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PREFACE

The National Center for Earthquake Engineering Research (NCEER) is devoted to the expansion
and dissemination of knowledge about earthquakes, the improvement of earthquake-resistant
design, and the implementation of seismic hazard mitigation procedures to minimize loss of lives
and property. The emphasis is on structures and lifelines that are found in zones of moderate to
high seismicity throughout the United States.

NCEER's research is being carried out in an integrated and coordinated manner following a
structured program. The current research program comprises four main areas:

• Existing and New Structures
• Secondary and Protective Systems
• Lifeline Systems
• Disaster Research and Planning

This technical report pertains to Program 2, Secondary and Protective Systems, and more specifi­
cally, to protective systems. Protective Systems are devices or systems which, when incorpo­
rated into a structure, help to improve the structure's ability to withstand seismic or other en­
vironmental10ads. These systems can be passive, such as base isolators or viscoelastic dampers;
or active, such as active tendons or active mass dampers; or combined passive-active systems.

In the area of active systems, research has progressed from the conceptual phase to the im­
plementation phase with emphasis on experimental verification. As the accompanying figure
shows, the experimental verification process began with a small single-degree-of-freedom
structure model, moving to larger and more complex models, and finally, to full-scale models.

Conceptual
Phase

Implementation
Phase

Analysis and Simulation
Algorithm Development
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Control Mechanisms
Hardware Development



At NCEER, research and development of active control technology have reached the stage of
full-scale implementation. In this report, the authors consider one of the practical issues in
control algorithm design. Since displacement measurements are not easily accessible due to a
lack of an absolute reference, a control law involving only velocity and acceleration measure­
ments is developed. Simulation results show that tne performance of the proposed control law
compares favorably with those ofother available optimal control laws.
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ABSTRACT

In the experimental demonstration of aseismic control systems, difficulties

were encountered in the measurement of the displacement response of the

structure. During earthquake ground motions, both the building and the

ground are moving so that there is no absolute reference for the

determination of the displacement response. An optimal control theory is

proposed herein, which utilizes the measurements of acceleration and velocity

responses rather than the displacement and velocity measurements. Such an

optimal control law is developed based on the instantaneous optimal control

theories, and it is evaluated and compared with other available optimal

control laws. Numerical results indicate that the performance of the

proposed optimal control law is as good as that of other optimal control laws

currently available. However, the contribution of such an optimal control

law to the practical implementation of active control systems for seismic

hazard mitigations may be quite significant.
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SECTION 1

INTRODUCTION

Recent experimental demonstrations for the application of aseismic control

systems to scaled building structures [e.g., 1-7] indicate some difficulties

involved in the measurement of floor displacements. The main reason is that

during earthquake ground motions, both the building and the ground are moving

so that there is no absolute reference for the determination of the floor

displacement. This is particularly critical for practical implementations of

active control systems to full-scale buildings for earthquake hazard

mitigations. Laboratory experiments [1-7] further indicate that the floor

displacement response obtained by numerically integrating the velocity

measurement differs significantly from the actual floor displacement due to

(i) noise pollutions and (ii) error accumulations resulting from numerical

integrations.

Unfortunately, available optimal control theories [e.g., 8-10, 12-18] require

measurements of displacement and velocity responses of the building

structure. Although the instantaneous optimal open-loop control law proposed

by Yang, et al. [9-10] does not require the measurements of the state vector

of the structure, it is more vulnerable to a system time delay [11,17] and

system uncertainties [11,16]. Since the measurements of acceleration and

velocity of the structural response are much easier without involving an

absolute reference, it is highly desirable to use acceleration and velocity

sensors rather than displacement sensors.

