonable, and it has been used extensively in the

literature [e.g., 9,11].

The equivalent additional lateral forces applied to all floor masses of the

structure, except the foundation ~ and the mass damper md , can be casted

into a matrix form as

V
l

Pl P2 P2 0 Yl
hl

+ h2
- h

2

V2

P2 P2 P3 P3
- h

2 h2
+ h 3

- h
3

Y2

Vi
Pi Pi Pi +1 -Pi +l

- hi hi
+

h i +1 h i +l
Yi (2.6)

Pn
-h

n
P P

V n n
n -h h Ynn n

in which the square symmetric matrix on the right hand side is referred to as

the geometric stiffness matrix of the structure.

The stiffness of the rubber bearings is also reduced by the axial force. The
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effect of the axial force on the horizontal stiffness of elastomeric bearings

has been studied recently by Chan and Kelly [Ref. 1]. The theoretical

results of Chan and Kelly [1] correlated well with experimental data, and it

was used herein to investigate the P-delta effect on the dynamic response of

base-isolated building structures.

Following Chan and Kelly [1], the horizontal stiffness of a rubber bearing

was derived as a series solution, and the first term of the series solution

was shown to be a good approximation as follows

{ 1

( 1
P )2

GA
8

+ GA
s s

~'" L +2 1I"2 E1
- ~ ( 1 + G~ )

11"

GA L2 GAs ss
r (2.7)

in which P - compressive force, G '" shear modulus, A - cross-sectional area,
s

EI - flexural stiffness, and L - length of the bearing.

When the axial compressive force P is neglected, the horizontal stiffness,

denoted by ~, of the bearing is obtained from Eq. (2.7) by setting P '" 0 as

follows

(2.8)

Eq. (2.8) gives the horizontal stiffness of a rubber bearing without con-

sidering the P-delta effect.

Thus, the reduction of the horizontal stiffness, MC, for one elastomeric
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bearing due to the P-delta effect is given by

(2.9)

where Xu is given by Eq. (2.7).

Finally, the geometric stiffness matrix of the entire structural system,

consisting of q elastomeric bearings and an active mass damper, is obtained

by combining Eqs. (2.6) and (2.7) as follows

0 0 0 0

0
P1 P1

0qLiK + h . h
11

0
P1 P1 P2 P2

- h
1

- +- . h
2h1 h2

P
n

"h
n

P Pn n
- h h

n n

(2.10)

The second order matrix equation of motion, Eq. (2.1), can be converted into

a first order matrix equation of motion with a dimension of 2(n+2) as follows

(2.11)

in which ~(t) is a (2n+4) state vector with the initial condition ~(O) = O.
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(2.12)

In Eq. (2.11), A is a (2n+4) x (2n+4) system matrix [e.g., 12,13].

For classical linear quadratic optimal control, ~(t) is obtained by

minimizing the performance index

[ ;' (t) ~ ;(t) + U (t) ~ ~(t) ] dt (2.13)

in which t
f

= a duration defined to be longer than that of the earthquake, ~

.. (2n+4)x(2n+4) positive semi-definite weighting matrix and R = a (rxr)

positive definite weighting matrix [e.g., 12,13].

A minimization of the performance index J, given by Eq. (2.13), subjected to

the constraint of the equations of motion, Eq. (2.11), yields

U(t) - - (1/2) &-1 ~ £ Z(t)

in which P is a (2n+4)x(2n+4) Riccati matrix.

(2.14)

Note that Eq. (2.14) is

obtained only when the external loading, i.e., the earthquake ground

acceleration Xo(t), is neglected (or disregarded) [12,13]. Likewise, the

solution for the Riccati matrix P is rather cumbersome for a tall building

with a large number of degrees of freedom.

Recently, the so-called instantaneous optimal control theory has been

proposed by Yang et al, [12,13], where the time dependent quadratic function

2-8



J(t) is used as the performance index

J(t) - Z (t) g ~(t) + U (t) ! ~(t) (2.15)

Minimizing J(t) with the constraint of the equations of motion, Eq. (2.11),

one obtains the closed-loop instantaneous optimal control law as follows

[12,13]

~(t) ~ R- l B' _Q _Z(t)
2 - -

(2.16)

in which ~t is a small time step for the numerical solution of the equations

of motion. The implication of minimizing Eq. (2.15) is that the performance

index J(t) is minimized in every small time interval (t, t+~t) for all

It is mentioned that the linear quadratic optimal control law, Eq. (2.14), is

limited to linear structures only. However, the instantaneous optimal

control law, Eq. (2.16), is applicable to both linear and nonlinear

structures [14,15]. Furthermore, there are indications [12] that the

performance of the instantaneous optimal control law is better than that of

the linear quadratic optimal control law, Eq. (2.14), if the weighting matrix

g is chosen appropriately. Because of the fact that the numerical

computation for the Riccati matrix ~ is quite tedious for tall buildings, the

instantaneous optimal control law, Eq. (2.16), is used in this report. The

response state vector ~(t) can be solved numerically by substituting Eq.

(2.16) into Eq. (2.11).
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SECTION 3

NUMERICAL ANALYSIS

A sample function of a nonstationary earthquake model is simulated as shown

Fig. 3-1, where the maximum ground acceleration Xo is O. 3g.max Such an

earthquake ground acceleration, XO(t), will be used as the input in Eq.