The purpose of this paper is to present an optimal control law utilizing the
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acceleration measurements rather than the displacement measurements. This

optimal control law is developed based on the instantaneous optimal control

theories developed by Yang, et al. [9-10, 12-13]. For a building structure

subjected to an earthquake, the performance of the proposed optimal control

law is evaluated and demonstrated by comparing numerically with other

available optimal control laws using both deterministic and stochastic

earthquake excitations.
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SECTION 2

FORMULATION

Consider a shear-beam type building structure implemented by an active

control system, such as an active mass damper or an active tendon system as

shown in Fig. 2-1. The structure is idealized by an n degrees of freedom

linear system and subjected to a one-dimensional earthquake ground

acceleration Xo(t). The matrix equation of motion can be expressed as

~(t) (2.1)

in which an under bar denotes a vector or matrix. In Eq. (2.1), ~(t) = a 2n

state vector, U(t) = a r-dimensional control vector, A = a (2nx2n) system

matrix, representing the structural characteristics of the building, B = a

(2nxr) location matrix specifying the location of r controllers and ~l is an

appropriate 2n vector denoting the effect of the earthquake ground

acceleration Xo(t). The state vector ~(t) consists of the displacement

vector yet) and velocity vector yet), all relative to the ground, as

Z(t) (2.2)

with the initial condition ~(o) = o.

Following the concept of instantaneous optimal control proposed by Yang,

et al. [8~9), we define a time-dependent quadratic performance index

*J (t) (2.3)

in which a prime denotes the transpose of a vector or matrix.

2-1
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Figure 2-1: Structural Model With An Active Tendon Control System:
(a) Single Bay; (b) Two Bays.
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*.9. is a (2nx2n) positive semi-definite weighting matrix and R is a (rxr)

positive definite weighting matrix.

In order to minimize the performance index given by Eq. (2.3), the state

vector, ~(t), in the equation of motion, Eq. (2.1), will be expressed in

terms of the finite difference as follows

~(t) ~(t-nt) + nt Z(t-nt) (2.4)

Substituting Eq. (2.4) into Eq. (2.1), one obtains the equation of motion in

the following form

Z(t) A Z(t-nt) + A nt Z(t-nt) + B U(t) + ~1 XO(t) (2.5)

The Hamiltonian H(t) is obtained from Eqs. (2.3) and (2.5) as

H(t) Z'(t) g* Z(t) + U (t) ~ ~(t) +~' [ !(t) - A Z(t-at)

- ~ !(t-at) at - ~ ~(t) - ~, Xo(t) ] (2.6)

where A is a Lagrangian multiplier vector.

*The necessary conditions for the minimization of the performance index J (t)

subjected to the constraint given by Eq. (2.5) are as follows

aH(t)

az
0,

aH(t)

au
0,

aH(t)

aA
o (2.7)

The optimal control vector !!(t) can be obtained by substituting Eq. (2.6)

into Eq. (2.7). Depending on the way the control vector is regulated, one
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obtains optimal closed-loop control (feedback), optimal open-loop control

(feedforward) and optimal closed-open-loop control (feedforward and feedback)

as presented in the Appendix. It is mentioned, however, that the performance

of the three optimal control laws derived in the Appendix is identical. For

simplicity, the optimal closed-loop control vector .!:!(t) is given in the

following [see the Appendix]

(2.8)

Thus, the control vector .!:!(t) depends on the feedback vector. Z(t). that

consists of the velocity and acceleration responses,

Z(t) (2.9)

Consequently, the measurement of the displacement response Y(t) is replaced

by the measurement of the acceleration response Y(t).

It is mentioned that the implication of minimizing the performance index,

*J (t), given by Eq. (2.3) is that the quadratic function, involving the

velocity response, acceleration response and control forces, is minimized at

every time instant t for all 0 ~ t ~ t
f

, where t
f

is longer than the duration

of the earthquake. Although the displacement response !(t) does not appear

*in the performance index J (t), Eq. (2.3), it is expected that a minimization

*of J (t) will also reduce !(t).
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Based on the instantaneous optimal closed-loop control law proposed in

Refs. 9 and 10, the optimal control vector is given by

!!(t) tlt R- l B- -2- ~ ~(t) (2.10)

in which ~ is a (2nx2n) positive semi-definite weighting matrix.

The optimal control vector !!(t) based on the linear quadratic optimal control

law is as follows [e.g.,8,14]

U(t) __1__ R- 1 B P Z( )2 _ _ _ t (2.11)

where P is a (2nx2n) Riccati matrix.

Finally, the matrix equation of motion for a structure implemented by an

active control system is obtained by substituting Eq. (2.8) into Eq. (2.1) as

(2.12)

in which I is a (2n x 2n) identity matrix.

Further, substitution of Eq. (2.10) or (2.11) into Eq. (2.1) leads to the

following matrix equation of motion

Z(t) ( A + B G ) Z(t) + ~1 XO(t) (2.13)

in which G = -0.5 R- 1
B ! for linear quadratic optimal control and G -0.5

tlt R ~ ~ for instantaneous optimal control.
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In what follows, the performance of the three optimal control laws given by

Eqs. (2.8), (2.10) and (2.11) will be compared using a 6-story full-scale

building implemented by an active tendon control system, Fig. 2-l(b), and

subjected to earthquake ground accelerations.
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given.

SECTION 3

STOCHASTIC EARTHQUAKE RESPONSE

The controlled structural response can be solved numerically using Eq. (Z.lZ)

or (Z.13), if the time history of an earthquake ground acceleration XO(t) is

The earthquake ground acceleration XO(t), however, varies from

occurrence to occurrence and it can be characterized more appropriately by a

random process. Hence, the performance of the new optimal control law will

be evaluated not only using an earthquake sample time history, such as the El

Centro earthquake, but also considering XO(t) as a random process.

The earthquake ground acceleration, XO(t), is modeled as a filtered shot

noise. In other words, XO(t) is the outpout of a filter due to a shot noise

exicitation,

x (t)
g

.,p(t) I'](t) (3.1)

in which .,p(t) is a deterministic non-negative envelope function, and I'](t) is

a stationary white noise with zero mean and a power spectral density sZ

Various types of envelope functions 1/J(t) have been used in the literature. A

particular envelope function given in the following will be used: .,p(t) = 0

for t < 0, 1/J(t) = (t/tl)Z for 0 S t s t
l

, 1/J(t) = 1 for t
l

S t s t z and 1/J(t)

exp[-c(t-t
Z
)] for t > t z, where t

l
, t z and c are parameters which should be

selected appropriately to reflect the shape and the duration of the

earthquake ground acceleration.

The frequency response function of the filter, denoted by Hf(w), is given by
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1 + 2r (w/w ) i
g g- (3.2)

theondependingparametersareand(_1)1/2i = rg and wg

characteristics of the earthquake at a particular location.

in which

Since the earthquake ground acceleration Xo(t) has a zero mean, the mean

values of the response state vector Z(t} and the active control vector ~(t)

are zero. The mean square values of Z(t) and U(t) are identical to the

variances a 2(t) and a 2(t), respectively.
-z -u

Let H (w) and H (w) be the frequency response vectors of Z(t) and U(t) due to
-z -u - -

a unit steady state ground acceleration, i.e., XO(t) = exp[~wt], ~(t)= ~z(w)

exp[~wt] and ~(t) = ~u(w) exp[~wt]. The frequency response vectors, H (w)
-z

and H (w), for a controlled structure can be obtained easily from Eq. (2.12)
-u

or (2.13).

* *The impulse response vectors, ~z(t) and ~u(t), of ~(t) and ~(t), respec-

tively, due to the shot noise input X (t) = o(t) are related to the frequency
g

response vectors through the Fourier transform pair

*h (t)
-z

iwt
H (w) e- dw
-z *h (t)

-u

00

~. JHf(w)!!u(w)
"-<Xl

iwt
e- dw (3.3)

in which Hf(w) is given by Eq. (3.2)

The mean square response of the state vector Z(t) can be obtained easily as

follows [e.g., 9].
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2
a (t)
-z [ (3.4)

in which l~z(t,w)12 is a vector whose jth element is equal to the square of

the absolute value of the jth element of M (t,w) given by Eq. (3.5),
-z

M (t,w)
-z

-iWT
dT (3.5)

In a similar manner, the mean square vector of the active control force can

be obtained as

2
a (t)
-u J

oo 2 2
l~u(t,w)1 S dw

"-<0

(3.6)

in which

M (t,w)
-u ro *h (r)1/J(t-T)-u

-iWT
e - dT (3.7)