(2.11), and the equations of motion will be solved numerically in the time

domain to obtain the response quantities of the entire structural system.

3.1. Example 1: A Twenty-Story Building

A twenty-story building (n-20) in which every story unit is identically

constructed is considered in this investigation. The structural properties

of each story unit are as follows: mi - m - mass of each floor - 300 tons;

6
ki - k - elastic stiffness of each story unit - 10 kN/m; c i - c - internal

damping coefficient of each story unit - 2,261 kN.sec/m. The height of each

story is 3 meters. The computed natural frequencies are 0.704, 2.107, 3.498,

4.867, 6.206, 7.507, ... , 17.75, 18.01 and 18.17 Hz. The damping ratio

corresponding to the first vibrational mode is 0.5%, and bt = 0.015 second is

used.

With the tall building described above and the earthquake ground acceleration

shown in Fig. 3-1, time histories of all the response quantities have been

computed. The results are almost identical whether or not the P-delta effect

is taken into account. Within 30 seconds of the earthquake episode, Yi and

the maximum relative displacement, xi' of each story unit (interstory

deformation) are shown in Table 3-I(a), where xi - Yi - Yi-l' Further, the
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Figure 3-2: Deformation of First Story Unit: (a) Building Without

Control; (b) With Base Isolation System; (c) With
Passive Hybrid Control System (md-100\ mi ); (d) With

Active Hybrid Control System (Control Force - 1031 kN);
(e) With Active Control System (Control Force - 1102 kN).
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TABLE 3- I: MAXIMUM STRUCTURAL RESPONSE:

PASSIVE HYBRID CONTROL SYSTEM

(a) WITHOUT P-DELTA EFFECT

S WITH BASE WITH PASSIVE HYBRID
T WITHOUT CONTROL SYSTEM
0 ISOLATION
R CONTROL md-50\ mi md-100\ mi

md-200\ m
i

md-400\ m
i

Y SYSTEM

U Yd,,"1.44 m Yd=1.31 m Yd-1.08 m Yd-O.90 m

N
I Yi xi xi xi xi xi xi

T (em) (em) (em) (em) (em) (em) (em)

B - - 40.70 35.67 34.13 31.43 27.48
1 2.39 2.39 1.51 1. 33 1.23 1.05 0.76
2 4.78 2.38 1.42 1.28 1.19 1.01 0.72
3 7.13 2.36 1. 36 1.23 1.14 0.97 0.69

18 29.94 0.75 0.29 0.28 0.26 0.22 0.17
19 30.30 0.53 0.20 0.19 0.17 0.15 0.11
20 30.48 0.27 0.10 0.09 0.09 0.08 0.06

20* 9.17 3.35 3.13 2.92 2.54 1. 89

(b) WITH P-DELTA EFFECT

S WITH BASE WITH PASSIVE HYBRID
T WITHOUT CONTROL SYSTEM
0 ISOLATION
R CONTROL m

d
,,"50\ m

i
md=100\ m

i
md-200\ m

i
md-400\ m

iY SYSTEM

U Yd-1. 71 m Yd=1.52 m Yd-1.20 m Yd-0.86 m

N
I Yi Xi Xi Xi Xi Xi Xi
T (em) (em) (em) (em) (em) (em) (em)

B - - 52.54 43.60 40.62 35.24 26.77
1 2.39 2.39 1. 53 1.25 1.12 0.94 0.65
2 4.78 2.38 1.47 1.20 1.07 0.89 0.61
3 7.13 2.36 1.41 1.15 1.01 0.85 0.58

18 29.94 0.75 0.26 0.22 0.18 0.15 0.12
19 30.3 0.53 0.18 0.15 0.12 0.10 0.08
20 30.48 0.27 0.08 0.07 0.06 0.05 0.04

20* 9.17 2.93 2.44 2.02 1. 74 1. 38
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2maximum acceleration of the to.P floor in m/sec is presented in the last row

* -of Table 3-I(a). denoted by 20. Under such a strong earthquake. XOmax -

0.3g. the deformation of the unprotected building is excessive. The time

be linear with

history of the first floor deformation. Xl(t). is shown in Fig. 3-2(a).

To reduce the structural response. a rubber-bearing isolation system is

implemented. Fig. 2-l(b). The mass of the base isolation system is ~ - 400

tons. The lateral stiffness and viscous damping coefficient are assumed to

3
~ = 40 x 10 kN/m and cb - 90.44 kN.sec/m, respectively.

With such a base isolation system, the 21 natural frequencies of the entire

building system. without considering the P-delta effect. are 0.35. 1.46,

2.75, 4.06. 5.36 •...• 17.76. 18.0 and 18.17 Hz. The damping ratio for the

first vibrational mode of the entire structural system is 0.25\. It is

observed that the fundamental frequency is reduced by the implementation of a

base isolation system. Time histories of all the response quantities were

computed. The time history, xl(t), of the first story deformation is

depicted in Fig. 3-2(b), and that of the base isolation system, ~(t). is

presented in Fig. 3-3(a). The maximum interstory deformation, xi' and the

2maximum top floor acceleration (m/sec) in 30 seconds of the earthquake

episode are shown in Table 3-I(a). As observed from Table 3-I(a) and Fig.