The numerical computation of the non-stationary root mean square vectors,

~z (t) and ~u(t), of ~(t) and !!(t) can be carried out very efficiently by

repeated applications of the Fast Fourier Transform (FFT) in the following

* * .,manner: (i) The impulse response vectors h (t) and h (t) due to X (t) = o(t)
-z -u g

are computed from the corresponding frequency response vectors Hf(w) !!z (w)

and Hf(w)!!u(w) using the FFT technique, Eq. (3.3); (ii) M (t,w) and M (t,w)-z -u

are computed from Eqs. (3.5) and (3.7) again using the FFT technique; and

(iii) The root mean square vectors a (t)
-z

and (J (t)
-u

are evaluated by

numerically integrating Eqs. (3.4) and (3.6) and taking the square root.

3-3





SECTION 4

NUMERICAL DEMONSTRATION

The performance of the proposed optimal control law will be demonstrated

using two examples; one with the El Centro earthquake ground excitation and

the other with a stochastic earthquake ground acceleration. The controlled

structural response and the required active control force will be compared

with those obtained using both the linear quadratic optimal control law and

the instantaneous optimal control law.

A six-story full-scale building has been constructed recently in Japan by

Takenaka Company in order to conduct field demonstrations of an active tendon

control system and an active mass damper. The properties of the building

have been provided by NCEER as follows. The (6x6) mass matrix is a diagonal

matrix with each diagonal element being equal to 571.4 slugs.

stiffness matrix K and damping matrix C are given in the following

The (6x6)

325.56 -159.41 39.14 -6.28 0.92 -0.08

-159.38 195.81 -111. 51 25.32 -3.57 0.41

K 39.14 -111.50 149.94 -82.93 16.34 -1.71 104 lb/in.

-6.23 25.31 -82.92 113.13 -59.44 8.68

0.94 -3.59 16.35 -59.44 80.65 -34.66

-0.04 0.39 -1. 70 8.67 -34.66 27.33

822.97 -257.50 21.63 -6.43 -1. 02 -1. 01

-257.45 572.34 -231. 38 8.18 -8.04 -3.29

C 21. 65 -231.37 498.08 -201. 29 -0.31 -9.43 lb.sec./in.

-6.33 8.18 -201. 27 432.21 -171.18 -9.70

-0.96 -8.07 -0.31 -171.18 367.47 -141.15

-0.91 3.31 -9.41 -9.72 -141.15 205.76
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With the mass, stiffness and damping matrices above, the natural frequencies

of the building are computed as 0.943, 2.765, 4.B76, 7.279, 10.114 and 14.423

Hz. The damping ratio for each vibrational mode is 1%. This six-story

building has two bays and an active tendon controller is installed on the

first floor as shown in Fig. 2-l(b) where the angle of inclination (J for

tendons is 51.5 degrees.

The El Centro earthquake ground acceleration scaled by a factor of 32% is

shown in Fig. 4-1. This 32% El Centro earthquake is considered as the input

excitation. Without any control system, the maximum interstory deformation

*xi(i = 1,2, ... ,6) of each story unit, the maximum total acceleration of each

.. * *floor Yi (i = 1,2, ... ,6) and the maximum relative displacement Y6 of the top

floor with respect to the ground are shown in Column A of Table 4-1.

With the active tendon control system, the controlled building response and

the required active control force depend on the particular control law. In

the present example with only one tendon controller, the R matrix consists of

one element, denoted by R. For demonstrative purposes, R = 1 is used. For

linear quadratic optimal control, the (12x12) weighting matrix Q is

considered as a diagonal matrix in which every diagonal element is identical

to q. 7The Riccati matrix ~ is computed for q = 3 x 10 and 9
2 x 10 ,

respectively. Then, the maximum structural response quantities and the

maximum active control force U are computed and shown in Column B of
max

Table 4-1.