3-2, the interstory deformations of the building and the top floor

acceleration are drastically reduced. The advantage of using a base

isolation system to protect the building is clearly demonstrated. However,

the deformation of the base isolation system shown in row B of Table 3-l(a)

is excessive.

To examine the P-delta effect. suppose that the base isolation system

3-5
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consists of 36 elastomeric bearings each with the following properties: L

0.75 m. GA 1130.12 kN and EI - 148.7 kN m2. The horizontal stiffness of
s

each bearing. Ku. is computed from Eq. (2.7) as 831.6 kN/m. Hence. the

P-delta effect results in a reduction of 25.1\ for the horizontal stiffness

of the base isolation system. With consideration of the geometric stiffness

matrix Ke. the natural frequencies of the entire building system become 0.31.

1.43. 2.73. 4.03 •...• 17.92 and 18.08 Hz. The damping ratio for the first

vibrational mode is 0.29\. It is observed that the P-delta effect reduces

the natural frequencies slightly and increases the damping ratio as expected.

The maximum response quantities within 30 seconds of the earthquake episode

taking into account the P-delta effect are shown in Table 3-I(b).

To protect the safety and integrity of the base isolation system, a passive

mass damper is connected to it as shown in Fig. 2-1(a). referred to as the

passive hybrid control system. The properties of the mass damper are as

follows. The mass of the mass damper md is expressed in term of the 'Y

percentage of the floor mass mi' i.e .• md - 'Y mi' and it will be varied to

examine the effect of the mass ratio 'Y. The natural frequency of the mass

damper is the same as the first natural frequency of the base isolated

building. i.e .• 0.35 Hz without the P-delta effect and 0.31 Hz with the

P-delta effect. The damping ratio of the mass damper is 10%.

With such a passive hybrid control system. the maximum deformation of each

story unit. xi' within 30 seconds of the earthquake episode are presented in

Table 3-1 for different mass ratio. 'Y. of the mass damper. Also shown in row

B of the table is the maximum deformation of the base isolation system. The

maximum deformations for the base isolation system and the first story unit

3-7
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are plotted in Fig. 3-4 as a function of the mass ratio 1 - mafmi . Note that

the first story unit undergoes the largest deformation because of a constant

stiffness for all story unit. The maximum relative displacement of the

- I 2mass damper, denoted by Yd' and the maximum top floor acceleration in m sec

are also shown in Table 3-1. Time histories of the deformations of both the

first story unit and the base isolation system are shown in Figs. 3-2(c) and

3-3(b), respectively, for ., - 1 and without the P-delta effect. It is

observed from Table 3-1 that the passive mass damper is capable of reducing

not only the deformation of the base isolation system but also the response

of the building; the bigger the passive mass damper, the better the

performance of the passive hybrid control system.

A comparison between Table 3-1(a) and 3-1(b) indicates that the P-delta

effect increases the deformation of the base isolation system. However, the

P-delta effect reduces slightly the response of the building structure,

because it further removes the natural frequencies of the building structure

away from those of the earthquake.

Based on the results above, the passive mass damper appears to be quite

effective in protecting the base isolation system. The significant advantage

of such a passive hybrid control system is that the passive mass damper is

easy to design, install and maintain, especially the mass damper is on the

ground level. Thus, the proposed passive hybrid control system is simple for

practical implementations.

When a significant reduction for the deformation of the base isolation system

is required, the weight of the mass damper (or mass ratio .,) is large. The

3-9



weight of the mass damper can be reduced if an active mass damper shown in

Fig. 2-l(b) is used. Let us consider an active mass damper attached to the

base isolation system as shown in Fig. 2-l(b). With the application of the

active mass damper and the instantaneous optimal control law, Eq. (2.16), the

structural response depends on the weighting matrices ~ and~. In the

present case, the weighting matrix R consists of only one element denoted by

-3R, whereas the dimension of the ~ matrix' is (44x44). R is chosen to be 10

for simplicity. The ~ matrix is partitioned as follows [12,13],

(3.1)

in which ~21 and ~22 are (22x22) matrices.

For convenience of instrumentation, displacement and velocity sensors are

installed on the mass damper and the base isolation system only, i. e., no

sensor is installed on the bUilding. In this case, all the elements of ~21

and ~22 are zero except elements Q21(1,1), Q2l(1,2), Q22(1,1), and Q22(1,2),

where Q21(i,j) and Q22(i,j) are the i-j elements of ~2l and ~22'

respectively. For illustrative purpose, we choose Q2l(1,1) - 0.4, Q21(1,2) 

-900, Q22(l,l) - 2 and Q22(1,2) - 250. Furthermore, a mass ratio of 100\

for the mass damper is used, i.e., 7 - 1.

The response quantities of the bUilding structures and the base isolation

system as well as the required active control force depend on the parameter

a. As the a value increases, the response quantities reduce, whereas the

required active control force increases. Within 30 seconds of the earthquake

episode, the maximum deformation of the base isolation system, the maximum

3-10



'fABLE 3-II: MAXIMUM STRUCTURAL RESPONSE:
ACTIVE HYBRID CONTROL SYSTEM

(a) VITHOUT P-DELTA EFFECT

S VITH VITH ACTIVE HYBRID CONTROL SYSTEM
P~SSIVE md - 100\ miT VITHOUT WITH BASE HYBRID
CONTROL 3 4 4

0
SYSTEM a/R-30x10 a/R-14x10 a/R-22xl0

R CONTROL ISOLATION
md-l00\ m

i Yd-1.53 m Yd-2.35 m Yd-2.77 m
Y

SYSTEM Yd-1.31 m U-251.53 kN U-826.11 kN U-1031.2 kN

U U-l095 kN/ U-4522.8kN/ U-6533.5kN/
N sec. sec. sec.
I xi xi xi xi xi xi
T (em) (em) (em) (em) (em) (em)

B - 40.70 34.13 31.43 22.61 18.03
1 2.39 1.51 1.23 1.14 0.93 0.84
2 2.38 1.42 1.19 1.10 0.90 0.80
3 2.36 1. 36 1.14 1.06 0.86 0.77

18 0.75 0.29 0.26 0.24 0.20 0.17
19 0.53 0.20 0.17 0.17 0.14 0.12
20 0.27 0.10 0.09 0.08 0.07 0.06

20* 9.17 3.35 2.92 2.77 2.29 1. 99

(b) WITH P-DELTA EFFECT

S WITH WITH ACTIVE HYBRID CONTROL SYSTEM
PASSIVE md - 100% miT WITHOUT WITH BASE HYBRID
CONTROL 3 4 4

0 SYSTEM a/R-30x10 a/R=14xl0 o/R=24xl0

R CONTROL ISOLATION
md-100% mi Yd-1.86 m Yd-2.77 m Yd-3.30 m

Y
SYSTEM Yd=1.52 m U-274.77 kN U-833.25 kN U-1223.8 kN

U U-l044.1kN/ U-4473.4kN/ U=7211.5kN/
N sec. sec. sec.
I Xi Xi Xi Xi Xi Xi
T (em) (em) (em) (em) (em) (em)

B - 52.54 40.62 36.66 25.50 19.30
1 2.39 1. 53 1.12 1.03 0.83 0.75
2 2.38 1.47 1.07 0.98 0.79 0.73
3 2.36 1.41 1.01 0.93 0.76 0.70

18 0.75 0.26 0.18 0.17 0.17 0.16
19 0.53 0.18 0.12 0.12 0.11 0.11
20 0.27 0.08 0.06 0.06 0.06 0.06

* 2.9320 9.U 2.02 1.95 1.91 1.87
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inters tory deformation, xi' the required maximum control force, U, the

maximum control force rate, U= dU/dt, and the maximum top floor acceleration

2in m/sec are summarized in Table 3-II for different values of aiR. Table

3-II(a) shows the results without accounting for the P-delta effect, whereas

Table 3-II(b) presents the corresponding results with the P-delta effect.

Some results are plotted in Figs. 3-5 and 3-6. Time histories of the

deformations of the first story unit and- the base isolation system are shown

in Figs. 3-2(d) and 3-3(c), respectively, for aiR - 22xl05 for the case in

which the P-delta effect is neglected. It is observed from Table 3-II and

Figs. 3-5 and 3-6 that the response quantities reduce as the active control

force increases.

Within 30 seconds of the earthquake episode. the maximum displacement of the

bUilding system is plotted in Fig. 3-7 for comparison. Curve 1 in Fig. 3-7

represents the maximum response of the building without control. Curve 2

denotes the maximum response of the building with a base isolation system.

where the maximum deformation of the base isolation system is indicated by

the story level O. The maximum response of the building implemented by the

passive hybrid control system is shown by Curve 3, where the mass ratio of

the damper is 100\. The corresponding result for the bUilding implemented by

the active hybrid control system is depicted by Curve 4, where the mass ratio

of the damper is 100\ and the maximum control force is 1031 kN. Curves 2-4

represent the results without taking into account the P-delta effect. The

corresponding results, when the P-delta effect is accounted for, are

presented by Curves 5-7, respectively. where the maximum control force for

the active hybrid control system is 1224 kN. Tables 3-1 and 3-II as well as
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Fig. 3-7 clearly demonstrate the effectiveness of the two hybrid control

systems proposed.

Consider the case in which the 20-story bUilding is implemented by an

active control system alone; namely, an active mass damper on the top floor

as shown in Fig. l(a). Again, the instantaneous optimal control law, Eq.

(2.16), will be used and the (42x42) weighting matrix g is partitioned as

shown in Eq. (3.1). The dimension of g21 and g22 matrices is (2x2l). For

illustrative purpose, elements of these matrices are chosen as follows. The

first row of g22 matrix is (-12, -12, -13.5, -16, -17.5, -19, -20.5, -22,

-23.5, -25, -26.5, -28, -29.5, -31, -32.5, -34, -35.5, -37, -38.5, -40, 1)

and the second row of g22 is identical to the first row above. The first row

of g2l matrix is (-500, -500, -510, -510, -540, -580, -610, -640, -670, -700,

-730, -760, -790, -820, -850, -880, -910, -940, -1000, -3900, 800). The

second row of g2l matrix is identical to the first row except the last

element 800 that is replaced by 100. Since the active mass damper is

installed on the top floor, a mass ratio of 10%, i.e., m
d

= 10% m
i

, is

considered. Note that for this active mass damper control system,

displacement and velocity sensors are installed on every floor of the

building. For the active hybrid control system presented previously,

however, displacement and velocity sensors are installed only on the base

isolation system and the mass damper, i. e., no sensor is installed on

building floors.