With the application of the instantaneous optimal control law, the weighting

matrix O.56t~ is partitioned as follows
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Figure 4-1: 32% El Centro Earthquake Ground Acceleration.
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TABLE 4-1: MAXIMUM RESPONSE QUANTITIES OF BUILDING: (A) WITHOUT
CONTROL; (B) CLASSICAL OPTIMAL LINEAR CONTROL, EQ.(2.11);
(C) INSTANTANEOUS OPTIMAL CONTROL, EQ.(2.10); AND (D)
INSTANTANEOUS OPTIMAL CONTROL WITH FEEDBACK ~(t),

EQ. (2.8)

(A) (B) 7 (C) 5 (D) 3
q = 3x10 Q '" 1.15x10 ex '" 2.8x10

NO CONTROL U '" 659 kN U '" 687.8 kN U '" 650.8 kN

*
max ma:lt ma:lt

STORY Y6 '" 7.99 em * * *Y6 = 5.57 em Y6 = 5.29 em Y6 = 5.53 em

* .. * * ..* * .. * * .. *
xi Yi xi Yi xi Yi xi Y

i
2 (em/s2)

2 2
(em) (em/s ) (em) (em) (cm/s ) (em) (em/s )

--
1 0.734 120.4 0.488 113.3 0.518 107.9 0.530 123.4

2 1.453 234.5 1.024 147.6 1.011 143.5 1. 036 111.7

3 1. 615 283.7 1.153 203.2 1.125 197.8 1.165 157.4

4 1. 753 284.5 1.171 205.7 1.148 191. 5 1.143 149.8

5 1. 651 331. 7 1.090 203.7 1.067 199.8 0.991 193.8

6 1.135 361.2 0.790 261.9 0.784 259.0 0.718 234.6

(A) (B) 9 (C) 6 (D) 4
q .. 2xlO <l = 10 Q '" 2.x10

NO CONTROL U '" 2236 kN U '" 2129 kN U = 1931 kN

*
max max ma:lt

STORY Y6 '" 7.99 em *. * *Y6 "" 2.29 em Y6 '" 2.41 em Y6 '" 2.79 em

* ..* * .. * * .. * * .. *
Xi Yi Xi Y

i Xi Yi Xi Y
i2 (em/s 2)

2 2(em) (em/s ) (em) (em) (em/s ) (em) (em/s )
--

1 0.734 120.4 0.518 256.8 0.490 260.8 0.383 185.1

2 1.453 234.5 0.488 142.0 0.513 153.3 0.591 155.4

3 1.615 283.7 0.508 158.2 0.530 157.7 0.772 172 .4

4 1. 753 284.5 0.635 163.8 0.629 165.3 0.723 227.5

5 1. 651 331.7 0.749 154.9 0.731 152.6 0.706 198.8

6 1.135 361. 2 0.648 233.9 0.637 230.8 0.670 252.2

*Xi '" MAXIMUM DEFORMATION OF iTH STORY UNIT

Y
i

'" MAXIMUM TOTAL ACCELERATION OF iTH FLOOR

Y6 '" RELATIVE DISPLACEMENT OF TOP FLOOR WITH RESPECT TO THE GROUND

U '" MAXIMUM CONTROL FORCEma:lt
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At Q
2: = a (4.1)

in which a is a constant, and g21 and ~22 are (6x6) matrices. Since only one

controller is installed on the first floor, the i- jth element of g21 and

~22' denoted by Q21(i,j) and Q22(i.j), respectively, can be chosen to be zero

for i = 2,3, ... 6 . For illustrative purpose, the following values are

assigned to elements of Q
21

(l,j) and Q22(1,j): Q
21

(l,j) = [1660, -1080,

24.1, 73.1, -11.4, 15.1], Q22(1,j) = [43.5, 29.4, 7.8, 7.8, 8.0, 7.2].

The maximum building response quantities and the required maximum active

control force are shown in Column C of Table 1 for a = 1.15 x 105 and 106 ,

respectively.

*For the proposed optimal control law, the weighting matrix Q is partitioned

similar to Eq. (4.1) as

(4.2)

* *in which a is a constant, and g2l and ~22 are (6x6) matrices. Again, the

* * * *i-jth element of ~21 and ~22' denoted by Q21(i,j) and Q22(i,j), respectively,

can be chosen to be zero for i = 2,3, ... ,6. For illustrative purpose,

*Q21(l,j) = [3612, 2485, 170,* *Q21(1,j) and Q22(1,j) are given as follows:

*82.5, 36.8, 24.5], Q22(1,j) = [101.7, 71.1, 20.4, 20.3,

*The maximum building response quantities, i. e., xi'

19.1, 18.1] .