Time histories of all the response quantities were computed for different

values of Q/R. The deformation of the first story unit, xl(t), is plotted in

Fig. 3-2(e) for comparison, in which the maximum active control force is U -
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TABLE 3-III: MAXIMUM STRUCTURAL RESPONSE

ACTIVE MASS DAMPER ALONE

S ~ITH ACTIVE MASS DAMPER
~ITH md - 10\ m1T

~ITHOUT
PASSIVE

MASS
0 DAMPER aiR - 300 ajR - 3000 a/a - 4000
R CONTROL

md-10\ mi xd - 1. 55 m Xd - 5.67 m xd - 6.39 m
y

xd-0.94 m U - 149 kN U - 1102 kN U - 1459kN

U '0-678 kN/sec. '0-5476 kN/see. U-731S kN/see.
N
I xi xi xi xi xl
T (em) (em) (em) (em) (em)

1 2.39 1.59 1. 52 1.13 1.27
2 2.38 1.56 1.49 1.09 1.23
3 2.36 1.49 1.42 1.06 1.19

18 0.75 0.64 0.6 0.53 0.56
19 0.53 0.45 0.42 0.47 0.5
20 0.27 0.22 0.21 0.39 0.4

*20 9.17 8.28 7.91 5.86 5.18
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1102 kN and the maximum control force rate is iI - 5476 kN/sec. Within 30

seconds of the earthquake episode, the following quantities are summarized in

Table 3-III: (1) the maximum interstory deformation, xi' (ii) the maximum

relative displacement of the mass damper with respect to the top floor, i d ,

(iii) the maximum active control force U, and (iv) the maximum time

derivative of the control force iI, and (v) the maximum top floor acceleration

2in m/sec . The maximum deformation of the first story unit versus the

maximum required active control force is plotted in Fig. 3-8. In addition,

the maximum response quantities using a passive mass damper (md - 10\ mi )

installed on the top floor are shown in Table 3-III for comparison.

Examination of extensive numerical results indicates that a reduction of 50%

for the first story deformation and the maximum top floor acceleration is

probably the maximum limit that can be achieved by one active mass damper.

On the other hand, a reduction of more than 50\ for the first story

deformation and the maximum top floor acceleration can easily be accomplished

using either one of the hybrid control systems proposed. Thus, for the

protection of tall buildings against strong earthquakes, the proposed hybrid

control systems may have significant advantages over the application of an

active control system alone.

3.2. Example 2: A Laboratory Scaled Five-Story Building

Instead of the tall building considered in Example 1, the performance of the

two hybrid control systems for low-rise bUildings will be investigated and

evaluated. A laboratory scaled five-story building [Refs. 21-23) is

considered for illustrative purposes. The floor masses are identical with mi
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(i = 1,2 •...• 5) - 5.9 tons. The stiffness of each story unit is assumed to

333
be linear elastic with ki = 33.732 x 10 • 29.093 x 10 • 28.621 x 10 • 24.954

x 103• 19.059 x 103 kN/m for i = 1,2 •...• 5, and the internal damping

coefficients for each story unit are ci - 67. 58. 57. 50. 38 kN. sec/m.

respectively. This corresponds to a 2\ damping for the first vibrational

mode of the building. The computed natural frequencies are 3.20, 8.71.

13.61, 17.59 and 20.91 Hz. The same simulated earthquake record shown in

Fig. 3-1 with a maximum ground acceleration of Xo = 0.3g is used as themax

input excitation. Time histories for the displacement of each floor have

been computed. Without any control system. the maximum relative displacement

of each floor with respect to the ground Yi (i = 1.2 •...• 5) and the maximum

inters tory deformation xi (i = 1,2 •...• 5) within 30 seconds of the earthquake

episode are shown in Table 3-IV. The P-delta effect on the dynamic response

of the building is negligible. The time history of the deformation of the

first story unit is presented in Fig. 3-9(a).

Structure With Base Isolation System: The structure is implemented by a base

isolation system consisting of 4 rubber bearings. The properties of each

bearing are: L - length - 20 em, GA - 60.86 kN and EI - 11.97 kN.m2 .s The

horizontal stiffness of the entire base isolation system without accounting

for the P-delta effect is 4~ - 1.200 kN/m. Eq. (2.8). With the P-delta

effect. where the weight of the building is accounted for. the horizontal

stiffness of the base isolation system is 4~ = 1.035 kN/m. Eq. (2.7). The

mass of the base isolation system is ~ - 6.8 tons and the linear viscous

damping of the base isolation system is cb - 2.4 kN.sec/m. With the base

isolation system above and neglecting the P-delta effect. the natural

frequencies of the entire building system are 0.89. 5.56. 10.33, 14.73, 18.41
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TABLE 3-IV: MAXIMUM STRUCTURAL RESPONSE:

(FIVE-STORY MODEL)

PASSIVE HYBRID CONTROL SYSTEM

(a) WITHOUT P-DELTA EFFECT

S WITH BASE WITH PASSIVE HYBRID
T WITHOUT CONTROL SYSTEM
0 ISOLATION
R CONTROL m

d
-O.1 m

i
m

d
-0.2 m

i
m

d
-0.3 mi

md-0.4 m
iY SYSTEM

U Yd-37 .6lem Yd-27.0em Yd-24.22em Yd-22.24em

N
I Yi xi xi xi xi xi xi

T (em) (em) (em) (em) (em) (em) (em)

B - - 14.33 9.40 7.82 7.04 6.41
1 1.29 1.29 0.42 0.28 0.23 0.20 0.18
2 2.69 1.40 0.4 0.26 0.22 0.19 0.17
3 3.91 1.22 0.3 0.20 0.17 0.15 0.14
4 4.94 1.03 0.23 0.15 0.13 0.12 o.n
5 5.67 0.73 0.15 0.10 0.09 0.08 0.07

(b) WITH P-DELTA EFFECT

S WITH BASE WITH PASSIVE HYBRID
T WITHOUT CONTROL SYSTEM
0 ISOLATION
R CONTROL md-O.l m

i
md",0.2 m

i md-0.3 mi
m

d
",0.4 m

iY SYSTEM

U Yd-44.56em Yd=34.85em Yd-31·12em Yd=29.3gem

N
I Yi xi xi xi xi xi xi
T (em) (em) (em) (em) (em) (em) (em)

B - - 16.76 9.91 8.35 7.95 8.35
1 1.29 1. 29 0.43 0.25 0.21 0.19 0.18
2 2.69 1.40 0.41 0.23 0.19 0.18 0.17
3 3.91 1.22 0.32 0.18 0.15 0.14 0.13
4 4.94 1.03 0.25 0.14 0.11 0.11 o.n
5 5.67 0.73 0.16 0.09 0.08 0.07 0.07
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and 21.31 Hz. The damping ratio for the first vibrational mode of the entire

system is 0.55%. It is observed that the fundamental frequency of the system

is reduced by 72\.

Taking into consideration the P-delta effect, the geometric stiffness matrix,

~, is computed. The natural frequencies of the building system become 0.83,

5.52, 10.30, 14.69, 18.35 and 21. 25 Hz. The damping ratio for the first

vibrational mode is 0.6%. A comparison with the structure without accounting

for the P-delta effect indicates that the natural frequencies are reduced

slightly, whereas the damping ratio increases as expected.

The maximum interstory deformations Xi (1 ., 1,2, ... ,5) of the building are

shown in Table 3-IV for both cases in which the P-delta effect is and is not

accounted for. The deformation of the base isolation system is presented in

row B of Table 3-IV. As observed from Table 3-IV, the interstory

deformations of the bUilding are drastically reduced and the building moves

like a rigid body. The advantage of using a base isolation system to protect

the building is clearly demonstrated. However, the deformation of the base

isolation system is excessive and it should be protected by other devices.

It is further observed from Table 3-IV that the P-delta effect is insigni

ficant for the building response even if the building is base-isolated.

However, the P-delta effect results in an increase of about 17% for the

response of the base isolation system. Time histories of the deformations of

the first story unit and the base isolation system are shown in Fig. 3-9(b)

and 3-10(a), respectively, in which the P-de1ta effect is neglected.

Structure With Passive Hybrid Control System: For the passive hybrid control
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system, Fig. 2-1(a), the mass damper for the base isolation system has the

following properties: (a) Four different masses for the mass damper are

considered. These are 10%, 20%, 30% and 40% of the floor mass, respectively,

(b) The frequency of the mass damper is 98% of the first natural frequency of

the building including the base isolation system; namely, 0.98 x 0.89 Hz 

0.87 Hz without the P-delta effect and 0.98 x 0.83 - 0.813 Hz with the

P-delta effect, and (c) The damping ratio is 10% of the critical damping of

the mass damper. With such a passive hybrid control system, the response

time histories of the structure have been computed.

Within 30 seconds of the earthquake episode, the maximum interstory defor

mations xi (i - 1,2, ... ,5) of the building system with different mass dampers

are summarized in Table 3-IV for both cases in which the P-delta effect is

and is not taken into account. Also shown in Table 3-IV is the maximum rela

tive displacement of the mass damper, Yd' with respect to the ground. Time

histories for the deformation of the base isolation system are presented in

Figs. 3-10(b) - (d) for different mass dampers and for the case in which the

P-delta effect is neglected. Further, the time history of the deformation of

the first story unit is presented in Fig. 3-9(c) for md S 20% mi'

It is observed from Table 3-IV and Fig. 3-10 that a reduction of 35%, 46%,

51% and 55% for the response of the base isolation system has been achieved

using four different mass dampers. It is further observed from Table 3-IV

and Fig. 3-9 that the mass damper is capable of reducing the response

quantities of the building in addition to protecting the base isolation

system. Finally, the maximum deformations of the base isolation system

within 30 seconds of the earthquake episode with or without accounting for
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the P-delta effect are displayed in Fig. 3-11 for different mass dampers. A

general trend observed from this figure is that the bigger (or heavier) the

mass damper, the more effective the passive hybrid control system.