.. *
Yi (i = 1,2 ... ,6),

and the required maximum control

4-5

force Umax are presented in



Column D of Table 4-1 for Q 2.8 x 10
3

and 2 x 10
4

, respectively.

Table 4-1 provides a clear comparison for the performance among different

optimal control laws, because the required maximum control force is

approximately the same. The following observations are made from Table 4-1:

(i) The active tendon control system is quite effective in reducing the

building response quantities, whereas, the required active control force is

well within the practical limit, and (ii) The difference in the performance

is minimal for the three optimal control laws investigated.

We next consider that the earthquake ground acceleration XO(t) is a

nonstationary random process with zero mean as described previously. For

illustrative purpose, the parameters appearing in the envelope function, the

filter
2

and the power spectral density S of the white noise are chosen as

follows: t
l

= 3 sec., t
2

= 13 sec., c

222
rad./sec., and S = 10.824 cm /sec.

0.26
-1

sec. , r = 0.65,
g

w = 18.85
g

Time dependent root mean squares of the response vector, a (t),
-z

and the

control force, a (t), were computed using the three different optimal control
u

laws described previously. The weighting matrices g and R are identical to

those used in the previous case. Within 30 seconds of the earthquake

episode, the maximum root mean square values of the relative displacement of

the first floor and the top floor with respect to the ground, denoted by 0
1

and °6 , respectively, are presented in Table 4-11. Also presented in Table

4-11 are the corresponding maximum root mean square of the required active

control force, denoted by o. As observed from Table 4-11, the difference in
u

the performance for each optimal control law is minimal.
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TABLE 4-II: MAXIMUM ROOT MEAN SQUARE OF STRUCTURAL RESPONSE AND
CONTROL FORCE: (A) WITHOUT CONTROL; (B) CLASSICAL
OPTIMAL LINEAR CONTROL, EQ. (2.11); (C) INSTANTANEOUS
OPTIMAL CONTROL, EQ.(2.10); AND (D) INSTANTANEOUS
OPTIMAL CONTROL WITH FEEDBACK ~(t), EQ.(2.8)

(A) (B) (C) (D)
WITHOUT 7 5 3
CONTROL

q=3x10 Q=1.15x10 Q=2.8x10

- (em) 0.136 0.077 0.082 0.0800
1- (em) 1.405 0.756 0.760 0.7800
6- (kN) 0 473.3 481.5a 490.6
u

(A) (B) (C) (D)
WITHOUT 9 6 4
CONTROL q=2x10 Q=10 Q=2x10

- (em) 0.136 0.0740
1

0.069 0.050
-

(em) 1.405 0.3580
6

0.363 0.381
- (kN) 0 1348.9a 1283.2 1227.1

u

0
1

= MAXIMUM RMS OF 1ST FLOOR RELATIVE DISPLACEMENT

0
6

= MAXIMUM RMS OF TOP FLOOR RELATIVE DISPLACEMENT
-
a = MAXIMUM RMS OF CONTROL FORCE

u
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Using the proposed optimal control law, the time dependent root mean square

values of the relative displacement of the top floor with respect to the

ground, denoted by u
6
(t), are plotted in Fig. 4-2. In Fig. 4-2, Curve 0 is

the response without control, whereas Curves 1 and 2 are the responses with

3 4
active tendon control using Q = 2.8 x 10 and 2 x 10 , respectively, see

Table 4-II. The time dependent root mean squares of the required active

control force, u (t), are presented in Fig. 4-3 as Curves 1 and 2.
u

Curve 1

in Fig. 4-3 is the required active control force for Q = 2.8 x 103
,

corresponding to the case for Curve 1 of Fig. 4-2, whereas Curve 2 in Fig.

4
4-3 corresponds to the case for Curve 2 of Fig. 4-2, Q = 2 x 10. Finally,

the results for the time dependent root mean squares of the response and the

active control force using the other two optimal control laws are very close

to those shown in Figs. 4-2 and 4-3, and hence they are not presented.

It is observed from Figs. 4-2 and 4-3 and Table 4-11 that, under stochastic

earthquake ground excitations, (i) the proposed optimal control law with

velocity and acceleration feedbacks performs very well, and (ii) the

difference in the performance is minimal for the three optimal control laws

investigated.
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SECTION 5

CONCLUSION

For practical implementations of an active control system to building

structures for seismic hazard mitigations, it is important to avoid the

measurement of the displacement response. A new intantaneous optimal control

law is proposed, which requires the measurements of the acceleration and

velocity responses rather than the displacement and velocity responses. The

performance of such an optimal control law has been investigated, evaluated,

and compared with other optimal control laws using both deterministic and

stochastic earthquake excitations. It is demonstrated that the performance

of the proposed optimal control law is as good as other optimal control laws

currently available. The contribution of such an optimal control law to

practical implementations of an active control system for earthquake hazard

mitigation can be significant.
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APPENDIX:

OPTIMAL CONTROL LAWS

Substituting the Hamiltonian H(t) given by Eq. (2.6) into Eq. (2.7), one

*obtains the necessary conditions for minimizing the performance index J (t)

as follows

2 Q* ~(t) + ~(t) o (A-1)

2 ~ !?:(t) B A(t) o (A-2)

(i) Optimal Closed-Loop Control (Feedback Control)

(A-3)

It follows from Eq. (A-2) that the optimal control vector !?:(t) is

proportional to the Lagrangian multiplier vector A(t), i.e.,

1 -1
2" R B ~(t) (A-4)

Let the control vector !?:(t) be regulated by the velocity state vector Z(t)

alone, i. e . ,

A(t) = A ~(t)

Then, substitution of Eq. (A-5) into Eq. (A-1) yields

(A-5)

( 2 ~* + ~ ) ~(t) o (A-6)

from which the unknown matrix A is obtained, for Z(t) ~ 0,

*!I. = - 2 ~ (A-7)

The optimal control vector !?:(t) is obtained by substituting Eq. (A-7) into

Eq. (A-5) and then into Eq. (A-4) as

A-l



U(t) (A-8)

(ii) Optimal Open-Loop Control (Feedforward Control)

Let the control vector ~(t) be regulated by the measured earthquake excita-

tion XO(t). Substituting Eq. (A-3) into Eq. (A-l), one eliminates Z(t) as

follows

A(t) (A-9)

Further substitution of Eq. (A-9) into Eq. (A-4) yields the optimal control

vector ~(t) as

~(t) (~ + B g* B)-l (~ g*) [~~(t-~t) + ~ ~(t-~t) ~t

+ ~l XO(t) ] (A-lO)

Thus, the optimal control vector is regulated by the measured external

excitation XO(t)

(iii) Optimal Closed-Open-Loop Control (Feedback and Feedforward Control)

Suppose the optimal control vector is regulated by both the feedback velocity

state vector Z(t) and the external excitation XO(t), i.e .•

A(t) (A-ll)

It follows from Eq. (A-4) that

U(t)
1
2

-1
R B [ ~ ~(t) + ~(t) ]

A-2

(A-12)



* ~(t)Now, the term 2 g appearing in Eq. (A-l) is separated into two terms

* ~(t) * .
Z(t) thesuch that g + g ~(t) + ~(t) = O. Then, only the in second

term is replaced by Eq. (A-3), and ~(t) and !!:(t) are replaced by Eqs. (A-H)

and (A-l2), respectively; with the result

o

( g* + ~ g* ~ ~-l ~' ~ + ~ ) Z(t) + ( ! + ~ g* ~ ~-l B' ) q(t)

+ g* [ ~ ~(t-~t) + ~ ~(t-~t) ~t + ~1 XO(t) ]

It follows from Eq. (A-l3) that

(A-l3)

!!' ) ~] ~(t) o (A-14)

o (A-15)

Thus, the unknown matrix A and the unknown vector q(t) are obtained from Eqs.

(A-14) and (A-IS) as follows

-A - (I + ! Q* B R- I B
- 2 - -- *g (A-l6)

q(t) = A [ ~ ~(t-~t) + A Z(t-~t) ~t + ~l Xo(t) ]

A-3

(A-l7)
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