The observations obtained from Table 2-IV and Figs. 3-9 through 3-11 are

summarized as follows: (i) While the base isolation system alone is capable

of protecting the building structure, its deformation may be excessive under

strong earthquakes; (ii) The deformation of the base isolation system can be

reduced by the use of a passive mass damper attached to the base isolation

system; (iii) The passive mass damper is capable of reducing not only the

response of the base isolation system but also the response of the building;

(iv) The bigger (or heavier) the passive mass damper, the better the

performance of the mass damper; and (v) the P-delta effect on the building

response is minimal and its effect on the response of the base isolation

system is to increase the response by 15-20%. These observations are similar

to those obtained previously for the twenty-story building.

Structure With Active Hybrid Control System: Instead of using a passive mass

damper for protecting the base isolation system, an active mass damper is

considered herein. With the active mass damper, the structural response

depends on the weighting matrices ~ and g. For this example, the weighting

matrix ~ consists of only one element denoted by R, whereas the dimension of

the g matrix is (14xl4). -3
R is chosen to be 10 for simplicity. The g

matrix is partitioned as shown in Eq. (3.1) in which g21 and g22 are (7x7)

matrices.

Again, for convenience of instrumentation, displacement and velocity sensors
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are installed on the active mass damper and the base isolation system only,

i.e., no sensor is installed on the building. In this case, all elements of

matrices ~21 and ~22 are zero except Q21(1,1), Q2l(1,2), Q22(1,1) and

Q22(1,2), where Q2l(i,j) and Q22(i,j) are the i-j elements of ~2l and ~22'

respectively. For simplicity, the following values are assigned: Q2l(1,1)

90, Q2l(1,2) a -800, Q22(l,1) - 10 and Q22(1,2) = 250. The mass ratio of the

mass damper is 10%, i.e., md - 10% mi'

Time histories of the structural response quantities for different aiR values

have been computed. In particular, the time histories of the deformation of

the base isolation system and the first story unit are shown in Fig. 3-l0(e)

and 3-9(d), respectively, for a/R = 30 without accounting for the P-delta

effect. The required active control force is displayed in Fig. 3-12.

Within 30 seconds of the earthquake episode, the maximum deformations xi (i =

B,1,2, ... ,5) of the building system, the maximum active control force U and

force rate U, as well as the maximum relative displacement of the mass damper

Yd are summarized in Table 3-V. The maximum deformation of the base

isolation system and the required maximum control force are plotted in

Fig. 3-13 as 4 function of aiR.

The following conclusions are obtained based on the observations of Table 3-V

and Figs. 3-9(d), 3-10(e), 3-12 and 3-13; (i) The active hybrid control

system proposed herein 1s very effective in protecting not only the base

isolation system but also the building itself, and (ii) a drastic reduction

for the response of the base isolation system up to 60% can be achieved by

the active mass damper without a large control force.
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TABLE 3-V: MAXIMUM STRUCTURAL RESPONSE

(FIVE-STORY MODEL)

ACTIVE HYBRID CONTROL SYSTEM

(a) WITHOUT P-DELTA EFFECT

S
WITH WITH ACTIVE HYBRID CONTROL SYSTEM

PASSIVE md - 10% m
i

T WITHOUT WITH BASE HYBRID

a CONTROL a/R-2.1 a/R-30SYSTEM
R CONTROL ISOLATION md=10% m

i
Yd=62.6gem Yd-86em

Y
SYSTEM Yd=37.61em U=3.3 kN U=18.42 kN

U U=30.29kN/ U=323.7kN/
N sec. sec.
I xi xi xi xi xi
T (em) (em) (em) (em) (em)

B - 14.33 9.40 8.43 5.67
1 1.29 0.42 0.28 0.27 0.18
2 1.40 0.4 0.26 0.25 0.17
3 1.22 0.3 0.20 0.19 0.13
4 1.03 0.23 0.15 0.15 0.10
5 0.73 O.lS 0.10 0.10 0.07

(b) WITH P-DELTA EFFECT

S
WITH WITH ACTIVE HYBRID CONTROL SYSTEM

PASSIVE md = 10% m
iT WITHOUT WITH BASE

HYBRID

0 CONTROL
a/R-2.1 a/R=30SYSTEM

R CONTROL ISOLATION m
d

",10% m
i Yd=60.62em yd-94em

Y
SYSTEM Yd",,44.56cm U-2.77 kN U=18.74 kN

U U=29.57 kN/ U=324.2 kN/
N sec. sec.
r xi xi xi xi xi
T (em) (em) (em) (em) (em)

B - 16.76 9.91 7.53 6847
1 1.29 0.43 0.25 0.20 0.17
2 1.40 0.41 0.23 0.20 0.17
3 1.22 0.32 0.18 0.15 0.13
4 1.03 0.25 0.14 0.12 0.10
5 0.73 0.16 0.09 0.08 0.07
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Instead of using the hybrid control system. consider that the building is

implemented by an active mass damper on the top floor as shown in Fig.

2-l(a). The mass ratio of the damper is 10\. 1. e.. md .. 10\ mi' and

displacement and velocity sensors are installed on every floor of the

building. The instantaneous optimal control law. Eq. (2.16). will be used in

which the (12x12) weighting matrix ~ is partitioned as shown in Eq. (3.1).

The

R ..

dimension of ~21 and ~22 matrices is (2x6). For illustrative purpose.

-310 and elements of 921 and 922 are chosen as follows:

[
30 60 60 60 500 -0.5

]921 ..
-3 -5 -9 -10.5 -15 -0.052

-[ 0.25 0.25 0.25 0.15 0.1 -0.5

]922
-0.083 -0.125 -0.167 -0.25 -0.35 0.52

Time histories of all the response quantities were computed for different

values of a/R. Within 30 seconds of the earthquake episode. the maximum

interstory deformation xi (i .. 1.2 •...• 5). the maximum control force U. the

maximum control force rate U and the maximum relative displacement of the

mass damper with respect to the top floor x
d

are summarized in Table 3-VI.

The maximum deformation of the first story unit and the maximum control force

are plotted in Fig. 3-14 as a function of a/R. It is observed from Table

3-VI and Fig. 3-14 that the active control system alone is quite efficient in

reducing the response o~ the low-rise bUilding. A comparison between Tables

3-V and 3-VI indicates that while the active mass damper alone is capable of

reducing the structural response as much as the proposed hybrid control
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TABLE 3-VI: MAXIMUM STRUCTURAL RESPONSE:

(FIVE-STORY MODEL)

ACTIVE MASS DAMPER ALONE

S WITH WITH ACTIVE MASS DAMPER
PASSIVE md - 10' miT WITHOUT MASS

0
DAMPER a/R-400 a/R-3000 a/R-30000

R CONTROL
md-10' mt

U-23.5 kN U-53.39 kN U-65.71 kN
Y xd-8.43em U-486.8kN/see. U-1088.9 kN/see U-1274.2kN/see

U xd-27.68 em xd-65.6 em xd-1S1 em
N
I xi xi xi xi xi
T (em) (em) (em) (em) (em)

1 1.29 1.26 1.16 0.42 0.18
2 1.4 1. 37 1.23 0.42 0.16
3 1. 22 1.19 1.03 0.31 0.11
4 1.03 1.01 0.81 0.2 0.12
5 0.73 0.71 0.51 0.11 0.19
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systems for low-rise buildings, the required active control force is much

larger.

Within 30 seconds of the earthquake episode, the maximum displacement of the

building system is plotted in Fig. 3-15 for comparison. Curve 1 in Fig. 3-15

represents the maximum response of the building without control. Curve 2

denotes the maximum response of the building with a base isolation system,

where the maximum deformation of the base isolation system is indicated by

the story level O. The maximum response of the building implemented by the

passive hybrid control system is shown by Curves 3-5 for the mass ratios of

10%, 20%, 30%, respectively. The result for the building implemented by the

active hybrid control system is depicted by Curve 6, where the mass ratio of

the damper is 10% and the maximum control force is 18.42 kN (aiR ~ 30). The

result for the building implemented by an active mass damper on the top floor

is shown by Curve 7 for the mass ratio of 10% and a maximum control force of

65.71 kN. The P-delta effect has been taken into account for all curves in

Fig. 3-15. Figure 3-15 clearly demonstrates the effectiveness of the two

proposed hybrid control systems.
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SECTION 4

CONCLUSIONS

Two aseismic hybrid control systems have been proposed for application to

building structures against strong earthquakes. The performance of these

hybrid control systems for both high-rise and low-rise bUildings has been

investigated and evaluated. The passive hybrid sys~em consists of a base

isolation system connected to a passive mass damper, whereas the active one

consists of a base isolation system connected to an active mass damper. It

1s demonstrated that these hybrid control systems are very effective. It is

further shown that both hybrid control systems perform better than an active

mass damper alone. Another advantage of the hybrid control systems is that

the mass damper. either passive or active, to be implemented at the base of

the building can be easily installed through standard engineering practices.

For simplicity of evaluating the efficiency and performance of the proposed

hybrid control systems. the entire structural system. including the base

isolation system. is assumed to be linear elastic. In reality. many base

isolation systems are either nonlinear or inelastic or both. It should be

emphasized that for nonlinear or inelastic base isolation systems, the

instantaneous optimal control theory developed by Yang, et a1. [14.15] are

applicable.
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Particular Integrals. Modal Anslysis, and Substructuring," by CoS. Tsai, G.C. Lee and R.L. Ketter,
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"SARCF User's Guide: Seismic Analysis of Reinforced Concrete Frames," by Y.S. Chung, C. Meyer
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"Liquefaction Hazards IIIld Their Effects on Buried Pipelines," by T.D. O'Rourke and P.A. Lane,
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Mignolet, 7/10/89, (PB90-109893/AS).

"Preliminary Proceedings from the Conference on Disaster Preparedness - The Place of Earthquake
Education in Our Schools." Edited by K.E.K. Ross, 6/23/89.

"Proceedings from the Conference on Disaster Preparedness. The Place of Earthquake Education in
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and A.E. Aktan, 11/1/89.

"Geoteclmical and Lifeline Aspects of the October 17,1989 Lorna Prieta Earthquake in San Francisco,"
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"A Program to Generate Site Dependent Time Histories: EQGEN," by G.W. Ellis, M. Srinivasan and
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